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ABSTRACT

This project is an oblique photogrammetric survey of the 2004-2007 dome-building 
eruption of Mount St. Helens volcano with two primary objectives: (1) to evaluate the 
potential of a new rapid and low-cost technique to create digital elevation models 
(DEMs) and subsequently calculate dome volumes and extrusion rates at Mount St. 
Helens; and (2) to attempt to understand mechanics associated with lava dome extrusion 
and collapse by analyzing volumetric and extrusion rate measurements in the context of 
dome height measurements, seismicity data, and migration of the locus of dome growth.

The new method uses sets of oblique aerial photographs, acquired from a helicopter with 
a standard digital camera, and commercially available photogranunetry software to create 
DEMs. Twelve sets of overlapping digital images from November 2004 to April 2007 of 
the growing dome inside the crater of Mount St. Helens were used to produce DEMs. 
Analyses of the digital images were carried out using PhotoModeler software, which 
produces three dimensional coordinates of points identified in multiple photos.

The DEMs were used for qualitative and quantitative descriptions of the 2004-2007 
emption. The DEMs were used to calculate height, volume, and extrusion rate, and to 
track changes in these quantities through time. These quantities show a decreasing 
extrusion rate through time that has remained lower than 1 m^/s since October 2005.
Total dome volume had reached 94x10^ m^ as of April 2007, a larger volume than that of 
the 1980-1986 Dome. Quantitative evaluation of the DEMs also shows a relationship 
between dome height and extrusion rate, which varies with the character of eruptive 
activity.

Results were validated by comparing volume measurements derived from traditional 
aerophotogrammetric surveys run by the USGS Cascades Volcano Observatory. The 
new oblique photogrammetric technique yields estimates of eruptive volume consistently 
within 5% of the volumes estimated with traditional surveys. The end result of this 
project is a new technique that provides inexpensive, rapid assessment of volcanic 
activity that can be an important supplement to volcano monitoring worldwide.
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1. INTRODUCTION

Rapid analysis of volcanic activity during periods of unrest and eruption is very 

important for event monitoring, prediction, and disaster mitigation. One of the main 

techniques used to monitor volcanic activity involves the measurement of surface 

deformation (e.g. Dzurisin, 2000). Deformation of the Earth’s surface at a volcanic 

edifice is commonly a precursor to volcanic activity. During an eruption, deformation 

measurements can provide important information about the size and potential impact of 

future eruptive activity. Surface deformation can also be measured post-eruption, 

sometimes in the form of subsidence from cooling and compaction of lavas. Overall, the 

measurement of changes in a volcano’s surface is key to understanding eruptive 

dynamics and can be used to induce or mitigate volcanic hazards.

The most essential measurement of surface change during a volcanic eruption is 

the volume and associated extrusion rate of lava, a measurement that can be used to 

calculate the energy of an eruption (Herd et al., 2005; Wadge et ah, 2006). Measurement 

of the volume of lava and the rate at which lava emerges from a volcano are fundamental 

properties of the dynamics of volcanic eruptions. These measxirements are used to 

constrain models of eruption dynamics produced by other monitoring techniques such as 

gas, geochemistry, seismicity and geodesy (Wadge, 2003; Stevens, 2002). The volume 

of lava extruded, in the form of flows or domes, is necessary to give an accurate 

indication of the amount of magma a volcanic system is capable of holding, which 

provides insight into magma storage, the plumbing system and eruption duration (e.g. 

Stevens, 2002; Harris et ah, 2003; Kaneko et ah, 2002).



A traditional technique used to measure eruption volume is photogrammetry. 

Photogrammetry is the science of obtaining quantitative measurements from photographs 

(American Society for Photogrammetry and Remote Sensing, 2006). In the last few 

decades, with advances in computer systems and software, photogrammetry has moved 

from analogue to digital format. In volcano monitoring, this has immense advantages 

because digital photogrammetry can allow for near-real-time, precise measurements of 

both broad-scale and local surface change (e.g. Honda and Nagai, 2002; Bluth and Rose, 

2004).

This manuscript describes a photogrammetric study of Mount St. Helens volcano 

in southwestern Washington. Recent activity at Mount St. Helens provides a rare 

opportimity to devise and test methods for better understanding and predicting volcanic 

events by making observations at an accessible, thoroughly studied and well- 

instrumented volcano. This study seeks to measure volcanic activity at Mount St. Helens 

by calculating the volume of the growing dome and simultaneously test and evaluate a 

new technique in volcano monitoring. The new technique is a low-cost form of 

photogrammetry, using an off-the-shelf digital camera, commercially available software 

and a laptop computer to rapidly produce three dimensional images of the extruded lava 

at Mount St. Helens, at several dates sparming two years. The sequence of images is used 

to estimate eruption volumes and time-averaged extrusion rates. The end result of this 

project is a new technique that provides inexpensive, rapid assessment of volcanic 

activity that can be an important supplement to volcano monitoring worldwide.
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Scientists monitor volcanoes for two reasons: (1) to assess hazards by monitoring 

the level of volcanic unrest; and (2) to understand eruption mechanisms and physical 

processes occurring within a volcano, such as magma migration (Dzurisin, 2006; Scarpa 

and Tilling, 1996). Surface deformation is a primary measurement of volcanic unrest and 

is also used to better imderstand eruption dynamics. Tools used to monitor surface 

deformation range from hand-held leveling rods to satellites in space (e.g. Dzurisin et ah, 

1999; Pederson and Sigmundsson, 2004; Yokoyama and Seino, 2000). Advances in 

technology have made possible numerous ways of collecting spectral, spatial and 

temporal data, from land and from space, that are useful for researching active volcanoes. 

Techniques used to monicor surface deformation can be put into one of two categories:

(1) point-based measurements and (2) synoptic imagery (Cecchi et al, 2003). Table 1

gives a summary description of these tools and techniques employed in volcano 

monitoring.

Traditional techniques used to monitor surface deformation in volcanic areas 

involve the use of geodetic equipment such as spirit levels, Global Positioning System 

(GPS) receivers, electronic distance meters (EDM), tiltmeters and strainmeters (Poland et 

ah, 2006b; Dzurisin, 2006). These techniques can measure surface .displacements with 

accuracies in the decimeter range or better, but often can be expensive and allow only 

scarce (few tens to a few hundreds) sampling of data points within the deformation field. 

This limited sampling can fail to record localized or complex deformation occurring on 

the volcano. Another disadvantage to these traditional techniques is that they carmot be 

individually used to determine the volume of a growing dome or lava flow, without

1.1. Volcano Monitoring Tools
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In the last decade, remote sensing has become an advantageous tool for measuring 

surface deformation on volcanoes because of its broad spatial coverage and relatively low 

cost. Interferometric Synthetic Aperature Radar (InSAR) has led the way in satellite 

remote sensing (Coulson, 1996; Poland et al., 2006a; Lu et al., 2002; Dzurisin et al., 

2006). Unfortunately SAR data are limited by the periodicity of satellite passes over a 

given area (35 days with ERS satellites) and environmental conditions such as steep 

slopes, vegetation, ice cover, and weather; problems often associated with volcanoes 

(Baldi, et al., 2002). Light Detection And Ranging (LiDAR) is a relatively new remote 

sensing technique that can provide veiy high resolution, three-dimensional models of 

volcanoes from laser return signals, but is often too expensive to have widespread 

application at this time (e.g. Pyle and Elliott, 2006).

making, for example, a sufficient number of EDM or GPS measurements to adequately

characterize the changing shape of the dome (logistically very difficult).
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Table 1. Volcano monitoring tools used to measure surface deformation.*

Methods Scientific Target Instrumentation
Point based techniques
Space geodesy Far- and near-field point Dual and single

displacements frequency GPS
Tilt measurements Angle variations Dry-tilt, wet-tilt, borehole 

tiltmeters
Leveling Vertical component 

displacements
Theodolite, leveling rod

Electron Distance Meter Far-field point T ransmitter-receiver.
(EDM) displacements reflectors, tape, callipers

Imase techniques
Photogrammetry Volume measurements Analogue and digital

-airborne cameras (metric and non-
-groundbased metric t)q)es of both)

LiDAR
-airborne
-groundbased

Volume measurements Laser

Radar Interferometry Volume measurements ERSl-2, RADARS AT, 
TOPSAR, SIR

*Adapted from Cecchi et al., 2003 and Poland et al., 2006b.

Another branch of remote sensing that has been used for several decades to 

evaluate volcanic activity is photogrammetry. Photogrammetry derives three- 

dimensional spatial information from imagery, typically photographs. Dependent on the 

type of survey conducted, photogrammetry can be cost effective, have various degrees of 

spatial and temporal resolution, and provide accurate and precise measurements of 

volcanic growth. The application of photogrammetry within volcanology has generally 

been confined to the construction of digital elevation models (DEMs) from vertical air 

photos (e.g. Baldi et al., 2000) to produce topographic models and to constrain volumes 

of volcanoes. Recent advances in digital imagery and software have expanded the 

capabilities of photogrammetry, now making it possible to measure extrusion rates and
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map lava flows (e.g., Wright et al., 2002; Harris et al., 2000). Photogrammetry has also 

been used for comprehensive laboratory analogue studies of volcanic systems (e.g., Fink 

and Bridges, 1995).

1.2. Geologic setting

Mount St. Helens is a young composite volcano centrally located along the north- 

south transect of the Cascade Volcanic Range, which stretches from British Columbia to 

northern California (Fig. 1). Subduction of the Juan de Fuca plate below the North 

America plate is the driving force behind volcanism in the Cascades. Mount St. Helens 

has long been the most active and explosive stratovolcano in the Cascade Range, building 

its edifice with the production of lava domes, piedominantly dacitic in composition 

(Pallister et al., 1992; Sherrod and Smith, 1990; Clynne et al., 2005). Intermittent 

explosive behavior has characterized Mount St. Helens since about 300,000 years ago 

(Mullineaux and Crandell, 1981; Clynne et al., 2005). Four stages of volcanic activity 

(Ape Canyon, Cougar, Swift Creek and Spirit Lake) separated by dormant intervals 

characterize the complex geologic history of Mount St. Helens (Clynne et al., 2005). 

During the past 2,500 years, at least half a dozen dacitic lava domes have formed at 

Mount St. Helens, including the Goat Rocks dome that formed on the volcano’s north 

flank during an eruption from 1800 to 1857 (Moore et al., 1981).

1.2.1. Eruptive activity of Mount St Helens: 1980-1990

Field investigations in the 1970’s (Crandell et al., 1975) led researchers to believe 

that the violent history of Mount St. Helens rendered this volcano the most dangerous and
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frequently active in the Cascade Range. On May 18, 1980, following two months of 

unrest. Mount St. Helens erupted explosively with a lateral blast, leaving a horseshoe 

crater roughly 2 kilometers wide (Fig. IB). Mount St. Helens continued to have episodes 

of moderately explosive activity and dome growth through 1986 (Swanson and Holcomb, 

1989). The eruptions of May 25, June 12, July 22, August 15, and October 12, 1980 

were moderately explosive, while from December 1980 to October 1986, eruptive 

activity was dominantly extrusive in character (Swanson and Holcomb, 1989). Periods of 

dome growth lasted from 1 to 24 days, plus an anomalous growth period that lasted most 

of 1983 (Swanson and Holcomb, 1989). October 1986 marked the last episode of dome 

growth in the 1980s at Mount St. Helens. During more than seventeen episodes of dome 

growth, ivlount St. Helens grew a composite dacite lava dome with a volmne of 92x10^ 

m^ as calculated by vertical aerophotogrammetry and digital topographic maps 

(Thompson and Schilling, 2007; Mills, 1992). In 1989 Moimt St. Helens experienced an 

increase in seismicity followed by a small series of minor phreatic eruptions in January 

and November 1990 (Pallister et al., 1992) but no new lava emplacement occurred. No 

juvenile material reached the surface during this episode, which was followed by nearly 

14 years of repose punctuated by sporadic swarms of small earthquakes (Moran, 1994).

