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Abstract 

 Anxiety is an emotion frequently experienced by athletes in competitive situations 

(Lazarus, 2000). Attentional control theory (Eysenck et al., 2007) explains that anxiety affects 

performance by occupying limited attentional resources, which reduces the efficiency and 

effectiveness of athletes. Efficient gaze patterns are linked to high levels of performance (e.g., 

Vickers, 1992). As athletes become more anxious, their gaze patterns become less efficient; 

specifically, they have more fixations of shorter duration and shorter quiet eye fixation duration 

(e g., Wilson, Vine & Wood, 2009). The purpose of the current study was to test if a common 

anxiety reduction intervention, the diaphragmatic breath, affects the anxiety, gaze efficiency, and 

performance of novice golfers completing a golf putting task. Currently, there is no research to 

support that a single diaphragmatic breath can aid performance, affect gaze patterns, and reduce 

anxiety of novices during competition, though sport psychology practitioners commonly apply 

this intervention. Undergraduate university students (n=30) with little to no golf putting 

experience and normal vision were block randomized into diaphragmatic breath (DB) and 

control groups. The protocol consisted of completing a pretest block of 20 putts, an intervention, 

60 practice putts, then a posttest block of 20 putts where their anxiety was manipulated. The DB 

group was taught to take a diaphragmatic breath before each putt. Diaphragmatic breathing 

instructions were adapted from Lehrer, Vaschillo, and Vaschillo’s (2000) abdominal breathing 

manual. Anxiety was measured using the somatic and cognitive subscales of the Mental 

Readiness Form-3 (MRF-3: Krane), which were administered after each putt. Gaze efficiency 

was measured using Tobii Pro Glasses 2. No statistically significant multivariate effects of the 

grouped independent variables on the grouped dependent variables were found. Results also 

showed no statistically significant interaction effect for group and time on anxiety or 
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performance, suggesting that the diaphragmatic breath intervention did not manage participant 

anxiety levels or affect the performance of the DB group compared to the control group. While 

not statistically significant, a large effect size was found for the interaction of group and time on 

average fixation length, and a moderate effect size was found for the interaction of group and 

time on quiet eye duration. Trends in the data showed that the control groups’ average fixation 

duration and quiet eye duration increased, while the DB groups’ average fixation duration and 

average quiet eye duration increased. These findings suggest that implementing a diaphragmatic 

breath intervention does not seem to manage anxiety or enhance gaze efficiency. While more 

research is needed on the effects of DB on anxiety, performance, and gaze efficiency, trends in 

the data from the current study suggest that a single DB may not be an effective strategy for 

novices faced with pressure situations in sport.  
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Chapter I 

The Problem and Its Scope 

Introduction  

Most athletes rely heavily on their vision to accomplish a variety of tasks. Until recently, 

how athletes use their eyes to successfully accomplish the goals of their sport has been a mystery 

because researchers could only subjectively guess where the athletes were looking. Advances in 

technology have allowed researchers to measure where athletes’ eyes are focused, or fixated. A 

fixation occurs when the part of the retina that is responsible for the detailed part of our vision, 

the fovea, is focused on a certain location long enough for our nervous system to process the 

information in a way that it can be useful (Carl & Gellman, 1987). There is strong research 

evidence that efficient gaze patterns, defined as less fixations of longer duration, are 

characteristic of expert performance in sporting tasks that involve projecting an object to a 

faraway target, such as making a pass in soccer, throwing a pass in football, or making a putt in 

golf (Vickers, 2016). Along with efficient fixation patterns, one specific type of fixation that 

researchers have found related to successful and expert performance in far aiming targeting tasks 

is referred to as “quiet eye”. A quiet eye fixation is the final fixation that starts before the motor 

movement critical to the execution of a sport skill, like the backswing in golf, flexion of the knee 

in a soccer kick, and elbow extension in the basketball shot, and ends when the fovea deviates 

from the fixation location (Vickers, 2007). The evidence that efficient gaze patterns are 

important to high levels of performance is so strong that training has been developed to help 

athletes replicate the efficient gaze patterns of experts in their sport to increase their sport 

performances (Harle & Vickers, 2001), and results indicate that such training is effective 

(Vickers, 2016). 
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 One roadblock that prevents athletes from performing at their highest level is anxiety, an 

emotional and physiological response to threatening stimuli (Tomas, Mellalieu, & Hanton, 

2009). Eysenck et al. (2007) theorized that anxiety reduces how effective athletes are during 

performance by influencing the central executive, which controls attention. The central executive 

is an abstract function of the brain with a limited capacity of resources that processes information 

from short and long-term memory to select where attention is allocated, switches attention 

between stimuli, inhibits irrelevant stimuli from being processed, and updates any changes in 

stimuli (Baddeley, 2001). Eysenck et al. (2007) hypothesized that heightened levels of anxiety 

affect athletes in two ways, by decreasing their processing efficiency (i.e., how much effort they 

must use to reach a certain level of performance) and their performance effectiveness (i.e., the 

level of performance) in sport. First, when anxiety is elevated, athletes use some of their limited 

processing resources to think worrisome thoughts. The increase in the amount of processing 

resources used by worrisome thoughts, plus resources to pay attention to the task, causes 

athletes’ central executives to be less efficient (Eysenck et al., 2007). Second, if worrisome 

thoughts take up enough of the central executive’s limited resources and leave insufficient 

resources to execute a certain sporting task, performance effectiveness will decrease (Eysenck et 

al., 2007).  

High anxiety levels have been shown to increase the frequency of fixations and shorten 

fixation duration, making gaze less efficient during tasks that use the central executive (Janelle, 

2002). Per attentional control theory (Eysenck et al., 2007), increased anxiety decreases 

processing efficiency and performance effectiveness by increasing the influence of the bottom-

up attentional system, which is drawn to threatening stimuli in the environment, at the expense of 

the top-down attentional system, which is controlled by individuals to help them plan and make 
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decisions. When the bottom-up attentional system’s influence is increased by elevated anxiety 

levels, the eyes begin scanning for threatening stimuli with a gaze pattern of short fixations to 

many different places (Wilson, Vine, & Wood, 2009). These gaze patterns are detrimental when 

athletes need to control their gaze to specific stimuli that are important to their sport. For 

example, a golfer with low anxiety uses her top-down attentional system to direct her eyes to 

information that will help her set up the optimal shot; however, when her anxiety increases, the 

bottom-up attentional system’s influence might draw her attention toward worrisome thoughts 

and threats like water hazards or media members that could write ego-deflating stories. Paying 

attention to these threatening, task-irrelevant stimuli reduces her processing efficiency and may 

cause her performance effectiveness to suffer if an insufficient amount of processing resources 

remain to successfully execute her next stroke. 

 Because anxiety is prevalent in sport due to its competitive nature (Lazarus, 2000) 

managing anxiety is a topic widely discussed in performance psychology literature (Janelle, 

2002). While there is plenty of evidence that increased anxiety has deleterious effects on gaze 

efficiency, there are few research studies that have explored the effects of anxiety reduction 

interventions on gaze. A psychological intervention commonly used to reduce anxiety in 

performance situations is controlled deep breathing (Williams & Krane, 2015). Different 

controlled breathing techniques have been used to promote relaxation (Monnazzi, Leri, 

Guizzardi, Mattioli, & Patacchioli, 2002; Telles, Singh, & Balkrishna, 2011; Uebelacker & 

Broughton, 2016; Wells, Outhred, Heathers, Quintana, & Kemp, 2012) and improve 

performance (Pelka, Kolling, Ferrauti, Meyer, Pfeiffer, & Kellmann, 2017; Telles, et al., 2007, 

Telles et al., 2013) in a variety of research tasks and populations. Controlled slow breathing is 

said to cause changes in the autonomic nervous system by increasing the influence of the 
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parasympathetic nervous system (PNS) and decreasing the influence of the sympathetic nervous 

system (SNS), which promotes relaxation (Prinsloo, Derman, Lambert, & Rauch, 2013; Song & 

Lehrer 2003; Telles & Naveen, 2008).  

Several types of controlled breathing techniques have been studied (Telles & Naveen, 

2008). Of the breathing techniques studied, Heart Rate Variability Biofeedback (HRVB) has 

consistently been shown to promote relaxation (Prinsloo et al., 2011; Prinsloo et al., 2013; Song 

& Lehrer, 2003) and aid performance (Prinsloo et al., 2011) through a variety of psychological 

and physiological mechanisms (Lehrer & Gevirtz, 2014). Diaphragmatic breathing is considered 

an easy way to temporarily decrease anxiety (Mason, 1980) and is the key component to HRVB. 

Heart Rate Variability Biofeedback (Lehrer, Vaschillo, & Vaschillo, 2000) works on the premise 

that breathing can affect heart rate, causing the heart to speed up during inhalation and slow 

down during exhalation. The variance in the length of time between heartbeats is called heart rate 

variability. Oscillations caused by the variation in time between heart beats, known as 

Respiratory Sinus Arrhythmia (RSA), are used to measure homeostasis of the body and the 

influence of the SNS and PNS (Pumprla, Howorka, Groves, Chester, & Nolan, 2002). To achieve 

rhythmic high amplitude RSA, which is a sign of autonomic nervous system balance, individuals 

can synchronize diaphragmatic breathing to biofeedback of their heart rate variability (Lehrer et 

al., 2000). It has been found that most people achieve optimal RSA when breathing at a 

frequency between 3.5-6.5 breaths/minute, with the majority of individuals having high 

amplitude oscillations indicating high heart rate variability breathing at a rate of six 

breaths/minute (Vaschillo, Vaschillo, & Lehrer, 2006). Practicing HRVB has shown to cause 

large increases in relaxation, mindfulness, and general positive feelings under stressful 

conditions, even after one 10-minute session (Prinsloo et al., 2013). Also, long-term practice of 
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HRVB has shown to decrease anxiety and increase performance in research on elite basketball 

players (Paul & Garg, 2012), and case studies on a Division I university golfer (Lagos et al., 

2011) and a high school golfer (Lagos et al., 2008). HRVB shows promise as a breathing 

technique that can help athletes perform at high levels under the anxiety inducing situations 

inherent in sport.  

Less formal methods of deep breathing also appear to aid performance in sporting 

situations. Pelka et al. (2017) found that participants who practiced 10 minutes of systematic 

breathing once a week for six weeks were able to significantly increase their performance on a 

sprinting task compared to a control group. Similarly, Mesagno and Mullane-Grant (2010) found 

that experienced Australian Footballer players who were taught to take a deep breath before 

execution of a penalty kick performed better than control group participants who were in the 

same pressure situation.  

Taken together, there is convincing evidence from controlled breathing research that use 

of controlled breathing, even in small doses, can affect anxiety and performance levels. 

Unfortunately, most of the research protocols testing the effects of controlled breathing have 

used experienced yoga practitioners or experienced athletes as participants. No studies to date 

have measured the effects of taking a deep breath before the execution of a sport task in novice 

athletes. Sport psychology practitioners are teaching deep breathing to athletes with little 

evidence that it provides any benefits to their performance. Novices are desirable to study 

because they are the least likely to have established performance routines; disturbing established 

performance routines can negatively affect performance (Cotterill, 2011). The current study will 

address a gap in the controlled breathing and gaze literatures by testing the effects of a single 

diaphragmatic breath on anxiety, performance, and gaze efficiency in novice golfers. 
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Purpose of the Study 

The current study was used to test the effects of diaphragmatic breathing on anxiety, 

performance, and gaze efficiency during a competitive golf-putting task. More specifically, using 

participants who were block randomized into control or diaphragmatic breath groups, the current 

study was used to test the effects of completing a single diaphragmatic breath before each putt on 

anxiety, fixation duration, number of fixations, quiet eye duration, and performance. Within and 

between subject comparisons were made to understand how the dependent variables were 

influenced by the independent variables. 

Null Hypothesis 

 The null hypothesis of the current study is that participants who are in the diaphragmatic 

breath group will have no significant differences from those who are in the control group on 

measures of cognitive anxiety, somatic anxiety, average fixation duration, average number of 

fixations per putt, average quiet eye duration, and performance during a putting task. 

Significance of the Study 

 This study is significant for three main reasons 1) it will be used to test the effects of 

taking a diaphragmatic breath on anxiety measured during competition, 2) it will be used to test 

if taking a diaphragmatic breath affects the performance of novices, 3) it will be used to test the 

effects of a psychological intervention on gaze. 

 During the current study, researchers will measure the somatic and cognitive anxiety 

levels of each participant after each putt during pretest and posttest sessions to see if a 

diaphragmatic breath has an effect on novice golfers’ anxiety throughout a competition. Often 

researchers measure anxiety before competition, which makes it harder to detect anxiety levels 

after competition has begun. By measuring anxiety throughout the competition it can be 
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determined if taking a diaphragmatic breath affects average anxiety levels during competitive 

situations instead of pre-competition anxiety levels, which are commonly measured in research 

on anxiety. 

 While attentional control theory’s hypotheses have been tested in a one-way manner, 

meaning that the effects of increased anxiety on gaze efficiency have been studied (Wilson et al., 

2009), there has been no published research that has tested the effects of anxiety reduction 

interventions on gaze efficiency. If the relationship between anxiety is bi-directional, then 

decreasing anxiety should make attentional processes, like visual attention as measured by gaze, 

more efficient. This relationship is important to understand because it may be a mechanism by 

which anxiety reduction interventions can enhance performance. The current study will 

determine if a common anxiety reduction intervention, the diaphragmatic breath, causes novice 

performers to have more efficient gaze patterns and better performance.  

Limitations of the Study 

1. Confounding variables may be present due to the fact that the development of 

performance routines can occur naturally. Therefore, it is possible that participants in 

the control group might have taken deep breaths before their putts or subjects in all 

groups may have used other mental skills that could have affected the results of the 

study.  

2. Similarly, it is difficult to know how much effort participants in the diaphragmatic 

breath group put into implementing the diaphragmatic breathing intervention.  

3. Novice golfers may not have considered performing well on the putting task to be 

important to them, which could have affected the amount of threat, and therefore 

anxiety, they experienced (Folkman & Lazarus, 1974).  
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4. Because novice golfers were used, these findings may not be applicable to expert 

populations. 

5. The study was conducted in a lab setting, limiting the external validity of the results. 

6. Another limit of external validity is that participants had to wear the eye tracking 

glasses while putting. Although efforts were made to increase comfort with the 

glasses, golfers would not wear this type of technology during competition.  

7. For this study, a convenience sample of college students was used; therefore, 

participants cannot be assumed to be truly representative of the entire novice golfer 

population.   

Definition of Terms 

Cognitive Anxiety- The amount of worry an individual is experiencing (Krane, 1994).  

Diaphragmatic Breath- A deep breath where an individual inhales in through the nostrils deeply 

by using the diaphragm and exhales through the mouth. For this study, a diaphragmatic breath 

was defined as inhaling through the nostrils into the abdomen using the diaphragm for a count of 

four seconds, then actively exhaling through the mouth for a count of six seconds. 

Backswing- The first movement of the putter away from the ball when initiating a golf putt. 

Fixation- A period of time that the eye is stable for 100 ms without reaching a movement 

velocity threshold of 30°/ms, as recommended by Tobii (2012). 

Fixation Duration- The average length of all fixations that occur during the pretest or posttest 

block of putts. 

Fixation Frequency- The average number of fixations occurring during each putt for the pretest 

or posttest putting blocks. 
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Fixation Offset- The end of a fixation where gaze deviates of the fixation location more than 3° 

for more than 100 ms.  

Fixation Onset- The start of a fixation. 

Processing Efficiency- The amount of effort used to achieve a certain level of task effectiveness 

(Eysenck & Calvo, 1992). 

Quiet Eye- The specific final fixation with an onset that occurs prior to the backswing phase of 

the putt (Vickers, 2007). 

Somatic Anxiety- The amount of tension experienced by an individual (Krane, 1994). 

Task Effectiveness- The quality of performance as determined by standards set by society 

(Eysenck & Calvo, 1992). 
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Chapter II 

Review of Literature 

Introduction 

 According to processing efficiency theory (Eysenck & Calvo, 1992) and attentional 

control theory (Eysenck et al., 2007), when individuals have heightened state anxiety their 

attentional processes are negatively affected. One way to measure the effects of anxiety on visual 

attention is through measurements of gaze, or where one’s eyes are looking. Visual attention, as 

measured by gaze, is instrumental to expert performance in activities requiring precision in cue 

selection (Vickers, 2011). One such category of activities that require precise task-relevant cue 

selection are far aiming targeting tasks such as shooting in basketball, field goal kicking in 

football, and putting in golf. When anxiety is elevated, there are deleterious effects on visual 

attention (Vine, Moore, & Wilson, 2014).  

Therefore, decreasing anxiety may have beneficial consequences on the visual attention 

system. In competitive situations, anxiety is common (Lazarus, 2000). So, athletes often are 

taught relaxation interventions to help regulate their anxiety levels. Diaphragmatic breathing is a 

common anxiety reduction technique incorporated into athletes’ performance routines in 

competitive situations (Williams & Krane, 2015). While diaphragmatic breathing is a common 

arousal regulation technique, there are few studies that have tested if a diaphragmatic breathing 

intervention alone is effective in reducing anxiety in competitive situations. If diaphragmatic 

breathing is effective at reducing anxiety, it may have beneficial consequences on the visual 

attention system. Yet, presently, researchers have not tested the effects of a relaxation 

intervention, like diaphragmatic breathing, on the visual attention system. Therefore, to address 
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this gap in the literature, the current study will test the effects of a diaphragmatic breath on gaze 

patterns and performance in a putting task. 

Arousal, Stress, and Anxiety: Theories and Definitions 

Optimal performance is what athletes often strive for during practice and game situations. 

Frustratingly, levels of performance effectiveness can vary from moment to moment and game to 

game. Lazarus (2000) attributed this variance in athletic performance to emotions that arise 

during competition. 

Explanations of how emotions come to be have fluctuated over the history of the study of 

psychology. Lange and James (1922) theorized that specific physiological reactions to stimuli 

activate certain combinations of neurons all over the cortices of the brain, and those 

combinations are interpreted as specific emotions. According to the James-Lange theory (Lange 

& James, 1922), over the course of time, humans evolved to react to stimuli in the environment 

in specific ways. For example, muscles tense up in the presence of danger or faces relax and 

smile when around loved ones. According to their theory, these bodily reactions precede 

emotions and, without them, emotions are no more than thoughts. Proponents of the James-

Lange theory would agree that it would be hard to imagine being frightened with no increased 

heartrate or experiencing sorrow while having genuine a smile. Only after feeling these reactions 

can someone truly experience an emotion.  

Cannon (1927) developed a theory to disprove the James-Lange theory. He noted that 

when cats’ brain stems were separated in surgery from the sensory organs and cerebral cortices 

of the brain, the animals still displayed emotional reactions. This finding showed that emotion 

and organ sensation are somewhat independent (Bard, 1928). Cannon (1927) argued that changes 

in the body due to activation of the sympathetic nervous system happen during a multitude of 
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different situations, such as fever, hypoglycemia, and asphyxia. If the James-Lange theory of 

emotion was true, then these ailments should make individuals feel certain emotions due to the 

activation or inhibition of certain organs. However, they do not. Changes in the viscera are 

commonly unnoticeable, gashes or holes in intestines cannot be felt, and some of the smooth 

type of muscles in the visceral can take minutes to be stimulated; for example, the vagus has a 

latent period of 6 minutes (Cannon, 1927). If these changes in the body can go unnoticed and 

take place slowly, then they cannot explain emotions that occur immediately after certain 

experiences. While Lange and James (1922) attributed activation of differing combinations of 

the cortex to emotional expression, Cannon (1927) and Bard (1928) concluded that emotional 

expression happens in the hypothalamus. Instead of stimuli affecting bodily changes, which are 

then interpreted by the cortex as emotion (as in the James-Lange theory), Cannon-Bard theory 

asserted that stimuli are interpreted by the thalamus and made into emotion while simultaneously 

causing physiological reactions related to that emotion (Cannon, 1927). 

James-Lange theory (Lange & James, 1922) and Cannon-Bard theory (Cannon, 1927; 

Bard, 1928) explain that emotions are created based on our interpretations of the arousal levels of 

different body systems. The problem with these theories is that they discount the effect that our 

cognitions have on what emotions we feel. To address this missing component, Lazarus and 

Folkman (1984) created the cognitive appraisal model in order to explain how our cognitions 

help determine what emotions we feel. According to the cognitive appraisal model, two 

individuals faced with the same situation can appraise the environmental demands or threats of 

that situation differently, causing their emotional reactions to differ. These differences in 

appraisals are often seen in golf. For example, one golfer may feel confident about his driving 
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ability, making teeing off on a par five enjoyable for him, whereas a different golfer may not 

think he can handle the demands of the long fairway and so he feels anxious about teeing off.  

According to Lazarus and Folkman (1984), the process of appraisal involves a primary 

appraisal, which consists of the individual determining if a situation is irrelevant, benign-

positive, or stressful. Irrelevant situations are those in which the individual has no investment in 

the possible outcomes of the situation. When situations are appraised as positive or enhancing to 

the well-being of the individual, they are considered benign-positive. Stressful appraisals can be 

further divided into appraisals of harm, threat, or challenge. Harm appraisals occur when 

damage has already been done to an individual, such as an athlete that tears a ligament in his 

knee. Threat appraisals concern harm that is anticipated to occur in the future, such as a tennis 

player expecting to hit a game-winning serve into the net. According to Lazarus and Folkman 

(1984), harm and threat appraisals usually lead to negative emotions. Challenge appraisals 

happen when an individual expects gain or growth from the situation and are associated with 

more positive emotions (Lazarus & Folkman, 1984). For example, a group of professional ping 

pong players, who all find it important to win every game of ping pong they play, might appraise 

a game of ping pong to be stressful, challenging, and anxiety inducing. By contrast, a group of 

amateurs out on the town playing ping pong in a social setting who do not think winning ping 

pong is important, will probably appraise the game to be benign and fun.  

