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Abstract 
 

Human settlement of the Gulf of Georgia region by hunter-forager peoples began nearly 5000 

years ago, culminating in the familiar Developed Northwest Coast Pattern exhibited in many Marpole 

Phase archaeological sites beginning 2400 years BP throughout the Gulf of Georgia region.  The physical 

remnants of the intensive shellfish collection and processing that took place on the Northwest Coast are 

in shell midden deposits: archaeological sites that contain an abundance of discarded shell, bones, lithic 

tools, and charcoal.   The preceding Locarno Beach Phase (3500-2400 BP), particularly in the southern Gulf 

of Georgia region, is less well understood by archaeologists because of the past academic focus on 

northern Marpole Phase sites.  The Woodstock Farm site (45WH55) is a Locarno Beach Phase shell midden 

located in the southern Gulf of Georgia, adjacent to Chuckanut Bay in Whatcom County, Washington.  

Recorded in 1974, the site has been the subject of three Western Washington University archaeological 

field schools in 2005, 2007, and 2010, and the shell midden identified on the bluff has been the focus of 

study for past Anthropology graduate theses at WWU. This thesis applies a program of geoarchaeological 

analysis, including radiocarbon dating, grain size analysis, magnetic susceptibility, and phosphorous 

values, to twenty five matrix samples from the approximately 4-square meter exposed beach profile shell 

midden below the bluff of 45WH55.  To date, there has been no geochemical or geophysical lab analysis 

to help interpret the depositional processes that created the complex stratigraphy that characterizes the 

exposed shell midden in the beach profile at 45WH55.  The numerous ash lenses, layers of burnt shell, 

and charcoal in the shell midden indicates repeating task-specific activities that are more typical of post-

Locarno Beach phases.  The purpose of these tests was to describe the human activities that created the 

distinct and repeating layers by combining macro-level observations of the stratigraphy with 

micromorphological analysis of the collected midden samples.   The goals were to distinguish between 

depositional processes present in the midden and identify archaeological features related to 

anthropogenic subsistence activities.  The results of the laboratory tests supported the hypothesis that 

the shell midden is the result of in-situ anthropogenic deposition, and not contemporaneous with the 

Locarno Beach phase portion of 45WH55 on the upper bluff.  The midden yielded later Phase dates 

between 508 BP and 933 BP, indicating over a thousand years of continued use of 45WH55 for intensive 

shellfish collection and processing.  I detected evidence of hearth reuse, which aligns with the intensive, 

specialized subsistence activities that are expressed in later Phase archaeological sites throughout the 

Gulf of Georgia.  This research will add to our knowledge about the history of occupation of the Woodstock 

Farm site.   
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Chapter 1: Introduction 

 

The primary goal of archaeologists is to interpret past human behavior from material remains, 

and to then to provide explanations for this behavior (Feder et al. 1997).  Archaeologists are uniquely 

challenged among social scientists in their attempts to classify, quantify, and describe data; they must 

try to infer past human behavior and beliefs from surviving material remains, often without written 

records and no ability to directly observe the behaviors in question (Trigger 1988).  The Northwest Coast 

region provides these challenges of archaeological classification and quantification in two forms: a 

biased material record that most often only includes artifacts that can persist in acidic and wet soil 

conditions, like lithic tools, shell, and bone; and no written records of the Northwest Coast’s Indigenous 

peoples prior to the beginning of sustained contact with Europeans in the 1770s (Ames and Maschner 

1999; Sobel 2012).    

The Gulf of Georgia Region of the Northwest Coast was settled beginning nearly 5000 years BP 

(Ames and Maschner 1999; Hutchings 2004; Dubeau 2012), and dramatic changes in Indigenous 

peoples’ cultures took place beginning 3800 years ago, before the appearance of the Developed 

Northwest Coast Pattern (Matson and Pratt 2010; Lepofsky 2005; Lewis 2013).  The Developed 

Northwest Coast Pattern is characterized by semi-sedentism, large-scale storage of foodstuffs and other 

resources, and the appearance of social stratification and rank in local societies. (Matson and Coupland 

1995).  The archaeological community has widely researched and reported on Marpole Phase (2400-

1500 BP) archaeological sites throughout the northern Gulf of Georgia area that exhibit the above-

described cultural characteristics (Lewis 2013).
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 The Locarno Beach Phase (3800-2400 BP) represents a time of shifting cultural norms in the Gulf 

of Georgia region, with subsistence changing from foraging to more intensive and specialized collection, 

and the beginning of large-scale procurement and storage of salmon and other anadromous fish 

(Borden 1950; Butler and Campbell 2004; Matson 1992).  Radiocarbon dates obtained from the 

Woodstock Farm Site (45WH55) in the southern Gulf of Georgia region on the northern portion of 

Chuckanut Bay indicate that a part of the site does date to the Locarno Beach Phase (Campbell et al. 

2010).  The original identification of 45WH55 by J. Gaston and C. Swanson in 1974 and subsequent 

WWU Field Schools in 2005, 2007 and 2010 by Dr. Campbell and Dr. Koetje have provided stratigraphic 

data, geomorphological data, and artifact and faunal material remains (Gaston and Swanson 1974; 

Campbell et al 2010).  To date, however, there has been no geoarchaeological chemical or physical lab 

analysis to help interpret the natural and cultural depositional processes that created the complex 

stratigraphy that characterizes the exposed shell midden in the beach profile at 45WH55.  I hypothesize 

that the patterns of deposition in the shell midden are the physical expression of the intensive shellfish 

processing employed by the people who occupied 45WH55, and likely date to a later Phase than the 

Locarno Beach dated portion of the site located on the upper bluff.  Understanding those processing 

activities enriches our knowledge of subsistence activities at the Woodstock Farm Site, because we can 

evaluate how the same location was used in two different ways in two different time periods.  This will 

add to our knowledge of Coast Salish cultural forms across the Gulf of Georgia region (Suttles 1987).     

 A geoarchaeological approach is appropriate for this research project, because methods 

originating from earth sciences can be used to study the development of the sedimentary archaeological 

record (Lambert 1997; Rapp and Hill 2006).  Geoarchaeology is the application of geological concepts, 

techniques, and knowledge to the study of processes involved in the creation of the archaeological 
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record (Rapp and Hill 2006).  Geoarchaeology is fundamental to the practice of archaeology, because 

understanding site formation processes informs our interpretations of the manufacture and use of 

artifacts (Stein 2008).   Geoarchaeological chemical and physical analyses takes advantage of the eclectic 

nature of archaeology itself, providing data to archaeologists that is not always apparent to the naked 

eye (Jakes 2002).  I use the phrase “eclectic nature of archaeology” to address the diversity of surviving 

material remains that archaeologists study, ranging from human remains, faunal remains, structural 

features, lithic tools, and artifacts of wood, clay, bone, metal, and textiles.  Inherent within the research 

into the material remains of the archaeological record is the study of soils as well; the physical remains 

of people and their cultures are in and on the soil (Limbrey 1975).  The physical and chemical studies of 

soil and the practice of archaeology together contribute to the study of past landscapes, geology, and 

populations (Limbrey 1975; Hill and Rapp 2006). 

Research Questions and Objectives 

 The goal of this thesis is to employ geoarchaeological analyses to aid in identifying the past 

human subsistence activities that created the distinct and repeating layers of shells, ash, and charcoal in 

the midden profile.  I hypothesize that the shell midden represents a later-Phase site of intensive, 

specialized shellfish processing created by in-situ anthropogenic deposition, with repeating human 

activities creating the observed stratigraphic sequence.  In-situ deposition means that the stratigraphic 

layers are related to each other and represent archaeological features.    My research is structured on 

the three following premises: 

1) Employing Lewis Binford’s middle range theory (1981), I can provide cause and effect 

information through actualistic archaeological research (Pobiner and Braun 2005) to link data 

collection (the static) to past human behaviors (the dynamic). 

2) Human activities are organized in space and time, therefore any randomness or disconnect 

between the shell midden layers must be archaeologically demonstrated before assuming a 

palimpsest nature of the deposits (Vila et al. 2009).    
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3) Information on the depositional history of the shell midden can be garnered by studying the 

physical and chemical properties of sediments (Campbell 1981; Carter 2016; Muckle 1985; Stein 

1992). 

 

 

To explore my above-stated hypothesis, I address the following three questions in my research: 

 Can the geoarchaeological tests, in concurrence with field observations and a literature 

review, aid in identifying the depositional processes that have resulted in the repeating layers 

of ash, charcoal, and burnt shell? 

 Is the portion of 45WH55 that is the subject of my research (the beach bank shell midden) 

contemporaneous with the part of 45WH55 located on the bluff above the beach?  

 What were the natural and cultural environments that supported the development of the 

shell midden?   

The archaeological literature supports the theory that elevated phosphorous levels and greater 

magnetism in soils indicates anthropogenic input into soils, such as burning.  I hypothesize that the 

phosphorous and magnetic susceptibility tests of the shell midden matrix, with total phosphate and the 

degree of magnetic susceptibility serving as proxies for human activity, will help distinguish between 

depositional events that created the complex stratigraphy and aid in identifying the signatures of 

particular actions in the profile.  Specifically, the chemical and magnetic signatures in each of the 

mutually exclusive categories of matrix (ash, shell, charcoal, and sand) will repeat and parallel the field 

observations of repeating layers, and by extension repeating features that signify repeating human 

subsistence activities.   I define a feature to be a collection of one or more archaeological artifacts and 

matrix (ash and charcoal lenses, burnt shell, and fire cracked rock) that represent a past human activity, 

such as cooking over a hearth or fire pit.  I also use grain size analysis to aid in differentiating cultural 

versus natural deposition.    Previous research at the Woodstock Farm site has identified multiple human 

activity areas that indicate semi-sedentary life-ways (Lewis 2013).   I employ radiocarbon dating on two 

charcoal samples to determine if the human activities that created the shell midden on the beach were 



 5   
  

contemporaneous and connected to the human activities that created the recorded Locarno Beach-

phase site on the upper terrace.  I describe the pattern of erosion of the shell midden resulting from the 

wave cut beach processes of Chuckanut Bay, and suggest the presence of thermal features by merging 

existing research of shellfish processing signatures with macro-level observations of the shell midden 

and resulting grain size distribution, magnetic susceptibility, and total phosphate amounts.   

Thesis Organization    

The following chapter introduces the reader to the long occupation of the Northwest Coast 

region by native peoples, and I place the Locarno Beach Phase within the geographic and ethnographic 

context of the Gulf of Georgia sequence.  Chapter 3 provides a geomorphological history of the Locarno 

Beach-phase Woodstock Farm site, and describes the Indigenous settlement and eventual Euro-

American occupation of the site.   I also describe the materials and data collected from the 2005, 2007, 

and 2010 Western Washington University archaeological field schools.  Chapter 4 discusses the 

applicability of geoarchaeology to archaeological questions and gives a literature review of the 

geochemical and geophysical methods employed for this thesis research.  Chapters 5 and 6 provide 

details of the laboratory methods and statistical analysis applied to the radiocarbon dating, the grain 

size analysis, the magnetic susceptibility tests, and the phosphorous tests in order to understand the 

depositional history of the shell midden.  Chapter 7 discusses and makes conclusions about the 

significance of this study, vis á vis the identification of archaeological features related to human 

subsistence activities within the shell midden and reconstruction of the natural and cultural 

environment that set the stage for those activities.   Finally, I propose potential future geoarchaeological 

research in the southern Gulf of Georgia region that will enrich our understanding of the history of the 

Coast Salish peoples.                
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Chapter 2: The Northwest Coast Region 

 

The Northwest Coast geographic and culture region is defined as an area of coastline in North 

America, spanning the approximately 2,000 kilometers and encompassing the archipelago of Southeast 

Alaska, the coast of British Columbia and the coastlines of Washington, Oregon and Northern California 

(Ames and Maschner 1999; Goebel et al.  2008; Matson 2003; Moss 2011; Suttles 1990).  In this chapter, 

I describe the current hypotheses of migrations from Asia to the Northwest Coast, provide an overview 

of the Northwest Coast environment and adaptation, and identify the importance of the Locarno Beach 

Phase within the Gulf of Georgia sequence.   

The Journey to North America: Paleoarchaeology 
 

The peopling of the North America began more than 15,000 years ago in the late Pleistocene 

during an Ice Age characterized by the enormous Laurentide and Codilleran glaciers blanketing swaths 

of North America (Ames and Maschner 1999; Erlandson and Moss 1999; Fedje et al.2004; Geobel, 

Waters and Dikova 2003, Meltzer 2013).  Groups of hunter-foragers travelled from their ancestral 

homes in Siberia across the exposed Beringian continent and in watercraft across the Bering Sea to 

southeast Alaska (Ames and Maschner 1999; Tackney 2015; Meltzer 2013).  These groups eventually 

fanned out into the ice-free portions of Alaska and down the exposed shoreline to the modern-day 

Pacific Northwest (Gruhn 1994).  These original colonizers were skilled travelers, hunters and seafarers, 

pursuing marine mammals for food and hunting extinct mega-fauna across the steppe-like conditions of 

Beringia and into North America (Fladmark 1979; Moss 2011).   
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The archaeological evidence for the journey along the Northwest Coastline is corroborated by 

the oral histories of the Tlingit and Haida peoples of modern-day British Columbia and Alaska, whom 

have stated for millennia that they have been in the Northwest Coast since ancient times and that their 

ancestors traveled here in canoes (Moss 2011). Approximately 5000 years ago, the well-documented 

Northwest Coast cultural pattern emerged on and adjacent to the ribbon of islands, fjords, and beaches 

that stretches from Icy Bay, Alaska to Cape Mendocino, California (Ames 1994). 

Northwest Coast: Environment and Adaptation 
 

 The Northwest Coast region includes the land and peoples of the narrow belt of Pacific 

coastland and islands from the southern border of Alaska to northern California. (Ames and Maschner 

1999; Matson 2003) (Figure 1).  This region boasts dynamic geology; active volcanoes, large glaciers, and 

enormous fault lines that span the Pacific Rim find expression in a rugged landscape supporting an 

immense diversity of coastal, marine, and forest resources (Moss 2011).  The Indigenous cultures of the 

Northwest Coast region whom successfully exploited these rich natural resources challenged early Euro-

American ethnographers’ most closely-held assumptions regarding the development of human societies; 

complex social stratification, long-term settlement and large population centers developed on the 

Northwest Coast absent Western mono-crop agriculture  (Ames 1994; Ames and Maschner 1999; Croes 

and Hackenburger 1988; Dubeau 2012; Fladmark 1975; Matson 1992; Moss 2012).  Along the shorelines 

of northwestern Washington, archaeological sites containing shell midden and lithic, bone and faunal 

materials are part of the lasting evidence of these complex societies, and thousands of years of 

habitation by Indigenous peoples.  Occupation of northwestern Washington dates back to the early 

Holocene, as evidenced by the 9600 year old radiocarbon dates obtained by Robert Meirendorf from 

charcoal samples in an ancient hearth on the Cascade Pass (Campbell, et. al. 2010).  Radio carbon dates 

obtained at archaeological sites within Whatcom County indicate occupation beginning nearly 5000 
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years ago, as evidence by the dates of charcoal within shell middens at the Ferndale Site (45WH34) and 

faunal material from the Whalen Farm site in Point Roberts (45WH48) (Borden 1950; Hutchings 2004).  

 

 

Figure 1. Map of the Northwest Coast culture region (Image courtesy of the American Museum of Natural 

History). 

 

The Gulf of Georgia Sequence 

The Gulf of Georgia is that portion of the Northwest Coast region that encompasses swaths of 

Vancouver Island, coastal British Columbia, the northeast Olympic Peninsula, and western Whatcom, 

Skagit, and Snohomish Counties (Clark 2013) (Figure 4).  The Salish Sea, a body of water that includes the 

Strait of Georgia, the Strait of Juan de Fuca, and Puget Sound, is fed by riverine systems like the Fraser 
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River, Nooksack River, and Skagit River that support anadromous fish like salmon.  (Ames and Maschner 

1999; Boxberger 2000; Campbell and Butler 2010; Haggan et al. 2006; Moss and Cannon 2011). 

 

Figure 2. Map of the Gulf of Georgia (Image courtesy of staff.wwu.edu). 

The Gulf of Georgia sequence is a regional, cultural-historical classification system resulting from 

over 100 years of archaeology around the Salish Sea (Borden 1950; Clark 2013; Croes and Hackenberger 

1988; Hammon 1986; Matson and Coupland 1995).  The analytical units of Locarno Beach, Marpole 

(both part of the Middle Pacific period as described by Ames and Maschner 1999), and Gulf of Georgia / 
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Developed Northwest Coast Pattern (the Late Pacific Period) were first developed by Borden (1968) and 

began as a way to categorize the changes in material culture from initial settlement of the region 5000 

years BP and subsequent to Euro-American contact in the 1700s based on the presence or absence of 

artifact types in Gulf of Georgia archaeological sites (Ames and Maschner 1999, Clark 2013) (Table 1).  

Archaeologists now use the Gulf of Georgia Sequence to categorize not just changes in artifact types but 

shifts in economies and social complexity.  Croes (2015) used cladistics analysis software to measure 

degrees of similarity (site assemblages based on artifact types) between 50 archaeological sites around 

the Salish Sea, resulting in a cladogram that demonstrates the sites arranged in three “branches” (each 

branch representing the St. Mungo, Locarno, and Late / Gulf of Georgia Phases) in order to inform 

discussions of cultural trajectories (Figure 3).  Croes (2015) concludes that the differences in traits that 

defined the individual Gulf of Georgia phases are statistically valid, and therefore provide a meaningful 

structure with which to understand the emergence of the Developed Northwest Coast pattern among 

Coast Salish peoples.            

Table 1.  Gulf of Georgia Sequence (Modified from Ames and Maschner 1999). 

 

The Pacific Periods Ames and Maschner’s (1999) Gulf of Georgia Sequence 

Late Pacific Gulf of Georgia (1000 BP to Contact)  

Middle Pacific 

Marpole (2400 BP to 1000 BP) 

Locarno Beach (3500 to 2400 BP) 

Early Pacific St. Mungo (5500 BP to 3500 BP) 

The Archaic Period Old Cordilleran / Olcott (10,000 BP to 5500 BP) 
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Figure 3. Gulf of Georgia Sequence cladogram comparing similarities in artifact categories (Croes 2015:  

   Figure 15). 

 

The Locarno Beach Phase 

 The Locarno Beach Phase (3500-2400 BP) of the Gulf of Georgia Sequence derives its name from 

the salvage excavations completed by Borden in 1948 (1950) at the Locarno Beach Site , located in 

southern British Columbia (Williams 2013).  This phase represents a transitional time in the Gulf of 

Georgia region from the antecedent mobile hunter-gatherer groups to the subsequent multi-family 
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homes and complexly ranked social hierarchies that characterize the Developed Northwest Coast 

Pattern (Mather 2009; Matson and Pratt 2008).  The Locarno Beach phase is expressed in sites that 

demonstrate intensified shellfish harvesting, storage technologies, specialized and seasonal use 

locations, and an increase in ground stone and bone implements (Ames and Maschner 1999; Lewis 

2013; Clark, 2013; Williams 2013).  Thirty-three Locarno Beach-age sites have been identified in the Gulf 

of Georgia region; the majority of those recorded sites are located in British Columbia (Mather 2009).  

The southern Gulf of Georgia region has not been the subject of as much study and documentation, but 

the significant developments of more complex food collection and the emergence of a storage based 

economy in the Locarno Beach phase (Coupland 1998) renders this thesis research germane to a greater 

understanding of Coast Salish people’s history.   

