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ABSTRACT

Closely related animal species are often incompletely isolated reproductively and occa-

sionally hybridize. Many host-specific insects are primarily isolated by the reproductive

barrier of host choice and provide model systems to study gene flow in sympatry. Un-

derstanding conditions that alter barriers like host choice can help us understand repro-

ductive isolation between these species. Hybridization occurs between microsympatric

populations of apple and snowberry maggots in Bellingham, Washington which are also

not isolated by mating season or assortative mating. I exposed apple and snowberry

maggots to their natal fruits in two-way choice experiments to measure their short-range

host preferences. I tested snowberry flies at different life stages to determine whether

host preference is constant throughout their lives. Virgin flies show no preference for their

natal hosts and rarely oviposit. After mating, female snowberry flies strongly prefer their

natal host and oviposit solely in snowberries. Young synovigenic females may balance the

costs of exploring nearby novel hosts and occasionally mating with heterospecific males

with the benefits of finding nutrients to develop their eggs and mates to fertilize them.

Mated females will spend most of their time on their natal host where males will follow

them. As a result, hybridization between apple and snowberry maggot populations is

most likely in the early season before females have mated and started ovipositing in their

natal hosts. The fate of evolutionary interactions between species depends on the life

history dynamics of the reproductive barriers that isolate them. Future studies should

consider strength of reproductive isolation in this context.
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INTRODUCTION

Species are the fundamental units of biological diversity and are commonly defined by

the biological species concept as reproductively isolated populations (Mayr 1963). In the

absence of geographic separation, closely related sympatric species tend to be strongly

isolated by prezygotic ecological and behavioral barriers such as temporal isolation or be-

havioral isolation by habitat or mate choice (Coyne and Orr 2004). Changes to ecological

conditions or organismal behavior can weaken reproductive barriers and enable gene flow

between closely related sympatric populations. Gene flow is expected to continue between

sibling species after secondary contact and throughout their divergence (McPheron 1990,

Mallet 2008). In extreme cases, this gene flow can lead to stable hybrid zones, fusion

or elimination of parental populations, or hybrid speciation (Huxel 1999, Schwarz et al.

2007). As the consequences of gene flow between sympatric species may redefine those

species, it is important to understand the ecological and behavioral barriers that prevent

or enable hybridization. With this understanding we can better predict the evolutionary

interactions between populations at intermediate stages on the continuum of speciation.

Host-specific insects are model organisms for the study of divergence with gene flow as

a result of their species richness and ability to form new species in sympatry through host

shifts and host-related assortative mating (Berlocher and Feder 2002). Host choice is a

strong isolating barrier driven by the behavior of insects and the ecology and physiology of

their host plants (Drès and Mallet 2002). Host-specific insects are under strong selective

pressure to match their life cycles to the phenologies of their host plants, detect and

orient toward host plant signals, and adapt to the larval environment of hosts (Berlocher

and Feder 2002). Thus sympatric populations can be isolated through their host choice

by non-overlapping mating periods, differential responses to host signals, or differential

survival of larvae in host plants.



Host choice is a variable characteristic of host-specific phytophagous insects dependent

on interactions between the physiological states of insects and their hosts. Prior to

reproductive maturity, insects have dispersal patterns indicative of foraging for food

while reproductively mature insects also search for mates and oviposition sites (Harrison

1980, Opp and Prokopy 1987). Correspondingly, the natal host preferences of virgin

females are often much weaker than those of mated or older females (Anton et al. 2007).

While physiological states can affect host choice, host choice can change physiology by

increasing female oogenesis, egg-laying rates, and host use (Papaj 2000). These patterns

indicate that host-specificity is correlated with the requirements of specific life stages.

Variable host choice should have important consequences for the stability of species

in sympatry, especially if host choice is the primary reproductive barrier between those

species. Gene flow is most likely to occur between sympatric populations whose life

cycles include a stage during which they simultaneously lack host-specific behaviors and

are reproductively mature. Early in the season before host-specific behavior increases,

heterospecific encounters on non-natal hosts should be more likely. Connections between

changing host preference and physiological state have been studied in Lepidoptera (Hern

and Dorn 1999, Rojas 1999, Masante-Roca et al. 2007), Hemiptera (Wenninger et al.

2009), and Diptera (Petersson and Sivinski 2003). However, ontogenetic changes in host

preferences have not been studied in the context of gene flow between diverging species.

The Rhagoletis pomonella species group is a model system for investigating the effects

of host choice on gene flow between sympatric populations (Drès and Mallet 2002). The

group consists of R. pomonella host races and latitudinal types, R. zephyria, R. mendax,

the undescribed flowering dogwood fly, and R. cornivora (Smith and Bush 1997). These

species and host races are under strong selective pressure to adapt to the conditions of

their hosts (Michel et al. 2010) such as host phenology (Dambroski and Feder 2007) and

larval fruit environment (Bierbaum and Bush 1990, Schwarz personal communication).
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Since host plants are almost exclusively the site of assembly for mating pairs, host choice

also tends to determine mate choice (Prokopy et al. 1971, Smith and Prokopy 1980).

When the barrier of host choice is incomplete, mating isolation between members of the

species group is also incomplete. For example, in the lab, R. zephyria will mate with

both R. pomonella (Yee and Goughnour 2011) and R. mendax (Schwarz and McPheron

2007). R. pomonella host races from apple and hawthorn will also mate in the absence

of host cues (Feder et al. 1994).