Secondary appraisals involve the individual deciding if he or she possesses the proper 

coping resources in order to deal with situations that are appraised as challenging or threatening 

(Lazarus & Folkman, 1984). Secondary appraisals can happen simultaneously with primary 

appraisals and are equally important, contrary to what their names might suggest. This appraisal 

process is constant, dynamic, and can affect the emotions one feels. Take, for instance, a playoff 
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football game. A quarterback may start the game making the primary appraisal that the game will 

be challenging and a secondary appraisal that he has the skills to lead the offense in successful 

scoring drives. These appraisals cause the quarterback to experience positive emotions. Later in 

the game, when his team is losing, he may make the primary appraisal that the game is 

potentially threatening and make a secondary appraisal that he does not have the skills to lead to 

his team on a scoring drive. According to the cognitive appraisal model (Lazarus & Folkman, 

1984), his appraisal that he is about to let his team down in an important game, contributes to his 

negative emotions.  

The previously discussed theories explain how all emotions come about, but the specific 

emotion of anxiety is important to understand because it is commonly experienced in 

competitive context of sport (Lazarus, 2000). When an individual perceives he or she does not 

have the ability to meet the demands of personally valued situations, stress is experienced 

(Lazarus & Folkman, 1984). A common response to stress is anxiety, which is a broad term for a 

variety of emotional and physiological reactions that occur when an individual interprets stimuli 

as threatening (Tomas, Mellalieu, & Hanton, 2009). When values and goals that are important to 

an individual are threatened and the individual is uncertain if they have the resources to 

overcome the threat, stress, and therefore anxiety, may increase (Lazarus, 2000). Competitive 

anxiety refers to anxiety experienced before or during competition (Tomas et al., 2009). Lazarus 

(2000) stated that competitive anxiety is common in sport because the comparative nature of 

competition will reveal the competence of a participating athlete. At any moment, an athlete’s 

level of performance could vary. Variance in performance level is so common that an athlete is 

often uncertain how well she will perform during upcoming competitive situations, which is a 

major source of anxiety (Lazarus, 2000). The possibility that the athlete will be perceived as 
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incompetent in competition can be threatening to the athlete’s well-being and cause anxiety. 

Also, anxiety generated from sources outside of competition, such as marriage problems, fiscal 

crisis, or conflicts with team management, can add to anxiety experienced during competition 

(Lazarus, 2000).  

Arousal is a term that is commonly associated with anxiety. In order to understand 

research in the field of anxiety, it is important to understand what is meant by arousal. Arousal 

exists on a continuum of intensity with one end of the continuum being a deep sleep and the 

other end of the continuum being the most intense excitement (Martens et al., 1990). Where an 

athlete falls on this continuum is referred to as his arousal level. During the offseason while 

taking a nap on the beach, an NBA player might experience his lowest level of arousal of the 

year. Rewind a few weeks to the deciding game of a playoff series, and the athlete’s increased 

heartrate, dilated pupils, tense muscles, constricted veins, and cognitive anticipation of the tipoff 

would represent the height of his in-season arousal. 

The conceptualization of anxiety changed when Spielberger (1966) identified two 

distinguishable components of anxiety, trait anxiety and state anxiety. State anxiety is an 

immediate but transient reaction one experiences when situation specific external stimuli or 

internal cues are interpreted as dangerous or threatening. How threatening an individual 

appraises a situation to be, combined with the level of trait anxiety of the individual, determines 

state anxiety. Trait anxiety is a stable disposition of an individual’s personality that influences if 

he or she interprets situations as threatening and dangerous and responds with an anxiety state 

(Spielberger, 1996). If an individual has high trait anxiety she is more likely to present with 

symptoms of anxiety across a variety of situations. For example, a golfer with high trait anxiety 

would be predisposed to appraise more situations, competitive or not, as threatening. This golfer 
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would likely respond with anxiety symptoms of greater intensity when compared to a person 

with low trait anxiety (Martens et al., 1990).  

Anxiety is also viewed as a multidimensional construct, meaning that anxiety can be 

experienced either cognitively or somatically (Martens et al., 1990). Cognitive anxiety is mental 

and comes from negative expectations and negative self-evaluations (Martens et al., 1990). In 

sport, cognitive anxiety may manifest in thoughts such as, “I am going to lose again to the top 

ranked player” or “I am the slowest person at this track meet.” Somatic anxiety is experienced 

through physiological and affective symptoms caused by the arousal of the autonomic nervous 

system, such as excessive sweating, “butterflies” in one’s stomach, or an increased heart rate.  

While anxiety often gets associated with its negative effects, it is not always debilitative. 

According to Lazarus (2000), anxiety can have either positive or negative effects on performance 

depending on the individual and situation. Facilitative anxiety motivates and mobilizes athletes 

to action. If anxiety about an upcoming game causes an athlete to increase her dedication to 

practice and preparation, then it can hardly be labeled as a bad emotion. Therefore, it is 

important to consider both the facilitative and debilitative effects of anxiety on athletes’ 

performance and wellbeing.  

When playing sports, there are endless situations that can be interpreted as threatening 

and cause uncertainty, worrisome thoughts, or sympathetic activation. This means that most, if 

not all, athletes have experienced some component or dimension of anxiety. In the next section, 

theories about the relationship between anxiety and performance will be discussed. 

Theories on the Anxiety-Performance Relationship 

 Theories about how anxiety affects performance have become more complex and detailed 

over time. Two early views on the performance-arousal relationship include drive theory and the 
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inverted-U hypothesis. Drive theory (Hull, 1943; Spence & Spence, 1966) was created to explain 

that the relationship between arousal and performance exists on a positive linear slope. Drive 

theory explains that higher arousal corresponds to higher performance in skills where the 

performer has trained the correct dominant and automatic response. However, there are many 

situations where drive theory does not hold up, because not all people perform better when they 

are highly aroused. In fact, high arousal can be detrimental to performance based on the 

individual and the task he or she is performing. 

Alternatively, the inverted-U hypothesis was created on the basis that as arousal 

increases, so does performance, but only up to a certain optimal level of arousal (Yerkes & 

Dodson, 1908). Yerkes and Dodson (1908) considered an intermediate amount of arousal to be 

optimal, and once arousal elevates beyond the optimal and intermediate arousal level, 

performance will steadily decline. When graphed, the inverted-U model resembles an upside-

down U, which is where it gets its name. Later, the inverted-U model was adapted to indicate 

that the optimal arousal level is determined by the characteristics of the task and individual 

(Hanton, Mellalieu, & Williams, 2015). Simple tasks that require strength, speed, and gross 

motor movements, such as sprinting, might be performed better under high arousal while other 

tasks that require fine motor movement and decision-making skills, such as target shooting or 

setting in volleyball, may be better suited to be performed at a low arousal level. Individual 

characteristics that influence the optimal arousal level would be the individual’s personality, skill 

level, and experience. 

Drive theory and the inverted-U hypothesis have been replaced by more contemporary 

theories and models in the field of sport psychology because they are considered too simplistic to 

explanation the performance-arousal relationship (Hanton et al., 2015). Hanin’s (1997) 
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individual zones of optimal functioning (IZOF) model was originally designed to explain the 

relationship between precompetitive state anxiety and performance in the elite athlete population. 

Hanin (1997) expanded the theory to explain how differing levels of all emotions can facilitate or 

debilitate performance within individual athletes. In Hanin’s (1997) model, emotions can be 

classified by individuals into two factors: positivity-negativity and optimality-dysfunctionality. 

Each positive or negative emotion’s intensity, whether it be low, medium, or high, can put an 

athlete into a zone where the emotion facilitates optimal performance (in zone) or into a zone 

where it facilitates dysfunctional performance (out of zone). Each individual athlete has different 

intensities of emotions that put them “in zone” or “out of zone”. According to the IZOF model, 

one soccer goalie may perform better with high precompetitive state anxiety while the opposing 

goalie may be “in zone” when her intensity of precompetitive anxiety is low. 

While the IZOF model (Hanin, 1997) explains how various levels of anxiety can facilitate 

performance for different people, it does not take into account the multidimensional nature of 

anxiety. The multidimensional anxiety theory (Martens et al., 1990), explains that the 

relationship between state somatic anxiety and performance when graphed looks like an inverted 

U, with performance and state somatic anxiety increasing together up to an optimal level. 

Increases in state somatic anxiety beyond the optimal level lead to a proportional drop off in 

performance. However, state cognitive anxiety is thought to have a negative linear relationship 

with performance, where performance decreases as cognitive anxiety increases. Similar to 

multidimensional anxiety theory, because it takes into account both dimensions of anxiety, is the 

cusp catastrophe model (Hardy, 1990). According to the cusp catastrophe model, when cognitive 

anxiety is low, physiological arousal has an inverted-U relationship with performance. If 

cognitive anxiety and physiological arousal become concurrently high, it leads to a steep drop off 
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in performance level, (the “catastrophe”), as opposed to gradual performance decrements as 

predicted in the inverted-U model and the multidimensional model of anxiety. Competing under 

high cognitive anxiety is viewed as the main factor in experiencing a performance catastrophe 

according to this model. 

As these models emphasize, different dimensions and levels of arousal and anxiety are 

connected to performance. These models attempt to explain what intensities of anxiety and 

arousal are best for different athletes to excel in their sport. The more recent theories may be 

more useful explaining the performance anxiety relationship because they consider both 

dimensions of anxiety and seem to better explain sport performance.  

Processing Efficiency Theory 

 While previous models and theories were created to explain the relationship between 

anxiety and performance, there was little attempt to explain the mechanism by which anxiety 

affects performance. Processing efficiency theory (Eysenck & Calvo, 1992) was created to 

explain how state anxiety affects performance. It is intended for general application, and may 

have particular relevance to non-clinical, as opposed to clinical, populations in test or evaluative 

situations, including sport competition. 

 As important information enters our brain, cognitive psychologists contend that it exists 

in our minds in something referred to as short term memory (Breedlove, Watson, & Rosenzweig, 

2010). Short term memory is a limited form of memory that only lasts a few seconds, or as long 

as the information is continually refreshed by vocal or sub-vocal repetition in the short term 

memory, a process referred to as rehearsal (Breedlove et al., 2010). The prefrontal cortex and 

parahippocampal cortex are the main brain regions involved in creating short term memories 

(Winocur, 1990). Information in the short term memory that is salient or continually rehearsed is 
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processed by the hippocampus and transferred to corresponding parts of the cortex where the 

information is stored as long term memory (Breedlove et al., 2010). Long term memory has a 

high capacity and information stored in long term memory can last days, months, or years 

(Breedlove et al., 2010). Working memory is a buffer that holds information from short and long 

term memory so that information can be to be ready to use in order to perform daily tasks 

(Baddeley, 2003). The brain areas involved in working memory seem to be the parts of the brain 

that were responsible for processing the initial information, for example, visual memories used 

by working memory are processed in the occipital lobe (Kesner, Bolland & Dakis, 1993).  

According to processing efficiency theory, anxiety affects the working memory system 

(Eysenck & Calvo, 1992). Baddeley (2001) identified four components of the human working 

memory system. First, the phonological loop processes and stores verbal and acoustic 

information. The phonological loop consists of two subsystems, a phonological store and 

articulatory rehearsal system. Articulatory information, or information involving sounds used in 

speech, is kept in the phonological store for a period of about two seconds before the information 

is forgotten, unless the information is refreshed by the articulatory rehearsal system. Second, the 

visuospatial sketch pad specializes in temporarily retaining and manipulating visual and spatial 

information collected from the senses. Baddeley (2001) concluded that the capacity of the 

visuospatial sketchpad is about five digits or words in digit and word span tasks. This means that 

participants, on average, can recall five words or numbers they have heard or seen from a list by 

using their short term memories. The phonological loop and visuospatial sketchpad are 

controlled by the central executive, the third component of working memory (Baddeley, 2001). 

The central executive focuses attention and decides what information from the slave systems is 

important to the performance of every activity we participate in and what information needs to 
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be inhibited. The central executive also switches attention between different sensory information 

(Baddeley, 2001). Information from the long term memory is integrated into short term memory 

using the fourth component of the working memory system, the episodic buffer. Using 

information from long term memory can increase the efficiency of the working memory system 

by taking information in the phonological loop and visuospatial sketchpad and chunking together 

the information into units with meaning. For example, a person may be able to only remember 

five random and unassociated words, but if those words form a sentence with meaning to their 

long term memory, the episodic buffer can integrate the words with long term memory, enabling 

the person to remember a sentence of approximately 15 words (Baddeley, 2001).  

The response of an ice hockey goalie with an opposing team converging to shoot on his 

net can illustrate how the working memory system is used in sport. The goalie will use his 

phonological loop to store auditory information including what his teammates are saying, the 

sounds of the puck and ice skates, his coach yelling instructions, technical instructions he is 

telling himself in his head, and crowd noise. The visuospatial sketchpad stores information taken 

in from his eyes, such as the jersey colors of the players approaching him and the location of the 

puck and players on the ice. The central executive is used to focus his attention on the 

information he needs to defend the goal and block out irrelevant information, such as crowd 

noise or the location of players at the other end of the ice, divide attention between the puck and 

an opponent’s body position, and switch his attention between his body placement and the 

opponent’s body placement. He also uses the episodic buffer to retrieve information from long 

term memory, such as opposing players’ tendencies that he has studied in game film sessions or 

learned from previously defending the goal from specific player. He integrates that information 
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with his opponents’ current hand placement, stick placement, and body placement into 

information that may reveal how his opponent will try to score. 

Of fundamental importance to processing efficiency theory is the distinction between 

performance effectiveness and processing efficiency (Eysenck & Calvo, 1992). Performance 

effectiveness refers to the quality of performance. Quality is usually determined by comparing a 

performance to the standards of performance set by others, for instance, if a golfer plays 18 holes 

of golf with a score below par he would have a higher level of performance effectiveness than a 

golfer who plays a round of golf taking 20 shots over par. Processing efficiency refers to the 

amount of effort used to achieve a certain level of performance effectiveness (Eysenck & Calvo, 

1992). Effort is a process by which an individual intentionally regulates his or her arousal level 

(Schonpflug, 1992). Therefore, processing efficiency is determined by the relationship between 

performance effectiveness and task effort. If high effort is needed to achieve a certain level of 

performance effectiveness then efficiency is low, while if low effort is needed to achieve the 

same level of effectiveness then efficiency is high. A football lineman who uses little effort to 

pass block a defender is going to have higher task efficiency than a lineman who needs to use 

maximal effort in order to pass block for his quarterback. When highly anxious individuals have 

elevated levels of anxiety, they must use sufficient processing resources to perform the task at 

hand and also recruit additional processing resources from the working memory system, as long 

as there are processing resources to spare, to process anxious thoughts and feelings, while an 

individual who is less anxious only needs to use processing resources to perform the task at hand 

(Eysenck & Calvo, 1992). As a consequence, individuals with high anxiety are less efficient with 

their processing resources when achieving the same performance outcomes. 
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Worry, a cognitive symptom of anxiety, occupies processing and storage resources, 

mainly affecting the central executive (Eysenck & Calvo, 1992). Worry can cause performance 

decrements on tasks that put high demands on the working memory system, such as a 

quarterback needing to interpret the play call, read the defense, call an audible, and then 

successfully start the execution of the play all before the play clock expires. According to 

processing efficiency theory (Eysenck & Calvo, 1992), anxiety can also benefit performance. 

Highly anxious individuals can become more motivated, causing them to increase their effort, 

recruit additional resources to increase working memory capacity, and develop strategies to 

overcome threats and improve performance (Eysenck & Calvo, 1992; Lazarus, 2000).  

Processing efficiency theory has two main predictions (Eysenck & Calvo, 1992). First, 

anxiety will usually impair processing efficiency more than performance effectiveness. Second, 

anxiety adversely affects task performance more as the task demands on working memory 

capacity increase due to tasks becoming increasingly complex. Processing efficiency theory’s 

assumptions give us a basic understanding as to why and how anxiety affects the performance of 

competitors. Advances in the anxiety-performance research led to new findings that allowed for 

a more in-depth theory, attentional control theory (Eysenck, Derakshan, Santos, & Calvo, 2007). 

Attentional Control Theory 

 Attentional control theory (Eysenck et al., 2007) builds upon the most basic assumption 

of processing efficiency theory (Eysenck & Calvo, 1992); to understand how anxiety affects 

performance one must understand the effects of anxiety on attentional processes (Eysenck, et al., 

2007). When anxiety is increased in threatening situations, attention is allocated to finding the 

cause of the threat and reducing it. When attention is directed toward detecting threats and 
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planning how to overcome them, there are less attentional resources available to be allocated to 

the cues vital to achieving the current goal.  

One reason that individuals are less able to focus their attention on the task at hand when 

they are highly anxious may be because they show an attentional preference toward threatening 

stimuli (Eysenck et al., 2007). Threatening stimuli can be internal, such as thoughts that one is 

not good enough to beat a high caliber opponent or worrying about what the crowd may think if 

a critical error is made, or external, such as a goalie trying to block a shot or the especially loud 

taunting of a fan. The assumption that highly anxious individuals’ attention gravitates toward 

threatening stimuli is related to the view that there are two attentional systems (Corbetta & 

Shulman, 2002). One system is goal-directed (top-down) and influenced by an individual’s prior 

knowledge of what needs to be done to achieve his or her goals. Through the goal-directed 

attentional system we are able to control our attention to specific stimuli that are important when 

trying to complete a task or achieve a goal. The second attentional system is a stimulus-driven 

(bottom-up) system that is responsive to stimuli in the environment (Corbetta & Shulman, 2002). 

When attention is top-down individuals are controlling what they pay attention to and when 

attention is bottom-up their attention is captured by certain stimuli. When anxiety is high, the 

balance between the goal-directed and stimulus-driven attentional systems is disrupted (Eysenck 

et al., 2007), and attention becomes increasingly influenced by the stimulus-driven attentional 

system at the expense of the goal-directed attentional system. Inhibition of the goal-directed 

system while performing has negative effects on performance because individuals are less able to 

implement strategy and attend to task relevant information. This imbalance in attentional systems 

causes threat related stimuli, both internal and external, to become more salient to highly anxious 

individuals than task-relevant stimuli. When threatening stimuli are not task relevant, the stimuli 
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can become distracting and influence attention at the cost of the goal-directed attentional system 

that is important to achieve performance goals. For instance, in order for a basketball player to 

successfully make a free throw, he must focus on his shot preparation and then switch his 

attention to his target, usually the backboard or rim. Focusing on the preparation of the shot and 

execution of the shooting movement is a top-down process. If that player is taking those free 

throws in the last moments of a close game and becomes increasingly anxious, his attention may 

become more bottom-up, allocating his attention to threating thoughts about failure or an 

opponent trying to distract him. According to attentional control theory (Eysenck et al., 2007), 

because his bottom-up attentional system is dominant (due to his elevated anxiety), he is less 

likely to focus on his shot preparation and more likely to have his performance suffer. 

 While processing efficiency theory explained that anxiety has effects on the functioning 

of the central executive (Eysenck & Calvo, 1992), it was unclear what central executive 

functions were affected by anxiety. Attentional control theory identifies three basic functions of 

the central executive: inhibition, shifting, and updating (Eysenck et al., 2007). Inhibition is the 

function of the central executive that allows us to direct attention to task-relevant information 

and block out task-irrelevant information that is not useful (e.g., a basketball player blocking out 

distracting fan movement and noise in order to focus on the target of his free throw). Shifting is 

the switching of attention back and forth between different tasks (e.g., a pitcher reading the 

signal from the catcher, switching his attention to getting the appropriate grip for the pitch, then 

switching his attention to where he will be throwing the ball). Updating involves using memory 

to keep track of new information as it is presented (e.g., a defender in soccer learning the 

tendencies of an opposing offensive player as a game progresses). 
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Hypotheses of Attentional Control Theory and Supporting Evidence  

 Based on the assumptions and framework of attentional control theory, there are six main 

hypotheses about the relationship between anxiety and attention that have been empirically tested 

(Eysenck et al., 2007). The six hypothesis are (1) anxiety has greater detrimental effects on 

processing efficiency than performance effectiveness in tasks that involve the central executive, 

(2) negative effects of anxiety on performance are magnified as the task demands on the central 

executive are increased, (3) anxiety negatively affects attentional control by increasing the 

influence of the stimulus-driven attentional system, (4) anxiety impairs processing efficiency in 

tasks that use the inhibition function, especially when threatening stimuli are present, (5) anxiety 

impairs processing efficiency on tasks that involve the use of the shifting function of the central 

executive, and (6) anxiety impairs processing efficiency when tasks use the updating function, 

but only under stressful conditions (Eysenck et al., 2007). This review will focus on the first 

three hypotheses as the final three hypotheses are beyond the scope of this thesis. 

Hypothesis I: Anxiety has greater detrimental effects on processing efficiency than 

performance effectiveness in tasks that involve the central executive. In line with processing 

efficiency theory, attentional control theory builds upon the assumption that anxiety has a greater 

effect on performance efficiency than performance effectiveness when tasks involve the central 

executive (Eysenck et al., 2007). As detailed below, there are three main pieces of evidence that 

support this hypothesis. First, in studies where performance effectiveness is measured by 

accuracy and performance efficiency is measured by response time, high anxiety was related to 

comparable performance accuracy but increased reaction time (e.g., Darke 1988, Derakshan & 

Eysenck, 1998; Elliman, Green, Rodgers, & Finch, 1997; Iwanga & Seiwa, 1996; MacLeod & 
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Donnellan, 1993; Markham & Darke,1991; Nieuwenhuys, Pijpers, Oudejans, & Bakker, 2008; 

Richards, French, Keogh, & Carter, 2000). Second, individuals with high anxiety report using 

greater effort in order to achieve similar performance effectiveness (Calvo, 1985, Calvo, Szabo, 

& Capafons, 1996; Di Bartolo, Brown, & Barlow, 1997; Eysenck, 1985; Hadwin, Brogan, & 

Stevenson, 2005; Smith, Bellamy, Collins, & Newell, 2001). The third type of evidence comes 

from studies where high anxiety participants’ performance of probe tasks was lower than the 

performance of low anxiety participants, even though performance on a main task was similar 

between groups (Eysenck, 1989; Williams, Vickers, & Rodrigues, 2002). 

The first type of evidence that supports hypothesis I is that having high anxiety, whether 

it is state or trait, causes individuals to take longer to complete tasks in order to maintain the 

same level of performance as their counterparts with lower anxiety (Darke,1988, Markham & 

Darke, 1991). This has shown to be the case across a variety of different tasks. For example, 

male and female undergraduate students who scored higher on the Test Anxiety Scale (TAS) 

took longer to complete a verbal reasoning task when they were asked questions about inferences 

(Darke, 1988) and relational propositions (Darke,1988; Markham & Darke, 1991). The 

inferences and relational propositions were of varying difficulty, which put differing loads on 

working memory. Participants who scored high on the TAS were slower at completing the task 

when compared to the participants who scored low on the TAS. In both studies, the verbal tasks 

involved reading a short text containing either necessary inferences, unnecessary inferences, or 

relational propositions in the beginning sentences with the last sentence being a true or false 

question about regarding information contained in the previous sentences.  