Matson and Pratt (2008) recognize the Locarno Beach Phase (3500 to 2400 BP) as the pivotal 

time where the full scale development of the Northwest Coast Pattern was taking place.  The mobile 

groups of hunter-foragers living in small residential sites during the St. Mungo Phase (5500 BP to 3500 

BP) of the Early Pacific Period (Table 1) gave way to the semi-sedentary lifeways of the Locarno Beach 

phase in the Middle Pacific Period (Ames and Maschner 1999; Matson and Coupland 1995).  The 

Locarno Beach Phase is characterized by winter season residential base camps and spring season 

specialized activity camps where Coast Salish peoples employed shellfish collector strategies and the 

procurement, processing, and storage of salmon and other anadromous fish (Butler and Campbell 2004; 

Lewis 2013; Moss 2011).  Matson and Pratt (2008) identify the following three major issues that 

researcher’s need to understand more fully about the Locarno Beach Phase in order better inform our 

knowledge of the Developed Northwest Coast Pattern: 1) its economic organization; 2) its relationship 

with the previous St. Mungo Phase and the subsequent Marpole phase; and 3) its social organization.  

The well-documented Marpole Phase (2400 to 1000 BP) is characterized by sedentary villages and the 

mass harvest and storage of food resources (Ames and Maschner 1999), and the later Gulf of Georgia 
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Phase (1000 BP to Euro-American contact) sees the development of semi-subterranean pit houses and 

fortifications.  The long habitation of the Woodstock Farm site, as evidenced by radiocarbon dates that 

place portions of the site in the latter half of the Locarno Beach and Marpole Phases (Campbell et. al. 

2010; Pierce 2011) offers archaeologists the opportunity to research settlement patterns and 

subsistence changes, and then infer societal organization.    
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Chapter 3: The Woodstock Farm Site 
  

The geography and environment that 45WH55 occupies is crucial to understanding the history 

of occupation of the Woodstock Farm Site, because the first task of geoarchaeology is to distinguish the 

remains of human activity from the natural events (processes on a geologic time scale) that have formed 

the landscape (Rapp and Hill 2006).  The following chapter explores the dynamic geomorphological 

processes that have created Chuckanut Bay, including the beach wave activity that has eroded the beach 

bank shell midden that is the subject of this thesis research.  I describe the Indigenous and Euro-

American use and occupation of the site, and give a synopsis of the Western Washington University field 

schools at the Woodstock Farm that have provided the data and materials for this study. 

 

Figure 4. View looking south over Chuckanut Bay from the Woodstock Farm site (Image courtesy of the 

City of Bellingham). 
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Geomorphic History 
 

The Woodstock Farm Site (45WH55) is located in Whatcom County, Washington, approximately 

6 miles south of the city of Bellingham.  The site is situated north of the long and narrow Chuckanut Bay, 

a North-South trending shallow bay in Puget Sound that is characterized by extensive mud flats during 

low tide.  The exposed beach bank shell midden is adjacent to the colloquially named  “Mud Bay”,  a 

small bay that earned its name because of the accumulation of sediment brought about by the 

installation of the railroad trestle in the 1920s and the construction of I-5 in the 1970s (Campbell et. al. 

2010, Lewis 2013)(Figure 5).  The Chuckanut Mountains rise to the east, formed by the folded layers of 

approximately 55 million year old conglomerate, shale, sandstone, lithified volcanic ash, and bituminous 

and sub-bituminous coal (Easterbrook 1970; Mustoe 1998).  These 6000 meter deep folded layers, 

named the Chuckanut Formation, are fluvial sedimentary formations from the Eocene Era, deposited 

between 54 Ma (million years ago) and 34 Ma (Johnson 1984).  An active strike-slip regime has resulted 

in the strongly N – to NW - trending folds that characterize the fragmented nature of the Chuckanut 

Formation (Tabor et al. 1989).  The USDA (1992) maps the area as Nati Silt Loam, a well-draining soil 

series derived from the Eocene-era sandstone that forms at the foot of steep slopes and contains a 

mixture of volcanic ash and glacial till.           

 The topography of the Salish Sea is largely the result of the Pleistocene-era Vashon Stade of the 

Fraser Glaciation (18000 to 10000 BP).   The Puget Lobe of the stade flowed south from British 

Columbia, leaving behind glacial till and scouring out extensive troughs that define the fjord-like Puget 

Sound region (Figure 5).  Post-glacial stream erosion and deposition then combined with wave and 

current actions to create the many spits and sand bars that dot the Puget Lowland coastal areas 

(Easterbrook 1970).  The Holocene era (11700 BP) then ushered in a warming climate and rising sea 

levels that set the stage for the emergence of Northwest Coast culture (Ames and Maschner 1999; 

Fladmark 1975; Moss et al. 2007).  By 5000 BP, sea levels were within a few meters of modern sea 
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levels, and by 2000 BP had stabilized to nearly modern sea levels (Lambeck et. al. 2009; Whitaker and 

Stein 1992). 

 

Figure 5. The Vashon Glaciation with emphasis on the Puget Lobe (15,000 BP). 

 

Figure 6. Northern Chuckanut Bay with location of 45WH55 (Campbell et al. 2010). 
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 The shell midden in the exposed beach bank at 45WH55 (Figure 6) has been and continues to be 

subject to wave erosion, resulting in the undercutting of the base of the slope and the destruction of the 

midden (Figure 7).  The accumulation of sediments from the installation of the railroad trestle has 

resulted in a shallower and muddier bay than in the past; the bay during the Locarno Beach and Marpole 

phases would have been deeper and sustained a rockier shoreline; this hypothesis is supported by the 

presence of barnacle (Balanus sp.) and native oyster (Ostrea lurida) in the two radio-carbon dated 

charcoal samples from the shell midden, #12 and #23A (Appendix D).  The approximately 2-meter depth 

of the shell midden, dense with shellfish and the burnt remnants of cooking, demonstrates the rich 

resources of the past aquatic environment that attracted pre-contact Indigenous peoples to the 

coastline of 45WH55.    

 

Figure 7. 45WH55 beach profile shell midden that is the subject of this thesis research.  The area circled 

demonstrates the undercutting and erosion of the profile by wave swash. 
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Indigenous and Euro-American History 
 

 Wayne Suttles (1951) describes the Chuckanut Bay and the surrounding environs as home for 

the Straits Salish peoples, including the Lummi, Nooksack, Nuwaha, and Samish.  Chuckanut Bay in 

particular was the northernmost boundary of the Samish exclusive use area and the southernmost 

boundary of the Lummi exclusive use area, and likely there was much interaction between kin groups 

for resource extraction and exchange (Griffin 1984; Lewis 2013; Suttles 1951).  The Woodstock Farm 

property exhibits many of the characteristics that make for a desirable settlement, including salt water 

frontage with access to shellfish; proximity to fresh water; nearby forest rich in game and plant 

materials; and sufficient buildable area in a defensible location above the high tide line (Wallace 2017). 

Ethnographic studies of Northwest Coast peoples by Franz Boas (1921) in the early twentieth 

century indicate that shellfish were eaten raw, roasted, dried, or steamed for consumption (Larsen 

2015).  Table 2 summarizes the three main types of shellfish cooking techniques and processes used by 

Coast Salish peoples and describes how the material remains of those processes (archaeological 

features) may be expressed in shell midden stratigraphy (Larson 2015; Muckle 1985; Shantry 2005).  The 

archaeological features that result from pit baking, whole roasting, and steam baking will contain similar 

constituents, therefore structural feature classes will and often do overlap (Shantry 2005).  
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Table 2. Ethnographic examples of cooking techniques with corresponding shell midden features (Image modified from Shantry 2005: Figure 21). 

Shellfish cooking technique Process Ethnographic Example Shell midden feature 

Pit-baking  

 A shallow pit filled with stones, 

stones cleared and food 

mounted with boughs and 

mats, mats and dirt steamed 

on top of coals until steam and 

heat evaporated. 

Rock Oven  Fire cracked rock, charcoal, and 
burnt shell (Royal BC Museum 
2018). 

 
Roasting whole   

 Food roasted before an open 

fire on single cooking sticks. 

Hearth   Tan layer of ash bound with 
burnt and whole shell (Royal BC 
Museum 2018). 

Steam-baking  

 A shallow pit filled with stones, 
stones cleared and food 
mounded with boughs and 
mats steamed on top of coals 
until ready to eat.  

 Clams: 2 forked sticks with a 
horizontal stick laid across for 
support, steamed on hot rocks 
and covered with mats. 

Steam Pit  Discreet ash lenses (Stewart 
1977).  
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Shell middens were also periodically burned for purposes of disposal and sanitation; evidence of 

this type of burning can be found in lenses or strata where shells are gray and black and appear burnt 

(Larsen 2015; Muckle 1985).   The previous studies of 45WH55 by Campbell et al. (2010), Lewis (2013), 

and Pierce (2011) demonstrate the long occupation of the site and multi-task activity areas (including 

cooking), with people taking advantage of the rich aquatic, terrestrial, and vegetative resources in the 

area. 

 

Figure 8. Close up view of a shell midden with a tan layer of ash dumped after the cleaning out of a fire 

hearth (Image courtesy of the Royal BC Museum). 

 

 Site 45WH55 is part of a larger complex of pre-contact shell midden sites on the southeastern 

portion of Mud Bay, including 45WH758 and 45WH763 (Figure 9).  Cyrus Gates, a prominent Fairhaven 

parks and public works leader, purchased the various parcels that constitute the site in 1907 and built a 

farm that included a home, six outbuildings, and a boat house.  The property was purchased by the city 

of Bellingham in 2004 for a park, and with the assistance of Western Washington University has worked 

to research and protect the prehistoric resources on the property (COB website 2018). 
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Figure 9. Aerial View of the sites at Woodstock Farm and surrounding environs (Image modified from 

Campbell et. al. 2010: Figure 21). 

 

WWU Field Schools: 2005, 2007, and 2010 
 

 45WH55 at the Woodstock Farm site was first identified by C. Gaston and J. Swanson in 1974 

(Gaston and Swanson 1974) and the site was the subject of WWU’s archaeological field schools in 2005, 

2007, and 2010 (Campbell and Koetje 2005).  Updates to the original archaeological site form (Appendix 

A) were submitted to the Washington State Department of Archaeology and Historic Preservation 

pursuant to a State Excavation Permits Nos 05-11, 07-13, and 2010-22 (Appendix B).    Excavations in 

2005 included a number of shovel test pits (STPs) and nine 1 x 1 meter test units.  Ten test units were 

opened during the 2007 field school, and an additional nine excavation units (EUs) were excavated in 

2010.  The deposits contained significant horizontal variation in the types of artifacts and features, 

suggesting the presence of multiple and intact activity areas (Campbell et al. 2010).  Pit hearths, surface 

hearths, and a pit house feature were identified in the EUs.  Campbell et al. did discover layers of 

Location of exposed 

beach bank shell 

midden at 45WH55. 

Railroad Trestle 
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crushed, compact shell and charcoal, but the deep and alternating layers of ash, charcoal, and shell that 

characterize the beach bank midden were not seen in the EUs in the upper bluff.   This research 

completed by Campbell et al. was done to better delineate the boundaries of 45WH55 and understand 

the depositional nature of the site.  Graduate theses by Pierce (2011) and Lewis (2013) have explored 

settlement and subsistence patterns of the peoples who lived on Chuckanut Bay pursuant to the data 

and materials collected in the three field schools.     

Gaston and Swanson (1974) also identified the exposed beach bank shell midden as part of 

45WH55 (Figure 9), though Campbell et al. (2010) did not identify a physical connection between those 

deposits and the deposits in the EUs on the bluff.   Sixty four bulk samples of ash, charcoal, shell, and 

sand were collected on July 30 and 31 of 2010 throughout the 2-meter deep (approximately four square 

meter) beach bank shell midden profile.  The field work is described in additional detail in Chapter 5: 

Methods.  Selected subsamples from the sixty four shell midden matrix samples collected by Dr. 

Campbell from the beach bank profile are the subject of this research.   

 The goal of this thesis is to use geoarchaeological analyses to aid in identifying the past human 

subsistence activities that created the distinct and repeating layers of shells, ash, and charcoal in the 

midden profile. Accepting the premise that depositional and post-depositional processes can be 

understood by studying the physical and chemical properties of a site, I describe the natural and cultural 

setting that enabled Coast Salish people to live and thrive at the Woodstock Farm Site.  The ability to 

explore my hypothesis and research questions is possible because the documentation and sample 

collection from the beach bank shell midden was systematically conducted, and the complexity of 

stratigraphy carefully recorded.  This initial data collection in combination with the geochemical and 

geophysical tests provide a context to evaluate the repeating, anthropogenic events that resulted in the 

stratigraphy exhibited by the shell midden, and determine if this portion of 45WH55 is 

contemporaneous with the component of the site documented on the upper terrace (Campbell et al. 
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2010; Lewis 2013).  Ultimately, this research will add to our knowledge of how the site and resources 

present at 45WH55 were successfully exploited by the people who lived there.              
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Chapter 4: Geoarchaeology and a Discussion of Methods 
 

 In this chapter, I provide a broad overview of the practice of geoarchaeology within the 

framework of geochemical and geophysical investigations of Northwest Coast shell midden site 

formation.  I describe the archaeological literature that demonstrates the efficacy of correlating 

amounts of elemental phosphorous (P) to anthropogenic impacts to the landscape, and describe how 

magnetic susceptibility provides a means for investigating the development of anthropogenic soils and, 

as a result, site formation processes.  Following this review, I discuss how the accompanying grain size 

analysis complements elemental (P) extraction and magnetic susceptibility measurements in 

determining the type of energy and environment that accompanied the human activities that resulted in 

the complex stratigraphy of the beach bank shell midden at 45WH55. 

Geoarchaeology and Northwest Coast Shell Middens 
 

 The discipline of geoarchaeology is the application of concepts and methods of the earth 

sciences, especially geology, geomorphology, hydrology, sedimentology, and pedology to archaeological 

problems (Leach 1992).  The scope of its practice includes documenting site stratigraphy, determining 

site formation processes, and reconstructing the interactions between humans and their landscapes 

(Rapp and Hill 2006).  Geoarchaeology is critical to understanding the archaeological record, because the 

sedimentary matrix of a site provides contextual information with which to understand artifacts, 

understand what events have transformed the original record of human activity, and help to understand 

why prehistoric peoples chose the locations they did (Waters 1992; Stein and Farrand 2001; Huckleberry 

2006; Rapp and Hill 2006).  The features of archaeological sites are found in their stratified state, one 

layer, or strata, upon the other, and it is within these layers that the investigation of our human past 

begins (Harris 1979).   
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 Lewis Binford (1964) emphasized that archaeological sites vary in their depositional history, and 

also emphasized the importance of evaluating the processes that have impacted the archaeological 

record.  The Uniformity Principle, a theoretical system presented by the geologist Charles Lyell in the 

1830’s, stated that current depositional environments can be compared to with those of past 

environments to postulate about past conditions (Camardi 1999; Rapp and Hill 2006).  The 

geomorphology of coastal and marine depositional settings are subject to three main geological 

processes: 1) changes in sea level; 2) tectonic movement’s impact eustatic rise and fall; and 3) erosion 

driving the migration of the shoreline (Easterbrook 1970).  This thesis research focuses on the structure-

forming processes of a coastal shell midden.  

The appearance of shell middens around the world’s aquatic landscapes by the late Pleistocene 

and early Holocene was coterminous with the development of sophisticated fishing and seafaring 

technologies by human populations (Erlandson 2013).  Shell middens are anthropogenic soils found in 

marine, lacustrine and riverine settings which exhibit stratigraphy resulting from the deposition of 

shells, bones, artifacts and other myriad features of human activity (Ham 1982).  The bivalve shells 

present in middens provide valuable information about past peoples diets, the size of the population 

that was being fed, the types of technology used for processing the shellfish, the seasonality of the site, 

trade, and social organization (Muckle 1985).  This type of information helps archaeologists establish 

regional chronologies for human occupation and discover patterns of cultural change (Rosendahl et al. 

2014).    Figure 10 demonstrates how archaeological sites are dynamic entities engaged in energy 

exchanges with both the natural and cultural environment (Ham 1982), subject to change from events 

on both geological and human time scales.  The shell midden in the exposed beach profile at the 

Woodstock Farm Site affords ample opportunity to employ Binford’s middle range theory (1977) to 

connect static data to dynamic formation processes and thereby understand the material archaeological 

record of 45WH55. 



 26   
  

               

 

Figure 10. Elemental flow of a shell midden (modified from Ham 1982). 

 

 Northwest Coast peoples exploited shellfish for thousands of years, leaving behind a material 

record of shell middens in archaeological sites (Deo et. al. 2004, Stein 1992).  Shell middens on the 

Northwest Coast primarily consist of shell, rock, bone, charcoal, plant remains, artifacts, and 

archaeological features like hearths and house posts (Carter 2016; Trant et. al. 2016).  The investigation 

of coastal shell middens can be hampered by inundation from rising sea levels, slump and wave erosion, 

modern development that excavates and removes ancient deposits, and stratigraphic complexity (Taylor 

et. al. 2011). 
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 Relatively recent work on Northwest Coast shell middens has taken more advantage of 

geoarchaeological methods for site prospection, laboratory analysis, and subsequent reconstruction of 

ancient shorelines and pre-depositional topography (Whittaker and Stein 1992).  Geophysical methods 

like magnetic susceptibility aid archaeologists in understanding the reducing environment that resulted 

in burnt soils (Aitken 1974), and geochemical methods like phosphorous analysis are the most 

commonly used indicator for anthropogenic change in soil, because it is a stable element and is very 

prevalent in faunal tissue, feces, and human bones (Huisman et. al. 2009: 36).  My goal was to use 

phosphorous amounts in combination with magnetic susceptibility measurements to elucidate 

connections and repetitions between the human activities that created the stratigraphy of the shell 

midden at 45WH55.  

Discussion of Methods 
 

Phosphorous Analysis 
 

Archaeology is the practice of interpreting humankind’s history by studying the material 

remnants of the past (Feder et. al.1998). Applying geochemical methods to archaeological problems aids 

in our understanding of the cyclic flow of individual elements between living and nonliving systems.  This 

desire to connect the living and nonliving is at the heart of archaeological research, and can lead to 

researchers being able to interpret the “whys” of human behavior from the material past.  Human 

activities modify the chemical makeup of sediments, and combining micro-level data like phosphate 

amounts with macro-level data such as geological landforms, spatial distributions of artifacts, and faunal 

remains can be used to create a more complete picture of the past (Jakes 2002; Rapp and Hill 2006).    

Human activities such as farming, burials, and cooking can enrich or deplete the soil of 

macronutrients, including elements like potassium, nitrogen, calcium, magnesium, and phosphorous 

(Holliday and Gartner 2007; Rapp and Hill 2006).  Sediment chemistry is used to discover post-
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depositional changes to archaeological sites, distinguish natural from anthropogenic deposits, and 

explore spatial patterning (Carter 2016; Holliday and Gartner 2007; Middleton 2004; Moss 1984; Parnell 

et. al. 2002; Rapp and Hill 2006; Stein 1982; Terry et. al. 2000).  Relatively recent applications include 

using the technique for site survey, detecting activity areas, and measuring occupational intensity 

(Holliday and Gartner 2007; Huisman et. Al. 2009; Parnell et. al. 2002; Sanchez-Vizcaino and Canabate 

1999; Stein 2008; Sterling at. al. 2008; Terry et. al. 2004).  Phosphorous is a chemical element with the 

symbol “P” that is essential for life, and it is found in numerous compound forms (compounds 

containing the phosphate ion PO4
3) as a component of DNA, RNA, and phospholipids (Orenda 

Technologies: 2018).  Soil P is a ubiquitous and sensitive indicator of anthropogenic alteration to soils 

(Carter 2016; Holliday and Gartner 2007; Sterling et al. 2008).  Soil naturally contains low levels of P, 

making variation more prominent (Grossman 2012).  Phosphorous that is added to the soil bonds (or is 

most labile) with aluminum (Al), iron (Fe), and calcium (Ca) when soil pH is between 6 and 7 (slightly 

acidic), and therefore is less susceptible to leaching and oxidation processes than other common 

chemical elements that people add to the soil such as carbon, nitrogen, sodium, and other metals 

(Bethell and Mate 1989; Holliday 2004; Holliday and Gartner 2007; Smith and McGrath 2011).  Therefore 

phosphates are comparatively stable ions that cycle through on a geological time scale, and its 

accumulation at the site of deposition can help archaeologists reconstruct past human activities (Carter 

2016; Eidt 1977; Holliday and Gartner 2007).  Holliday and Gartner (2007) caution that soil parent 

materials already high in phosphorous, such as apatite, can mask signatures of anthropogenic change.     