Host choice is primarily determined by the way Rhagoletis flies respond to the hier-

archical combination of olfactory, visual, and tactile signals provided by their hosts. At

long range (∼12 m), flies identify hosts by volatile chemicals emitted from ripening fruit

(Linn et al. 2003), moving toward fruits from their natal host and away from other fruits

(Linn et al. 2005b). At short range (<1 m), flies identify hosts visually based on the ap-

pearance of habitat structure and fruit clusters (Linn et al. 2003). At this scale, female

Rhagoletis flies also use their ovipositors to perform tactile and chemical tests on poten-

tial host fruit. Probing allows females to evaluate the quality of the fruit and detect an

oviposition-deterring pheromone left by other females after ovipositing (Prokopy 1972).

When flies are exposed to blends of different host odors at close range, they appear to

rely on the color and shape of fruit for host choice instead of the potentially confusing

olfactory signals they receive (Forbes and Feder 2006). Mistakes in host detection and

acceptance at this short range will manifest as variable host preference and potentially

as shifts in natal hosts.

Rhagoletis females accept hosts for oviposition based on a combination of factors in-

cluding density dependence (Roitberg et al. 1990), previous experience with other hosts

(Prokopy et al. 1982, Papaj and Prokopy 1988), increased egg load (vanRanden and

Roitberg 1996), age (Prokopy et al. 1988), and mating status (Opp and Prokopy 1986).

Variation in these factors throughout the lives of plant parasites could lead to variation in
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host choice. For closely related sympatric species, even temporary changes in host choice

may be sufficient to allow interactions between species. When mating isolation is incom-

plete, as it is between many Rhagoletis species (Feder et al. 1994, Schwarz and McPheron

2007, Yee and Goughnour 2011), these interactions could result in hybridization and gene

flow between populations and potentially prevent speciation.

Each member of the R. pomonella species group has emerged in the last 1.5 Myr

through an initial host shift to a novel host and subsequent reduction of gene flow between

populations (Smith and Bush 1997, Xie et al. 2007). Apple and hawthorn maggots formed

as incipient host races through the introduction of non-native apples to the northeastern

United States in the 1800s (Bush 1969, Feder et al. 1988). In that same region and time

period, individuals of R. zephyria and R. mendax mated on the introduced honeysuckle

(Lonicera), creating a hybrid population that maintained its preference for its new host

(Schwarz et al. 2005). The sibling species of R. pomonella have arisen through host

shifts from hawthorn to novel hosts such as snowberry, blueberry, and flowering dogwood

(Xie et al. 2008). These resulting host races and species have so few fixed substitutions

amongst them that the proper order of divergence within the group cannot be resolved

with mitochondrial or nuclear markers (Berlocher 2000, Xie et al. 2008). Indeed, low

levels of hybridization have been reported between sibling species in secondary contact

even after extended isolation by geographic barriers (McPheron 1990, Feder et al. 1999).

These results suggest that host shifts within the group have occurred recently, rapidly,

and with continued gene flow between shifting populations.

Since host shifts have been so rapid and recent in the R. pomonella species group, the

barriers between existing species and new hosts are most likely incomplete. Previous tests

based on visual, olfactory, and ovipositional responses by species to natal and non-natal

hosts suggest that host preference is incomplete within the group. Approximately 10-30%

of R. pomonella flies from apple, hawthorn, and flowering dogwood respond to non-natal
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host odors as strongly as natal odors (Linn et al. 2005a). R. pomonella host races from

apple and hawthorn both experience reduced natal host preference when presented with

a mix of natal and non-natal odors and visual signals (Forbes and Feder 2006). Flies from

both host races will also oviposit into each other’s respective hosts (Prokopy et al. 1988).

In oviposition acceptance experiments with no-choice conditions, R. zephyria oviposited

in honeysuckle and snowberry while R. mendax oviposited in blueberry, honeysuckle,

and hawthorn (Schwarz et al. 2007).

For sympatric populations of Rhagoletis species, such incomplete host preference pro-

vides opportunities for individuals to meet and hybridize. Hybrids may experience ex-

trinsic inviability through intermediate diapause timing (Dambroski and Feder 2007),

reduced fecundity (Xie et al. 2008), or reduced response to parental host fruits (Linn

et al. 2005a) and still remain intrinsically viable adults (Yee and Goughnour 2011).

When these extrinsic barriers break down, the resulting viable hybrids can potentially

form stable hybrid populations, as in the case of the Lonicera fly (Schwarz et al. 2005),

or mediate gene flow between parental populations through backcrossing.

The combination of variable host preference and incomplete mating isolation could fa-

cilitate host shifts or gene flow between sympatric populations, particularly those coming

into secondary contact. A natural experiment of this kind has been taking place in the last

30 plus years since the invasive apple maggot, R. pomonella, arrived in Washington State

and came into secondary contact with the native snowberry maggot, R. zephyria (AliNi-

azee and Penrose 1981). The two species are incompletely isolated by mate choice (Yee

and Goughnour 2011) and previous research suggests that significant introgression has

occurred between populations in Washington (McPheron 1990, Green et al. in press). The

geographic distributions of apples and snowberries overlap significantly and both hosts

bear fruit during the same time of the year. Thus, unlike host races of R. pomonella

on apple and hawthorn, sympatric populations of R. zephyria and R. pomonella are not
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temporally isolated. The lack of geographic or temporal isolation makes host choice an

important prezygotic barrier between these sympatric populations. Apple and snow-

berry plants in this region frequently grow adjacent to each other with interdigitating

branches. Such spatial structure provides an ideal configuration to investigate potential

gene flow between sympatric sibling species as a result of very short range host detec-

tion and acceptance. In Bellingham, Washington, fly trap catches have confirmed the

presence of R. pomonella and R. zephyria at sympatric sites where both apples and

snowberries occur (Gough personal communication). Genotypes of flies at these sites

also reveal asymmetrical introgression between the populations, with all introgressed in-

dividuals found in apples (Green et al. in press). Preliminary transplant experiments

with pure parentals have found fewer survivors among R. pomonella in snowberries than

R. zephyria in apples, which suggests the asymmetry of introgression could be the result

of extrinsic inviability of hybrids in snowberries (Schwarz personal communication).

