
Western Washington University Western Washington University 

Western CEDAR Western CEDAR 

WWU Graduate School Collection WWU Graduate and Undergraduate Scholarship 

2013 

Nutritional role of microalgae in the diet of first stage brachyuran Nutritional role of microalgae in the diet of first stage brachyuran 

crab larvae crab larvae 

Nicole J. (Nicole Janette) Casper 
Western Washington University 

Follow this and additional works at: https://cedar.wwu.edu/wwuet 

 Part of the Marine Biology Commons 

Recommended Citation Recommended Citation 
Casper, Nicole J. (Nicole Janette), "Nutritional role of microalgae in the diet of first stage brachyuran crab 
larvae" (2013). WWU Graduate School Collection. 267. 
https://cedar.wwu.edu/wwuet/267 

This Masters Thesis is brought to you for free and open access by the WWU Graduate and Undergraduate 
Scholarship at Western CEDAR. It has been accepted for inclusion in WWU Graduate School Collection by an 
authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Western Washington University

https://core.ac.uk/display/232703218?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://cedar.wwu.edu/
https://cedar.wwu.edu/wwuet
https://cedar.wwu.edu/grad_ugrad_schol
https://cedar.wwu.edu/wwuet?utm_source=cedar.wwu.edu%2Fwwuet%2F267&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1126?utm_source=cedar.wwu.edu%2Fwwuet%2F267&utm_medium=PDF&utm_campaign=PDFCoverPages
https://cedar.wwu.edu/wwuet/267?utm_source=cedar.wwu.edu%2Fwwuet%2F267&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:westerncedar@wwu.edu


 
 
 

NUTRITIONAL ROLE OF MICROALGAE IN THE DIET OF FIRST STAGE 
BRACHYURAN CRAB LARVAE 

 
 

By 
 

Nicole Janette Casper 
 
 
 

Accepted in Partial Completion 
Of the Requirements for the Degree 

Master of Science 
 
 
 
 
 
 

Kathleen L. Kitto, Dean of the Graduate School 
 
 
 

ADVISORY COMMITTEE 
 
 
 

Chair, Dr. Stephen D. Sulkin 
 
 
 

Dr. Brian L. Bingham 
 
 
 

Dr. Deborah A. Donovan



MASTER’S THESIS 
 

 
 
In presenting this thesis in partial fulfillment of the requirements for a master’s 
degree at Western Washington University, I grant to Western Washington 
University the non-exclusive royalty-free right to archive, reproduce, distribute, 
and display the thesis in any and all forms, including electronic format, via any 
digital library mechanisms maintained by WWU. 
 
I represent and warrant this is my original work, and does not infringe or violate 
any rights of others. I warrant that I have obtained written permissions from the 
owner of any third party copyrighted material included in these files.  
 
I acknowledge that I retain ownership rights to the copyright of this work, 
including but not limited to the right to use all or part of this work in future works, 
such as articles or books.  
 
Library users are granted permission for individual, research and non-commercial 
reproduction of this work for educational purposes only. Any further digital 
posting of this document requires specific permission from the author.  
 
Any copying or publication of this thesis for commercial purposes, or for 
financial gain, is not allowed without my written permission.  
 
 
 
 
       Nicole Janette Casper 
 
       March 8th 2013 

 
 

 
 
 
 
 
 
 



 
 

 
 

NUTRITIONAL ROLE OF MICROALGAE IN THE DIET OF FIRST 
STAGE BRACHYURAN CRAB LARVAE 

 
 
 
 
 
 
 
 

A Thesis 
Presented to 

The Faculty of 
Western Washington University 

 
 
 
 
 
 
 
 

In Partial Fulfillment 
Of the Requirements for the Degree 

Master of Science 
 
 
 
 
 
 
 

by 
Nicole Janette Casper 

March 2013 
 
 



ABSTRACT 

 

 The survival and distribution of benthic invertebrate larvae have important 

implications for the population dynamics of the species and, due to predator-prey 

interactions, can have important consequences to the communities in which they live. 

Nutrition and food availability are among the primary determinants of larval success. The 

feeding strategy of brachyuran larval crabs is a complex combination of omnivory and 

selection. Although ingestion of microalgae by larvae has been observed, their role in 

satisfying larval nutritional needs is unclear. This study examined the role ingesting 

phytoplankton plays in the nutrition of larval crabs by simulating conditions in which 

algal prey might increase survival or accelerate development. The alga, Isochrysis 

galbana, and zooplankters Artemia sp. nauplii and rotifer Brachionis plicatilis, were used 

as prey in experiments with larvae of three brachyuran crab species representing different 

families and hatching seasons: Lophopanopeus bellus, Metacarcinus (Cancer) magister, 

and Hemigrapsus nudus.  Experimental conditions included exposure of larvae to algae 

alone immediately upon hatching, interspersed periods of algal and zooplankton prey and 

mixed algae-zooplankton prey. In post-hatching feeding experiments with L. bellus and 

M. magister, survival decreased and development was delayed as the initial period of 

starvation or algal feeding prior to zooplankton feeding was extended, with no 

differences between the unfed and algal-fed diets.  Mean Point-of-No-Return (PNR) 

values for unfed and algal-fed treatments were not significantly different from one 

another and post-hoc contrasts showed no difference between the two experimental 

treatments, except in a few instances where stage duration of L. bellus larvae fed algae 
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for one day was shortened by just under a half-day, and for M. magister larvae where 

larvae fed algae for three days had 16.7% survival while all corresponding unfed larvae 

died. In patchy prey experiments L. bellus survival and H. nudus survival and 

development rate were unaffected by exposure to algae; however, presence of algae 

accelerated L. bellus larval development by 5% (0.77 days). Results from mixed prey diet 

experiments showed no difference in L. bellus survival and development rate when algae 

supplemented zooplankton.  Results indicate that, overall, I. galbana does not 

significantly contribute to larval survival or development rate. Benefits of an 

opportunistic feeding strategy in which widespread, seemingly inefficient feeding on 

algae occurs might be contingent upon particular predator-prey species interactions (i.e. a 

more nutrient-laden alga), or may only pay off in particular conditions (i.e. a sparse prey 

field). 
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INTRODUCTION 

 

 Many benthic invertebrates have a planktonic larval form that faces unique 

challenges associated with development and survival. In contrast to the benthic adults, 

larvae are typically pelagic and their nutritional needs differ from those of the adult, 

whose primary function is reproduction, including gamete production, and enhancing 

contributions to fitness of its offspring. Benthic invertebrate larvae are ecologically 

significant because their survival and distribution have important implications for the 

population dynamics of the species. Variation in larval survival can impact juvenile 

recruitment success, affecting subsequent adult distribution and population size.  As a 

result, in commercially important species like Dungeness and blue crabs, larval survival 

can even take on economic importance.   

 Both larval survival and distribution have fundamental implications for plankton 

community dynamics as well.  At certain times and locations, crab larvae can dominate 

the meso-zooplankton (Coyle and Paul 1990; Schwamborn et al. 1999; Sulkin, pers. 

comm.) and can affect community trophic dynamics by putting grazing pressure on prey 

items (top-down regulation) while affecting population abundance of predators (bottom-

up regulation). Crab zoeae feed on small holoplanktonic prey, larvae of other 

invertebrates, and microzooplankton (Sulkin 1975; Epifanio et al. 1991). Crab zoeae are 

also important prey for fish world-wide, contributing considerably to the diet of such 

pelagic species as yellowfin tuna in the Indian Ocean (Potier et al. 2007), anchovies, 

silversides and other zooplanktivorous fish in Australian (Mazumder et al. 2006) and 

south-east American saltmarshes (Allen et al. 1995), juvenile pink and chum salmon in 



the Pacific (Murphy et al. 1988), and juvenile Chinook salmon in Puget Sound, WA 

(Duffy et al. 2010). Jellyfish have also been observed to prey heavily on larval crabs 

(Sulkin, pers. comm.) 

 The life cycle of brachyuran crabs is a multi-stage process in which larval crabs 

(zoeae) pass through several stages before entering a post-larval (megalopa) phase, 

followed by the juvenile. Mortality is high during larval development with most zoeae 

not surviving to become juveniles. Sources of larval loss from an area include dispersal 

into unsuitable habitats and mortality due to predation, water quality and insufficient 

nutrition (Thorson 1946; Paul et al. 1979; Anger et al. 1981; Peachey 2005; Potier et al. 

2007).  

 Nutrition has been recognized as an important factor affecting the development 

and survival of larvae (Anger and Dawirs 1981; Olson and Olson 1989; Staton and Sulkin 

1991; Fenaux et al. 1994). The larval stages of most brachyuran crabs are planktotrophic, 

requiring a source of particulate organic carbon soon after hatching to support 

development through the zoeal stages. Prey types that support development in the 

laboratory include micro- and small meso-zooplankton, especially the early larval stages 

of such invertebrates as polychaetes, sea urchins, and brine shrimp (Sulkin 1975; Bigford 

1978). Presumably these larval prey support crab larval development because they still 

contain some lipid provided from their eggs that sustain development. For example, the 

lipid fraction of brine shrimp nauplii contains essential long chain polyunsaturated fatty 

acids (PUFA) that larvae of many crab species require to complete zoeal development 

(Levine and Sulkin 1984; Brown et al. 1997).  
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 Small holoplanktonic species can also support larval crab development (Sulkin 

1975; Sulkin and McKeen 1999). These heterotrophic species feed in the plankton 

themselves and their nutritional value to larval crabs can depend upon their diets which 

usually consist of microalgae. For example, rotifers cultured on an alga high in PUFA 

support higher larval crab survival than the same strain of rotifer fed an alga low in 

PUFA (Sulkin and McKeen 1999).  

 Research on the nutritional significance of direct consumption of microalgae in 

the diet of larval crabs has been inconclusive. Although gut analyses of zoeae collected 

from the field have revealed microalgae in the diet (Paul et al. 1979; Paul and Paul 1980), 

and laboratory studies have confirmed that brachyuran zoeae will ingest a variety of 

microalgae (Lehto et al. 1998; Sulkin et al. 1998b; Hinz et al. 2001; Perez and Sulkin 

2005), diets consisting solely of microalgae are generally not sufficient to sustain 

development under laboratory conditions (Sulkin 1975; Incze and Paul 1983; Lehto et al. 

1998; Sulkin et al. 1998b). Although ingestion of algae by newly-hatched larvae may 

delay mortality when compared to unfed treatments for some crab species (Sulkin 1975; 

Sulkin et al. 1998b; Garcia et al. 2011), the nutritional value of algae to developing zoeae 

has not been rigorously tested or clearly established. A study on Metacarcinus magister 

showed variable results among algal species. Larval feeding on two dinoflagellate species 

delayed larval mortality; however, feeding on the green alga Dunaliella tertiolecta 

actually reduced larval survival compared to an unfed control (Sulkin et al. 1998b). 

