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Abstract

Sedimentary rocks found in the 4.5 x 8 km Kulshan caldera of the Mount Baker volcanic field in 

the North Cascades, WA, indicate that the post-collapse basin hosted a lacustrine environment 

shortly after the initial collapse at 1.149 Ma (Hildreth, 1996). The sedimentary rocks of the 14 

Goat area in Kulshan caldera are well-preserved in 124 meters of stratigraphic exposure. Blocks 

of wall rock debris in the lower stratigraphy show instability in the caldera wall. Intermediate 

and late stages are mainly turbidites composed primarily of sediments derived from extra-caldera 

ignimbrite. From these 1 interpret the 14 Goat area of Kulshan to have been a steep and deep 

depositional basin for most of its history. Additional sedimentary structures found in Kulshan 

caldera reveal a complex environmental history. Trough cross-bedding within a well sorted 

sandstone indicates channelized flow. Clastic dikes resulted from the overburdening of wet 

sediments. Dropstones found throughout the stratigraphy indicate an active ice field. Outside the 

stratigraphic section but within the 14 Goat area oscillation ripples indicate shallow water and 

raindrop imprints show drying. Paleomagnetic analysis of 12 sites spanning the entire 

stratigraphic column failed to show that any magnetic transition was recorded in the Kulshan 

sediments. Anisotropy of magnetic susceptibility results confirm that grain settling from quiet 

water produced the most prominent magnetic fabric and confirm secondary alteration was likely 

the cause of scatter in the remanent magnetization signal. A conservative estimate for the 

duration of the lacustrine environment at Kulshan caldera is 157 ka leading to a minimum rate of 

sedimentation of 79 cm/ka. A shorter estimate suggests duration of 22 ka and rate of 

sedimentation of 560 cm/ka. The sedimentary environments of Kulshan caldera are similar to 

other calderas with post-collapse depositional records. Kulshan caldera compares favorably to 

depositional models for small calderas (less than 10 km).
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PREFACE

This thesis is written as a journal article for submission. I will be submitting a 

version of this thesis that will be edited for content, space, and figures to the Canadian 

Journal of Earth Sciences. Appendices attached to this thesis will not be included in the 

article submission.

The Data Repository for this thesis is included as an attached CD, containing 

three folders: Paleomagnetics, '^^Ar/^^Ar dating, Plagioclase composition. The 

paleomagnetic section contains AMS results, .asc files, .fit files, .bdi files, .mea files, .loc 

files, .tau files, .Inp files, intensity measurements, and the randomness survey. The 

'*®Ar/^^Ar section contains the data retrieved from the noble gas mass spectrometer by Dr. 

Tom Ullrich at the Pacific Centre for Isotopic and Geochemical Research at the 

Department of Earth and Sciences, University of British Columbia. The plagioclase 

composition contains all microprobe data collected from thin sections analyzed at the 

Washington State University GeoAnalytical lab by Dr. Scott Cornelius.
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INTRODUCTION
Kulshan caldera in the North Cascades of Washington has over 120 meters of 

well-lithified and outcropping sedimentary deposits, making it one of the few calderas 

with an exposed history of post-collapse sedimentation. The list of continental calderas 

worldwide with excellent stratigraphic records detailing the post-collapse depositional 

environment is brief: Crater Lake, Oregon USA (Nelson et al., 1994), Creede caldera, 

Colorado USA (Heinken et al., 2000; Larson and Crossey, 1996; Larson and Nelson, 

2000), Lake Atitan, Guatemala (Newhall et al., 1987), Whitehorse caldera, Oregon, 

(Rytuba et al., 1981), Laguna de Ayarza, Guatemala (Poppe et al., 1985), and Lake 

Taupo, New Zealand (Riggs et al., 2001; Smith, 1991). Each caldera represents a 

different depositional environment due to factors that include preexisting topography 

(pre-existing lakes), type of bedrock, eruption size, caldera basin shape and size, and 

post-collapse eruption frequency. This study interprets the post-collapse sedimentation 

history of the Pleistocene Kulshan caldera in the North Cascades of Washington.

Analysis of the Kulshan caldera sediment package not only provides a rare 

example of post-collapse sedimentation but also sheds some light on the debate about the 

nature and duration of the transitional field states related to paleomagnetic reversals. 

Using "’^Ar/^^Ar dating methods on known transitional lavas. Singer et al. (2005) 

determined that the paleomagnetic field instabilities (including paleomagnetic 

excursions) begin 18 ky before the onset of a complete polarity reversal. These estimates 

of duration of the transitional field period are at odds with paleomagnetic studies of deep 

sea sediments, which determined that the full reversal process takes around 7000 years 

(Clement, 2004). The results from Clement (2004) were determined using 5.8 to 10.4 cm 

of sediments. ''^Ar/^^Ar plagioclase dates from Hildreth et al. (2004) limit the age of
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Kulshan era volcanism from 1.149 ± 0.010 to 0.992 ± 0.014 Ma. Paleomagnetic results 

from Hildreth et al. (2004) show that samples from pre- and post- collapse lavas span the 

Jaramillo normal subchron. The Jaramillo normal subchron is constrained to 1.072 - 

0.988 Ma. (Gradstein et al., 2004). Caldera basins with their abundant sediment supply 

and steep ring-faulted walls should experience high rates of sedimentation, from 7 cm/ka 

to 1000 cm/ka (Nelson et al., 1994), far greater than the deep sea sediment used in the 

Clement (2004) study. In this study I test whether a paleomagnetic analysis of Kulshan 

caldera sediments could contribute to the debate about the duration of magnetic reversals.

GEOLOGIC BACKGROUND 

Location and Geographic Setting

Kulshan caldera is located on the northeast slopes of Mount Baker in the North 

Cascades of Washington (Figure 1). Kulshan caldera resulted from the largest eruption 

of the Mount Baker volcanic field. The oldest recorded eruption from the Mount Baker 

volcanic field formed Hannegan caldera 3.7 Ma (Tucker et al., 2007). After the 

Hannegan eruption the magmatic focus migrated to the southwest, and it currently resides 

beneath the active stratovolcano of Mount Baker (0.1 Ma) (Hildreth et al., 2003). 

Geologic Setting

Kulshan caldera is one of only three Quaternary calderas located along the 1100 

km Cascade volcanic range (Hildreth, 1996; Hildreth et al., 2004). Kulshan caldera is 

located at the junction of the North Cascades metamorphic complex, the Pliocene Lake 

Ann granodiorite pluton, and the late Pleistocene and Holocene andesitic Mount Baker 

edifice. The rim of Kulshan caldera is constructed of three pre-existing rock types
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(Figure 1). The northern and western rim is Jurassic-Cretaceous Nooksack argillite, 

conglomerate, and sandstone. The southern and northeastern rims are Paleozoic 

Chilliwack metasedimentary and metavolcanic rocks (Figure 1). The eastern rim of 

Kulshan caldera cuts a small portion of Pliocene Lake Ann granodiorite (Hildreth, 1996).

Kulshan caldera is most easily recognized by the rhyodacite ignimbrite, which 

represents the initial fill of the caldera. The ignimbrite is upwards of 1000 m thick. Post­

collapse lavas relevant to the sedimentary environment at Kulshan caldera are; rhyodacite 

Oreamnos Dome (1.127 ± 0.012 Ma), Ptarmigan Dome (1.013 ± 0.009 Ma), rhyodacite 

Corax Dome (1.111 ± 0.012 Ma), rhyodacite of Lasciocarpa ridge (undated) and 

rhyodacite of Camp Kiser (0.992 ± 0.014 Ma) (Hildreth et al. 2004).

The lacustrine deposits discussed here are found in two zones off the southeast 

slopes of Mount Baker (Figure 2). The northernmost is in the Wells Creek area. The 

sedimentary unit of the Wells Creek area sits on rhyodacite ignimbrite from the initial 

Kulshan eruption and is surrounded by several post-collapse lavas. The 1.008 ± 0.008 

Ma (post-collapse) (Hildreth et al., 2004) rhyodacite of Ptarmigan ridge separates the 

Wells Creek sedimentary units from the southern portion of the study area referred to as 

the 14 Goat area (Figure 2). The sedimentary unit of the 14 Goat area is located between 

the rhyodacite Oreamnos Dome (1.127 ± 0.012 Ma) (Hildreth et al., 2004) and Paleozoic 

Chilliwack metasedimentary rim rock (Figure 3). Though the lacustrine rocks are 

presently located in two separate areas, I presume these areas are remnants of what was 

originally a single basin.
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121° 42.5'12r45'

Figure 2. The orange areas represent the sedimentary units of Kulshan caldera. The northern 
most unit is referred to as the Wells Creek area. The southern most unit is referred to as the 14 
Goat area (The name comes from the lake, the lake is officially unnamed but the locals call it 14 
Goat lake). The rocks in the Wells Creek area are too hydrothermally altered; therefore, this 
study focuses on the rocks of the 14 Goat area, (modified from Hildreth, 1996)
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Figure 3. Cross section view of the 14 Goat area. The lacustrine sedimentary rocks sit on 
breccia from wall rock and ignimbrite. The sedimentary rocks lie on the slopes of Oreamnos 
dome, (modified from Hildreth, 1996)

Previous Work

Kulshan Caldera

Hildreth (1996) described the Kulshan sediments as ash-dominated muds, wall 

rock clasts, and breccia. Hildreth (1996) observed no evidence of fluvial channels, 

deltas, beaches, or ice contact. He noted that the unit shows evidence of ripples and 

bedding but no signs of mudcracks, fluvial processes, or pro-glacial processes are found. 

He indicated the general dip of the strata is 10 - 20° towards the center of the caldera. 

Hydrothermal alteration is found in various degrees throughout the strata, pyrite, calcite 

and clays occur in some locations.

Hildreth (1996) determined that Kulshan caldera was formed by a subglacial 

eruption. Hildreth noted two reasons for this interpretation, irregularities in the
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ignimbrite and the nature of the Lake Tapps tephra. The ignimbrite lacks welding, has 

anomalously fine vesicularity and grades from lower layers that are pumice rich and poor 

in fines to upper layers rich in fines and poor in pumice. The Lake Tapps tephra, found 

in the lower Puget Sound region (Figure 1), was first described by Westgate et al. (1987). 

They noted thick bubble walls, low vesicularity, and vitric dust filling the vesicle walls of 

the Lake Tapps tephra as signs for a hydro-phreatomagmatic eruption. Although the 

origin was unknown to Westgate et al. (1987), Hildreth (1996) correlated the Lake Tapps 

tephra to the Kulshan eruption 1.149 ± 0.010 Ma. Both the ignimbrite and the tephra 

show signs of interaction with water, indicating the influence of more than just 

groundwater. Stratigraphy surrounding the Lake Tapps tephra (Westgate et al., 1987) 

indicates that the eruption occurred during a period of deglaciation and shortly following 

a period of glaciation in the lowlands; however, Westgate et al. (1987) indicate that, 

though the Puget Sound lowlands may have been temporarily denuded of ice, the ice caps 

of the Cascades and Olympics may have remained. Marine isotope stages also indicate 

the Kulshan eruption occurred during a warming phase (stage 35) (Gibbard and van 

Kolfschoten, 2004).