Following the May 18, 1980 eruption, a glacier (Crater Glacier) formed within the 

crater of Mount St. Helens. September 2001 vertical aerial photography estimated the 

glacier to have a maximum thickness of 200 m and contained 120x10 m of ice and rock 

debris (Schilling et al., 2004).
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1.2.2. Eruptive activity of Mount St Helens: 2004-2007

In October 2004, Mount St. Helens began erupting new dacite lava after nearly 18 

years of eruptive quiescence. Early stages (October 2004 - December 2004) of the 

eruption were characterized by lineal (two-dimensional measurement derived by 

stationary cameras and spider GPS stations) lava extrusion rates of 6-11 m/d and 

volumetric (three-dimensional measurement derived by photogrammetry) extrusion rates 

of 4-6 m^/s (Dzurisin et al., 2005). Following this rapid flux of new dacite, the volcano 

continued a relatively steady lineal extrusion rate of 2-3 m/d for nearly 14 months; since 

that time, the rate has declined to less than 1 m/d and growth has become mostly 

endogenous. Corresponding volumetric rates are 1-3 m^/d and about 0.7 m^/d. Two and 

a half years of dome building has resulted in the emplacement of roughly 9.3x10 m of 

new lava on the crater floor (Table 2). By spring 2007, the new lava dome volume was 

greater than that of the 1980-1986 lava Dome, and the average 2004-2007 growth rate 

was nearly three times that of the 1980-1986 Dome.
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Table 2. Total volume change, extruded lava volume, and rates of change during the 
2004-2007 eruption of Mount St. Helens as measured by vertical aerial photogrammetry 
(vertical aerophotogrammetry)*

Date of vertical aerial 
photography

Total extruded lava
(X 10*^ m^)

Lava extrusion rate 
(m^/s)

11/4/2004 12 5.92
11/29/2004 21 4.40
12/11/2004 26 4.05

1/3/2005 31 2.52
2/1/2005 35 1.84
2/21/2005 39 2.37
3/10/2005 42 1.84
4/19/2005 48 1.62
6/15/2005 54 1.30
7/14/2005 57 1.28
8/10/2005 62 1.97
9/20/2005 67 1.58
10/24/2005 70 0.92
12/15/2005 73 0.67
2/9/2006 77 0.87
4/18/2006 81 0.65
8/18/2006 85 0.40
10/21/2006 88 0.45
12/6/2006 90 0.45
4/20/2007 93 0.27

* From Schilling et ah, in press', S. Schilling, personal communication, July 3, 2007.

1.3. Previous work in photogrammetry

Photogrammetric surveys have been conducted at volcanoes worldwide for 

several decades. These surveys have varied in technique, resolution, and precision and 

have been used in conjunction with other volcano monitoring tools to better understand 

eruption dynamics and volcanic hazards. The purpose of this section is to summarize the 

use of photogrammetry to monitor volcanoes worldwide and to describe different
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photogrammetric techniques that have been employed at Mount St. Helens since the 

cataclysmic eruption of May 18, 1980.

1.3.1. Previous work usingphotogrammetry to study volcanoes

The main products of photogrammetric surveys are digital elevation models 

(DEMs) that may be used to measure volume and to calculate extrusion rate at a volcano. 

Comparison of sets of DEMs constructed from photos taken on different dates can be 

used to study and monitor several geophysical processes at volcanoes involving crustal 

deformation and extrusion of lava. These include deformation patterns, displacement 

vectors, volumes and extrusion rates and other physical features, providing quantitative 

information on the geomorphic evolution of a volcano (e.g. Schilling et al., in press; 

Achilli et al., 1997; Kaab and Funk, 1999; Baldi et al., 2000; Kerle, 2002; Pyle and 

Elliott, 2006; Wadge et al., 2006). The quantitative information extracted from DEMs 

can be used to describe and measure volcanic activity and can be used in conjunction 

with other datasets, such as gas emission rates, geochemistry of erupted products (gas, 

ash, or lava), and geodetic measurements, to model volcanic processes.

Most photogrammetric surveys conducted at volcanoes are completed to produce 

a topographic map or a three-dimensional base model of the volcano in the form of a 

DEM. These surveys are done by means of a low-flying aircraft, capturing vertical aerial 

photographs of the edifice and surrounding landscape (e.g. Schilling et al., in press; Baldi 

et al., 2002; Chandler and Moore, 1989). Recent advances in computer hardware and 

software has expanded photogrammetry from analogue to digital. Baldi et al. (2000) and 

Miranda and Granados (2003) have successfully monitored landslides and glaciers on
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volcanoes for hazard mitigation purposes. Surveys by James et al. (2006) employed 

terrestrial photogrammetry to measure and monitor active lava flows and reference 

topographic models with thermal imagery. Herd et al. (2005) used terrestrial 

photogrammetry to build DEMs of Soufriere Hills Volcano to measure collapse-scar 

volumes. Oblique images have been used to determine rapid changes in volcano 

topography from image sequence matching, comparing volcano profiles through time to 

determine two-dimensional change (Cecchi et al., 2003). The use of photogrammetry 

within volcanology has grown, and researchers continue to experiment with the 

capabilities photogrammetry has to offer in volcano monitoring.

1.3.2. Previous work at Mount St Helens: 1980 - 2007

The use of photogrammetry for volcano monitoring at Mount St. Helens began 

with a series of six topographic maps made by means of vertical aerial photography pre- 

and-post the volcano’s awakening in 1980 (Moore and Albee, 1981). Moore and Albee 

(1981) used these maps to measure displacements on the volcano’s deforming north flank 

and to map the outline of extruded lava within the crater of Mount St. Helens. Jordan and 

Kieffer (1981) calculated volume changes before and during the eruption by differencing 

Digital Terrain Models (DTMs) produced from vertical aerial photographs taken in 1972 

and numerous dates in 1980. During the dome-building eruptions from October 1980 

through November 1986, several maps of the crater and dome were made from low- 

altitude, high-resolution vertical aerial photographs. These maps proved very successful 

in documenting the changing size and shape of the lava dome (Holcomb and Colony, 

1995). Photogrammetric surveys continued after volcanic activity ceased in 1986 in

11



order to produce DEMs of the volcano. Aerial photographs taken in 1980, 1992 and 

2000 were used to create 1:24,000 scale digital topographic maps, from which DEMs 

were constructed. The DEMs were used to track the growth of a new crater glacier and 

the amount of mass wasting of rock from the steep crater walls (Schilling et al., 2004).

In 2000, a network of ground control targets from campaign GPS receivers was 

deployed on the volcano’s outer flanks to provide ground control for the production of a 

high-resolution, high-accxxracy DEM of Mount St. Helens by means of aerotriangulation 

(a digital method used to tie ground control within a strip of photographs) (Thompson 

and Schilling, 2007). This photogrammetric survey proved vital with the onset of 

eruption at Mount St. Helens in 2004, because a network of control was already 

established enabling die production of successive high-resolution DEMs with minim,^! 

preparation. Seventeen DEMs were constructed between 2004 and 2005 to measure 

volume change and extrusion rate of the eruption (Schilling et al., in press), and the 

production of these DEMs is continuing on a quarterly basis.

Stationary, terrestrial photogrammetry has provided an effective, minimally 

invasive tool for assessing short-term, large scale changes at Mount St. Helens. At times 

(when field crews are absent), the permanent camera stations on the rim of Mount St. 

Helens provide the only visual insight into activity at the volcano (Poland et al., 2006).

At present (September 2007), six permanent camera stations monitor the activity inside 

the crater of Mount St. Helens from the volcano’s rim and outer floor. Photogrammetric 

techniques, utilizing daily photographs telemetered to the USGS Cascades Volcano 

Observatory have been used to analyze point changes (vector displacements) beginning at 

the onset of eruption in 2004 (Major et al., in press). Though this technique cannot
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provide volumetric measurements, it has proven successful for measuring lineal extrusion 

rates (Major et al., in press).

The previous studies done at Mount St. Helens and elsewhere in the world have 

helped to identify the type of photogrammetric survey needed at active volcanoes, when 

traditional photogrammetric techniques prove too expensive, time-consuming or 

dangerous.

1.4. Thesis Motivation and Objectives

Over the last three decades, photogrammetry has been successfully used to 

monitor surface change at volcanoes and has yielded estimates of emption volume, rate 

of extrusion, and vector displacements (Schilling et al., in press'. Major et al., in press', 

Kerle, 2002; Moore and Albee, 1981; Zlotnicki et al., 1990). Advances in technology 

have allowed photogrammetry to evolve from analogue to digital format, thereby saving 

time and money. Even with the move from analog to digital data, traditional 

photogrammetric techniques continue to be relatively time-consuming and expensive. 

Agencies must contract aerial flight services, be equipped with stereoplotters and high- 

resolution scanners, and employ an experienced technician to run the hardware and 

software necessary for extracting quantitative information from the photographs. The 

motivation behind this project is to develop a rapid and inexpensive method of 

calculating volume and extrusion rate. The goal is not to eliminate the need for 

traditional methods of photogrammetry, but to supplement these methods, or provide an 

alternative when funding is insufficient, equipment is not available, or hazards at the 

volcano prevent the use of traditional methods.
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In this study, I have employed a new method for monitoring lava dome growth at 

Mount St. Helens with the following objectives: (1) to evaluate the potential of a new 

cost-effective technique to create DEMs and subsequently calculate dome volumes and 

extrusion rates at Mount St. Helens; and (2) to attempt to understand mechanics 

associated with lava dome extrusion and collapse by analyzing volumetric and extrusion 

rate measurements with results from seismicity data.
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2. METHODS

2.1. Principles of Photogrammetry

Photogrammetry is the science of obtaining three-dimensional spatial information 

from two-dimensional images. Photogrammetry has been used in the geologic sciences 

for many years, most notably for the production of topographic maps and digital 

elevation models from overlapping aerial photographs (e.g. Chandler, 1999; Lane et al., 

2000; Baldi et ah, 2000). Recent advances in photogrammetric software now allow the 

use of consumer grade digital cameras to provide quantitative photogrammetric analyses, 

making this technique easily accessible by many disciplines ranging from forensic 

sciences to archaeology (e.g. Lynnerup and Vedel, 2005; Heinz, 2002). Independent of 

the size or type of study, photogrammetry relies on the same basic principle of 

triangulation, a means by which three-dimensional point measurements are produced 

using collinearity equations. The concept of collinearity, whereby a point on the object, 

center of lens and resultant image point lie on a single line in three-dimensional space, is 

critical in photogrammetry (Mikhail et ah, 2001). Based on this principle, the three- 

dimensional object space coordinates can be extracted from a pair (or series) of 

overlapping photographs, provided that interior and exterior orientation of the camera at 

the moment of exposure are known. Exterior orientation parameters of the camera can 

easily be determined with the help of a minimum of three ground control points (GCPs) 

for each image (Wolf and Dewitt, 2000). Interior orientation parameters of the camera 

are determined using a “self-calibrating bundle adjustment” (see below). The 

morphology of the object imder study is derived from pme photogrammetric information;
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its volume and geographic location are obtained from the additional internal and external 

orientation information given into the object space (the three-dimensional region that 

encompasses the physical features imaged in the photographs) (Wolf and Dewitt, 2000).

I use oblique photogrammetry to study the growing dome of Mount St. Helens 

volcano, capturing images by means of digital photography from a helicopter. Oblique 

photogrammetry differs from traditional aerial photogrammetry in that the camera system 

captures images inclined from the vertical axis. Oblique photogrammetry uses the same 

mathematical principles as vertical photogrammetry, proceeding in steps going from 

image acquisition, to camera calibration, to relative and absolute image orientation and 

finally image analysis and DEM construction.

2.2. Data Acquisition

Images were acquired during helicopter flights run by the USGS Cascades 

Volcano Observatory. Twelve sets of photographs were taken between November 2004 

and April 2007, with each date referred to as an “epoch”. Helicopter flights were 

scheduled on the same day as vertical aerial photograph flights to provide direct 

quantitative comparison to traditional photogrammetric techniques for measuring dome 

growth through the eruption. Low-altitude oblique helicopter images provide an 

advantage over traditional aerial photographs during times of inclement weather (low 

cloud cover) and persistent steaming, in that they provide oblique views of the dome that 

minimize obstruction from atmospheric affects. Images were taken with a Nikon D70 

digital SLR camera, with a 6.1 megapixel sensor (Fig. 2). An NF 17-55mm Nikkor lens 

was used with lens focal length set to infinity to provide the widest view angle and to
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maintain consistency while acquiring images. Images were shot in RAW format and later 

converted to JPEG using Nikon Image Capture software; this process provides an image 

with a slightly sharper appearance and a little more contrast than images captured directly 

in JPEG format. All images were taken in landscape view with an average of 60% 

longitudinal overlap (common area captured), to enable tie point measurement and to 

allow a common processing of all images in a bundle adjustment. Helicopter flights 

followed a square path over the volcano as viewed from above, increasing in altitude for 

every repeat circuit (Fig. 3). This technique provided several sets of photographs for 

each epoch that could be chosen for processing, dependent on operator needs. Low- 

altitude flights provided close-range views of features on the dome, while higher altitude 

flights encompassed views of the crater wall and rim and 1980-1986 Dome used for 

GCPs and reference points during processing.