The same effects of anxiety occurred in studies where participants were required to 

complete a verbal reasoning task (Derakshan & Eysenck, 1998; MacLeod & Donnellan, 1993). 
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Participants were asked to remember a string of digits, then answer verbal reasoning questions 

regarding the sequential relationship between two letters presented on a computer, and finally 

identify if a second string of digits was identical to the first. Participants all had low error rates 

on the task, but the high anxiety group took longer to give their answers (Derakshan & Eysenck, 

1998; MacLeod & Donnellan, 1993). Based on these findings, verbal tasks of higher difficulty 

take longer to complete when individuals have high anxiety, showing that anxiety decreases 

processing efficiency in these types of tasks. 

Participants’ longer memorization and memory recall times also support the assumptions 

of attentional control theory that anxiety affects the memory systems (Eysenck et al., 2007). For 

example, male and female participants with high scores on the TAS spent more time memorizing 

a string of digits before a verbal reasoning task than participants who scored low on the TAS, 

even though both groups performed similarly when recalling the digits (Richards et al., 2000). In 

another study, Ikeda, Iwanga, and Seiwa (1996) found that Japanese undergraduate students took 

longer to recall previously memorized groups of words when anxiety was induced by 

manipulating conditions of evaluation. Once again, accuracy on the task was not different 

between high and low anxiety conditions. These findings indicate that anxiety affects how 

quickly individuals can pick up information and also the speed they can retrieve and process it. 

Increased memorization and memory recall effects have been found to be present in both western 

participants (Richards et al., 2000) and eastern participants (Iwanga & Seiwa, 1996), suggesting 

that the effects of anxiety are relatively consistent between cultures. 

Reading involves storing information in working memory in order to link information 

found in previous sentences with information gathered later in the reading (Daneman & 

Carpenter, 1980), which makes reading a good task for testing the effects of anxiety. To test the 
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effects of anxiety on reading comprehension, Calvo et al. (1994) had high and low anxiety 

participants read texts, then asked them questions about the text to evaluate their comprehension. 

Participants in high anxiety conditions took longer to read the text, but comprehended the text 

just as well as the participants in the low anxiety condition. The researchers found that the high 

anxiety group’s slower reading times were because the high anxiety participants spent more time 

in reading regressions, or going back over previously read text. According to this study, anxiety 

may increase the time it takes for highly anxious individuals to perform at high levels because 

they use compensatory strategies to make up for their low processing efficiency. Calvo et al. 

(1994) speculated that anxious readers may need to revisit old text if anxious thoughts replace 

information important to understanding the information they are reading. Likewise, an anxious 

soccer player may take longer to prepare for a penalty kick if she must use coping strategies to 

decrease her anxiety while planning where she needs to place her shot to score. 

Motor performance also seems to be slowed when anxiety is high. In one study, 72 

English speaking participants had to pay attention to consecutive letters and numbers presented 

one at a time on a screen and press a key when a specific sequence of letters or numbers was 

presented; the time it took high anxiety participants to press the key was significantly longer than 

the low anxiety participants (Elliman et al., 1997). These effects on motor performance have also 

been seen observed in the sporting world. Nieuwenhuys et al. (2008) had rock climbers traverse 

two identical climbing courses. One of the courses was high off the ground to induce anxiety, 

while the other was just above the ground. Participants took longer to traverse the high course 

than the low course, despite them being identical in difficulty. These results have particular 

importance to application of attentional control theory to athletics, where motor movement 

reaction times are important to high performance. Slow reaction times due to anxiety might 
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cause a basketball center to react slower while playing help defense, allowing an opponent to get 

an easy layup, or cause a short stop to react too slow and miss catching a line drive hit close to 

him in order to get a game saving out. 

 A second way that Eysenck et al. (2007) measured processing efficiency was by 

measuring individuals’ effort. Individuals high in anxiety have reported using greater effort, as 

measured by self-report effort questionnaires, to achieve performance results that were similar to 

individuals with lower anxiety levels. In one study of effort and anxiety across a competitive 

season, Smith et al. (2001) measured anxiety before sets and mental effort during sets using 12 

male English professional volleyball players with low and high trait anxiety. Sets were 

categorized by their criticality (how close the final score of the set was) and momentum (which 

team had one more sets). Players in the high anxiety group experienced more anxiety when they 

were playing sets where their team was behind or tied in the number of sets won. Both groups 

increased their mental effort as match scores became closer, but the high anxiety group reported 

significantly more effort than the low anxiety in matches where the final score was within three 

to six points, even though performance was similar. The increased mental effort reported by the 

high anxiety group in moderately critical sets that those athletes were less efficient in their 

performance during these game situations than their low anxiety teammates. Players with low 

anxiety in the study were able to sustain their performance in more threatening situations by 

increasing their effort. Another study tested the processing efficiency and performance 

effectiveness of children from ages nine to ten (Hadwin et al., 2005). The participants were put 

into high and low anxiety groups and took part in digit recall and spatial working memory tasks. 

The high anxiety group had longer reaction times and reported using more effort on the tasks 

than the low anxiety group, while task performance remained similar between groups. In sport, it 
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is often hard to measure the effort of athletes while they compete. If effort were observable, 

spectators might notice that some players, no matter what age, need to expend more energy to 

increase or stabilize how well they perform. 

 An alternative to using self-report scales to measure effort is to monitor objective 

psychophysiological reactions to anxiety (Di Bartolo et al., 1997), which may be superior to the 

subjective nature of self-report scales. For example, Di Bartolo et al., (1997) compared the 

heartrates of 15 participants with no anxiety diagnoses to 15 participants with generalized 

anxiety disorder. The task involved participants pressing a computer key when one of two 

simultaneous, three letter word sets, presented on a screen, contained a vowel, and then random 

negative feedback given to the participants after each time they pressed the key. The researchers 

found that participants from both groups had higher heartrates; additionally, heart rate was 

significantly higher in the later part of the task, when participants’ anxiety was increased by ego 

threat. Ego threat occurs during situations that cause a person’s self-esteem or self-concept to be 

negatively challenged (Leary, Terry, Allen, & Tate, 2009). In a study designed to test the effects 

of anxiety on individuals of differing fitness levels, Calvo et al., (1996) found that even healthy 

undergraduate students who were put through a physical training regime had elevated heartrates 

when performing stressful tasks of basic arithmetic, a motor steadiness task, and giving a speech. 

Athletes, no matter how physically fit they are, or their levels of trait anxiety, have less efficient 

cardiovascular systems when under stressful conditions, which causes their hearts to have to 

expend more effort in order to get the body ready to perform.  

 Increased effort has also been studied by offering monetary incentives. Calvo (1985) and 

Eysenck (1985) found that low trait anxiety participants increased their performance 

effectiveness in cognitive tasks when given monetary incentives while high trait anxiety 
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participants’ performances were unaffected by incentives. According to attentional control 

theory (Eysenck et al., 2007), individuals low in anxiety are able to recruit unused processing 

resources by increasing their effort to improve or maintain performance in order to obtain an 

incentive. High anxiety individuals, on the other hand, have their spare processing resources 

occupied by anxious thoughts and task irrelevant stimuli, reducing or eliminating spare 

processing resources. Increasing effort for high anxious individuals appears to be in vain because 

extra effort cannot lead to the recruitment of more processing resources due to most of the 

processing resources already being occupied. Therefore, if a highly anxious golfer is provided a 

monetary incentive if she makes a difficult putt, it is unlikely that she would be able to improve 

her performance. This may be because most of her processing resources are occupied by 

thoughts of failure, the slope of the green, and the movement of the putter. Even if she could 

increase her effort, the limited spare resources recruited might not be enough to achieve a high 

level of putting performance. 

The third and final type of evidence that supports hypothesis I is that when participants 

with high anxiety are given a primary task and a secondary probe task, performance on the 

primary task remains high while their performance on the secondary task suffers (Eysenck, 

1989). High anxiety individuals have to use more attentional resources to complete the primary 

task, leaving fewer resources for the secondary task. These effects of anxiety were noted in a 

study by Eysenck (1989) where a letter transformation task was used as the primary task and 

recall of a digit string was used as the probe task. The high trait anxious participants in the study 

had longer reaction times when completing the probe task while performance on the primary task 

was similar between groups. The author suggested that the high trait anxious participants had 

less spare processing resources to devote to the probe task than the low trait anxious participants. 
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These effects have also been observed in studies where motor tasks were used as the primary 

task. Williams et al., (2002) had eight male and female participants participate in a table tennis 

task where the participants had to return balls to specific targets on the table while concurrently 

completing a secondary task. The secondary task involved the participants responding as quickly 

as possible to an auditory beep. When anxiety was high, as manipulated by the degree of 

difficulty of the table tennis task, performance suffered and probe reaction times were slower 

than when the participants’ anxiety was low. In conclusion, a variety of methods have been used 

to show that performance efficiency is lower when anxiety levels are high. This could mean that 

even when athletes are able to perform at a high level under stressful conditions, they are 

becoming less efficient. 

Hypothesis II: Negative effects of anxiety on performance are magnified as the task 

demands on the central executive are increased. The second hypothesis of attentional control 

theory is that the adverse effects of anxiety on performance increase as central executive 

demands increase (Eysenck et al., 2007). Individuals can increase effort, thereby reducing 

processing efficiency, to keep performance levels high (Calvo, 1985; Calvo et al., 1996; Di 

Bartolo et al., 1997). However, attentional control theory (Eysenck et al., 2007) hypothesizes that 

if the demands of the central executive are too high, there might not be enough attentional 

resources available to allocate to the task in order to remain at the same level of performance. 

When an individual does not possess the required central executive resources required to 

complete a task, performance becomes adversely affected.  

 In a study of the effects of anxiety on a verbal reasoning task, Darke (1988) and Richards 

et al. (2000) found that high and low anxiety groups had similar reaction times when 

comprehending verbal syllogisms that used less processing resources. As the researchers 
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increased the difficulty of the task to put more demands on working memory, the gap between 

the reaction times of the high and low groups expanded; high anxiety participants reaction times 

became longer, which is an adverse effect of anxiety. In another study that manipulated task 

demands on working memory, Calvo and Carreiras (1993) tested how anxiety affected graduate 

students’ comprehension of text. They found that the influence of anxiety on reading time for the 

high anxiety group was dependent on the characteristics of the text. High and low anxiety 

participants both spent the same amount of time reading the start of clauses, when there is less 

information to hold in the working memory system. As the high anxiety participants progressed 

through the reading, they took significantly longer to read the end of the passage clauses, where 

more information was present and the information had to be integrated. Because information 

from the beginning of the passage had to be integrated with new information obtained later in the 

text, a higher demand was placed on the central executive in order to comprehend it. In a similar 

study, Eysenck (1985) used letter transformation tasks of different length to manipulate the 

demands on working memory. He found that the more letters the participants were required to 

transform the larger the detrimental effects on performance. The results from these studies 

provide evidence that as task difficulty increases, so do the negative effects of anxiety. 

Therefore, athletes who play sports or positions that put high demands on their working memory 

systems may be more susceptible to anxiety inducing situations. 

 While the previous researchers manipulated the difficulty of the experimental task to 

increase the demands of the central executive, Ashcraft and Kirk (2001) used a dual-task design 

to achieve similar demands. Participants in their study were required to memorize different 

lengths of digit strings while completing arithmetic problems of varying difficulty. The task was 

designed so that the researchers could use different length of digit strings to manipulate the load 
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on working memory. When completing the tasks separately, there were no significant effects on 

the participant’s performance of the letter memorization or arithmetic tasks, but participants high 

in anxiety were significantly less accurate in dual task conditions designed to tax the working 

memory system.  

 In conclusion, according to hypothesis II, increasing the demands of the central executive 

during high pressure competitive situations by either increasing the difficulty of the task or 

requiring the athlete to do multiple tasks at concurrent times may create situations where anxiety 

is likely to reduce the efficiency and effectiveness of the athlete. The more taxing the task is on 

the working memory system, the greater the negative effects of high anxiety. 

 Hypothesis III: Anxiety negatively affects attentional control by increasing the 

influence of the stimulus-driven attentional system. Hypothesis III of attentional control 

theory is that attentional control is impaired by anxiety because anxiety increases the influence of 

the stimulus-driven attentional system (Eysenck et al., 2007). When a highly demanding primary 

task and a secondary task are presented, highly anxious individuals will perform worse on the 

secondary task when the secondary task has less salient stimuli or stimuli of comparable salience 

because of the high demands of the primary task, but when the secondary task contains stimuli 

that are more meaningful, performance on the secondary task may increase. Threat-related 

stimuli become more salient to the stimulus-driven attentional system when anxious. In a study 

of male university level soccer players, Wilson, Wood, and Vine (2009) found that in high 

anxiety conditions the soccer players were quicker to fixate on the goalkeeper and spent more 

time fixated on the goalkeeper. In this study, the goalkeeper was a threatening stimuli because 

his job was to thwart the performance of the soccer players. It is likely that because the soccer 

players fixated more on the goalie when under pressure their kicks were located toward the 
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center of the goal, which allowed the goalkeeper to make more saves. This study is an example 

of how bottom up processing can increase athletes’ likelihood to attend to threatening stimuli at 

the expense of paying attention to task related targets; in this case, the target would have been the 

corners of the goal. When competing, athletes are surrounded by stimuli that could be considered 

threatening. Some examples include worrisome thoughts, hostile fans, competitors, or scouts. 

According to attentional control theory (Eysenck et al., 2007), the presence of hostile stimuli 

may grab an anxious athletes’ attention because of the increased influence of the bottom-up 

attentional system. When visual attention is influenced by the bottom up attentional system, 

athletes may lose focus of the stimuli that are important, which can lead to less successful 

performance (Wilson et al., 2009). As such, it would be beneficial for athletes to find ways that 

they can lower anxiety, which may decrease the influence of the bottom-up attentional system 

and allow them to control their vision so they may remain effective. 

 Hypotheses IV, V, and VI. Hypothesis four, five, and six of attentional control theory 

together explain that anxiety effects the efficiency, and often the effectiveness, of tasks involving 

inhibition, shifting, and updating functions (Eysenck et al., 2007). This can be especially true for 

tasks involving inhibition of threat-related stimuli. If task irrelevant threat-related stimuli are 

present, more attentional resources are needed to inhibit the threat related stimuli, decreasing 

processing efficiency. If attentional resources are not enough to effectively inhibit threat-related 

task-irrelevant stimuli, the individual becomes distracted and performance suffers. These final 

three hypotheses, however, are beyond the scope of the current study and thus will not be 

discussed in detail (see Eysenck et al., 2007 for a review). 
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Gaze as a Measure of Visual Attention 

Measuring visual attention by examining gaze patterns is a practical way of testing the 

assumptions made by attentional control theory that anxiety affects performance efficiency and, 

if the task puts high demands on the central executive, performance effectiveness (Wilson et al, 

2009). Our eyes are sensory organs that pick up light waves and send the gathered sensory 

information to our brain, where it is interpreted and used to create the images that make up our 

visual world (Vickers, 2007). Athletes use the information collected from the eyes to plan and 

execute movements necessary to achieve the goals of their sport. Using visual information to 

direct motor movement is known as visuomotor control (Vickers, 2007). In the process of 

visuomotor control, visual information is picked up using the eyes (Kolb & Whishaw, 2001). 

The pupils expand and contract to let appropriate amounts of light into the eye where the light is 

focused as it passes through the lens onto the retina. Picking up on the focused light, the visual 

receptors in the retina convert light into energy. A specific part of the retina, the fovea, is 

responsible for the 2° to 3° of a visual angle we can see in acute detail out of our entire visual 

field, which for the average person is about 190° (Vickers, 2007; Wong & Bartels, 2015). For 

reference, if you fully extend your arm in front of you and give yourself a thumbs up, the area of 

your thumbnail is about the area that you are able to see clearly and in detail with your fovea 

(Vickers, 2007). Consequentially, athletes must constantly move their eyes to different focal 

points to pick up on the details of what is going on in the space around them. In sport, an athlete 

must choose where to focus her gaze at appropriate times to gather task relevant details while 

leaving the rest of the visual stimuli around her in the blurry peripherals of their vision or out of 

sight. Focusing vision on distracting or task irrelevant information during critical gameplay 
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moments could be devastating to and individual’s performance or the performance of his or her 

team (Wood et al., 2009). 

 Athletes’ ability to process light waves and use them to compete in sport, requires a 

complex process. Once the visual receptors have been stimulated and converted the light into 

energy, they transmit the information to the occipital lobe, via the optic nerve, where the visual 

input is processed (Milner & Goodale, 1995). Once processed, the information is distributed to 

other regions of the brain along the dorsal and ventral pathways to be further processed. Signals 

are sent from the occipital lobe to the parietal lobe along the dorsal pathway. Once the signals 

arrive at the parietal lobe, they are used to orient gaze, sustain attention, and direct attention in 

space (Posner & Raichle, 1994). Also, the parietal lobe processes gaze information that lets us 

know where our body is in space. The orientation and location of the body in space and 

coordination of movements require rapid and constant updating by the parietal lobe of 

information provided by the occipital lobe along the dorsal pathway. Using visual information, 

the parietal lobe creates a map that athletes use to navigate their playing fields and move their 

bodies to execute appropriate sport movements (Treisman, 1999). Information is sent from the 

occipital lobe to the temporal lobe through the ventral pathway. In the temporal lobe, meaning is 

given to what we see. Visual information is also processed to anticipate what might happen and 

make plans. Processing in the ventral stream is slower relative to the rapid processing conducted 

via the dorsal stream (Milner & Goodale, 1995). 

 Converging in the frontal lobe, information from the ventral and dorsal pathways is used 

for advanced thinking, planning, and language (Kolb & Whishaw, 2001). Motor movements are 

planned in the prefrontal cortex, organized in the premotor cortex, and then distributed down the 

spinal cord to the appropriate efferent motor neurons by the motor cortex (Kolb & Whishaw, 
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2001). Sensory receptors are then responsible for providing feedback to the brain by sending 

signals to the basal ganglia and cerebellum to correct any movement errors. Finally, the sensory 

cortex receives the information that the movement has been executed (Kolb & Whishaw, 2001).  

It has been found that when gaze is shifted and focused to a new location it is a reliable 

indication that attention has shifted to that location, even though once gaze has been oriented to a 

new location attention may be dissociated from gaze. (Deubel & Schneider, 1996; Vickers, 2007, 

2009). A common way of measuring visual attention is through the analysis of foveal fixations 

using gaze tracking devices. Fixations occur when the detailed gaze of the fovea is held on a 

location within 3° of a visual angle, due to that being the limit of the amount of the visual field 

humans can see in acute detail (Carl & Gellman, 1987). Also, gaze must be held in that area for a 

minimum of 100 ms, which is the amount of time it takes for a person to process visual 

information or become aware of a stimuli (Carl & Gellman, 1987). Quiet eye refers to the 

specific and final fixation of the fovea with an onset that occurs prior to the initiation of the 

common motor movement phase critical to the execution of that specific skill (Vickers, 2007; 

2009). Offset of a quiet eye fixation occurs naturally when the foveal fixation deviates from the 

location more than 3° of a visual angle for a duration greater than 100 milliseconds (Vickers, 

2007; 2009). Examples of common motor movement phases that must be completed in order to 

perform a sport task are the backswing in golf putting (Vickers, 1992) and elbow extension 

(there is often elbow flexion involved in the free throw, but not all players include this in their 

free throw shooting technique, so it is not considered a common movement movement) in 

basketball free throw shooting (Vickers, 1996). When moving quickly from fixation to fixation, 

the eye engages in saccades. Saccades are rapid transitions between fixations and visual 

information is suppressed when they occur (Vickers, 2007). 
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Gaze and Skill Level in Far Aiming Targeting 

 At high levels of sport competition most athletes have logged thousands of hours of 

physical practice, but there are still discrepancies between athletes in how successful they are at 

executing sport specific motor movements. Mann et al. (2007) conducted a meta-analysis and 

found three predictors of expert performance in sporting tasks: quiet eye duration, location of 

gaze, and a low frequency of fixations. Experts have the ability to control their gaze in a distinct 

and efficient manner during performance that allows them to acquire spatial information, 

organize the information using neural structures involved in motor movement, and then execute 

movements optimally. Fixations of experts have an early onset, long duration, and are focused on 

task-relevant information before the start of skill specific movements (Vickers, 2011). In 

research supporting that gaze strategies play a large role in expert performance, Vickers (1996) 

studied the differences in gaze during free throws between eight expert and eight near expert free 

throw shooters. During preparation for their shots, the experts focused on the target for longer 

durations and had less fixations than the near expert group, allowing them to set the parameters 

of the motor movements required to successfully complete a free throw. The expert group also 

had significantly longer quiet eye fixations during made free throws. Williams, Singer, and 

Frehlich (2002) found similar results while comparing skilled to less skilled billiards players. 

Skilled billiards players had less fixations of longer mean fixation time while preparing billiards 

shots, and specifically had longer quiet eye fixations, than less skilled players. 

While experts tend to have less fixations of longer duration, there is some variance in the 

types of gaze patterns used by experts depending on the skill that is being executed. For example, 

Vickers (1996) found that the offset of quiet eye in basketball free throw shooting occurred for 

expert participants during the upward movement of the hands when the ball was at about chin 
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level. Vickers (1996) inferred that offset of the gaze early in the arm extension was an expert 

tactic used to suppress the visual information of the hands and ball coming into the visual field of 

the shooter. The shooter’s hands or a moving basketball entering the visual field, if payed 

attention to, could distract the shooter from the basket or backboard, which are optimal fixation 

points for free throw shooting. Billiards players did not have the same pattern of quiet eye offset 

early in the execution phase (Williams et al., 2002). Early offset of quiet eye seemed to be 

related to far aiming tasks where the execution of the throw or shot involved distracting visual 

stimuli, such as a hand or ball, entering and blocking the target from the visual field (Vickers, 

1996). If the visual field was not blocked and participants were allowed to remain fixated on 

their target, they tended to remain fixated until the completion of the motor movement (Williams 

et al., 2002). Therefore, experts appear to have adapted their gaze patterns to their specific skill; 

therefore, the optimal location, duration, onset, and offset of gaze of each sport specific task 

needs to be taken into consideration. Knowing what types of gaze patterns lead to high levels of 

performance effectiveness may allow sport psychology practitioners to develop interventions that 

train athletes to replicate these expert gaze patterns.  