This study includes a petrographic description and stratigraphic interpretation of 

Kulshan caldera as a depositional basin. In additional to traditional field methods. 

Anisotropy of Magnetic Susceptibility (AMS) assisted in the interpretation of grain 

settling patterns. I used magnetic stratigraphy to approximate rates of sedimentation and 

the age of the lacustrine environment at Kulshan caldera.
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METHODS

Stratigraphy and Sedimentology

Stratigraphy was measured on open outcrops. The sections were selected because 

of the 120 meters of continuous stratigraphy. Two of the sections were offset along strike 

due to the heavily eroded and steep terrain, and important stratigraphic features. Samples 

for plagioclase compositions were collected at 21 meters above the stratigraphic base, 30 

meters, 88 meters and 99 meters. Compositions were determined on the Cameca 

Automated Electron Microprobe at the Washington State University GeoAnalytical 

Laboratory. Plagioclase crystals were randomly sampled to negate any compositional 

zoning differences.

Magnetic Stratigraphy

Seventy six coherent field-oriented samples from 15 different sites were collected 

from the lacustrine sediments. These blocks represent 13 stratigraphic horizons and 2 

dike related sites. The blocks were taken to the Pacific Northwest Paleomagnetics 

Laboratory (PNPL) at Western Washington University, individually cored with a 

nonmagnetic bit and marked according to PNPL standards. The cores were then cut with 

a nonmagnetic diamond saw blade into individual specimens and labeled to match 

paleomagnetic standards set by PNPL. Anisotropy of magnetic susceptibility (AMS) of 

samples was analyzed on an AGICO KLY3-S Magnetic Susceptibility Bridge. AMS 

results determine the degree and orientation of mineral fabrics in the rocks being tested. 

Analyses of the remanent magnetization were performed using standard paleomagnetic 

techniques involving step-wise thermal demagnetization. Resulting magnetizations were 

measured with a 2-G 755 Cryogenic magnetometer.
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SEDIMENTOLOGY

Lithofacies and Petrofacies

The complex interaction between subaqueous depositional processes in a volcanically 

active basin and a wide variety of volcaniclastic and nonvolcaniclastic sediments gives 

Kulshan caldera a wide range of lithofacies in the sedimentary sequence. Grains from 

Kulshan ealdera range in size from clay and silt to clasts more than a meter in diameter. 

There are four primary components to the Kulshan caldera sedimentary units: fine vitric 

ash, lithic fragments, sand-sized crystals, and pumice. The fine vitric ash is 

predominantly microscopic shards of pumice that have been winnowed to silts; some 

have been altered to clay. The fine vitric ash presents itself as shards formed from 

broken walls of vesicles in pumice (Figure 4). The term lithic fragments refers to clasts 

derived from surrounding wall rock. The lithic fragments range in size from block up to 

1.5 meters in diameter to sand and can vary in composition from metaconglomerate and 

argillite to granodiorite and blocks of welded tuff. The lithic fragments are largely 

angular to subangular. The sand, sized crystals includes angular grains of plagioclase, 

hornblende, biotite and to a small degree oxides. An analysis of plagioclase grain 

compositions indicates the primary source of plagioclase is the rhyodacite ignimbrite 

from the initial Kulshan caldera eruption 1.149 ± 0.010 Ma (Figure 5) (Appendix B). 

Finally pumice describes the pieces of reworked rhyodacite ignimbrite from the initial 

Kulshan caldera-forming eruption. The pieces of pumiee are subangular compared to 

original ignimbrite (Figure 6). As described by White et al. (2001) the factors that 

determine settling rates for pumice are density, vesicularity, and vesicle inter-

9



Figure 4. Pumice and pumice shards in a glass matrix in plain polarized light. The glassy 
matrix contains several examples of bubble Y-shards from weathered pumice. This micro­
picture is taken from a sample found 24 meters up section in a tuffaceous unit, however, similar 
matrices can be found throughout the sequence.
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An

Or

Figure 5. Plagioclase compositions from sand grains in Kulshan caldera (boxes) fit well with 
compositions from ignimbrite (grey areas and crosses indicating outliers) (Hildreth et al., 2004). 
The composition for all but five crystals fell in the andesine range (30 - 50% anorthite). The 
plagioclase crystals come from units 20 meters, 30 meters, 82 meters and 99 meters above the 
stratigraphic base. The plagioclase crystals are zoned, and sampling within the crystals was 
random.
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Figure 6. A. Close-up view of welded ignimbrite from the original Kulshan caldera eruption. 
Note the irregular pumice pieces and high angularity. The largest piece of pumice in the frame 
is 1.6 X 1.2 cm. (Hildreth, 1996). B. Pumice in fine ash as seen in Kulshan sedimentary 
sequence. Note the rounder edges compared to the original ignimbrite. This type of pumice is 
seen throughout the sedimentary sequence.

connectedness. These factors cause pumice to have erratie settling rates with normal or 

reverse grading or no grading at all.

STRATIGRAPHY AND INTERPRETATION 

Stratigraphic succession at 14 Goat area

The stratigraphy of the sedimentary rocks at Kulshan caldera can be viewed in 

one complete column (Figure 7); however for discussion purposes the stratigraphy is split 

into four sections. Section 1 (the lowest section) starts southeast of Oreamnos Dome near 

the headwaters of the southern fork of Swift Creek (Figures 1& 2). Section 1 is from 0 to 

43 m. Section 2 begins 110 m southwest along strike at 20 m with Section 1. Section 2 

is from 20 to 31 m, I repeat meters 20 to 43 due to vastly different stratigraphies.
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Stratigraphic Column of 14 Goat area Kulshan Caldera

KEY
—Sand grains 

-Lava

Layered silt/ash

-CobWe/bou Ider 
dasts

-Tuffaceous sediments 

—Laminar beds of Sand/Mud 

Drop Stones

i-Clastic dike

_ Soft sediment 
deformation

P-x—Paleomagnetic site

LikK.’icr Cnv«r 
Unkiviv>r>

Section 2

4;

Sand

Figure 7. The entire stratigraphic column is 123 meters. Sections 1 and 2 have 23 meters of 
overlap in stratigraphy. The overlap is due to significant stratigraphic differences found around 
24 meters in Section 2. Section 2 is located 110 meters southwest of Section 1. There is an 
overlap of 8 meters between Sections 3 and 4. This is due to the andesite sill that is 
discontinuous through the sequence. Section 4 is 20 meters west of Section 3.
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Section 3 continues the sedimentary record above Section 2 from 31 to 75 m. Finally 

Section 4 is 40 m west along strike with the rhythmic turbidites in Section 3 at 70 m. I 

repeat meters 70 to 75 due to vastly different lithologies. The sedimentary rocks of 

Kulshan caldera are dipping anywhere from 0° to 16° to the north and northwest. Small- 

scale post-depositional deformation has caused some of the sedimentary rocks to dip to 

the south or southeast (sections up to 4 meters). This variation in dips is inconsistent and 

there is no large-scale pattern. The strike and dip measurements imply that post-volcanic 

subsidence was not great enough in Kulshan caldera to offset small-scale deformation 

caused by regional dome emplacement (Hildreth et al., 2004).

Section 1

Section 1 is the basal deposits from 0 to 43 meters. Section 1 (Figure 8) begins 

with the deposition of a six meter thick megabreccia primarily composed of Paleozoic 

Chilliwack Formation metaconglomerate. This sequence is deposited directly on the 

Paleozoic Chilliwack Formation metaconglomerate basement/rim-rock. Unlike the 

sedimentary sequence in the Wells Creek area, which begins on Kulshan caldera 

ignimbrite, the sedimentary rocks in the 14 Goat area are deposited on a shelf of 

Chilliwack metaconglomerate. Clasts range in size from more than one meter to sand­

sized matrix. The unit is clast-supported. Sitting atop the megabreccia is a 2.5 m thick 

section of bedded, poorly indurated breccia. The contact between the megabreccia and 

the breccia is a thin bed (less than 5 cm) of sand. The clasts of the breccia are pebble to 

cobble sized and are composed of the same metaconglomerate as the megabreccia below. 

The grains in the matrix are sand. Sand makes up 35% of the unit. This section is clast 

supported.
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Figure 8 Section 1 0-43 meters
End of outcrop KEY
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Figure 8. Section 1 (0 to 43 Meters) is dominated by breccias and debris flows. Rhythmic 
turbidites are found from 13-25 meters and contain the lowest exposed tuffaceous sediments at 
17 meters. Photographs are found on the next page.
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Directly above the pebble breccia is a 5 m thick silt unit. This unit is inconsistent 

in thickness along strike. The finer grained units in Kulshan caldera tend to be less 

indurated than sandy units; therefore, these large slopes are interpreted as silt.

Sitting atop the five meters of silt, the next 14 meters on the stratigraphic column 

is a sequence of rhythmically deposited turbidites. These turbidites are the first of a 

series of turbidites that dominate the Kulshan sedimentary unit. The turbidites are found 

from 14 to 27 meters in the stratigraphic column. The rhythmites are lithic/feldspathic 

arenite that grade to silt. The sand beds are as thick as 30 cm and as thin as 3cm, and the 

silt beds are 1 to 15 cm thick. The lithic material is granule to sand sized (4 mm to 0.5 

mm in diameter) and angular. Mineral compositions from nonlithic clasts are 

predominantly plagioclase with a small trace of hornblende and oxides. Secondary 

calcite is present in small amounts (around 2%) as cement between grains. The units 

have varying lateral continuity; most can be traced for tens of meters. Bed forms are 

often well preserved. Some sand units show small-scale cross bedding and beds being 

truncated by other turbidites.

Sand and silt show soft sediment deformation in places. Around 17 meters in the 

stratigraphy is the first appearance of reworked pumice and glass (tuffaceous sediments). 

The presence of tuffaceous sediments (pumice, pumice fragments, crystals, and glass) in 

the Kulshan caldera sedimentary sequence indicates the presence of another source 

material. In this scenario the provenance change is from Nooksack metaconglomerate 

wall rock to unwelded ignimbrite. This is the only significant provenance change in 

Kulshan caldera.
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15m thick debris flow creates a near vertical wall of angular clasts of Chilliwack 

metaconglomerate. Laterally the unit spans out 115 meters. Clasts grade finer both 

upwards and outwards. The base of the debris flow contains boulders more than a meter 

in diameter. The larger clasts caused soft sediment deformation in strata beneath. The 

debris flow is composed of Chilliwack wall rock, though the top is covered with sand and 

silt.

Section 1 Interpretation

The sequence of sedimentary rocks at the 14 Goat area is not deposited directly on 

the ignimbrite of Kulshan caldera; therefore, the origin of the 14 Goat area must have a 

different explanation than that of the sedimentary rocks of Wells Creek area, which are 

found directly on ignimbrite. According to the geologic map of Hildreth (1996) the 

sedimentary rocks of the 14 Goat area lie around a secondary ring fault off the main 

caldera rim. My interpretation is that the 14 Goat area was created shortly after the initial 

fallout from the Kulshan caldera eruption by a fault along the rim rock creating a scallop 

shaped basin (with a metaconglomerate Chilliwack basement) on which the sedimentary 

rocks would be deposited.