2.3. Camera Calibration

Another important step is camera calibration. In photogrammetry, there are two 

types of cameras; metric and non-metric. Metric cameras have stable and precisely 

known internal geometries. Because this project used a standard off-the-shelf digital 

camera (non-metric), for purposes of ease and low-cost, internal camera geometries are 

unknown. In order to complete a photogrammetric analysis of the images acquired, 

accurate calibration of the camera and lens is necessary. Calibration must be done in a 

3D reference frame and in the same conditions as operational use in the field, in this case, 

with focus set to infinity. The Nikon D70 camera was calibrated by means of the camera 

calibrator, a built-in extension of the PhotoModeler software (PhotoModeler, 2005).
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Calibration can be done before or after fieldwork and was required in order to determine 

the camera’s interior (camera t}q)e) and exterior (camera location) orientation. In this 

numerical procedure, the interior and exterior parameters of all frames are simultaneously 

estimated using a least squares estimation (Wolf and Dewitt, 2000). The main 

parameters of interior orientation are the principal point (intersection of the image plane 

and the principal ray normal to the image plane), principal distance (focal length), sensor 

format size, and lens distortion characteristics.

The calibration was done using the standard procedure from the PhotoModeler 

user manual. PhotoModeler software provides a simple procedure for estimating these 

values by analyzing a grid target. A target grid provided by PhotoModeler was projected 

onto a wall using a slide projector. The grid comprises 100 uniformly spaced black dots, 

aligned in columns and rows, with four of the dots on the outer edges outlined by 

symbols, representing control points within the target (Fig. 4). The target was 

photographed from four camera locations. At each location, a photograph was taken in 

landscape view and then the camera was rotated 90 degrees and a portrait view was 

taken. Images were input into PhotoModeler’s calibration extension and camera interior 

orientation parameters were estimated. PhotoModeler automatically processes the 

images and reports the characteristics of the camera. PhotoModeler provides an output 

text file that estimates overall calibration performance and object accuracy represented by 

average root mean square (RMS) residuals discussed in the error estimation section of 

this thesis. The calibration adjustment was performed successfully for all sets of 

photographs, with acceptable residuals of the control points. According to the 

PhotoModeler documentation, a project with a good calibration has a final error imder
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0.15 and marking residual error under 1.0 pixels. Camera calibration for the Nikon D70 

produced a final error of 0.077 and an overall RMS or marking residual of 0.311 pixels. 

Given these calibration checks, the Nikon D70 calibration file provides a quantitatively 

accurate description of the camera interior orientation parameters necessary for a 

successful project.

A benefit of using PhotoModeler is that the user does not need to measure the 

exterior orientation (camera location parameters) during image acquisition. 

PhotoModeler automatically calculates the three spatial coordinates and the three 

orientation angles of each camera, or each camera position at which an image is taken, 

assuming reference points and GCPs (approximately 10 total) are used in the overlapping 

photographs. This process is knovvn as resection (Mikhail et al., 2001). Knowledge of 

the camera’s interior and exterior orientations made it possible to process three 

dimensional models of the growing dome inside the crater of Mount St. Helens without 

having to measure the coordinates of the camera in the moving helicopter at the instant 

each photo was taken. It is possible by using GPS tracking, either of the helicopter or of 

the camera itself with GPS hot-shoe attachments that are available for a few modem 

digital cameras, to acquire exterior orientation information independently, but for this 

work it was not necessary and therefore GPS tracking was not explored.

2.4. Image Processing

For each epoch, 4 to 7 images were used. The images were chosen based on 

percentage of overlap, optimum angle of convergence (i.e. the angle of difference 

between camera positions, at the time of image acquisition, relative to one another) and

19



area of the dome captured. In photogrammetry the optimum angle between camera 

stations is between 45 to 90 degrees. The lowest acceptable angle of convergence is 20 

degrees (PhotoModeler, 2005).

2.4.1. Image Orientation

Generation of a 3D model requires knowledge of the relative and absolute 

orientation of the images as well as measurement of the positions of points in each image. 

Relative orientation means the determination of the projective centers of the images in an 

arbitrary spatial coordinate system by measurement of at least 6 homologous points (tie 

points). Absolute orientation means their orientation in a Cartesian coordinate system, 

whiui can be achieved by measurement of a minimum of 3 control points (points with 

known spatial coordinates) (Mikhail et al., 2001). Once control points and tie points are 

selected and orientations set, PhotoModeler produces a bundle block adjustment to 

process each project, resulting in an accurately referenced three-dimensional model of the 

study area. The term bundle block adjustment refers to the method of orienting and 

processing a block of images, simultaneously, that cover the area of interest in the study.

2.4.2. Relative Orientation

Oblique photographs were taken on twelve dates, between November 2004 and 

April 2007. The processing for each epoch of photographs is considered a project. Each 

project consisted of 4-7 photographs. In order to tie the photographs together in arbitrary 

space and give the three-dimensional model correct, relative dimensions, approximately 

6-7 tie points need to be selected and identified in all images. For the purpose of this
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study, tie points are those points residing in every image involved in a project, that tie 

images together for relative orientation. Tie points differ from reference points in that the 

latter are shared between two or more images and are not required to be seen in every 

image. On the other hand, each tie point must be seen in every photograph of the project. 

This step is the most time consuming because varying camera locations and angles can 

make identifying corresponding points in photographs difficult. Once tie points have 

been selected in each image, they are referenced using the reference tool in 

PhotoModeler. This process identifies the same tie points throughout a series of 

photographs.

2.4.3. Absolute Orientation — Control Methods

In order to construct a three-dimensional model from images it is essential to 

know the relationship between each image and the reference Cartesian coordinate system. 

Once imagery is acquired, ground control points (GCPs) must be identified and measured 

to tie the model into geographic space. A minimum of two planimetric and three height 

points are needed to define a datum (geographic coordinate system), but more control 

points are desirable to lower overall project error by increasing accuracy and precision. 

Ideal controls are points tying frames together and surrounding the volume of interest 

(Wolf and Dewitt, 2000). The use of GCPs located in the field by differential GPS 

provides the highest accuracy for control within a project compared to other methods, i.e. 

topographic maps, EDM measurements and DEMs. Schilling et al., {in press) 

established a network of GCPs from GPS stations at Mount St. Helens for vertical 

aerophotogrammetry, and CVO scientists deployed campaign GPS spiders (helicopter
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deployable GPS units) on the growing dome and deforming glacier to establish positions 

and monitor deformation at the time oblique photography was taken. Unfortunately, few 

sets of oblique photographs contained visible GPS stations. For consistency between 

photo sets, I decided not to use GPS stations for ground control. Suitable control points 

for this project were well-defined natural features, clearly identifiable on the photographs 

and on independently-created high-resolution DEMs (2 m) (Fig. 5). Three-dimensional 

coordinates of these natural features were extracted from the DEMs. GCPs were 

prominent stationary features; three located on the crater rim and one the 1980-1986 

Dome. The same four GCPs were used in each project to provide consistency and to 

accurately define the datum. Control points were evenly distributed over the images to 

gain a strong geometry.

Once relative and absolute orientation points were added in each project, the 

project was processed and PhotoModeler produced an accurately oriented three- 

dimensional model of the tie and control points within the photographs for each epoch. 

The next step involved the construction of a surface model, also known as a digital 

elevation model (DEM), for each epoch with reference points covering the 2004 - 2007 

dome.

2.5. Digital Elevation Model (DEM) Construction

Once each project was oriented with tie and control points, reference points 

(selection of identical points between image pairs) were added to make models of the 

dome during successive epochs. This process was completely manual in that I (the 

operator) selected identical points on numerous images (minimum of two images for each
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point) that encompassed the area of interest. Measurement and referencing between 

photos is done manually with the help of epipolar lines or auto-drive referencing (a form 

of semi-automated referencing) (Fig. 6). In this mode, when the source and destination 

images are oriented, the cursor and image will automatically jump to the expected 

location of the point in the destination image, allowing the execution of the final 

measurement to be done manually with a certain amount of aid provided by 

PhotoModeler.

The reference points were noticeable features, i.e. intersection of cracks on the 

2004 - 2007 dome, edges of large talus and striae (Fig. 7). Placing reference points on 

the dome to construct DEMs of the evolving dome using PhotoModeler involved two 

steps: (1) reference points were identified that outlined the perimeter of the area of 

interest (Fig. 8A), (2) point clouds were created that filled in the area of interest (Fig.

8B).

The area of interest in each epoch was the growing dome inside the crater of 

Mount St. Helens volcano. In order to successively account for the material erupted 

between epochs, a perimeter of extruded rock was outlined with reference points 

throughout images. These perimeters accoimt for all extruded rock throughout the 

emption. The next step involved filling in that perimeter with a dense point cloud. As 

the density of points within the perimeter of the dome increased, so did the accuracy of 

representation of the dome’s surface. In order to qualitatively depict the accuracy of the 

surface model created from reference points, PhotoModeler has a 3D viewer that allows 

the operator to select and delete significant outliers in the model as well as pinpoint areas 

that need an increase in point density.
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The number of reference points and photographs used in each DEM varied (Table 

3). DEMs with high point densities were the result of one or more of the following four 

conditions; (1) low flying altitude when photographs were taken, resulting in a higher 

pixel resolution, which facilitated identification of common points, (2) at the date the 

photographs were taken, the dome had more complex topography, requiring more points 

to accurately model it, (3) atmospheric interference (steaming at the vent) was minimal, 

exposing the entire dome, or (4) photographs captured the entire growing dome.

Table 3. Dates of oblique photography with associated number of points (GCP, tie and 
reference) and photographs used to build each DEM.

Date of oblique 
photography

Number of points used 
in model

Nnmber of photographs 
nsed in model

11/20/2004 212 6
11/29/2004 412 7
01/03/2005 284 5
02/01/2005 566 7
02/22/2005 603 6
03/11/2005 484 6
04/10/2005 993 6
05/12/2005 1795 7
06/15/2005 798 7
10/12/2005 580 5
05/30/2006 415 5
04/20/2007 380 4

2.5.1. Delaunay Triangulation

Reference points are stored in a point table in PhotoModeler. The location of 

each point is stored as x, y, z (easting, northing, elevation) coordinate in North American 

Datum 1983 (NAD83), Universal Transverse Mercator (UTM), projection zone 10. This 

is directly related to the datum in which control points are cast. PhotoModeler allows the
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operator to export the point table as an ASCII text file, which may be imported into 

Arcinfo Geographic Information System (GIS) as features. Using the 3D Analyst 

extension in ArcMap, the vector data points were used to create a Triangulated Irregular 

Network (TIN) for each epoch. Using the 3D Analyst menu and choosing the 

Create/Modify TIN - Create TIN from Features tool, each feature was converted into a 

TIN. A TIN is formed by nodes, triangles and edges from the computation of a 

Delaunay triangulation. Nodes are locations defined by x, y and z vector data values 

from which a TIN is constructed. Triangles are formed by connecting each node with its 

neighbors according to the Delaunay criterion; all sample points are connected with their 

two nearest neighbors to form triangles (Wolf and Dewitt, 2000) (Fig. 9). These triangles 

have sides that are aa similar in length as possible to prevent the creation of long, naixow 

triangles that detract from the accuracy and visual appearance of the surface model 

(Hooper and Mattioli, 2001). A Delaunay triangulation converts the cloud of points 

extracted by photogrammetric procedures into a consistent polygonal model or mesh 

(Remondino and El-Hakim, 2006). These meshes have benefits when modeling complex 

terrains, such as that of Mount St. Helens, because they can be constructed to be more or 

less detailed depending on topographic complexity and can efficiently store data (Wolf 

and Dewitt, 2000).

2.6. Volume Calculations

To calculate volumes of the growing dome for each epoch as accurately as 

possible, it was necessary to use a pre-emptive surface as a base. The first epoch of this 

study occurred after the onset of emption at Mount St. Helens in October 2004, and thus I
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did not have photographs of a basal surface to create a DEM of pre-emption crater floor 

topography to use as a base for volume measurements. One way to calculate volume 

from a DEM is to use the lowest point of each DEM or set a low elevation point and 

extrapolate that point as a flat plane to use as a basal surface (Fig. lOA). This method of 

volume calculation, applied to the DEMs made of the 2004-2007 dome at Mount St. 