Experts have shown to have earlier onsets and longer quiet eye durations than their near 

expert counterparts (Vickers, 1996; Vine, et al., 2014; Williams et al. 2002). There are two main 

theories as to why picking up task relevant visual information early and efficiently may lead to 

expert performance. The first explains that longer quiet eye durations allow ample time for visual 

information to be processed to coordinate appropriate and effective movements (Behan & 

Wilson, 2008; Vickers, 1996; Williams et al., 2002). Vickers (2011) suggested that longer 

periods of quiet eye displayed by experts allows them to process the appropriate spatial 

coordinates needed to correctly position the body, effectively and efficiently move, and balance 



 42 

  

the body during execution. The second explanation is that obtaining visual information 

efficiently allows for athletes to orient themselves with their environment more effectively, 

which leads to movements in the correct direction with the correct force (Oudejans et al., 2005). 

Janelle’s (2002) review of the literature also suggests that experts are better able to regulate 

emotional and physiological fluctuations during pressure situations. No matter what explanation 

or combination of explanations is accurate, it seems beneficial to train athletes that participate in 

far aiming tasks to replicate the quiet eye fixations of experts. Identifying the attentional 

processes and techniques of experts and teaching novices or near experts to replicate expert 

attentional habits is key to train more effective and efficient athletes in long distance targeting 

activities (Janelle, 2002).  

Gaze Control in Golf Putting  

 An average 18-hole golf course is designed to be complete in 72 strokes, with 

approximately half of the strokes devoted to putts, making putting proficiency essential to high 

quality performance during a round of golf. Putting is an abstract far aiming targeting task, 

meaning that there are hidden qualities that must be accounted for by a golfer in multiple visual 

workspaces including his target, the line he wants the ball to travel on, and where he will strike 

the ball with his putter (Vickers, 2007). The golf putt may seem simple, but it is one of the most 

sophisticated sport skills, even though the mechanics of the swing can be executed by almost 

anyone (Vickers, 2004). To test if gaze patterns made a difference in golf performance Vickers 

(1992) measured where golfers of different skill levels were looking and compared their gaze 

patterns; 12 tournament golfers ranging in age from 20-65 were included in the study. Five 

participants were placed in the low handicap (LH) group (mean handicap = 6.2), and seven 

golfers were put into the high handicap (HH) group (mean handicap = 14.1). The participants 
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were fitted with a gaze tracker and required to putt a ball on astro-turf into a cup three meters 

away until they had made and missed 10 putts. The participants were given brief rests after the 

execution of 12 putts. Each putt was broken down in to four phases, preparation, 

backswing/foreswing, contact, and follow-through. After analyzing 10 missed and 10 successful 

putts from each participant, data showed that the LH participants had fewer shifts in gaze while 

spending less time in the preparation phase. The HH participants fixated on more task irrelevant 

cues while the LH participants narrowed their gaze to a few primary task relevant locations (i.e., 

the ball, their target, and the line they wished their ball to follow). The LH group fixated on the 

ball more often and for longer durations, had fewer saccades and fixations to the cup, and fewer 

fixations on the club than the HH group during the execution of their putts. During the 

backswing/foreswing phase, the LH golfers had significantly fewer fixations, most notably they 

only fixated once on the ball for a longer period of time; this phase is where the quiet eye 

fixation occurs in golf putting (Vickers, 2007). Optimal quiet eye fixation in golf appears to start 

about two seconds before the beginning of the backstroke and has a late offset after the ball has 

moved out of the fixations limits. During the contact phase, the participants’ gaze, regardless of 

group, was either tracking the club when it was in contact with the ball or fixated on the surface 

where the ball once was; the latter pattern was characteristic of successful putts. In the follow-

through phase, the frequency of fixations was similar for both groups, but the low handicap 

golfers spent more time tracking the ball after hitting it.  

Vickers (1992) found that low handicap golfers displayed more efficient gaze patterns as 

shown by their increased fixations on task relevant cues during preparation and 

backswing/foreswing phases. This allowed the more skilled golfers to prepare their shots faster 

and fixate on optimal cues, in this case the ball, during the execution of their swing. Vickers 
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(1992) argued that it is important for golfers to be efficient when using their eyes to pick up 

information in golf because it helps them prepare and execute their shot faster, which reduces 

decay of information regarding the location and distance of the hole when they are looking at the 

ball. If the mechanics of putting are easily executed by anyone, how the golfer picks up visual 

information that is critical to the planning of the swing by the brain and execution of the swing 

by the motor system may be the difference between the skill levels of putters. 

The Effects of Anxiety on Gaze 

 As discussed in the previous sections, in far aiming targeting tasks, more efficient gaze 

patterns consisting of less frequent fixations of longer durations have been linked to increased 

performance effectiveness, especially increased quiet eye fixation length with an early onset. 

According to attentional control theory, increased anxiety should cause task-related attentional 

patterns to become sub-optimal, leading to decreased efficiency of gaze patterns and, if 

attentional resources are limited, decreased performance effectiveness in targeting tasks 

(Eysenck et al., 2007).  

Anxiety reduces gaze efficiency. In a review of literature, Janelle (2002) concluded that 

gaze patterns become less efficient when anxiety is elevated. The effects of elevated anxiety on 

gaze were seen in a study of 22 video game novices participating in an archery video game 

targeting task (Behan & Wilson, 2008). Once the participants could complete the task at a high 

standard in practice, they took part a high anxiety condition. To increase anxiety, the researchers 

told participants that their scores would be posted on leaderboards, their scores would be used to 

determine if their team received a monetary prize, and their performance was a good indication 

of their hand eye coordination, and low anxiety condition, where they were told their scores 

would be kept private and the purpose was to test the eye tracking equipment, in a 
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counterbalanced sequence. When anxiety was high, as measured by administration of the 

Competitive State Anxiety Inventory-2 (CSAI-2) before each condition, participants’ quiet eye 

durations decreased. Quiet eye was found to be shorter during inaccurate shots compared to 

accurate shots and shorter during high anxiety conditions when compared to low anxiety 

conditions. Unlike most of the other literature concerning anxiety’s effects on gaze, the 

researchers did not measure all fixations; they only measured quiet eye. These results indicate 

that under pressure, quiet eye duration may become shorter, which can have negative outcomes 

for performance (Behan & Wilson, 2008).  

To better understand how pressure influences quiet eye duration and to examine if 

reduced quiet eye duration explains misses in a shootout golf putting task, Vine et al., (2013) 

conducted a study on 50 expert right handed golfers. The participants had a mean handicap of 

3.6. In a shootout putting task, participants were asked to putt from a distance of five feet until 

they missed a shot. This format of task, combined with monetary incentives and ego threat, 

provided a situation that significantly increased participants’ anxiety during the task compared to 

their baseline measures of anxiety. The researchers compared the gaze of each participant’s first 

putt, penultimate putt, and final missed putt. Quiet eye duration was significantly longer during 

the first and penultimate putts, compared to the final missed putt. Quiet eye duration did not 

differ during the preparation phase of the putt, but it was significantly shorter during the 

backstroke and forward stroke phase of the final missed putt. These findings support other 

research in that the determined that quiet eye is shorter during unsuccessful shots. The results 

also imply that anxiety may cause performers to shorten quiet eye duration by taking their gaze 

off the ball too early, which may lead to performance decrements under pressure (Vine et al., 
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2013). Once again, the results suggest that having optimal quiet eye fixation duration may be a 

characteristic of successful performance under pressure. 

Anxiety seems to not only affect the efficiency of a single quiet eye fixation, but also 

reduce the efficiency of gaze and movement while completing markedly longer tasks. In research 

performed by Nieuwenhuys et al. (2008), participants had to complete a rock climbing traversing 

task. Two identical climbing courses were presented, but one was much higher off the ground 

and caused significant increase in anxiety and heartrate. Participants in the high anxiety 

condition took longer to complete the course, had less efficient movement patterns, decreased 

fixation duration, and increased number of foveal fixations while successfully completing the 

task (Nieuwenhuys et al, 2008). There was no change in performance effectiveness between 

groups, as all participants completed each task, but efficiency of gaze patterns and time taken to 

execute the task was significantly reduced in the high anxiety conditions. The reduced efficiency 

of the participants in multiple measurements, supports attentional control theory’s hypothesis 

that anxiety can reduce performance efficiency while performance effectiveness stays consistent 

(Eysenck et al., 2007). These findings suggest that there is a relationship between efficient gaze 

patterns and efficient movement patterns. Also, it can be deduced from these research findings 

that less efficient movements may be detrimental, and even dangerous in sports like rock 

climbing where muscle endurance is needed, because athletes may waste energy by making 

unnecessary movements and paying attention to task irrelevant information. 

Of particular interest to the current research are the effects of anxiety on gaze during the 

preparation and execution of far aiming targeting skills. In a study of the effects of anxiety on 

gaze free throw shooting, Wilson, Vine and Wood (2009) measured the anxiety, fixations, and 

quiet eye of 10 male university basketball players during high and low anxiety conditions during 
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different phases of free throw shooting. After initial practice rounds of 30 free throws total, the 

participants were fitted with an eye tracker and took pairs of free throws with small breaks in 

between to simulate in game conditions, where, more often than not, free throws are taken in 

groups of two. Participants shot until they had made and missed 10 free throws. Anxiety was 

manipulated in counterbalanced high threat and control conditions. In the control condition, 

participants were told to do their best but their performance would not be compared to other 

participants. In the high threat condition, several manipulations were used to increase anxiety 

including comparison to teammates and other teams in their league, financial rewards, and 

feedback that their practice free throw percentage was in the bottom 30% of the participants in 

the study. The manipulations used were successful, as state cognitive anxiety and state somatic 

anxiety were both increased and self-confidence was decreased in the high threat condition as 

measured using the Mental Readiness Form-3. Analysis of the gaze tracking information showed 

that the participants had significantly increased number of fixations that were shorter in duration 

and significantly shorter quiet eye fixations in the high threat condition. The high threat 

condition caused quiet eye duration to significantly decrease, which was characteristic of missed 

shots. Quiet eye was also significantly longer on made free throw than missed free throws in 

both conditions. While the previously discussed study of Behan and Wilson (2008), provided 

evidence that anxiety can reduce quiet eye efficiency in a virtual task, Wilson, Vine, and Wood’s 

(2009) study supported the finding that anxiety has effects on gaze efficiency in conditions 

designed to simulate game situations during a sport related task. On a more positive note, when 

athletes used efficient gaze patterns, the detrimental effects of anxiety on their performance 

effectiveness were negated. 
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Biathlon shooting is another far aiming targeting skill where the effects of anxiety have 

been tested. Biathlon athletes mix high intensity cardiovascular exercise with rifle shooting, an 

obvious far aiming targeting task. In a study of 10 members of Canada’s junior and senior 

biathlon teams, Vickers and Williams (2007) tested the effects of anxiety and exercise induced 

physiological arousal on rifle marksmanship performance. In the high pressure condition the 

participants’ coach was present and the participants were told the data would be used for team 

selection. In the low pressure situation they were told gaze information would be used to give 

them information about where they were looking. During trials where pressure was high and the 

athletes exercised at a greater percentage of their maximum oxygen intake, or power output, their 

quiet eye duration decreased, causing a decrease in shooting accuracy. During trials where 

pressure was high but power output was low, non-choking athletes had shorter quiet eye 

duration, suggesting some sort of automatic response by experts. Once power output was 

increased to 100% in the high pressure condition, quiet eye increased for the athletes that did not 

choke. Results from this study suggest that pressure situations combined with high power output, 

common in elite sporting events where high endurance is needed, can have detrimental effects on 

performance. Also, having efficient gaze patterns can help athletes avoid choking in high 

pressure situations where physical exhaustion may be setting in. 

 Anxiety causes increases fixation to task-irrelevant and threatening stimuli. The 

previous studies indicate that gaze efficiency is reduced when anxiety levels are elevated. 

However, the previously described studies did not assess what makes athletes’ gaze patterns 

inefficient, which is useful to understand. To help clarify the cause of inefficiency, Wilson, 

Wood, and Vine (2009) studied university level male soccer players’ visual attention in a 

threatening situation. In the high threat condition, where the players were told there would be a 
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monetary incentive for the best score and that scores would be shared between all participants, 

the participants had more fixations and there was an increase in the speed they first fixated on the 

goalie. They spent more time fixated on the goalie, a threatening stimulus considering his job 

was to keep the players from accomplishing their goal of scoring, than the corners of the goal, 

which were considered task relevant stimuli and the optimal fixation point by the researchers. 

Subsequently, when threat was high, participants tended to kick the ball closer to the center of 

the net, near the goalie. The results of this study suggest that not only does anxiety increase the 

likelihood of athletes being distracted by threatening stimuli, but attending to threatening stimuli 

can cause motor movements to be influenced in negative ways by those threatening stimuli. 

While threatening stimuli become especially salient to athletes with high anxiety, non-

threatening task-irrelevant stimuli can be distracting when anxiety is elevated. Using a flight 

simulation task, Allsop and Gray, (2014) found that participants with high anxiety, as measured 

by the CSAI-2 Revised (Cox, Martens, & Russell, 2003), spent more time with their gaze 

focused on the external world (which was not relevant to successfully landing the plane in the 

simulation) and their scan patterns of the plane controls became more random. These results 

support the assumption of attentional control theory that increased anxiety increases the 

influence of the stimulus-driven attentional system and decreases the influence of the task-driven 

attentional system in athletes, causing anxious individuals to sometimes focus on task-irrelevant 

stimuli (Eysenck et al., 2007). These distracted gaze patterns can be considered less efficient 

because they it requires increased effort to move the eyes to more fixation points when fixation 

number increases and fixation duration decreases. Also, having more fixations of less duration 

means that more eye movements are required to get the information required to complete the task 

(Vickers, 1992). 
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Anxiety, which is common in sporting situations (Lazarus, 2000), appears to reduce the 

efficiency of gaze patterns, which leads to suboptimal performance (Behan & Wilson, 2008; 

Wilson, Vine & Wood, 2009; Vine et al., 2013). The increased influence of the stimulus-driven 

attentional system has been shown to increase fixations to threatening and task-irrelevant 

information, which is distracting (Allsop & Gray, 2014), and causes motor movement 

coordination to be adversely affected (Wilson, Wood, & Vine, 2009). These findings provide 

support to attentional control theory’s hypotheses (Eysenck et al., 2007). Also, important to note 

is that research suggests that efficient gaze patterns have protective effects against the deleterious 

effects of anxiety on gaze efficiency and performance effectiveness, which, according to 

attentional control theory (Eysenck et al., 2007), are caused by anxiety’s effects on the central 

executive (Behan & Wilson, 2008). The next section will outline researchers’ attempts to study 

the effects of training athletes to have more efficient gaze patterns. 

Quiet Eye Training 

 To replicate the efficient gaze patterns of experts, research has been conducted on quiet 

eye training. Quiet eye training involves showing an athlete the differences in gaze patterns 

between him and an expert and then having her practice replicating the gaze patterns of the 

expert. Harle and Vickers (2001) conducted research on quiet eye training on three Canadian 

university basketball teams. Team A was trained to replicate expert patterns of quiet eye in their 

pre-shot free throw routine while two other teams were used as controls. After six months of 

practice using quiet eye training, a posttest was conducted. Team A’s quiet eye durations were 

significantly longer in the posttest when compared to pretest, and quiet eye duration was 

significantly longer on made versus missed free throws. In a similar study, Vine, Moore, and 

Wilson (2011) randomized 22 elite golfers with an average handicap of 2.78 into quiet eye 
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training and control groups. During retention tests, the quiet eye trained group had significantly 

longer quiet eye durations than the control group. The trained group’s putts were significantly 

closer to the hole than the control group and they holed more putts than the control group, even 

though the latter results were not statistically significant. Based on these findings, mimicking the 

gaze patterns of experts shows promise in increasing performance in lab and practice settings. 

 The effects of quiet eye training seem to transfer from laboratory settings to competitive 

performance. All three teams that participated in Harle and Vickers’ (2001) quiet eye training 

research had their competitive free throw percentages compared over two seasons. Between the 

first and second season, Team A’s free throw percentage improved drastically compared to the 

other two teams. These results indicate that the effects of quiet eye training can transfer from lab 

settings to competitive situations, even though other factors such as team turnover and practice 

differences could have played a role in the free throw shooting percentage disparity between 

teams. The transfer was also seen in elite golfers competitive putting. Those trained in quiet eye 

had significantly fewer putts per round within three months after completing quiet eye training 

compared to the control group that showed no significant changes in putts per round (Vine et al., 

2011). 

Providing athletes with knowledge of how elevated anxiety contributes to decreased 

performance in far aiming tasks and training them to execute expert-like visual behavior has the 

opportunity to reduce the negative effects of anxiety (Janelle, 2002). The effects of training to 

increase quiet eye were examined in 40 undergraduate students during a putting task. Participants 

who were trained to have longer quiet eye periods displayed longer quiet eye duration and less 

performance error, as measured by distance from the hole to their ball, than a technically trained 

group when under pressure, showing the protective effects of increased quiet eye duration on the 
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negative effects of anxiety on performance (Moore, Vine, & Wilson, 2013). Under pressure, 

golfers trained in quiet eye had significantly longer quiet eye duration than a control group (Vine 

et al., 2011). The control group also holed significantly fewer putts and had greater error under 

pressure while the experimental group’s performance remained the same in pressure conditions. 

To better understand the underlying processes that quiet eye training contributes to 

performance and learning, Moore et al. (2012) conducted research using a putting task with 40 

undergraduate novice participants. During retention tests, the group with quiet eye training had 

significantly longer quiet eye durations, holed more putts, and had a lower radial error than the 

technically trained group. In pressure conditions, the quiet eye trained group had little change in 

quiet eye duration, leading to similar performance in both the distance of their missed putts and 

the number of putts they made. The technically trained group had significant decrease in quiet 

eye durations, and when they missed, their ball ended up further from the hole compared to 

retention conditions. The quiet eye trained group had longer quiet eye durations and holed more 

puts compared to the technically trained group during pressure situations (Moore et al., 2012). 

These results support findings from previous studies showing that longer quiet eye durations may 

lead to better performance outcomes in retention and pressure situations (Moore et al., 2012; 

Moore et al., 2013, Vine et al., 2011). Adding to the literature, the authors found that longer quiet 

eye periods led to better performance kinematics, or more efficient movement, which moderated 

the quiet eye, performance relationship. The authors also found that longer quiet eye was related 

to decreased muscle tension and decelerated heartrate (Moore et al., 2012). Quiet eye training is 

a direct way to help athletes improve their performance effectiveness. Unfortunately, it requires 

athletes to have access to expensive eye tracking equipment and analysis of experts’ gaze 
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patterns. The latter becomes even more difficult considering that expert gaze patterns have only 

been studied in a select group of skills from a small number of sports. 

 External focus of visual attention has been shown to cause more efficient fixation 

patterns, but only if it is directed toward the right informational cues. This makes it especially 

necessary to study the gaze patterns of experts before quiet eye training is implemented for all 

skills. In a study of 72 novice putters, one group was instructed to focus their gaze on the putter, 

an external focal point, while the other group was instructed to focus their gaze on their hands, 

an internal focal point (Ziv & Lidor, 2015). The participants who were instructed to focus on 

external cue of the putter showed more efficient gaze patterns, which consisted of longer quiet 

eye duration and less fixations. However, their performance effectiveness, as measured by the 

average distance of their balls from the hole, did not improve (Ziv & Lidor, 2015). One reason 

their performance may not have improved despite more efficient visual attention may be because 

these participants were instructed to focus on the moving putter head. Focus on the ball is 

considered the optimal focus point in golf putting tasks (Vine et al., 2007; Vickers, 2007). 

Similar limitations were observed in a study of nine expert, nine advanced, and nine novice 

basketball players (Rienhoff et al., 2014). Each group was told to focus on their hand (internal 

focus) or on the ball (external focus) during a free throw shooting exercise. The researchers 

expected that external focus instructions would lead to longer quiet eye and better performance, 

but their findings were reversed, likely because external focus on the ball is not the optimal 

fixation point considering. Instead, Vickers (1996) found that quiet eye fixation on the rim or 

backboard was the optimal fixation point for free throw shooters. In fact, it was found that 

performance suffered if free throw shooters did not suppress visual information when the hand or 

ball came into the visual field because it was distracting. Telling the participants to focus on the 
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ball actually distracted them from focusing on the optimal fixation point of the rim. It seems that 

longer quiet eye duration, which is one of the main goals of quiet eye training, fixated on 

external cues appears to only be helpful if the right cues are attended to. Having athletes focus 

their visual attention on the wrong stimuli can be detrimental to their performance, even with 

optimal fixation patterns. 

 The evidence that increasing the efficiency of gaze patterns can help improve or maintain 

performance in self-paced sporting tasks in lab, competitive, and anxiety inducing situations has 

important implications. Unfortunately, gaze tracking equipment is expensive and new, and is 

therefore unavailable to most athletes. It would be beneficial to find inexpensive and practical 

ways to help athletes improve the efficiency of their gaze without the use eye tracking 

technology. If anxiety is reducing the efficiency of gaze, psychological interventions used to 

reduce anxiety may be able to reverse the negative effects of anxiety on gaze. 

Controlled Breathing 

Throughout this review, evidence has been provided that efficient gaze patterns are 

predictive of high levels of performance effectiveness in many different types of sporting tasks, 

specifically far aiming targeting tasks (Vickers, 2007). Attentional control theory (Eysenck et al., 

2007) hypothesizes that when anxiety is increased, task efficiency is decreased due to the 

increased influence of stimulus-driven attentional system. The negative effects of increased 

anxiety, as predicted by attentional control theory, have been seen in gaze tracking studies where 

increased anxiety resulted in decreased gaze pattern efficiency (Allsop & Gray, 2014; Vickers & 

Williams, 2007; Vine et al., 2013; Wilson, Vine, & Wood, 2009). Fortunately, the literature also 

supports that quiet eye training, an intervention designed to promote efficient gaze patterns, can 

be applied to help protect athletes from the deleterious effects of increased anxiety on gaze 
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(Harle & Vickers, 2001; Moore et al., 2012; Moore et al., 2013; Vine et al., 2011; Vine et al., 

2014). While quiet eye training appears to be an effective way to train athletes to use more 

efficient gaze patterns, not all athletes have the technology or access to expert gaze patterns 

required for this intervention. Other possible ways of increasing gaze efficiency that are more 

economical and practical need to be explored. 