In this study, I investigate the close-range host preferences of virgin, näıve snowberry

and apple maggots, as well as the host preferences of virgin, experienced and mated

snowberry maggots. Based on previous research, I expect snowberry and apple maggot

flies to prefer their natal hosts and for that natal host preference to remain constant

for snowberry maggot flies at each life stage. I tested these hypotheses in a laboratory

with two-way choice host acceptance experiments. In the first set of experiments, virgin,

näıve flies of each species were exposed to apple and snowberry fruit. Snowberry maggot

flies from these experiments were then tested with hawthorn and snowberry under the

assumption that no significant learning had occurred during the initial tests. Mated

female snowberry maggot flies were exposed to apple and snowberry to compare the

effects of mating status on host preference. Finally, I observed the frequency of mating

between virgin flies in arenas with only apples and only snowberries to determine whether

the presence of non-natal host fruit deters mating.
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METHODS

Fly populations and rearing

The pupae from these experiments were collected in the fall of 2011 from infested apple

and snowberry fruit in Bellingham, Washington. R. pomonella (apple maggot flies)

pupae emerged from apples and R. zephyria (snowberry maggot flies) from snowberries.

I placed pupae into petri dishes based on the fruit from which they emerged and initiated

diapause by placing the dishes in a dark incubator at 4 ◦C for four months. Forty days

before experiments were to begin, the pupae were moved into a climate chamber set at

22 ◦C to initiate eclosion. This configuration is equivalent to 650 degree days, which had

been the mean time to eclosion in previous years (Schwarz personal communication).

Every day, I sorted emerging flies into cages, labelled by species and sex, that were

equipped with a food strip (4:1 brown sugar to water and Tegosept anti-fungal agent) and

water. I stored males and females in separate climate chambers (22 ◦C and a 16 h/8 h

light/dark photoperiod) to prevent any potential habituation to mating cues (Schwarz

and McPheron 2007). Eclosed flies were allowed to mature for one week before use in

experiments. I controlled for the age of flies across six weeks of experiments by assigning

to the same cohort any flies that emerged during the same week. Flies from separate

weekly cohorts were kept in separate cages.

Two-way choice host acceptance

Experimental design

I performed three separate two-way choice experiments to measure host preference. In

the first experiment, I measured the host preference of virgin, näıve snowberry and apple

maggot flies by exposing individual flies simultaneously to apples and snowberries. In
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the second experiment, I measured the host preference of virgin snowberry maggot flies

from the first experiment by exposing them to hawthorns and snowberries to confirm the

consistency of their initial host preference. In the third experiment, I measured the host

preference of mated snowberry females, all of which had been tested originally as virgins.

I used the same experimental arenas and behavioral protocols for all three experiments.

Experiments took place in the lab at two side-by-side workstations, each equipped

with a 250 Watt mercury vapor light elevated on laboratory stands 39 cm above a plat-

form for the experimental arena (Figure 1). The lights produced an illuminance of 35,000

lux and contributed to an average platform temperature of 28 ◦C. A small desk fan was set

to low speed and angled to one side of the platforms to reduce the ambient temperature

without directly blowing air on flies during experiments. I prepared four experimental

arenas (two per sex) with square 20.32 cm Pyrex glass containers whose plastic snap-on

lids were modified to consist primarily of a square of window screen with a single 2 cm

hole for aspirating flies, and a foam plug for the hole (Figure 2a).

I collected branches with fresh apple and snowberry fruit into separate buckets each

morning at sites near the lab where infested fruit had been observed in previous seasons.

In the lab, the collected branches were placed in water-filled vases. In each arena, I

placed a single apple with one or two leaves positioned to provide shade above both

apple and snowberry fruit. The remainder of the arena was filled with enough snowberry

branches, leaves, and fruit to roughly match the surface area of the apple fruit and leaves

(10-20 berries, 4-5 branches with leaves) and provide a realistic environment for flies to

explore. I replaced fruit when it was marked or probed by a female. The large surface

area of both hosts’ fruits and leaves minimized the likelihood that any other signals left

by flies from earlier trials would affect the behavior of flies in later trials. Separate arenas

were assigned to both sexes to prevent interactions between pheromones left by males or

females that might alter behavior in the opposite sex.
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Behavioral protocol

For each trial, I randomly selected the sex and species of the next fly to test and aspirated

a matching fly into the least-recently-used arena for the chosen sex. The fly was allowed to

adjust to its environment for 10 minutes. If the fly had not touched either host during that

time, it was removed and placed in a separate cage. A subset of these uncooperative flies

were reused to compensate for lack of numbers in the same host preference experiment

or in the mating environment experiment. As these flies were in close proximity to both

hosts in the apple/snowberry preference experiment, I did not expect any behavioral bias

due to previous host experience. A post-hoc test excluding previously uncooperative flies

from the final statistical analysis did not alter the significance of the result (generalized

linear model with binomial error, p < 0.001). Uncooperative flies that never cooperated

in the host preference experiments were omitted from statistical analysis.