Helens, yields volume estimates that are significantly lower than the tme volume of the 

dome, because it does not take into account the amount of extmded lava masked by the 

crater glacier, the varying topography of the crater surface since the last emption, or the 

area of newly empted lava that encroaches upon the 1980-1986 Dome. To get around 

this dilemma, and provide continuity when computing volumes from epoch to epoch, a 2 

m DEM derived from vertical aerial photogrammetry of Mount St. Helens in 1986 was 

used for volume calculations (Schilling et al., in press). The use of the 1986 crater floor 

as a basal surface made the calculations more accurate than using a flat plane in two 

ways: (1) it accounted for topographic variations of the basal surface, and (2) since lava 

first extmded at the 1986 surface, then through the glacier inside the crater, and finally to 

the present surface, accmate volume calculations need to take into account the entire 

volume of the new dome, including that between the 1986 and present-day crater surface.

Volume estimates were complicated by the presence of Crater Glacier through 

which the 2004-2007 lava dome has emerged. The distribution of extmded rock masked 

by the severely deformed glacier presents the biggest source of potential error when 

calculating extmded rock volumes. For consistency, volumes reported are conservative 

volume estimates made by projecting the perimeter of the visible extmded lava vertically 

downward to the 1986 crater surface, representative of pre-emption and pre-glacier
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topography. In essence, this produces a cylindrical-like subsurface of extruded rock used 

in calculating volumes (Fig. lOB).

In order for volume calculations to be made, TINs were converted to regular grid 

DEMs to match the 1986 DEM used as a base. This was done using the 3D analyst 

extension in ArcMap and the “Convert TIN to Raster” tool. Each Raster was set at a 2 m 

cell size to match the resolution of the 1986 and 2004-2007 DEM sequences (produced 

by the USGS by means of vertical aerophotogrammetry), which were used for volume 

calculations and comparison, respectively, as described in section 4 of this manuscript. 

The high resolution, i.e. small cell size, allows the raster DEM to store the original 

elevation data contained within each TIN. The final results of these procedures were 2 m 

DEMs of each epoch.

Volumes for each epoch were calculated in Arcinfo using an Arc Macro 

Language (AML) script (Appendix A; Schilling et al., in press). Before the scripts were 

run, a boundary shapefile, delineating the area or shape of extruded lava was made for 

each DEM. The voliune calculation script subtracts one DEM from another (the 1986 

DEM as base fi-om oblique DEMs) using the boundary file to clip the area of interest in 

both DEMs and produces an isoline grid that stores values resulting from the subtraction 

or elevation difference between models. The script takes each value (z) in the isoline grid 

and multiplies it by the area of a single cell (4 m ) to calculate a total volume difference 

within the cell between the two DEMs. The volume difference is written to a text file.
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3. ERROR ESTIMATION

Assessment of error involved in terrain modeling is not always straightforward; 

this is especially true in the case of this project where traditional photogrammetric 

techniques are not employed. Sources of error are directly related to the design of the 

photogrammetric survey, which includes camera calibration, sensor resolution, flight 

parameters, ground control and image orientation (absolute and relative), as well as 

random factors which include atmospheric interference (i.e. steam, heat shimmer, cloud 

cover), operator blunder and the nature and complexity of terrain being modeled. Error 

sources in DEMs are complex and varied. The most appropriate method for producing a 

DEM is therefore dependent on the application, the size of the study area, the time 

available for DEM construclibn and the error tolerance of the specific project.

The accuracy of a photogrammetrically acquired DEM relative to the surface 

from which it was derived is a function of sensor resolution, distance to object, the 

ground control network and the precision of measurements in the image (Wolf and 

Dewitt, 2000). Unfortunately, comprehensive analysis of accuracy and error is not 

possible for the project because of software limitations and complexity of variables 

involved. However, an estimation of accuracy and error is attainable. This project also 

has the advantage that vertical aerophotogrammetric surveys (Schilling et al., in press) 

were conducted at Mount St. Helens through the time period of this study, typically on 

the same day as oblique flights, which allows for comparison between techniques, 

ultimately producing an estimated accuracy of the DEMs (and derived quantities) that I 

have produced. The first evaluation of DEM accuracy and overall project error comes 

from the software used to build the three-dimensional models, PhotoModeler. The
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second section of error analysis comes from the comparison between techniques and their 

associated measurements. A full description of the latter is presented in the results 

section of this manuscript.

3.1. PhotoModeler Evaluation

Photogrammetric precision achieved in this project can be examined using 

exported data tables from PhotoModeler Pro software. Average point tightness and root 

mean square (RMS) error in both pixels and meters for each epoch are reported in Table

4. Tightness values represent measurements of the maximum distance between any pair

of projected light rays from the images to the object point (PhotoModeler, 2005). RMS 

residuals represent the difference between where the opeiator marked a given point and 

where PhotoModeler expects this point to be located (in x, y, z space). The location 

sought by PhotoModeler is defined by the projection and control that the operator input 

into the model in the early stages of processing. Inherently, if the ground control used by 

the operator to orient the model has error, this error then gets carried on to the residuals 

of reference points that make up the model.

For this project, ground control was established by extracting control points from 

a 2 m DEM constructed by means of vertical aerophotogrammetry. This was a necessary 

step because sensor (camera) locations were unknown at the time of image acquisition 

and no previous ground control survey had been established for this project. This was in 

the truest sense, an ‘on-the-fly’ operation. Thus, DEM error can be no less than the error 

calculated when producing the 2 m DEM used for control. This error is an estimated 

0.17 m RMS residual (Schilling et al., in press).
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Table 4. Average point assessment of oblique DEMs derived from quality report created 
by PhotoModeler Pro v.5 software.

Date of oblique Average point 
photography tightness (m)

Average RMS 
residual 
(pixels)

Average pixel 
size (m)

Average RMS 
residual (m)

11/20/2004 2.6 3.9 .20 .80
11/29/2004 1.9 2.3 .45 1.0
01/03/2005 4.5 2.4 .80 1.9
02/01/2005 2.2 2.8 .28 .80
02/22/2005 2.8 3.6 .42 1.5
03/11/2005 2.6 2.8 .80 2.2
04/10/2005 1.9 3.4 .67 2.3
05/12/2005 1.3 1.9 .30 .60
06/15/2005 1.6 2.3 .50 1.2
10/12/2005 1.5 1.5 .50 .75
05/30/2006 2.5 3.5 .50 1.8
04/20/2007

...... . ..... ...
1.4 1.3 1.0 1-7

RMS residuals are one of the best indicators of project quality and should always 

be checked after processing. According to Wolf and Dewitt (2000) the term “error” is 

frequently used in photogrammetry when RMS residual is described, since errors are 

indeterminate. According to PhotoModeler (2005) all projects should have the largest 

RMS residual under 10 pixels. For projects with known and calibrated cameras the 

largest residual should be less than 3 pixels. For this project average RMS marking 

residual for all dates was 2.6 pixels.

The quality report that PhotoModeler exports assign RMS error in pixel units. In 

order to spatially understand the RMS residuals, a conversion from pixel units to meter 

units was necessary. The linear ground distance that a pixel represents in a photograph, 

also called ground sample distance (GSD), is a nontrivial calculation in highly oblique 

imagery. In fact, the difference in scale from foreground to background in an individual
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photograph can be tens to hundreds of meters depending on obliquity and flying distance 

from object (Doneus, 2001). However, to produce an estimate of the precision of this 

technique in units useful to a geoscientist, I calculated an average GSD for the pixels in 

each DEM. To determine an average GSD for each model, I chose three pairs of points 

in each model. These points were chosen based on their location within each model (i.e.

I chose points on the dome rather than ones used to tie the images together that may have 

been on the crater rim or glacier). Using the zoom tool in PhotoModeler, I was able to 

count pixels between points. Evaluation of the ID properties of each point gave the 

easting, northing and elevation data in meters. The difference between easting and 

northing of each point gave a distance (m) between points. Dividing the distance (m) by 

the number of pixels between points gave an estimation of the GSD of a pixel (Fig. 11). I 

used the average from the three point pairs to get an average GSD for each project. This 

average GSD (m) was then multiplied by the RMS in imit pixels to get an RMS in unit 

meters.

The average estimated RMS error for oblique photogrammetry was 1.4 m, eight 

times larger than the estimated 0.17 m RMS error of the 2 m DEMs used for ground 

control in the oblique surveys (Schilling et al., in press). It is not surprising that the RMS 

error for oblique DEMs is larger than the 2 m DEM, since error reported by oblique 

photogrammetry can be no smaller than the error involved in the 2 m DEM used to 

extract control points. Potential sources of this error diserepancy between techniques 

can be attributed to sueh things as sensor resolution, obliquity of images, software 

limitations, accuracy and precision of control points, and point determination (automated 

versus manual).
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Average RMS residuals were utilized to evaluate the uncertainty associated with 

volume measurements. In order to make a direct comparison with vertical 

aerophotogrammetry, I adopted the same techniques as Schilling et al. {in press) for 

model uncertainty estimates. According to Schilling et al. {in press), volume uncertainty 

is a function of the average RMS residual error multiplied by the area of the growing 

dome. Area dimensions, for each model, were calculated in ArcMap using the 3D 

Analyst extension and the Area and Volume Statistics calculator. Area in m^ for each 

model was input in an Excel spreadsheet and area values of the twelve DEMs were 

averaged to get an overall average of erupted area. Following the steps taken by 

Schilling et al. {in press), I multiplied the average area by the average RMS residual for 

all models, then divided that value by the average change in volume from nwdel to model 

to produce an average volume uncertainty for the oblique DEMs.

For DEMs produced from oblique photographs taken between November 2004 

and April 2007, RMS values of residuals averaged about 1.4 m in the x and y directions 

(planimetric coordinates) as well as the z direction (elevation coordinate). Multiplication 

of 1.4 m by the average area of the MSH crater surface affected by the extrusion of lava 

yields a volumetric uncertainty of 3.7x10^ m^, which is about 9% of the typical monthly 

extruded volume (4x10^ m^) inferred from differencing successive DEMs. This enor 

estimate assumes a nearly worst-case scenario.

Overall, the level of uncertainty is relatively small when taking into account the 

type of survey conducted, the amount of material produced, and the obscurity of the basal 

subsurface topography from Crater Glacier. In relation to the estimated 4% volume 

uncertainty of the vertical aerophotogrammetric method (Schilling et al., in press), my
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estimated 9% uncertainty is very promising in evaluating the success of using this 

method to accurately model dome growth.

3.2. Extrusion Rate Error

The error associated with the extrusion rate values derived from the estimated 

volumes for each DEM were calculated using Newton’s Error Propagation Theorem 

(Stoer and Bulirsch, 2002):

Newton’s theorem was chosen for the extrusion rate error calculation because the 

extrusion rates are based cir two variables, time and volume. Newton’s error propagation 

theorem calculates error for each rate based on four variables; t represents the time 

between successive photos (s), Ovoi represents the average volume error (estimated 

above), vol represents the volume change between successive dates, and at represents the 

error in time associated with each date. The error or uncertainty of time is roughly twice 

the duration of a helicopter flight, if the time of day for each flight is known. The time of 

each set of photographs was unknown, but the date of acquisition gave an estimated error 

of 8 hours. This estimate takes into account variations of the time of day in which images 

were acquired. In other words, if one flight occurred early in the morning on a given date 

and the other occurred late on another date, then the uncertainty in the time interval 

between photos could be as much as 8 hours. Assuming the largest time uncertainty of 8 

hours, the average extrusion rate rmcertainty is 0.12 m^/s.
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4. RESULTS

Twelve DEMs were constructed from oblique overlapping aerial photographs to 

evaluate the growth of a lava dome inside the crater of Mount St. Helens during the 

period November 2004 to April 2007 (Fig. 12A-L). The majority of the DEMs are from 

the early stages (2004-2005) of the eruption when helicopter flights were deployed 

frequently. Additional oblique aerial photographs were taken by CVO scientists in the 

spring of 2006 and again in 2007 for continued documentation. Each DEM as well as the 

oblique photographs used to construct DEMs proved useful for qualitative evaluation of 

the morphology and growth of the lava dome. Observations and measurements described 

in this section were derived from the oblique photographs and their associated DEMs.

I follow the terminology of other workers regarding the evolving morphology and 

features in the crater of Mount St. Helens (Vallance et al., in press'. Schilling et al., in 

press', Scott et al., in press): The dome growth that occurred from 1980 to 1986 produced 

several extrusions that formed a single lava dome, known as the 1980-1986 Dome. Dome 

growth that began on October 11, 2004 has continued to present without repose. The 

dome growth is referred to as a single lava dome comprising several individual 

extrusions. The individual extrusions that began in October 2004 and continue to present 

are referred to as spines rather than lobes because of their solid-state character (Blake, 

1990). When the spines are smooth and recumbent, implying that the vertical component 

of dimension is less than the horizontal component, they are referred to as a whaleback. 