The bottom six meters of megabreccia likely represents a short-lived rock fall 

event. The lack of sorting, stratification, and the instability in the caldera wall are strong 

pieces of evidence for subaerial deposition. The pebble breccia above the megabreccia 

indicates the change in environment from subaerial to subaqueous. Kulshan caldera 

developed into a stable lacustrine environment shortly after the initial collapse. For 

comparison, according to Nelson et al. (1994), Crater Lake developed maximum water 

level within 300 years after the initial collapse. This estimate was calculated with present
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day precipitation rates, lake volume, input and output rates, and caldera wall stratigraphy. 

Kulshan caldera’s short lived dry depositional record, abundant supply of water from the 

subglacial eruption and regional ice, and similar volume size to Crater Lake leads me to 

believe Kulshan had a similar filling rate (less than 300 years).

Turbidites indicate a deep and consistent depositional environment. The repeated 

layers of laminated sand and silt are similar to turbidite sequences described in other 

caldera sedimentary sequences (Nelson et al., 1994; Larson and Nelson, 1996; Poppe et 

al., 1985; Rytuba et al., 1981). Turbidites are common in steep walled lacustrine basins 

(Reading, 1996) such as those created by caldera subsidence (Larson and Crossey, 2000; 

Nelson et al., 1994). Later sections show that the steep walls created massive amounts of 

sediment gravity flows.

The introduction of tuffaceous sediments into Kulshan caldera indicates unwelded 

ignimbrite was remobilized. I propose ignimbrite was deposited outside the caldera and 

weathering broke down the ignimbrite into pumice, crystals of plagioclase and 

hornblende, and fine grained glass (Figure 4 and Figure 5). Above 17 meters in the 

stratigraphy (excluding debris flows) tuffaceous sediments comprise the greatest 

component of sedimentation. Deformation of strata is due to resurgent dome uplift and 

debris flow overburden.

The immense debris flow found above the rhythmite represents a collapse of the 

caldera rim. Though this is the largest of the debris flows in Kulshan caldera, evidence 

shows that there were several more of these collapses off the caldera rim and off the 

domes and lava flows (Hildreth, 1996).
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Section 2

Section 2 is the trough cross-bedded sandstone stratigraphy from 20 to 32 meters. 

Section 2 is located 110 meters west and along strike with Section 1. I repeat meters 20- 

32 due to vastly different lithologies.

Section 2 is composed of a trough cross-bedded feldspathic arenite (Figure 9).

The unit is very well sorted both for grain size and composition (65% plagioclase, 8% 

lithics, 5% hornblende, 5% biotite, 3% oxides, and 15% glass). Plagioclase crystals are 

angular and zoned. There are eight meters of exposed trough cross-bedded feldspathic 

arenite; a glacier covers the base of the section. A moulin in the glacier reveals another 3 

meters of cross-bedded feldspathic arenite very similar to that in the outcrop. Small 

lenses (2 to 7 cm thick and up to 30 cm long) of pumice in fine-grained glassy matrix 

(tuffaceous) are found throughout the sequence (Figure 4). These small tuffaceous zones 

cap many of the troughs.

A clastic dike cross cuts the cross-bedded feldspathic arenite. The clastic dike is about 30 

cm wide and consists of fine-grained sand to silt laterally grading towards the center of 

the dike. The silt in the dike was glass that has been altered. This dike continues up into 

Section 3 (Figure 9 D).

Section 2 Interpretation

The trough cross-bedded feldspathic arenite is a product of fluvial processes. A 

four-meter wide channel was incised into the lake sediments by a shallow stream. The 

minute amount of lithic material (compared to lower sections) indicates this stream was

20
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Figure 9. Section 2 20-32 meters
Continued on Fig. 10 KEY

-Sand grains

— Layered silt/ash

• • • j—Tuffaceous sediments

—Drop Stones

-Clastic
dike

Lava
'dike

P-x—Paieomagnetic site

Figure 9. Section 2 is dominated by a trough cross bedded feldspathic arenite from 20 to 32 
meters. Photographs are found on the next page.
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eroding ignimbrite. I interpret the cross-bedding to represent channelized flow in a 

shallow lacustrine environment. The existence of the clastic dike implies supersaturated 

sediments were weighted from above (Truswell, 1972), most likely the result of very 

rapid deposition in a seismically unstable region.

Section 3

In Section 3 turbidites are exposed between meters 50 to 75, with surficial debris 

obscuring most of the section between meters 32 and 50 (Figure 10). The debris is thick 

enough that only sandstone beds 30 cm and larger crop out. Ten meters west along strike 

from the debris covered zone turbidites appear as the dominant sequence; the units have 

planar beds (2 to 30 cm) of sand and silt. Compared to the turbidites lower in the section 

there is a greater component of tuffaceous sediment and a lesser component of sediment 

from wall rock in this section. In a few places granules and pebbles mark the base of 

turbidites. Well developed rhythmic turbidites crop out between meters 50 and 75. The 

sand beds in this section are well indurated.

Section 3 Interpretation

Section 3 is composed entirely of turbidites. The consistency of the turbidites 

suggests a stable and deep lacustrine environment. The turbidites with pebble and 

granule clasts indicate the continued instability in the caldera wall.

Section 4

Section 4 includes the stratigraphy from 68 to 123 meters (the top) (Figure 11).

At 68 meters a well indurated 2 meter thick unit of laminar beds (less than 1 mm to 10 

mm) of sand and mud (Figure 11 C) is overlain by an andesite sill. The andesite sill is 3 

to 5 meters thick and laterally terminates against the sequence of rhythmical turbidites
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Figure 10. Section 3 32-75 meters

Photo 10 E.

^ Along strike__

J 1 J with Section 4^ rti

Micropictograph 10 B.

Photo 10 D.

KEY
—Sand grains 

— Layered silt/ash

_«ba,| —Cobble/boulder 
clasts

—Tuffaceous sediments

Clastic In—

—Drop Stones

—Clast 
dike ^

__ Soft sediment
deformation

P-x—Paleomagnetic site

Micropictograph 10 A.

i Above Section 2

J "D <utAc C 1; mo(>
c: «= E

Sand

Figure 10. The lower part of Section 3 was mostly covered by debris; however, because 
turbidites found along strike, 10 meters west, from 32 to 45 meters. I speculate that these 
meters are rhythmic turbidites. Immediately above this area, at 48 meters, more turbidites 
appear. Located throughout the section small debris material and dropstones are found. 
Photographs are found on the next page.
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described above (Figure 10 E). The andesite sill is a very prominent outcrop amongst the 

sedimentary rocks. Evidence for this unit being a sill rather than a lava, include soft 

sediment deformation above and below the sill, the smooth upper contact (Figure 11 B), 

pepperites, and chilled margins (10 cm) on the upper contact of the lava. The 

prominence of the sill makes it a marker bed throughout the field area (though the 

stratigraphic elevation of the sill outside the stratigraphic section is unknown). The unit 

immediately above the andesite sill consists of repeated beds of sand and mud, identical 

to the unit below the sill. The laminar beds found within 1.5 meters of the sill are the 

most indurated sedimentary units found in Kulshan caldera. Sedimentary rocks found 

within 2 meters of the top of the sill have taken on a green tint; however, thin sections do 

not show alteration of the grains or matrix.

In addition to the andesite sill, an andesite dike passes within 20 meters of the sill 

and cross cuts a significant portion of the stratigraphic section (at least meters 20 to 77). 

The dike appears to continue to Oreamnos Dome. Thin sections of the dike and sill show 

they have very similar compositions. Sedimentary rocks found within 1 meter of the dike 

tend to be very well indurated.

Two meters above the lava sill, the units continue with repeated turbidite 

sequences. These turbidites differ from lower turbidites in that they lack induration and 

include a greater component of tuffaceous sediment (20% to 50% pumice in sections). 

Pumice in the tuffaceous beds have normal grading as well as reverse grading, this 

pattern is caused by variability in pumice size, density, vesicularity, and vesicle 

interconnectedness (White et al., 2001). Outcrops in this area break easily and are very 

difficult to sample. Soft sediment deformation is abundant through this section. This
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Figure 11. Section 4 68-123 meters
end of column

120—

Micropictograph 11 H.
Photo HE.

KEY
—Sand grains

— Lava

— Layered silt/ash

—Cobble/boulder 
clasts

—Tuffaceous sediments

—Laminar beds of Sand/Mud 

— Drop Stones 

1 —Clastic dike

P-x—Paleomagnetic site

Soft sediment 
deformation

Sand

Micropictograph 11 F.

H.

Sand
Photomicrograph 11 B. 
Photon A.

»
U U)

45 meters west of Section 3 
along strike at 68 meters

= c E

Sand

Figure 11. Section 4 has three significant features; rhythmites found around the andesite sill, 
the andesite sill and continued rhythmic turbidites. Photographs are found on the next page.
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sequence has several (5 to 6) interconnecting clastic dikes. The clastic dikes contain fine 

grained sand and mud which show some alteration to clay minerals. The clastic dikes 

have sand grading to mud laterally towards the center. The dikes are up to 20 cm wide 

and intertwine throughout an area at least 40 by 40 meters.

This section also has dropstones. These stones occur throughout the stratigraphic 

column, though they are not as prominent in lower sections. The dropstones are as large 

as three meters across and as small as 30 cm (the average diameter is less than a meter). 

The dropstones are most often composed of Chilliwack metaconglomerate, though 

Nooksack argillite, welded tuff. Lake Ann diorite, and a few other of questionable nature 

are present as well. The dropstones in Section 4 are accompanied by deformed 

underlying strata (Figure 11 F). The lack of visible substrata deformation associated with 

dropstones lower in the stratigraphie column is due to the of exposure.

Section 4 Interpretation

The settling patterns of reworked pumice is difficult to interpret because pumice 

density varies due to vesicularity and vesicular interconnectedness (White et al., 2000). 

The dropstones indicate an active ice field. Most of the dropstones are composed of 

Chilliwack metaconglomerate. Dropstones composed of Lake Ann stock were 

transported over 5 km and argillite from the Nooksack formation came from over 2 km 

away. The lack of evidence for a secondary explosive eruption (Hildreth, 1996) and the 

proximity of Lake Anne stock grandodiorite leaves me to believe that these stones were 

carried and deposited by ice and not as ballistics.

The clastic dikes found in this section along with the clastic dike found at the base 

are likely the result of rapid deposition and overburden (sediments, lava or glaciers)
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(Truswell, 1972). Overloaded (likely by other sediments lava and glaciers) and saturated 

sediments were forced into small cracks and filled from the bottom up.

Additional sedimentary structures

Additional sedimentary structures occur with in the 14 Goat area but outside the 

measured section. Near the southern caldera rim is a small section of mudstone 

containing oscillation ripples and rain drop imprints (Figure 12), this is evidence of a 

shallow depositional environments. The only shallow environment indicated by the 

stratigraphy is the fluvial channel. The rain drop imprints and ripples marks are located 

just above the lava stratigraphically. These are found fairly high stratigraphic sequence; 

however, since they lie outside the measured stratigraphic section, their exact 

stratigraphic elevations were not determined. Fossilized grass seeds have been found in 

finely layered shale within 200 meters of the raindrop imprints (D. Tucker pers comm., 

2007). These are the only fossils that have been found in Kulshan caldera.