If increased anxiety has deleterious effects on gaze efficiency (Vickers, 2007), reducing 

anxiety may promote efficient gaze patterns. At present, there is no published research that 

directly examines whether or not anxiety reducing psychological interventions affect gaze 

efficiency. If it was found that athletes could increase their gaze efficiency by using relaxation 

interventions, such interventions may be a practical substitute to quiet eye training when access 

to the resources required to apply quiet eye training are limited. With research data suggesting 

that training efficient gaze patterns can lead to increased performance effectiveness and faster 

learning of sport specific skills than technical training (Moore et al., 2012), reducing anxiety to 

increase gaze efficiency might become a primary goal of coaches and athletes. 

There are numerous anxiety reduction techniques available for athletes to use (Williams 

& Krane, 2015). Because of the multidimensional nature of anxiety, it is suggested that different 

techniques should be used to manage the multidimensional symptoms of competitive anxiety 

(Gould & Udry, 1994; Tomas, Mellalieu, & Hanton, 2009). Due to this recommendation, often 

researchers who test the effects of psychological skills training on performance incorporate 

multimodal relaxation interventions into their research designs (Mesagno & Mullane-Grant, 

2010). While this is can be a strength of the research methodology, because a combination of 

psychological skills are often taught to athletes in applied settings, it can also limit the findings 

of the research because it is difficult to determine which interventions influenced the results. 
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When multimodal interventions are used it is unclear if all, some, or only one of the interventions 

affected anxiety or performance. Therefore, the current study will isolate one anxiety reducing 

intervention, a single deep breath, to test its effects on anxiety, gaze efficiency, and performance. 

Yoga breathing. Much of the research on the effects of controlled breathing comes from 

the study of yoga techniques (Telles & Naveen, 2008). Yoga originated in ancient Indian culture 

as a way to promote physical, mental, intellectual, and spiritual health. A common part of yoga 

practice is a focus on controlling the breath, which is called pranayama (Telles & Naveen, 2008). 

Pranayama vary in the depth of breath, rate of breath, how long the breath is held, the nostril 

breathed through, if a sound is made during the exhale, or if the breath is taken though the mouth 

(Telles & Naveen, 2008). Modern research has indicated that yoga breathing can help manage 

symptoms of anxiety and stress in both clinical (Brown & Gerbarg, 2005; Uebelacker & 

Broughton, 2016) and non-clinical populations (Monnazzi, Leri, Guizzardi, Mattioli, & 

Patacchioli, 2002). Pranayama also appears to increase feelings of well-being (Harinath et al., 

2004). Jerath, Edry, Barnes, and Jerath (2006), theorized that low frequency controlled 

pranayama promotes relaxation by influencing the autonomic nervous system. They explained 

that slow breathing modulates the autonomic system by activating receptors in and around the 

lungs that respond to the lungs stretching, which inhibits neural activity. The body’s response to 

breathing increases the dominance of the parasympathetic nervous system and decrease the 

dominance of the sympathetic nervous system, which promotes relaxation (Jerath et al., 2006). 

Increased influence of the parasympathetic nervous system can affect the eyes in many ways, 

most of which are beyond the scope of this study (see McDougal and Gamlin, 2015 for review). 

In addition, pranayama has been shown to affect the eyes by increasing the influence of the 

parasympathetic nervous system (Backon, Matamoros, & Ticho, 1989). Currently, no links to 
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gaze efficiency and increased parasympathetic nervous system activity have been directly made. 

It may be possible that relaxation achieved by controlled breathing could affect gaze efficiency. 

With research findings suggesting that pranayama practices can lower stress and anxiety, 

other researchers have tested if yoga breathing can reduce anxiety and increase performance 

simultaneously. Malathi and Damodaran (1999) tested the effects of yoga on test anxiety and test 

performance in 50 students with no yoga experience. Half of the participants completed one hour 

of yoga practice (three times a week, for three months), which involved meditation, prayer, yoga 

postures (ansas), and pranayama. The other half of the participants only completed school work. 

Students in the yoga group had significant reductions in anxiety one month before and on the day 

of their exam; while the control group did not have any significant changes in their mean anxiety 

scores. The yoga group also had significant reduction in the number of group members that 

failed the exam when compared to the control group, suggesting that the practice of yoga not 

only reduce their anxiety but also aided their performance on the test. Although findings of 

Malathi and Damodaran (1999) do provide some supporting evidence that yoga breathing can 

lower anxiety and increase cognitive performance, yoga practice was not limited to only yoga 

breathing. The participants completed other components of yoga (e.g., putting their body into 

specific yoga positions). Also, other confounding variables, such as the amount of time studied 

or presence of other life stressors, could have affected the outcomes.  

Other studies have isolated the practice of pranayama to test its effects on anxiety and 

performance. Telles, Yadav, Kumar, Sharma, Visweswaraiah, and Balkrishna (2013) recruited 

90 participants with high blood pressure from an Indian hospital to test the effects of alternate 

nostril yoga breathing (ANYB) on blood pressure, as a measure of autonomic nervous system 

activity, and performance. The participants randomly assigned to one of three groups: ANYB, 
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breath awareness, and control. Participants completed the Purdue pegboard task, which tests 

motor coordination and attention, followed by a ten-minute intervention, then a second 

completion of the pegboard task. During the ten-minute intervention, the ANYB group was 

instructed to alternate plugging one nostril while taking a breath in and out of the other. The 

average duration of inhalation and exhalation for this group was 3.4 seconds and 5.6 seconds 

respectively. Participants in the control group read a magazine, and participants in the breath 

awareness group focused their attention on their breathing, but did not alter it. The researchers 

found that systolic blood pressure decreased for the ANYB and breath awareness group while 

diastolic blood pressure was reduced for only the ANYB group (Telles et al., 2013). It was 

speculated that the decreased blood pressure of the participants indicated that practicing ANYB 

increased the influence of the parasympathetic nervous system creating a relaxing effect. 

Participants in the ANYB also increased their performance while completing the pegboard task 

with their right hand and both hands, providing some evidence that ANYB helped increase motor 

coordination and attention, which are variables that could be beneficial to sport performance. 

Other researchers have tested the effects of breathing strictly though one nostril. Telles, 

Raghuraj, Maharana, and Nagendra (2007) had 26 males with at least three months of yoga 

breathing experience participate in four different yoga breathing techniques. Researchers then 

tested participant performance on a letter cancellation task. The techniques included right nostril 

yoga breathing, left nostril yoga breathing, alternate nostril yoga breathing, and breath 

awareness. Each participant completed one of the four techniques for 30 minutes on four 

consecutive days. The participants completed the letter cancellation task once before their 

breathing session and once after. Participants had significant improvement in their performance 

on the word cancellation task after completing the alternate nostril breathing and right nostril 
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breathing. Another study conducted by Jella and Shannahoff-Khalsa (1993) found that their 

undergraduate participants were able to significantly increase their scores on a spatial rotation 

task when practicing left nostril breathing. Participants were also able to increase their 

performance on a verbal analogy task after practicing right nostril breathing. The authors of these 

studies suggest that controlling which nostril is breathed through can have different effects on the 

autonomic nervous system and performance (Jella & Shannahoff-Khalsa, 1993; Telles et al., 

2007). They contend that breathing through the left nostril influences the right side of the body, 

stimulating the parasympathetic nervous system and increasing performance on spatial tasks 

associated with the right hemisphere of the brain. Breathing through the right nostril is suspected 

to increase activity of the sympathetic nervous system and increase performance on verbal tasks 

associated with the left hemisphere of the brain.  

The theory that forced breathing through one nostril can affect performance has been 

debated. Klein, Pilon, Prosser, and Shannahoff-Khalsa (1986) found that participants’ 

performance on verbal and spatial tasks was related to what nostril was dominant, or less 

congested, at the time they were tested, not which nostril breath was forced through. Nostril 

dominance appears to be cyclical, with the dominant nostril alternating ever few hours. The 

researchers’ findings did support that left nostril dominance was associated with higher 

performance on the spatial task and right nostril dominance was associated with higher 

performance on verbal tasks.  

In sum, research on the ancient practice of yoga pranayama suggests that it is an effective 

way to increase performance and reduce anxiety symptoms. Based on the practice of pranayama 

techniques, more modern versions of controlled breathing that are standardized to provide 

similar effects have been created. Some of these techniques are discussed below.  
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 Heart rate variability biofeedback. Research has shown that the controlled breathing 

component of yoga can affect physiological and psychological processes as well as performance 

(Jella & Shannahoff-Khalsa, 1993; Telles et al., 2007). However, there is large variation between 

yoga breathing techniques, which makes pranayama application problematic. A more modern 

form of standardized controlled breathing created by Lehrer, Vaschillo, and Vaschillo (2000) 

called heart rate variability biofeedback (HRVB) has been shown to have similar positive effects 

on anxiety and performance as pranayama.  

The term heart rate variability refers to the variation in the length of time between heart 

beats (Lehrer et al., 2000). Heart rate varies due to complex reactions to physiological and 

psychological stimuli, with autonomic nervous system activity playing a large role (Pumprla, 

Howorka, Groves, Chester, & Nolan, 2002). The parasympathetic division of the autonomic 

nervous system slows heart rate, while the sympathetic division increases it. During HRVB, 

individuals are shown their heart rate data and then use controlled breathing to try to maximize 

their respiratory sinus arrhythmia (RSA). During inhalation, heart rate increases and during 

exhalation, heart rate decreases, creating a smooth oscillation in heart rate. This oscillation in 

heart rate caused by controlled respiration is known as RSA. Maximized RSA is characterized by 

high amplitude smooth oscillations in heart rate. For most healthy adults, breathing at a 

frequency of six breaths per minute provides the maximum oscillations in RSA (Lehrer, 

Vaschillo, and Vaschillo, 2010). Rhythmic high oscillations in RSA are characteristic of a 

balanced autonomic nervous system that can respond to the demands of the environment, while 

erratic low oscillation heart rate variability can indicate physical or psychological disorders 

(Gevirtz, 2013).Changes in heart rate variability measured at high frequencies (approximately 

0.25 hz) are characteristic of parasympathetic activity; changes in heart rate variability measured 
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at low frequencies (approximately 0.1 hz) are mediated by the baroceptor reflex and sympathetic 

activity (Pumprla et al., 2002).  

To test how specific respiratory rates affect heart rate and heart rate variability, Song and 

Lehrer (2003) recruited five healthy female volunteers to breath at different frequencies while 

their heart rates were measured. Participants completed either 21 or 24 sessions of four breathing 

tasks. Each task consisted of participants breathing at a certain frequency paced by a moving bar, 

with a two to five minute break between each task. Breathing frequencies of 3, 4, 6, 8, 12, and 14 

breaths per minute were used. The results showed no difference in participants’ mean heart rate 

at different breathing frequencies; however, minimum heart rate was significantly lower and the 

low frequency amplitude of heart rate variability was greater at lower rates of breathing. The fact 

that there were no differences in heart rate when breathing at different frequencies suggests that 

participants’ sympathetic activity was not increased. Increase in RSA amplitude at lower 

frequencies of breathing, with the peak amplitude occurring at 4 breaths/minute, suggests 

increased parasympathetic activity. In similar studies by Vaschillo, Vaschillo, and Lehrer (2006), 

it was found that participants of different ages, sex, and health status achieved maximum 

oscillation RSA, which is called “resonant frequency”, when breathing at frequencies close to six 

breaths per minute. Combined, the results from these studies suggest that, while there is variance 

between individuals as to what breathing frequency causes homeostasis in the autonomic nervous 

system, most people achieve resonant frequency when breathing at a frequency of four to six 

breaths per minute. As such, it seems logical to teach this breathing rate to athletes to help them 

achieve balance in their nervous system.  

In HRVB, individuals control their breathing to create rhythmic high oscillation RSA that 

indicates autonomic nervous system adaptability and homeostasis (Lehrer et al., 2000). Lehrer et 
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al. (2000) stated that it is important to use biofeedback rather than simply telling people to breath 

at a frequency of six breaths per minute to achieve resonant frequency because of the differences 

between individuals. The original design of HRVB consists of 10 sessions that involve 

determining and individual’s resonant frequency, teaching them diaphragmatic breathing, then 

learning to control RSA with their breath to achieve their resonant frequency (Lerher et al., 

2000). Of importance to the success of HRVB is having participants correctly execute 

diaphragmatic breathing. Lehrer et al.’s (2000) instructions for diaphragmatic breathing included 

teaching individuals to draw air into their belly using their diaphragm, while having most of the 

movement from the breath come from the belly and not the chest or shoulders. Training also 

includes inhaling through the nose, exhaling through pursed lips, and having an exhale that is 

longer than the inhale. This type of breathing is then synchronized with a biofeedback machine 

that displays the oscillation in RSA. 

The effect of HRVB on anxiety and stress management has been examined. In a study of 

18 males in senior management positions who perceived high life stress, participants were placed 

into HRVB and control groups (Prinsloo, Derman, Lambert, & Rauch, 2013). The HRVB group 

was trained to maximize their RSA while the control group was given random wavelike feedback 

about their heart rate. A week later, the participants returned to complete measures of trait 

anxiety, state anxiety, and relaxation states and participate in a stress-inducing task. The 

experimental task involved a pre and post intervention modified Stroop task with a working 

memory component of counting squares that appeared on the computer screen during the task. 

The participants completed their respective interventions for 10 minutes in between the modified 

Stroop tasks. Statistically significant effects for time on state anxiety were found in both groups, 

suggesting that both groups were able to reduce their state anxiety even though they participated 
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in a stress-inducing task. The HRVB intervention had a large effect on state anxiety while the 

control intervention had a medium effect size on state anxiety, suggesting that the experimental 

intervention was more effective at reducing state anxiety than breathing without biofeedback. 

Significant differences in the interaction between group and time with large effect sizes for 

HRVB was found on the relaxation states of mindfulness, energized and positive feelings, and 

basic relaxation, all of which increased for the HRVB group compared to the control group. 

Even though this study had a small sample size with an unrepresentative population, the anxiety 

reducing effects of HRVB were shown. It is also important that the anxiety reducing effects were 

found in individuals who had never participated in HRVB after only 10 minutes.  

The relaxing effects of HRVB were also found in a study on male and female singers, 

and musicians (Wells, Outhred, Heathers, Quintana, & Kemp, 2012). The musicians were 

randomized into a HRVB, slow breathing without feedback, and control groups. The participants 

completed difficult musical tasks depending on their specialty. Anticipation, presence of 

recording equipment, and difficulty of the task were designed to increase participant stress and 

anxiety. Increases in state anxiety scores showed that the manipulation was successful. After 

completion of the first performance phase, each participant completed an intervention phase 

lasting 30 minutes. The HRVB group was given instructions on how to use diaphragmatic 

breathing to control their heart rate, the deep breath group was instructed to breath at a rate of 10 

breaths per minute without biofeedback, and the control group read preferred material. After the 

intervention, the groups participated in a post intervention testing that was the same as the pre-

intervention anticipation and performance phases. Analysis of the data revealed that both slow 

breathing groups were able to significantly decrease their state anxiety during the stressful task 

and had higher RSA amplitude than the control group, even though the intervention groups had 
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higher trait anxiety to begin with. These results are promising as participants from both groups 

were able to decrease their anxiety after one session of HRVB. Also, it is important to note that 

deep breathing without the presence of a biofeedback machine had relaxing effects because 

athletes often do not have access to biofeedback machines before or during performance, and 

must rely on pacing their breath to reduce their anxiety.   

Overall, research findings support the anxiety reducing and relaxation promoting effects 

of HRVB and diaphragmatic breathing at a rate of 10 breaths per minute without biofeedback. 

This suggests that applying this intervention to athletes may help them manage their anxiety and 

relax in stressful sporting situations without extensive training. It is also of note that controlled 

breathing at rates of 10 breaths per minute without the use of feedback managed anxiety levels in 

a relatively short amount of time, supporting the use of diaphragmatic breathing as a brief 

relaxation intervention. 

The effects of HRVB on athletes have also been tested. Paul and Garg (2012) recruited 

30 male and female basketball players ranging in age from 18-28 years. The participants were 

randomly assigned into three equal groups: An experimental group that received HRVB training, 

a placebo group that watched motivational video clips, and a control group with no training. The 

participants in the HRVB group practiced HRVB for 20 minutes on 10 consecutive days, the 

placebo group watched 10 minutes of motivational basketball clips for 10 consecutive days, and 

the control group continued their normal practice schedule. The researchers found that the 

HRVB group had significantly lower state and trait anxiety, which lasted for one month after the 

end of the training, and they were able to increase their heart rate variability. The HRVB group 

also significantly improved their performance of shooting, dribbling, and passing tasks compared 

to the other groups.  
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Golf performance also has shown to be affected by HRVB, which is of particular interest 

to the current study. Lagos et al., (2008) conducted a case study on the effects of HRVB on 

performance, mood, and physiology. The participant was a 14-year-old golfer who was 

competing in high school. His 18 hole competitive round average score was 91 strokes, which 

was much higher than his practice round average of 70 strokes. The participant attributed his 

poor competitive performances to high levels of stress and anxiety. The participant completed 10 

weeks of HRVB. The participant’s mood was measured using the Profile of Mood States and 

CSAI-2. His heart rate, breathing, and average score per round were also measured. From the 

start of his training to week 10, there were reductions in negative mood states and anxiety, and 

the participant’s total heart rate variability increased. Also, his performance improved from an 

average of 91 strokes to an average of 76 strokes in competitive rounds. Overall, the participant 

was able to improve his mood, manage his anxiety, improve the balance of his autonomic 

nervous system, and improve his performance with no technical golf instruction by controlling 

his breathing. 

Adding to the evidence that controlled breathing can aid golf performance, Lagos et al. 

(2011) conducted a case study on a 21-year-old, female, NCAA Division I golfer. The 

participant completed the 10-week HRVB training. A virtual reality golf task was used as a 

measure of performance. Resonant frequency was achieved for the participant at approximately 

six breaths per minute. After HRVB training, the golfer had reduced somatic and cognitive 

anxiety scores, reduced stress levels within and outside of sport, reduced sensation-seeking 

tendencies. Physiological measures indicated increased parasympathetic activity by reduced 

average heart rate and increased high frequency heart rate variability. Reduced sympathetic 

activity was also observed by the ratio of low frequency to high frequency heart rate variability 
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shifting to lower levels. Performance was also increased as the participant decreased the number 

of total strokes and putts while increasing her average driving distance and longest drive. The 

authors concluded that HRVB can improve performance, physiological factors, and 

psychological factors in golfers. While the evidence is limited to two case studies (Lagos et al., 

2008; Lagos et al., 2013), HRVB shows promise as a tool for aiding athletic performance and 

helping athletes manage their anxiety levels. 

Current Study  

Managing anxiety is important for athletes because elevated anxiety levels during 

competition can negatively affect the processing efficiency of working memory, which can lead 

to decreased performance (Eysenck et al, 2007). Decreased efficiency can be observed by the 

measurement of fixations, which can give insight into where athletes are allocating their attention 

(Deubel & Schneider, 1996). When anxious, athletes tend to have less efficient gaze patterns that 

reduce their ability to perform under pressure (Behan & Wilson, 2008; Wilson, Vine & Wood, 

2009; Vickers & Williams, 2007; Vine et al., 2013; Wilson, Wood, & Vine; 2009). While the 

effects of increased anxiety on gaze have been tested, no research has tested the effects of 

anxiety reduction interventions on gaze. Controlled slow breathing has been shown to reduce 

anxiety and increase performance (Lagos et al., 2008; Lagos et al., 2013; Lehrer et al., Paul & 

Garg, 2012). The current study was the first to test if a diaphragmatic breathing intervention 

affected the gaze efficiency of novice golfers during competition. It is possible that reducing 

anxiety could lead to increased efficiency of gaze, which could aid performance. 

For the current study, a diaphragmatic breath intervention modeled after Lehrer et al.’s 

(2000) abdominal breathing instructions was used and participants breathed at a frequency of six 

breaths per minute. This frequency was chosen because it is often the resonant frequency for 
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healthy individuals (Vaschillo et al., 2006). Effective breathing uses the diaphragm. 

Diaphragmatic breathing is considered a muscle to mind technique of relaxation, meaning that 

the main objective of the intervention is to reduce muscle tension, which provides feedback to 

the brain that anxiety has been reduced (Williams & Krane, 2015). While the main purpose of 

diaphragmatic breathing is to promote somatic relaxation, there is evidence of cross over effects, 

where attempting to reduce one dimension of anxiety is likely to also reduce the other dimension 

(Tomas et al., 2009). Breathing is a physiological system that athletes are able to control. Deep 

diaphragmatic breaths can be an easy, quick, and common intervention used to illicit the 

relaxation response and reduce anxiety before or during competition (Mason, 1980). 

Diaphragmatic breathing has been included in studies for anxiety reduction, but as mentioned 

before, it has often been included as one component of a multifaceted pre-performance routine. 

In one of the only studies where an isolated deep breath pre-performance routine was 

implemented, participants in the deep breath group were able to improve their average score in 

an Australian football kicking task from 147 in in the low-pressure phase to 149 in the high-

pressure phase of the study while participants in a control group saw their scores decline under 

pressure (Mesagno & Mullane-Grant, 2010). Mesagno & Mullane-Grant’s (2010) study provided 

evidence that adding a deep breath to an athlete’s pre-performance routine can have beneficial 

consequences. One limit of Mesagno & Mullane-Grant’s (2010) study that the current study will 

address is that only precompetitive anxiety was measured. Without knowing the anxiety levels of 

the participants after taking their breaths it is unclear if the deep breaths or another factor 

affected anxiety and performance. The current study will measure novice golfers’ anxiety during 

a golf-putting task, immediately after each putt, to test if anxiety is reduced by a diaphragmatic 

breath. 
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  Therefore, the current study’s objectives are to (1) test if taking a single diaphragmatic 

breath affects anxiety, (2) test if a diaphragmatic breath affects gaze efficiency, and (3) test if a 

diaphragmatic breath affects performance in a golf putting task. 
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Chapter III 

Methods and Procedures 

Introduction 

 Efficient gaze, which is characterized by less foveal fixations of longer duration and 

longer quiet eye fixation duration, is a predictor of successful outcomes and expert performance 

in several sporting tasks (Mann et al. 2007). Fixations occur when the focal point of the fovea is 

stabilized within 3° of a visual angle for at least 100 ms, and a quiet eye fixation is the final 

fixation that occurs before the initiation of a movement critical to the execution of a task 

(Vickers, 2007). Unfortunately, increased anxiety, which is common in competitive situations 

(Lazarus, 2000), tends to decrease the duration of quiet eye fixations (Behan & Wilson, 2008; 

Vickers & Williams, 2007; Vine et al., 2013; Wilson, Wood, & Vine, 2009), increase the 

frequency of fixations, and decrease the duration of fixations (Allsop & Gray, 2014; Vickers & 

Williams, 2007; Vine et al., 2013; Wilson, Wood, & Vine, 2009), making gaze patterns less 

efficient. While the effects of increased anxiety on gaze have been studied, there has been no 

research examining whether or not commonly used anxiety reducing interventions affect 

athletes’ gaze efficiency. The current study tested if a common brief anxiety reducing 

intervention, the diaphragmatic breath, affects participants’ anxiety, gaze efficiency, and 

performance.  