From the time a fly first discovered a host, I used my custom observation software to

track the total time the fly performed the specific actions of resting on the wall, searching

snowberries or apples, and resting or grooming on snowberries or apples. The software

allowed me to log a fly’s current action and associate a timestamp with the moment the

action was observed. I calculated differences between timestamps in the output log file to

determine the amount of time each fly spent performing each action. Because I used the

proportion of time each fly spent on a given host as its likelihood of interacting with other

flies, I did not distinguish between time spent on branches, leaves, or fruit for the timing

of search or rest behaviors. In addition to timing specific actions, I made qualitative

notes about each fly’s general behavior including whether the fly actively searched the

surface of apple or snowberry fruit and whether the fly appeared to feed off the surface of

the apple. Trials with cooperative flies were ended 10 minutes after the first host contact.

The same host preference protocol was repeated for mated R. zephyria females fol-
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lowing the mating environment experiment. Trials with mated females took place after

the initial six weeks of experiments with virgin flies. Thus, in addition to their mated

status, females in these trials differed from virgin flies by age and experience. Mated

females were only tested with apple and snowberry fruit, collected in the same manner

described above.

Statistical analysis

Host preference was measured by the proportion of time spent on either host over the

total time spent on both hosts. The time flies spent on the wall was analogous to time

not spent grazing in two-way choice feeding experiments and was thus omitted from the

preference calculation (Roa 1992). I did, however, confirm that flies generally spent more

time on both hosts than they did on the wall. Virgin, näıve R. zephyria flies spent 2.6

times longer on hosts than walls and R. pomonella flies spent 4.6 longer on hosts than

walls. To assess the significance of host preference for each pair of hosts tested, I used

a generalized linear model (GLM) with a binomial error correction for an improvement

of power over the recommendation by Lockwood (1998) for testing proportions in a two-

choice case. Although sex is an independent factor in this design, I tested it along with

host as a factor in the GLM. I tested the significance of my GLM with an ANOVA

and a Chi-square test (R Core Team 2013). This approach allowed me to use the same

proportions to test for an interaction between host and sex in addition to testing the

effects of both factors individually.

As another measure of host preference, I calculated the difference in oviposition events

per host for all experiments. Without any previous studies to indicate oviposition pref-

erence of R. zephyria females, I assumed there was no preference and expected to see

an equal number of oviposition attempts in both hosts. Due to my small sample sizes, I

used the exact goodness of fit test to determine whether the actual number of oviposition
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events per host deviated from the expectation of no preference.

In the case where preferences differed between hosts or sexes, I used the host fidelity

measures of host visit frequency and median duration to better understand the nature of

the perceived preference. As these values are not independent but are also not bounded in

the same way as the proportions of host preference, I applied Quade’s test as suggested

by Roa (1992) to compare median duration of visits between hosts. To compare the

number of visits per host per flies, I used another GLM with a binomial error model. I

used Mann-Whitney’s U-test to compare those same values between sexes.

Mating environment

Experimental design

I sought to determine whether R. zephyria is more likely to mate in the presence of its

native fruit, snowberry, or the introduced fruit, apple. I introduced an equal number

of R. zephyria flies of each sex (four to seven) to arenas filled with either snowberries

or apples. Arenas for mating were modified to include three holes in the lid for easier

aspiration of flies (Figure 2b). Initially, I used virgin flies that had also been previously

tested in host acceptance experiments. Toward the end of the summer I had to reuse pre-

viously mated males to keep the male/female ratios balanced. Experimental trials ran for

four hours each day simultaneously with, and physically adjacent to, the host preference

experiments where all flies would be exposed to the same environmental conditions.

Fresh snowberries and apples were picked each morning along with the host acceptance

fruit. In one arena I placed two apples and at least three apple leaves for shade. In the

other arena, I created a complex structure of snowberries similar to that found in the

field, with interdigitating branches, leaves, and fruit.
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Behavioral protocol

Females were introduced to the arenas before males and allowed to adjust to their new

environment for ten minutes (Schwarz and McPheron 2007). The observation period

began when the last males were added to the arenas. Mating pairs typically stay joined

for 20 minutes or more, so mating trials were run simultaneously with host preference

trials, with spot checks for mating pairs every 5-10 minutes. For each pair, I noted the

time, fruit, and location of the pair (wall, fruit, or leaf/branch) before removing them

into a separate cage for mated pairs. To maintain the ratio of males to females, I added

a new male and female to the arena for each mated pair I removed.

Statistical analysis

I counted the total number of mating pairs found for each host and tested the signifi-

cance of these values from the expectation of equal mating pairs per host using an exact

goodness of fit test. Trials were run simultaneously, for the same period of time, and

with the same number of flies.
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RESULTS

Two-way choice host acceptance

Virgin, näıve flies on apple and snowberry

Virgin, näıve flies of both R. zephyria and R. pomonella slightly preferred their respective

non-natal hosts over their natal hosts during two-way choice experiments (Figure 3).

R. zephyria flies preferred apples over snowberries (mean ± SE; apple = 56% ± 5;

p < 0.001, n=67) while R. pomonella flies preferred snowberries over apples (snowberry

= 61% ± 12; p < 0.001, n=12). To test for any effect of flies that were originally

uncooperative and then used again in a later trial, I reanalyzed host preferences without

these flies. The same preferences were still detected for both species even after excluding

uncooperative flies. I did not detect any difference in host preference between sexes. Not

enough males survived diapause to allow comparison between the sexes of R. pomonella.