The establishment of phosphorous analysis as a geoarchaeological method began in Europe in 

the early twentieth century, when researchers recognized the correlation between higher P levels and 

archaeological sites, with the resulting ability to distinguish settlement types through patterns of 

phosphate signatures (Bethell and Mate 1989).  Rapp and Hill (2006) explain the use of phosphate 

analysis in the context of geochemical prospecting: levels of phosphates can be applied to use-of-space 
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modeling when features cannot be readily identified through conventional excavation (Figure 12).    This 

thesis accepts the premise from the archaeological literature that phosphate measurements may act as 

a proxy for human-induced alteration of soils and sediments, and that phosphorous is deposited by 

humans in proportion to the intensity of site occupation (Marwick 2005).     

Forms and Measurements of Phosphorous 
 

Holliday and Gartner (2007) acknowledge the complex and not fully understood chemistry of 

phosphorous, which has led to a “bewildering array of terms to refer to soil P” (2007:303).  The 

following section describes the element as it applies to understanding and interpreting P signatures in 

archaeological sites. 

The terminology used to refer to phosphorous reflects the make-up of the element (e.g. organic 

and inorganic P) and its distribution in the biogeochemical environment (e.g. total P, available P) (Carter 

2016; Holliday and Gartner 2007).  People add phosphorous into the ground through activities like 

cooking, farming, and waste disposal; phosphorous then has the opportunity bond with other elements 

and it can exist as organic (contains carbon atoms) or inorganic phosphate ions (Carter 2016; Bethell and 

Mate 1989).  Phosphorous rapidly fixes to elements in the soil (iron, aluminum, manganese, clay and 

calcium) under both acidic and alkaline environments, and once fixed is subject to negligible amounts of 

vertical and horizontal migration and no escape as a gas (Chodorowski et al. 2012; Marwick 2005).  The 

result is that phosphates do not easily shift or leach through strata (Ullrich 2007). Substantial amounts 

of phosphorous are added to the soil by food, human, and animal wastes.  Rapp and Hill (2006) state 

that a phosphorous concentration of 2000 ppm (parts per million) can indicate a burial, and Holliday and 

Gartner (2007) documented P levels at the San Juan Island, Washington British Camp shell midden site 

at orders of magnitude greater than non-midden archaeological sites.  Table 3 summarizes the types of 
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contexts and activities that enrich the amount of phosphates in the soil, with corresponding cited 

archaeological studies: 

Table 3. Activities and contexts that raise phosphate levels in soils (Table adapted from Carter 2016). 

 

Activity or Context Archaeological Study 

Bones, organic wastes Middleton and Price (1996) 

Burials Rapp and Hill (2006) 

Fish processing areas Frink and Knudson (2010) 

Hearths, burning, ash from fires Middleton and Price (1996); Rapp and Hill (2006) 

Kitchen / Food consumption areas Fernandez et. al. (2002) 

Shells Holliday and Gartner (2007) 

 

The two primary applications of phosphorous analysis in archaeology are measurements for 

“available P”, or Pav and “total P”, or Ptot.  Available P describes the amount of phosphorous in the soil 

that is readily available for plants to use; it is a rough indicator of the amount of phosphorous in the soil 

because it measures weakly absorbed P (Carter 2016) but does not necessarily measure anthropogenic 

inputs i.e. the soil phosphorous that exists in a stable chemical compound (Holliday and Gartner 2007).    

Total P is the sum of inorganic and organic P in a sample.  Total P, or Ptot, measures both mobile and 

stable components in a sample, capturing phosphates that are absorbed and immobilized as well as 

weakly absorbed phosphorous (Carter 2016).  Measurements of Ptot may be the best indicator of 

human alteration of the landscape, because phosphorous that is added to the soil bonds to other 

elements and as a result is persistent on a geologic time scale (Bethell and Máté 1989; Skinner 1986).  

Holliday and Gartner (2007) caution that soil parent materials already high in phosphorous, such as 

apatite, can mask signatures of anthropogenic change. 
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Accompanying the “bewildering array” and sometimes inconsistent use of terms to identify soil 

phosphorous and phosphates (Holliday and Gartner 2007) are the myriad of methods that may be 

employed to extract it, including the use of perchloric acid digestion, sulfuric acid, hydrogen peroxide, 

and hydrofluoric acid (Holliday and Gartner 2007; Macphail et. al. 2000).  Inductively Coupled Plasma 

(ICP) spectrometry is a relatively new method to measure Ptot, and it is rapid, safe, and affordable 

method in comparison to past tedious and sometimes dangerous chemical procedures to extract 

phosphates (Carter 2016; Holliday 2004).  ICP is based on atomic spectrometry: samples are ionized with 

inductively coupled plasma, and the excited atoms in the sample emit energy at a given wavelength that 

corresponds to the amount of the element in the sample (Vallapragada et. al. 2011).  This thesis employs 

ICP to measure Ptot in the subject samples in order to help differentiate between the depositional 

events that created the shell midden, and ultimately to determine if phosphorous amounts in 

combination with magnetic susceptibility measurements can elucidate connections and repetitions 

between the human activities that created the stratigraphy.   

   Comparative Studies 
 

This section provides examples of phosphorous analysis applied to understanding a variety of 

archaeological sites, including Holliday’s testing of different phosphorous extraction methods at the 

British Camp Site (Holliday 2004; Holiday and Gartner 2007); Steins study of depositional patterns at the 

Green River Shell Mounds (1982); Lombardo et al. identification of the anthropogenic origin of the 

Western Amazonian shell middens (2013); Smith and McGrath’s determinations of altered surface soils 

due to the presence of shell middens (2011); and two case studies from the central British Columbian 

coast (Trant et al. 2016 and Carter 2016).  Shell middens change the physical structure of soil pursuant 

to increased drainage, the deposition of charcoal, and the release of CaCO3 from degrading shells.  I also 

describe the results of phosphorous tests during a salvage archaeological operation on the Olympic 
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Peninsula (Sterling et. al. 2008).  I conclude this section and the following section describing magnetic 

susceptibility with my expectations for the soil testing completed for this thesis. 

Phosphorous Analysis outside the Northwest Coast 

 

Lombardo et. al. (2013) used levels of phosphorous in shell midden deposits in Western 

Amazonia to identify early Holocene human occupation.  The archaeologists conducted a program of 

geomorphological analysis, soil chemistry testing and faunal analysis in order to theorize about the time 

of human occupation of the sites and the types of human activities taking place within the site.  The 

middens yielded phosphorous amounts in the same range as the total P amounts documented by 

Holliday and Gartner (2007) in the shell midden at the British Camp site, largely due to inputs of burnt 

residues.  The authors draw conclusions about the dramatic environmental changes taking place in the 

middle Holocene and its impacts on the Amazonian populations. 

Smith and McGrath (2011) discovered that surface soils at a shell midden site in Georgia 

exhibited high concentrations of P, because P is most labile (bound) with an element like Ca in soils with 

a pH between 6 and 7.  The middens demonstrated a slightly acidic nature (6.7), and this in combination 

with the high Ca concentrations due to the slow release of calcium from degrading shells (Trant et. al. 

2016) resulted in high phosphorous measurements.  The authors conclude that even thousands of years 

after their abandonment, shell middens continue to have a dramatic impact on soil chemistry. 

Stein (1982) used phosphorous analysis as one in a suite of geoarchaeological methods 

(including pH measurements, clay mineralogy, and grain size distribution) to define both the natural and 

cultural formation processes that were operating during the deposition of the Green River shell middens 

on the Ohio River.  Stein presents a reconstruction of the paleoenvironment that resulted in the build-up 

of the middens, and draws conclusions about the subsistence strategies of the people who created the 

sites. 
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Phosphorous Analysis on the Northwest Coast 

 

Trant et al. (2016) also concluded that the long term deposition of shellfish and other animal 

remains at two shell midden sites on the central coast of British Columbia greatly modified the soil pH.  

The addition of CaCO3 from the decomposition of the shells and the charcoal from fires increased 

phosphorous levels.  The combination of increased soil pH, higher concentrations of phosphorous, and 

increased site drainage altered the surrounding soil chemistry into a more nutrient-rich system.   

Carter’s thesis (2016) explores phosphate as an indicator of occupational intensity at a number 

of shell midden sites on the central coast of British Columbia, similar to the work Moss (1984) conducted 

at multiple sites on Admiralty Island in Alaska.   Though not specific to intrasite variation like the 

research with this thesis, Carter discovered that phosphate levels at the sites did reflect previously 

inferred patterns about how frequently and for how long accumulation of the midden took place, with 

somewhat positive linear relationship between high fish bone densities, larger site areas, and higher P 

levels.  The objective of the research was to apply a phosphorous testing program at a scale of analysis 

not typically investigated. 

Phosphorous Analysis in the Gulf of Georgia 

Holliday (2004) compared different phosphorous testing methods through analysis of sediments 

from the British Camp site, a large shell midden located on San Juan Island.  The midden produced soil P 

values at orders of magnitude greater than values measured at non-midden sites.  Holliday cautions 

about the use of specific P values to infer specific human activities, because variability in the type of 

organic discard (regardless of activity) can affect the forms and redistribution of P.  Holliday’s study 

focuses on the method as a tool for intersite analysis.  
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Sterling et. al. (2008) compiled geoarchaeological data from the Tse-whit-zen site on the 

Olympic Peninsula, and measured phosphorous in combination with radiocarbon dating and changes in 

the percentage of organic matter over time to determine intrasite function and reasons for eventual 

abandonment of the site.  They discovered evidence for periods of episodic population abandonment 

across all three classes of data, which may have been subsequent to regional resource depression, 

tectonic events, or storm surges.      

The next section explores the efficacy of magnetic susceptibility measurements in archaeological 

soil research, and my expectations that the susceptibility levels will complement analysis of 

phosphorous levels and aid in differentiating between depositional events expressed in the shell 

midden. 

Magnetic Susceptibility 
 

Low field magnetic susceptibility, referred to most commonly in the literature as simply 

magnetic susceptibility, is a measure of a material’s ability to be magnetized (Dalan 2006; Dalan and 

Banerjee 1998; Dearing 1999). The susceptibility readings, collected in SI or Systeme International 

d’Unites, is a dimensionless measurement that indicates the degree of magnetization of a material in 

response to an applied magnetic field (Grossman 2012; Rapp and Hill 2006).  The magnetic susceptibility 

of a material, symbolized by Xm, is equal to the ratio of the magnetization M within the material to the 

applied magnetic field strength H, or Xm = M/H.   Magnetic enhancement of soils, like the enrichment of 

soil with phosphorous, is often the result of anthropogenic input: for purposes of this research, of 

interest are the magnetic susceptibility measurements of soil altered by human-generated fires (Dalan 

2006; Dearing et. al. 1996).  Burning produces an enhanced magnetic signal, and fire ash produces fine-

grained magnetic iron oxides that exhibit high susceptibility values (McClean and Keen 1993).    
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Le Borgne (1955) was the first to note increased magnetic enhancement of burnt soil.  The 

minerals that contribute most to the magnetic character of soil are hematite, maghemite, and 

magnetite (Fe3O4).  Hematite, a mineral consisting of ferric oxide, converts to the ferromagnetic mineral 

magnetite in reducing environments, such as hearths (Dalan 2006; Rapp and Hill 2006).  The magnetic 

susceptibility of a sample subject to burning therefore depends on the mineralogical transformation of 

the iron oxides; the higher the attained temperatures, the stronger the magnetic susceptibility of the 

transformed iron oxides.  (Brodard et. al. 2012).  Dalan’s groundbreaking electromagnetic research of 

the Mississipian-era Cahokia Mounds in Illinois in the 1990’s documented dramatic landscape alteration 

and creation of Cahokia as the center of the American Bottom region (Holley et. al. 1993). 

Magnetic susceptibility can be measured in both the field and laboratory.  The Bartington 

Instruments MS2 system with the accompanying Multisus program used for this thesis research 

measures and records the susceptibility i.e. the contribution of ultrafine magnetic grains in a sample 

(Dalan 2008).    The following section discusses four case studies where magnetic susceptibility 

measurements in concurrence with other geophysical and geochemical tests (including phosphate 

analysis) have provided archaeologists with answers to questions about shell midden formation, site 

occupation, and ancient hearth use (Figure 13). 
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                Figure 11. A three-dimensional representation of high magnetic susceptibility values for a buried         

structure with a fired daub, floor, and reduced subfloor (Dalan 2008). 

 

 

Comparative Studies 
 

Marwick (2005) explored changes in phosphorous levels and the magnetic susceptibility of 

sediments in a prehistoric rock shelter in Western Australia in concurrence with the discard rate of 

artifacts in Western Australia to determine the frequency of site use.  Marwick concludes that increases 

in phosphorous and magnetic susceptibility indicate an increase of frequency of use of the site 

(frequency being his proxy for intensity), and as a result representative of increases in regional 

population density.   

Grossman (2012) employs magnetic susceptibility, phosphorous analysis, and other geophysical 

field methods to hypothesize about the site organization of a Late Middle Woodland culture site in 

Indiana.  Grossman identified higher magnetic susceptibility values based on feature contents (ceramics 

and fire cracked rock), and was able to differentiate between different activity areas using extractable 

phosphorous amounts.  
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Rosendahl et. al. (2013) measured the magnetic susceptibility of samples from three shell 

middens on Mornington Island in Australia.  They discovered a strong relationship between depositional 

processes and magnetic properties at all three of the middens: samples rich in artifacts and burnt matrix 

had the highest susceptibility.  However, Rosendahl et al. did not discover a correlation between fine-

grained magnetic grains and increases in susceptibility. 

Lowe et. al. (2016) combined soil magnetic studies with experimental burning to resolve the 

length of human occupation of rockshelter in Northern Australia.  They conclude that increased 

susceptibility measurements are a result of elevated charcoal amounts, increased phosphorous 

concentrations, and use of fire.          

Expectations for Research   

    

Northwest Coast shell middens are stratigraphically complex, varying in size, distribution and 

form.  The goal of understanding the time and rate of their accumulation has prompted the 

development of many innovative geoarchaeological testing strategies (Carter 2016; Stein et. al. 2003).  

This thesis project begins with the hypothesis that the exposed beach bank shell midden at 45WH55 is 

the result of in-situ deposition, with repeating human subsistence activities creating the accumulation 

patterns visible in the profile (Figure 12).  A visual examination of the strata reveals repeating lenses of 

ash, clusters of fire cracked rock, charcoal, and burnt shells that align with ethnographic descriptions of 

shellfish processing, cooking, and discard (Boas 1921; Larsen 2015; Muckle 1985).    

When used as a reconnaissance tool or to investigate activity areas (Ullrich 2018), phosphate 

analysis is made even more useful when accompanied with soil magnetic studies (Rapp and Hill 2006).  

Phosphorous is useful as an indicator of human occupation because it is an element deposited by people 

through their activities of living on the landscape (Table 3). Magnetic susceptibility is used as a measure 

of the intensity of firing of anthropogenic sediments and artifacts.  Combining both data sets can assist 
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researchers in differentiating between not just natural and cultural depositions, but can also help 

determine frequency of use of the site.  Sediments with high Ptot and magnetic susceptibility may 

represent features that were frequently fired (hearths) and subject to reuse (Marwick 2005).     

Applications of magnetic susceptibility methods to shell middens are limited, and it has rarely 

been used on the Northwest Coast for the purposes of understanding the depositional contexts.  I would 

expect to see the samples subject to the most thermal alteration (the ash samples) exhibit both high 

susceptibility values and high phosphorous content.  Diminishing values should correspond with layers 

not subject to high-temperature burning. 
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Chapter 5: Methods 
 

In this chapter I describe how both geochemical and geophysical soil tests were used to 

characterize the depositional processes that created the stratigraphy present in the exposed bank at the 

Woodstock Farm Site (45WH55).  I describe the methods used to test the hypothesis that the exposed 

beach bank at the Woodstock Farm site (45WH55) represents a place of intensive and repeating 

shellfish collection, processing, and discard created by anthropogenic, in-situ deposition.  The objectives 

of the tests are to identify archaeological features related to Coast Salish subsistence activities, and 

determine if the repeated layers of ash, charcoal, sand, and shell in the beach bank are 

contemporaneous and connected to the human activities that created the Locarno Beach-phase 

archaeological site located on the upper terrace (Lewis 2013).  The following sections describe the field 

methods employed to collect soil samples from the bank; the sampling methodology used to determine 

which soils should be subject to testing; and the geoarchaeological laboratory methods used to test the 

selected samples, including:  1) AMS RC dating, 2) grain size analysis, 3) phosphorous analysis, and 4) 

magnetic susceptibility.   Chapter 6 presents the results of the statistical analysis used to determine if 

the data indicated in-situ deposition and categorizes the depositional units into cultural assemblages.  

Chapter 7 draws conclusions about the site type and dates of occupation through paleoenvironmental 

reconstruction.  I finish the manuscript by describing opportunities for future research in the southern 

Gulf of Georgia region that connect environmental changes to shifts in subsistence and settlement 

patterns.       

Field Methods 
 

 The shell midden in the exposed bank at the Woodstock Farm site was first identified in 1974 

(Gaston and Swanson 1974), and the site was the subject of WWU’s archaeological field schools in 2005, 

2007, and 2010 pursuant to State Excavation Permits from the Washington DAHP (Campbell and Koetje 
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2005) (Appendix B).  Sixty four bulk samples of ash, charcoal, shell, and sand were collected on July 30 

and 31 of 2010 by Dr. Campbell throughout the approximately four square meter shell midden profile 

(Appendix C).  One bag of sand, nine bags of ash, thirty-one bags of charcoal, and twenty three bags of 

shell were collected, and descriptions of location, matrix, and contents were completed (Table 4 and 

Appendix D).   Campbell (2010) produced three stratigraphic drawings, each demonstrating the 

collection points of the ash, sand, charcoal, and shell samples throughout the exposed beach bank 

(Appendix E).    

Laboratory Methods  
 

I selected twenty-five bulk soil subsamples from the sixty-four samples collected in 2010 pursuant to 

stratified sampling to be the subject of my geoarchaeological testing program.  Each bulk soil sample 

was assigned to a mutually exclusive category (sand, ash, charcoal, and shell) by Campbell (2010); I 

maintained these categories for my subsamples.  Each of the categories reflects the type of constituent 

that dominates the deposit.  Subsamples selected for my research program were chosen from each 

categories based on the following three criteria:  

1. A visual examination for the presence of burnt material in a large enough size and quantity that 
could be evaluated for radiocarbon dating, phosphorous analysis, and the magnetic 
susceptibility tests. 