 The confusion on the nutritional role of microalgae in the diet of larval crabs may 

be due, in part, to the variety of outcomes one might expect. It is possible that as an 

adaptation to an uncertain prey environment, crab larvae do not select prey based on 
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nutritional value, but ingest virtually any prey they encounter. When algae are ingested 

purely by virtue of opportunistic encounter feeding (Perez and Sulkin 2005), there may 

be neither benefit nor detriment to the larva. It is also possible that ingested algae may be 

competing with more nutritious prey, either by taking up space in the larval digestive 

tract, or by competing for the energy expended and time spent for ingestion of more 

favorable prey, thereby having a net negative effect. Alternatively, ingested algae may 

sustain larvae immediately after hatching by providing energy until they encounter more 

nutritionally favorable zooplankton prey, or provide a source of energy between 

encounters with more nutritious prey. The former could be particularly important because 

after hatching, zoeae may require energy to swim higher in the water column to 

encounter the microzooplankton prey that will sustain their development (Sulkin 1984).  

Finally, there is the possibility that a mixed diet of algae combined with zooplankton will 

provide an advantage that a pure zooplankton diet does not, by providing additional 

nutrients that result in increased larval survival and/or more rapid development (Epifanio 

et al. 1991).  

 The present experiments were designed to clarify the role that ingesting 

phytoplankton plays in the nutrition of larval crabs by simulating conditions in which 

algal prey might alter survival or rate of development. The scenarios include the 

following: 1) conditions in which larval crabs do not encounter favored zooplankton prey 

immediately upon hatching but do access phytoplankton; 2) conditions in which larval 

crabs encounter fields of zooplankton prey interspersed with periods of either no prey or 

encounters with microalgae only; and 3) conditions in which larval crabs encounter 

mixed prey fields composed of both microalgae and zooplankton.  The experiments were 
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conducted with larvae of several crab species that differed in season of spawning, larval 

size and taxonomic association. Model zooplankton and microalgal species that have 

been used successfully in invertebrate larval culture were used as prey.  
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METHODS 

Experimental Approach 

 

 Experiments were designed to determine the role played by algal prey in the 

nutrition of larval crabs. Three conditions in which larval crabs were likely to encounter 

algae were simulated and the effects on survival and developmental rate were 

determined. First, initial algal feeding experiments were designed to determine the 

contribution of algae when larvae do not encounter zooplankton prey immediately upon 

hatching. Second, experiments determined the contribution of algae when larvae 

encounter patchy prey fields of zooplankton, in which periodic encounters with 

zooplankton prey are separated by periods of no access to zooplankton prey. Third, 

mixed prey experiments were designed to determine the contribution of algae when 

larvae encounter fields composed of both algae and zooplankton.  

 In the present study, a control zooplankton diet consisted of either Artemia 

franciscana Kellogg nauplii or the rotifer Brachionis plicatilis Muller, both of which 

have been used as prey in the laboratory to support larval crab development (Levine and 

Sulkin 1984). The algal diet consisted of Isochrysis galbana Parke, a brown alga 

containing high levels of long-chain polyunsaturated fatty acids (PUFA) (Volkman et al. 

1989).  
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Experimental organisms 

Ovigerous and larval crab collection and care 

 

 Hemigrapsus nudus Dana ovigers were collected from Shannon Point Beach in 

Anacortes, WA by hand in April 2011 (Figure 1). Ovigers were held in flow-through 

seawater tables at the Shannon Point Marine Center under ambient conditions (7-9°C; 28-

30 psu). Their eggs were routinely monitored for development and, when heartbeats were 

visible, ovigers were transferred to individual 20cm diameter glass bowls containing 5μm 

filtered seawater (FSW) and held in an incubator at 15°C with a light:dark cycle of 

12:12h. Immediately upon hatching, zoeae were collected with a pipette to ensure that 

Day 1 zoeae were used in the experiments. 

 Lophopanopeus bellus Stimpson ovigers were collected from Shannon Point 

Beach in Anacortes, WA (Figure 1) by hand in June and July 2010 and June through 

August 2011. Ovigers were held in flow-through seawater tables at the Shannon Point 

Marine Center under ambient conditions (10-14°C; 28-30psu). The ovigers were treated 

as described above until larvae were obtained. 

Ovigers of Metacarcinus (Cancer) magister Dana were collected by SCUBA 

from Ship Harbor in Anacortes, WA (Figure 1) in February and March 2011.  Each 

oviger was transferred to Shannon Point Marine Center and held in a separate 10L 

plexiglass flow-through tank (dimensions 0.55x 0.33 x 0.56 m) under ambient conditions 

(7-8°C; 30-32psu). Tanks were checked daily until hatching began. The tank was then 

drained, rinsed and refilled, assuring that larvae collected for experiments were less 
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Figure 1. Map of crab oviger collection sites in Anacortes, WA. A- Beach collection site 
of Hemigrapsus nudus and Lophopanopeus bellus. B- SCUBA collection site of 
Metacarcinus magister.   

 8 



than 24 hours old.   
 

Algal cultures 

 

 The haptophyte alga Isochrysis galbana was purchased from the Provasoli-

Guillard National Center for Culture of Marine Phytoplankton (Boothbay Harbor, ME). 

Cultures were maintained and aerated at room temperature, using f/2-Si medium in a 20-

L glass carboy under fluorescent light 24 hours/day. Cells were observed regularly under 

the microscope and counted using a hemocytometer. Algal culture density fluctuated 

between 1x106 and 3x106 cells ml-1. When the culture became too dense, it was diluted 

with FSW and fresh f/2-Si medium was added. Cultures were diluted with 0.2μm FSW in 

500ml glass beakers to attain the proper densities for each experiment. Although algal 

cultures were not axenic, they were examined regularly to control for contaminants.  

 

Artemia and rotifer cultures 

 

 Control diets consisted of zooplankton in excess. Hemigrapsus nudus, the 

smallest of the crab larvae, were fed rotifers for all experiments; Lophopanopeus bellus 

were fed freshly hatched Artemia franciscana nauplii for experiments when the nauplii 

hatched out small enough for larvae to ingest, and were fed rotifers when nauplii were too 

large to be ingested (Table 1). This was determined by inspections of larvae handling 

nauplii combined with macroscopic observation of nauplius size.  Metacarcinus magister 

were fed A. franciscana nauplii for all experiments. Within any experimental run, all 

treatments received the same zooplankton prey. 
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Table 1. Number of broods and type of zooplankton used in each experiment. Where 
more than one brood is indicated, larvae from all broods hatching on the same day were 
pooled.  

Experiment Crab Species Run 
# of 

Broods Zooplankton prey 
Initial feeding on Lophopanopeus 1 2 B. plicatilis 

Microalgae bellus 2 2 B. plicatilis 

  3 1 B. plicatilis 

 Metacarcinus 1 3 A. franciscana 

 magister 2 5 A. franciscana 

  3 3 A. franciscana 

Patchy prey Lophopanopeus 1 1 B. plicatilis 

experiments bellus 2 1 B. plicatilis 

  3 2 B. plicatilis 

 Hemigrapsus 1 1 B. plicatilis 

 nudus 2 1 B. plicatilis 

  3 1 B. plicatilis 

Mixed prey Lophopanopeus 1 1 A. franciscana 

experiments bellus 2 2 A. franciscana 

  3 1 A. franciscana 
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 Artemia franciscana cysts were obtained from Argent Chemical Laboratories 

(Redmond, WA) and were stored in a 15°C incubator. To set nauplii to hatch, cysts were 

added to an Imhoff cone containing 0.2μm FSW under constant light and aeration. Within 

24 hours, hatched nauplii were collected using a 100μm filter and poured into a glass 

beaker as a thick slurry.  Only non-feeding, freshly hatched nauplii were used in 

experiments. A. franciscana nauplii were hatched daily throughout the duration of 

experiments. Care was taken to add approximately 15-20 nauplii per ml to each tray well 

with a Pasteur pipette, approximately 1-2 drops of the slurry.  

 Rotifers were ordered from Reed Mariculture Inc. (Campbell, CA), and kept in a  

20°C incubator to adapt to the temperature.  Cultures of rotifers were kept in 500ml  

beakers with 0.2μm FSW in a 20°C incubator and fed high density (1 - 3x106 cells ml-1) 

Isochrysis galbana. Cultures were regularly harvested and transferred to new beakers 

with fresh algae in order to maintain them in an asexual growth phase. To prepare them 

for experiments, rotifer cultures were poured through an 80μm filter and rinsed 

thoroughly with 0.2μm FSW to remove I. galbana cells. Filtered rotifers and 0.2μm FSW 

were added to a 150ml beaker to create a dense rotifer suspension. Pasteur pipettes were 

used to dispense rotifers in excess to each tray well. Care was taken to ensure rotifer 

amount was consistent across the tray well experimental unit.  

 

General experimental methods 

 

 Twelve-well trays were used for all larval rearing experiments, with one zoea and 

3ml of 0.2μm FSW containing the proper prey suspension in each well for each 
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experiment. Sibling larvae were distributed among all treatments in each experiment and, 

when possible, larvae from at least two broods hatching on the same day were pooled and 

the resulting mixture distributed haphazardly among treatments (Table 1). Trays were 

kept in a 15°C incubator. Larvae were monitored daily until they either died or molted to 

stage two, thereby exiting the experiment. Molts were determined by the presence in the 

well of a cast-off exoskeleton. Larvae were considered dead when they did not respond to 

any stimuli. Larval condition (molted; dead) was confirmed by observing them under a 

dissecting microscope. Each day, stage one larvae were carefully moved with a Pasteur 

pipette to a new tray with clean FSW and appropriate diet treatment. Two endpoints were 

measured: stage survival (based on % survival of each tray) and stage duration (mean day 

of first molt).  

An algal density of 4,000 cells ml-1 was used in all experiments except the mixed 

diet experiment which used three treatments of 50, 200 and 1000 cells ml-1, and in select 

preliminary experiments described below. Each day that algae were needed, a fresh batch 

of the appropriate concentration of algae was prepared from the stock culture.  

Each of the three experiments described in Experimental Approach was run three 

times for each crab species tested (referred to hereafter as ‘Runs’) using different sets of 

sibling larvae. For each experimental Run, all treatments consisted of three replicate 

trays. 
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Algal ingestion tests 

 

 Preliminary experiments were run to confirm that algae were being ingested by 

larvae when they were the only prey available, when larvae were fed algae after having 

been fed zooplankton for a period of time and when larvae were fed algae and 

zooplankton simultaneously (requiring visibility of algal cells in the gut when guts also 

contained zooplankton biomass). 

 Ingestion of algae was confirmed by the presence of chl a in the larval gut using 

epifluorescence microscopy to document its natural fluorescence. Selected larvae were 

removed from their treatments, rinsed thoroughly with 0.2μm FSW, mounted on slides, 

and examined for fluorescence using a Leica Leitz DMRB epifluorescence microscope. 

Larvae were exposed to blue light excitation (450-490 nm); any algal cells in the larval 

gut absorbed and re-emitted the light which passed through an emission filter (676 nm), 

appearing red. Larvae examined under epifluorescence were removed from the 

experiment. Photographs were taken using a Roper Scientific Photometrics CoolSnap cf 

camera and RS Image software (version 1.9.2) to document the results. 

 These preliminary tests confirmed that it was possible to see evidence of algal 

ingestion in the guts even when zooplankton biomass was present and confirmed that 

ingestion of algae occurred under all three experimental conditions.  In these tests, 

relatively low algal densities were used (150-300 cells ml-1) to test possible threshold 

effects. Under these conditions, incidence of ingestion varied among tests, but typically 

ranged from 38%-60% of larvae tested.   These results confirmed that larvae could ingest 

algae under the three experimental conditions and permitted analysis of their possible 
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nutritional contributions to larval developmental parameters such as survival and 

development rate. 