The two species had different behavior with respect to number of and duration of

visits to the two hosts. R. zephyria flies visited both hosts an equal number of times

with an average of three visits per host per trial and spent roughly the same amount of

time per visit on each host (Table 1). In contrast, R. pomonella flies visited snowberries

three times for every one time they visited apples (p < 0.001, n=12). However, the

duration of these visits was not significantly different between hosts.

Neither species showed a preference for either host based on oviposition behavior.

Two out of 37 virgin, näıve R. zephyria females (5%) probed snowberries extensively

although there was no indication of marking behavior (Table 2). None of the females

probed or marked apples. None of the 10 total R. pomonella females attempted to

oviposit in either host.
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Mated females on apple and snowberry

Mated R. zephyria females exhibited the opposite host preference of virgin, näıve females

by spending more time on their natal host of snowberries (mean ± SE; snowberry = 67%

± 8, apple = 33% ± 8; p < 0.001, n=16, Figure 3). Similarly to virgin, näıve flies,

mated females spent 2.7 times longer on host plants than on the wall with 709 seconds

on hosts and 260 seconds on the wall. The same pattern of host visit frequency for

virgin, näıve flies was also detected for mated R. zephyria females, who visited both

apples and snowberries an average of three times per trial. Mated females differed from

virgin, näıve flies in their host visit duration by spending 4.6 times longer on snowberries

than apples (p < 0.001, n=16; Table 1). As with host proportions, mated females

significantly preferred snowberries over apples for oviposition (Table 2). Eleven of the 16

mated females (69%) oviposited in snowberry and none in apple (p < 0.001, exact test

for goodness of fit).

Virgin flies on hawthorn and snowberry

Virgin R. zephyria flies preferred the non-natal, native host of hawthorn over their natal

host snowberry (mean ± SE; hawthorn = 63% ± 8, snowberry = 37% ± 8; p < 0.001,

n=20). Although females appeared to spend more time on hawthorn than males I did

not detect a significant difference between the sexes (mean ± SE; females on hawthorn

= 68% ± 13, n=10; males on hawthorn = 58% ± 10, n=10). In contrast to the other

host acceptance experiments, flies in this experiment spent a similar amount of time on

hosts (411 seconds) as they did on the wall (463 seconds). Virgin R. zephyria flies visited

hawthorns more frequently than snowberries, with 5 visits to hawthorn for every 3 visits

to snowberry (p < 0.01, n=20; Table 1). The duration of these visits did not differ

between hosts.
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There were not enough oviposition events on either host to indicate a host preference

between hawthorn and snowberry for virgin R. zephyria females. No females oviposited

in snowberries (Table 2). One R. zephyria female probed hawthorn and marked the fruit

indicating oviposition. No larva emerged from the probed and marked fruit, suggesting

that either no egg was deposited or the egg did not develop.

Mating environment

I observed R. zephyria pairs in separate apple and snowberry arenas for a total of 1,544

minutes during which I counted 13 mating pairs in the apple arena and 8 pairs in the

snowberry arena. These counts did not differ significantly from my expectation of equal

numbers of mating pairs per arena (p=0.38, exact goodness-of-fit test).
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DISCUSSION

Incomplete host preference

Host preferences for R. zephyria females changed with age and mating status. Virgin

females exhibited a minor preference for non-natal hosts, while mated females strongly

preferred their natal host. I observed incomplete host preference in all experiments with

R. zephyria and R. pomonella, including those with mated R. zephyria females. In

these latter experiments, R. zephyria females did occasionally explore non-natal hosts,

but spent more time on their natal host, likely due to ovipositional activities rather than

avoidance of the non-natal host. Thus, based on my definition of preference as proportion

of time spent on a given host, I reject my hypotheses that Rhagoletis flies always prefer

their natal hosts and that their host preferences are constant throughout their life history.

I reconcile these results with previous research in the context of life history events such

as aging and mating. Additionally, I consider possible explanations for incomplete host

preference and use these results to describe a potential model for hybridization between

these two species in sympatry.

Although incomplete natal host preferences have been previously reported in the

R. pomonella species group (Prokopy and Bush 1973, Linn et al. 2005a, Forbes and

Feder 2006, Schwarz et al. 2007), the flies in these earlier experiments were always mated

and always preferred their natal hosts. Apple, hawthorn, and flowering dogwood flies each

prefer their natal host when they are sequentially exposed to volatiles from natal and

non-natal hosts in a wind tunnel. However, 10-30% of these flies exhibited incomplete

host preference by responding equally strongly to both natal and non-natal volatiles

(Linn et al. 2005a). In two-way host choice tests with visual and olfactory cues, apple

and hawthorn flies generally prefer their natal host. An exception to this rule occurred
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in cases where olfactory cues from natal and non-natal hosts were present on the same

fruit and hawthorn flies could not discriminate between hosts (Forbes and Feder 2006).