The spines extruded at Mount St. Helens have different shapes that include fms (vertical 

faces of lava), whalebacks, and conical domes of blocky material, each having changed 

shape with time via internal and external deformation.
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The oblique aerial photographs used in this study were first taken two months 

after the initial uiurest at Mount St. Helens. Because of this delay, information about the 

beginning of the eruption is not contained in the photographs. To enable analysis from 

the start of the eruption, I augment the photogrammetry data with observations from other 

workers. September 23, 2004 marked the beginning of volcanic unrest at Mount St. 

Helens with intense seismic swarms (Moran et al., in press). From September 23 to 

October 10 there were several events of vent clearing and phreatic explosions (Shilling et 

al., in press). These events were accompanied by accelerated uplift of Crater Glacier.

The first appearance of dacite lava occurred on October 11, 2004 with a fin shape of solid 

dacite lava (Spine 1), growing in a near-vertical fashion (Scott et al., in press). Between 

October 11 and October 15, Spine 1 grew and broke apart. October 15-24 marked ihe 

growth period of Spine 2. On October 25, recumbent Spine 3 began to emerge and grow 

toward the south crater wall (Shilling et al., in press).

4.1. Dome Growth: 2004 - 2007

Here I review the evolving morphology of the dome, as seen in the twelve sets of 

oblique aerial photographs and the resulting OEMs. Table 5 summarizes the character of 

eruption and activity of the volcano during this interval.

November 20, 2004 was the first day that overlapping oblique aerial photographs 

were taken of the growing dome inside the crater of Mount St. Helens. As stated above, 

by this date dome growth had already produced two spines of dacite, and a third was 

forming. Oblique photography and the DEM show that Spine 3 was in a recumbent 

growth phase, forming a low angle cylindrical-like smooth plug that broke through the
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existing Crater Glacier surface (Fig. 13). The smooth appearance of the solid dacite of 

Spine 3 inspired the term whaleback to describe its morphology (Spine 3 is also known as 

Whaleback 1). Spine 3 formed just south of the stump of Spine 1 and was extruded 

directly south of the 1980-1986 Dome. Spine 3 had a NW-SE orientation and by 

November 20, 2004 had reached the south crater wall. The east portion of the new dome 

was dominated by the presence of this whaleback; it had a center 155 m wide (as 

measured from the DEM) and tapered at both the north and south ends (Figs. 12A, 13). 

The west side of the dome began to spread out with a talus apron formed by the 

disintegration of Spine 3 and remnants of Spine 2.

Table 5. Characteristics of lava doine growth from November 2004 - April 2007.

Date of 
oblique 

photography
Active
spine

Dome 
length 

(long-axis 
in meters)

Dome
width

(long-axis
in

meters)
Character of eruptive 

activity (in bold)
11/20/2004 Spine 3 345 254 Exogenous
11/29/2004 511 352 Spines dominate dome

growth
01/03/2005 Spine 4 464 387 Dome growth migrates east
02/01/2005 526 500 Talus fans to the north
02/22/2005 600 460
03/11/2005 720 510
04/10/2005 730 583 Spine begins to disintegrate
05/12/2005 Spine 5 680 535
06/15/2005 627 630 Westward migration of

growth
10/12/2005 Spine 6 870 600 Endogenous
05/30/2006 Spine 7 920 600 Exogenous/endogenous
04/20/2007 1032 650 Endogenous
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On November 29, 2004 the exposed base of Spine 3 continued to push against the 

south crater wall, while the recumbent spine gained 100 meters in length (Fig 12B). The 

perimeter of extruded lava remained constant on the east side of the dome and continued 

to fan out on the west side, in part, due to a large section of the southwest tip of Spine 3 

having broken apart from impact against the crater wall.

No oblique photographs were taken in December of 2004, but the January 3, 2005 

photographs and the DEM showed that a new spine. Spine 4, had begun growing and 

over-thrusting Spines 2 and 3, eventually pushing Spine 2 to the west and Spine 3 to the 

east. During this time, spine and dome growth continued to the south and began 

migrating east as well. Talus aprons from the previous three spines began to fill the 

outskirts of the growing spine that dominated the growth of the dome (Figs. 12C, 14). 

Spine 4 was wider than the previous spines at 180 m in early January but had many 

similarities with Spine 3, which included a striated, gouge-covered surface, patterns of 

discoloration, and large cracks (Fig. 14 inset).

Over the period of one month, January 3 to February 2, 2005, the eruption added 

significant volume to the dome (Fig. 12D). Spine 4 (Whaleback 2) continued to grow 

south and east. The northern section of the dome consisted of the steep whaleback 

feature, while the south, east and west ends were covered by relatively steep talus slopes 

and remnants of previous spines. In early February, Spine 4 maintained a cylindrical like 

form that had a constant thickness of 150 m through the majority of its body and tapered 

to a steep slope at its southern extent, 325 m in length from the vent (Fig. 15).

Images of February 22, 2005 show the continued growth of Spine 4 (Fig. 12E). 

Sometime in mid-February, a significant portion of the west side of Spine 4 collapsed and
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left a sizable scar in the smooth surface (Fig. 16). Spine 4 had gained 65 m in length 

since the beginning of February.

By March 11, 2005 dome morphology had changed very little from its form in 

late February (Fig. 12F). Spine 4 had gained an additional 60 m in length, totaling 450 m 

from vent to southern tip. Approximately 1/3 of the southwestern tip of Spine 4 had 

collapsed by this time adding significant talus to the west side of the dome.

April 10, 2005 images show the beginning of breakdown of Spine 4, with large 

rock fall scars on the east face and west side of the second whaleback (Fig. 12G). A 

series of northeast and northwest striking fractures, resulting from compression against 

the south crater wall, began to break apart Spine 4, leaving piles of talus and several large 

block remnants (Fig. 17) (Scutt et ah, in pr^js). Fracturing throughout Spine 4 caused 

further westward migration of dome material. Spine 4 reached a maximum length of 480 

m and width of 160 m.

Oblique aerial photographs and the DEM show the growth of Spine 5 on May 12, 

2005 (Figs. 12H and 18). Spine 5 had a smooth appearance with large cracks and patches 

of discoloration from gases (as did the previous two spines), but it had a much steeper 

slope of 60-70 degrees on all sides. Spine 5 marked the beginning of westward migration 

of dome growth with its locus roughly 130 m west of previous spine growth. Breakdown 

of Spine 4 and new growth of Spine 5 created a trench between the two that filled with 

talus and rock debris from spine fragmentation, leaving the perimeter of rock debris 

nearly unchanged.

June 15, 2005 images show the continued growth of Spine 5, which was shorter, 

132 m in length, and narrower, only 110 m at the base, than Spine 4 (Fig. 121). Spine 5

38



maintained its steep slopes of 60 degrees in all directions. Through the remaining 

summer months of 2005 no oblique imagery was acquired.

The next dataset available from oblique aerial photogrammetry was in October 

2005 (Fig. 12J). By this date Spine 5 had broken apart, leaving mega-block remnants and 

piles of talus. The locus of growth for Spine 6 lay more than 200 m west-northwest from 

that of Spine 5, significantly transferring dome growth to the west. A small portion of 

Spine 6 had the typical smooth surface with gouge of previous spines and was oriented 

southwest-northeast, but the majority of the spine had already broken apart to form a 

conical talus pile to the southwest of the 1980-1986 Dome. During this time, the 

majority of dome growth was endogenous (growing from within the talus, i.e. inflation), 

i'alus filled the gaps left between spines and covered the perimeter of dome growth. 

Long-axis length of the dome was nearly 900 m with a long-axis width of 600 m (Fig.

19).

Seven months of the eruption elapsed until the subsequent deployment of another 

oblique photogrammetry flight on May 30, 2006. By this time Spine 7 had emerged 

~170 m southeast of Spine 6 in the talus trench that formed when dome growth migrated 

west (Fig. 12K). Spine 7 had a near vertical face striking north-south that enveloped the 

east side of the conical talus dome that began growing mid-summer 2005. The growing 

dome had essentially filled the entire area of the crater floor south of the 1980-1986 

Dome.

Nearly a year later, on April 20, 2007, the final set of oblique aerial photographs 

for this project were taken. Endogenous growth dominated eruptive activity during the 

last documented interval. The west section of the new dome lost over 60 m in elevation
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but continued to grow in circumference to an average diameter of 500 m. Two and a half 

years of dome growth had formed a composite dome larger than the 1980-1986 Dome 

(Fig. 12L).

4.2. Quantitative Description of Dome Evolution

DEMs permit quantitative analysis of the evolving dome growth of Mount St. 

Helens. Quantitative measurements of significance to this study, which include dome 

height, eruptive volume, and extrusion rate through time, can be seen in Table 6. Dome 

height was measured fi-om the highest point on each DEM to the point directly below it 

on the 1986 DEM surface. Fig. 20 shows a time-series of dome height and includes 

significant seismic, collapse, arid’ deformation events. A closer examination of seismic 

event spacing, magnitude, and resultant daily seismic energy is provided in Fig. 21. 

Eruptive volume was calculated using an AML script in Arcinfo that subtracted each of 

the twelve DEMs derived from oblique photogrammetry fi-om a 1986 DEM that is 

representative of the pre-emption and pre-glacier crater floor. A full description of this 

technique can be found in the methods section (2.6). Estimates of the rate of newly 

extmded lava were made by differencing successive DEMs and dividing the volume 

difference by the amormt of elapsed time (s) between sequential DEMs. Volume 

calculations and extmsion rates through time can be seen in Table 6 and Fig. 22.

Dome growth has continued without repose since the October, 2004. A rapid 

increase in dome volume through the first seven months of oblique photogrammetry 

surveys is seen in Fig. 22. From June 2005 to April 2007, the dome growth curve began 

to level out and has remained at a relatively constant growth rate of less than 1 m^/s.
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Both variables follow a similar curve from 2004 to 2007. A more descriptive evolution 

of dome growth follows:

Table 6. Extruded lava volume, lava extrusion rate, and dome height (above 1986 crater 
floor) values of the 2004-2007 eruption of Mount St. Helens, with associated error 
estimations as determined by the method discussed herein.

Date of oblique 
photography

Total extruded 
lava

(x 10*^ m^)
± 4x10*^

Lava extrusion 
rate 

(m^/s)
± .12 m^/s

Dome height 
(m)

± 1.4 in

11/20/2004 15 4.3 263
11/29/2004 22 (8.5) 274

5.1* 274
01/03/2005 26 1.3 304
02/01/2005 35 3.9 327
02/22/2005 38 1.3 325
03/11/2005 41 2.5 318
04/10/2005 47 2.2 323
05/12/2005 56 3.2 371
06/15/2005 60 1.4 363
10/12/2005 68 0.8 290
05/30/2006 85 0.9 375
04/20/2007 94 0.3 317

* Extrusion rate recalculated without using data from 11/20/2004 and used when
graphing extrusion rate vs. time (Fig. 28). Both extrusion rate values are plotted in Fig.
22. Volume estimates for 11/20/2004 were determined to be underestimated, therefore
adding error to the time-averaged extrusion rate of 11/29/2004.

The extrusion rate of November 20, 2004 was calculated assuming a start date of 

October 11, 2004, because as this was the first date lava was extruded to the surface, 

according to field observations (Vallance et al. in press). The first date that oblique 

photography was conducted, November 20, 2004, yielded a dome volume of 15x10 m . 

Persistent steaming at the vent obstructed views of the growing dome as seen in Fig. 13. 

Steam obstructed nearly the entire west and north side of the dome, and the helicopter did 

not fly to the southern end of the dome to capture images fi-om that vantage point.
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Because of this limited coverage, the DEM produced from the oblique photographs had 

limited sections where I could pick points located in pairs of photographs and thus the 

DEM is coarse and volume is likely underestimated. Nine days later on November 29, 

2004 oblique photographs were able to capture the entire dome and the DEM volume 

estimate was 22x10 m , a significant increase from the previous DEM. The dome was 

extruding at a rate of 8.5 m^/s, a rate that is overestimated based on the fact that the 

previous DEM volume was underestimated for reasons given above. By the end of 

November 2004 the new dome had reached 2295 m in altitude, 290 m above the 1986 

crater floor surface.

The DEM produced from oblique photography taken January 3, 2005 established 

a total donie volume of 26x10^ m^ and an extrusion rate of 1.3 m^/s between November 

and January. The highest point of the dome in early January reached 2304 m altitude,

304 m above the 1986 crater floor.