Description of the Study Population 

 The study population consisted of 30 (13 female, 17 male) undergraduate students at a 

midsized university on the west coast of the United States with a mean age of 20.5 years (SD = 

1.3). The control group consisted of male (46.7%, n = 7) and female (53.3%, n = 8) participants 

with a mean age of 20 years (SD = 1.25). The DB group consisted of male (66.7%, n = 10) and 
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female (33.3%, n = 5) participants with a mean age of 20.93 years (SD = 1.28). Reported 

race/ethnicities of participants were White (66.7%, n = 20), Asian (10%, n = 3), Hispanic/White 

(6.7%, n = 2), both Asian and White (6.7%, n = 2), both Asian and Hispanic (6.7%, n = 2), and 

American Indian or Alaska native, Asian, and White (3.3%, n = 1). Inclusion criteria specified 

that all participants had to be novice golfers, undergraduate students, and at least 18 years of age. 

For the current study, a novice golfer was operationally defined as a person who had never taken 

golf lessons, never taken a physical education golf class, and never played greater than or equal 

to nine holes of golf in a competitive or leisure situation. Also, to be considered a novice, 

participants could not have practiced golf on a driving range, putted on a practice putting green, 

or have participated in mini-golf within the past year. Novice golfers were chosen for this study 

to reduce the chances of recruiting participants with already established pre-performance 

routines (PPR). Teaching a new routine to participants with already established PPRs would have 

meant that the participants would first need to break their automated routines, which may cause 

reduced performance under pressure conditions (Beilock & Gray, 2007).  

For safety purposes, participants were excluded if they were medically reliant on a device 

that could be disturbed by infrared light or infrared radiation or if they had a history of epilepsy 

or epileptic seizures. Participants with a history of eye surgery, current eye movement or eye 

alignment abnormalities, and those wearing glasses were excluded because these characteristics 

would have interfered with the eye tracking glasses. Participants were excluded if their makeup, 

eyelashes, or eyelids interfered with the calibration of the eye tracking glasses.  

Design of the Study 

 A pretest posttest randomized groups experimental study design was used to test the 

effects of a single diaphragmatic breath on anxiety, gaze efficiency, and performance during 
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competitive conditions. Participants were randomly assigned to either a control or diaphragmatic 

breath group. The independent variables for this study were group assignment (diaphragmatic 

breath, control) and time (pretest, posttest). The dependent variables for this study were average 

fixation duration, average number of fixations per putt, average quiet eye duration, performance, 

cognitive anxiety, and somatic anxiety. 

Data Collection Procedures  

 Instruments. Participants completed the golf-putting task on a synthetic putting green 

with a slight incline occurring before the target hole. The green had three holes, one hole in the 

rear center of the green and one hole on each side of the center hole, but closer to the participant. 

Two bunkers, narrow oblong holes that bordered the back sides of the green, bordered the back 

of the putting green. The same generic putter and Bridgestone e6 golf balls were used by all 

participants to complete the task.  

Tobii Pro Glasses 2 were used to measure the participants’ gaze. The Tobii Glasses 2 

used in this study had a sampling rate of 50 hz, meaning the glasses captured data every 20 ms. 

The gaze tracking glasses work by illuminating the wearer’s eyes with infrared light to detect the 

position of the pupil and reflection of the light on the cornea. Pupil position is used to calculate 

the visual axis of the wearer’s eye, and the corneal reflection provides information about the 

location of the wearer’s eye in space. These two data points are used to locate where the eye is 

relative to the eye tracker and stimulus, then calculate the line of sight from the central fovea to 

the stimulus showing where the user is looking. The data collected was used to determine the 

average number of fixations per putt, average fixation duration, and average quiet eye duration. 

The glasses were connected to a recording device that was clipped on a belt worn by the 
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participants. The recorder was connected to a Dell Precision Tower 5810 with an Intel Xeon 

processor running Windows 10 that was used to control the glasses and analyze all data. 

 The cognitive and somatic subscales of the Mental Readiness Form-3 (MRF-3; Krane, 

1994) were used to assess state anxiety during the trial (see Appendix A). The MRF-3 has been 

shown to be a valid and expedient measurement of competitive state anxiety, with subscales of 

the MRF having correlations to the corresponding subscales of the Competitive State Anxiety 

Inventory-2 (CSAI-2: Martens, Vealey, & Burton, 1990), a common state anxiety measure, 

ranging from .55 and .80, indicating moderate to strong concurrent validity (Krane, 1994). It was 

important that an expedient measure of state anxiety was used for the trials to quickly measure 

the anxiety levels of the participants during their putts. The MRF-3 (Krane, 1994) consists of 3 

subscales where anxiety is measured using an 11-point Likert Scale. The bi-polar anchors for the 

subscales are worried/not worried to measure cognitive anxiety, tense/not tense to measure 

somatic anxiety, and confident/ not confident to measure self-confidence. Participants completed 

the form by circling the number that best represented their levels of state cognitive and state 

somatic anxiety. Only the cognitive and somatic anxiety subscales were administered in the 

current study because self-confidence was not a variable of interest. The MRF-3 (Krane, 1994) 

has been the standard scale used in eye tracking studies where a brief measure of anxiety is 

needed (Vickers & Williams, 2007; Vine, Lee, Moore, & Wilson, 2013; Vine, Moore, & Wilson, 

2011; Wilson, Vine, & Wood, 2009; Wood, Vine, & Wilson, 2014). 

Measurement techniques and procedures. The investigators underwent human 

research subject ethical training before any interaction with participants was initiated. A 

university IRB approved the study procedures before any participant recruitment or data 
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collection commenced. A grant of $750.00 was obtained through the university so that each 

participant could be paid $25 for their participation if they completed all study procedures. 

Participants were recruited on a university campus using fliers (see Appendix B) and in-

class recruiting. In-class recruiting was initiated by sending recruitment emails (see Appendix C) 

to university professors requesting time to recruit in class. If professors allowed in-class 

recruiting, the investigator and/or the research assistant presented a scripted recruiting message 

during class time and provided contact information to potential participants (see Appendix D).  

The primary investigator completed practice trials until all study procedures could be 

implemented correctly and equipment could be used properly. An undergraduate research 

assistant was present when available; the assistant was trained how to record performance data, 

fit the gaze tracking equipment, and retrieve the ball after it had been putted. 

Data was collected during the daytime in a lab setting with only one participant present at 

a time. Upon arrival to the lab, all participants were given the informed consent form (see 

Appendix E) and ample time to read it. Participants were given time to ask questions, and if they 

wished to proceed, they signed the consent document. Participants were randomized (see 

Appendix F) into the control group or diaphragmatic breath (DB) group using block 

randomization done through an online group randomizer (GraphPad Software, 2017). 

 After randomization on day one, all participants completed a demographics questionnaire 

(see Appendix G) and inclusion/exclusion criteria were verified (see Appendix H). Two 

participants were excluded from the study because calibration of the gaze tracking glasses was 

unsuccessful. Participants were then fitted with the eye tracking equipment and given 20 warm 

up putts to familiarize themselves with the task. The putting task consisted of participants 

completing 7’ (2.1336 m) putts on a synthetic putting green. The participants were instructed to 
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aim for the center hole throughout their participation. To verify they were sure of what hole they 

were aiming for the participants were asked to point to the target hole before the commencement 

of the first warm up block of putts. For each putt, the ball was placed on a spot on the green 

marked with permanent marker and the investigator or research assistant returned the ball to the 

starting marker after each putt. After completing the warm up block, the gaze tracker was 

calibrated by having participants look at the center of a target on a calibration card while the 

investigator clicked on the calibration icon in the Tobii Glasses Controller software. To ensure 

accurate calibration, participants were asked to look at the ball placed on a starting marker and 

the target hole while the investigator verified the calibration on the computer screen. If the 

calibration was accurate the trial commenced; if calibration was unsatisfactory the calibration 

process was repeated until calibration was satisfactory. Gaze and performance information was 

recorded while participants completed a pretest block of 20 putts. Performance was measured by 

the total number of putts made out of the block of 20 putts in the pretest and posttest phases. 

Participants completed the cognitive and somatic subscales of the MRF-3 (Krane, 1994) 

immediately after each putt in the pretest block to measure anxiety levels during the previous 

putt.  

Participants who were randomized into the DB group were then taught how to take a 

diaphragmatic breath. The procedure included inhaling through their nose deeply into their lungs 

using their diaphragm for a count of four and exhaling through their mouth for a count of six. 

After completing a breath, the participants placed the putter behind the ball and executed the 

putt. Diaphragmatic breathing instructions were scripted (see Appendix I). The script was based 

off the abdominal breathing instructions outlined by Lehrer et al. (2000). The participants 

practiced diaphragmatic breathing until the investigator approved of the execution of the breath, 
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which was determined when most of the movement caused by each breath was seen in the 

abdomen with little to no movement seen in the chest, inhalation occurred through nostrils for 

four seconds, and exhalation occurred through the mouth for six seconds. After approval of the 

participants’ technique, participants were instructed to take a breath before the initiation of each 

putt. It was necessary to have participants execute the diaphragmatic breath before each putt so 

that gaze measurements after the placement of the putter were potentially influenced by the 

breath. Teaching of the breath, approval by the investigator, and instruction as to when a breath 

should be executed took approximately 15 minutes.   

Participants in the control group watched a 15 minute segment of a documentary (Hogan, 

2005) on the history of golf after they completed the pretest block of putts. The task for the 

control group was designed to be temporally equal to the diaphragmatic breath group’s 

intervention to ensure that both groups were given a task to complete, session times would 

remain similar between groups, and that the control group would not think about the putting task 

or possibly employ relaxation techniques. It was explained to the control group participants that 

the investigator had to review the gaze data that was collected during the pretest block and that 

the golf documentary was to keep them focused on golf during this time. The use of distracting 

objects (e.g., electronic devices) was prohibited during the control intervention to increase the 

likelihood that participants paid attention to the film. Neither group received instruction on 

putting technique and form at any point in the study, and technique was not covered in the golf 

documentary.  

After implementing the diaphragmatic breath intervention for the DB group and the 

control task for the control group, participants completed a practice phase. The practice phase 

consisted of three practice blocks of 20 putts each, totaling 60 practice putts. Participants in the 



 76 

  

DB group were instructed to execute a single diaphragmatic breath before each putt during the 

practice blocks and to make as many putts as possible while the control group was only 

instructed to make as many putts as possible. Participants were allowed to take short breaks after 

each block of putts at their discretion. The gaze tracking glasses were worn during practice for 

participants to get used to putting with the equipment on, but no gaze information was recorded 

and analyzed from the practice blocks. Performance during the practice phase was recorded, 

even though performance data in the practice phase was not analyzed. It was important to the 

later anxiety manipulation that participants knew their performance during the practice blocks 

was recorded. After completion of the practice putting blocks, participants confirmed the date 

and time of their next session. They were asked to not share information about the study 

procedures and to not practice putting. They were then dismissed. 

Participants returned to the lab between one and three days after completing the first 

session to complete a posttest phase. Upon arrival to the lab, the participants were fitted with the 

eye tracking gear and took 20 warm up putts (no gaze data recorded). Those in the DB group 

were instructed to execute a diaphragmatic breath before each putt in the warm up block per 

instructions given at the previous session. The control group was only asked to make as many 

putts as possible. 

After the warm up block was completed, deception was used to manipulate the 

participants’ anxiety levels. In an attempt to increase anxiety, all participants were told the 

following: 1) their scores would be posted to an online leaderboard along with their full name, 2) 

their performance during day 1 put them in the bottom 30% of what is expected of novice golfer 

based on previous research, and 3) they would need to perform better or their data would be 

unusable. Similar deception methods have been successfully used to increase anxiety in previous 
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studies that have tested the effects of anxiety on gaze during tasks, including: flight simulation 

(Allsop & Gray, 2014), archery simulation (Behan & Wilson, 2008), biathlon rifle shooting 

(Vickers & Williams, 2007), golf putting (Vine, Lee, Moore, & Wilson, 2013; Vine, Moore & 

Wilson, 2011), basketball free throw shooting (Wilson, Vine, & Wood, 2009), and soccer 

penalty kicks (Wilson, Wood, & Vine, 2009). Verbal consent to continue in the study was 

obtained from all participants after the anxiety manipulation was given. All participants agreed to 

continue in the study. 

Next, the gaze tracking glasses were calibrated using the same calibration procedure that 

was used during the pretest block of putts, then participants completed a posttest block of 20 

putts where their gaze, state anxiety, and performance were recorded. Participants in the 

diaphragmatic breath group completed a diaphragmatic breath before each putt in the posttest 

block. After each putt in the posttest block, the participants’ levels of anxiety were again 

recorded using the cognitive and somatic subscales of the MRF-3 (Krane, 1994). 

After completion of the test phase, participants were immediately debriefed to the true 

nature of the study, given the chance to clarify any information about the study, and asked 

questions they had about the study procedures and purpose (see Appendix J). After being 

debriefed, participants were given $25 as compensation for their participation then dismissed. 

Data processing. Gaze data was obtained from data imported from the glasses recording 

device into Tobii Pro Lab, Version 1.58.5884 (Tobii, 2017). Of the 40 total putts (20 pretest, 20 

posttest) where participants’ gaze was recorded, 10 putts were randomly selected from each 

participant’s pretest and posttest blocks to be analyzed using a list randomizer (List Randomizer, 

2017). Random selection of putts for analysis was completed due to time constraints, as 

analyzing the gaze data required extensive time for each individual putt. Once it was identified 
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which putts would be analyzed, a custom velocity-based fixation filter was used to identify 

fixations. The custom fixation filter was based on the values recommended by Tobii (2012), with 

the exception being the minimum fixation duration being increased from 60 ms to 100 ms, 

because 100 ms is the minimum time it takes for information obtained visually to be processed 

and used to plan motor movements in normal populations (Vickers, 2007). Once fixations were 

identified, the start and end of each putt was marked manually and the total number of fixations 

per putting trial, the length of fixations per putting trial, and the duration of the quiet eye fixation 

were recorded. The start of each trial was marked at the first fixation that occurred during or after 

the putter was placed behind the golf ball. Quiet eye was defined as the final fixation which had 

an onset before the initiation of the backswing and offset occurring when gaze deviated off the 

fixation location as determined by the fixation filter (Vine et al., 2013). Initiation of the 

backswing occurred at the first frame where backward movement of the putter away from the 

ball in commencement of a full putt could be detected (Vine et al., 2013). The end of the quiet 

eye fixation marked the end of each putting trial. 

Data Analysis 

Due to low quality gaze information, one participant from the control group was excluded 

from analysis. The participant’s gaze recordings were missing large amounts of data, which 

would have made for an inaccurate analysis. Information from the gaze tracking glasses was 

uploaded to a computer. Tobii Pro Lab software was used to analyze the information obtained 

from the glasses that was recorded using Tobii Pro Glasses Recorder Software. The locations of 

the pupil and corneal reflection are used to detect where the wearer’s eyes are fixated, which is 

then displayed on a computer screen over the video taken by a camera on the front of the glasses. 

An image of the wearer’s fixation point is indicated by a circle, which is displayed on the video 
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image of the computer. The analysis of gaze data commenced at the onset of the fixation when 

the participant put the putter behind the ball and ended after the offset of the quiet eye fixation.  

A 2 (DB, control) x 2 (pretest, posttest) x 6 (test) mixed MANOVA for the independent 

variables of group and time, and dependent variables of cognitive anxiety, somatic anxiety, quiet 

eye duration, fixation duration, number of fixations, and performance was run in SPSS to 

analyze for multivariate interaction effects of the independent variables on the grouped 

dependent variables. A MANOVA was used because there were multiple independent variables 

and the dependent variables had shown to be related in previous research. Post hoc testing was 

completed using separate mixed ANOVAs for each dependent variable to test for the effects of 

time and group. If the MANOVA revealed no statistically significant interaction effects, but 

statistically significant main effects were found, post hoc testing was planned.  

Effect sizes and significance were calculated using SPSS. Findings where p = <0.05 were 

considered significant. If there was no significant interaction effect of the variables then the main 

effects were analyzed using SPSS calculation of significance and effect size. Effect sizes were 

determined using the partial eta squared statistic. The guidelines for interpreting partial eta 

squared were .01= small, .06 = medium, .138 = large. (Cohen, 1988). 
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Chapter IV 

Results and Discussion 

Introduction 

 The present study used the assumptions of attentional control theory (Eysenck et al., 

2007) to test the effects of an anxiety reduction intervention, a single diaphragmatic breath (DB), 

on anxiety, gaze efficiency, and golf putting performance. Novice golfers were randomized into 

control and DB groups. They were tested during the pretest for baseline measures of the 

dependent variables, after which the DB group was instructed to take a DB before each putt they 

took for the rest of the study. After the intervention, all participants had a chance to practice 

putting. Participants returned to the lab to complete posttest trial where their anxiety was 

manipulated. Tobii Pro Glasses 2 were used to measure participants’ average fixations per putt, 

average fixation duration, and average quiet eye duration. The cognitive and somatic subscales 

of the Mental Readiness Form-3 (MRF-3; Krane, 1994) were used to measure anxiety after each 

putt of the pretest and posttest putting blocks. Performance was measured as the number of putts 

holed. 

Results 

A repeated measures MANOVA was performed to investigate the multivariate interaction 

effects of the grouped independent variables (group, time) with the grouped dependent variables 

(somatic anxiety, cognitive anxiety, average fixation duration, average number of fixations per 

putt, average quiet eye duration, and performance). For descriptive statistics see Table 1.  

The MANOVA revealed no statistically significant multivariate interaction effects, with a 

moderate effect size F(5, 23) = .274, p = .937; Wilk’s Λ = .949; Ƞp
2 = .051. Given the previous 

results, the interaction effects for intervention and time were examined, and they were also not 
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statistically significant with a small effect size F(1, 27) = .021, p = .885; Wilk’s Λ = .999; Ƞp
2 = 

.001.  

 

Table 1  

 

Descriptive Statistics for Diaphragmatic Breath (DB) Group and Control Group 

 

 DB group Control group 

Variable Pre 

M (SD) 

Post 

M (SD) 

Pre 

M (SD) 

Post 

M (SD) 

Somatic anxiety 
2.92 (1.46) 3.26 (1.44) 4.49 (2.01) 4.5 (1.98) 

Cognitive anxiety 
2.78 (1.50) 3.43 (1.59) 4.32 (1.98) 4.69 (1.79) 

Average fixation duration 
514 (224) 430 (194) 508 (195) 565 (289) 

Average number of fixations 

per putt 
6.41 (3.50) 6.38 (4.43) 6.63 (1.98) 6.14 (2.47) 

Average quiet eye duration 
1033 (708) 950 (717) 902 (478) 1068 (766) 

Putting performance 
4.40 (2.66) 5.60 (2.56) 3.50 (2.1) 5.14 (2.14) 

Note. All fixation measures are presented in milliseconds. Putting performance is the average 

number of putts made out of 10 putts randomly selected for analysis. Cognitive and somatic 

anxiety scores were measured using the cognitive and somatic subscales of the MRF-3 (Krane, 

1994), which uses 11-point Likert scales to measure anxiety levels.  

Note. Mean (M) and Standard Deviation (SD) data are reported for all dependent variables. 

 

Because both multivariate interaction effects were not statistically significant, main 

effects were considered. The multivariate main effect for time on the dependent variables was 

statistically significant with a large effect size F(1, 27) = 5.158, p = .031; Wilk’s Λ = .84; Ƞp
2 = 

.16. These findings suggest that time produced a large change in the interaction of the dependent 

variables from the pretest to posttest. The main effect for group on the grouped dependent 

variables was not statistically significant, with a moderate effect size F(1,27) = 1.559, p = .223; 
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Ƞp
2 = .055. While the moderate effect size of group on the grouped dependent variables 

explained some of the variance between groups, these findings could have been random because 

they were not statistically significant. 

Because a significant multivariate main effect for time on the grouped dependent 

variables was found, post hoc testing was completed by performing six separate mixed ANOVAs 

for each variable to test for the effects of time (pre, post) and group (DB, control). For somatic 

anxiety, an interaction effect for time and group was not statistically significant with a small 

effect size F(1, 27) = .377, p = .544; Wilk’s Λ = .986; Ƞp
2 = .014. The univariate main effect for 

time on somatic anxiety was not statistically significant with a small effect size F(1, 27) = .410, p 

= .527; Wilk’s Λ = .985; Ƞp
2 = .015. The univariate main effect for group on somatic anxiety was 

statistically significant with a large effect size indicating a difference in the somatic anxiety 

between the groups; the control group reported higher levels of somatic anxiety than the DB 

group F(1, 27) = 5.767, p = .023; Ƞp
2 = .176. 

 For cognitive anxiety, an interaction effect for time and group was not statistically 

significant with a small effect size F(1, 27) = .319, p = .577; Wilk’s Λ = .988; Ƞp
2 = .012. The 

univariate main effect for time on cognitive anxiety approached statistical significance with a 

large effect size, showing a possible increase in cognitive anxiety for both groups from pretest to 

posttest putting blocks F(1, 27) = .421, p = .05; Wilk’s Λ = .865; Ƞp
2 = .135. The univariate main 

effect for group on cognitive anxiety was statistically significant with a large effect size, 

indicating a difference in the cognitive anxiety between the groups; the control group reported 

higher levels of cognitive anxiety than the DB group F(1, 27) = 5.662, p = .025; Ƞp
2 = .173.  