In multi-choice host choice experiments with snowberry, blueberry, honeysuckle, and

hawthorn, R. zephyria and R. mendax both preferred their natal hosts but also failed to

discriminate against honeysuckle (Schwarz et al. 2007). Early field studies of apple fly

mating behavior reported that 1/6th of male/female encounters occurred on nearby sour

cherry trees instead of apples (Prokopy and Bush 1973). The diversity of hosts parasitized

by members of the R. pomonella species group (Smith and Bush 1997) and their recent

divergence from a common ancestor (Xie et al. 2008) suggest that host preference has

been sufficiently incomplete throughout the evolutionary history of this group to allow

host shifts when coupled with rare mistakes in host acceptance by females. In contrast

to the partial preference for natal hosts seen in these previous studies, virgin, näıve flies

in our two-way choice experiments showed no preference for their natal hosts. Instead,

both species behaved as host generalists, actively exploring the leaves, branches, and

fruit of both hosts. I expect therefore that the lack of host preference is a characteristic

of virgin flies that could not be detected by previous studies, due to their use of mated

females and lack of short-range host choice conditions. Host generalism at this stage in

their lives creates opportunities for sympatric populations of flies to mate and produce

hybrid offspring in the early season.

Change of host preference with life stage

I hypothesized that R. zephyria flies would express a consistent preference for snowber-

ries throughout their life history. I found that mated R. zephyria females significantly

preferred their natal hosts over non-natal hosts, in stark contrast to virgin, inexperienced

females. Additionally, mated females only accepted their natal fruit for oviposition. As

a result, I reject my second hypothesis.
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The observed shift for female R. zephyria flies from no host preference by virgins to

a strong natal preference by mated females may be understood in the context of their

synovigeny. Like most members of the order Diptera, Rhagoletis females require addi-

tional proteins and sugars to develop their eggs after emerging from diapause (Wheeler

1996). Males and females both require these nutrients for basic survival and obtain them

primarily from aphid honeydew (Neilson and Wood 1966). However, females require

more of these nutrients as they continue to develop eggs throughout adulthood (Webster

1979). As a result, Rhagoletis females spend the first weeks of their lives foraging for

food without any particular preference for their natal host. During this period, flies will

also start mating and continue to do so for the remainder of their lives (Prokopy and

Bush 1973). Females begin to oviposit during their third week as adults (Webster 1979)

after they have mated and acquired sufficient nutrients to develop their eggs. It is also

likely that physical contact by females with their natal host is an important trigger for

oviposition (Alonso-Pimentel et al. 1998). As oviposition becomes more important than

foraging for food, females spend more time searching for and exploring their natal host

fruit.

Although I found that both species spend more time on each other’s natal hosts,

the effect size of these preferences was not large. The average duration and number of

visits by virgin, näıve R. zephyria flies to apples and snowberries were identical. This

behavior shows that flies will explore novel host environments even in the presence of

nearby natal hosts. Visits by R. pomonella to snowberries and virgin R. zephyria to

hawthorns were shorter and more frequent than visits by these flies to their natal hosts.

While this behavior may indicate rapid rejection of non-natal fruit by both species, the

rapid movement of these flies between hosts is likely to attract the attention of potential

heterospecific and conspecific mates (Prokopy and Bush 1973) increasing the likelihood

of hybridization. The duration and frequency of these visits to non-natal hosts lends
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additional support to the conclusion that these flies do not strongly discriminate between

hosts at this stage of their lives.

The effect of life history events on behavior is not unprecedented for the R. pomonella

species group. R. pomonella females do not exhibit a strong natal host preference in early

season observations. Prior to reproductive maturity, flies will disperse away from their

natal host for one or two weeks before returning to mate and oviposit (Opp and Prokopy

1987). Females found on their natal hosts in the early season occur primarily on leaves

and branches instead of fruit (Smith and Prokopy 1980). Similar behavior was noted for

R. mendax in the early season with a distinct transition from leaves to fruit after the

first several weeks of the season (Smith and Prokopy 1982).

Potential causes of incomplete host preference

For sympatric Rhagoletis populations such as those in Bellingham, where natal and

non-natal hosts overlap spatially, incomplete host preference could occur as a result of

reduced foraging costs. Rhagoletis flies are reluctant to venture far from their natal

hosts (Roitberg et al. 1982) and will try to minimize the distance they travel to find

food. If non-natal hosts occur within a fly’s normal foraging radius, there should be

little to no cost to explore the nearby host. Flies may even benefit from exploring non-

natal hosts if those hosts could provide an additional source of food, mates, or refuge

from predators. In contrast, the cost of ovipositing in a non-natal host should be much

higher for populations whose larvae have adapted to specific host fruit conditions. The

expectation that different costs apply to host preference and host acceptance is consistent

with my experiments, in which there was extreme spatial overlap between hosts. In these

conditions, it was less costly for virgin flies to explore non-natal hosts and they showed

no host preference. For mated R. zephyria females, however, the cost of ovipositing in

the wrong host would be high and I saw a corresponding shift in host preference toward
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their natal host.

Food sources within close range of natal hosts will satisfy the nutritional requirements

of early life and minimize the cost of travelling outside the distribution of natal hosts.

Females can then remain near natal host fruit where they will spend the majority of their

middle and late life (Roitberg et al. 1982). Apples and snowberries regularly grow in the

same plots throughout the Pacific Northwest. The proximity of apples to the natal host

of R. zephyria provides these flies with a potential source of food. Like many other fruits,

the surfaces of apples are often rich with many species of yeast and other fungi that can

provide a source of nitrogen to flies (Chand-Goyal and Spotts 1996, Vadkertiova et al.

2012). Indeed, I observed over a dozen flies (16%) of both species and sexes feeding on

the surface of apples for long, continuous periods. In the case of sympatric Rhagoletis

populations in Bellingham, apples provide an accessible nitrogen source at short range

from snowberries and could easily provide mating assembly sites for conspecifics and

heterospecifics alike.