2. Samples were chosen across the entire exposed bank in order to understand the full 
depositional history. 

3. The single sand sample from the bottom of the profile is assumed culturally sterile and served as 
a control for the tests.    

I selected seven ash samples, one sand sample, nine charcoal samples, and eight shell midden samples.  

Table 4 and Appendix D were produced to standardize the descriptions of the samples originally 

collected and documented by Campbell in 2010 and includes the bag number, the depth of the selected 

sample from the top of the profile, a description of the contents and matrix, the Munsell color, and a lab 

photograph of the twenty five subsamples selected for this thesis research.  Campbell evaluated Munsell 
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colors in 2010 for the ash samples; I completed Munsell color descriptions for the subsamples chosen 

for my thesis research.   Figure 12 is a stratigraphic drawing demonstrating the location within the 

profile of each of collected samples. 

 Table 4. Soil subsample characteristics. 

 

Bag 
Number 

Distance from 
ground-level 

(cm) 

Dimensions 
(Length X 

Width in cm) 
and Contents 

Continuity 
and 

Boundaries 

Munsell 
Color 

Photograph of 
Sample 

ASH LENS DESCRIPTIONS 

1   140 cm to 130 cm 40-50 cm X 3-
10 cm 

UPPER: 
Charcoal #11 
and Shell #31 

10YR/6/3: 
Pale 
brown. 

 

 

Fine roots, shell 
fragments, and 
pebbles.  

LOWER: Shell 
#32 and Shell 
#33 

2  130 cm to 123 cm 
 

80 cm X 2-7 cm UPPER: Shell  
#32 and #33 

10YR/5/2: 
Grayish 
brown. 

 

 

Fine roots, shell 
fragments, and 
pebbles.   

LOWER:  
Charcoal #12 
and Shell #34  

3  95 cm to 85 cm 
 
 

50 cm X 3-10 
cm 

UPPER: 
Charcoal #13 

10YR/5/2: 
Grayish 
brown. 

 

Fine roots, shell 
fragments, 
pebbles, and 
charcoal. 

LOWER: 
Charcoal #14 

4  70 cm to 64 cm 
 
 

65 cm X 2-6 cm UPPER: Shell 
#37 

10YR/7/2: 
Light gray. 

 

Fine roots, shell 
fragments, 
sandy ash, and 
fine ash. 

LOWER:  Ash 
#s 5A and 5B 

6A   65 cm to 48 cm 
 

180 cm X 2-8 
cm 

UPPER: Shell 
#47  and Ash 
#5B 

10YR/5/2: 
Grayish 
brown. 

 

 

Burnt shell and 
no pebbles.  
Ash #6B is a 
lens within Ash 
#6A. 

LOWER: 
Charcoal 
#15A and 
Shell #47 

7 10 cm to 1 cm (0 cm = 
ground level) 

49 cm X 2-8 cm UPPER: Shell 
#46 

10YR/4/4: 
Dark 
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Concrete-like, 
fine ash, and 
tiny shell 
fragments. 

LOWER: Shell 
#46 

yellow 
brown.  

 

8 -8 cm to - 12 cm  
 
 

27 cm X 1-4 cm UPPER: 
Charcoal #25 

10YR 4/3: 
Brown 

 

Wet, sandy, 
some tiny shell 
fragments, and 
burnt 
sandstone. 

LOWER: Sand 
Sample 

SAND SAMPLE DESCRIPTION 

SS (Sand 
Sample) 

-10 cm to – 22 cm  
 

NOT RECORDED UPPER:  Ash 
#8 

10YR/5/6: 
Yellowish 
brown.  

 

Unburnt shell 
fragments and 
sand. 

Charcoal #27 

CHARCOAL LENS DESCRIPTIONS 

11 140 cm - 138.5 cm 
 
 

4 cm X 1.5 cm  UPPER: Shell 
#31 

10YR/2/2: 
Very dark 
brown. 

 

Burnt wood and 
small twigs. 

LOWER: Ash 
#1 and Shell 
#33 

12  123 cm – 121.5 cm 
 
 

30 cm X 1.5 cm UPPER: Ash 
#2 

10YR/3/1: 
Very dark 
gray. 

 

Large pieces of 
broken shell 
fragments. 

LOWER: Shell 
#34 

13  95 cm  – 92 cm 
 
 

52 cm X 1-3 cm  UPPER: Shell 
#34 and FCR   

10YR/2/1: 
Black. 

 
14 90 cm to 89 cm 

 
 

35 cm X 1 cm UPPER: Ash 
#3 

10YR/4/1: 
Dark gray. 

 

3 sections 
containing very 
fine charcoal 
and tiny broken 
shell fragments. 

LOWER: Shell 
#35. 

17A 43 cm to 38 cm  48 cm X 1-5 cm  UPPER: Shell 
#38A 

10YR/2/1:  
Black. 

 

Very fine 
charcoal mixed 
with small shell 
fragment and 
burnt wood. 

LOWER: Shell 
#40A 
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Fine charcoal 
mixed with 
larger pieces of 
charcoal.  Lens 
is segmented 
and possibly 
merges with 
charcoal layer 
18. 

LOWER: Shell 
#40 

19 22 cm to 18 cm 46 cm X 1.5 cm  UPPER: Shell 
#40B 

10YR/3/1: 
Very dark 
gray.  

 

23A 16 cm to 12 cm  Fine charcoal 
with large and 
small shell 
fragments.  

UPPER: Shell 
#40C 

10YR/3/1: 
Very dark 
gray.  

 
26 - 10 cm to – 20 cm 65 cm to 2 – 4 

cm 
UPPER:  Shell 
#46  

10YR/5/1: 
Light gray.  

 

Fine charcoal 
mixed with 
small mussel 
shells.  Lens is 
slightly damp. 

LOWER: Ash 
#8 and Sand 
Sample 

27 - 15 cm to – 22 cm 130 cm X 2-5 
cm  

UPPER:  Sand 
Sample 

10YR/2/2: 
Very dark 
brown.  

 

Huge FCRs 
cross into this 
charcoal lens.  
Fine charcoal 
(slightly damp) 
mixed with tiny 
shell fragments. 
Less 
concentrated 
shall fragments 
than the other 
charcoal lenses. 

LOWER: Not 
excavated 

SHELL LENS DESCRIPTIONS 

34 122 cm to 93 cm  Very little soil 
and ash matrix 
with whole and 
large burnt 
shell fragments, 

UPPER:  
Charcoal #12 
and Ash #2   

10YR/8/1 
and 7/1: 
White and 
light gray. 
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some charcoal, 
small pebbles, 
and fire-
modified rock 
(FRM).   

LOWER:  Shell 
#34 and Shell 
#35 

 

35 93 cm  to 70 cm Fine sand and 
charcoal (more 
than #34) with 
an ash matrix.  

UPPER: 
Charcoal #14 
and Shell #34 

10YR/7/1: 
Light gray. 

 

Whole shell and 
large 
fragments. 
nested with 
ventral side up.    

LOWER: Shell 
#36 and Shell 
#37 

36 70 cm – 55 cm Fine sand and 
charcoal with 
an ash matrix. 
Smaller shell 
fragments 
compared to 
Shell #35.  FMR 
present.   

UPPER: Shell 
#35. 

10YR/7/1: 
Light gray. 

 

LOWER: Ash 
#6A and Ash 
#17 

38 57 cm to 40 cm Fine sand and 
charcoal with 
an ash matrix. 
Large whole 
shells near the 
top of lense, 
and smaller 
crushed shells 
in bottom part 
of lense.   

UPPER:  
Charcoal #15 

10YR/7/2: 
Light gray.  

 

LOWER: 
Charcoal #17 

40 30 cm to 15 cm A cemented 
matrix with 
large whole and 
crushed shell 
with FCR and 
small pieces of 
charcoal.  

UPPER:  
Charcoal #17 

10YR/6/1: 
Gray.  

 

Large, dense, 
nested shells 
with majority 
ventral side up. 

LOWER:  
Charcoal #23 
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40A 40 cm to 24 cm  Smaller shell 
fragments with 
pebbles in a 
compacted 
matrix.   

UPPER:  
Charcoal #17 
and #17C     

10YR/7/1: 
Light gray. 

 
40C 21 cm to 17 cm Smaller shell 

fragments with 
pebbles in a 
compacted 
matrix.   

UPPER:  
Charcoal #19 

10YR/6/1: 
Gray. 

 

Smaller shells 
than #40B, with 
majority 
stacked 
horizontally. 

LOWER: 
Charcoal 
#23A. 

46 10 cm to -10 cm  Large whole 
fragments and 
large whole 
shell.  Pockets 
of mussel, 
charcoal, and 
FCR.  The shells 
are more 
loosely packed 
on the north 
end than the 
south end.    

UPPER:  
Charcoal 
#23C,, #23E 
and #24   

10YR/5/1: 
Gray. 

 

Nested with 
some paired 
valves.  

LOWER:  
Charcoal #25 
and #26 
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Figure 12. Stratigraphic drawing of beach bank shell midden (Image courtesy of Adrienne Cobb). 

    

Radiocarbon Analysis 

   
I mechanically separated charcoal from all nine of the selected bulk charcoal samples (Figure 

15).  I chose subsamples based on my ability to separate out the minimum amount of charcoal for AMS 

radiocarbon dating, and their location throughout the exposed height of the profile.  The proportion of 

large enough portions of charcoal to matrix determined whether it was simple or difficult to extract, in 
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addition to visually differentiating between bits of the matrix stuck together versus actual burned pieces 

of wood.   

 

 Figure 13. Sorting charcoal subsamples in the WWU Archaeology Lab. 

 

Salix Archaeological Services in Seattle, WA identified woody taxa for the selection of testable 

fragments for radiometric analysis (Shaw 2017) (Appendix F).  Fragments from bags 12 and 23A were 

determined to be of a sufficient weight and content for radiocarbon dating, and fulfilled the goal of 

identifying charcoal from both the upper layer and lower portions of the shell midden so that I could 

determine a range of dates of site occupation.           

DirectAMS Radiocarbon Dating Services in Bothell, WA (Appendix G) analyzed the charcoal 

fragments from Bags 12 and 23A.  I discuss the resulting radiocarbon dates and the dates of site 

occupation demonstrated by the shell midden in Chapter 6 – Results.    



 48   
  

Grain Size Analysis 

   
I employed grain size analysis to determine the size of the different particles that constitute the 

archaeological subsamples.  The purpose of this analysis was to determine if a different energy and 

environment deposited the materials in the exposed beach bank (Lopez 2017) than the natural 

depositional processes that resulted in the sand subsample assigned as culturally sterile by Campbell in 

2010 (Table 4). 

  Grain size analysis was conducted on twenty four of the subsamples selected for this program of 

study.  Sample #11 is a single large chunk of charcoal, and contained no matrix to analyze; therefore I 

did not test this sample for grain size.  I used the Rotap Sieve Shaker in the Western Washington 

University Geology Lab to conduct the grain size analysis.  The total volume of the each sample was 

dependent on the amount of soil available for testing; sub samples ranged from as small as 5 grams up 

to 50 grams.   Appendix H demonstrates the volume of each subsample tested, the sieve sizes, the mass 

of soil retained in each sieve, and the calculated percentage of coarse sand, medium sand, fine sand, 

and silt / clay in each sample.  Table 4 averages the percentage of grain sizes in the ash, charcoal and 

shell subsample categories.  The total grain size percentages for the single sand sample are presented as 

well.    

Table 5. Average percentage of grain sizes in ash, charcoal, and shell submsamples and total percentage 

of the sand sample. 

 

ASH SUBSAMPLES (#’s 1, 2, 3, 4, 6A, 7, and 8) 

GRAIN SIZE AVERAGE PERCENTAGE 

Coarse Sand 31.4% 

Medium Sand 30.92% 
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Fine Sand  26.06% 

Silt / Clay  8.23% 

CHARCOAL SUBSAMPLES (#’s 11, 12, 13, 14, 17A, 

23A, 26, 27) 

GRAIN SIZE AVERAGE PERCENTAGE 

Coarse Sand 34.96% 

Medium Sand 34.47% 

Fine Sand  27.67% 

Silt / Clay  4.52% 

SHELL SUBSAMPLES (#’s 34, 35, 36, 38, 40, 40A, 

40C, 46) 

GRAIN SIZE AVERAGE PERCENTAGE 

Coarse Sand 70.06% 

Medium Sand 19.44% 

Fine Sand  8.12% 

Silt / Clay  10.36% 

SAND SUBSAMPLE (# SS: CONTROL SUBSAMPLE) 

GRAIN SIZE PERCENTAGE 
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Magnetic Susceptibility  

  
I conducted magnetic susceptibility testing in order to detect the amount of magnetism 

resulting from the burning of the selected samples.  High values of magnetic susceptibility correlate with 

periods of intense human activity (Aidona et al. 2001).   

Magnetic susceptibility testing was conducted on twenty four of the samples selected for this 

program of study using the Bartington MS-2 dual frequency susceptibility meter in the Paleomagnetism 

Lab at WWU (Appendix I).  Figure 14 shows the equipment and software I used in the Western 

Washington University Paleomagnetism Laboratory.   Sample 11 is a single large chunk of charcoal, and 

there was no ability to test this sample without destroying it; therefore I did not test this sample for 

magnetic susceptibility. The 6-gram plastic sampling containers were first washed, and then filled with 

approximately 4 grams of matrix materials from each of the 25 samples.  The spatula used to obtain the 

material for testing was wiped down with chemical-free paper between each sample, to avoid 

contamination.  Total mass was obtained for each sample (charcoal samples generally had less mass 

than the ash, shell, and sand samples).  The susceptibility readings, or Bartington Unit or SI Units, are a 

dimensionless measurement that indicates the degree of magnetization of a material in response to an 

applied magnetic field.  The resulting unit is a ratio of magnetization (magnetic moment per unit 

volume) to the applied magnetizing field intensity. The resulting magnetic susceptibility for each tested 

subsample is listed in Table 5.                                                                                  

Medium Sand 9.88% 

Fine Sand  90.02% 
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   Figure 14.  Magnetic Susceptiblity equipment in the Paleomagnetism Lab at WWU.  

                                            

   Table 6. Magnetic Susceptiblity (Xm) of subsamples. 

 

Bag 
Number 

Mass Magnetic 
Susceptibility 

(Bartington Units 

and SI = Xm ) 

SAND SAMPLE RESULT 

SS 3.92 42.5 

 ASH SAMPLE RESULTS 

1 2.39 71.4  

 2 2.28 49.5 

3 2.37 67.7 

4 1.65 52.5 

6A  2.31 62.1 

 7 2.26 30.2 

8 2.48 75.1 

CHARCOAL SAMPLE RESULTS 

12 2.64 5.5 

13 1.28 33.3 

Multisus Software Program 

Bartington MS-2 Dual 

Frequency Susceptibility 

Meter 
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14 2.82 4.8 

17A 1.12 21.9 

19 2.00 12.2 

23A 1.88 138.81 

26 2.73 21.0 

27 3.48 11.5 

SHELL SAMPLE RESULTS 

34 1.73 -0.12 

35 2.23 23.8 

36 1.74 16.0 

38 2.83 10.9 

40 2.11 4.7 

40A 2.33 8.8 

40C 2.77 7.3 

46 1.88 4.7 
1  This result is the average between two different readings taken on two different days.  

2  A negative reading indicates a diamagnetic character (materials repelled by a magnetic field).              

 

Phosphorous (Ptot) 

  
 I completed phosphorous testing in order to identify the changes in amounts of total 

phosphorous (Ptot) in parts per million (ppm) among the selected subsamples.  Phosphorous is a 

commonly-used indicator for anthropogenic change in soils, and phosphorous levels correlate with 

human activities (Holliday 2004; Huisman et al. 2009). 

 

  Figure 15.  Soil subsamples for total phosphorous (Ptot) analysis. 
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Phosphorous testing was conducted on twenty three of the samples selected for this program of 

study by Edge Analytical in Burlington, WA using inductively coupled plasma (ICP) spectrometry 

(Appendix J).  Sample 11 is a single large chunk of charcoal, and there was no ability to test this sample 

without destroying it.  Sample 12 did not contain enough material sufficient for the testing.  I did not 

test subsamples 11 or 12 for Ptot.  The 25-gram plastic sampling containers were first washed, and then 

filled with matrix materials from the 23 subsamples.  The spatula used to obtain the material for testing 

was wiped down with chemical-free paper between each sample, to avoid contamination.  The resulting 

total elemental phosphorous (in mg/Kg, or ppm) of each sample is listed in Table 6. 

   Table 7. Total phosphorous (Ptot) test results. 

 

Bag 
Number 

Total 
Phosphorous or 

Ptot (ppm) 

SAND SAMPLE RESULT 

SS 125 

 ASH SAMPLE RESULTS 

1 1980 

 2 5298 

3 5825 

4 5026 

6A  5879 

 7 1543 

8 2121 

CHARCOAL SAMPLE 
RESULTS 

13 3539 

14 1617 

17A 1719 

19 1358 

23A 602 

26 372 

27 378 

SHELL SAMPLE RESULTS 

34 1641 

35 1580 

36 3233 
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38 3587 

40 290 

40A 597 

40C 576 

46 359 
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Chapter 6: Results 

The methods described in the previous chapter were successfully applied to the subsample 

assemblage.  This chapter presents the results of these analyses beginning with the radiocarbon dates, 

followed by sections on grain size analysis, magnetic susceptibility, and the phosphorous tests.  

Statistical tests are used to illustrate the relationship between phosphate levels and magnetic 

susceptibility measurements, and by accepting these two measurements as proxies for human activity, 

to determine if the measurements can aid in identifying human subsistence features within the shell 

midden.   

Radiocarbon Dates 

 I obtained two radiocarbon dates from the subject shell midden in order to understand the 

chronology of 45WH55 and help better explain the cultural and environmental conditions under which 

the site formed.  Obtaining additional radiocarbon dates was hampered by the paucity of large enough 

charcoal pieces to date (Shaw 2017). 

 Salix Archaeology identified four fragments of charcoal in subsample #12A that when combined 

weighed enough to be radiocarbon dated.  Two of the fragments were unidentifiable, but two of the 

fragments were Alnus sp. (alder), documented by Northwest Coast ethnobotanists as the preferred fuel 

for smoking fish (Shaw 2017; Turner and Bell 1971).  Two charcoal fragments from subsample #23A 

were selected, one being Lonicera sp. (twinberry, honeysuckle) and one was Acer sp. (maple).  Lonicera 

bark and leaves were used for medicinal purposes on the Northwest Coast, and maple was considered a 

valuable fuelwood by many Tribes (Gunther 1945; Shaw 2017).  The sample from charcoal lens #12A 

(near the top of the profile) was dated to 508 BP and the sample from charcoal lens #23A (near the 

bottom of the profile) was dated to 933 BP by AMSDirect Radiocarbon Dating Service.  The results in 

Table 7 are in units of percent modern carbon (pMC) and the uncalibrated radiocarbon age before 



 56   
  

present (BP).  Campbell et al. (2010) obtained radiocarbon dates from shell samples in the 45WH55 

deposits on the upper bluff, placing the site in the latter half of the Locarno Beach Phase and possibly 

the early Marpole Phase.  Pierce (2011) obtained a radiocarbon date from an excavation unit on the 

bluff   The radiocarbon dates obtained from the beach bank shell midden demonstrate that it is not 

connected temporally to the potion of 45WH55 located on the bluff (Appendix G).  Chapter 7 discusses 

the implications of these results for understanding occupation of the Woodstock Farm Site. 

Table 8. Radiocarbon dates of charcoal subsamples #12 and #23A (AMSDirect Radiocarbon Dating 

Services 2018).  