DEM calculations show the dome had grown an additional lOxlO^m^ a month 

later on than February 2, 2005, because of an accelerated extmsion rate of 3.9 m^/s. The 

DEM produced from oblique photographs taken on February 22, 2005 the showed 

extrusion rate had declined by over 2.5 m^/s to 1.3 m^/s, but total erupted lava reached a 

volume of 38x10 m and reached an altitude of 2342 m.

By March 11, 2005 extrusion rate had nearly doubled from the end of February, 

reaching a rate of 2.5 m^/s and total dome volume reached 41x10^ m^. A short-lived 

explosive event occurred on March 8, 2005, causing the height of the dome to decrease 

slightly from 325 m in February to 318 m above the 1986 crater floor on March 11, 2005.
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The extrusion rate remained relatively stable between March and April 2005 at 

2.2 m^/s. On April 10, 2005, seven months after the first report of lava having reached 

the surface, dome volume had reached 47x10^ m^, half the volume of the 1980-1986 

Dome.

The extrusion rate had once again increased from the previous month to 3.2 m^/s, 

increasing dome volume to 56x10 m onMay 12, 2005. Dome height had reached an 

apex of 371 m above the 1986 crater floor with new growth of Spine 5.

On June 15, 2005 total dome volume was 60x10^ m^ and lava extrusion rate had 

decreased by over a half to 1.4 m^/s. Dome height had decreased slightly with the break

up of Spine 5, the highest point on the dome was 2347 m in altitude and, at this location 

was 363 m above the 1986 crater floor surface.

The period of westward migration of the locus of growth and emergence of Spine 

6 on October 10, 2005 had a slightly declined extrusion rate of 0.8 mVs. Total dome 

volume had reached 68x10^ m^. Dome height was at its lowest point since early in the 

eruptive episode (November 29, 2004), at a height of 290 m above the crater floor.

Over the period of seven months extrusion rate had remained relatively constant 

at just under 1 m^/s from the rate between October 10, 2005 and May 30, 2006. Dome 

volume was 85x10 m . Dome height had once again reached the apex at 375 m, 

reaching the altitude of the lowest point on the crater rim (2363 m altitude) with the 

growth of Spine 7.

Almost a year later on April 20, 2007 extrusion rate had declined to 0.3 m^/s. 

Dome volume totaled 94x10^, 2x10^ m^ greater than the volume of 1980-1986 Dome.
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Dome height had been reduced by 60 m with the break-down of Spine 7 and endogenous 

growth dominated the character of extrusion.

4.3. Comparison to Vertical aerophotogrammetry Technique (USGS DEMs)

Qualitative comparison between the technique employed in this study, oblique 

photogrammetry, and the vertical aerophotogrammetry technique used by the U.S. 

Geological Survey can be seen in Fig. 23, which shows a selected pair of DEMs from the 

same date constructed by means of each technique. A quantitative comparison can be 

achieved by looking at volume differences and estimation of uncertainty calculated for 

each technique.

According to Wolf and Dewitt (2000), the size of residuals A not always an ideal 

indicator of project accuracy or error; projects with small residuals may be inaccurate in 

terms of absolute position marking. Because of this unknown. Wolf and Dewitt (2000) 

advise the only way to disclose a systematic error (i.e. datum, map scales and projections) 

is to perform field tests or comparisons to surveys that have employed strong geodetic 

control. A comparison of this type is possible for this project since vertical 

aerophotogrammetric surveys were performed typically on the same day as oblique 

photogrammetry flights. Comparison of oblique photogrammetry employed in this study 

to vertical aerophotogrammetry techniques used by the USGS to construct DEMs is not 

only a good indicator of technique accmacy, assuming the USGS DEMs are close to 

‘truth’, but also provides an evaluation of this technique in terms of volcano monitoring, 

cost effectiveness and future use.
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Volume comparisons of dome growth between oblique and vertical 

aerophotogrammetry techniques are shown in Table 7. Total dome volume estimates 

measured by the two different techniques fall within each method’s error, with the 

exception of January 3, 2005 (Fig. 24). I calculated volumes using the same method 

(described in section 3.2) for both oblique and vertical aerophotogrammetric derived 

DEMs.

Table 7. Volume comparisons between vertical aerophotogrammetry and oblique 
photogrammetry techniques.

Date of 
oblique 

photography

Oblique 
Volume 

(x 10*^ m^)

USGS 
Volume 

(x 10® m^)

%
Comparison

* Adjusted
USGS

Volume
(x 10® m^)

%
Comparison

11/20/2004 15 No data fl5 98
11/29/2004 22 21 101 21 96
01/03/2005 26 31 84 24 96
02/01/2005 35 35 100 34 97
02/22/2005 38 39 96 39 105
03/11/2005 41 42 98 41 99
04/10/2005 47 No data No data
05/12/2005 56 No data No data
06/15/2005 60 54 111 57 96
10/12/2005 68 No data f67 99
05/30/2006 85 82 104 79 94
04/20/2007 94 93 101 No data

* USGS DEM volume calculated using extruded lava boundary determined from the
oblique photographs.
t Indicates dates that do not directly correspond. Closest dates were used for
calculations.

On average, volume calculations from the oblique photogrammetry DEMs came within 

5% of volume calculations from vertical aerophotogrammetry DEMs. Volume and 

percent differences for each date in which both techniques were employed at Mount St. 

Helens can be seen in Fig. 25A. This method yields the best comparison between the two
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techniques because interpretation and mapping of extruded lava boundaries may differ 

between users.

To provide a comparison of volume estimates between techniques using a single 

variable, volumes of both sets of DEMs (oblique and vertical aerophotogrammetric) were 

calculated using the same extruded lava boundary. The volume and percent discrepancy 

of the DEMs using the same clipping boundary are shown in Fig. 25B. This volume 

calculation method yields an average 2% volume discrepancy between techniques. This 

comparison tests only the DEM difference, not the additional difference of interpretation 

of extruded rock boundaries.
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5. DISCUSSION

5.1. Dome Growth

The chronology of dome growth between 2004 and 2007 at Mount St. Helens 

reveals a number of trends including: (1) a transition from pmely exogenous to 

predominately endogenous growth; (2) migration of the locus of dome growth: first in an 

eastward direction, and then westward; and (3) an overall decline in extrusion rate 

through time. These trends can be explained by investigating variables involved in the 

dome growth at Mount St. Helens.

5.1.2 jJome Growth Mechanics

Characteristics of the 2004-2007 dome growth (dome height, dome volume, 

extrusion rates, and migration of flow) calculated during this study are used to 

qualitatively explore the sub-surface mechanics driving the on-going eruption of Mount 

St. Helens. A goal of this study is to examine dome growth mechanics expressed in 

dome height and extrusion rate variations through time. Extrusion rates and volume 

estimates spanning two and a half years of eruptive activity at Mount St. Helens provide a 

framework to answer some fundamental questions about dome growth. I pose two 

hypotheses: First, as gravitational load (expressed as height) on an active dome 

increases, dome stability will decrease. Second, as the mean output rate varies over 

different periods of time, these variations will change the character of eruptive activity.

Laboratory, field and theoretical studies have been conducted by Melnik and 

Sparks (1999) and Fink and Bridges (1995) that examine the relationship between dome

47



height and extrusion rate. Melnik and Sparks (1999) studied the Oetober 1997 eruptive 

period at Soufriere Hills volcano and found an inverse relationship between these two 

variables: extrusion rate declines as dome height increases (Fig. 26). This observed 

relationship at Soufriere Hills volcano did not correspond to their analytical model that 

predicted an oscillating pattern expressed by the two variables if the eruption is in steady- 

state (Fig. 26), which was addressed via the argument that at low extrusion rates and 

large dome heights the eruption cannot be in steady state. For steady-state eruptions, 

Melnik and Sparks (1999) predict dome height directly from extrusion rate. The 

extrusion rate is thought to be strongly related to magma overpressure in the chamber 

below.

Fink and Bridges (1995) examined several groups of natural lava domes including 

Mount St. Helens (1980-1986 Dome) and Soufriere Hills, and they also conducted scaled 

laboratory experiments to simulate dome growth. Their study found that dome height 

increased steadily with erupted volume, and the rate at which height increased with 

volume depended linearly on the time-averaged effusion rate. According to Fink and 

Bridges (1995), the accumulation of lava above the vent acts to increase the vent pressme 

and reduce the eruption rate. In turn, the eruption rate determines how the eruption 

volume changes with time.

Reducing these models to factors observable with photogrammetry, Melnik and 

Sparks (1999) argue that dome height is controlled by extrusion rate; Fink and Bridges 

(1995) argue that dome height is limited by gravitational load. One way to reconcile the 

two models could be an alternating system between gravitational-load- and extrusion- 

rate-controlled dome heights. To investigate this possibility, I examine data derived from
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oblique photogrammetry (presented in Section 4), augmented with records of seismicity 

and vertical aerophotogrammetry (Moran et al., in press; Schilling et ah, in press).

A weak inverse correlation exists between dome height and extrusion rates from 

this study (Fig. 27). The correlation is understandably low, because the relationship 

includes only two variables of dome growth, suggestive of an unrealistically simple 

process. Although this presentation shows that, on average, dome height has decreased 

with increasing extrusion rate during this eruption, closer examination of the time-series 

(Figs. 20 and 28 discussed below) shows that there are periods when the two are 

positively correlated. Comparison of these two variables with additional observations 

including spine growth and disintegration, seismicity, and locus of growth migration 

provide a moic thorough picture of the relationship between dome height and c^crusion 

rate. Fig. 20 illustrates a more complete chronology of the 2004-2007 dome-building 

eruption of Moimt St. Helens, with dome height variations through time and significant 

seismic, deformation, and explosive events. To investigate trends found fi-om the data 

collected in this study it is necessary to also include data collected by the U.S. Geological 

survey from vertical aerophotogrammetric surveys to confirm trends since the vertical 

aerophotogrammetric DEMs are acknowledged to be more accurate in most cases. This 

unique combination of datasets also provides a more substantiated argument for trends 

found in the dome growth variables.

Examination of variables involved in dome growth at Mount St. Helens (Figs. 20, 

24, and 28) suggests a correlation between dome height and sueh things as spine 

fragmentation and collapse, spine growth and seismicity levels. These correlations are 

described below:
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Extrusion rate variations and total dome volume can be seen in Fig. 22. Dome 

height, as measured from the 1986 crater floor to the apex of the growing dome, 

expresses an oscillatory behavior from November 2004 to April 2007. Between 

November 2004 and January 2005 dome height increased as extrusion rate decreased 

(Fig. 28). During February 2005, both dome height and extrusion rate increased 

according to measurements by both photogrammetric techniques. The positive 

relationship between dome height and extrusion rate during this phase may be attributed 

to the growth of a new spine as well as a significant explosive event that occurred in mid 

January. The photographic data are not sufficient to negate or confirm the reason for this 

positive relationship. From February 1 to 22, 2005 dome height and seismicity remained 

relatively stable as extrusion rate declined ^significantly. Spine 4 dominated the area of 

dome growth and, according to the dome height plots (Fig. 20) had reached the apex of 

its growth. Portions of Spine 4 began to collapse sometime in February, but it seems that 

the solid plug-like morphology of this spine added significant pressure to the vent, 

causing a dramatic decrease in extrusion rate.

Extrusion rates and dome heights from late February 2005 to April show a strong 

inverse relationship. From April 2005 to May 2005 extrusion rate increased along with 

dome height. This increase in extrusion rate and dome height cannot be validated by 

vertical aerophotogrammetry because no DEM from May 2005 was made by this method. 

If the relationship found in the oblique dataset is true, a possible explanation is as 

follows: In April, Spine 4 encountered the south crater wall and began to disintegrate, 

while Spine 5 emerged in an eastward migration of the locus of growth. This continued
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migration and new spine growth may account for the increase in dome extmsion rates and 

dome height at this time.

Oblique photography was not captured between June 15, 2005 and October 10, 

2005. Vertical aerophotogrammetric data show that extrusion rate increased as dome 

height decreased from July 2005 to August 2005, and from August to October 2005 the 

variables exhibit a positive correlation, as is seen by oblique photogrammetric data. In 

May, dome height reached an apex of 375 m above the 1986 crater floor. After reaching 

this height. Spine 5 began to break apart in significant dome collapse events. Seismicity 

also declined substantially in event size and rate at this time (Moran et al., in press).

From this data, I surmise that overpressure of the growing dome on the vent slowed dome 

growth (exhusion rate) significantly at this time.