MAGNETIC STRATIGRAPHY

Twelve paleomagnetic sites with five to seven samples per site were collected to 

determine the rate of deposition and age of the Kulshan lacustrine environment. Natural 

remanent magnetization (NRM) results indicate there was little to no coherence of 

directions within sites. All samples were then thermally demagnetized. Thermal 

demagnetization results were used to define one to two components of magnetization. 

Vector plots showing the direction of magnetization, as samples were demagnetized, 

show well defined signal in most specimens (Figure 13). A Fisher statistical model 

(Tauxe, 1998) for each site at Kulshan caldera indicates that within-site directional scatter
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Figure 12. Raindrop imprints and ripple marks appear on the same stone. This was located 
outside the stratigraphic column of the 14 Goat lake area but still within the 14 Goat area.

is high, as indicated by the low k values (Table 1). Despite this scatter, it was apparent 

that for some sites the polarity of the geomagnetic field at the time of magnetization 

could be determined. In the second analysis of the data, we presumed that the most 

reliable remanent magnetization for stratigraphic interpretations was likely acquired early 

and represented by the high temperature magnetic components (275° - 600° C). The high 

temperature analysis showed that site Pks039 (45 m) indicated a reverse polarity, while 

sites Pks066 (72 m) and Pks099 (105 m) (Figure 14) indicated normal polarity. If site 

Pks039 (45 m) is reversed and Pks066 (72 m) is normal then the samples below the 

height of 45 m would be reversed and the samples above 72 m would be normal.
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implying that the sedimentary rocks at Kulshan caldera recorded the transition into the 

Jaramillo magnetic normal subchron. However, the remaining 9 sites showed mixed 

polarities. The wide range of directional scatter in sites Pks039 (45 m) and Pks066 (72 

m) does not convey strong reliability. Using a randomness test for paleomagnetic data 

developed by Watson (1956), all high temperature samples were randomly selected, to 

see if any of the sites could provide directions that are not random. The test was run 

twice to see if there was any grouping of nonrandom sites by elevation. The analysis 

results (Table 1) reveal that sites Pks093 (99 m), Pks058 (66 m), and Pks024 (30 m) can 

be considered nonrandom. The analysis results from the second test confirmed that all 

sites can be considered random.

Given the scatter in most of the paleomagnetic data, and the results of the 

randomness survey, I conclude there is no evidence that any transitional magnetic fields 

were recorded in Kulshan caldera sedimentary units. It is more likely that recent field 

overprints (lightning or hydrothermal alteration) created additional fields resembling 

transitional deposits.

Anisotropy of magnetic susceptibility (AMS)

The bulk susceptibility measurements of the AMS (k-bulk) (Table 2) from 

Kulshan caldera show that magnetite controls the magnetic fabric. The minimum axes of 

susceptibility (kmin) (Table 2) (Figure 15) were fit using bootstrap method confidence 

ellipses (Constable and Tauxe, 1990). Sites Pks031, Pks039, Pks058, Pks074, Pks082, 

Pks099 have tight groupings that have minimum susceptibility (kmin) ellipses vertieal to 

subvertical (kmin)- A physical characteristic associated with this type of grouping in AMS 

data is the settling of grains from quiet water. The Sites Pks009, Pks015, Pks024, Pks066
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Figure 13. Orthogonal plots showing the direction of magnetization as specimens are thermally 
demagnetized to the origin. Each plot represents one type of lithology tested during this study. 
A. is from the andesite dike; B. is tuffaceous sediment from 30 meters; C. is siitstone from 38 
meters; D. is sandstone from 116 meters. The plots show only one component of magnetization.

33



Paleomagnetic directions of high temperature phases 
in sedimentary rocks at Kulshan caldera
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Figure 14. High temperature components are plotted on equal area projections for individual 
specimen representing each sample in the site. Closed circles are downward directions, open 
circles are upward projections. High degree of scatter in the directions, and a Watson (1957) 
randomness survey led me to determine there is no transition recorded in the rocks at Kulshan 
caldera

34



and PkslOS have a small degree of striation which has implication for paleocurrent 

directions and small degrees of flow.

All but two specimens from Kulshan caldera have a Flinn-k value less than 1 

(Housen et al., 1993); therefore, AMS ellipsoids of all sites from Kulshan caldera are 

oblate. The maximum axes of susceptibilities (kmax) (Table 2) (Figure 15) are well 

grouped in sites Pks039 (southeast), Pks066 (southeast), Pks082 (east-northeast), Pks099 

(east), the remaining sites are scattered.

A closer look at all sites with quiet water AMS and their remanent magnetization 

I can determine if post-depositional slumping caused errors or if post-depositional 

alteration caused error in the paleomagnetism (Schwehr and Tauxe, 2003). 

Cryptoslumping is evident if sites with grouped K-naxhave less grouping in remanent 

magnetizations, compared to sites with poorly grouped Kmax- Though the connection can 

be hard to make because the remanent magnetizations for Kulshan caldera are greatly 

scattered, it is apparent that the closest grouped remanent magnetizations from Kulshan 

caldera (Pks039, Pks066 and Pks099) all have well grouped Kmax (Figure 16). Therefore, 

it was not cryptoslumping that caused the scatter in magnetizations, but instead post- 

depositional alteration (i.e. lightning).

AGE

Constraining the age of the lacustrine environment in Kulshan caldera is 

beneficial for detailing Kulshan history and ice sheet distribution in the North Cascades. 

Hildreth et al. (2004) determined the Kulshan caldera period of volcanism spanned the 

Jaramillo normal subchron (1.072 - .988 Ma) (Gradstein et al., 2004)). As noted in the 

magnetic stratigraphy section of this paper, the sedimentary rocks of Kulshan caldera do
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not clearly delineate the Jaramillo subchron. Hildreth et al. (2004) indicate the 

rhyodacitic lava of Camp Kiser (0.992 ±0.014 Ma), the last of the Kulshan era lavas, lies 

on top of the lacustrine sedimentary rocks. Since the Kulshan lacustrine environment is 

stratigraphically bounded by Kulshan era ignimbrite and lavas, sedimentation is limited 

from 1.149 ± 0.010 to 0.992 ± 0.014 Ma. The lacustrine environment of Kulshan caldera 

lasted no longer than 157 ka, with a minimum rate of deposition of 79 cm/ka. Arguments 

could be made for shorter duration estimate if one assumes that Oreamnos Dome (1.127 

± 0.012 Ma) (Hildreth et al., 2004) erupted after most of the sediments accumulated. 

Because there is no direct evidence of debris flows or dropstones from Oreamnos Dome, 

it is possible to suggest that the lacustrine environment ended before Oreamnos Dome 

erupted. This estimate suggests the duration of the lacustrine environment at 22 ka and a 

rate of sedimentation of 560 cm/ka.

DISCUSSION

Though the number of calderas found in the Cascade volcanic range during the 

Quaternary is anomalously low compared to other continental arcs of similar range and 

composition, at least three calderas preserve post-collapse sedimentary records. Crater 

Lake, OR, Hannegan caldera, WA (Tucker et al., 2007), and Kulshan caldera all have 

some record of lacustrine sediments. Of the three, Kulshan caldera has the best detailed 

stratigraphy and sedimentology. Though Crater Lake has had several studies conducted 

on the sediments only 150 cm of core have been recovered and studied.

The eruption of Kulshan caldera is similar to the record of Crater Lake: both are 

located in the Cascade volcanic range, both ejected about 55 km^ of ignimbrite from 

smalt sized calderas (Kulshan; 4.5 x 8 km and Crater Lake: 8x10 km), and both basins

36



T
ab

le
 1.

 Pa
le

om
ag

ne
tic

 D
at

a a
nd

 R
an

do
m

ne
ss

 su
rv

ey

R
A

N
D

O
M

TE
ST

 O
N

E
R

A
N

D
O

M
R

A
N

D
O

M

R
A

N
D

O
M

 i
R

A
N

D
O

M
R

A
N

D
O

M

R
A

N
D

O
M

R
A

N
D

O
M

FA
IL

TE
ST

 T
W

O
FA

IL
1

R
A

N
D

O
M

R
A

N
D

O
M

R
A

N
D

O
M

R
A

N
D

O
M

R
A

N
D

O
M

R
A

N
D

O
M

R
A

N
D

O
M

R
A

N
D

O
M

R
A

N
D

O
M

R
A

N
D

O
M

1.
29

22
4.

38
31

6.
81

56
6.

90
41

6.
47

12
7.

63
61

10
.6

94
6 89198

10
.7

70
9

12
.3

45
7

12
.0

84
5

FA
IL

FA
IL

1.
79

26
1.

60
85

3.
65

73
2.

81
46

4.
11

43 r-CO
VO 5.

38
74

4.
89

91
7.

38
37

11
.4

67
3

11
.4

66
8

</> A A V A A A V A A V V A A A A A A A A A V A

R
o

3.
60

9
5.

10
4

6.
25

1
7.

21
8

8.
07

8.
84

9.
68

4
10

.3
35

10
.8

27
11

.1
82

11
.6

39
FA

IL

FA
IL

3.
60

9
4.

56
5

5.
59

1
6.

65
5

7.
74

8.
54

9.
27

2
9.

94
9 OO

to

o 11
.1

82
11

.7
5

8990 oo
00

1691 1.
04

1
0.

59
4

0.
53

9
0.

78
2

0.
87

5
0.

20
1

0.
33

5
FA

IL
FA

IL

FA
IL

FA
IL

0.
33

5
0.

20
1

0.
87

5
0.

78
2

0.
53

9
0.

59
4

j

1.
04

1
1.

69
1

OO
00

8990

o 20 25 30 36 45 48 52 to OO <N 23 28 33 38 43 48 CO
to

Sa
m

pl
es

trj in to to to to VO to m to VO to to to to to to to

E
le

va
tio

n

11
6 m B

o 99
 m

88
 m s

o90 72
 m

66
 m

45
 m

38
 m

30
 m

21
 m

15
m

15
m

21
 m

30
 m

38
 m

45
 m

66
 m

72
 m

80
 m

88
 m

99
 m

10
5 m

11
6 m

Si
te

 N
am

e

Pk
sll

O
Pk

s0
99

Pk
s0

93
Pk

s0
82

Pk
s0

74
Pk

s0
66

Pk
s0

58
Pk

s0
39

Pk
s0

31
Pk

s0
24

Pk
sO

lS
Pk

s0
09

Pk
s0

09
Pk

s0
15

Pk
s0

24
Pk

s0
31

Pk
s0

39
Pk

s0
58

Pk
s0

66
Pk

s0
74

Pk
s0

82
Pk

s0
93

Pk
s0

99
Pk

sll
O



Ta
bl

e 
2.