 Similar algal ingestion tests were conducted simultaneously with several of the 

main experiments outlined below to confirm algal ingestion was occurring under those 

particular experimental conditions. Algal densities ranged from 50-4,000 cells ml-1. 

Examples of fluorescence in the gut confirming ingestion of algae are shown for several 

treatments (Fig. 2). 

 

Main Experiments 

Post-hatching feeding experiments 

 

 Experiments were conducted on Lophopanopeus bellus and Metacarcinus 

magister to determine if immediate post-hatching feeding on only algae contributes 

nutritionally to newly-hatched larval crabs. The treatment set-up is shown 

diagrammatically in Figure 3 with half of the treatments receiving algae instead of the 

unfed periods.  All initial periods of starvation (or algae) were followed by continuous 

zooplankton feeding in excess. Treatments incremented by one initial day of starvation or 

algal-feeding.  

 For each crab species tested, there were 12 treatments, consisting of a 

continuously fed zooplankton control (Artemia franciscana or Brachionis plicatilis), a 

continuously unfed control, five unfed treatments (unfed one day, unfed two days, unfed 

three days, unfed four days, unfed five days), and five algal-fed treatments (algal-fed one 

day, algal-fed two days, algal-fed three days, algal-fed four days, algal-fed five days).  
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Figure 2. Epifluorescence images of stage I Lophopanopeus bellus larvae during mixed 
prey experiments in Run 2, in which they were fed a) zooplankton with 50 algal cells ml-1 
and b) zooplankton with 200 algal cells ml-1. Red spots indicated by arrows show 
presence of algal cells in larval gut. 

b a 
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Figure 3. Diagrammatic representation of consecutive initial starvation 
treatments showing relative periods of starvation followed by feeding on 
zooplankton or feeding on algae only followed by zooplankton feeding. Days 
to molt vary and are shown here as an example only. 
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Each experiment was run three times with different brood groups, hereafter referred to as  

‘Runs.’ For each Run, each treatment consisted of three replicate trays with 12 larvae per 

tray. A full Run therefore consisted of 36 trays and 432 larvae. 

The progression of treatments throughout the experiment went as follows:  On 

day one of the experiment, the fed control was the only treatment to receive zooplankton. 

All other trays were either unfed or fed algae. On day two of the experiment, the fed 

control, the unfed one day treatment and the algal-fed one day treatment received 

zooplankton, all other trays were either unfed or fed algae. The experiment continued this 

way until day six after which all larvae were fed zooplankton and were maintained until 

all larvae had molted to zoeal stage two or died.  

Algal-fed treatments were fed Isochrysis galbana at a concentration of 4,000 cells 

ml-1.   Each day a beaker of  I. galbana  was prepared at a concentration of 12,000 cells 

ml-1. Using a repeater pipette, 1ml of 12,000 cells ml-1 algal suspension was added to 2ml 

of 0.2μm FSW in each tray well to achieve a concentration of 4000 cells ml-1. The algal 

suspension was agitated before being dispensed to ensure homogeneous distribution of 

algal cells.  Larvae were checked daily for evidence of mortality and molting and each 

day living larvae were moved with a Pasteur pipette to a new tray with FSW and fed the 

appropriate diet.  

Two types of analyses were conducted to assess the impact of early feeding on 

larval condition. Stage survival and stage duration were compared among treatments 

initially using a Two-way ANOVA with treatment as a fixed factor and Run as a random 

factor. Where Levene’s Test of Equality of Variances showed variances to be non-

homogenous, alpha was adjusted to 0.025 to compensate (Gamst et al. 2008). Where 
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there was no significant treatment by Run interaction, data from all three Runs were 

further analyzed using special contrasts to compare treatments of increasing initial unfed 

periods against respective treatments of increasing initial algal-fed periods. For example, 

the unfed one day treatment was compared to the algal-fed one day treatment, the unfed 

two day treatment was compared to the algal-fed two day treatment, and so on for all pre-

zooplankton feeding periods. Where the interaction term was significant, data from each 

Run were analyzed separately using simple main effects comparing unfed and algal-fed 

treatments as described above.  

Extensive previous research (Chomiczewski 2009; Sulkin, pers. comm.) has 

indicated that trays do not produce effect as long as the experimental design assures that 

larvae from pooled broods are randomly assigned to trays, and trays are randomly 

assigned to treatments. Those precautions were followed in these experiments at all times 

so no tray term was included in the analysis. 

To further assess the effects of initial periods of algal feeding on stage survival 

and duration, a modification of the Point of No Return (PNR) approach (Anger et al. 

1980; Staton and Sulkin 1991) was employed. The unfed-PNR compared each sequential 

unfed treatment to the continuously fed control with a series of t-tests. When the first 

significant result for either reduction in stage survival or increase in stage duration of the 

unfed treatment as compared to the control was found, that ‘day’ (eg., the number of 

initial unfed days) was identified as the unfed-PNR. In these experiments, a total of three 

individual PNRs was determined for different brood sets (‘Runs’). The same analysis was 

then repeated for sequential algal fed treatments, providing an algal-fed PNR (n=3). The 

two PNRs were then compared by a t-test to determine if feeding on algae delayed the 
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time of significantly reduced survival or resulted in a difference between the two 

treatments in reducing the stage duration (e.g. accelerated development). If either 

parameter was affected, it indicated a nutritional benefit provided by the algae.  

 

Patchy prey diet experiments 

 

 Experiments were conducted on Lophopanopeus bellus and Hemigrapsus nudus 

to determine whether algal prey contributed nutritionally under conditions when 

encounters with favored zooplankton prey are intermittent.  To simulate this under 

laboratory conditions, the following diet treatments were set up: larvae alternated 

between being fed Brachionis plicatilis for one day followed by being unfed for three 

days or being fed B. plicatilis for one day followed by being fed Isochrysis galbana for 

three days, after which the feeding pattern was repeated (Figure 4). The periods of 

zooplankton-feeding were chosen to be short so as to produce sub-optimal feeding 

conditions (Lehto et al. 1998; Sulkin et al. 1998a); that is, to support development, but at 

either reduced survival or slower rate of development as compared to an optimal diet 

treatment. Sub-optimal diets use a prey source known to sustain larval development, but 

provide it in insufficient amounts or for insufficient duration, thus producing delayed 

development or increased mortality. This allows for an assessment of algal nutritional 

contribution by substituting algae as prey for the unfed periods. Stage survival and stage 

duration were compared for treatments of alternating zooplankton/unfed periods against 

treatments of alternating zooplankton/algal-fed periods. 
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Figure 4. Diagrammatic representation of three treatments showing 
periods of zooplankton feeding alternating with periods of starvation and 
algae feeding. 
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 Each treatment consisted of three replicate trays. There were nine trays total 

consisting of three fed control trays, three alternating fed zooplankton/unfed trays and 

three alternating fed zooplankton/fed algae trays (Figure 4). The progression of 

treatments throughout the experiment went as follows: 

On day one, all three treatments were fed zooplankton. On day two, the fed 

control received zooplankton, the fed zooplankton/unfed treatment was not fed (but was 

still transferred to a new well with clean FSW), and the fed zooplankton/fed algae   

treatment was fed Isochrysis galbana. Days three and four repeated the procedure for day 

two. On day five, all three treatments were fed zooplankton for one day. This whole  

procedure was repeated again until day nine and beyond, when all treatments were fed 

zooplankton for the duration of the experiment until the larvae died or molted to stage 

two (up to 25 days for Lophopanopeus bellus and up to 18 days for Hemigrapsus nudus),  

thereby exiting the experiment. The experiment was run three times with different brood 

sets identified hereafter as ‘Runs.’ 

 Two-way Analysis of Variance, with Run as a random factor and diet treatment as 

a fixed factor, was used to determine significant differences among diet treatments for 

each endpoint (stage survival; stage duration), followed by Tukey’s HSD post-hoc tests 

to identify where differences existed among treatments when the interaction between Run 

and treatment was not significant. In cases where the interaction between Run and 

treatment was significant, simple main effects contrasts were used to determine treatment 

differences within each Run. Where Levene’s test of equality of variances showed 

variances to be non-homogenous, alpha was adjusted to 0.025 (Gamst et al. 2008). 

Larvae were checked daily for evidence of mortality and molting and each day larvae 
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were moved with a Pasteur pipette to a new tray with fresh water and appropriate diet 

treatment. 

 

Mixed prey diet experiments 

 

 Experiments were conducted using larvae of Lophopanopeus bellus to determine 

whether consumption of algae occurs and contributes nutritionally when provided in 

combination with zooplankton. Diets of Artemia franciscana nauplii were compared to 

diets of A. franciscana mixed with Isochrysis galbana prey at varying densities. 

Treatments consisted of A. franciscana only, A. franciscana mixed with I. galbana at 50 

cells ml-1, A. franciscana mixed with I. galbana at 200 cells ml-1 and A. franciscana 

mixed with I. galbana at 1000 cells ml-1.  An estimated 15-20 nauplii ml-1 was added to 

each tray well. All treatments were applied continuously from day of hatching. 

 Each treatment consisted of three replicate trays. There were 12 trays total 

consisting of three Artemia franciscana trays, three mixed 50 cells ml-1 trays, three mixed 

200 cells ml-1 trays, and three mixed 1000 cells ml-1 trays. The experiment was run three 

times with different brood-sets. The first experimental Run did not include the lowest 

density treatment (A. franciscana mixed with Isochrysis galbana at 50 cells ml-1). 

 Each day three beakers were prepared using dilutions from the stock Isochrysis 

galbana culture to provide concentrations of 150 cells ml-1, 600 cells ml-1 and 3,000 cells 

ml-1. Using a repeater pipette, 1ml of each algal suspension was added to 2ml of 0.2μm 

FSW to each tray well to achieve the desired concentrations of 50 cells ml-1,  200 cells 

 22 



ml-1, and 1000 cells ml-1. The algal suspensions were agitated before being dispensed to 

ensure equal distribution of algal cells. 

 Artemia franciscana nauplii were added to each of the mixed treatment tray wells. 

Care was taken to add an estimated 15-20 nauplii ml-1 to each tray well with a Pasteur 

pipette, approximately 1-2 drops.  Artemia franciscana-only treatments received 3ml of 

0.2μm FSW and 1-2 drops of A. franciscana in their wells. Mixed 50 cell ml-1 treatments 

received 2ml of 0.2μm FSW, 1ml I. galbana at 150 cells ml-1, and 1-2 drops A. 

franciscana. Mixed 200 treatments received 2ml of 0.2μm FSW, 1ml I. galbana at 600 

cells ml-1, and 1-2 drops A. franciscana. 