  

  
 

  Grain Size Analysis 

 This study employed grain size analysis to better understand the depositional history and 

environmental context for the human activities at 45WH55 (Goldberg and Byrd 1999; Stein 1982).  The 

grain size distribution of a site is an expression of the nature of the sediment deposition; it measures a 

continuum of grain size classes to determine the type of energy and environment that created the 

midden matrix.  Appendix H provides percentages of coarse sand, medium sand, fine sand, and silt / clay 

in each of the 23 tested sub-samples.  Table 9 demonstrates the average percentages for the 

subsamples in each of the categories: ash, charcoal, shell, and sand.  Table 10 demonstrates the grain 

size percentages across the entire subsample set, excluding the culturally sterile sand subsample # SS 

(control sample).  Figures 16 demonstrates the percentage of each grain size in the subsamples from the 

bottom of the profile to the top, and Figure 17 demonstrates the average grain sizes across the 

subsample set.  Subsample # SS was presumed to be entirely the result of the natural deposition of 

sediments on the beach from wave action.    
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Table 9. Average of grain sizes in each subsample category. 

 

 Coarse Sand Medium Sand Fine Sand Silt / Clay 

Ash 31.4% 30.92% 26.06% 8.23% 

Charcoal 34.96% 34.47% 27.67% 4.52% 

Shell 70.06% 19.44% 8.12% 10.36%  

Sand n/a 9.88% 90.02% n/a 

 
 

Table 10. Average grain size percentages across the entire subsample set (with the exception of the 

control sand subsample, # SS). 

     

Grain Size Percentage across 
Entire Subsample Set 

Coarse Sand 34.11% 

Medium Sand 21.21% 

Fine Sand 15.46% 

Silt / Clay 5.78% 
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  Figure 16. Grain size distributions from the bottom to the top of the shell midden profile. 

 

Figure 17.  Average grain size percentages of ash, charcoal, and shell subsamples compared with the sand 

sample. 

 



 59   
  

    Coarse and medium sand dominate the subsample set, with μ = 55.31%.  This is in contrast to 

the culturally sterile sand sample (Sample #SS) collected at the bottom of the profile, which is composed 

almost entirely of fine sand (90.02%).  These differences indicate a different depositional environment 

resulted in the shell midden stratigraphy than in the beach sand.  The coarse-sized material in the matrix 

was largely composed of burnt shell, pebbles, charcoal, and fire cracked rock.  Fine grained sand 

comprises a larger percentage of the older (lower) portion of the profile.   

Magnetic Susceptibility Results 
 

Magnetic susceptibility has been predominately used in archaeological investigations to identify 

sediment features and burnt material (Dalan and Banerjee 1998).  The resulting Bartington Units, or SI, 

result from the Bartington MS2 instrument creating a magnetic field (H), detecting the magnetism in the 

sample (M), and then calculating the ratio (Xm) between the two.  The resulting mass magnetic 

susceptibility is mathematically expressed as Xm = M/H.   

Figure 18 illustrates magnetic susceptibility of each sample, grouped based on the subsample 

category (ash, charcoal, shell, and the culturally sterile sand sample). 
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   Figure 18. Magnetic Susceptibility (Xm = H/M) of subsamples. 

   

The highest SI units were recorded in the ash lens samples with decreasing susceptibility present 

in the charcoal and shell samples, respectively.  Charcoal sample 23A was measured twice on two 

different days, to try and determine if the very high reading was due to operator or equipment error.  I 

conducted a visual analysis of the sample and could not determine the reason for 23A being an outlier.   

Interestingly, the culturally sterile sand sample from the bottom of the beach profile 

demonstrated a higher susceptibility rating than the charcoal or ash samples (with the exception of 23A, 

the outlier).  The beach sand adjacent to Chuckanut Bay is largely derived from the surrounding 

Chuckanut sandstone formations, and of the three common rock types (sedimentary, metamorphic, and 

igneous) sedimentary rocks normally have the lowest susceptibility values when for example compared 

to mafic and ultramafic rocks (Skrede 2012).  However, Chuckanut sandstone and the local soil series 

Nati Silt Loam both contain magmatic material in the form of volcanic ash, which may account for the 

relatively high reading (Fitzsimmons et al. 2013).    
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Phosphorous Results 
 

Phosphorous is a persistent and significant indicator of anthropogenic alteration of soils 

(Holliday and Gartner 2007).  Middleton and Price (1996) confirmed that activities like burning result in 

elevated phosphate levels in the soil.  Inductively Coupled Plasma (ICP) spectrometry measures the total 

phosphorous (or Ptot) in milligrams per kilogram, or parts per million (ppm). 

The following graph illustrates the amount of Ptot in ppm of each sample, grouped based on the 

subsample category:     

 

Figure 19. Total phosphorous values (Ptot) in parts per million (ppm). 

 

 Figure 19 demonstrates that the highest measurements of Ptot were concentrated in the ash 

samples (x ̅= 3953.14), while the shell samples on had slightly greater amounts of Ptot (x ̅= 1482.88) than 

the charcoal samples (x ̅= 1369.29).  The culturally sterile sand sample contained the least amount of 

Ptot (125 ppm). 
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 In order to explore the hypothesis that the magnetic susceptibility and phosphorous values 

could help identify subsistence features within the profile, I assigned the magnetic susceptibility 

measurements and the Ptot totals to interval scales, categorized as Low, Medium, Medium-High, and 

High.  The magnetic susceptibility intervals are in 15 Xm (a low reading being less than 15, and the 

highest readings being above 50), and the phosphorous intervals to 1500 ppm (a low reading being less 

than 1500, and a high reading being greater than 4500).  I also assigned a color to each of the subsample 

categories, in order to create a visual of whether high SI and Ptot readings correspond to the samples 

that I assumes to be heated the most (the ash lenses):  

  

  Figure 20 sorts the samples by their category type, with the corresponding level of magnetic 

susceptibility and Ptot on either side.  The highest magnetic susceptibility and phosphorous readings 

appear to cluster around the ash lenses, and correspond with field observations of potential hearth and 

fire pit features.  
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Figure 20. Visual representation of Ptot and Xm values of the subsample categories. 

 

   The following Pearson’s correlation coefficient can determine the extent of the linear 

relationship between the magnetic susceptibility and Ptot values:  

 

 N (both capitalized N and lower case n may be used) is equal to the number of pairs (the 

subsamples); x and y are the magnetic susceptibility and Ptot measurements, respectively (see Tables 6 



 64   
  

and 7 in Chapter 5 for the P(tot) and Xm values); and ∑ is the sum of those scores.  R is correlation 

coefficient, with a value between 1 and -1.  1 indicates a strong positive relationship, -1 indicates reflects 

a negative relationship, and 0 means the two variables are not related.  Sample 12 is not included in the 

following result, because I was not able to test that sample for one of the variables (Ptot).    

 The resulting r = 0.3, indicating a moderate positive linear relationship between the chemical 

and magnetic variables.  Removing the outlier magnetic susceptibility measurements (Xm = 138.8) from 

sample #23A (Table 6) strengthens the relationship to r = 0.6.  Figure 21 is a scatter plot chart of each 

tested subsample (minus the outlier) and shows the trendline between the two variables: 

 

 

Figure 21. Correlation between magnetic susceptibility and Ptot measurements. 

 

Testing the Hypothesis  
 

 This research began with the hypothesis (H1) that the complex stratigraphy present in the 

exposed beach bank shell midden at 45WH55 was the result of anthropogenic, in-situ deposition, with 

repeating human activities such as localized burning for shellfish processing resulting in the distinct and 
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repeating layers of tan ashy lenses, pockets of burnt shell, and charcoal.  The null hypothesis (Ho) is that 

the shell midden is not entirely the result of repeating human activities, and the layers are the result of 

discrete events disconnected from one another.  This thesis has accepted the premises in the 

archaeological literature that both elevated phosphorous values and magnetic susceptibility 

measurements can serve as proxies for human activity; in other words, the actions of living (cooking, 

processing, waste) enrich both the magnetic susceptibility and phosphorous content of soil.  A 

moderately positive linear relationship exists between the two variables within my subsample set 

(Figure 21).  I further propose that the variation in Xm and Ptot between the ash and charcoal 

subsamples reflects different depositional events; in other words, the ash samples will be more 

chemically and magnetically similar to each other and significantly different than the chemical and 

magnetic values of the charcoal samples.   Therefore, the geoarchaeological test results can be 

evaluated when the hypotheses are stated as follows: 

Magnetic Susceptiblity (Xm) 

(Xm)H0:  The true mean difference (μd) of magnetic susceptibility (Xm) in the ash, charcoal, and 

shell subsamples will be equal to zero.  

(Xm)H1:   The true mean difference (μd) of magnetic susceptibility (Xm) in the ash, charcoal, and 

shell subsamples will not be equal to zero. 

_____________________________________________________________________ 

 
Total Phosphorous (Ptot) 

(Ptot)H0:  The true mean difference (μd) of total phosphorous (Ptot) in the ash, charcoal, and 

shell subsamples will be equal to zero.  

(Ptot)H1:   The true mean difference (μd) of total phosphorous (Ptot) in the ash, charcoal, and 

shell subsamples will not be equal to zero. 
 
I had an equal number of charcoal and shell samples (eight of each) that were tested for 

magnetic susceptibility, and seven ash samples tested for Xm (Table 6).  I had an equal number of ash 

and charcoal samples (seven of each) that were tested for total phosphorous, and eight shell samples 

tested for Ptot (Table 7).   To test whether we can reject or accept the null hypotheses stated above, I 
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used the paired comparison two sample t-test (α = .05) to compare the equal samples, and the unpaired 

t-test to compare the unequal samples:  

             Paired Comparison T-test     Unpaired Comparison T-test 

 The following table demonstrates the results of the t-test calculation for the magnetic 

susceptibility among subsamples.  We can reject the null hypotheses, (Xm)H0,  if t ˃ 2.306 (unpaired) and 

t ˃2.262 (paired) (Madrigal 1998):  

Table 11.  Paired and Unpaired two-tailed t-test results for the magnetic susceptibility of the ash, 

charcoal, and shell samples. 

 

Ash and Charcoal (Xm) = Unpaired Variable 1 Variable 2 

Mean 58.35714286 9.51 

Variance 242.8861905 56.09337143 

Observations 7 8 

Hypothesized Mean Difference 0  
df 8  
t Stat 7.563462191  
P(T<=t) two-tail 6.525E-05  
t Critical two-tail 2.306004135   

Ash and Shell (Xm) = Unpaired Variable 1 Variable 2 

Mean 58.35714286 9.51 

Variance 242.8861905 56.09337143 

Observations 7 8 

Hypothesized Mean Difference 0  
df 8  
t Stat 7.563462191  
P(T<=t) two-tail 6.525E-05  
t Critical two-tail 2.306004135   

 Charcoal and Shell (Xm): Paired Variable 1 Variable 2 

Mean 31.12625 9.51 

Variance 1983.049798 56.09337143 

Observations 8 8 

Pearson Correlation 0.096598421  

Hypothesized Mean Difference 0  
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df 7  

t Stat 1.375858905  

P(T<=t) two-tail 0.211270881  

t Critical two-tail 2.364624252   

 

The following table demonstrates the results of the t-test calculation for the total phosphorous 

among subsamples.  We can reject the null hypotheses, (Ptot)H0 , if t ˃ 2.228  (unpaired) and t ˃2.446 

(paired) (Madrigal 1998): 

Table 12. Paired and unpaired two-tailed t-test results for the total phosphorous of the ash, charcoal, and 

shell samples. 

 

Ash and Charcoal (Ptot): Paired Variable 1 Variable 2 

Mean 3953.142857 1369.285714 

Variance 3871877.81 1242900.571 

Observations 7 7 

Hypothesized Mean Difference 0  
df 6  
t Stat 2.968751106  
P(T<=t) two-tail 0.024997915  
t Critical two-tail 2.446911851   

Ash and Shell (Ptot) = Unpaired Variable 1 Variable 2 

Mean 3953.142857 1482.875 

Variance 3871877.81 1688279.839 

Observations 7 8 

Hypothesized Mean Difference 0  
df 10  
t Stat 2.825867461  
P(T<=t) two-tail 0.017978872  
t Critical two-tail 2.228138852   

Charcoal and Shell (Ptot): Unpaired Variable 1 Variable 2 

Mean 1369.285714 1482.875 

Variance 1242900.571 1688279.839 

Observations 7 8 

Hypothesized Mean Difference 0  
df 13  
t Stat -0.182217602  
P(T<=t) two-tail 0.858222708  
t Critical two-tail 2.160368656   
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 T > 2.306 for the Xm ash and charcoal and ash and shell, therefore the true mean difference of 

magnetic susceptibility is greater than zero.  T< 2.262 for the charcoal and shell, so there does not 

appear to be a significant difference in the magnetic susceptibility for these two sample categories.  

 T > 2.446 for the P(tot) ash and charcoal and ash and shell, therefore the true mean difference 

of total phosphorous is greater than zero.  T<2.228 for the charcoal and shell, so there does not appear 

to be a significant difference in total phosphorous for these two sample categories. 
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Chapter 7: Conclusions and Future Research 
 

Shell midden archaeological sites on the Northwest Coast are the material remnants of 

thousands of years of successful exploitation of shellfish resources by indigenous peoples.  The dynamic 

anthropogenic and natural formation processes that result in the complex stratigraphy exhibited by 

many shell middens can be analyzed by applying geoarchaeological analysis to the midden matrix. 

Archaeologists can study soil chemistry, magnetism, grain size, and other physical measurements to gain 

contextual information with which to understand the artifacts suspended in the matrix.  The goal of this 

thesis, structured by Binford’s middle range theory, was to complete geophysical and geochemical 

analyses to aid in identifying the past human subsistence activities that created the distinct and 

repeating layers of shells, ash, and charcoal in the midden profile.  To accomplish this goal, the soil tests 

were employed to confirm that the visual similarity of the repeated layers were related to similar 

chemical and magnetic values, and thus likely the result of the same processes.  The results of this study 

demonstrate the utility of geophysical and geochemical tests to support macro-level observations, and 

will assist future researchers in identifying specific activity areas within this shell midden.  The following 

sections summarize the findings of each of the tests, and I complete this manuscript with 

recommendations for future geoarchaeological research at 45WH55.   

Summary of Findings 
 

Twenty-five of the 64 shell midden matrix samples (approximately 39%) originally collected by 

Campbell (2010) were included in my subsample set (Appendix D).  Samples were chosen on the basis of 

enough material to undergo testing, and were selected to give a broad data-set across the exposed 

midden wall.  All 64 sample descriptions were standardized from the original field notes, while the 25 

subsamples were additionally evaluated for Munsell color (Table 3).  We completed a stratigraphic 

drawing indicating the location of both the samples and subsamples within the shell midden (Figure 12).   
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Radiocarbon analysis was successfully completed on two subsamples from near the top and bottom of 

the profile (Appendix G).  Grain size analysis was conducted on twenty-four of the subsamples; twenty- 

three of the samples were subject to total phosphorous (Ptot) testing using ICP-spectrometry; and 

twenty-four of the samples were subject to magnetic susceptibility measurements (Appendices H, I, and 

J). 

Salix Archaeology identified charcoal samples suitable in weight for radiocarbon dating 

(Appendix F).  Two of the samples were comprised of burnt maple and alder, both important fuelwoods 

for Northwest Coast peoples.  One piece of charcoal from subsample #23A was Lonicera (black 

twinberry or honeysuckle), used for medicinal purposes on the Northwest Coast.  The radiocarbon dates 

derived from samples #12 and #23A (508 BP and 933 BP) date from the Late Pacific Period Gulf of 

Georgia phase, (Tables 1 and 7) indicating that the activities that created the shell midden are not 

contemporaneous with the Locarno Beach phase activities that created the midden on the upper bluff, 

but may have occurred at the same time as the later Marpole activities documented by Pierce and 

others (Campbell et. al. 2010; Lewis 2013; Pierce 2011) (Figures 22 and 23).  These Gulf of Georgia phase 

dates support our understanding of the Woodstock Farm Site as a location of long habitation by 

Indigenous peoples, whom successfully exploited the abundant terrestrial and aquatic resources during 

the Locarno Beach, Marpole, and San Juan Phases of the Gulf of Georgia sequence. 
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Figure 22. Oxcal chart demonstrating radiocarbon dates collected at 45WH55 (Image courtesy of 

Adrienne Cobb). 

 



 72   
  

 

Figure 23. Map of the Woodstock Farm site with radiocarbon dates from this thesis research, Campbell 

et al. 2010 and Pierce 2011 (Modified from Campbell et al. 2010: Figure 2). 

   

The grain size analysis demonstrated the consistent distribution of grain sizes across the three 

mutually exclusive categories within the subsample set (ash, charcoal, shell), with coarse and medium-

sized sand making up approximately μ = 62% of the total subsample matrix material, and fine sand and 

clay making up the remaining μ = 38% (Table 4 and Figures 16 and 17).  All of the subsamples with the 

exception of the culturally sterile sand sample (SS) contain evidence of anthropogenic origin, including 

burnt shells, charcoal, and fire cracked rock.  Compared to the lack of artifacts and over 90% fine sand 

grain size present in the culturally sterile sand sample (SS),  we can infer that a different depositional 

environment (anthropogenic deposition) resulted in the observed midden stratigraphy than in the beach 

sand.  Grain size analysis of the remaining samples not chosen for this study in combination with 

933 BP to 508 BP 
  Pratschner 2018 

 
2750 to 2450 BP 
950 to 550 BP 
Campbell et al. 2010 
Pierce 2011 
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additional beach sand samples for control may reveal further details about the shell midden’ s 

depositional history.      

 Phosphate values, serving as a proxy for human activity, can independently evaluate patterns in 

other data.  Eidt (1984) established that the average inorganic phosphate content of sedimentary rock is 

approximately 200 parts per million (ppm), while Hill and Rapp (2006) state that phosphorous content of 

2000 ppm can indicate a burial.  This research relies on the accumulation of phosphate as an indicator of 

people’s continual use of the landscape.  The ash subsamples exhibited the highest average 

measurements (x ̅= 3953.14 ppm), followed by the shell (x ̅= 1482.88 ppm) than the charcoal samples (x ̅

= 1369.29 ppm) (Figure 19).  The Ptot of the sand subsample had a Ptot value of 125 ppm.  The Ptot 

measurements met our expectations that the samples heated to the highest temperatures (the ash 

layers) would exhibit the most phosphorous enrichment.  There was a moderately positive correlation 

between the Ptot measurements and the magnetic susceptibility measurements (Figure 21).  There was 

a significantly statistical difference (Tables 11 and 12) between the magnetic susceptibility and total 

phosphorous of the ash and charcoal, and the ash and shell, but no statistical difference for either 

measurements between the charcoal and shell samples.  The relatively high Xm value of the sand 

subsample indicates that anthropogenic processes may not be the leading factor in magnetic 

enhancement of the deposits.  The sand adjacent to Chuckanut Bay is largely derived from the 

surrounding sandstone and the resulting Nati Silt Loam soil series, both of which contain admixtures of 

volcanic ash.  Magnetic iron oxides are major components in many soils containing magmatic minerals 

(Pizarro et al. 2017), therefore the magnetic susceptibility of the sand sample may reflect the volcanism 

that is expressed in a number of rock and soil types throughout the northwest Washington region.  