A
M

S 
D

at
a

Li.
a> CO

CM
00 o>

T—
O)
o

o>
o

C7>
o

00
o

o CM CD
o

CM
o T“

CD CM
CM

CO
o

in
o

CM
CM

CM o
X— X—

in
o o CM X—

X—
CO
X—

CM
X—

CO
X—

in
X—

in
o

00
o

CD
O

T- r— T~ X— X— X— X— xr- X“ X— X— X—

Q.
CN
CM

CO
CM

o
CM CM r— o o o CM CO

o
CO 00

o
CM CO

CM
00
o

CD
O

CD
CM

CO CO CO oo
o

O
x~

o
CO

in
X—

CD 00
X—

1^
o

CD
p

CD
P

X— T“ T~ x-~

-I
CO
o o

CM
o

CM
o

CM
o o o o

CM
o o o T-"o T~o

o
o T—o O

in
o o

in
o o

CM
O

CM
O

CO
o

CO
O

in
o

CO
o

CM
O O

M-
O

CO
O

CM
O o

CM
O

V- V" T- •r~ T*” T-~ XT' X— '' X—

c
c

in 00 
•>[—

CO o 00 h-
o T—

T—
o>
T~

CM
T—

CM CD
o

CO 'M-
o

CD
O

in
o

in
h-

r--
X— CM

r^
o

in
CM

in CO
CD

00 CM
CM

00
CM

CD M-
CO

(D
CM CM

CM
CO

o in
CO

lZ CD o d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d

In
c M

in

CO
CD 00 55 59 78 77 84 76 oo 85 CM

00 00 79 72 CM
00

68 67 ■M*
00

1
72 43 00

CO 40 70
1

54 72 00
oo 77 73 73 74 84 CO

00 84

D
ec

 M
in

42 27
3

42 'M' 34
9 00

T—
o
CM 15

0
14

7
29

1

in 20
8

21
2

o 00 35
9

57
1

13
4

13
9

13
9

13
3

32
9 CO

CM
CO 14

8 00

CM 23
2 CO

CD

8Z 65 - - 00
CO

c
E CO

CO
r^
in
oo

00
CO
CO

00
00

o>
CO
C7)

o
'sr

CO
'M'C7>

'sr
C7>

CO
CO
CD

'M-CM
CD

oo
in
CD

LO
CM
CD

in
CD

o
CO
CD

o
CD

o
00

r-.CD
CD

CO
CD
CD

in
in
00

in
CM
CD

o
CO
CD

in
CM
CD

o
CD
CD

in
•M-CD

CO
■M-00

CM
CD

M-
CD CD

o
CD

o
CD

s
CD

CD
Tj-
CD

CO
in
CD

o d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d

In
c M

ax

CD
CM CM 25 CM o CM

T~ CO LO o 00 o o
T“ in - - CD 00 37 29 47 00 CD

CO
00 CM CM

X—
CD CM in

D
ec

 M
ax

20
7

16
0

17
5

17
3

25
7

18
2 CO

00
00
CM
CM 29

3
28

9
29

7
1

21
9

33
7 CM

CO
CM 43 26

5
23

9 ■M-
CO 27

4
25

5 CD
00
CM 17

6

m

i
32

3
37 25 25

1
25

5
24

3
i

24
6

10
5 oo

'M'
CM

X
m
E o

CO
c^
o

00
CD
o

O)
CD
o

C7)
CO
o

CO
CO
o

CO
o

in
CO
o

CO
■M-
o

in
'M-
o

in
CM
o

M-
o

o
CO
o

r^
CO
o

N.
LO
O o

o
-M-
O

CO
CM
O

o
o

CM
S "M"

o
r^
M"
o

in
CO
o

■M-
'M'
o

CO
o
X—

CD
in
o

CD
m
o

CD
CD
O

x^-
CD
O

LO
CD
O

00
CM
p

CD
CM
p

CO
p

T- T— ■*“ ^— T- X— X— X- X- x~ X— X-

CO
o

CO
o

CO
o

CO
o

CO
o

CO
o

CO
o

CO
o

CO
o

CO
o

CO
o

CO
o

CO
o

CO
o

CO
o

CO
o

'M-
O

CO
o

CO
o

CO
o

CO
o

CO
o

■M-
O

CO
o

CO
o

CO
o

CO
o

CO
o

CO
o

CO
o o O

■M-
O

3
ja

UJ
CO
CO

UJ
C7)
CO

UJ
in

LU
CM

UJ
'Sj-
00

UJ
s

UJ
CO

UJ

CD

UJ

o

UJ
o
00

UJ
CO
CD

LU
CD

LU

'M'

UJ
s

UJ
LO
o

LU
ID
CD

UJ
h-
T"

UJ
CO
o

UJ
o
CM

UJ
■M-

UJ
CO
in

LU
in
CO

LU
CO

LU
CD
CN

UJ
CN
CD

UJ

CD

UJ
00
CD

LJJ
in
CO

LU
CO
X—

Ljj
O
CD

LU

CM

LU
X~

LU

CJ) CD o> <b <d CD CD CD CD CD CM X— CD CM CD x~ CM CO

c ro (0 (Q .Q ? J3 (0 Si (0 n (0 .Q (Q .Q (JS XI ra X2 0) (0 .o y (Q .a .□ o CJ} (0 SI o cp .Q o
0)
E
o
0>
a

CO

CM
1CD

oo0)
Q.

CO
1a>

oo(/)
a

in
1O)

oow
a

in
1o>

oo</>
a

T“1in

oCD
a

1in
T“
oi/>
Q.

CM
in
T“
o(A
Q.

CM
in

o(A
Q.

in
T"
o(/)
□L

in
T*
o(/>
a

in
1in

T"
ow
a

in
1in

oifi
DC
a

1CO
1in
«
a

CO
1in

oV)

a

CM
o</i
DC
a

1
CM
O
(A

DC
a

CM
1

CM
O
(/)

DC
a

CM
1

CM
O
(0

DC
a

CO
1

CM
ot/>
DC
a

:
CM
O
(/)

a

2
CM
O
(/)

DC
a

CM
O
(/)

DC
a pk

s0
24

-5 in
1

CM
O
(/)

a

CO
1

CM
o(/)
DC
a

in

CM
o(/>
DC

1
CO
o</>
DC
a

CM
1

T*CO
o
DC
a

CM
1

T”CO
o(A
DC
a

CM
1

T~CO
oCD
DC
a

CO
1

T"CO
o(/)
a

CO
1

T*CO
o(/)
DC
a

CO
1

X“
CO
o(/)
DC
a



11.
CO
CNj

III 1.
18

1.
19

1.
10 -

1.
09

1.
11

Zl-l.

00

1.
14

1.
16 CD

p

X— 1.
14

1.
20 CD CD

x~ 1.
16

1.
17 00

1.
15

1.
17

1.
16

1.
07

1.
07

1.
05 00

p 1.
08 ■M-

CM 1.
20

1.
19

1.
18

1
1.

21
1

Q.
ID
CNj

CM
CN

T—

CO
CM

CO
CM

T—

CN
X—

CM CD

X—

CD CO CD
X—

CN CD

xr*
CN

X—
CM

CD
X—

CD OO o
CN

o
CM CM

o
CN
X—

CD
p
X—

CD
p

CD
P

o O

X—

CD
CN

CD
CN CM CN

in
CN

_l P
'M'
p

■O'
p

CO
p T—p P

CM
p

CN
p

CM
p

X—
p

CM
p

CO
P

CO
P
T~

CM
P p p

CO
p

CO
p
T—

p
T”

CM
p p

N-
p

CO
p

CM
p

CO
p

X—

CO
p

CO
p

CM
P p

ID
p

ID
p

in
p

CO
p

X—

■o
o
3
C

c
o
o

CM
0)
n

h-

c
c
iZ

CO
o
o

CM
o

CM
CM
O

h-

(D

CM

CD

CO

CD

CO
CM
CD

■O'
T”
CD

O

O

CD
O
CD

CO

<D

r^
T“
o

CO
CD

to
CD

CD

O

h-
CM
CD

o
CM
d

CD
XT"d

LD
O
d

O

d

00
CM
d

CO
CM
d

CN
d

00
CM
d d

'M-CD
d

CO
d

CM
d

CD
O
d

CN
d

CD
CM
d

r^CM
d

in

d

In
c M

in

CD
00

CO
00

O
00

O
00

CO
00

CM
00

CM
h- TtOO

00
00 r--00 00

CM
00

CD
CD r--CD

CD 00 CO to LD CD o
00

CO
00

CO
00

CN
00

CO
00

CD
00

00 00 CO
00

o CD
CD

CD
CD

00
CD

D
ec

 M
in

ID
ID
CO

a>
LD

CO
O
CO

00

CM
<J>CM
CO

00
CO
CO CM

CD

CM
CO
CM

CN
00

o
CD
CO

CO
ID
CO

CO

CO
O
CO

CD
CN

CD
CD
CN

ID
XT"

o T— o
to N.ID

CD CN
CD

CN
o ID

CD
CO toCM

CN
o
o DO CD

o
X—

CD
CD

K
 m

in CNI
CD
00
CD

Z
88 0

6Z
8 0 00

CD 0.
93

5
0.

92
9

0.
94

0
0.

92
9

0.
89

2 068 0 0.
91

0 9680 0.
93

5
0.

91
0 CM

h-00
CD

CD
00
00
d

9680
9680
9680

00
00
00
d

9680 00
00
d 0.

89
4 0960

0960
996

0 0.
94

4
0.

94
2 Z980 0.

86
7 9Z80 

1

00

00
d

CD
CD
00
d

In
c M

ax

CO CO o a> CO CM CD o CN CN CN o o
T“ 1^ X—

CN
X—

h-
T“

CO
X—

- h- CO CD N- - o ID o
CN

CO
CN

X—
CN CM

D
ec

 M
ax

I

G>
ID
CM

00
CM 00

O
00

CD
CD

ooCO
CO

x~ ID
to

CD
O CO

CD
h-
o CM

ID 00
o
X—

o
CO

00
o
CN

■N"
CD

CD
CD

CN
00

00
CD

(D
CD

-M-
00
CN

ID
(D
CM

h-
CN

o
CN

CO
CM
CM

CD
00

ID
N-
CN

CD

CM

CD
h-
CN

CN
CD
CN

K
 m

ax
1

r^

o
00

p
OO
p

X— 1.
07

7
1.

03
9

1.
04

3 O
N-
p 1.

04
3 CO

CD
O

CD
p 1.

05
5

1.
06

7
1.

04
7

1.
05

6

00
P
X— 1.

07
8 00

CD
p 1.

06
6

1.
05

7
1.

06
5

1.
07

4
1.

07
7

r^
p
X— 1.

03
5 00

CO
p

O

p p

00
CO
p 1.

07
9

1.
09

4

00
p
X—

h-00
p

00
o

K
-b

ul
k

1

CO
p
UJ
o

CO
o

1LU
ooCO 1.

23
E

-0
2 CN

o
UJ
o

N-O
1U)

CM
(J>
C7> 9.

57
E

-0
4

2.
86

E
-0

3
1.

39
E-

03
6.

67
E

-0
4

1.
03

E-
03

2.
69

E
-0

3
1.

98
E-

03
1.

58
E-

03
7.

58
E

-0
4

1.
10

E-
03

8.
31

 E
-0

4

o
1Ul

o

00 1.
95

E
-0

3
2.