 Two-way ANOVA, with Run as a random factor and treatment as a fixed factor, 

was used to determine significant differences among diet treatments for each endpoint 

(stage survival; stage duration), followed by Tukey’s HSD post-hoc tests to identify 

where differences exist among treatments. Because the first experimental Run did not 

include the lowest density treatment (A. franciscana mixed with Isochrysis galbana at 50 

cells ml-1), the Type IV Sum of Squares was specified when running the ANOVA to 

account for the missing data. In cases where the interaction between Run and treatment 

was significant, simple main effects contrasts were used to determine treatment 

differences within each Run. Where Levene’s test of equality of variances showed 

variances to be non-homogenous, alpha was adjusted to 0.025 (Gamst et al. 2008). 
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RESULTS 

Post-hatching feeding experiments 

Lophopanopeus bellus  

 

 Stage survival of larvae subjected to various initial periods of either no food or 

feeding on microalgae prior to continuous zooplankton feeding is shown in Figure 5. 

There was an apparent decrease in survival for both experimental diets as the initial 

period prior to zooplankton feeding was extended. Data were analyzed by a Two-way 

ANOVA with treatment and Run as factors (Table 2).  The interaction term was non-

significant, and tests of the main effects indicated significant differences among 

treatments (p<0.025).   

 In order to determine possible differences between each unfed and algal-fed 

treatment with the same pre-zooplankton feeding period, data were subjected to special 

contrasts. For example, the unfed one day treatment was compared to the algal-fed one 

day treatment, the unfed two day treatment was compared to the algal-fed two day 

treatment, and so on for all pre-zooplankton feeding periods (Table 3). All paired 

comparisons were found to be non-significant (p>0.025) indicating that there was no 

significant difference in stage survival due to presence or absence of algal prey during 

any of the initial pre-zooplankton feeding periods. 

 
 Stage duration of larvae subjected to various initial periods of either being unfed 

or being fed microalgae prior to continuous zooplankton feeding are shown in Fig. 6. An 

increase in stage duration is apparent for both experimental diets as the initial period  
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Figure 5. Effects on Stage I survival (+ one standard error) of 
Lophopanopeus bellus larvae as initial period of experimental diet 
increases. Three Runs are combined. N=9 in all treatments except for 
Isochrysis-fed 3d where n=8. Isochrysis-fed larvae for 5 days had zero 
survival.  
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Table 2. Two-way ANOVA results for stage survival and stage duration of 
Lophopanopeus bellus larvae when exposed to various diet treatments for 
increasing durations (1-5 days) (α= 0.025). Stage survival data were arcsine 
square root transformed. 
      
Source SS df MS F P 

Stage Survival      

Treatment 17.769 10 1.777 31.193 <0.001 

Run 1.079 2 0.540 9.479 0.001 

Treatment*Run 1.083 19 0.057 1.748 0.051 

Error 2.144 65 0.033   
Stage duration      

Treatment 2898.547 8 362.318 45.913 <0.001 

Run 85.867 2 42.934 7.585 0.004 

Treatment*Run 129.535 16 8.096 10.089 <0.001 

Error 424.346 525 0.808   
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Table 3. Statistical results of special contrasts 
comparing stage survival of Lophopanopeus bellus 
larvae given experimental diet treatments (unfed vs. 
algal-fed) at varying pre-zooplankton feeding periods. 
There were no significant differences (α = 0.025). Runs 
are combined (n=9). 
 
 

Pre-zooplankton feeding 
period 

Unfed vs. Algal-fed 
contrast p-value 

1 0.130 

2 0.293 

3 0.197 

4 0.435 

5 0.641 
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Figure 6. Effects on Stage I duration (+ one standard error) of Lophopanopeus bellus 
larvae as initial period of experimental diet increases. Three Runs are combined. Sample 
sizes vary per treatment and are shown in each column. Isochrysis-fed larvae for 5 days 
had zero survival. 
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before zooplankton feeding was extended. A Two-way ANOVA analysis of the data 

showed a significant interaction between treatment and Run (p<0.025) (Table 2). Data 

were therefore subjected to simple main effects comparing unfed and algal-fed treatments  

within each Run to indicate possible differences between each treatment with the same 

pre-zooplankton feeding period. The only significant difference was between the unfed 

one day treatment and the algal-fed one day treatment for Run 2 (Table 4). In that Run, 

algal-fed larvae had a shorter stage duration than unfed larvae by just under a half-day 

(by 7%) (Fig. 7). All other paired comparisons were found to be non-significant 

indicating that overall there was no significant difference in stage duration due to 

presence or absence of algal prey during initial pre-zooplankton feeding periods. 

 In order to further assess the potential effects of initial feeding by larvae on 

microalgae, the same data were subjected to a Point of No Return (PNR) type analysis 

(sensu Anger et al. 1981; Staton and Sulkin 1991) for stage survival and duration. Percent 

stage survival for each Run is shown in Table 5. Each treatment is compared to the 

continuously fed control in sequence with the first evidence of statistical significance 

using an Independent samples t-test indicating the PNR for that experiment. PNRs for 

unfed treatments in the three Runs were then compared to those for algal-fed treatments 

to determine if feeding on algae resulted in a delay of the first evidence of reduced 

survival. The mean PNRs for unfed and algal-fed treatments were 3.67 days and 4 days, 

respectively. An Independent samples t-test comparing the PNR means indicated no 

significant difference (p > 0.05).  

 Mean stage duration results are shown in Table 6. A t-test comparing the mean 

PNRs between unfed and algal fed treatments (1.67 days and 1 day, respectively)  

 29 



Table 4. Statistical results of a simple main effects test contrasting stage duration of 
Lophopanopeus bellus larvae given experimental diet treatments (unfed vs. algal-fed) at 
varying pre-zooplankton feeding periods. An asterisk indicates significant differences (α 
= 0.025). 
 

Run Pre-zooplankton feeding 
period 

Unfed vs. Algal-fed contrast 
p-value 

1 1d 0.632 
 2d 0.541 
 3d 0.340 
 4d 0.360 
2 1d   0.004* 
 2d 0.032 
 3d 0.183 
 4d 0.940 
3 1d 0.972 
 2d 0.458 
 3d 0.372 

 4d 0.249 
 

 

 

 

 30 



Pre-zooplankton feeding period (days)

st
ag

e 
du

ra
tio

n 
(d

ay
s)

0

5

10

15

20 0d = fed control
unfed
Isochrysis

*

29

27
28

28

17

5

3

31

21

11

0d 1d 2d 3d 4d 5d

 
 
Figure 7. Effects on Stage I duration (+ one standard error) of 
Lophopanopeus bellus larvae in Run 2 as initial period of experimental 
diet increases. Sample sizes vary per treatment and are shown in each 
column. Isochrysis-fed larvae for 5 days had zero survival. Asterisk 
denotes the paired bars that are significantly different from one another 
(α= 0.025).  
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Table 5. Percent survival for each PNR treatment for Lophopanopeus bellus larvae. First 
treatment for which percent survival is significantly different from fed control is 
indicated by an asterisk (t-test, α=0.05) for each of the three Runs.  
 

Run 

Pre-
zooplankton 

feeding 
period (days) 

(days) 

1 2 3 

Unfed Algal-fed Unfed Algal-fed Unfed Algal-fed 

0 (fed) 68.8 68.8 80.6 80.6 86.1 86.1 

1 73.2 52.8 76.8 79.5 100.0 97.2 

2 71.0 68.2 80.1 88.4 91.7 83.3 

3    23.7* 45.8 49.0 58.3 67.9 72.8 

4 11.9   15.0*   18.1*   33.3*   11.4*   19.4* 

5 2.8 0.0 8.3 0.0 0.0 0.0 

Unfed 0.0 - 0.0 - 0.0 - 
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Table 6. Stage duration (days) for each PNR treatment for Lophopanopeus bellus larvae. 
First treatment for which percent survival is significantly different from fed control is 
indicated by an asterisk (t-test, α=0.05) for each of the three Runs.  
 

Run 

Pre-
zooplankton 

feeding 
period (days)  

1 2 3 

Unfed Algal-fed Unfed Algal-fed Unfed Algal-fed 

0 (fed) 8.8 8.8 7.4 7.4 7.7 7.7 

1 9.1  9.2* 9.8  9.1*  9.3*  9.3* 

2    10.9* 11.0   11.9* 11.4 12.6 12.5 

3  13.2 12.8 14.3 13.9 14.6 14.4 

4  14.2 14.8 16.6 16.6 18.0 17.8 

5 - - 20.7 - - - 

Unfed - - - - - - 
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indicated no significant difference between the two (p > 0.05).  

 Results for Lophopanopeus bellus indicate that initial feeding on microalgae 

neither increased survival nor reduced stage duration significantly in stage one larvae 

when compared to larvae that were not being fed during those initial periods.  

 

Metacarcinus magister 

 

 Metacarcinus magister larvae were subjected to various initial periods of either 

no food or feeding on microalgae prior to continuous zooplankton feeding. Stage survival 

data are shown in Fig. 8. There was an apparent decrease in survival for both 

experimental diets as the initial period before zooplankton feeding was extended. A Two-

way ANOVA analysis of the data showed a significant interaction between treatment and 

Run (p<0.025) (Table 7). Data were therefore subjected to simple main effects within 

each Run to indicate possible differences between each treatment with the same pre-

zooplankton feeding period using an alpha of 0.025 (Table 8). The only significant 

difference indicated by these tests was between the unfed three-day treatment and the 

algal-fed three day treatment for Run one. In that Run, algal-fed larvae had a stage 

survival of 16.7% (+ SE) while no unfed larvae survived (Fig. 9). All other paired 

comparisons were found to be non-significant indicating that overall there was no 

significant difference in stage survival due to presence or absence of algal prey during 

initial pre-zooplankton feeding periods. 

 Stage duration results of Metacarcinus magister larvae subjected to various initial 

periods of either being unfed or being fed microalgae prior to continuous zooplankton  

 34 



  

Pre-zooplankton feeding period (days)

st
ag

e 
su

rv
iv

al
 (%

)

0

20

40

60

0d = fed control
unfed
Isochrysis

0d 1d 2d 3d 4d 5d

 

Figure 8. Effects on Stage I survival (+ one standard error) of Metacarcinus 
magister larvae as initial period of experimental diet increases. Three Runs are 
combined (n=9). Algal-fed larvae for four days and unfed larvae for five days 
had zero survival.  
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Table 7. Two-way ANOVA results for stage survival and stage duration of 
Metacarcinus magister larvae when exposed to various diet treatments (unfed, 
algae) for increasing durations (1-5 days) (α= 0.025).  Stage survival data was 
arcsine square root transformed. 
 

Source SS df MS F P 
Stage Survival      

Treatment 12.170 10 1.217 19.008 <0.001 

Run 1.325 2 0.663 10.363 0.001 

Treatment*Run 1.282 20 0.064 3.484 <0.001 

Error 1.190 65 0.018   
Stage duration      

Treatment 636.883 7 90.983 49.067 <0.001 

Run 8.558 2 4.279 2.475 0.110 

Treatment*Run 21.483 11 1.953 1.525 0.122 

Error 346.947 271 1.280   
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Table 8. Statistical results of a simple main effects test contrasting stage survival of 
Metacarcinus magister larvae given experimental diet treatments (unfed vs. algal-fed) at 
varying pre-zooplankton feeding periods. An asterisk indicates a significant difference (α 
= 0.025). 
 