 For average fixation duration, an interaction effect was not statistically significant, but 

had a large effect size, indicating a possible interaction of time and group on fixation duration 
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F(1, 27) = 3.143, p = .088; Wilk’s Λ = .896; Ƞp
2 = .104. Because the findings were not 

significant, the large effect size found could have been due to chance. During the pretest, the 

groups appear to have had similar average fixation durations. Trends in the data show the control 

group’s average fixation duration increased while the DB group’s average fixation duration 

decreased. However, the univariate main effect for time on average fixation duration was not 

statistically significant with a small effect size F(1, 27) = .115, p = .737; Wilk’s Λ = .996; Ƞp
2 = 

.004. The univariate main effect for group on average fixation duration was not statistically 

significant with a small effect size F(1, 27) = .743, p = .396; Ƞp
2 = .027. 

For the average number of fixations per putt, an interaction effect was not statistically 

significant with a small effect size F(1, 27) = .206, p = .654; Wilk’s Λ = .992; Ƞp
2 = .008. The 

univariate main effect for time on the average number of fixations per putt was not statistically 

significant with a small effect size F(1, 27) = .256, p = .617; Wilk’s Λ = .991; Ƞp
2 = .009. The 

univariate main effect for group on the average number of fixations per putt was also not 

statistically significant with a small effect size F(1, 27) = .000, p = .995; Ƞp
2 = .000. 

For average quiet eye duration, an interaction effect was not statistically significant with 

a moderate effect size, indicating a possible interaction effects of the independent variables on 

quiet eye duration F(1, 27) = 1.737, p = .199; Wilk’s Λ = .940; Ƞp
2 = .06. Trends in the data 

indicated that the DB group’s average quiet eye duration decreased from pretest to posttest, 

while the control group’s average quiet eye duration increased from pretest to posttest. These 

trends could be explained by chance due to the findings being not statistically significant. The 

univariate main effect for time on average quiet eye duration was not statistically significant with 

a small effect size F(1, 27) = .189, p = .667; Wilk’s Λ = .993; Ƞp
2 = .007. The univariate main 
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effect for group on average quiet eye duration was not statistically significant with a small effect 

size F(1, 27) = .001, p = .979; Ƞp
2 = .000. 

For putting performance, an interaction effect was not statistically significant F(1, 27) = 

.13, p = .722; Wilk’s Λ = .995; Ƞp
2 = .005. The univariate main effect for time on putting 

performance was statistically significant with a large effect size, showing that all participants 

significantly increased their putting performance from the pretest to posttest putting blocks F(1, 

27) = 5.345, p = .029; Wilk’s Λ = .835; Ƞp
2 = .165. The univariate main effect for group on 

putting performance was not statistically significant with a small effect size F(1, 27) = 1.121, p = 

.299; Ƞp
2 = .040. 

Discussion 

 This study was novel because it was the first to test the effects of an anxiety reducing 

intervention, the diaphragmatic breath, on the anxiety, gaze efficiency, and performance of 

novice putters. A main purpose of the study was to test the effects of a diaphragmatic breath on 

anxiety. The results of the current study indicated that teaching a diaphragmatic breath 

intervention to novice populations does not quickly manage anxiety during competition, which is 

a common belief (Mason, 1980).  

To create a pressure situation, it was important that the researchers in the current study 

effectively manipulated anxiety. The anxiety manipulation would have been considered effective 

if the control group would have had statistically significant increases in somatic and cognitive 

anxiety from the pretest to the posttest. The DB group’s anxiety would not be expected to 

increase due to the possible anxiety reducing effects of the intervention. These findings would 

have resulted in statistically significant univariate interaction effects for the independent 

variables on cognitive and somatic anxiety. However, results of the study showed that both 
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groups had increased cognitive anxiety from the pretest to the posttest putting blocks that was on 

the threshold of significance with a large effect size observed, while somatic anxiety was 

unchanged. Because the p value was at the significance threshold, effect size for time on 

cognitive anxiety should be considered. The trends observed in anxiety levels from pretest to 

posttest suggest that the anxiety manipulation could have been effective at increasing 

participants’ cognitive, but not somatic anxiety. Eysenck et al. (2007) attributed high levels of 

worry to decreased processing efficiency and performance effectiveness in performance; 

therefore, the effects of the anxiety manipulation in the current study should have been sufficient 

to reduce the efficiency of the participants and possibly reduce their performance effectiveness. 

The control group showed positive trends in the efficiency of their gaze despite their anxiety 

trending upward, showing that anxiety may not have affected their efficiency. Also, both groups 

improved their performance despite increases in cognitive anxiety, suggesting the conditions of 

the study did not overload the participants’ working memory enough to decrease their 

effectiveness.  

 Lazarus and Folkman’s (1984) theory of cognitive appraisal may explain why the 

participants in the current study did not demonstrate statistically significant effects from the 

anxiety manipulations used in the study. It is possible that some of the participants’ primary 

appraisals were that the task was not important to them since they were not golfers. Also, if they 

had secondary appraisals that the situation was benign or positive, anxiety levels may not have 

been elevated. Future researchers should consider using manipulations that are more likely to be 

appraised as important and threatening by novice participants in order to induce larger increases 

in anxiety. 
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 Anecdotal evidence observed by the investigator also suggested that some participants 

were not affected by the anxiety manipulation. For example, some participants verbalized after 

completion of the study that they suspected deception was being used. A formal manipulation 

check after participant completion would have been useful in qualitatively understanding how 

the anxiety manipulation affected anxiety, and is recommended for future research. 

The diaphragmatic breath is commonly thought of as a technique that is designed to 

reduce somatic anxiety (Mason, 1980). If the anxiety manipulation would have been more 

successful at increasing participant somatic anxiety, it is possible that the anxiety reducing 

effects of a DB on somatic anxiety may have been observed. Because somatic anxiety levels 

remained low throughout the study, floor effects could have been present. Future researchers 

who examine the effects of a somatic based relaxation technique like DB should ensure that their 

manipulations specifically increase somatic anxiety. 

Confirming the null hypothesis, the diaphragmatic breath intervention did not produce 

any significant interactions between the control and DB groups’ somatic or cognitive anxiety 

over time. Ideally, the control group’s anxiety levels would have increased, confirming that the 

anxiety manipulation was successful, while the DB group’s anxiety would have decreased or 

remained similar to pretest levels to support anxiety managing effects. These results would have 

been indicated by statistically significant univariate interaction effects for the independent 

variables on the dependent variables, which were not found. There are several possible 

explanations for this finding. First, results of the study may indicate that having novice athletes 

take a diaphragmatic breath before the execution of a golf putt has little to no effect on their 

anxiety levels. Despite evidence supporting cross over effects (Tomas et al., 2009) where anxiety 

reduction techniques designed to reduce anxiety in one dimension can reduce anxiety in the other 
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(i.e., diaphragmatic breath reducing cognitive anxiety), cognitive anxiety increases approached 

significance and had a large effect size. The DB group’s somatic anxiety trended slightly upward 

from the pretest to posttest blocks, but because these findings were far from statistically 

significant, these trends have little meaning. In the current study, participants’ use of a single 

diaphragmatic breath before a putt did little to manage either dimension of anxiety. Past 

participants in studies of HRVB have had reductions in anxiety in as little as ten minutes of 

continuous breathing (Prinsloo et al., 2013). Breathing at a frequency of six breaths per minute, 

participants in Prinsloo et al.’s (2013) study would have taken approximately 60 consecutive 

diaphragmatic breaths to achieve reduced anxiety, which is similar to the number of breaths 

participants took during the practice putting blocks. Although, participants in the research by 

Prinsloo et al. (2013) were tested immediately after their practice while the participants in the 

current study came back at a later time. Therefore, participants in the current study were 

expected to achieve similar anxiety managing results with one single breath within one to three 

days after the practice session. Having participants take part in the putting task immediately after 

taking 60 DBs may have produced different results, but it should be considered that after taking 

the 100 total putts in Session 1, participants may have been fatigued during the posttest trials. 

Additionally, in studies that found that performance and anxiety were significantly 

affected by yoga breathing, the participants were experts (Telles et al., 2007). Therefore, it may 

be that novices need more than one session of training before a DB is effective at reducing their 

anxiety. Also, findings suggest that which nostril is dominant can affect performance and 

autonomic activity differently (Klein et al., 1986). Based on these past findings, it is possible that 

participants with left nostril dominance at the time of their participation would be more effective 

at putting because it is a spatial task, and they would also be more relaxed. Because nostril 
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dominance is cyclical (Klein et al., 1986), the time of day participants completed study 

procedures could have affected their performance, although random assignment in the current 

study likely helped to reduce the influence of nostril dominance on the data. In the current study, 

participants were scheduled at times that were convenient for them. In future research, 

controlling for nostril dominance by having participants come in at similar times for both 

sessions would reduce additional influences on the dependent variables outside of the 

intervention.  

Another explanation for the lack of statistically significant differences in anxiety between 

the groups at posttest could be explained by the fact that the DB group had significantly lower 

state somatic and cognitive anxiety than the control group during both the pretest and posttest 

putting blocks. It would have been ideal for comparison of the groups if both groups were similar 

in anxiety levels because differences in state anxiety levels may suggest differences in trait 

anxiety levels. This is because individuals with higher levels of trait anxiety are predisposed to 

interpret situations as threatening and respond with state anxiety (Martens et al., 1990) If the 

current study had a larger sample, the randomization procedure might have effectively created 

groups with similar anxiety levels. Martens et al. (1990), found that trait anxiety can predict 

levels of state anxiety experienced in sport, and those findings have since been confirmed 

(Hanton, Mellalieu, & Hall, 2002). As such, another strategy that could have been used to ensure 

the groups had similar levels of anxiety would have been assigning participants to groups based 

on trait anxiety levels.  

 Another main purpose of the current study was to determine if a single diaphragmatic 

breath could improve participant gaze efficiency, which was tested by looking at the univariate 

interactions of the independent variables on measures of gaze anxiety. If the intervention was 
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relaxing, it would have caused efficiency to increase in the DB group. While not statistically 

significant, the large effect size of the interaction between group and time on average fixation 

duration, and moderate effect size of the interaction between group and time for average quiet 

eye duration indicated that the gaze efficiency of participants may have been affected. Trends in 

the data showed that the DB group’s fixation duration and quiet eye duration became shorter 

while the control group’s fixation duration and quiet eye duration became longer from the pretest 

to posttest. Because these results are not statistically significant, these trends may have been due 

to chance; however, the trends found in the current study, when combined with the moderate and 

large effect sizes, suggest that introducing a diaphragmatic breathing technique to novices may 

reduce efficiency, not improve it. These results could be explained by past research findings, 

which indicate that dual tasks reduce the efficiency of anxious participants (Eysenck, 1989; 

Williams et al., 2002). Novices are more likely to use cognitive resources when executing a task 

compared to an expert, who is more likely to have fundamental skills automated (Williams & 

Krane, 2015). In the current study, putting and the DB instructions could have been considered a 

dual task for the novice participants. The instructions laid out by Lehrer et al. (2000) required the 

DB group participants to complete a list of technical steps to complete the DB, which could have 

taken up processing resources and decreased their efficiency. 

Perhaps if the instruction were simpler, the participants would not have produced 

negative trends in efficiency measures. For example, Lam, Maxwell, and Master (2009) showed 

that novice participants performed better during a basketball shooting task when taught to shoot 

using a single analogy instruction than another group that was given a list of eight explicit 

instructions to follow. Lam et al. (2009) explained that the explicit instructions in the shooting 

task decreased the participants’ processing efficiency by occupying processing resources while 
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the single analogy instruction used less processing resources, making the participants more 

efficient. It is possible that if the DB group participants in the current study had one analogy for 

deep breathing instruction, instead of a list of technical explicit breathing instructions, their gaze 

would have been more efficient.  

Another efficiency related result of the current study that is important to consider is that 

trends of the control group’s gaze efficiency suggest that their gaze efficiency slightly improved, 

though the findings were not statistically significant. These trends, when combined with 

calculations of effect size, suggest that gaze efficiency may improve naturally through practice in 

a short amount of time without technical instruction. 

Gaze efficiency is a characteristic of expert performance levels, but efficient gaze must 

be focused on task relevant cues for performance levels to be high (Mann et al., 2007). In the 

present study, participants were not instructed where to look at any point during the study 

procedures. While measuring where participants were looking was beyond the scope of this 

study, knowing where participants were looking would have provided a richer context for 

analysis. 

No statistically significant findings were found for the effects of a DB on the average 

number of fixations per putt. In order for this measure to be more meaningful, the investigator 

would need to know how long each participant took to prepare and execute the putt, or putting 

time would need to be standardized. If one group took twice as long to prepare their putts, but 

had the same amount of fixations, they may have been considered to have more efficient gaze. 

Research that individuals take longer to execute skills when in pressure situations (Nieuwenhuys 

et al., 2008), and it is possible that execution time varied widely between and within participants. 
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 The final purpose of the study was to test the effects of a DB on performance 

effectiveness. If a DB affected performance statistically significant univariate interaction effect 

would have been found for the grouped independent variables on performance. However, 

statistically significant findings were not found in the data. Golf putting performance for all 

participants in the current study similarly improved from pretest to posttest. Therefore, taking 

one deep breath before putting may not benefit novice golfers by improving their performance 

effectiveness when compared to practice alone. In line with Eysenck et al.’s (2007) theory, 

trends from the current study suggest efficiency was affected more than performance 

effectiveness, even though decreased efficiency is better explained by the task and not anxiety 

levels in the current study. Putting may not occupy enough of the processing resources of the 

central executive, even in novices where the putt is not automated (Williams & Krane, 2015), for 

efficiency to be reduced to levels that would affect performance. The suspected low demands of 

the task on the central executive and the effect of the anxiety manipulation being not statistically 

significant may have allowed for the participants to improve their effectiveness from pretest to 

posttest. It is possible that the non-statistically significant trends in efficiency and moderate to 

large effect sizes of the interaction could indicate that a DB intervention may affect novice 

participants’ effectiveness when competing in a highly threatening situation or during a task that 

places large demands on the working memory system.  

Limitations 

 There were limitations in the present study. For example, the findings of the present study 

could have been affected by participants engaging in other psychological skills (e.g., self-talk) 

during the putting task. Participants were not asked after the study about the possible use of these 

skills. The investigator did observe some participants using motivational self-talk during the 
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study. Participants in the control group were observed sighing and taking deep breaths before 

some of their putts. Because of the observation of psychological skills being used by the 

participants, asking participants about what skills they may have used would have helped to 

determine if use of such skills added variability to the participants’ data.  

The level of effort given by participants to perform well and execute the diaphragmatic 

breath could have varied. The level of effort put forth by an individual is a key factor in 

determining processing efficiency (Eysenck et al., 2007). Also, previous studies have found that 

participants manipulate their effort levels under anxiety inducing conditions (Calvo, 1985, Calvo 

et al., 1996; Di Bartolo, et al., 1997; Eysenck, 1985; Hadwin et al., 2005; Smith, et al., 2001). 

Because participant effort was not measured, it could have been an extraneous variable that 

added statistical noise in the data.  

The differences between the groups’ levels of pretest state anxiety makes comparisons 

between groups difficult. Randomization was used for the purpose of limiting differences 

between and within groups, but the statistically significant effects of group on univariate anxiety 

measures showed the groups’ anxiety levels were not equal, and therefore, less comparable.  

Knowing how believable and effective the anxiety manipulation was would have 

provided useful insight into the study. A limitation of the present study is that a manipulation 

check was not used. Some participants verbalized after they were debriefed that they suspected 

manipulation was being used because they had learned about research deception in their 

university courses. A manipulation check after the debrief would have provided qualitative 

evidence for the effectiveness of the manipulation. 

The external validity of the findings is limited by the setting the protocol was conducted 

in, participants wearing eye tracking equipment during the testing, and the population recruited. 
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Golf competitions are typically conduced in and outside setting with other competitors, while the 

current task was conducted in a lab setting where the suspected competitors were not present 

during the putting. These situations put different demands on individuals, and demands of the 

situation determine stress and contribute to anxiety (Lazarus & Folkman, 1984). The gaze 

tracking glasses also restricted participant movement because of the chords that connected the 

glasses to the computer, which are not present in real life. 

Finally, a velocity based fixation filter was used to classify fixations, which is not as 

accurate as dispersion-based methods for defining fixations that are commonly used (Salvucci & 

Goldberg, 2000). Because velocity based filters are less robust than dispersion filters, it is 

possible that some gaze data that a dispersion based filter would have defined as a fixation was 

divided into multiple fixations in the current study. Also, gaze data that would have been divided 

into multiple fixations using a dispersion based filter may have been grouped into a single 

fixation in the current study if eye movements meet a certain velocity but stay fixated in a 

specific area. These differences could may have caused over or under estimation of average 

fixation duration and the number of fixations per putt. 

Summary 

The purpose of the current study was to determine if a commonly used intervention in the 

field of applied sport psychology, a DB, is effective in decreasing anxiety, increasing gaze 

efficiency, and improving performance. This information can be critical for sport psychology 

practitioners because diaphragmatic breathing is a common intervention used to manage athletes’ 

anxiety (Williams & Krane, 2015). Findings from the current study suggest that having novice 

golfers take a single diaphragmatic breath before putting does not appear to improve gaze 

efficiency, appears to have little effect on anxiety levels during competition, and provides no 
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extra benefit to performance effectiveness over no intervention. It may be concerning that current 

sport psychology practitioners often use diaphragmatic breathing interventions without knowing 

the short-term effects of the intervention on gaze efficiency, as there is strong evidence 

supporting that longer fixations and quiet eye are characteristic of expert performance (Mann et 

al., 2007). Therefore, instead of assisting novice athletes to manage their anxiety, sport 

psychology practitioners recommending the use of one DB could make athlete performance less 

efficient and less expert-like in their skill execution; however, more research is needed on this 

topic before definitive recommendations can be made. 
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Chapter V 

Summary, Conclusions, and Recommendations 

Summary 

 Efficient gaze patterns are characteristic of high levels of performance in sporting tasks 

(Vickers 2007). Increased anxiety in pressure situations has been shown to decrease the 

efficiency of gaze patterns (Allsop & Gray, 2014; Behan & Wilson, 2008; Vickers & Williams, 

2007; Vine et al., 2011; Vine et al., 2013; Wilson, Vine, & Wood, 2009). Research indicates that 

controlled deep breathing can reduce athlete anxiety levels and increase performance (Lagos et 

al., 2008; Lagos et al., 2011; Paul & Garg, 2012). The present study examined the effects of a 

diaphragmatic breath intervention on novice participants’ anxiety, gaze efficiency, and 

performance during a competitive putting task. 

 To test the effects of a diaphragmatic breath, 30 undergraduate students who were novice 

golfers were recruited. Participants were block randomized into control and DB groups. After 

baseline measures of dependent variables were obtained, the DB breath group was instructed to 

take a diaphragmatic breath before each putt they took based on the abdominal breathing 

instructions used in Lehrer et al. (2000) heart rate variability biofeedback manual. Anxiety was 

then manipulated for both groups and posttest putting was completed in a competitive situation. 

Conclusions 

 The effects of a diaphragmatic breath intervention on cognitive anxiety, somatic anxiety, 

average fixation duration, average fixation per putt, average quiet eye duration, and putting 

performance were tested by the present study. The null hypothesis of the study was supported by 

findings that: 
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1. There were no statistically significant multivariate interactions found for the grouped 

independent variables on the grouped dependent variables. 

2. There were no statistically significant univariate interaction effects for the independent 

variables on cognitive anxiety or somatic anxiety.  

3. There were no statistically significant univariate interaction effects of the independent 

variables on putting performance. 

4. There were no statistically significant univariate interaction effects of the independent 

variables on measures of gaze efficiency, although a moderate effect size was detected 

average quiet eye duration and a large effect size was detected for average fixation 

duration. These findings are not sufficient to reject the null hypothesis.  

Although not a statistically significant difference, trends in the data suggested that the DB 

group’s average fixation duration and average quiet eye fixation duration could have decreased 

from pretest to posttest. These trends suggest that implementing a single diaphragmatic breath 

routine for novice putting participants may have made their gaze patterns somewhat less 

efficient. Results from the present study support that a single diaphragmatic breath taken before 

the execution of a sport specific skill may not be sufficient to affect levels of anxiety and 

performance levels. Although, given that this is the first study to isolate a DB intervention, more 

research is needed before a definitive determination about the effectiveness of DB on gaze 

efficiency and anxiety can be made. 

Recommendations 

Based on the findings of the current study, several recommendations to researchers and 

applied sport psychology practitioners can be made. Anxiety reduction interventions are often 

used in situations where anxiety levels are typically elevated, making athletes less efficient. 
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Practitioners should consider if the intervention will use processing resources that are better 

allocated toward completing the task. If a psychological intervention reduces the efficiency of an 

athlete’s working memory enough, performance effectiveness may suffer.  

For novices, a single diaphragmatic breath may not be sufficient to manage anxiety and 

increase performance in competitive situations. Studies of the effects of HRVB have indicated 

immediate relaxation effects after 10 minutes of practice (Prinsloo et al., 2013), and increased 

performance and anxiety management in competitive sporting situations after practicing HRVB 

regularly for 10 weeks (Lagos et al., 2008; Lagos et al., 2013; Paul & Garg, 2012). Based on the 

current study as well as findings from previous research, 10 minute deep breathing sessions 

practiced regularly outside of competition are recommended for athletes over quickly 

implementing a single diaphragmatic breath as an intervention. Also, there is a need to test the 

effects of these longer duration deep breathing protocols on gaze efficiency; past research has 

already provided evidence that they can increase performance and manage anxiety, but none of 

these studies has monitored gaze. 

Quiet eye training has been shown to be effective at helping athletes develop efficient 

gaze patterns, which aid their performance (Harle & Vickers, 2001; Moore et al., 2012; Vine et 

al., 2011). Quiet eye training provides a direct route to improving gaze efficiency. At this time, 

quiet eye training should be considered the preferred way to improve gaze efficiency in athletes, 

although more research is needed on the possible influence of mental skills on gaze efficiency. 