07
E

-0
3 CO

o
UJ

CO 5.
46

E-
04

5.
42

E-
04

5.
51

 E
-0

4
1.

20
E

-0
3 CO

p
UJ
CO
CM 1.

22
E-

03
9.

61
 E

-0
4 ■M-O

1Ul
o
■M-
CD 1.

70
E-

03
2.

01
 E

-0
3 CO

o
1UJ

h-CO

CO
o
UJ
CN
00 1.

98
E-

03

CoE
ooa
(0

(01
T"CO
o(0
a

jp

CO
o(/)

. Q

lO
CO
o(/)
Q

n
in1T“CO
ov>
Q

?
<n1
CO
ow
Q

P
CD

T-coo(A
Q

n1
T"CO
o(A
a

T"
(01o>CO
o(A

. a

d>
CO
o(A
a pk

s0
39

-1
-c

pk
s0

39
-2

-a
pk

s0
39

-2
-b (01fO

fO
o(A
a pk

s0
39

-3
-b (01

O)CO
o(A
a pk

s0
39

-4
-b V

t
o>CO
o(A
a

(01in1a>CO
o(A
a

n1in1o>CO
o(A
a

01m1o>CO
o(A
a

C9■
100ino(A
a

1
100ino(A

. a pk
s0

58
-1

-c (01CM100ino(A
Q

■CM

00too(A
Q

o
CM

00mo(A
a

m
CO

t00ino<A

Q

1CO
100ino(A
a

(01
ooino(A
a

(Q1in100ino(A
a

1in100inoCA

a

01in100ino(A
JiC. a pk

s0
58

-5
-d



o> CO <J> CO CM m CO CM CD cn o CO CM CM in 00 CM CO 00 CM CO CM in cn
u. CM CM CO CM CO CN CM CM CM CM o T— O CD ■r~ X— X— CN X“ x~ T- C^) CM p p X— X—

X— T” X— XT" T~

N. CO r-- CO CO 00 00 CD 00 o CO cn CO in O o CO CO xt O cn CO CM 00 CM 1^ cn
a. CO CO CO CO CO CM CM CM CM c<y o o CM CNJ CM CN CM CM

T— T— X“ T” x~ T~

00 ID D rf CM o CM CO M- CM O CN X“ CO CO M" h- CO CO CM x~
_i o o o o o O O O O O o o o o O o o o O O o o O o o CD O O o o p p P

V” T- T- X“ T~ T” T~ T- X“ xr“ T— T-

C CO C7) CM CM O O 00 D in 00 in o in CN 00 CO CO CO 00 in CO CO xr“ CN CD o 00 CO
c CM CM T— CM CN T~ T~ CM o T— T— T— o x~ CM CM X— o o o X— CM CM X— TT CM o o

uZ d) CD o CD CD CD d d d d d d d d d d d d d d d d d O d O d d d d d d d

c
ii 00 o o 00 cn h- o o CO in cn cn in CO o M- CO in CO CO h- CO CO cn 00 00 N. CO CO
oc

00 h- h- CD h- 00 00 00 h- 00 OO 00 00 00 in 00 00 00 in 00 h- N. CD r*^ 00 h- h-

ci
CM CD ID o CO D 00 CM (N CO cn 00

83

CO CM CN CO CO X“ 82 CD CM CO CD
ID ID iO CO in cn in o cn X— CO CM CO ii> U) in cn cn

o
0)
Q

CO CO CO CO CM CO CO T~ CM CM CM CM CN CM CM CM CM CM CN x~

c CO CO cn CO OO (O in o CM N. 'M- in CM cn cn CD CO CO M- CO OO CO cn CM 00 CO X~ in 00
CM CM CM ID D CO in 00 CM CO CO (M T~' X— cn 00 CM X— OO o O in C^> CM CD OOE 00 00 00 00 00 00 00 00 OO 00 G> CD cn cn cn cn cn cn 00 00 cn 00 cn 00 O) 00 00 OO cn o> o> OO
o o CD CD CD CD d d d d d d d d d d d d d d o d d d d d d d d d d d d

In
c M

ax

cn 00 -
r-

"T” T“
o
T“ - 62 o

00 cn o in CO CO CN 30 in CO CO CM
CO
T~"

o
-

CM
CM

CN CD cn CO

D
ec

 M
ax

CM
<J> 95 10

9
10

9
11

6
34

6

20
2

1

19
5

19
7

27
3

25
2

30
5 CO

00 34
9

46 oCM 34
7 

1

35
9

27
9

cn 26 X—CD 25
7

26
2 cn

CO
CM ■xj- 48 00

00 63 CO
00 32

0
29

5

>< lO CD CO ID CO D 00 CM 00 CM cn CM o o in OO X— CM in cn CM in cn o -xj- M- cn
CM CM o cn C7) CO cn <y> T— CO CO in in h- cn 'sr CO 00 C) OO ID in ID IX)E T- X— o O o o o o O o o o o CD CD o o o o o o o o x~ o CD O o O o

T- X— T“ T— T- T- ■*“ X— X— X— X- X— X-

CO CO CO CO CO CO CO CO CO CO CM CM CM CO CO CO CO CO CO CO CM CO CO CO CO CO CO CO CO CO CO CO CO
o o o o O o o o o o O O O o o o o o o o O o o o o o o o o o o o CD

3 in LU LU LU u!j LU LU UJ LU LU LU LU LU LU LU LU UJ LU UJ UJ LU LU LU LU LU UJ UJ UJ UJ UJ LU LU LU
CO on a> ^— ^— D <J) CO 00 00 o cn CO CO CO CO T~* CO X— r-- CO 00 CO o X— u> 00

CO CM o CM CM h- T— h- h- T— T— CD o o cn CD 00 in CM <n CO o> CO CN CO u> OO CD
■D
Q) CO CO ID ID 1^ CO CO CO CM csi csi ID ID CD ID CD 00 cn 00 CO CD O)

C

c c 7 CO JQ u 7 7 (0 o 7 ip o (0 J3 cp re n u 7 re jD U jp 7 jp 7 V 7 n 7 jp
o 0> CM CM CM CO in in in T- CM CM CM CO CO CO in in in ■t T- T- CM CM CM CO CO 4 4
o E CD (D CO CO CO CO CO CO CO CO CM CM CM CM CM CM CM CM CM
CM CO CO CO CO CO CO CO CO CO CO h* h. h- h- h- fs. h- 00 00 00 00 00 00 00 00 00

0> o o o o o o o o o o o o o o o o o o o O o O o o o o o O o o o o o0> (/> (/) (/> (/} v> (A w (0 (/) </) (/> (A CA (A (A (A CA CA CA (A (A (A (A (A (A (A (A (A (A (A (A (A
w JaC

a a a a a. a a. a. a a a Q. a. a. a a a a. Q. a Q. a a a a. a. a a a a a a a. a.
H

I..



u. COCNj 1.
16 00

1.
22 COCN 1.
22

1.
14

1.
15

1.
17

1.
16

1.
19

1 2
0

1.
20

1.
20 CD

1.
17

1.
02

1.
02

1.
21

1.
04

1.
05

1.
06 1-
07

.
1.

06
1.

04
1.

05
1.

04
1.

01
1.

01
1.

01 COp 1.
03

1
1.

05
I

0. CNj to oCN •N’CN 00CN CN <J>
r~
T—

CN COCN
T—

COCN IDCN CN CDCN
X—

CDCN
T*“

COCN COCN CNO CNP CDCN CDP CDp
X—

N-P CDp
X—

00p IDP p CDp CD p
X—

P p N-p CDP

_i O
V

oo CNCD CNCD IDO
V“

UDCD
V"

IDP IDp IDP CDq IDP CDp IDP LDp CDp IDP
x~

Op OP N"p CNp OP op CNp
XT'

•X“P X—p X—p CNp OP op Op ■N"p p ■xtP

1
Ta

bl
e 2

 C
on

tin
ue

d

cc
ul

O
O

CNO
CD

O
CD

rÔ
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contain a significant sedimentation history. Nelson et al. (1994) described a model for 

post-caldera collapse and sedimentation. Phase 1 is represented by the initial collapse of 

the caldera roof, which creates the ring fault and the basin for sedimentation. Phase 2 is 

represented by subaerial deposition of ignimbrite and debris fans from caldera walls, 

which create the basin floor; wide ranging volcanism continues through this period.

Phase 3 is a period of subaqueous sedimentation of flat-lying lake turbidites and pollen- 

and diatom-rich muddy sediment eovering growing domes; this period is still rife with 

volcanism. Phase 4 is a period of continued subaqueous rapid sedimentation without 

volcanism. Kulshan caldera fits reasonably well into this model. The initial 1000 m of 

ignimbrite (Hildreth, 1996) and the bottom six meters of Kulshan sedimentary 

stratigraphy represent the subaerial eomponent after the initial ring fault collapse. After 

the subaerial rock falls, Kulshan experienced subaqueous sedimentation with varying 

amounts of volcanism (dome building, lava flows and sill and dike intrusions). The final 

stage of the model differs from the record at Kulshan caldera. Dates from Crater Lake 

indicate that volcanism subsided ca. 3 ka after the initial collapse (Bacon and Lanphere, 

2006); Kulshan caldera volcanism continued for ca. 150 ka (Hildreth et al., 2004). The 

sediments indieate Kulshan caldera experienced subaqueous sedimentation. Yet Phase 4 

(sedimentation without volcanism) is disputed by the fact that Camp Kiser lava sits atop 

the sediments, indicating Kulshan caldera never experienced the final phase.

On the basis of present day precipitation rates, known porous layers on the caldera 

rim, and no additional inputs. Bacon et al. (2002) estimated that Crater Lake had a filling 

time of 300 yrs after the initial collapse. This study proposes that Kulshan caldera had a 

similar filling rate, if not faster. A subglacial eruption, heavy precipitation (assuming
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Figure 15. Bootstrap confldence ellipses around the data points indieate the minimum 
susceptibility (circles) is close to vertical, implying quiet water settling. Wide degree of scatter 
in the maximum susceptibility (squares) for most sites also implies quiet water settling. In the 
sites where the squares are grouped NRM measurement help to determine if there was slumping 
after deposition.
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Figure 16. Comparing the well-grouped maximum susceptibilities to the grouping of NRMs can 
indicate post-depositional slumping. In Kulshan caldera, the remanent magnetizations of sites 
Pks039, Pks066 and Pks099 have three of the best groupings of all the sites; therefore, it is not 
post-depositional slumping that caused the NRM scatter but most likely lightning.
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similar rates of precipitation as today), and melting of rim glaciers during volcanism all 

indicate that Kulshan caldera likely likely filled rapidly.

Stratigraphy and sedimentology from Crater Lake were analyzed by Nelson et al. 

(1994). Cores (1.5 m) with diatomaceous and pollen rich mud were retrieved from 

submerged domes and the central platform. Geophysical surveys indicate flat-lying 

turbidites cover the deeper basins and debris fans lie as aprons near the caldera wall. The 

sedimentary units of Kulshan caldera have remarkable likeness to the geophysical results 

of Crater Lake. Units from the sedimentary sequence in the Wells Creek area are akin to 

the deposits fovmd on the central platform of Crater Lake. Carbon dates from Crater Lake 

indicate a rate of sedimentation of around 7 cm/ka (center platform) and 246-1007 cm/ka 

(near slopes). The lower limits on the rates of sedimentation at Kulshan caldera (80 

cm/ka) is an order of magnitude greater than central platforms of Crater Lake and an 

order of magnitude less than the rates of sedimentation on the debris aprons of Crater 

Lake.