Alternatively, the sand sample may contain eroded matrix materials from the midden which renders its 

Xm value no statistically different from the Xm in the ash, shell, and charcoal samples (Table 10). 
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Paleoenvironmental Reconstruction and Stratigraphic Analysis 

Campbell et al. (2010) and Lewis (2013) both discuss how the portion of Chuckanut Bay adjacent 

to 45WH55 would have been deeper and supported a rockier substrate prior to the installation of the 

railroad trestle in the 1920s.  Sea levels stabilized after the early Holocene, and the vegetative and 

climate regime in the Gulf of Georgia supported the development of the Developed Northwest Coast 

Pattern (Lepofsky et. al. 2005).   Prior to the site’s recording in 1974 by Gaston and Swanson, the beach 

bank shell midden would have extended further into Mud Bay, accumulating material in a convex 

pattern as shells were processed, cooked, and faunal remains and used tools were discarded.  Pursuant 

to the radiocarbon dates obtained from near the top and bottom of the approximately 2-meter thick 

profile, I conclude that the accumulation of the midden took place at the very end of the Marpole Phase 

and into the Gulf of Georgia Phase (Table 1) over an approximately 500 year time period.  Stein et al. 

(2011) in their study of shell accumulation rates across a number of later-Phase sites on the San Juan 

Islands, characterized rapid accumulation rates as ˃.5 cm / year.  The 2 meter or 200 centimeter deep 

beach bank shell midden divided by 500 years calculates to an average accumulation rate of 2.5 

centimeters per year.  This rapid accumulation is consistent with Stein, et al.’s (2011) hypothesis that 

later Phase sites, especially those dated 650 cal BP and later, accumulate shell more rapidly than earlier 

Phase sites due to an increase in site permanence.  Destructive wave action on the coastline has eroded 

the midden, creating a wave cut notch at the base and a concave profile section (Figures 7 and 24).  A 

combination of rising sea levels and wave swash will continue to erode the shell midden in the future.          
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Figure 24. Coastal erosion due to wave swash (Image courtesy of   

https://annemarieaitken.wordpress.com/2014/09/13/coastal-landforms-and-processes/). 

 

 Campbell (1981) and Stein (1992) state that cultural traits of features within a shell midden 

include contents, size, shape, and the nature of boundaries.  In the context of this research, I define an 

archaeological feature within the shell midden as a collection of artifacts and matrix that represents a 

human subsistence activity associated with intensive shellfish collection, processing, consumption, and 

eventual discard.  Campbell et al. (2010) suggested in their excavation of the portion of 45WH55 on the 

upper bluff that the lenses of charcoal, ash, burnt shell, and whole Protothaca (Pacific littleneck clam) 

represent hearth features and the remains of cooking activities (Pierce 2011).  The stacked nature of the 

shellfish deposits may suggests vertical discard (Campbell et al. 2010; Pierce 2011), with post-

depositional processes impacting whether the shells are oriented concave-side down or up (Muckle 

1985).  Aligning the field observations and sample collection with this thesis’ geoarchaeological analysis 

provides an opportunity to assign the depositional units into meaningful cultural assemblages.  Table 13 
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describes the stratigraphy of the shell midden from the beach (bottom of the deposits) to the ground 

level (top of the deposits) and combines the field observations, the geoarchaeological tests results 

indicating a positive linear relationship between magnetic susceptibility and total phosphorous, and 

statistical differences between the ash and charcoal, and Coast Salish ethnography to identify features 

and conclude what kinds of human subsistence activities that may have resulted in the distinct layers. 

Table 13.  Suggested archaeological features within the beach bank shell midden at 45WH55. 

 

Distance from Ground 
Level 

Description  Proposed Depositional 
Process 

-30 to -20 cm Not excavated; sterile 
sand sample collected.    

Beach sand from wave 
swash.  

-20 to -10 cm Sand layer bound by 
diffuse and thin 
charcoal layers, an ash 
layer and fire cracked 
rock. 

Fire pits that have been 
subsequently altered.  

-10 cm to 40 cm  A large lens of ash with 
alternating thin layers of 
charcoal, burnt shell, 
and fire cracked rock.   

Burning for disposal and 
sanitation. 

40 cm to 70 cm  Large convex lenses of 
charcoal with thick 
layers of ash and dense 
shell. 

Re-use of fire pits.   

70 cm to 85 cm Dense shell, some 
burnt. 

Cooked shell disposal. 

85 cm to 100 cm Ash layer bound by 
charcoal layers and fire 
cracked rock. 

Re-use of fire pits. 

100 cm to 120 cm Burnt shell and rocks. Cooked shell disposal. 
120 cm to 140 cm Ash lenses with 

between pockets of 
whole shell.  Two small 
pockets of charcoal. 

Re-use of fire pits. 
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Conclusions and Future Research  
 

This research represents a geoarchaeological approach in understanding the lifeways of the 

community whom successfully exploited the abundant natural resources at 45WH55 for over one 

thousand years.  The compilation of the field data in combination with the laboratory tests support the 

hypothesis of a shell midden site that is the result of anthropogenic, in-situ deposition by Coast Salish 

peoples engaged in intensive shellfish processing during the Gulf of Georgia phase.  An in-depth analysis 

of the bivalve and faunal assemblages within the 64 total midden samples could elucidate further 

subsistence patterns and answer questions of seasonality exhibited by the other pre-contact shell 

middens on the Woodstock Farm property.  On a larger scale, applying a similar geoarchaeological 

program of study to the soil samples from the other recorded sites at Woodstock Farm will further 

inform depositional and site formation patterns across the site. 

    

 

        

 

 

 

 

 

 

 

 



 78   
  

Works Cited 
 

Aitken, M.J. 
1974     Physics and Archaeology (2nd Edition).  Oxford: Clarendon Press.   

 
Ames, Kenneth M.  
1994     The Northwest Coast: Complex Hunter-Gatherers, Ecology, and Social Evolution.  In Annual   

Reviews Anthropology. Vol. 23: 209-229.    
 

Ames, Kenneth M. and Herbert D.G.Maschner 
1999     Peoples of the Northwest Coast: Their Archaeology and Prehistory. Thames and Hudson, London. 

 
Bethell, Philip and Ian Mate 
1989     The Use of Soil Phosphate Analysis in Archaeology: A Critique.  In Scientific Analysis in 

Archaeology and its Interpretation, edited by Julian Henderson, pp. 1-29. Oxford University 
Committee for Archaeology.  

 
Binford, L.R. 
  
1964      A Consideration of Archaeological Research Design.  In American Antiquity 29(4): 424-441. 
 
1981      Bones: Ancient Men and Modern Myths.  Academic Press, Inc: San Diego, CA.        

 
Binford, L.R. and J.B. Bertram.   
1977      Bone Frequencies and Attritional Processes.  In For Theory Building in Archaeology:  Essays on 

Faunal Remains, Aquatic Resources, Spatial Analysis, and Systematic Modeling (Studies in 
Archaeology).  77-153. 

 
Boas, F.  
1921     Ethnology of Kwakiutl.  35th Annual Report Bureau of American Ethnology, Washington, DC: US    

GPO.  
 

Borden, Charles.  
1950     Preliminary Report of Archaeological Investigations in the Fraser Delta Region.  In Anthropology 

in British Columbia, Number 1. British Columbia Provincial Museum.  Department of Education.  
Victoria, B.C. 

 
Bourgeon L., A. Burkeand T. Higham  
2017      Earliest Human Presence in North America Dated to the Last Glacial Maximum: New 

Radiocarbon Dates from Bluefish Caves, Canada. PLoS ONE 12(1):  e0169486. 
doi:10.1371/journal.pone.0169486 

 
Boxberger, Daniel L.  
2000      To Fish In Common: The Ethnohistory of Lummi Island Salmon Fishing.  University of 

Washington Press (Seattle). 
 

 



 79   
  

Brodard, Aurelie, Pierre Guibert, Francoiz Leveque, Vivien Mathe, Laurent Carozza, and Albane Burens. 
2012     Thermal Characterization of Ancient Hearths from the Cave of Les Fraux (Dordogne, France) by 

Thermoluminescence and Magnetic Susceptibility Measurements.  In Quartenary 
Geochronology.  Volume 10: 353-358. 

 
Butler, Virginia L. and Sarah K. Campbell 
2004      Resource Intensification and Resource Depression in the Pacific Northwest of North America:  A 

Zooarchaeological Review.  In Journal of World Prehistory.  18: 327-405. 
 
Camardi, Giovanni 
1999      Charles Lyell and the Uniformity Principle.  In Biology and Philosophy.  Volume 14(4): 537-560.  

 
Campbell, Sarah K.  
1981     The Duwamish No. 1 Site: A Lower Puget Sound Shell MIdden.  Office of Public Archaeology 

Research Report, 1. Seattle, WA: University of Washington.       
 

Campbell, Sarah K., Diana Barg, Brett N. Meidinger, and Todd A. Koetje 
2010      Report of 2005 Field Investigations at Woodstock Farm, Chuckanut Bay, Washington.  Report on 

File at the Washington State Department of Archaeology and Historic Preservation (DAHP), 
Olympia, Washington. 

 
Campbell, S. K., and V. L. Butler.  
2010      Archaeological evidence for resilience of Pacific Northwest salmon populations and the     

socioecological system over the last ~7,500 years. Ecology and Society 15(1): 17. [online] URL: 
http://www.ecologyandsociety.org/vol15/iss1/art17/ 

 
Carter, Kari J.  
2016      Phosphate as an Indicator of Occupational Intensity at Shell Midden Sites on the Central Coast of 

British Columbia.  Unpublished M.A. Thesis, Department of Anthropology, McMaster University. 
 

Chodorowski, Jacek; Jerzy Melke; Marta ZiÓlek; and Stanislaw Uziak.  
2012     The Content of Phosphorous in Mountain Meadow (Polonina) Soils as an Indicator of Past 

Shepherding Activity.  In EkolÓgia (Bratislava). Volume 31(1): 54 – 64.   
 

Clark, Terence N.   
2013      Rewriting Marpole:  The Path to Cultural Complexity in the Gulf of Georgia.  University of Ottawa 

Press:  Quebec. 
 

Croes, Dale R.  
2015     The Salish Sea: Using West and Dry Site Archaeology to Explore the Defining Temporal 

Characteristics of this Inland Sea.  In Journal of Wetland Archaeology. 12:1, pp. 72-108.    
 

Croes, Dale R. and Steven Hackenberger 
1988      Hoko River Archaeological Complex: Modeling Prehistoric Northwest Coast    Economic 

Evolution.  In Isaac, B.L. (ed), In Prehistoric Economies of the Pacific Northwest Coast. JAI Press, 
Greenwich, pp. 19-85. 

 
 

http://www.ecologyandsociety.org/vol15/iss1/art17/


 80   
  

Dalan, Rinata A. 
2006      Magnetic Susceptibility.  In Remote Sensing in Archaeology: An Explicitly North American 

Perspective.  Edited by Jay K. Johnson.  The University of Alabama Press, Tuscaloosa. 
 

2008     A Review of the Role of Magnetic Susceptiblity in Archaeogeophysical Studies in the USA: Recent 
Developments and Prospects.  In Archaeological Prospection.  Volume 15: 1-31. 

  
Dalan Rinita and Subir Banerjee 
1998     Solving Archaeological Problems Using Techniques of Soil Magnetism.  In Geoarchaeology.  

Volume 25(5): 572-601. 
 

Dearing, John  
1999     Environmental Magnetic Susceptibility: Using the Bartington MS2 System.  Chi Publishing, 

Kenilworth.     
 

Dearing, J.A., K.L. Hay, S.M.J. Baban, A.S. Hudleston, E.M.H. Wellington, and P.J. Loveland   
1996     Magnetic Susceptibility of Soil: An Evaluation of Conflicting Theories Using a National Data Set.  

In Geophysical Journal International. 127: 728-734. 
 
Dixon, E. James.  
2013     Arrows and Atl Atls:  A Guide to the Archeology of Beringia. United States Department of the 

Interior. Government Printing Office:  
https://permanent.access.gpo.gov/gpo74690/Arrows&AtlAtls508almred.pdf. 

 
Dubeau, Matthew A. 
2012      Late-Holocene Mammal Use in the Salish Sea: A Case Study From the Cherry Point Site (45WH1), 

Northwest Washington.  Unpublished M.A. Thesis, Department of Anthropology, Western 
Washington University, Bellingham. 

 
Easterbrook, Don J. and David A. Rahm 
1970      Landforms of Washington: The Geologic Environment.  Union Printing Company: Western 

Washington State College, Bellingham, WA.  
 

Eidt, R.C. 
1977     Detection and Examination of Anthrosols by Phosphate Analysis.  In Science.  197: 1327-1333.  

    
Erlandson, John M. 
2013      Shell Middens and Other Anthropogenic Soils as Global Stratigraphic Signatures of the       

Anthropocene.  Anthropocene 17(4): 24-32. 
 

Erlandson, Jon M. and M.L. Moss 
1999.    The Systematic Use of Radiocarbon Dating in Archaeological Surveys in Coastal and other 

Erosional Environments.  In American Antiquity. 64: 431-443.  
 

Feder, Kenneth L., Thomas L. Hester, and Harry J. Shafer  
1997     Field Methods in Archaeology.  McGraw Hill Mayfield Publishing Company, New York.  

 
 

https://permanent.access.gpo.gov/gpo74690/Arrows&AtlAtls508almred.pdf


 81   
  

Fedje, D.W., Q. Mackie, E.J. Dixon, T.H. Heaton 
2004      Late Wisconsin Environments and Archaeological Visibility on the Northern Northwest Coast.  In 

Entering America: Northeast Asia and Beringia Before the Last Glacial Maximum.  Ed. D.B. 
Madsen.  The University of Utah Press, Salt Lake City.  Pp 97-138. 

 
Fitzsimmons, Kathryn E., Ulrich Hamback, Daniel Veres, and Radu Iovita 
2013    The Campanian Ignimbrite Eruption: New Data on Volcanic Ash Dispersal and its Potential Impact 

on Human Evolution.  In PLoS One.  Volume 8(6): p. e65839.           
 

Fladmark, Knut R.  
1974      A Paleoecological Model for Northwest Coast Prehistory.  University of Calgary Press, Calgary, 

CA. 
 

Gaston J. and C. Swanson 
1974     45WH55 Western Washington State College Archaeological Filed Forms Site Survey Form. 

 
Goebel, Ted, Michael R. Waters, and Margarita Dikova 
2003      The Archaeology of Ushki Lake, Kamchatka, and the Pleistocene Peopling of the Americas.  In 

Science.  Vol 301, Issue 5632, pp. 501-505. 
 

Goebel, Ted; MR Waters; and DH O’Rourke 
2008      The Late Pleistocene Dispersal of Modern Humans in the Americas.  In Science, 319(5869), 1497-

1502.   
 

Goebel, Ted, Sergei B. Slobodin, and Michael R. Waters 
2010      New Dates from Ushki-1, Kamchatka, Confirm 13,000 cal BP Age for Earlierst    Paleolithic 

Occupation.  In Journal of Archaeological Science.  Volume 37 pp 2640 – 2649. 
 

Goldberg, Paul and Brian F. Byrd 
1999     The Interpretative Potential of Micromorphological Analysis at Prehistoric Shell Midden Sites on 

Camp Pendleton.  In Pacific Coast Archaeological Society Quarterly.  Volume 35(4): 1-24. 
 
Griffin, K.P. 
1984     An Archaeological Investigation of the Lummi River and Adjacent Portions of the Lummi Indian 

Reservation, Whatcom County, Washington.  Western Washington University Department of 
Anthropology.  Reports in Archaeology No. 19.  Bellingham, WA.   

 
Grossman, Tiffany 
2012      Applied Geophysics and Geochemistry to Understand Middle Woodland Site Spatial Organization 

at the Northwood Site, Vigo County, Indiana.  Unpublished Master’s Thesis.  Department of 
Earth and Environmental Systems at Indiana State University.           

 
Gruhn, Ruth. 
1994     The Pacific Coast Route of Initial Entry: An Overview.  In Method and Theory for Investigation the 

Peopling of the Americas.  Robson Bonnichsen and D. Gentry Steele, eds.  Pp. 249 - 256  Oregon 
State University: Corvallis, Oregon. 

 
  



 82   
  

Haggan, N., N. J. Turner, J. Carpenter, J. T. Jones, Q. Mackie, and C. Menzies.  
2006      12,000 years of change: linking traditional and modern ecosystem science in the Pacific 

Northwest. Fisheries Centre, University of British Columbia. Working Paper 2006-02. [online] 
URL: http://www.fisheries.ubc.ca/publications/working/index.php. 

 
Hajda, Yvonne P.  
1991      Reviewed Work: Coast Salish Essays by Wayne Suttles.  In American Ethnologist.  Volume 18 (2): 

390-391.  
             

Ham, Leonard C.  
1982      Seasonality, Shell Midden Layers, and Coast Salish Subsistence Activities at the Crescent Beach 

Site, DgRr1.  Unpublished Ph.D Dissertation, Department of Anthropology, University of British 
Columbia, Vancouver. 

 
Hammon, Dimity 
1986     The Whalen Farm Site: 1985 Excavations at DgRs 14.  In The Midden. 18(3): 3-6. 
   
Hill, Christopher L. and Rip Rapp, George Jr.   
2006     Geoarchaeology: The Earth Science Approach to Archaeological Interpretation: Second Edition.  

Yale University Press, New Haven on London. 
 

Holley, George R., Rinita A. Dalan, and Philip A. Smith 
1993     Investigations in the Cahokia Site Grand Plaza.  In  American Antiquity.  Volume 58(2): 306-319.  

 
Holliday, Vance T.  
2004     Soils in Archaeological Research.  Oxford University Press, New York. 

 
Holliday, Vance T. and William G. Gartner 
2007     Methods of Soil P Analysis in Archaeology.  In Journal of Archaeological Science. 34(2): 301-333.      

 
Huckelberry, Gary 
2006      Sediments. In Archaeology in Practice: A Student Guide to Archaeological Analyses. Jane Balme 

and Alistair Paterson, eds.  Pp. 338-361.  Blackwell Publishing, Oxford, UK. 
 

Huisman, D.J., Oonk, S. and Slomp, C.P. 
2009      Geochemistry as an Aid in Archaeological Prospection and Site Interpretation: Current Issues  

and Research Directions.  Archaeological Prospection. Volume 16, Issue 1: 35-51. 
   

Hutchings, Richard M.  
2004      Mid-Holocene River Development and South-Central Pacific Northwest Coast     Prehistory: 

Geoarchaeology of the Ferndale Site (45-Wh-34), Nooksack River, Washington.  Unpublished 
Master’s Thesis, Department of Anthropology, Western Washington University, Bellingham, WA. 

 
Jakes, Kathryn A.  
2002      Archaeological Chemistry: Materials, Methods, and Meaning.  Developed from a Symposium 

sponsored by the Division of the History of Chemistry at the 22nd National Meeting of the 
American Chemical Society, Chicago, Illinois, August 26-30, 2001.  Oxford University Press: 
Oxford, UK. 

http://www.fisheries.ubc.ca/publications/working/index.php


 83   
  

 
Johnson, S.Y.  
1984      Stratigraphy, Age, and Paleogeography of the Eocene Chuckanut Formation, Northwest 

Washington.  In Canadian Journal of Earth Sciences. 21: 92-106. 
 
Keddie, Grant 
2018      Photograph of a shell midden with a layer of ash.  Image obtained on 7/7/18 from the Royal BC 

Museum website at:    http://learning.royalbcmuseum.bc.ca/pathways/can-you-dig-
it/dgrw141ashlayer-reduced/ 

 
Lambeck, Kurt, Hélène Rouby, Anthony Purcell, Yiying Sun, and Malcolm Sambridge 
2009      Sea Level and Global Ice Volumes from the Last Glacial Maximum to the Holocene. In 

Proceedings of the National Academy of Sciences of the United States, Volume 111 (43): 15296 – 
15303. 