The results of the current study cannot be applied to expert athletes, who are more likely 

to seek sport psychology services. Because expert athletes are more likely to have automated 

skills (Williams & Krane, 2015), implementing a DB intervention may affect their efficiency 
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differently than novices who need to use cognitive resources for the same skill. Therefore, the 

effects of a single diaphragmatic breath should be tested on experts. 

The use of a velocity based fixation filter was a limitation of the present study. 

Researchers in the future should use dispersion-based algorithms to classify fixations instead of 

the velocity based-algorithms used in the present study as dispersion-based algorithms have been 

found to be more accurate (Salvucci & Goldberg, 2000). This recommendation would make 

measures of gaze efficiency more accurate and comparable to previous research findings. 

Future researchers should also increase sample sizes or match participants based on trait 

anxiety scores to increase the chances that control and treatment groups have similar pre-test 

anxiety levels. The findings of the current study were limited by effect for group assignment on 

somatic and cognitive anxiety, with the control group having statistically significant higher 

somatic and cognitive anxiety. 

To continue, in the current study, participants were scheduled when convenient. Because 

cyclical nostril dominance can affect performance and arousal levels (Klein et al., 1986), future 

researchers should schedule participants for sessions during similar times of the day.  

The anxiety manipulation used in the current study caused cognitive anxiety to trend 

upward more than somatic anxiety, though both findings were not statistically significant. To 

ensure elevated anxiety levels, how the population will appraise an anxiety manipulation should 

be considered (Lazarus & Folkman, 1984). Future researchers should find ways to manipulate 

somatic anxiety and see if it is affected by deep breathing, which is a somatic anxiety reduction 

technique.  

Eysenck and Calvo (1992) hypothesized that worry, a cognitive symptom of anxiety, is 

the main cause of decreased efficiency. Therefore, the effects of cognitive psychological 
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interventions on gaze efficiency, like mindfulness or cognitive reframing, should be tested 

because gaze efficiency seems to be critical to successful performance (Mann et al., 2007). 

Perhaps cognitive anxiety reduction interventions could decrease worry and improve 

performance more effectively than somatic techniques. 

Finally, Lam et al. (2009) found that single analogy instructions used less processioning 

resources and made novice participants more efficient than many explicit instructions. Future 

research should compare analogy deep breathing instructions to explicit diaphragmatic breathing 

instructions to see if efficiency is less effected by the analogy instructions. 

Summary 

 Overall, the results or the current study indicate that the single DB intervention used in 

the current study did little to manage anxiety, affect gaze efficiency, or affect participants’ 

performance. Because the current study was the first to test the effects of a psychological 

intervention on gaze efficiency, there are numerous ways in which future researchers can add to 

the findings of the present study and improve the research methodology. It is important to 

professionals that research and apply sport psychology that they are aware of any added benefits 

or possible negative effects of applying commonly used psychological interventions to athletes. 

While the findings in the current study were mostly non-significant, they do provide insight into 

what may happen when a novice athlete is taught a diaphragmatic breath intervention and 

expected to apply it in a short amount of time. 
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Appendix A 

MRF-3 (Krane, 1994) 

Instructions: Please answer the following statements regarding how you felt during the previous 

putt. 

My thoughts are: 

1  2 3 4 5 6 7 8 9 10 11 

NOT-WORRIED                          WORRIED 

 

My body feels: 

1  2 3 4 5 6 7 8 9 10 11 

NOT-TENSE                      TENSE 

  



 115 

  

Appendix B 

Recruitment Flier 
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Appendix C 

Recruitment Email to Professors 

Hello Professor __________, 

 My name is Mason Nichols and I am a current Master’s student at Western in sport and 

exercise psychology. I am starting recruitment for my Master’s thesis and was wondering if I 

could recruit participants from your class/classes? I am looking for 30 male and female 

participants to take part in my golf putting study. Involvement requires participants to come to a 

lab on campus to participate in a putting task that takes two sessions to complete. While they are 

putting, participants will answer some brief questionnaires and we will measure where they are 

looking using eye tracking glasses. All participants must be novice golfers with little to no golf 

experience. 

Thank you so much for your time and consideration. If you will allow me to recruit in 

your class, please provide me with the date, time, and location of the class where I can describe 

my study to your students. The recruitment should take approximately 5 minutes of your class 

time. If you do not have time available for in class recruiting, it would be very much appreciated 

if you could share the paragraph below with your class/classes via email. Also, if you are unable 

to accommodate this request in any capacity, please let me know via email. Please also let me 

know if you have any further questions. I would be more than happy to answer them for you as 

best as possible. 

With appreciation, 

Mason B. Nichols 

(801) 722-8180 

nichol34@wwu.edu 

 

Hello Students, 

 

My name is Mason Nichols and I am looking for students to participate in research for 

my Master’s thesis. In this research, I am studying how people use their eyes while they are golf 

putting. During your participation in this study, you will complete a golf putting task while 

wearing glasses that track where you are looking. You will also answer brief questionnaires 

about how you are feeling. To participate in this study, you must be a novice golfer, meaning you 

have little to no golf experience. Also, people that have epilepsy, eye alignment issues, eye 

tracking issues, use a medical device that could be interfered with by infrared light, wear glasses, 

or have had eye surgery cannot participate because these conditions could interfere with the eye 

tracking glasses. Your participation would consist of completing two putting sessions over two 

days, taking a total of about two hours to complete. If you complete all study procedures, you 

will receive $25 compensation. If you are interested in participating please email me, Mason 

Nichols, at nichol34@wwu.edu.  
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Appendix D 

In Class Recruiting Script 

 

 Hello, my name is ____________ and I am looking for students to participate in research 

for a Master’s thesis. In this research, we are studying how people use their eyes while they are 

golf putting. During your participation in this study, you will complete a golf putting task while 

wearing glasses that track where you are looking. You will also answer brief questionnaires 

about how you are feeling. To participate in this study, you must be a novice golfer, meaning you 

have little to no golf experience. Also, people that have had eye surgery, eye alignment or eye 

tracking issues, epilepsy, use a medical device that could be interfered with by infrared light, or 

wear glasses cannot participate because we will be using eye tracking glasses to see where you 

are looking while putting, and these conditions could interfere with the glasses. Your 

participation would consist of completing two putting sessions over two days, taking a total of 

about two hours to complete. If you complete all study procedures, you will receive $25 

compensation. If you would like to participate please email Mason Nichols at 

nichol34@wwu.edu. Does anyone have any questions? Thank you so much for your time and 

help completing this research. 
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Appendix E 

 

Consent Form 

 

Purpose and Benefit: 

 Researchers in the field of sport psychology are always looking for ways to understand 

what helps people perform their best. The purpose of this research study is to better understand 

where people are looking during a competitive putting task. 

  

REGARDING MY PARTICIPATION IN THIS STUDY, I UNDERSTAND THAT: 

1) Inclusion Criteria  

a. I must be a novice golfer to participate in this study. For this study, a novice 

golfer is one that has never taken golf lessons, taken a PE golf class, played 9 

holes of golf in competitive or leisure situations, practiced golf on a driving range 

or practice green, or mini-golfed within the past year.  

b. I must be an undergraduate student at Western Washington University. 

2) Exclusion Criteria 

a. Being medically reliant on any device that could be disturbed by infrared light 

and/or infrared radiation is exclusionary.  

b. History of epilepsy or epileptic seizures is exclusionary due to flashing infrared 

lights being used by the eye tracking glasses.  

c. Mascara, long eye lashes, and/or droopy eyelids that interfere with the eye 

tracking glasses are exclusionary.  

d. Needing to wear eye glasses is exclusionary. Contact lenses are allowed. 

e. I cannot have current eye movement or eye alignment abnormalities. 

f. Having a history of eye surgery is exclusionary. 

This research study will involve completion of two sessions over the course of 2-4 days. 

Completion time will be approximately 2 hours total, over both days.   

g. Session 1 (Day 1): After signing this consent form, completion of 

exclusion/inclusion criteria, and filling out a demographics questionnaire, I will 

be fitted with eye tracking glasses that measure where I am looking. Once the 

glasses are in place I will participate in a golf putting task. During some of the 

putts, I will be asked questions about how I was feeling. Next, I will participate in 

a short golf specific task taking approximately 15 minutes. Afterward, I will 

complete more putts while wearing the eye tracking glasses. I will be allowed 

brief breaks at certain points. 

h. Sessions 2 (Day 3, ± 1 days): After being fitted with the eye tracking glasses, I 

will resume the golf putting task while being asked questions about how I felt 

during the putts and have where I am looking measured.  

3) To protect confidentiality, my eye tracking data that is collected from the glasses will be 

kept on a password-protected computer. All other paperwork containing study specific 

information will be secured in a locked filing cabinet in a locked room. 

4) If I complete all study procedures, I will receive $25 as compensation for my time and 

travel. My participation may further knowledge about how eyesight is used during 

competitive putting situations.  
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5) There are some risks that accompany this study. You may experience discomfort 

associated with competitive sport participation. The questionnaires you answer may 

cause minimal psychological discomfort. The gaze tracking equipment uses flashing 

infrared light and radiation, which occasionally causes dry irritated eyes, malfunction of 

certain medical devices, and induce seizures in those with epilepsy.  

6) Participation is voluntary and I may choose to withdraw from participating at any time 

without penalty or loss of benefits. If I withdraw my consent I will not be allowed to 

continue in the study. 

7) This research is being conducted by Mason Nichols, a Master’s student at Western 

Washington University, under the supervision of Dr. Jessyca Arthur-Cameselle. Any 

questions that I have about this study or my participation may be directed to Mason at 

nichol34@wwu.edu.  

8) A copy of this signed consent form will be provided to me, with the original copy being 

retained by the investigator.  

 

The Human Subjects Review Committee (HSRC) at Western Washington University has 

approved this study. If you have any questions about your participation or your rights as a 

research participant, you can contact the Western Washington University HSRC at (360) 650- 

3220, or Janai Symons, the Research Compliance Officer at (360) 650-3082. If during or after 

participation in this study you suffer from any adverse effects as a result of participation, please 

notify the researcher directing the study or the WWU HSRC. 

 

****************************************************************************** 

By signing below, I indicate that I have read the above description, I am 18 years of age or 

older, and I agree to participate in this study. 

 

 

Participant Signature: __________________________________Date: ________________ 

 

 

Investigator Signature: _________________________________Date: ________________ 
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Appendix F 

Participant Randomization 

Subject Number Group 

A=DB, B=C 

Initials 

1 B  

2 A  

3 B  

4 A  

5 A  

6 A  

7 B  

8 A  

9 A  

10 B  

11 A  

12 A  

13 B  

14 A  

15 B  

16 A  

17 A  

18 B  

19 A  

20 B  

21 B  

22 A  
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23 A  

24 A  

25 B  

26 B  

27 B  

28 B  

29 B  

30 B  
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Appendix G 

Demographics Form 

Demographic Information 

 

1. What is your age? 

2. What is your gender identity?        

 Male __  Female  __ Transgender __  Prefer not to answer __ 

3. What is your ethnicity? Check all that apply. 

 American Indian or Alaska Native __ 

 Asian (including Indian subcontinent and Philippines) __ 

 Black or African American (including Africa and Caribbean) __ 

 Hispanic or Latino (including Spain) __ 

 Native Hawaiian and Other Pacific Islander __ 

 White (including Middle Eastern) __ 

 Other__ 
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Appendix H 

Inclusion/Exclusion Criteria 

 

# Yes No Inclusion Criteria (If no, exclude subject) 

1.   

I must be a novice golfer to participate in this study. For this study, a novice golfer is 
one that has never taken golf lessons, taken a PE golf class, played 9 holes of golf in 
competitive or leisure situations, practiced golf on a driving range or practice green, 
or mini-golfed within the past year.  

 

2.   
I am an undergraduate student at Western Washington University. 

 Exclusion Criteria (If yes, exclude subject) 

1.   
Being medically reliant on any device that could be disturbed by infrared light and/or 
infrared radiation. 

2.   
History of epilepsy or epileptic seizures. 

3.   
Mascara, long eye lashes, and/or droopy eyelids that interfere with the eye tracking 
glasses. 

4.   
Needing to wear eye classes (contact lenses are allowed). 

5.   
Current eye movement or eye alignment abnormalities.  

6.   
History of eye surgery. 
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Appendix I 

Participant Script 

Fitting of Eye Tracking Gear 

• Only researcher will adjust equipment 

• Glasses secured as tight as possible without discomfort 

• Glasses connected to recorder, secured to clothing 

• Recorder connected to the computer 

• Warn participants about safety and to stay within tape box 

• Have participant use restroom 

Warm Up 

 I will now have you take 20 warm putts to familiarize yourself with the task. Please try 

your best to putt the ball into the center hole (What hole will you be putting to, please point at it). 

I will be recording a “make” if your ball goes into the center hole and a “miss” if you miss the 

hole or hit the ball into any of the other holes on the matt. I will keep track of if you “make” or 

“miss” every putt throughout the study. 

When putting, make sure to look through the glasses and not under or to the side of the 

lens. I will place the ball on the starting marker before each putt and get the ball after you putt it. 

Remember to stay in the tape box and be careful not to trip over the cords or your surroundings. 

 Each putt will start when you place the putter behind the ball and end after you complete 

the putt. Do not place the putter behind the ball until you are ready to prepare and execute your 

putt. Once you put the putter behind the ball it is important that you try your hardest to make the 

putt. Remember, performing your best is more important than speeding through the study.  

Pretest 

 Now that you are familiar with the task, you will complete 20 putts where I will track 

where you are looking. I will place the ball on the starting marker, then you can putt whenever 

you are ready. Remember, each putting trial will start when you place the putter behind the ball 

and end after you complete the putt. I will start measuring where you are looking after you place 

the putter behind the ball. Do not place the putter behind the ball until you are ready to try your 

hardest to prepare and execute your putt. Take your time and do not rush the process, but also do 

not overthink it. The goal is to make as many putts as you can. 

After each putt, I will have you fill out a very brief questionnaire.  

It is important that you try your hardest to putt the ball into the center hole. Remember to 

look through the glasses when putting. The lights the glasses use to track your gaze can dry out 

your eyes a bit, so it is recommended that you blink a lot between putts to keep your eyes moist.  

Before we get started will need to calibrate the glasses. When I tell you to, please look at 

the small black dot in the center of the circle and do not stop looking at the dot until I tell you to. 

Any Questions? 
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Script for questionnaire: There are no right or wrong answers to the questionnaire, so please fill 

it out as honestly as possible. To fill out the questionnaire, please circle the number that 

represents your best and most honest answer. 

Deep breath instructions 

 Before we move onto the next stage of putts, I am going to teach you a specific breathing 

technique that I am going to have you complete before each putt you take for the remainder of 

your participation. This special type of breath, called a diaphragmatic breath, is meant to be 

calming.  

A diaphragmatic breath involves you taking a breath in through your nose, deep into your 

lungs using your diaphragm, then exhaling through your mouth. Your diaphragm is a muscle 

below your lungs. The diaphragm is used to draw air into the lungs. When taking a 

diaphragmatic breath, you will inhale air through your nose for four seconds deep into the 

bottom of your lungs, filling them from bottom to top. As you inhale you will breathe in 

relaxation. Next you will exhale through your mouth for six seconds, emptying your lungs from 

the top to the bottom. As you exhale you will breathe out tension and worry. You can tell that 

you are doing a diaphragmatic breath right if your belly inflates before your chest on the inhale 

and your chest deflates before your belly on the exhale.  

I am going to have you practice breathing deep into your lungs using your diaphragm. 

Standing with your feet the same width apart as they would be when you are putting, I want you 

to put one of your hands on your chest and the other on your stomach. When you inhale through 

your nose, I want you to focus on inflating your stomach so that the hand on your belly moves 

before the hand on your chest. When you exhale, do so through your mouth like you are blowing 

out a candle and see if you can empty your lungs from the bottom down and have the hand on 

your chest move first. When you exhale, the air from your chest will move out of you first and 

your stomach will deflate last, the opposite of your inhale. Go ahead and practice inhaling 

though your nose and filling your lungs from the bottom up, then exhaling through your mouth 

like blowing out a candle and emptying your lungs from the top down. Keep your hands on your 

stomach while practicing so we can both tell if you are doing the breath right. Remember to 

breath in relaxation and breathe out any tension and worry you may have. (Give them time to 

practice, watch for the movement of the hands in the correct order.)  

Now that you have the basics of the diaphragmatic breath down, I am going to have you 

practice breathing in for 4 seconds and out for 6 seconds. It is important that you focus on the 

timing while practicing because you will be asked to recreate this timing while breathing 

throughout the study. I will count for you as you practice breathing to the rhythm of inhaling for 

4 seconds and exhaling for 6 seconds. Place your hands on your stomach so we can make sure 

you are still using the correct diaphragmatic breathing technique. Any questions? (Count for the 

participant while still watching their hands when possible).  

 Okay now that you have the technique and timing down, I am going to have you practice 

taking one single diaphragmatic breath before executing your putt. For the remainder of the 

study, I am going to have you take one deep, diaphragmatic breath before each putt. Once your 

breath is complete, you will place your putter behind the ball and execute your putt to the best of 

your ability. It is important that you place your putter behind the ball only after completing your 
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breath. The process will be: take a diaphragmatic breath by inhaling through your nose for 4 

seconds filling your lungs from the bottom to top, then exhaling through your mouth for 6 

seconds like blowing out a candle while emptying your lungs from the top down, place the putter 

behind the ball, then execute your putt. Try to make the breath as relaxing as possible. Any 

questions about the order? Remember to look through the glasses at all times. Go ahead and 

practice until we both feel comfortable with the routine. You will be asked to complete this 

process for each putt you take during the remainder of the study. 

Practice Blocks 

 Now I will have you practice putting. You will complete 3 sets of 20 putts, totaling 60 

practice putts. You will be allowed a short break between each 20 blocks of putts. You will be 

wearing the glasses while you putt, but no gaze information will be recorded. It is important that 

you do your best and try to make as many putts as possible during this practice round. I will still 

be keeping track of your makes and misses during the practice rounds.  

 DB GROUP ONLY: Before each putt please execute a diaphragmatic breath exactly as I 

just taught you. It is important that you follow the routine we practiced as closely as possible. 

Remember to inhale through your nose for four seconds, then exhale through your mouth for six 

seconds. Once you have completed your diaphragmatic breath, place your putter behind the ball 

and execute the putt. 

Warm Up Day 2 

 We will start today with 20 warm up putts while wearing the eye tracking glasses. 

Remember to stay in the taped box when you are wearing the glasses, to be careful of all cords 

and your surroundings, and to let me know if there is any discomfort so I can adjust the 

equipment. Like yesterday I will retrieve the ball for you and place it on the starting mark. 

 DB GROUP ONLY: During the warm-up putts, execute a diaphragmatic breath before 

each putt. The routine goes: inhale through your nose into your belly for four seconds, exhale 

through your mouth like you are blowing out a candle for six seconds, then place the putter 

behind the ball and execute your putt. 

Manipulation 

 We decided that to make this putting task more like a real-life, for the final part of the 

study, you will be participating in a golf putting competition against the other participants in the 

study. It is important to make this competition as real as possible. To simulate real life 

competition, all participants will have access to an online leaderboard that will include your 

name and how many putts you make in this final round. Once you complete the study, you will 

be given the password to the website to see how you did compared to everyone else. All 

participants will be able to access the website until one month after collection of study data is 

complete. I analyzed your putting performance after day one of the study. Your performance the 

first day of putting put you in the bottom 30% of participant scores. It is important that you 

improve your performance during the competition or else your data will be unusable because we 

need to compare the gaze data of your makes and misses. 
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During this competition stage, you will be answering the same brief questionnaire that 

you did at your last session after each putt. Remember, there are no right or wrong answers to the 

questionnaire. Please answer as truthfully and accurately as possible by circling the number that 

best describes you during the previous putt.  

Also, remember to blink between putts because the lights the glasses use can dry out your 

eyes. We will start with the same calibration procedure as last session. Please look at the dot in 

the middle of the circle and continue to look at it until I tell you calibration is finished. Once 

calibration is finished you may begin. Look through the glasses at all times while putting. Each 

trial will start when you put the putter behind the ball and end after completion of your putt. 

 DB GROUP ONLY: please follow diaphragmatic breath procedure for each putt that 

was taught to you last time. Inhale for 4 seconds, exhale for 6 seconds, then place the putter 

behind the ball and execute the putt. Try to make the breath as relaxing as possible. 
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Appendix J 

Debrief Script 

 Thank you for participating in my study. I wanted to take some time to tell you exactly 

what we were studying. The main purpose of this study was to test the effects a diaphragmatic 

breath has on anxiety, gaze patterns, and performance. Previous studies have found that when 

participants have increased anxiety they become more easily distracted, causing them to look at 

more places for a shorter amount of time. This distracted gaze pattern that happens when people 

become anxious is linked to less successful performance. This study’s purpose was to see if 

taking a deep breath can lower anxiety in a situation where anxiety typically is high, leading to 

less distracted gaze patterns and better performance. So, we divided all participants into two 

groups. The experimental group was trained to take a deep breath before each putt they took 

while the control group watched a video clip on the history of golf. 

 Sometimes in research, it is necessary to not always tell the participants everything about 

the study before they participate, because we don’t want that information to change the way that 

you behave or think during the study. In this study, we wanted to increase all participants’ 

anxiety, so it was necessary to tell everyone a few things that were not true. By telling you that 

your scores would be made public, that your scores in the first session placed you in the bottom 

30% of participant performances, and that you must do better if your information was to be used, 

we hoped to increase your anxiety levels. These ways of increasing anxiety are commonly used 

in other research like this study. So, I want you to be aware that we did not keep a leaderboard 

and will not post your scores anywhere for others to see. In addition, your performance is 

unrelated to whether or not we can use your data.   

 I wanted to check in with you to see if you have any questions or comments about the 

procedure or the procedure that we used. Do you have any questions for me?  

If you think of any questions about the study or want to see the final results, please contact me at 

nichol34@wwu.edu. If you have questions about your rights as a research participant in this 

experiment you may contact the Western Washington University HSRC at (360) 650- 3220, or 

Janai Symons, the Research Compliance Officer at (360) 650-3082. Sometimes after psychology 

studies, people feel upset or a bit of discomfort. I do not expect that you will, but if you do, 

please be aware that we have counseling services on campus. You can contact the Western 

Washington University Counseling Center at (360) 650-3164. 

Now that I have explained the study to you, do you agree to allow us to use the data that we 

collected from your participation in this study?  
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