Run 
Pre-zooplankton feeding 

period 
Unfed vs. Algal-fed contrast 

p-value 
1 1d 0.989 

 2d 0.200 

 3d   0.001* 

 4d 1.000 

 5d 0.386 

2 1d 0.491 

 2d 0.570 

 3d 0.339 

 4d 0.076 

 5d 1.000 

3 1d 0.296 

 2d 0.354 

 3d 0.076 

 4d 0.354 

 5d 1.000 
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Figure 9. Effects on Stage I survival (+ one standard error) of 
Metacarcinus magister larvae in Run 1 as initial period of 
experimental diet increases. N=3 in all treatments except for Unfed 1d 
where n=2.  Unfed larvae for 3, 4 and 5 days had zero survival, as did 
algal-fed larvae for 4 days. Asterisk denotes the paired bars that are 
significantly different from one another (α= 0.025).  
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feeding are shown in Fig. 10. Stage duration increased for both experimental diets as the 

period before zooplankton feeding was extended. The interaction term in a Two-way 

ANOVA was non-significant (Table 7). Testing of the main effects showed a significant 

difference among treatments (p<0.025).  

 Data were then subjected to special contrasts to indicate possible differences 

between each treatment.  The unfed one day treatment was compared to the algal-fed one 

day treatment and the unfed two day treatment was compared to the algal-fed two day 

treatment. Pre-zooplankton feeding periods of three, four and five days were omitted 

from contrasts because not all Runs had stage duration data at these periods due to zero 

survival. All paired comparisons were found to be non-significant indicating that there 

was no significant difference in stage duration due to presence or absence of algal prey 

during initial pre-zooplankton feeding periods (Table 9).   

 Data were further analyzed using the Point of No Return (PNR) analysis. Percent 

stage survival is shown in Table 10.  Results showed no significant difference between 

unfed and algal-fed PNRs (2.67 days and 3.33 days, respectively) (t-test; p > 0.05).  Mean 

stage duration results are shown in Table 11. A t-test comparing the PNRs between unfed 

and algal-fed treatments (1.67 days and 1.33 days, respectively) indicated no significant 

difference between them (p > 0.05).  

 Results for Metacarcinus magister stage one larvae indicate that the presence of 

microalgae during initial feeding neither increased survival nor reduced stage duration 

significantly when compared to larvae that were not being fed during those initial 

periods.  
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Figure 10. Effects on Stage I duration (+ one standard error) of 
Metacarcinus magister larvae as initial period of experimental diet 
increases. Three Runs are combined. Sample sizes vary per treatment and 
are shown in each column. Algal-fed larvae for four days had zero survival, 
as did unfed larvae for five days.  
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Table 9. Statistical results of special contrasts comparing 
stage duration of Metacarcinus magister larvae given 
experimental diet treatments (unfed vs. algal-fed) at 
varying pre-zooplankton feeding periods. There were no 
significant differences (α = 0.025). Runs are combined 
(n=108).  Pre-zooplankton feeding periods of three, four 
and five days were omitted from contrasts due to zero 
survival in some Runs. 
 
Pre-zooplankton feeding 

period 
Unfed vs. Algal-fed 

contrast p-value 
1 0.857 
2 0.218 
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Table 10. Percent survival for each PNR treatment for Metacarcinus magister larvae. 
First treatment for which percent survival is significantly different from fed control is 
indicated by an asterisk (t-test, α=0.05).  
 

Run 

Pre-
zooplankton 

feeding 
period (days)  

1 2 3 

Unfed Algal-fed Unfed Algal-fed Unfed Algal-fed 

0 (fed) 52.8 52.8 66.5 66.5 44.4 44.4 

1 75.0 75.0 75.0 80.6 41.7 31.3 

2 33.3 47.2   38.9* 45.5 11.1 19.4 

3 0.0*   16.7* 33.3 42.7  0.0*  5.8* 

4 0.0 0.0 5.8  0.0* 3.0 0.0 

5 0.0 3.0 0.0 0.0 0.0 0.0 

Unfed 0.0 - 0.0 - 0.0 - 
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Table 11. Stage duration (days) for each PNR treatment for Metacarcinus magister 
larvae. First treatment for which percent survival is significantly different from fed 
control is indicated by an asterisk (t-test, α=0.05).  
 

Run 

Pre-
zooplankton 

feeding 
period (days) 

1 2 3 

Unfed Algal-fed Unfed Algal-fed Unfed Algal-fed 

0 (fed) 11.5 11.5 10.9 10.9 10.8 10.8 

1 8.2 11.8   12.1*   12.0* 11.7   12.1* 

2    14.1*   14.5* 13.1 13.3  9.2* 9.5 

3 - 15.9 16.8 16.0 - 11.0 

4 - - 18.5 - 5.7 - 

5 - - - - - - 

Unfed - - - - - - 
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Patchy prey diet experiments 

Lophopanopeus bellus 

 

 Daily survival of larvae subjected to intermittent periods of no prey or algal prey 

alternating with zooplankton prey are shown in Figure 11. Stage survival data were 

analyzed by a Two-way ANOVA with treatment and Run as factors (Table 12).  The 

interaction term was non-significant (p > 0.05), as were tests of the main effects.  

Because the survival of both experimental diets appears to be quite different from the 

control (Fig. 11), and lack of significance does not definitively rule out an effect, effect 

size was estimated in SPSS using Partial ή2.  Effect size is the magnitude of the observed 

effect, and Partial ή2 gives the proportion of the effect and error variance explained by the 

effect (treatment). Although the ANOVA showed that the means were not significantly 

different, the effect size was large. The ή2 was 0.62, indicating that treatment, by itself, 

accounted for 62% of the overall (SStreatment + SSerror) variance. To examine treatment 

more closely, differences between the fed control and the intermittent periods of 

zooplankton feeding alternating with either algae or no food were tested using post-hoc 

Tukey’s HSD contrasts (Fig. 12). The fed control was significantly different from the 

experimental diet treatments. The two experimental diet treatments were not significantly 

different from one another.   Looking at daily survival, approximately half of the 

mortality that occurs in the two experimental treatments occurred within the first five 

days (Fig. 11). Both the fed/unfed treatment and the fed/algal-fed treatment follow 

roughly the same slope throughout. The experimental treatment that included three days 

of no access to prey interspersed with one day of feeding on zooplankton produced a sub-  
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Figure 11. Daily survival of Lophopanopeus bellus larvae as intermittent 
diet treatments vary. Three Runs are combined. Sample sizes vary per 
treatment and are shown in the legend. Mean day of molt is shown for 
each treatment. Length of each treatment line corresponds to the day on 
which all larvae in that treatment had either molted or died. 

 



Table 12. Two-way ANOVA results for stage survival and stage duration of 
Lophopanopeus bellus larvae when exposed to various patchy diet treatments. 
Stage duration α = 0.025. Stage survival data was arcsine square root transformed.  
       

Source SS df MS F P 
Stage Survival      

Treatment 0.664 2 0.332 3.324 0.141 

Run 0.530 2 0.265 2.656 0.185 

Treatment*Run 0.399 4 0.100 2.369 0.091 

Error 0.758 18 0.042   
Stage duration      

Treatment 2746.419 2 1373.209 298.154 <0.001 

Run 0.997 2 0.498 0.107 0.901 

Treatment*Run 18.835 4 4.709 2.100 0.082 

Error 504.432 225 2.242   
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Figure 12. Effects on stage survival (+ one standard error) of 
Lophopanopeus bellus larvae as intermittent diet treatments vary. 
Three Runs are combined (n=9). Shared letters indicate no 
significant differences between treatments (Tukey’s HSD post hoc 
contrasts, α = 0.05). 
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optimal result; namely, reduced survival and delayed development as compared to a 

continuously fed control. Adding algal prey to the sub-optimal diet, however, did not 

produce increased survival as compared to the sub-optimal diet.  

 Stage duration of larvae subjected to intermittent periods of no prey or algal prey 

alternating with zooplankton prey are shown in Figure 13. Data were analyzed by a Two-

way ANOVA (Table 12).  The interaction term was non-significant (p > 0.025). Tests of 

the main effects showed treatment to be significant.  Differences between the fed control 

and the intermittent periods of zooplankton feeding alternating with either algae or no 

food were tested using post-hoc Tukey’s HSD contrasts. The fed control was 

significantly different from both experimental diet treatments (p < 0.025), and the 

experimental diet treatments were significantly different from one another (Fig. 13).  

Larvae in the fed control had the shortest mean stage duration (8 days), with accelerated 

development compared to the fed/unfed treatment of 7.5 days or 48% and to the 

fed/algal-fed treatment by 6.7 days or 45%. In contrast to the survival results, addition of 

algae to the sub-optimal diet did show a statistically significant impact on stage duration, 

producing an acceleration of development by 5%. Results thus indicate a significant but 

small degree of accelerated development in Lophopanopeus bellus larvae due to the 

ingestion of algal prey in patchy prey environments. 
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Figure 13. Effects on stage duration (+ one standard error) of 
Lophopanopeus bellus larvae as intermittent diet treatments vary. 
Three Runs are combined. Sample sizes vary per treatment and 
are shown in each column. Different letters indicate significant 
differences between treatments (Tukey’s HSD post hoc contrasts, 
α = 0.025). 
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Hemigrapsus nudus  
 

Daily survival of larvae subjected to intermittent periods of no prey or algal prey 

alternating with zooplankton prey are shown in Figure 14. Stage survival data were 

analyzed by a Two-way ANOVA with treatment and Run as factors (Table 13).  The 

interaction term was non-significant (p > 0.05). Tests of the main effects showed 

treatment to be significant.  Differences between the fed control and the intermittent 

periods of zooplankton feeding alternating with either algae or no food were tested using 

post-hoc Tukey’s HSD contrasts. The fed control had significantly higher survival from 

the experimental diet treatments (p < 0.05) by at least 63% (Fig. 15). The two 

experimental diet treatments were not significantly different from one another.  Looking 

at daily survival, the two experimental diet treatments follow the same slope as the fed 

control until day six, after which they sharply drop away: approximately 60% mortality 

occurring over the next ten to twelve days (Fig. 14). Both fed/unfed and fed/algal-fed 

treatments follow roughly the same pattern, as is the case with Lophopanopeus bellus. 

Results suggest that ingestion of algae does not increase stage survival of Hemigrapsus 

nudus larvae as compared to the unfed sub-optimal diet.   

 Stage duration of larvae subjected to intermittent periods of no prey or algal prey 

alternating with zooplankton prey are shown in Figure 16. Data were analyzed by a Two-

way ANOVA (Table 13).  The interaction term was significant (p < 0.025), and data were 

therefore subjected to simple main effects contrasts to assess differences between 

treatments within each Run. For all Runs, the fed control had a significantly shorter stage 

duration as compared to the two experimental treatments (p < 0.025), ranging from 2.5 

days (25%) in Run three, to 5.3 days (42%) in Run one (Fig. 16). For Runs one and two,  
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Figure 14. Daily survival of Hemigrapsus nudus larvae as intermittent 
diet treatments vary. Three Runs are combined. Sample sizes vary per 
treatment and are shown in the legend. Mean day of molt is shown for 
each treatment. Length of each treatment line corresponds to the day on 
which all larvae in that treatment had either molted or died.  