Similar to Crater Lake in Oregon, the Holocene Laguna de Ayarza (4 x 6.5 km), 

Guatemala still has a lake residing within the caldera rim and sampling was done through 

nine meter cores and geophysical analysis (Poppe et al., 1985). The results were akin to 

Crater Lake results; 170 m of sediment has accumulated since the initial eruption 23 kya. 

This results in a sedimentation rate of 7 m/ka. Turbidites dominate the top nine meters 

and unfaulted flat-lying sediments are the only noticeable features from seismic surveys. 

Also, similar to Crater Lake, the cores revealed biota in the form of diatoms. Mineralogy 

of sediments show hydrothermal alteration has transformed much of the silt and fine­

grained ash to clay.
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Cores and geophysical data from the 23,100 ± 500 years B.P. 18x12 km Lake 

Atitlan, Guatemala reveal similar traits to Crater Lake (Newhall et al., 1987), types and 

rates of sedimentation depend greatly on water depth and distance from the source. 

Turbidites, rainfall seasonal varves, and deltaic deposits all are found in 9.8 m cores. 

Diatoms gastropods and plant detritus are forms of biota described in the cores. 

Estimations for the rate of sedimentation are 0.5 cm/yr. Though Lake Atitlan is 

significantly larger than Kulshan, it serves as an analogous depositional environments.

In the cases of Lake Taupo, New Zealand and Creede caldera, Colorado, size does 

matter in terms of sedimentary environment. Taupo caldera could more properly be 

described as a large lake with a volcano residing inside. Smith (1991) and Riggs et al. 

(2001) described the detailed stratigraphy and sedimentology from Taupo’s most recent 

eruption at 181 AD, indicating rafted pumice and wave-dominated shoreline deposits as 

well as stream flow into a fast-rising, followed by a fast-receding Lake Taupo. Kulshan’s 

deep basin and steep caldera walls make it a completely different basin type than Taupo. 

Basin topography is the greatest factor for determining good analogous calderas.

Creede caldera, part of the Oligocene San Juan volcanic belt of southwest 

Colorado, is a 15 x 18 km caldera with a large resurgent dome in the center and a moat of 

sedimentary rocks surrounding the dome (Larson and Nelson, 2000; Larson and Crossey, 

1996). The lithofacies of Creede caldera include ash flow tuffs, ash fallout, alluvial fans, 

breccias, lake turbidites, deltas, and laminar lake beds. Creede caldera experienced tubidite 

deposits intermixed with more debris flows consisting primarily of tuffaceous sediments 

(Heiken et al., 2000). Laminated carbonate deposits found between beds of lacustrine 

tuffaceous sediments are interpreted as precipitates from lake water. Secondary 

hydrothermal alteration has changed much of the originally deposited mineralogy. Two
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Kulshan caldera fits the model and depositional environments seen in other small 

(<10km) calderas (Crater Lake, Lake Atitlan, and Lagune de Ayarza). The most 

significant difference between Kulshan caldera and other calderas is the apparent lack of 

fossils or trace fossils.

The existence of glaciers/ice was the second biggest difference between Kulshan 

caldera and analogous calderas. Besides creating an inhospitable environment for plants 

to grow, the melting of ice into Kulshan caldera lake resulted in dropstones found 

throughout the sequence. Glaciers are a vast source of water during times of melt and 

would have added much to the water supply. Hildreth (1996) also speculates that glaciers 

carved out the northern rim of the caldera. This could have very well marked the end of 

the lacustrine environment at Kulshan caldera.

Future work around the Wells Creek basin could provide information about the 

degree of hydrothermal alteration towards the center of the caldera. Understanding 

contact relationships between sediments and post-caldera lava domes should yield tighter 

age constraints and a better picture of the depositional environments. A project looking 

at the paleomagnetic signature of the sediments of the Wells Creek area may reveal 

information about the duration of transitions and age of the lacustrine environment at 

Kulshan caldera.

features that make Creede caldera sedimentary sequence different from calderas in my

study are the presence of travertine and carbonate deposits.
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APPENDIX A

MAGNETIC STRATIGRAPHY 

Full Methods

Magnetic stratigraphy is the process of analyzing the magnetic record of samples 

collected through a stratigraphic sequence. In the most idealized magnetic stratigraphy 

project, sites within a horizon would correlate statistically and result in a magnetic 

polarity and magnetic direction and inclination. These horizons would then be stacked 

according to their stratigraphy and compared to known magnetic polarities and dates 

could then be applied. In the best-case scenario the horizons would also be selected in 

six meter intervals as to most accurately portray the magnetic record without having too 

many missing intervals.

The geology of Kulshan caldera immediately lent itself to several difficulties. 

Below is a lithological description of each horizon sampled in Kulshan caldera. 

Information from this data is the spacing interval, the medium for magnetic minerals, 

potential strength of magnetization, and coherence of cementation. The first letter 

describes its assumed age (P- Pleistocene), the second letter describes the location (k- 

Kulshan), the third letter is a description of the rock type (s- sedimentary, d- dike, 1-lava, 

nd- near dike), and if there is a fourth symbol, it describes the location in terms of 

stratigraphy (i.e. 009- 9 meters up section, add six meters (8 for pks072) for a correction 

made after sample-15 meters).
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Pkd- This is a series of five cores taken vertically from a lava dike. They were all taken 

between 24 meters and 37 meters. There is no data taken describing the lateral 

location of sampling in the dike. Cores were very solid.

Pknd- This is a series of five cores taken from a sand and tuffaceous unit less than .5 

meters from the dike. Here we hoped to see if the samples collected here have 

recorded the dike intrusion over the initial deposition. Cores were very solid.

Pks009- These cores came from a sandstone layer. The layer was found a few meters 

above the basement breccia. This rock has a significant proportion of clastic sand 

grains. The next most abundant grain is plagioclase feldspar, and thirdly hornblende. 

The matrix is mostly glassy but shades of calcite can be found filling small spaces. 

These cores had a hard cementation but broke frequently along planar laminations. 

This was chosen to be the first site because it is the first unit where predominant 

grains are clastic, and all are sand grain in size.

PksOlS- These cores come from a sandstone layer that still has high proportions of clastic 

grains but far less than Pks009; they also have higher percents of plagioclase than 

Pks009. The amoiuit of hornblende is similar to PksOlS. Cores were solid.

Pks024- These cores were taken from a tuffaceous unit. There were pumice clasts up to 

2 cm down to 1 mm. The pumice clasts were matrix supported. The matrix was glass 

and comprised significant portions of the samples. Cores were solid.

Pks031- Cores were taken from a sandstone layer. The sandstone is predominantly 

plagioclase, there are similar percentages of hornblende as previous sandstones eind 

small amounts of biotite. The matrix is glass with calcite filling cracks.
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Pks039- Core were taken from a well-lithified siltstone layer. The grains are too small to 

be classified but they appear to be mostly glass.

Pks058- Cores were taken from a well-lithified siltstone layer. The grains are too small 

to be classified but they appear to be mostly glass. The gap of 19 meters here 

between horizons was due to a large gap of rhythmites, where sand units were not 

thick enough for coring.

Pks066- Cores were taken from a sandstone layer. It is similar in composition to Pks031, 

predominantly plagioclase.

Pkl066- These cores came from an andesite lava sill.

Pks074- Cores were taken from a very well-lithified sandstone layer. This unit rests on 

top of the lava sill. It seems that alteration from the lava sill made the unit more 

coherent than the rest. Its composition is similar to the other non-clastic dominated 

sandstones. There is a green color to the cores.

PksOSO- Cores were taken from a well-lithified siltstone layer. The grains are too small 

to be classified but they appear to be mostly glass.

Pks093- Cores were taken from a sandstone layer. It is similar in composition to Pks031, 

predominantly plagioclase. Cores were solid.

Pks099- Cores were taken from a sandstone layer. It is similar in composition to Pks031, 

predominantly plagioclase. The cores are very brittle.

PksllO- Cores were taken from a sandy unti composed predominantly of plagioclase 

grains. The sand here is a small unit sitting in a larger field of gravely pumaceous 

silt. The cores are very brittle.
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The process for determining magnetic stratigraphy began by collecting oriented 

field samples. Wilderness restrictions in Kulshan caldera prevented the collections of 

samples using the conventional drilling methods. Paleomagnetic statistical models 

require 5 to 7 samples per stratigraphic horizon (or site) (Tauxe, 1998). I collected 76 

coherent oriented blocks representing 13 stratigraphic horizons (including an andesite 

sill), one andesite dike site, and one near dike site. The maximum distance between 

horizons is 15 meters and the minimum distance is six meters.

The samples were drilled with a nonmagnetic drill to obtain one core per sample. 

The cores were then marked and cut with a nonmagnetic diamond saw blade. Samples 

were marked according the standards set at the Pacific Northwest Paleomagnetic 

laboratory. Each specimen was tested for magnetic susceptibility on a Kappabridge 

KLY-3. Samples were then stored in a magnetically shielded room. Before 

demagnetization each specimen was soaked in liquid nitrogen for twenty minute intervals 

as many as two times to remove variable remanent magnetization (VRM). Two sets of 

samples were created to determine whether alternating field (AF) demagnetization or 

thermal demagnetization would give the best results for determining magnetic 

stratigraphy. The first half of the test group specimens were subjected to the alternating 

magnetic field demagnetizer and subsequently measured in the magnetometer. The 

alternating field (AF) test specimens were subjected to increasing intensities in magnetic 

fieldsof2.5, 5, 7.5, 10, 15,20,25,35,45,60,75,90, 110, 130, 155, 180, 200 mT. After 

specimens were subjected to a degree of AF, remanent magnetizations was measured 

using a 2-G 755 DC SQUID cryogenic magnetometer. The second half of the test group 

was subjected to thermal demagnetization for 20 minutes in a magnetically shielded
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custom built oven, subsequently cooled for 20 minutes, and then their renament 

magnetizations were measured at increasing temperature intervals that ran from 77 

degrees Celsius to 600 degrees Celsius.

Subsequent results from AF and thermal demagnetization were compared and 

analyzed for coherency among the two test groups. It was apparent that thermal 

demagnetization gave the specimen a smoother transition between increasing steps and 

provided a better chance at missing any potential magnetic field changes. The remaining 

specimens were demagnetized and analyzed using the thermal demagnetization 

techniques described above.