 
Larson, Susan C.  
2015      Recrystallization of Biogenic Aragonite Shells from Archaeological Contexts and Implications for 

Paleoenvironmental Reconstruction.  Unpublished Master’s Thesis, Department of 
Anthropology, Western Washington University, Bellingham, WA. 

 
Le Borgne, E.  
1955      Abnormal Magnetic Susceptibility of the Top Soil. In Annual Geophysics.  11, 399-419.   

 
Leach, Elizabeth. 
1992      On the Definition of Geoarchaeology.  In Geoarchaeology: An International Journal.  Volume 

7(5): 405-417.    
 

Lewis, Ian R.  
2013      Chasing Clusters: Analysis of Activity Areas to Determine Site Type at the Locarno    Beach Phase 

(3500 – 2400 BP) site 45WH55, Chuckanut Bay, Washington.  Unpublished Master’s Thesis, 
Department of Anthropology, Western Washington University, Bellingham, WA. 

 
Leposfsky, Dana; Ken Lertzman, Douglas Hallett, and Rolf Mathewes.  
2005     Climate and Culture Change on the Southern Coast of British Columbia 2400 – 1200 Cal. B.P.: An 

Hypothesis.  In Society for American Archaeology.  Volume 70(2): 267-293.   
 

Limbrey, Susan.  
1975     Studies in Archaeological Science.  Academic Press: New York and London. 

 
Lombardo U, Katherine Szabo, Jose’ M. Capriles, Jan-Hendrik May, Wulf Amelung, Rainer Hutterer, Eva 
Lehndorff, Anna Plotzki, Heinz Veit 
2013      Early and Middle Holocene Hunter-Gatherer Occupations in Western Amazonia: The Hidden Shell 

Middens.  From https://doi.org/10.1371/journal.pone.0072746.  
 

Lowe, Kelsey M., James Shulmeister, Joshua M. Feinberg, Tiina Manne, Lynley A. Wallis, and Kevin Walsh 
2016      Using Soil Magnetic Properties to Determine the Onset of Pleistocene Human Settlement at 

Gledswood Shelter 1, Northern Australia.  In Geoarchaeology. Volume 31(3): 211-228. 
 

https://doi.org/10.1371/journal.pone.0072746


 84   
  

Madrigal, Lorena 
1998     Statistics for Anthropology.  New York: Cambridge University Press.  
 
Marwick, Ben.  
2005     Element Concentrations and Magnetic Susceptibility of Anthrosols: Indicators of Prehistoric 

Human Occupation in the inland Pilbara, Western Australia.  In Journal of Archaeological 
Science.  Volume 32: 1357-1368.           

 
Mather, Camille A.  
2009      Locarno Beach period (3500-4200 BP): Settlement and Substisence in the Gulf of Georgia Region: 

A Case Study from Site 45-SK-46, Deception Pass, Washington.  Unpublished Master’s Thesis, 
Department of Anthropology, Western Washington University, Bellingham, WA.  

 
Matson, R.G and Coupland, Gary 
1995     The Prehistory of the Northwest Coast.  Academic Press: San Diego. 

 
Matson, R.G 
2003      Introduction: The Northwest Coast in Perspective.  In Emerging from the Mists.  Gary Coupland, 

Quentin Mackie and R.G. Matson, eds.  Pp. 1-12.  Vancouver and Toronto: UBC Press. 
 

Matson, R.G. and Pratt, H.  
2010     The Crescent Beach Site and the Place of the Locarno Beach Phase. Laboratory of Archaeology, 

Department of Anthropology and Sociology: University of British Columbia. 
 

McClean, Richard G. and W.F. Kean 
1993     Contributions of Wood Ash Magnetism to Archaeomagnetic Properties of Fire Pits and Hearths.  

In Earth and Planetary Science Letters.  Volume 119(3): 387-394.  
 

McPhail, R.I., G. Cruise, R. Engelmark, J. Linderholm 
              2000      Integrating Soil Micromorphology and Rapid Chemical Survey Methods: New Developments 

               in Reconstructing Past Rural Settlement and Landscape Organization.  Edited by S. Roskams, in 
Interpreting Stratigraphy: Site Evaluation,Recording Procedures and Stratigraphic Analysis. BAR 
International Series 910, 2000, pp. 71e80 (Oxford, UK).    

 
Meltzer, David J.  
2013      First Peoples in a New World: Colonizing Ice Age America.  Berkely and Los Angeles: University of 

California Press. 
 
Middleton, William D. and T. Douglas Price 
1996     Identification of Activity Areas by Multi-element Characterization of Sediments from Modern 

and Archaeological House Floors Using Inductively Coupled Plasma-Atomic Emission 
Spectroscopy.  In Journal of Archaeological Science.  Volume 23: 673-687.       

 
Moss, Madonna 

 
1984      Phosphate Analysis of Archaeological Sites, Admiralty Island, Southeast Alaska.  Syesis 17: 95-

100. 
 



 85   
  

1995      Reflections on North American Coast Prehistory.  Journal of World Prehistory. Volume 9(1): 1-
45.  

 
1998      Northern Northwest Coast Regional Overview.  Arctic Anthropology. Volume 35(1): 88-111. 

 
2011      Northwest Coast: Archaeology as Deep History.  Washington, D.C.:  The Society for American 

Archaeology. 
 

Muckle, Robert James 
1985      Archaeological Considerations of Bivalve Shell Taphonomy.  Master’s Thesis, Department of 

Archaeology: Simon Fraser University.  
 

Peterman, Dana Lee 
2008     Geoarchaeology and the Hydrometer at the Bequette-Ribault Site, Ste. Genevieve, Missouri.  In 

Technical Briefs in Historical Archaeology. Volume 3: 8-14.  
 

Pierce, S.D. 
2011      Bivalve Growth-Stages as a Measure of Harvesting Intensity: Applications on the Southern 

Northwest Coast.  Unpublished Master’s Thesis, Department of Anthropology, Western 
Washington University, Bellingham, WA. 

 
Pizarro, Carmen; Mauricio Escudey; Manuel Gacitua; and Jose Domingos Fabris 
2017     Iron-Bearing Minerals from Soils Developing on Volcanic Materials from Southern Chile.  

Mineralogical Characterization supported by Mössbauer Spectroscopy.  In Journal of Soil Science 
and Plant Nutrition.  Volume 17(2):  http://dx.doi.org/10.4067/S0718-95162017005000026.  

 
Pobiner, Briana L. and David R. Braun 
2005     Applying Actualism: Considerations for Future Research.  In Journal of Taphonomy.  Volume 3(2): 

57-65.  Anthropology Department, Rutgers University: New Brunswick, NJ.  
 

Rosendahl, Daniel, Kelsey M. Lowe, Lynley A. Wallis, Sean Ulm 
2014      Integrating Geoarchaeology and Magnetic Susceptibility at Three Shell Mounds: A Pilot Study 

from Mornington Island, Gulf of Carpentaria, Australia. In Journal of Archaeological Science.  
DOI: 10.1016/j.jas.2014.04.017      

 
Shaw, Jennie D.  
2017     RE: Woodstock Farm Site (45WH55) Charcoal Selection for Radiometric Analysis; SALIX 16-10.  

Request for Services. 
 

Skinner, S.M.   
1986     Phosphorous as an Anthrosol Indicator.  In Midcontinental Journal of Archaeology, 11(51-78). 

 
Smith, C. Ken and Deborah A. McGrath 

    2011    The Alteration of Soil Chemistry through Shell Deposition on a Georgia (U.S.A.) Barrier Island. In    
Journal of Coastal Research.  Volume 27(1), pp. 103 – 109.       

 
    
 

http://dx.doi.org/10.4067/S0718-95162017005000026


 86   
  

Sobel, Elizabeth A.   
   2012     An Archaeological Test of the “Exchange Expansion Model” of Contact Era Change on the   

Northwest Coast.  Journal of Anthropological Archaeology 31:1-21. 
 
   Stein, Julie K. (editor) 
   1992 Deciphering a Shell Midden.  Academic Press, San Diego.  
 

Stein, Julie K. 
 

   1982      Geological Analysis of the Green River Shell Middens.  In Southeastern Archaeology.  Volume. 
1(1), pp 22-39. 

 
   1992      Deciphering a Shell Midden.  Academic Press.  
   
   2008     Geoarchaeology and Archaeostratigraphy: View from a Northwest Coast Shell Midden. In Case    

Studies in Environmental Archaeology.  Elizabeth J. Reitz, Lee A. Newsom, and Sylvia J. Scudder.  
35-52.  Plenum Press: New York and London. 

        
   Stein, Julie K. and W.R. Farrand 

              2001      Sediments in Archaeological Context.  Salt Lake City: University of Utah. 
 

Sterling, Sarah, Donald Tatum, and Dennis Lewarch  
   2008      Shoreline Changes Along the Coast of Port Angeles Harbor: Archaeological and 

Geomorphological Data from Tse-whit-zen (45CA523).  Paper presentation for the 2008 Society 
of American Archaeology Meetings: Vancouver, BC. 

 
Steward, Hillary 
1977      Indian Fishing: Early Methods on the Northwest Coast.  University of Washington Press, Seattle.   

     
  Suttles, Wayne. 

 
   1951      The Economic Life of the Coast Salish of Haro and Rosario Straits.  Unpublished Ph.D. 

Dissertation, Department of Anthropology, University of Washington, Seattle, Washington. 
 
   1987     Coast Salish Essays.  University of Washington Press: Seattle, Washington.   
  
   1990      Handbook of North American Indians.  Volume 7: Northwest Coast.  Washington:  Smithsonian     

Institute. 
 

Tabor, Roland W.; Ralph H. Haugerd, Edwin H. Brown, R. Scott Babcock, and Robert B. Miller.   
    1989     Spokane to Seattle, Washington: July 21 – 29, 1989.  Field Trip Guidebook T307.  American  

Geophysical Union:: Washington, D.C.     
 

Tackney, Justin C., Ben A. Potter, Jennifer Raff, Michael Powers, W. Scott Watkins, Dereek Warner,     
Joshua D. Reuther, Joel D. Irish, and Dennis H. O’Rourke  
2015     Two Contemporaneous Mitogenomes from Terminal Pleistocene Burials in Eastern Beringia.  

Published in PNAS, Volume 112 no. 45 pp 13833-13838. 
 



 87   
  

Taylor, Amanda K., Julie K Stein, and Stephanie A.D. Jolivette 
    2011      Big Sites, Small Sites, and Coastal Settlement Patterns in the San Juan Islands, Washington, USA. 

In The Journal of Island and Coastal Archaeology, 6:2, 287-313. 
 

Trant, Andrew J., Wiebe Nijland, Kira M. Hoffman, Darcy L. Mathews, Duncan McLaren, Trisalyn A. 
Nelson and Brian M. Starzomski 

    2016      Intertidal Resource Use Over Millennia Enhances Forest Productivity.  In Nature 
Communications.    7(12491).  DOI: 10.1038/ncomms12491        

 
Trigger, Bruce G. 
 
1988      Archaeology’s Relations with the Physical and Biological Sciences: A Historical Review. In 

Proceedings of the 26th International Archaeometry Symposium, eds Farquhar, R.M., Hancock, 
R.G.V. and Pavlish, L.A., University of Toronto, Toronto: 1-9. 

   
     1989      A History of Archaeological Thought. 1st Edition. New York: Cambridge University Press. 

 
Ullrich, Johanna 

  2018     Archaeological Phosphate Analysis Consultancy: 
http://www.archaeologicalphosphates.com/index.html 

 
United States Department of Agriculture 

    1992     Soil Survey of Whatcom County Area, Washington: Soil Conservation Service, USDA. 
 
Vallapragada, Venkata Vivekanand, Gopichand Inti, and J. Sri Ramulu 

    2011     A Validated Inductively Coupled Plasma-Optical Emissions Spectrometry (ICP-OES) Method to 
Estimate Free Calscium and Phosphorous in In Vitro Phosphate Binding Study of Eliphos Tablets.  
In American Journal of Analytical Chemistry. 2(718-725). 

 
   Vila, A.; J. Estévez; E. Piana; M. Madella; J.A. Barceló; D. Zurro; I. Clemente; X. Terradas; E. Verdún; R. 

Pique; L. Mameli; and I. Briz.  
   2009      Microstratigraphy of Shell Middens of Tierra del Fuego.  Unpublished paper presented to the 

UISPP Meeting in Lisbon, Portugal.  Departament d’ Arqueologia I Antropologia: Barcelona.   
 
Wallace, Christina 

    2017     Architecture of the Salish Sea Tribes of the Pacific Northwest: Shed Roof Plank Houses.  A Project 
for the James Marston Fitch Charitable Trust.  Accessed on 7/14/18 at: 
http://fitchfoundation.org/wp-content/uploads/2017/05/FITCH_Christina-
Wallace_final_web.pdf.        

 
Waters, M.R. 
1992     Principles of Geoarchaeology: A North American Perspective.  Tucson: University of   Arizona    

Press. 
 

Whittaker, F.H. and J.K. Stein 
    1992     Shell Midden Boundaries in Relation to Past and Present Shorelines.  In Deciphering a Shell 

Midden ed. by J.K. Stein.  25-42. San Diego: Academic Press, Inc.   
 

http://fitchfoundation.org/wp-content/uploads/2017/05/FITCH_Christina-Wallace_final_web.pdf
http://fitchfoundation.org/wp-content/uploads/2017/05/FITCH_Christina-Wallace_final_web.pdf


 88   
  

Williams, Louise Eileen.  
    2013     Revising the Locarno Beach Site (DhRt-6), Vancouver, BC.  Unpublished Master’s Thesis, 

Department of Archaeology, Simon Fraser University, Burnaby, BC, Canada.     
 

 

 

 

   

    

 

       

 

  



 89   
  

Appendix A: 45WH55 Site Form (Modified from Dr.’s Gaston and Swanson original 
form) 
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Appendix B: Archaeological Excavation Permits for 45WH55 
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Appendix C: Measured Profile Drawing of Beach Bank Shell Midden at 45WH55 
(Campbell 2010) 
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Appendix D: Standardized Descriptions of all Matrix Samples 
 

Bag 
Number 

Distance from 
ground-level 

(cm) 

Dimensions 
(Length X 

Width in cm) 
and Contents 

Continuity 
and 

Boundaries 

Munsell 
Color 

Photograph of 
Sample 

ASH LENS DESCRIPTIONS 

1   140 cm to 130 cm 40-50 cm X 3-
10 cm 

UPPER: 
Charcoal #11 
and Shell #31 

10YR/6/3: 
Pale 
brown. 

 

 

Fine roots, shell 
fragments, and 
pebbles.  

LOWER: Shell 
#32 and Shell 
#33 

2  130 cm to 123 cm 
 

80 cm X 2-7 cm UPPER: Shell  
#32 and #33 

10YR/5/2: 
Grayish 
brown. 

 

 

Fine roots, shell 
fragments, and 
pebbles.   

LOWER:  
Charcoal #12 
and Shell #34  

3  95 cm to 85 cm 
 
 

50 cm X 3-10 
cm 

UPPER: 
Charcoal #13 

10YR/5/2: 
Grayish 
brown. 

 

Fine roots, shell 
fragments, 
pebbles, and 
charcoal. 

LOWER: 
Charcoal #14 

4  70 cm to 64 cm 
 
 

65 cm X 2-6 cm UPPER: Shell 
#37 

10YR/7/2: 
Light gray. 

 

Fine roots, shell 
fragments, 
sandy ash, and 
fine ash. 

LOWER:  Ash 
#s 5A and 5B 

5A  67 cm to 63 cm 
 

22 cm X 1-4 cm UPPER:  Ash 
#4 

10YR/5/1: 
Gray. 

SAMPLE NOT 
SELECTED 

Fine roots, shell 
fragments, and 
shell with ash.  

LOWER: Shell 
#47 and Shell 
#5B 

5B 65 cm to 61 cm 
 

57 cm X 1-4 cm UPPER: Ash 
#4 and Shell 
#35 

10YR/6/2: 
Light 
brownish 
gray. 

SAMPLE NOT 
SELECTED 

Fine roots, 
burnt shell, no 
pebbles, and 
ash. 

LOWER: Ash 
# 6A 

6A   65 cm to 48 cm 
 

180 cm X 2-8 
cm 

UPPER: Shell 
#47  and Ash 
#5B 

10YR/5/2: 
Grayish 
brown. 

 

Burnt shell and 
no pebbles.  
Ash #6B is a 

LOWER: 
Charcoal 
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lens within Ash 
#6A. 

#15A and 
Shell #47 

 
6B 58 cm to 50 cm 

 
 

180 cm X 2-8 
cm 

UPPER: Ash 
#5B and Ash 
#6A  

10YR/8/1: 
White. 
10YR/5/2: 
Grayish 
brown. 

SAMPLE NOT 
SELECTED 

Fine ash, 
pebbles and 
tiny broken 
shell fragments.  
Ash #6B is a 
lens within Ash 
#6A. 

LOWER: 
Charcoal 
#15A  

7 10 cm to 1 cm (0 cm = 
ground level) 

 
 

49 cm X 2-8 cm UPPER: Shell 
#46 

10YR/4/4: 
Dark 
yellow 
brown.  

 

Concrete-like, 
fine ash, and 
tiny shell 
fragments. 

LOWER: Shell 
#46 

8 -8 cm to - 12 cm  
 
 

27 cm X 1-4 cm UPPER: 
Charcoal #25 

10YR 4/3: 
Brown 

 

Wet, sandy, 
some tiny shell 
fragments, and 
burnt 
sandstone. 

LOWER: Sand 
Sample 

SAND SAMPLE DESCRIPTION 

SS (Sand 
Sample) 

-10 cm to – 22 cm  
 

NOT RECORDED UPPER:  Ash 
#8 

10YR/5/6: 
Yellowish 
brown.  

 

Unburnt shell 
fragments and 
sand. 

Charcoal #27 

CHARCOAL LENS DESCRIPTIONS 

11 140 cm - 138.5 cm 
 
 

4 cm X 1.5 cm  UPPER: Shell 
#31 

10YR/2/2: 
Very dark 
brown. 

 

Burnt wood and 
small twigs. 

LOWER: Ash 
#1 and Shell 
#33 

12  123 cm – 121.5 cm 
 
 

30 cm X 1.5 cm UPPER: Ash 
#2 

10YR/3/1: 
Very dark 
gray. 

 

Large pieces of 
broken shell 
fragments. 

LOWER: Shell 
#34 

13  95 cm  – 92 cm 
 

52 cm X 1-3 cm  UPPER: Shell 
#34 and FCR   

10YR/2/1: 
Black. 
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 Fire cracked 
rock (FCR) and 
tiny shells. 

LOWER: Ash 
#3 

 
14 90 cm to 89 cm 

 
 

35 cm X 1 cm UPPER: Ash 
#3 

10YR/4/1: 
Dark gray. 

 

3 sections 
containing very 
fine charcoal 
and tiny broken 
shell fragments. 

LOWER: Shell 
#35 

15 58 cm to 56 cm 
 
 

100 cm X 1.5 
cm  - 2 cm 

UPPER: Ash 
#6A 

SAMPLE NOT SELECTED 

Two sections 
separated by 
ash sample 6B:  
wet and tiny 
pieces of shell. 

LOWER: Shell 
#38 

15A 56 cm  to 52 cm 25 cm X 5 cm UPPER:  Ash 
#6A 

SAMPLE NOT SELECTED 

Large whole 
and broken 
shell fragments. 

LOWER: Shell 
#38 

16 45 cm to 42 cm  57 cm X 1-3 cm  UPPER: Shell 
#38A 

SAMPLE NOT SELECTED 

Large whole 
and broken 
shell fragments. 