 



Table 13. Two-way ANOVA results for stage survival and stage duration of 
Hemigrapsus nudus larvae when exposed to various patchy diet treatments. Stage 
duration α = 0.025. Stage survival data was arcsine square root transformed.  
       

Source SS df MS F P 
Stage Survival      

Treatment 4.661 2 2.330 28.264 0.004 

Run 0.160 2 0.080 0.971 0.453 

Treatment*Run 0.330 4 0.082 1.428 0.265 

Error 1.039 18 0.058   
Stage duration      

Treatment 236.716 2 118.358 34.017 0.003 

Run 5.876 2 2.938 0.901 0.472 

Treatment*Run 15.924 4 3.981 7.690 <0.001 

Error 51.766 100 0.518   
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Figure 15. Effects on stage survival (+ one standard error) of Hemigrapsus nudus larvae 
as intermittent diet treatments vary. Three Runs are combined (n=9). Shared letters 
indicate no significant differences between treatments (Tukey’s HSD post hoc contrasts, 
α = 0.05). 
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Figure 16. Effects on stage duration (+ one standard error) of Hemigrapsus 
nudus larvae as intermittent diet treatments vary. Sample sizes vary per 
treatment and are shown in each column. Different letters indicate significant 
differences between treatments within each Run only, not between Runs 
(simple main effects contrasts, α = 0.025). 
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the fed/unfed treatment and the fed/algal-fed treatment were not significantly different 

from one another. Statistical tests between the two experimental treatments have little 

meaning for Run three due to small sample sizes (n = 2 and n = 1) as a result of high 

mortality.  Overall results suggest no significant difference in stage duration of  

Hemigrapsus nudus larvae due to presence or absence of algal prey during patchy prey 

environments. 

  

Mixed prey diet experiments 

Lophopanopeus bellus 

 

 Stage survival of larvae subjected to varying concentrations of algal prey mixed 

with zooplankton prey is shown in Figure 17. All treatments showed relatively high 

survival.  Data were analyzed by a Two-way ANOVA with treatment and Run as factors 

(Table 14).  The interaction term was non-significant (p > 0.05). Tests of the main effects 

showed treatment to be non-significant. Looking at daily survival, all four treatments 

follow roughly the same pattern, with approximately 30% mortality occurring within 20 

days (Fig. 18). Overall results suggest no significant difference in stage survival when 

algae supplements zooplankton in the diet of newly hatched Lophopanopeus bellus 

larvae.  

 Stage duration of larvae subjected to varying concentrations of algal prey mixed 

with zooplankton prey are shown in Figure 19. Data were analyzed by a Two-way 

ANOVA with treatment and Run as factors (Table 14).  The interaction term was non-

significant (p > 0.05). Tests of the main effects showed treatment to be non-significant.   
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Figure 17. Effects on Stage I survival (+ one standard error) of Lophopanopeus bellus 
larvae as mixed experimental diet varies. Zooplankton density (Artemia franciscana) 
remained consistent across all treatments. Three Runs are combined (n = 9). 
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Table 14. Two-way ANOVA results for stage survival and stage duration of 
Lophopanopeus bellus larvae when exposed to various mixed diet treatments of 
zooplankton and algal prey. Stage duration α = 0.025. Sum of Squares Type IV was used.  
      
Source SS Type IV df MS F P 

Stage Survival      

Treatment 0.035 3 0.012 1.521 0.318 

Run 0.631 2 0.315 40.718 0.001 

Treatment*Run 0.039 5 0.008 0.568 0.723 

Error 0.300 22 0.014   
Stage duration      

Treatment 11.726 3 3.909 2.088 0.217 

Run 51.721 2 25.860 13.805 0.008 

Treatment*Run 9.294 5 1.859 0.626 0.680 

Error 781.443 263 2.971   
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Figure 18. Daily survival of Lophopanopeus bellus larvae as mixed diet treatments 
vary. Three Runs are combined. Sample sizes vary per treatment and are shown in the 
legend. Mean day of molt is shown for each treatment. Length of each treatment line 
corresponds to the day on which all larvae in that treatment had either molted or died. 
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Figure 19. Effects on Stage I duration (+ one standard error) of Lophopanopeus bellus 
larvae as mixed experimental diet varies. Zooplankton density (Artemia franciscana) 
remained consistent across all treatments. Three Runs are combined. Sample sizes vary 
per treatment and are shown in each column.   
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Overall results suggest no significant difference in stage duration when algae 

supplements zooplankton in the diet of newly hatched Lophopanopeus bellus larvae. 
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DISCUSSION 

 

 Because of the unpredictable, and almost infinite, combinations of algal species 

larval crabs might encounter in nature, and the various algal densities that might be 

encountered, any attempt to simulate such natural assemblages for experimental purposes 

would be arbitrary. For the purposes of my experiments, therefore, and consistent with 

the intent to determine possible contributions of microalgae to the nutrition of larval 

crabs, I decided to use a monoculture of an alga of proven nutritional value in the 

mariculture of a variety of invertebrate larvae. Isochrysis galbana has been used 

extensively as a diet in bivalve larval culture in hatchery environments (Sulkin and 

Epifanio 1975; Harms and Seeger 1989; Brown et al. 1997). The value of this algal 

species as a food item for a variety of species is thought to be due to its relatively high 

content of long chain omega-3 polyunsaturated fatty acids (PUFA) (Volkman et al. 1989; 

Brown et al. 1997). Although this alga has not been shown to support the development of 

larval crabs directly, it increases the nutritional value of rotifers as a prey for larval crabs 

(Hartman and Sulkin 1999; Sulkin and McKeen 1999). This is consistent with the results 

of Levine and Sulkin (1978) showing that larval crabs require a dietary source high in 

such PUFA to develop normally. The use of I. galbana, therefore, is a possible ‘best-

case’ scenario for assessing the role of microalgae in contributing to the nutrition of 

larval crabs.  

 A similar experimental challenge is presented in selecting a model zooplankter for 

use in diet studies. The choices of freshly-hatched nauplii of the brine shrimp Artemia 

franciscana and the rotifer Brachionis plicatilis are based on their extensive use in crab 
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larval culture (Sulkin and Epifanio 1975; Sulkin and Van Heukelem 1980; Anger and 

Dawirs 1981; Anger et al. 1981; Levine and Sulkin 1984; Hartman and Sulkin 1999).  

 I chose a high algal density for most of the experiments (4x103 cells ml-1) to 

ensure that algal density was not a factor limiting ingestion, and to increase chances of 

detecting any experimental effect that might occur.  It has been shown that larval crabs 

will increase ingestion of prey cells or particles when presented in higher densities (Incze 

and Paul 1983; Schwamborn et al. 2006; Shaber and Sulkin 2007), and the chosen density 

is well within the range used for similar feeding studies with various protist prey (Harms 

and Seeger 1989; Paul et al. 1989; Harms et al. 1994; Sulkin et al. 2003). Moreover, in 

phytoplankton blooms off the California coast, various phytoplankton species’ abundance 

can exceed 1x103 cells ml-1 (Horner et al. 1997); and in the spring, at the chlorophyll 

maximum depth in the Gulf of Alaska, certain diatom concentrations can reach 2x105 

cells ml-1 (Paul et al. 1989).  Algal quantity can be quantified by cell density or by carbon 

content. Zoeae ingest individual cells presumably based on encounters (Perez and Sulkin 

2005), yet oceanographers commonly measure algal biomass in terms of carbon. Harms 

and Seeger (1989) used a carbon content of approximately 1μg C ml-1 based on naturally 

occurring maximum carbon concentrations for their larval crab diet studies. Algal carbon 

content in the present experiments is 0.1µg C ml-1 based on measurements of Isochrysis 

galbana made elsewhere (Berggreen et al. 1988), which is a full magnitude lower than 

that used by Harms and Seeger (1989). Because such maximum values are uncommon, 

algal densities in the present experiments fall within naturally occurring densities in the 

field, while maximizing the ability to detect an effect.  
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 A comprehensive study looking at algal contribution in various scenarios that 

newly hatched crabs are likely to encounter has not been previously reported. Crab 

species in the present study represented a variety of families, hatching seasons, habitats 

and larval sizes. Previous studies and personal observations have shown Grapsidae 

larvae, Xanthid larvae and Metacarcinus magister (Cancridae) larvae to have different 

capacities to withstand nutritional stress (Staton and Sulkin 1991; Sulkin et al. 1998a; 

Sulkin, pers. comm.).  Previous findings in these capacities among families were both 

supported and refuted in the following experiments.  

 

Post hatching feeding experiments 

 

 Post-hatching feeding experiments were conducted to pinpoint the period 

immediately after hatching when feeding is vital, but preferred zooplankton prey may not 

be available.  Newly hatched larvae may face logistical challenges to obtain food. 

Because larvae hatch from a benthic adult, they must first swim up into the water column 

to access meso-zooplankton prey. It is during this period, when they must expend energy, 

but have depleted reserves, that an encounter with any prey type, including microalgae, 

may provide an essential source of nutrition. Results have shown that as the initial period 

of starvation after hatching is extended, the lower the larval survival and the more 

delayed the development will be, despite subsequent feeding (Staton and Sulkin 1991). 

Moreover, if sufficient resources are acquired within the first few days of life, subsequent 

food availability may not affect survival to the second stage (Anger and Dawirs 1981). 
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The present experiment examined how an algal diet would affect survival and 

development if made available to larvae during this critical early period.  

 Results from Post-hatching feeding experiments reported here confirm previous 

studies on brachyuran larvae that an early source of nutrition is necessary for continued 

survival and development (Sulkin 1975; Bigford 1978; Anger and Dawirs 1981; Anger et 

al. 1981; Staton and Sulkin 1991). As would be expected for planktotrophic larvae, as the 

initial period before zooplankton feeding increased, stage survival decreased and stage 

duration was extended (Figs. 5 and 6 for Lophopanopeus bellus, Figs. 8 and 9 for 

Metacarcinus magister).  Provision of algae before subsequent zooplankton feeding did 

not significantly improve larval survival or accelerate development when compared to 

unfed treatments.  Similarly, mean Point of No Return (PNR) analyses for both crab 

species showed that, although algae and unfed treatments both differed from the fed 

controls on comparable treatment days, there were no significant differences between 

them. Only a few exceptions occurred, with increased survival or accelerated 

development on an algal diet seen in a few individual Runs.  Thus, the results indicate 

that availability of algae as prey in the period immediately following hatching does not 

contribute to the nutritional needs of the larval crabs in ways that are manifested in stage 

survival or duration.  Previous studies on Metacarcinus magister and other brachyuran 

species have shown that these species ingest a wide variety of prey items, including toxic 

algae and chlorophytes (Perez and Sulkin 2005), autotrophic dinoflagellates (Hinz et al. 

2001), heterotrophic dinoflagellates (Sulkin et al. 1998b) and diatoms (Hartman and 

Letterman 1978). However, the evidence as to the nutritional value of ingesting these 

prey has been inconclusive. Although larvae readily ingested the autotrophic 
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dinoflagellate Prorocentrum micans and the heterotrophic dinoflagellate Noctiluca 

scintillans (fed P. micans), neither was sufficient on its own to sustain development to the 

second stage (Sulkin et al. 1998b). However, some nutritional benefit was derived from 

the algal diets because mortality was delayed compared to the unfed control. 