The results for both the paleomagnetic test and the AMS can be seen in the 

journal thesis. The entire set of data, plots, and tables can be found the Data Repository 

found in the back of this thesis.
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APPENDIX B

PLAGIOCLASE COMPOSITIONS

Four samples from different elevations were sent to the Geo Analytical lab at 

Washington State University. Dr. Scott Cornelius preformed the analysis looking at the 

compositions of plagioclase grains. The grains are zoned but no preference was taken 

towards a particular sampling site. I assumed random sampling of enough grains would 

negate the possible zoning effects. Table B 1 shows compositions from plagioclase at 21 

meters. Table B 2 shows compositions from plagioclase at 31 meters. Table B 3 shows 

compositions from plagioclase at 88 meters. Table B 4 shows compositions from 

plagioclase at 100 meters. Percent anorthite was calculated on an Excel document titled 

norm4. This file along with all data for the plagioclase composition can be found in the 

data repository
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APPENDIX C

PETROGRAPHY

Sample Number Locality: Rock Type:
Pks015-2

Megascopic
Description

21 meters on strat eolumn 
Kulshan caldera sedimentary 
unit

Lithic Arenite

Color Grain size Induration
Dark Gray to green
Sedimentary structures
Normal grading

Microscopic
Descriptions
Mineral percentage

Coarse to medium sand Good

Plagioclase- 45% glass/pumice/ ash Lithics- 40%
Biotite- Hornblende- 5% Calcite- 5% secondary
Oxides- 1% Glass Matrix- 5%
Textures
Rounding grain to grain relations Sorting
Angular grain supported Good sorting
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Sample Number Locality: Rock Type:
Pks024-5-b 30 meters on strat column 

Kulshan caldera sedimentary 
unit

Feldspathic wacke

Megascopic
Description
Color Grain size Induration
Blue grey with off white Mud, sand, and pumice from 

2cm-<lmm
Good

Sedimentary structures
Bedding in pumiee with 
some grading

Microscopic 
Descriptions 
Mineral percentage
Plagioclase- 20% up to 
40% in sand layers

pumice- 40% Lithics

Biotite Hornblende- 5% Calcite
Oxides- 2% Glass Matrix- 25%
Textures
Rounding grain to grain relations Sorting
Angular/ Sand Poor
Pumice subangular
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Sample Number
Pks031-3-t

Megascopic
Description
Color
Brown
Sedimentary structures
Bedding

37 meters on strat column Pumaceous wacke
Kulshan caldera sedimentary
unit

Locality: Rock Type:

Grain size 
Sand

Induration
Good

Microscopic 
Descriptions 
Mineral percentage
Plagioclase- 45% pumice- 30% Lithics- 5%
Biotite Hornblende- 5% Calcite
Oxides- 2% Glass Matrix- 15%
Textures
Rounding grain to grain relations Sorting
Angular/ in sand beds grain to grain Poor sorting
Pumice subangular
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Sample Number
Pks039-4

Megascopic
Description
Color
Brown to tan 
Sedimentary structures
Laminated bedding

45 meters on strat column Feldspathic wacke
Kulshan caldera sedimentary
unit

Locality: Rock Type:

Grain size Induration
Silt to fine sand Medium

Microscopic 
Descriptions 
Mineral percentage
Plagioclase- 35% Pumice Lithics- 5%
Biotite Hornblende- 10% Calcite
Oxides Glass Matrix- 50%
Textures
Rounding grain to grain relations Sorting
angular matrix supported Poor sorting
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Sample Number
Pks058-3

Megascopic
Description
Color
Tan
Sedimentary structures
Laminar bedding

64 meters on strat column Feldspathic wacke
Kulshan caldera sedimentary
unit

Locality: Rock Type:

Grain size Induration
Fine sand and silt Poor

Microscopic 
Descriptions 
Mineral percentage
Plagioclase- 30% pumice- 15% Lithics- 10%
Biotite Hornblende- 8% Calcite
Oxides- 3% Glass Matrix- 35%
Textures
Rounding
angular/
pumice subangular

grain to grain relations
Grain to grain supported

Sorting
Poor sorting

PPL XPL
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Megascopic
Description
Color
Brown
Sedimentary structures
Planar bedding

Sample Number
Pks066-2

Locality:
66 meters on strat column 
Kulshan caldera sedimentary 
imit

Grain size 
Medium sand

Rock Type:
Feldspathic/Lithic arenite

Induration
Good

Microscopic 
Descriptions 
Mineral percentage
Plagioclase- 50% glass/pu mice/ash Lithics- 15%
Biotite Hornblende- 25% Calcite
Oxides- 3% Glass Matrix- 5%
Textures
Rounding grain to grain relations Sorting
Angular grains Grain supported Medium sorting
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Sample Number
Pkl066-3

Megascopic 
Description 
Color 
red brown 
Structures
No crystal growth pattern

Locality:
72 meters on strat column 
Kulshan caldera sedimentary 
unit

Crystal size 
Up to 3mm

Rock Type:
Andesite Sill

Microscopic 
Descriptions 
Mineral percentage
Plagioclase- 50%++ Pumice Lithics
Biotite Hornblende- 25% Calcite
Oxides Glass Matrix- 25%
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Sample Number
Pks073-5-t

Megascopic
Description
Color
White/green/grey
Sedimentary structures
Planar bedding

80 meters on strat column Lithic wacke
Kulshan caldera sedimentary
unit

Locality: Rock Type:

Grain size Induration
Medium to coarse sand Well lithified

Microscopic 
Descriptions 
Mineral percentage
Plagioclase- 50% Pumice Lithics- 20%
Biotite Hornblende- 15% Calcite
Oxides Glass Matrix- 10%
Textures
Rounding grain to grain relations Sorting
Angular Grain supported Well sorted
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Sample Number
Pks073-5-m

Rock Type:
Andesite sand interaction

Locality:
80 meters on strat column 
Kulshan caldera sedimentary 
unit

Sedimentary Structures
This is a thin section of lava sill and sedimentary rocks interaction. Note the crystal size 
compared to Sample Pkl 66-3. There is a comparable zone of cooling found the upper 
lava of this thin section.
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Megascopic
Description
Color
Buff
Sedimentary structures
Laminar bedding

Sample Number
Pks093-4

Locality:
99 meters on strat column 
Kulshan caldera sedimentary 
unit

Grain size 
Medium sand

Rock Type:
Lithic/Feldspathic wacke

Induration
Good

Microscopic 
Descriptions 
Mineral percentage
Plagioclase- 40% Pumice- 10% Lithics- 25%
Biotite Hornblende- 10% Calcite
Oxides- 5% Glass Matrix- 10%
Textures
Rounding
Angular

grain to grain relations
Grain supported

Sorting
Good sorting

PPL XPL
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Rock Type:
Feldspathic wacke

Induration
Medium

Sedimentary structures
Laminar bedding 4 mm- 
<1 mm silt beds usually 
smaller

Microscopic 
Descriptions 
Mineral percentage

Sample Number
Pks099-3-b

Megascopic
Description
Color
tan to light brown

Locality:
105 meters on strat column 
Kulshan caldera sedimentary 
unit

Grain size
Fine grained sand to silt

Plagioclase- 35% glass/pumice/ash Lithics- 10%
Biotite Hornblende- 15% Calcite
Oxides- 3% Matrix- 35% glass
Textures
Rounding grain to grain relations Sorting
Angular Grain supported good sorting



Megascopic
Description
Color
Brown and light brown 
Sedimentary structures 
Laminated beds

Sample Number
PksllO-2-b

Locality:
116 meters on strat column 
Kulshan caldera sedimentary 
unit

Grain size 
Fine sands

Rock Type:
Feldspathic/lithic wacke

Induration
Good

Microscopic 
Descriptions 
Mineral percentage
Plagioclase- 45% pumice- 15% Lithics- 25%
Biotite Hornblende- 10% calcite
Oxides- 3% matrix
Textures
Rounding grain to grain relations Sorting
Angular Grain supported poor sorting
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Pkcd-2 20-40 meters on strat column
Kulshan caldera sedimentary 
unit

Sample Number Locality:

Megascopic
Description
Color Grain size Induration
Light brown to dark Fine sand to mud Poor
brown
Sedimentary structures
This came from a clastic dike. There are vertical beds of mud, silt, and sand. Grading 
however is not is typical flow patterns but instead, all layers are variously interspersed 
throughout the dike.

Megascopic 
Mineral percentage
Plagioclase- 45% pumice- Lithics- 20%
Biotite Hornblende- Calcite
Oxides- 5% Matrix- 35%
Textures
Rounding grain to grain relations Sorting
Angular Grain supported poor sorting

74

1



Sample Number Locality: Rock Type:
Pkd 2-t Dike is found from

21-70 meters Kulshan caldera 
sedimentary unit

Andesite dike

Megascopic
Description
Color Crystal size
red brown
Structures

Up to 2mm

Crystal growth is in the 
same direction as flow

Microscopic
Descriptions
Mineral percentage
Plagioclase- 50%++ Pumice Lithics
Biotite Hornblende- 25% Calcite
Oxides Glass Matrix- 25%
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APPENDIX D

AGE

After the failed attempt to determine the dates or rates of sedimentation of the 

lacustrine environment at Kulshan caldera using paleomagnetism, I tried dating the 

andesite sill to possibly add another constraint. The sill does not give a definitive age but 

it possibly constrain the age more than the 0.992 ± 0.014 Ma lava of Camp Kiser. I 

crushed and separated out hornblende minerals in the clean lab at the Pacific Centre for 

Isotopic and Geochemical Research at the University of British Columbia. Using the 

Laser-Equipped Noble Gas Mass Spectrometer (Micromass VG 5400), Dr. Tom Ullrich 

analyzed the '^‘^Ar/^^Ar ratio in the hornblendes in order to date the lavas.

The equation for Hornblende is Ca2(Mg,Fe,Al)5(Al, Si)8022(0H)2. '^'^Ar often 

replaces Ca2 in the equation. Samples of hornblende from the sill at Kulshan caldera 

were dated and their results (Table D 1 and Figure D 1) indicate that there was not 

enough ‘’^Ar in the hornblende to reduce the error. The sample came back with an age of 

1.02 ± .45 Ma, which is a date with an error of 45%. It is most probable to presume that 

"^^Ar likely went preferentially into plagioclase rather than hornblende (Dr. Tom Ullrich, 

pers. comm.). The shear percent of plagioclase in the sill helps to prove this 

interpretation. This is the reason plagioclase was dated in previous studies (Hildreth, 

1996; Hildreth et ah, 2004).
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Figure D 1. Plateau age for hornblende from Kulshan caldera is 1.02 ± 0.45 Ma
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APPENDIX E

Maps

Figure E 1 Map of the trail from Artist Point to 14 Goat area. It is 5 miles from the parking lot to the 
14 Goat lake. The trail is referred to as the Ptarmigan Ridge Trail and is a very easy hike through 
alpine meadows between both Mount Baker and Shuksan.
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Figure £ 2. Is a topographic map of the 14 Goat area and the locations of the section lines for the 
stratigraphic column. Additionally the star denotes the location of the raindrop imprints and 
ripplemarks. The UTM coordinates can be found in Table E 1.
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Table E 1 UTM Coordinates collected on NAD83
X (meters) Y (meters)

Section 1 bottom 593,606.202 5,407,026.057
Section 1 top 593,568.085 5,407,039.160
Section 2 bottom 593,410.852 5,406,892.647
Section 3 top 593,347.720 5,407,020.101
Section 4 bottom 593,281.015 5,406,924.808
Section 4 top 593,208.355 5,407,003.425
Raindrops and ripples 592,554.407 5,407,233.319
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