Rhagoletis flies could benefit from their incomplete host preference as it increases their

chances of finding conspecific mates while foraging for food. Flies in the R. pomonella

species group are polygamous and mate at least once a day, with reproductive success

positively correlated to number of matings (Opp and Prokopy 2000). Females experience

increased fecundity simply from the physiological process of mating and multiple matings

increase their fertility and the longevity of their egg-laying (Opp and Prokopy 1986).

Because offspring are almost always the result of fertilization by the female’s last mate,

males may also benefit from multiple matings by increasing their chances to be the last

partner (Opp et al. 1990). Although it is unclear whether Rhagoletis flies have conspecific

sperm precedence mechanisms like those found in Drosophila (Price et al. 2000), the long-

term benefits of multiple mating behavior to microsympatric snowberry and apple maggot

populations still likely exceed the costs of heterospecific matings in the early season. As
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long as the last partner prior to oviposition is conspecific, both sexes of both species

benefit from multiple matings. By switching to a more host-specific behavior after their

initial mating, females increase the likelihood that the majority of their offspring will be

from conspecific matings.

The inability of Rhagoletis flies to discriminate between natal and non-natal hosts

could also lead to the incomplete host preference I observed. The olfactory signals flies

typically rely on to detect their natal hosts at long range (Linn et al. 2003) are more

likely to confuse flies at short range when volatiles from both hosts are present in similar

concentrations (Dambroski et al. 2005, Forbes and Feder 2006). These sensory conflicts

will affect populations whose hosts physically overlap such as those in Bellingham where

apple and snowberry plants grow within less than a meter of each other. Flies emerging at

these sites will rely primarily on visual and tactile feedback to identify hosts, making them

prone to more accidental visits to non-natal hosts while foraging (Roitberg et al. 1982).

Rhagoletis flies may also lack the ability to discriminate against non-natal hosts that they

have not previously evolved to recognize. Apples are still a relatively recent introduction

to the Pacific Northwest and R. pomonella is a recent invader to Washington (AliNiazee

and Penrose 1981). As a result, neither R. zephyria nor R. pomonella populations in this

region may be familiar with each other’s natal hosts despite the historical overlap between

populations in the Midwestern United States (Feder et al. 1999). If host avoidance

requires the maintenance of specific genes (Forbes et al. 2005), populations in secondary

contact after a long period of isolation may have lost this functionality through drift or

selection.

It is still an open question whether the abilities to explore and occasionally accept

non-natal hosts could be adaptive traits for Rhagoletis flies under adverse or unusual natal

host conditions. Certainly, variation in host availability could increase selective pressure

on fly populations. For example, changes in climate or host phenology (Dambroski and
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Feder 2007) or anthropogenic influence (Teixeira and Polavarapu 2003) could all result in

patchy geographic distribution of viable host plants. The reduction of host plants within

the cruising range of flies increases intraspecific competition for a scarce resource (Davis

et al. 2011). Additionally, Rhagoletis flies have to contend with other plant parasites

that share their natal host (Roitberg et al. 1990) and predators (Mather and Roitberg

1987). R. pomonella flies that infest the relatively recent host of apples are less likely to

be parasitized by braconid wasps than flies that infest hawthorns (Feder 1995). Escaping

predation and parasitization has thus been suggested as a factor in host shifts. Finally,

the distribution of natal host plants is not consistent for fly populations undergoing range

expansions. Geographically expanding populations will likely experience population frag-

mentation or differential selection as they move through regions less well-populated with

their natal hosts (Michel et al. 2007). Given the current continental distributions of both

R. zephyria and R. pomonella, these species have almost certainly faced similar problems.

Implications of incomplete host preference for speciation

In light of my findings that R. zephyria and R. pomonella express a reciprocal preference

for each other’s natal hosts prior to mating, hybridization between these two species is

more likely than previously expected (Feder et al. 1999). During this early stage in their

lives, flies are equally likely to explore apples and snowberries thereby increasing the

likelihood of heterospecific encounters and potential matings. Mating isolation between

these species is weak in the absence of host cues (Yee and Goughnour 2011) and in this

study I find that the presence of natal or non-natal host fruit does not reduce the number

of mating events between conspecific R. zephyria flies. Based on this mating behavior

and the preference of both species for non-natal hosts, I predict not only that flies of

either species could meet on the same host, but also that conspecifics are likely to meet

on the same “wrong” hosts and mate there. However, since mating for both species is
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not completely assortative, is it unlikely that matings in these conditions would be solely

between young conspecifics.

After mating, female host preference dramatically shifts toward natal hosts, reducing

the probability that mated females will be present on non-natal hosts and mate with

heterospecific males there. Although I did not test host preference for mated males,

previous research suggests that males are not as dramatically affected as females by

mating status (Anton et al. 2007). I do, however, expect males to learn which hosts

on which they most successfully discover conspecific females and follow females to their

natal hosts (Prokopy et al. 1989). Feeding and mating remain the fundamental priorities

of males throughout their lives, while females obtain the additional goal of oviposition

(Webster 1979). Low levels of hybridization could still occur between males exploring

non-natal hosts and females ovipositing in natal hosts, although selection may favor

males that mate with conspecifics (Smith and Prokopy 1980). Therefore, I expect the

probability of heterospecific matings to be highest during the early season when host

preference is incomplete for both sexes of both species. In the mid- to late-season, when

the majority of females have mated, the probability of heterospecific matings will drop

significantly and depend primarily on the preference of males for non-natal hosts and

heterospecific mates. The proportion of virgin females in the population after the early

season will also contribute to the likelihood of heterospecific matings.