Furthermore, in experiments with several diatom species, Hartman and Letterman (1978) 

found in some cases that diatoms support M. magister development through the fourth 

and fifth larval stages.  Experiments looking at the effect of the dinoflagellate 

Prorocentrum micans on survival and development of another brachyuran crab, 

Hemigrapsus oregonensis, have been equivocal (Lehto et al. 1998; Hinz et al. 2001). 

While H. oregonensis larvae did not survive to stage two on a diet of P. micans in one 

study (Hinz et al. 2001), survival to stage two in another study was equivalent to the 

zooplankton-fed control, although development was delayed (Lehto et al. 1998). In 

addition, two other species of algae (Noctiluca milaris and Dunaliella tertiolecta) 

supported low to medium survival to stage two, while all larvae in the unfed control died.  

These results generally contradict those shown in the present study, where algal-fed 

periods did not significantly alter stage survival or duration of Lophopanopeus bellus or 

M. magister larvae compared to unfed periods. Ambiguous results such as these have 

made the nutritional role of algae to newly-hatched larval crabs difficult to assess. Algal 

prey seem to have a beneficial effect on survival and development of newly-hatched 

larvae only in certain cases. Differences among literature reports, and with results 

reported here, may be due to the specific microalgal prey used, to the crab species, or to a 

combination of the two. 
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 The use of Point of No Return analyses assessed not only the effects of early 

starvation, as was the case with previous studies (Anger and Dawirs 1981; Staton and 

Sulkin 1991), but took these experiments further by assessing what effect algae had on 

survival and development during these periods of starvation. Anger and Dawirs (1981) 

found with Hyas araneus that the PNR for 50% larval survival (PNR50) was reached after 

half of the maximum time an unfed larva could survive. According to their model, in the 

present experiment the PNR50 threshold would have been at 5.5 days (unfed L. bellus and 

M. magister larvae both survived for a maximum of 11 days). In fact, the PNR50 was 

reached roughly by day three for Lophopanopeus bellus and by day two for Metacarcinus 

magister, much earlier than for Hyas araneus, indicating differences in starvation 

resistance among crab species.   Furthermore, Anger and Dawirs (1981) found that if 

more than 70% of the maximum unfed period had passed (11 days in the present 

experiment) no larva would recover (PNR100). In the present experiment, all M. magister 

larvae had indeed died well before the theoretical PNR100 threshold (7.7 days), and only 

four L. bellus larvae out of the initial 108 were still alive after five days of starvation 

(approximately two days before the theoretical PNR100 would be reached, but the longest 

unfed period in the scope of the experiment). It seems likely that, after another two days 

without food, the last four larvae would have been depleted of energy reserves, rendering 

them unable to molt, and yielding similar findings to those for Hyas araneus.   The 

provision of algae during these unfed periods did not alter the mean PNRs significantly, 

having no effect on larval ability to molt or their time to molt.   

 In another study using PNR analysis with brachyuran crab larvae, Staton and 

Sulkin (1991) found that the PNR for significantly increased mortality and delayed 
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development for Sesarma cinereum was reached when initial starvation extended longer 

than one third of normal stage duration. In the present study, Lophopanopeus bellus  

larvae straddled this threshold – it took longer for starvation to affect their survival, but 

less time for it to affect their development rate; while for Metacarcinus magister larvae, 

both survival and development rate had been significantly affected well before one third 

of normal stage duration had elapsed.  The present results are perhaps most comparable 

to those found in similar delayed feeding experiments with a commercially important 

brachyuran crab, Chionoecetes opilio; after three days of starvation, resumption of 

feeding was considered ‘useless’ for commercial rearing, given the amount of mortality 

that occurred (Kon 1979). The PNRs for survival in unfed treatments were 3.67 days for 

L. bellus and 2.67 days for M. magister.  Again, the provision of algae did not have any 

evident effect during these critical periods.  

 Overall Lophopanopeus bellus larvae exhibited higher starvation resistance than 

did Metacarcinus magister larvae. This is consistent with previous observations of M. 

magister in response to nutritional stress (Sulkin et al. 1998a) and the relative hardiness 

of Xanthid family larvae (Staton and Sulkin 1991 and references therein). Such variation 

among species is not unusual. Sesarma reticulatum, a congener of S. cinereum, exhibited 

so much starvation resistance that 100% of the larvae in initial starvation treatments 

survived to the second zoeal stage, including those starved for five days (Staton and 

Sulkin 1991).  Despite these differences in resilience among crab species, apparent even 

with congeners, in the present study these differences did not alter the effects of an algal 

diet on larval survival or development.  
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Patchy prey diet experiments 

 

 Patchy prey diet experiments were designed to assess algal contribution in times 

when encounters with meso-zooplankton prey are intermittent. Studies assessing larval 

king crab prey abundance in southeastern Alaska have shown patchiness of zooplankton 

prey both temporally and spatially. Furthermore as larvae traverse the water column in 

diel migrations (Paul et al. 1989), they undoubtedly encounter alternatively dense and 

sparse aggregations of such prey (Mackas et al. 1985). Moreover, oceanographic 

phenomena create environmental conditions that support episodic nutrient enrichment 

resulting in seasonal phytoplankton blooms (Mackas et al. 1985; Horner et al. 1997), 

which, in turn, can lead to increased zooplankton abundance. Given the likelihood that 

larval crabs will be encountering patches of plentiful prey interspersed with sparse, if any 

prey, these experiments examined how an algal diet would affect larval survival and 

development if made available between encounters with zooplankton prey.   

 In Patchy prey experiments, intermittent presence of prey significantly decreased 

larval survival and delayed stage duration compared to continuously fed controls. In 

addition, presence of algae compared to unfed periods did not significantly affect 

Lophopanopeus bellus or Hemigrapsus nudus survival, but did accelerate L. bellus 

development by 5% (Fig. 13). That there are survival differences between controls and 

experimental treatments is not surprising. Experimental survival rates may be more likely 

to approximate survival rates in nature than the fed controls do, which provide 

zooplankton in excess continuously. In looking at discrepancies between laboratory and 
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field tests, a study on rates of larval fish prey ingestion suggested that encounters with 

patchy prey fields are frequent and that plankton exist at much higher densities than some 

sampling techniques show (Mackenzie et al. 1990). Furthermore, prey, even if at low 

density overall, are distributed patchily, creating highly concentrated areas that larvae can 

exploit (MacKenzie et al. 1990; Welch and Epifanio 1995).  Larvae in the field are 

therefore likely to be relatively well adapted to these intermittent periods without food. 

However, unlike results for L. bellus, neither experimental treatment sustained high 

survival in H. nudus; both were at or below 20% (Fig. 15). Although the Grapsid family 

has been deemed relatively ‘hardy’ with respect to dietary requirements (Staton and 

Sulkin 1991; Sulkin et al. 1998a), H. nudus larvae fared worse in the present experiments 

when encountering simulated patchy prey conditions than did L. bellus whose larvae had 

a survival rate of at least 60% (Fig. 12), even when encountering no food for 3-day 

periods. Larvae in the fed controls had high survival, indicating that the stress of the 

treatments, rather than a weak H. nudus brood, was the cause of high mortality.  

However, other studies have shown results similar to that of L. bellus. Sulkin et al. 

(1998a) found that Metacarcinus magister larvae also had considerable survival (44.6%) 

in a similar fed/unfed treatment, though they had been previously observed to be 

relatively susceptible to dietary stress. The specific timing of these unfed periods can 

make a difference in larval ability to successfully complete the molt cycle, and 

differences have been observed among various decapod species in how these effects are 

manifested (Anger 1987). This may, in part, explain the inconsistent results found within 

the present study and between this and other studies. Likewise, although there is evidence 

showing relative hardiness during intermittent feeding, the nutritional role of algae during 
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these periods is still relatively uncertain.  In the present study, an algal diet only made a 

marginal difference in the development rate of one species. However, in a patchy prey 

experiment with Metacarcinus magister, two species of dinoflagellates, Prorocentrum 

micans and Noctiluca scintillans, supported higher M. magister survival and accelerated 

development than the fed/unfed treatment (Sulkin et al. 1998b). Furthermore, survival 

was equivalent to the zooplankton-fed (Artemia sp.) control. On the other hand, a third 

alga (Dunaliella tertiolecta) actually reduced survival compared to the fed/unfed 

treatment. While larvae in our experiments were presumably more nutritionally stressed  

than those in the above-mentioned study, (having three days between zooplankton 

feeding rather than two days), a condition that might be expected to further accentuate 

any marginal algal nutritional contribution, I found less of an effect than did Sulkin et al. 

(1998b). Overall the above findings illustrate that different algal species can vary in their 

nutritional roles in the larval crab diet. Perhaps not only quality, but quantity of algae 

makes a difference. Bioenergetic studies show that a large quantity of diatoms is required 

to sustain larvae of various species (Paul et al. 1989). Densities upwards of 3x103 cells 

ml-1 of one diatom supported 82% of stage one king crab larvae to the next stage, while 

densities lower than 15x103 cells ml-1 of another diatom supported only 15% survival. 

Although these densities have been documented in the field (Paul et al. 1989), they are on 

the upper end of the spectrum. Moreover, Incze and Paul (1983) found that quantities of a 

particularly large diatom necessary to support respiratory requirements of stage one 

tanner crab larvae are unlikely to be found co-existing with those larvae.  Perhaps 

therefore, in a patchy prey environment, it is a delicate combination of quality and 

quantity of algal cells, in addition to timing relative to the molt cycle that makes the 
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difference between a marginal and a substantial effect on a larva’s survival and 

development.  

 

Mixed prey diet experiments 

 

 Of all potential prey scenarios, it is perhaps most likely that larval crabs would be 

encountering both zooplankton and algal prey simultaneously. Despite the demonstrated 

ability of larvae to choose and reject certain prey types (Hinz et al. 2001; Perez and 

Sulkin 2005; Schwamborn et al. 2006), previous studies with mixed diets of zooplankton 

and algae, including preliminary tests of larvae under the present experimental conditions 

(Fig. 2), have indicated that larvae will ingest algae even when zooplankton are present 

(Paul et al. 1989; Schwamborn et al. 2006; Shaber and Sulkin 2007).  Laboratory 

experiments with king crab larvae even show preferential ingestion of diatoms over 

copepod or cirripede nauplii (Paul et al. 1989), and studies of the crab Aratus pisonii 

demonstrate larval selection of large diatoms over copepods and other zooplankton 

(Schwamborn et al. 2006).  It seems likely then that larvae in the field would ingest both 

phytoplankton and zooplankton, as evidenced by field collections of larvae that contain 

algae in their guts (Paul et al. 1979; Paul and Paul 1980; Paul et al. 1989; Harms et al. 

1994). Moreover, it has been suggested that a mixed diet of algae and zooplankton might 

provide micronutrients that a pure zooplankton diet would not, resulting in increased 

survival or more rapid development (Incze and Paul 1983; Epifanio et al. 1991; Welch 

and Epifanio 1995). Mesocosm-raised larvae showed equal growth and faster 

development than laboratory raised larvae, despite zooplankton prey in enclosures having 
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likely had lower PUFA levels than the Artemia spp nauplii used in lab experiments, 

leading to the suggestion that unquantified algal communities might have led to the 

unexpected result (Welch and Epifanio 1995). Mixed prey diet experiments were 

conducted in the present study to test the hypothesis that algal prey might work 

synergistically with zooplankton to improve larval survival or accelerate development 

rate.   