Both oblique and vertical aerophotogrammetry data show that from October 2005 

to April 2007 extrusion rate and levels of seismicity remained relatively stable, while 

dome height began to increase. In addition, October marked the beginning of westward 

migration of the locus of dome growth and a transition from purely exogenous dome 

growth to a combination of predominantly endogenous dome growth and lesser amounts 

of exogenous spine growth.

These observations suggest that dome height and extrusion rate play a significant 

role in the character of eruptive activity. During times of exogenous dome growth, the 

feedback between dome height and extrusion rate is apparent: Dome height directly 

influences the decline of extrusion rate by gravitational overpressure on the conduit. 

During periods of exogenous growth the solid spines are clearly connected to the vent, 

imposing a direct load onto the area of lava extrusion. The solid nature of exogenous
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growth at Mount St. Helens also favors spine destabilization, which ultimately leads to 

spine collapse or migration of the vent, and renewed increase in extrusion rates. During 

times of endogenous growth the relationship breaks down: dome height increases 

steadily to a maximum point, then declines, but extrusion rate remains relatively stable. 

One possible explanation of this correlation is that during periods of endogenous growth, 

material accumulates over a larger area, not just directly over the conduit, and thus the 

feedback is not as apparent or strong.

Another aspect of this relationship suggests a possible threshold at which a 

growing dome becomes inherently unstable due to perturbations such as unloading of the 

pressurized conduit by dome collapse. Close examination of this relationship provides 

preliminary evidence of a critical threshold at which dome height reaches an apex, 

possibly resulting in the migration of the point of extrusion or a slowing and possible 

cessation of the eruption. Dates that suggest this relationship are May 12, 2005 and May 

30, 2006 when dome heights reached maximum values of -370 m. On May 12, 2005 this 

maximum dome height was followed by a significant westward migration in the locus of 

dome growth as well as a change from exogenous to endogenous eruptive character (Fig. 

20). Data following May 30, 2006 are limited but show the maximum dome height -370 

m attained during exogenous growth, followed by a decline in dome height during 

endogenous growth and continued westward migration.

This study examined a much broader timescale than that studied by Melnik and 

Sparks (1999), and a single episode of dome growth, unlike Fink and Bridges (1995).

The temporal resolution of this study is limited and thus it would be difficult to produce a
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more robust relationship between dome height and extrusion. If oblique photography 

flights continue, a more comprehensive look at this relationship could be accomplished.

A more robust dataset (in terms of improved temporal resolution) needs to be acquired 

and factors such as overpressure of the conduit due to gravitational load and its effect on 

the rate of dome growth should be considered further, in order to evaluate the sub-surface 

processes affecting Mormt St. Helen’s volcanic system. Additionally, further oblique 

photogrammetry surveys at Mount St. Helens are warrEinted to better constrain models 

related to dome growth rates, specifically the relationship between dome height and 

extrusion rate, with much higher temporal resolution than is currently employed.

5.2. Methods

The nature of this project, which consisted of using a new technique in 

photogrammetry to collect and analyze spatial data of the growing dome of Mount St. 

Helens volcano, is inherently complex. As with all scientific experiments, experience has 

shown which portions of this project worked successfully and which can be improved 

upon for future studies. Analyses of the selected study site, instrumentation and software, 

field and processing methods, and comparison between photogrammetric techniques are 

described in this section.

5.2.1. Study Site: Mount St. Helens

It should be addressed that the methods of this study were not pre-planned before 

the onset of eruptive activity in September of 2004. Oblique photographs were acquired 

to use with specific software not utilized by this study. All datasets used in this study
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were acquired before software was chosen or a course of action, with respect to dataset 

analyses, was planned. The study site, software, and hardware used in this study have 

been combined to provide a successful evaluation of a method and of dome evolution at 

Mount St. Helens volcano.

The selection of Mount St. Helens as the target volcano for this study was 

significant to the success of this project. Mount St. Helens’ proximity to roads and cities 

makes it an easily accessible volcano. In addition, it is roughly 50 km from the USGS 

Cascades Volcano Observatory office, making travel to the volcano by helicopter and car, 

unproblematic. The volcano’s renewed activity in September 2004 made it a perfect 

study site to experiment with new techniques to monitor and study dome growth.

Another advantage is the robust monitoring structure established at the volcano, which 

includes a dense network of permanent and campaign GPS stations, seismometers, 

permanent terrestrial camera stations, tiltmeters and routine gas sampling, vertical 

aerophotogrammetric surveys, and petrologic analyses. These datasets allow comparison 

between variables of dome growth for a better understanding of volcanic processes 

occurring at Mount St. Helens. Field crews from the USGS regularly take helicopter 

flights to the volcano for monitoring. Because of this frequency, I and other workers 

were able to take a camera on flights and capture oblique photogrammetry for this project 

by helicopter. Considering the nature of the available equipment and the financial 

limitations of this project, Mount St. Helens was the ideal volcano to support this study. 

The same conveniences might not be available at other volcanoes of interest, particularly 

in remote locations, which could limit the applicability of the method.
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5.2.2. Instrumentation and Software

The Nikon D70 digital SLR camera used for image acquisition proved efficient 

and affordable use in this project. The D70 has since been replaced by the similar D80, 

but a D70 body with an 18-70 mm Nikkor lens can be purchased for less than $1,000.

Any off-the-shelf digital camera could have been used for this project but the Nikon D70 

offers features such as interchangeable lens capability, infinity focus setting, RAW 

format options, auto and manual focus. The camera is user friendly and images can be 

easily and rapidly downloaded in the field or office, all of which make the Nikon D70 a 

leading choice in instrumentation used for this method.

Arguably the most significant portion of this research project in terms of project 

objectives is the processing software for oblique imagery. PhotoModeler was the choice 

of software for this project because it met two criteria: (1) it must be able to process 

oblique digital images with limited ground control and still reach a certain level of 

accuracy, and (2) be relatively inexpensive (less than $1,000) and easily accessible. 

Alternative software packages were tested for use in this project but required that camera 

locations be known at the time of image acquisition. The photographs for this project 

were acquired before the development of this project, and thus locations were not 

recorded, requiring an adaptable software program such as PhotoModeler. The built-in 

camera calibration extension of PhotoModeler is the most advantageous feature of the 

software. This extension allowed the use of a commercial grade, non-metric camera to be 

used as the sensor for image acquisition in this project, which is a significant feature that 

allows the method employed in this project to be cost-effective. In addition, the software 

is consumer-grade and inexpensive (~ $800), a small price relative to the cost of other

55



photogrammetric software package ($5,000 to $70,000). Additionally, some 

photogrammetric software packages require specific hardware to run the programs, which 

can cost up to $500,000 and require rigorous training to operate, adding to the total cost. 

Additionally, in order to demonstrate the potential and field-worthy nature of this novel 

technique, the software must be able to accurately generate DEMs, which are then used to 

quantify the volume of the dome. Results from processing twelve sets of oblique 

photographs with PhotoModeler software support that this software, when incorporated 

with the instrumentation used in this project, is low-cost, time-efficient, simple, and 

accurate.

X2.3. Processing Time

Once methodology had been established for this project, a single DEM derived 

from a set of oblique photos could be produced in about 4 hours. This processing speed 

puts oblique photogrammetry far above traditional vertical aerophotogrammetry in turn

around rate, which t5qiically takes two to three weeks from flight to DEM. A significant 

goal of this study is reached in producing a technique for fast hazard evaluation in the 

event that volume analysis is required at an active volcano.

5.2.4. Comparison of Techniques

As stated in the results section of this manuscript, on average DEMs from oblique 

photogrammetry and vertical aerophotogrammetry had volume calculations within 5% of 

each other. Significant variation (>10%) of dome volumes for January 3, 2005 and June
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15, 2005 can be attributed to adverse atmospheric effects and insufficient photographic

coverage.

On November 20, 2004 persistent steaming at the vent during image acquisition 

limited visibility of the spine and extent of extruded lava, thus the precision of the DEM 

from oblique photography is reduced. Because of this obstruction of view, volume 

calculations and extrusion rate for November 20, 2004 are below expected values 

(15x10^ m^). Nine days later another set of oblique aerial images were captured. At this 

date, there was little to no steaming and images were able to capture the entire dome and 

emerging spine, resulting in volume measurements significantly greater (and probably 

more accurate, in my opinion) than those from nine days previous and more 

representative of the volume of the dome.

Oblique images captured on June 15, 2005 were better able to capture the entire 

extent of dome growth than vertical aerial photographs used for vertical 

aerophotogrammetry due to persistent steaming at the vent (Fig. 23). The obliquity of 

view allowed for a complete view of the north side of Spine 6 and thus the volume 

calculation for this date made by oblique photogrammetry is significantly greater than 

volume calculated by vertical aerophotogrammetry, and likely more accurate.

5.2.5. Point Density Test

DEMs fi'om oblique photography were constructed by adding as many reference 

points as could be identified in a group of photographs. This selection process resulted in 

varying numbers of points which make up each oblique photogrammetric DEM (Table 

3). A significant question that arises from this method is how many points are sufficient
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to make a DEM that achieves a given accuracy, with respect to the maximum point DEM 

from oblique photography and the high point density DEM made by vertical 

aerophotogrammetry? To assess this, I selected a relatively detailed DEM (oblique) for 

which there was a corresponding vertical aerophotogrammetric DEM. The June 15, 2005 

DEM was selected based on its relatively high point total (-800) and the fact that it 

agrees with the vertical aerophotogrammetric DEM to within 4% when the same extmded 

rock perimeter is used. To test the idea of a threshold, at which the number of points 

deviates significantly from either DEMs (oblique or vertical aerophotogrammetric). I 

used a random number generator in Microsoft Excel to select arbitrary subsets of points 

(650, 450, 250, 150, 100). Five subsets of each point total were generated, and a DEM 

was constructed from each, tv/enty-five in total, all having the same extruded i<iva 

perimeter (made from 50 perimeter points) used for the original June 15, 2005 oblique 

DEM. Volumes were calculated with the AML script used to calculate original volumes 

for each epoch and the 1986 DEM used as a baseline. Discrepancy in volume versus 

number of points (Fig. 29 A) show that as the number of points in the model decreases, 

the deviation from the expected volume increases. The volume of the -800 point oblique 

DEM and the point subsets of 250, 450, and 650 all fall within the error of the oblique 

DEM (m either the positive or negative). The volume from the vertical 

aerophotogrammetric DEM is smaller than all subset models (including the 800-point 

DEM). The volume discrepancy between oblique subsets and the vertical 

aerophotogrammetric DEM may be attributed to difference in coverage of the 2004-2007 

dome on the date of June 15, 2005 (see section 5.2.4). Therefore I use the 800-point 

volume (rather than the USGS vertical aerophotogrammetric volume) as my reference
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value for assessing precision of the subset models. A plot of percent agreement between 

the 800-point oblique DEM and the point subsets illustrates that percent agreements 

deviate as point numbers decrease (Fig. 29B.). This is also shown in Fig. 30, which plots 

standard deviation represented of each point subset (650, 450, 250, 150, 100).

All point subset volume calculations agree relatively well with the volume of the 

800-point oblique DEM. This agreement is the result of using a constant perimeter for

each volume calculation. As described in section 2.6, the perimeter of extruded rock is 

projected vertically downward to the 1986 baseline DEM when calculating volume. The 

cylinder-like shape of the volume below the glacier has a strong influence on volume 

estimations. To confirm the significant role that the extruded lava perimeter plays in 

volume estimation, 1 re-calculated che twenty-five DEMs using a flat plane (from the 

lowest point on the perimeter) as a surface and again found that each subset of points 

agree relatively well with the 800-point oblique DEM. Using the 800-point DEM, which 

had a perimeter made of fifty points, 1 also calculated volume by subtracting 10 perimeter 

points sequentially until no perimeter existed. As a result of a variable perimeter, volume 

calculations, keeping the same flat plane used for other calculations, deviate, on average, 

3.5% from the volume of the 800-point DEM. This result suggests that an accurate 

perimeter is important for a good volume calculation.

Qualitatively, the more points, the more detailed the DEM, and the more closely it 

may represent the actual morphology of the surface. The tests suggest that an inclusive 

perimeter is key in volume estimations, this is especially true if the baseline DEM is 

lower in elevation than the points which make up the perimeter, as is the case in this 

study. For rapid assessment of volumes and extrusion rates, relatively few points are
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required; a good perimeter and as few as one (highest elevation) point in the interior and 

a minimum point density can be suggested to users. This of course, depends on the 

complexity of the terrain being modeled. For a closer representation of the form of the 

dome, it is suggested that a dense (i.e. as many points as can be located given the 

resolution of the image) be added to the model. DEMs in this study that have 400 or 

more points better represent the form of the dome than those models with lower point 

densities. With 400 points as a threshold to produce an agreeable DEM, point density of 

a minimum of 1 point per 800 m^ can be suggested (Table 8).