Despite the increased likelihood of heterospecific matings in the early season, several

factors could reduce the effective gene flow between sympatric populations. Mating

occurs frequently throughout the season (Prokopy and Bush 1973). During the early

season, mating events are not necessarily followed immediately by oviposition. The last

partner a female has will fertilize 79-93% of her eggs due to sperm competition (Opp

et al. 1990). Females that mate with a conspecific male after a heterospecific male are

therefore less likely to produce hybrid offspring. Those eggs that are fertilized as a result
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of heterospecific matings are more likely to be oviposited into the less viable substrate

of unripe, early-season fruit (Papaj 2000). However, the larvae that emerge from eggs

that are oviposited into ripe, early-season fruit will have an advantage over mid- and

late-season larvae as they will have more time to consume food before diapause (Ragland

et al. 2012).

In this study, I found that virgin R. pomonella and R. zephyria flies of both sexes

exhibit no host preference and that host preference remains partially incomplete for

R. zephyria females even after mating. Host acceptance, however, remains nearly com-

plete for females regardless of mated status. Thus for each heterospecific pair, I expect

hybrid eggs to be oviposited in the natal host of the female. Hybrids between male

R. zephyria and female R. pomonella in snowberries or male R. pomonella and female

R. zephyria in apples should be rare if they exist at all. If any aspects of host survival

are dependent on traits inherited from the female (e.g., diapause timing or host-specific

enzymes), this pattern of hybridization would reduce the intrinsic inviability of hybrids

at sympatric sites and promote gene flow via females that oviposit in their natal host

(Fox et al. 1995, Dambroski et al. 2005).

The pattern of introgression between populations of R. zephyria and R. pomonella

in Bellingham can be understood in the context of our expectation that hybrid eggs

will be oviposited in the natal host of the female partner. Multiple lines of evidence

suggest that introgression between Rhagoletis populations in Bellingham only occurs in

individuals emerging from apples. These introgressed flies must be the result of initial

matings between R. zephyria males and R. pomonella females and oviposition of eggs

into apples. This same hypothesis was first suggested by McPheron (1990) and has

since been supported by mating experiments between virgin flies of both species, in

which heterospecific pairs of R. zephyria males and R. pomonella females were more

common than those of R. pomonella males and R. zephyria females (Yee and Goughnour

24



2011). Evidence that R. zephyria males possess more generalist mate preferences was

discovered in mating trials between R. zephyria and R. mendax, in which mating pairs

of R. zephyria males and R. mendax females were more common than the alternate

pairing (Schwarz and McPheron 2007). Tests of mitochondrial DNA from introgressed

flies in Bellingham could confirm that their female parents are indeed R. pomonella flies.

The combined effects of complete natal host acceptance by females and asymmetrical

mating preferences between the species may be enough to account for the asymmetrical

hybridization found in Bellingham without invoking asymmetry in postzygotic isolating

barriers such as intrinsic inviability of hybrids. However, asymmetrical population sizes

for these two species may still be a contributing factor to the observed asymmetrical

introgression, as might asymmetrical postmating, prezygotic barriers.

Conclusion

The emergence and maintenance of species in sympatry not only depends on ecological

conditions that facilitate gene flow but also the life history states of the interacting pop-

ulations themselves. The system of sympatric R. zephyria and R. pomonella populations

in Bellingham provides a natural demonstration of these conditions. The incomplete host

and mating preferences of both species and proximity of their natal hosts enables gene

flow in the early stages of their lives. Gene flow during the middle and late season will

likely be reduced when host preferences become stronger for females after mating. If

the pattern of host acceptance I see for R. zephyria applies to R. pomonella as well, the

nature of gene flow between these populations will be limited by oviposition of hybrid

eggs only in the natal hosts of females. From this demonstration, I find that reproductive

isolation in sympatry and ecological preferences exist on a continuum and that discrete

life history events can reconfigure the ranges of these continua.
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Figure 1. Configuration for host preference experiments in the lab showing one of two
side-by-side experimental stations.
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(a) Host preference enclosure (b) Mating environment enclosures

Figure 2. Configuration of host preference and mating environment experiments.
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Figure 3. Host preference measured by proportion of time spent on hosts (mean ± SE)
for R. pomonella and three life stages of R. zephyria flies (virgin and näıve, virgin and
experienced, and mated). Difference in host preference was significant in all experiments
(p < 0.001).
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Table 1. Host-specific visits per trial and median duration per visit (mean ± SE) for
each species group.

Species group Host Visits/trial Median duration/visit (s)

Virgin R. pomonella snowberry 3.4 ± 0.8 *** 128 ± 59
apple 1.1 ± 0.4 *** 149 ± 62

Virgin, näıve R. zephyria snowberry 3.6 ± 0.4 92 ± 22
apple 3.8 ± 0.4 88 ± 20

Virgin R. zephyria snowberry 3.4 ± 0.7 ** 61 ± 32
hawthorn 4.9 ± 0.7 ** 44 ± 14

Mated R. zephyria snowberry 2.9 ± 0.6 251 ± 68 ***
apple 3.1 ± 0.7 54 ± 18 ***

* p < 0.05, ** p < 0.01, *** p < 0.001
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Table 2. Probing events by host and life stage of R. zephyria females.

Category Snowberry Apple Hawthorn Total Females

Virgin, näıve 2 0 - 37
Virgin, experienced 0 - 1 10
Mated, experienced 11 *** 0 *** - 16

* p < 0.05, ** p < 0.01, *** p < 0.001
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