 My results did not support that hypothesis, showing that for a variety of algal 

densities, neither larval survival nor development rate was affected compared to the 

zooplankton-fed control (Figs. 17 and 19). All treatments had high survival (above 60%) 

and moderately short stage durations.  It may be possible that such well-fed larvae, 

receiving Artemia spp. nauplii in excess daily, were at the height of their developmental 

rate, and any effects of micronutrients provided by the algal portion of their diet were of 

too small a value to be assessed by the present study parameters. In contrast, the Atlantic 

mud crab larvae in mesocosm enclosures (Welch and Epifanio 1995) were not carefully 

provided with a PUFA-rich diet, perhaps allowing for a greater difference to be observed. 

To account for this, future mixed diet studies should include the combination of a sub-

optimal zooplankton diet with an algal diet. However, it has been suggested that larvae 

behave differently with respect to low prey abundances in the laboratory than they do in 

the field (MacKenzie et al. 1990; Welch and Epifanio 1995), and this may hamper the 

ability to test for subtle nutritional differences in the laboratory.  
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Comparative nutritional value of algae 

 

 Although Isochrysis galbana has been widely used to successfully rear larval 

invertebrates, and represented a ‘best case scenario’, it did not differ overall in its effect 

on survival and development compared to unfed treatments in the present study. As 

discussed earlier, I. galbana contains PUFAs essential to larval crab development and 

passes those on to heterotrophic prey capable of supporting higher crab larval survival 

(Sulkin and McKeen 1999), particularly when compared to similar treatments using the 

green alga Dunaliella tertiolecta. Two PUFAs (eicosapentaenoic acid-EPA and 

docosahexaenoic acid-DHA)  have been identified as the most likely diet constituents to 

sustain survival and accelerate development, possibly because crab larvae either may not 

have the capacity to elongate their precursor, linolenic acid (Levine and Sulkin 1984), or 

if they do, must expend energy to do so (Pillsbury 1985).  Studies on the biochemical 

composition of microalgae have shown that I. galbana can vary in its fatty acid content 

from containing only one of those fatty acids – DHA (Pillsbury 1985; Brown et al. 1997), 

to containing trace amounts (Volkman et al. 1989) or more of EPA (Wacker et al. 2002). 

In contrast, diatoms are considered richer sources of both fatty acids, and have more lipid 

than any other algal class tested including Prymnesiophytes (I. galbana) (Brown et al. 

1997). It may not be surprising therefore, that diatoms have supported survival and late 

stage development in larval crabs in several studies (Hartman and Letterman 1978; 

Harms and Seeger 1989; Paul et al. 1989).  

 The dinoflagellate Prorocentrum micans, shown to increase Metacarcinus 

magister survival and accelerate development (Sulkin et al. 1998b), contains above 
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average lipid content and both essential PUFAs, (high levels of DHA though lower levels 

of EPA) (Laabir et al. 2001). Sulkin (1975) suggested that the increase in lipids found in 

larvae nearing molt may point to lipids as a dietary prerequisite for a timely molt, and 

found that two diets that sustained late stage Callinectes sapidus larvae contain 2-3 times 

as much lipid as a D. tertiolecta-fed rotifer diet. However, any discussion of the relative 

nutritional content of I. galbana also must take into account that both of these PUFAs 

may be nutritionally required only in older larvae for success through to the megalopa 

stage, and may not be as useful in explaining results for the first larval stage (Levine and 

Sulkin 1984). In addition, fatty acid composition can vary widely, particularly in I. 

galbana, possibly due to genetics of different strains or culture conditions (Volkman et 

al. 1989). 

A study on vitamin content of several microalgae species used in mariculture 

showed each species had low concentrations of at least one vitamin (De Roeck-

Holtzhauer et al. 1991), in addition to results showing varying concentrations of other 

vital nutrients like fatty acids, leading several authors (Volkman et al. 1989; Brown et al. 

1997) to surmise that perhaps for the optimum nutritional contribution for crustacean 

larvae, a mixed diet of algae would need to be ingested. In nature, larvae would rarely 

encounter only one species of alga, unless in the midst of a monospecific bloom; 

however, blooms tend to change composition temporally and spatially (Paul et al. 1989; 

Horner et al. 1997; Turner and Tester 1997). Since only one algal species was available 

to the larvae in the present study, perhaps future studies should attempt to simulate more 

realistic mixtures of algal types.  
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Effects of hatching season and larval size 

 

 Because phytoplankton abundance and composition varies considerably based on 

season (Paul et al. 1989; Smith and Hobson 1994), it is reasonable to speculate that larvae 

hatching in one season might have a different nutritional relationship to algae than larvae 

hatching in another. Hemigrapsus nudus hatch in the spring when phytoplankton can 

reach their maximum abundance during spring blooms (Paul et al. 1989; Coyle and Paul 

1990), while Lophopanopeus bellus hatch throughout the summer, after spring 

phytoplankton blooms have been grazed to lower levels but high levels of irradiance still 

support photosynthesis. In contrast, larvae of Metacarcinus magister hatch into the 

plankton in the winter months during a time of relatively low algal abundance (Thorson 

1946; Smith and Hobson 1994; Horner et al. 1997). It would be reasonable to hypothesize 

that such a plentiful source of prey might be well utilized by H. nudus larvae 

encountering algal cells in a patchy prey environment, or L. bellus larvae needing to feed 

immediately after hatching. Metacarcinus magister adults can be found in subtidal 

eelgrass beds, and it has been suggested that this concentrated area of detrital material 

and productivity could make up for the generally low levels of primary productivity 

elsewhere in the water column (Sulkin et al. 1998b), particularly because larvae that are 

fed detrital particles, especially microbially enriched detritus, in various combinations 

show increased survival and more rapid development (Lehto et al. 1998).   Studies on 

king crab larvae, a species that can hatch during spring blooms, also show some algal 

benefit (Paul et al. 1989). Despite this, season of hatching does not seem to affect the 

likelihood of larvae ingesting algal prey (Perez and Sulkin 2005), or benefiting from it 
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(present study), corroborating some of the earliest observations in larval ecology, that 

many planktotrophic larvae thrive regardless of phytoplankton abundance (Thorson 

1950).  

 In addition to representing a variety of hatching seasons, the three crab species 

were all of varying larval sizes, Hemigrapsus nudus being the smallest and Metacarcinus 

magister the largest, with a difference of approximately 1mm (tip of dorsal spine to tip of 

rostral spine; Perez and Sulkin 2005). Although larval size could potentially affect the 

ability to effectively manipulate prey cells and thereby interfere with ingestion, the algal 

diet did not reveal any differential benefit among crab species. This is confirmed by an 

earlier comprehensive study of predator/prey size ratios involving H. nudus and M. 

magister, in which both species ingested cells larger and smaller than Isochrysis galbana, 

and no relationship between larval size and incidence of algal ingestion was found (Perez 

and Sulkin 2005).  

  

Nutritional ecology 

 

 Food limitation and larval resistance to starvation in times of nutritional stress are 

major factors affecting larval mortality and hence, population dynamics of adults. In a 

major review of invertebrate larval ecology and food limitation, food availability was 

identified as one of three major determinants of recruitment success (Olson and Olson 

1989). Because larval crabs are an abundant and therefore key component in the 

ecosystem at particular times, the larger implications of their survival on the wider 

ecosystem should not be overlooked, not least because larval crabs play an important role 
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as prey for several commercially important fish species (Murphy et al. 1988; Mazumder 

et al. 2006; Potier et al. 2007; Duffy et al. 2010). In addition, regardless of any nutritional 

benefit of an algal diet to larval crabs, it has been widely reported, both in the present 

study and in previous work, that larvae do in fact ingest algal cells on a regular basis 

(Paul et al. 1979; Paul and Paul 1980; Incze and Paul 1983; Lehto et al. 1998; Sulkin et 

al. 1998b; Perez and Sulkin 2005).  This feeding strategy may have an effect on the 

regulation of phytoplankton abundance on small temporal and spatial scales. 

 There is a tendency to presume that there must be a benefit to any trait an 

organism has evolved – that an adaptation will confer with it an increase in fitness. But it 

is equally reasonable to suppose that, in an environment constrained by resources, any 

beneficial morphology or behavior is likely to have a cost associated with it – a tradeoff. 

Examples of evolutionary tradeoffs exist from marine phytoplankton optimizing grazing 

defenses at the cost of nutrient acquisition (Sunda and Hardison 2010), to leopard frogs 

whose fast growth comes at the risk of high mortality (Schiesari et al. 2006), to Darwin’s 

famous finches whose beak morphologies are so highly specialized that it can affect their 

survival (Grant et al. 1976).  In an environment so full of risks to the larval crab: 

predation, starvation, habitat suitability, among others, it would seem that any 

inefficiency would not persist - unless the benefits outweighed the costs. The larval 

crab’s feeding strategy may be loosely analogous to that of finches whose large beak size 

allows them to feed generally on both large and small seeds, but whose feeding efficiency 

on small seeds is far outweighed by that of small-beaked finches. The seemingly 

opportunistic feeding strategy of larval crabs, which includes time and energy spent 

handling and rejecting algal cells (Hinz et al. 2001), or spent ingesting algal cells with 
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questionable nutritional benefit (Perez and Sulkin 2005), may only pay off in prey 

assemblages where many beneficial cells occur, or in very sparse areas where 

opportunism is more likely to yield some sort of sustenance. Changing environmental 

conditions, such as a seasonal shift in fruiting trees for finches (Grant et al. 1976), a 

seasonal shift in phytoplankton abundance (Paul et al. 1989), or a spatially varying 

plankton population for larval crabs, as well as particular species-specific interactions, 

will likely be part of the web of complex interactions that determine overall success or 

failure of this feeding strategy. Given that larval mortality is high in nature, a win-win 

strategy is almost certainly rare. Overall, however, feeding efficiency may be of higher 

importance for the adult stage crab, than it is for the larval stage. The focus on efficiency 

(feeding efficiency in this particular argument) may be a result of its potential importance 

for adult organisms’ fitness. In the case of the adult form, whose principal function is 

reproduction, maximizing nutritional efficiency provides for more energy to be devoted 

to that process, either in terms of increased fecundity and/or to increasing the fitness of 

offspring (Thorson 1950; Vance 1973).  The understanding and study of larval forms has 

historically trailed behind that of adults.  The primary function of a larva, quite different 

from that of an adult, is to acquire enough resources to reach the next stage. As a result, 

certain morphological features, present upon hatching, may not be utilized to their 

greatest potential during these early larval stages.  Larval crab eyes are a chief example of 

this, given that larvae are not visual predators until later in maturity, yet their eyes are one 

of their most prominent physical features.  Morphological characteristics of feeding 

appendages are mainly preserved from one larval stage to the next, as are behavioral 

characteristics, e.g. the tendency to ingest prey of marginal nutritional value (Shaber and 
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Sulkin 2007). Opportunistic feeding therefore, rather than feeding efficiency, may be the 

most successful strategy that larvae have in their unpredictable prey environment.    
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