Table 8. Point density calculations for June 15, 2005 DEMs based on point subsets 
within a constant area of 322540 m^. The area is defined by the 50 point perimeter used 
for volume calculations.

Number of Points Point Density (1 point per m^)

800 403
600 538
400 806
200 1613
100 3225
50 6451

5.2.6. Recommendations

A point that should be addressed is that this study has presented a special case 

with respect to the fact that DEMs from vertical aerophotogrammetry were already 

established to use for control and comparison, and that the U.S. Geological Survey, 

Cascades Volcano Observatory made a considerable investment in helicopter flights 

during the eruption. It cannot be anticipated that the same resources will be available at 

other volcanoes during eruptions. In the more likely case that DEMs are not already
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available and helicopter support is at a premium, I offer the following recommendations 

to provide flexibility of this method in application to other volcanoes:

Ground control used for this method can be acquired from several different 

methods. If funding is sufficient, the optimum choice for groimd control is to use a 

network of GPS (campaign or permanent stations). This method provides the most 

accurate and precise way of determining control for models, but can also be expensive 

with respect to the cost of GPS and the deployment of the stations aroimd the volcano, 

which may require helicopter assistance. The simplest is the use of topographic maps, 

though this technique involves error directly related to the contour interval of the map. 

Control can also be achieved by conventional trilateration from a theodolite, which does 

not require the use of a helicopter if the area surrounding the volcano is accessible by 

vehicle or hiking. One way to avoid using ground control is to capture the location (in x, 

y, z) of the camera at the time of image acquisition. This can be possible by using a 

kinematic GPS in the helicopter or near the camera (if images are taken from the ground) 

or utilizing a GPS hot shoe attachment, available on some new digital cameras. Any of 

the above methods will provide control for a model.

The use of a helicopter for image acquisition has played an important role in this 

thesis. Any type of aircraft provides a vantage point to easily capture a large area of 

dome growth by camera. In the case where helicopter support is imavailable, images 

could be acquired on the ground if vantage points were accessible. The optimum 

convergence angle for oblique photogrammetry is roughly 45°, but if angles greater than 

or less than the optimum are the only option, PhotoModeler is able to adapt to these 

variances of convergence.
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In terms of the instrumentation used for image acquisition, the higher the sensor 

resolution the better. The Nikon D70 proved very successful for this project, but if newer 

models with higher resolutions are available, they provide an advantage. It is 

recommended that the lens used for image acquisition be fixed or that the operator of the 

sensor takes notes on different focal settings used, so that camera calibration can be as 

quantitative as possible.

The fact that this method is capable of using any off-the-shelf digital camera and 

images taken from the ground or from the air (whether vertical or oblique) to produce 

DEMs that agree well with DEMs produced by vertical aerial photography has an 

advantage in any situation of volcanic activity. The method has proved adaptable to 

limitations posed by ground control and photographic coverage.

More tests need to be conducted and refinements made in order for the accuracy 

of this method to be improved to levels of traditional photogrammetric surveys, but as the 

method stands, it proves useful as a source of supplemental and/or rapid and coarse data 

of dome growth measurements.
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6. CONCLUSION

This research project was successful in applying a new technique to quantitatively 

measure dome growth at Mount St. Helens. The technique used oblique aerial 

photographs to create successive DEMs for qualitative and quantitative descriptions of 

the 2004-2007 eruption. The DEMs were used to calculate height, volume, and extrusion 

rate, and to track changes in these quantities through time. These quantities show a 

decreasing extrusion rate through time that has remained lower than 1 m^/s since October 

2005. Total dome volume as of April 2007 had reached 94x10^ m^, a larger volume than 

that of the 1980-1986 Dome. The quantitative evaluation of the DEMs tentatively 

suggest a possible relationship between dome height and extrusion rate, which varies 

wiiii exogenous or endogenous growth of the dome.

Comparisons of traditional photogrammetry with oblique photogrammetry 

measurements show that volumes of volcanic dome growth measurements are reliable. 

Considering ever-increasing improvements in camera technology, commercially available 

software solutions, and computer processing speeds, oblique photogrammetry shows 

promise as an important new tool for volcano monitoring. Using inexpensive 

commercial photogrammetric software, a laptop PC, and sets of digital images taken from 

a standard digital camera, I was able to build DEMs, and to measure accurately the 

volume and average extrusion rate of an actively growing dacite dome in the crater of 

Mount St. Helens volcano. While there are many reliable methods of extracting growth 

data from active volcanoes, these methods are time consuming or costly compared to this 

technique. This study indicates that such a system can yield measured results from the 

images that are within an acceptable range of error. This method allows rapid and simple
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surveys, producing results that are sufficiently accurate for the efficient monitoring and 

study of volcanic edifices. The method also shows promise for surveying areas that are 

not easily accessible and processing the data in the field or at temporary office locations 

with a laptop PC, desirable when fast hazard-mitigation is needed.
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Figure 1. A. Location of Mount St. Helens volcano in southwestern Washington State. 
Black box represents approximate location of Mount St. Helens. B. Close-in view of 
1986 DEM of the volcano shows the 1980-1986 Dome in the center of the horse-shoe 
crater.
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Figure 2, Nikon D70 digital single-lens reflex (SLR) camera used for oblique 
photogrammetry (Nikon, 2007).
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Figure 3. Schematic representation of a typical helicopter flight path (in red), vertical 
(A) and perspective view (B), during acquisition of oblique photographs at Mount St.
Helens.
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Figure 4. Calibration target grids provided by PhotoModeler Inc. used for camera 
calibration. The target grid was shot at four locations in both landscape and portrait 
views with the Nikon D70 used to acquire oblique photographs of Mount St. Helens.



Figure 5. DEM used to extract control points for use in oblique photogrammetry 
processing methods. Red stars indicate four control points used in every oblique 
photogrammetry model. The control points (GCPs) were distinctive features on the 
crater rim (top three) and on the 1980-1986 Dome (bottom one).
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A.

Figure 6. Example of overlapping oblique photographs and epipolar geometry. Two 
cameras, with their respective focal points Hi and H2, observe a point P on the 2004-2007 
Dome at Mount St. Helens (A). The projection of P onto each of the image planes is 
denoted Pi and P2. Points Ei and E2 are the epipoles. The line H2-P is seen by the H2 
camera as a point because it is directly in line with that camera's focal point. However, 
the Hi camera sees this line as a line in its image plane. That line (H2-P) in the Hi camera 
is called an epipolar line (B).
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Figure 7. Reference points represented by white crosses located on the dome. Reference 
points were easily identifiable features located on the 2004-2007 dome, which included 
intersection of cracks (A), striae (B), and edges of large talus (C). Photograph taken on 
2/22/2005 by Steve Schilling, USGS.
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Figure 8. A. Screen capture from PhotoModeler of oblique photographs taken on June 
15, 2005. White dots were overlain on small white crosses to illustrate the placement of 
points that are used to build a perimeter of extruded lava. B. Example of a point cloud, 
where points (white dots) are located in two or more oblique photographs. Each 
photograph illustrates a point perimeter or point cloud from one vantage point in a set of 
oblique photographs used to build a DEM.
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c

Figure 9. Triangulated irregular network (TIN) production. Nodes (x, y, z) are added to 
a GIS (A), the nodes are connected by lines, edges and triangles to their nearest neighbor 
(B), these triangles represent the surface of the model, which is eventually converted to a 
raster digital elevation model DEM for volume calculations (C).
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A

Figure 10. A. Illustration of volume calculated using a flat plane projected from the 
lowest elevation point on the oblique DEM (grey). Volumes calculated this way 
substantially underestimate the volume of new material added on top of the 1986 surface 
(blue). B. Volume calculations using the 1986 pre-emption surface as a baseline. This 
type of volume calculation projects vertical walls downward from the perimeter of the 
oblique DEM (grey) to the 1986 surface (blue). The varying topography of the 1986 
baseline surface is evident in the profile view (bottom left).
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Figure 12 A-D. Sequence of twelve DEMs (A-L) produced by oblique photogrammetry 
overlain on a USGS DEM from 1986 derived by means of vertical aerial 
photogrammetry. Dates span November 2004 to April 2007. A similar set of images of 
vertical aerophotogrammetric DEMs can be seen in Schilling et ah, (in press). Continued 
on the next page.
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Figure 12. Continued.
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Figure 12. Continued.
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Figure 13. Oblique photograph taken November 20, 2004. Growth of Spine 3 directly 
south of 1980-1986 Dome, breaking through Crater Glacier as a solid dacite plug.
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Figure 14. January 3, 2005 oblique photographs. Emergence of Spine 4, overthrusting 
Spine 2 and 3. Talus aprons began forming at this time predominantly on the west side of 
the dome. Typical features of spines, which include gouge, striae, discoloration and large 
cracks are highlighted in the red box.

87



Figure 15. Southeast view of February 1, 2005 oblique photograph (above) associated 
DEM (below, gray scale). Cylindrical-like body is easily noticeable at this date. 1986 
DEM is shown in blue as a reference frame for oblique photography DEM. Oblique 
DEM appears to float above the 1986 surface because the surrounding glacier that masks 
the 2004-2007 surface was not modeled.

88



Figure 16. February 22, 2005 oblique photograph (above) and associated DEM (below 
in gray scale, merged with 1986 DEM in blue) looking south-southeast toward the 
growing dome inside the crater of Mount St. Helens. Red rectangles on each image 
represent approximate area of a large section of spine collapse (middle).
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Figure 17. April 10, 2005 oblique photographs of Spine 4, several fractures (A) and 
large collapse scars (B) formed by the onset of disintegration of Spine 4.
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Figure 18. Oblique photogrammetry DEM (above) and photograph (below) acquired 
May 12, 2005. The emergence of Spine 5 marks westward migration of dome growth. A 
talus trench is located between the Spine 5 and the remnants of previous spines.
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Figure 19. October 12, 2005 oblique photograph taken northeast of the growing dome 
by helicopter. Succession of spines can be seen as the locus of growth migrated over 200 
m to the west at this date. Alternations of exogenous and endogenous growth produce 
Spine 6.
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* 10

12A)1

HSR daily seismic energy: 20041201-20060331

03«7 06/11 07/29 09/15 11AJ2 12/20 02^ 03/26

HSR event magnitudes: 20041201-20060331
290422 ev«nts

HSR event spacing: 20041201-20060331

Figure 21. Seismic plots of event magnitudes and spacing, and resultant daily seismic 
energy estimates for December 2004 - March 2006 (Moran et al, in press).
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Figure 23. An example of qualitative comparison between DEMs derived by means of 
oblique photogrammetry (1A-C) and DEMs derived by vertical aerophotogrammetry 
(2A-C). Images lA and 2A show typical vertical view of the dome on June 15, 2005, 
extruded rock perimeter is outlined in yellow. Images IB and 2B are three-dimensional 
views looking south at the dome with the 1980-1986 Dome in the foreground. Images 1C 
and 2C are profile views looking east with the west crater wall clipped to allow full view 
of the DEMs.
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Figure 25. A. Volumetric calculation differences (black bars) represented by variations 
in OEMs derived by different techniques. Associated percent difference is labeled above 
each bar. B. Calculated volume differences (gray bars) by oblique photogrammetry and 
vertical aerophotogrammetry techniques using the same clipping boundary of the 
growing dome. Percent difference values for each date are listed above volume 
difference bars.
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Discharge rate s""')

Figure 26. Calculated and observed magma discharge rate versus dome height. Filled 
circles represent measurements of dome height in October 1997 at Sourfriere Hills 
volcano. The solid line represents a steady state. The dashed line shows a change from 
one eruptive state to another with declining extrusion rate at a relatively constant dome 
height. (Melnik and Sparks, 1999)
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Figure 27. Direct relationship between dome height and extrusion rate (November 2004 
- April 2007). The linear trend-line shows a weak inverse correlation between variables.
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A. VOLUME VARIATION WITH POINT DENSITY
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Figure 29. A. Volume variation with respect to number of points. The error bars 
represent volume estimate error based on a single date. B. Number of point subsets 
plotted against percent agreement to the ~800 point oblique DEM. Percent agreement 
deviations increase with a decrease in number of points used.
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Figure 30. Standard deviation calculations of each subset of points (600, 400, 200, 100, 
50). The trendline and associated value suggest an exponential relationship between 
the number of points and the precision of volume estimates.
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