LOWER: Shell 
#38A 

17 42 cm to  35 cm   105 cm X 2 cm  UPPER: Shell 
#38 and #38B  

SAMPLE NOT SELECTED 

Very fine 
charcoal mixed 
with tiny shell 
fragments.   

LOWER: Shell 
#40 and 40A 

17A 43 cm to 38 cm  48 cm X 1-5 cm  UPPER: Shell 
#38A 

10YR/2/1:  
Black. 

 

Very fine 
charcoal mixed 
with small shell 
fragment and 
burnt wood. 

LOWER: Shell 
#40A 

17B 36 to 35 cm  26 cm X 1 cm  UPPER: Shell 
#38B  

SAMPLE NOT SELECTED 
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Very fine 
charcoal mixed 
with tiny shell 
fragments.  The 
lens is broken 
into small 
sections to 
merge with 
charcoal layer 
17. 

LOWER: Shell 
#38B 

17C 33 cm to 30 cm 56 cm X 1 cm   UPPER: Shell 
#38B  

SAMPLE NOT SELECTED 

Very fine 
charcoal mixed 
with tiny shell 
fragments.  
Lens is 
segmented but 
appears to 
connect to 
charcoal layer 
17D. 

LOWER: Shell 
#40A 

17D 38 cm to 37 cm 17 cm X 1 cm  UPPER: Shell 
#38A 

SAMPLE NOT SELECTED 

Fine charcoal 
mixed with tiny 
shell fragments 
and darker soil.  
Lens is 
segmented but 
appears to 
connect to 
charcoal layer 
17C. 

LOWER: Shell 
#40D 

17E 42 cm to 38 cm 16 cm X 1.5 cm-
2 cm  

UPPER:  Shell 
#38B 

SAMPLE NOT SELECTED 

Fine charcoal 
mixed with tiny 
shell fragments.  
The lens is 
continuous and 
the southern 
end merges 
with charcoal 
layer 17. 

LOWER: Shell 
#38B  
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18 25 cm to 20 cm 105 cm X 1 cm 
– 2 cm  

UPPER: Shell 
#40A 

SAMPLE NOT SELECTED 

Fine charcoal 
mixed with tiny 
shell fragments, 
but no shell.  
The lens is 
continuous with 
a possible 
margin with 
charcoal layer 
18A. 

LOWER: Shell 
#40B 

18A 25 cm to 24 cm 50 cm X 1 cm  UPPER:  Shell 
#40  

SAMPLE NOT SELECTED 

Fine charcoal 
mixed with 
larger pieces of 
charcoal.  Lens 
is segmented 
and possibly 
merges with 
charcoal layer 
18. 

LOWER: Shell 
#40 

19 22 cm to 18 cm 46 cm X 1.5 cm  UPPER: Shell 
#40B 

10YR/3/1: 
Very dark 
gray.  

 

Fine charcoal 
with small shell 
fragments.  
Lens is 
continuous 
between shell 
layers  

LOWER:  Shell 
#40B 

19A 25 cm to 18 cm 35 cm X 1 cm  UPPER: Shell 
#40 

SAMPLE NOT SELECTED 

Fine charcoal 
with tiny shell 
fragments.  
Lens is 
segmented and 
between shell 
layers.   

LOWER: Shell 
#40 

20 38 cm to 32 cm  20 cm X 1 cm  UPPER: Shell 
#39 

SAMPLE NOT SELECTED 

Tiny pieces of 
shell fragments 
and larger 
charcoal pieces.  
A continuous 
lens between 

LOWER: Shell 
# 44 
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shell layers with 
large shells. 

21 24 cm to 22 cm 32 cm X 1 cm  UPPER: Shell 
# 39 

SAMPLE NOT SELECTED 

Fine charcoal 
mixed with 
pieces of 
charcoal.  Small 
shell fragments. 
Lens is 
continuous 
between shell 
layers.  

LOWER: Shell 
# 45 

22 32 cm to 30 cm   17 cm X 1.5 cm  UPPER: Shell 
# 40D 

SAMPLE NOT SELECTED 

Fine charcoal 
mixed with tiny 
shell fragments.  
Lens is 
continuous 
between shell 
layers.  

LOWER: Shell 
# 40A 

22A 31 cm to 30 cm   18 cm X 1 cm  UPPER: Shell 
# 40D 

SAMPLE NOT SELECTED 

Fine charcoal 
mixed with tiny 
shell fragments.  
Lens is broken 
into two 
sections and 
may be an 
extension of 
charcoal layer 
22.  Lens is 
between shell 
layers.  

LOWER: Shell 
# 40A 

23 15 cm to 12 cm   62 cm X 1 – 4 
cm  

UPPER: Shell 
# 45 

SAMPLE NOT SELECTED 

Fine charcoal 
(wet) mixed 
with tiny shell 
fragments. Lens 
is continuous 
between shell 
layers.  

LOWER: Shell 
# 43 

23A 16 cm to 12 cm  Fine charcoal 
with large and 
small shell 
fragments.  

UPPER: Shell 
#40C 

10YR/3/1: 
Very dark 
gray.  

 

LOWER:  Shell 
#42 
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23B 16 cm to 12 cm 28  cm X 1.5 – 2 
cm  

UPPER: Shell 
#41 

SAMPLE NOT SELECTED 

Very fine 
charcoal 
(slightly wet).  
Dust-like shell 
fragments, and 
pieces of sparse 
shell.   

LOWER:  Shell 
#42 

23C 15 cm to to 8 cm 129 cm X 1-2 
cm 

UPPER: Shell 
#42 

SAMPLE NOT SELECTED 

Fine charcoal 
(slightly damp).  
Tiny shell 
fragments and 
clay-like in the 
middle section. 

LOWER: Shell 
#46 

23D 15 cm to 13.5 cm  17 cm X 1.5 cm UPPER:  Shell 
#46 

SAMPLE NOT SELECTED 

Very fine 
charcoal mixed 
with tiny shell 
fragments and 
dark soil.  Lens 
is segmented 
between shell 
layers.  

LOWER: Shell 
#40B 

23E 13 cm to 10 cm 28 cm X 2 cm UPPER:  Shell 
#43 

SAMPLE NOT SELECTED 

Fine charcoal 
with large and 
small shell 
fragments.  
Lens is 
continuous 
between shell 
layers. 

LOWER: Shell 
#46 

24 10 cm to 6 cm  20 cm X 1.5 cm  UPPER: Shell 
#46 

SAMPLE NOT SELECTED 

Fine charcoal 
with bigger 
pieces of 
charcoal.  
Intermittent 
tiny shell 
fragments. 

LOWER: Shell 
#46 

25 - 8 cm to -  12 cm 70 cm X 3-4 cm  UPPER: Shell 
#46 

SAMPLE NOT SELECTED 

Fine charcoal 
(wet) with tiny 
mussel shell 
fragments.  

LOWER: Ash 
#8 and Sand 
Sample 
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Lens is 
continuous 
between 
ash/sand and 
shell layers.  

26 - 10 cm to – 20 cm 65 cm to 2 – 4 
cm 

UPPER:  Shell 
#46  

10YR/5/1: 
Light gray.  

 

Fine charcoal 
mixed with 
small mussel 
shells.  Lens is 
slightly damp. 

LOWER: Ash 
#8 and Sand 
Sample 

27 - 15 cm to – 22 cm 130 cm X 2-5 
cm  

UPPER:  Sand 
Sample 

10YR/2/2: 
Very dark 
brown.  

 

Huge FCRs 
cross into this 
charcoal lens.  
Fine charcoal 
(slightly damp) 
mixed with tiny 
shell fragments. 
Less 
concentrated 
shall fragments 
than the other 
charcoal lenses. 

LOWER: Not 
excavated 

SHELL LENS DESCRIPTIONS 

Bag 
Number 

Distance from ground 
level (cm) 

Matrix and 
Shell 

Orientation 

Continuity 
and 

Boundaries 

Photography of Sample 

31 145 cm to 130 cm  Sandy matrix 
with whole and 
broken shell.   

UPPER:  
Ground level. 

SAMPLE NOT SELECTED 

Shells are 
nested with 
ventral side up. 

LOWER:  
Charcoal #11 
and Ash #1.  

32 138 cm to 125 cm Sandy matrix 
with whole and 
broken shell.   

UPPER:  Ash 
#1 

SAMPLE NOT SELECTED 

Shells are 
nested with 
ventral side up. 

LOWER: Ash 
#2 

33 142 cm to 132 cm Sandy matrix 
with whole and 
broken shell.   

UPPER:  Ash 
#1 and Shell 
#31 

SAMPLE NOT SELECTED 

Shells are 
nested with 
ventral side up. 

LOWER:  Ash 
#2 
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34 122 cm to 93 cm  Very little soil 
and ash matrix 
with whole and 
large burnt 
shell fragments, 
some charcoal, 
small pebbles, 
and fire-
modified rock 
(FRM).   

UPPER:  
Charcoal #12 
and Ash #2   

10YR/8/1 
and 7/1: 
White and 
light gray. 

 

Shells are 
nested with 
ventral side up. 

LOWER:  Shell 
#34 and Shell 
#35 

35 93 cm  to 70 cm Fine sand and 
charcoal (more 
than #34) with 
an ash matrix.  

UPPER: 
Charcoal #14 
and Shell #34 

10YR/7/1: 
Light gray. 

 
Whole shell and 
large 
fragments. 
nested with 
ventral side up.    

LOWER: Shell 
#36 and Shell 
#37 

36 70 cm – 55 cm Fine sand and 
charcoal with 
an ash matrix. 
Smaller shell 
fragments 
compared to 
Shell #35.  FMR 
present.   

UPPER: Shell 
#35. 

10YR/7/1: 
Light gray. 

 

Horizontal and 
vertical stacking 
of shells at 
different 
angles. 

LOWER:  Ash 
#6A and Ash 
#17   

37 70 cm – 55 cm  Fine sand and 
charcoal (more 
than #34) with 
an ash matrix.  

UPPER:  Shell 
#34 

SAMPLE NOT SELECTED 

Whole shell and 
large 
fragments. 
nested with 
ventral side up.    

LOWER: Ash 
#4 

38 57 cm to 40 cm Fine sand and 
charcoal with 
an ash matrix. 
Large whole 
shells near the 
top of lense, 

UPPER:  
Charcoal #15 

10YR/7/2: 
Light gray.  
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and smaller 
crushed shells 
in bottom part 
of lense.   

Shells nested 
with ventral 
side up. 

LOWER:  
Charcoal #17 

38A 57 cm to 43 cm  Fine sand and 
charcoal with 
an ash matrix.  
Large whole 
shells with 
charcoal 
pockets.   

UPPER:  
Ground level 
and Ash #6A 

SAMPLE NOT SELECTED 

Shells are 
nested and 
ventral side up. 

LOWER:  Shell 
#38A 

38B 46 cm to 37 cm  Fine sand and 
charcoal with 
an ash matrix.  
Smaller and 
friable shell 
fragments with 
native oyster.   

UPPER:  Ash 
#16 

SAMPLE NOT SELECTED 

Small and 
mostly 
horizontal 
stacking. 

LOWER:  Ash 
#17E   

39 50 cm to 42 cm  Fine sand and 
charcoal with 
an ash matrix.  
Large whole 
and crushed 
shell with FCR 
and small 
pieces of 
charcoal. 

UPPER:  Shell 
#36 

SAMPLE NOT SELECTED 

Large, dense, 
nested shells 
with majority 
ventral side up. 

LOWER:  
Charcoal #20 

40 30 cm to 15 cm A cemented 
matrix with 
large whole and 
crushed shell 
with FCR and 
small pieces of 
charcoal.  

UPPER:  
Charcoal #17 

10YR/6/1: 
Gray.  
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Large, dense, 
nested shells 
with majority 
ventral side up. 

LOWER:  
Charcoal #23 

40A 40 cm to 24 cm  Smaller shell 
fragments with 
pebbles in a 
compacted 
matrix.   

UPPER:  
Charcoal #17 
and #17C     

10YR/7/1: 
Light gray. 

 Smaller shells 
than #39, with 
majority 
stacked 
horizontally. 

LOWER:  
Charcoal #18 

40B 28 cm to 22 cm  Smaller shell 
fragments with 
pebbles in a 
compacted 
matrix.   

UPPER:  
Charcoal #18 

SAMPLE NOT SELECTED 

Smaller shells 
than #40A, with 
majority 
stacked 
horizontally. 

LOWER:  
Charcoal #19 

40C 21 cm to 17 cm Smaller shell 
fragments with 
pebbles in a 
compacted 
matrix.   

UPPER:  
Charcoal #19 

10YR/6/1: 
Gray. 

 
Smaller shells 
than #40B, with 
majority 
stacked 
horizontally. 

LOWER:  
Charcoal 
#23A 

40D 33 cm to 28 cm Compacted and 
cemented 
similar to #40 
(but softer). 

UPPER:  
Charcoal 
#17D 

SAMPLE NOT SELECTED 

Smaller shells 
than #40, with 
majority 
stacked 
horizontally. 

LOWER:  
Charcoal #22 

41 15 cm to 12 cm  Smaller shell 
fragments with 
pebbles in a 
compacted 
matrix.   

UPPER:  
Charcoal 
#23A 

SAMPLE NOT SELECTED 
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Smaller shells 
than #40B, with 
majority 
stacked 
horizontally. 

LOWER:  
Charcoal 
#23B 

42 15 cm to 8 cm Smaller shell 
fragments than 
#41 in a 
compact, ashy, 
and fine sand 
matrix. 

UPPER:  
Charcoal #23, 
#23A, and 
#23D 

SAMPLE NOT SELECTED 

Smaller shells 
than #41, with 
no clear 
orientation.  

LOWER:   
Charcoal 
#23C  

43 14 cm to 10 cm  Medium-sized 
fragmented 
shell in very 
little matrix 
(but sandy). 

UPPER:  
Charcoal #23 

SAMPLE NOT SELECTED 

Medium shell 
fragments with 
a horizontal 
orientation.  

LOWER:  
Charcoal 
#23E,  #24, 
Shell #46  

44 38 cm to 24 cm Fine sand and 
charcoal with 
an ash matrix.  
Large whole 
and crushed 
shell with some 
mussel, and 
small pieces of 
charcoal. 

UPPER:  
Charcoal #44 
and Shell #39 

SAMPLE NOT SELECTED 

Large, dense, 
nested shells 
with majority 
ventral side up. 

LOWER:  
Charcoal #21 
and Shell #45 

45 20 cm to 13 cm  Fine sand and 
charcoal with a 
compact ash 
matrix.  Large 
whole and 
crushed shell 
with some 
mussel, and 
small pieces of 
charcoal. 

UPPER:  
Charcoal #21 
and Shell #44 

SAMPLE NOT SELECTED 

Less whole 
shell, and 
nested and 
horizontal shell 
similar to #39. 

LOWER:  
Charcoal #23 
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46 10 cm to -10 cm  Large whole 
fragments and 
large whole 
shell.  Pockets 
of mussel, 
charcoal, and 
FCR.  The shells 
are more 
loosely packed 
on the north 
end than the 
south end.    

UPPER:  
Charcoal 
#23C,, #23E 
and #24   

10YR/5/1: 
Gray. 

 

Nested with 
some paired 
valves. 

LOWER:  
Charcoal #25 
and #26 

47 65 cm to 70 cm  Small shell 
fragments and 
pebbles with 
small pieces of 
charcoal in a 
compact 
matrix.  

UPPER:  Ash 
5A and 5B 

SAMPLE NOT SELECTED 

Shell fragments 
lie horizontally. 

LOWER:  Ash 
6A 
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Appendix E: Original Beach Bank Shell Midden Sketch (Modified from Campbel 2010 
by Pratschner 2017) 
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Appendix F: Salix Archaeological Services Report 
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Appendix G: DirectAMS Radiocarbon Dating Services Results 
 

 



 123   
  

Appendix H: Grain Size Analysis 
 

 

ASH SUB-SAMPLES 

BAG 1: 50 ml sub-sample size                                                                                  

Sieve 

Size 

(Tyler) 

Opening in 

Millimeters 

(mm) 

Gravel Size  Mass of Sample 

Retained in 

Milliliters (ml) 

Percentage 

8 2.36 Pebbles/Gravels/Coarse 

Sand 

17.78 35.56% 

40 0.425 Medium Sand 18.75 37.50% 

200 .0029 Fine Sand 9.89 19.78% 

270 .0021 Silt / Clay 3.20 6.40% 

BAG 2: 50 ml sub-sample size                                                                                  

Sieve 

Size 

(Tyler) 

Opening in 

Millimeters 

(mm) 

Gravel Size  Mass of Sample 

Retained in 

Milliliters (ml) 

Percentage 

8 2.36 Pebbles/Gravels/Coarse 

Sand 

18.17 36.34% 

40 0.425 Medium Sand 16.58 33.16% 

200 .0029 Fine Sand 9.01 18.02% 

270 .0021 Silt / Clay 5.05 10.10% 

BAG 3: 50 ml sub-sample size                                                                                  

Sieve 

Size 

(Tyler) 

Opening in 

Millimeters 

(mm) 

Gravel Size  Mass of Sample 

Retained in 

Milliliters (ml) 

Percentage 

8 2.36 Pebbles/Gravels/Coarse 

Sand 

14.52 29.04% 

40 0.425 Medium Sand 15.23 30.46% 

200 .0029 Fine Sand 11.58 23.16% 

270 .0021 Silt / Clay 7.96 15.92% 

BAG 4: 50 ml sub-sample size                                                                                  
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Sieve 

Size 

(Tyler) 

Opening in 

Millimeters 

(mm) 

Gravel Size  Mass of Sample 

Retained in 

Milliliters (ml) 

Percentage 

8 2.36 Pebbles/Gravels/Coarse 

Sand 

17.22 34.44% 

40 0.425 Medium Sand 15.83 31.66% 

200 .0029 Fine Sand 13.87 27.74% 

270 .0021 Silt / Clay 2.50 5.00% 

BAG 6A: 50 ml sub-sample size                                                                                  

Sieve 

Size 

(Tyler) 

Opening in 

Millimeters 

(mm) 

Gravel Size  Mass of Sample 

Retained in 

Milliliters (ml) 

Percentage 

8 2.36 Pebbles/Gravels/Coarse 

Sand 

17.58 35.16% 

40 0.425 Medium Sand 10.85 21.7% 

200 .0029 Fine Sand 7.02 14.04% 

270 .0021 Silt / Clay 3.32 6.64% 

BAG 7: 50 ml sub-sample size                                                                                  

Sieve 

Size 

(Tyler) 

Opening in 

Millimeters 

(mm) 

Gravel Size  Mass of Sample 

Retained in 

Milliliters (ml) 

Percentage 

8 2.36 Pebbles/Gravels/Coarse 

Sand 

16.66 33.32% 

40 0.425 Medium Sand 19.21 38.42% 

200 .0029 Fine Sand 13.16 26.32% 

270 .0021 Silt / Clay 3.50 7.00% 

BAG 8: 50 ml sub-sample size                                                                                  

Sieve 

Size 

(Tyler) 

Opening in 

Millimeters 

(mm) 

Gravel Size  Mass of Sample 

Retained in 

Milliliters (ml) 

Percentage 

8 2.36 Pebbles/Gravels/Coarse 

Sand 

7.99 15.98% 

40 0.425 Medium Sand 11.76 23.52% 

200 .0029 Fine Sand 26.68 53.36% 



 125   
  

270 .0021 Silt / Clay 3.27 6.54% 

SAND SUB-SAMPLE 

BAG SS: 50 ml sub-sample size                                                                                  

Sieve 

Size 

(Tyler) 

Opening in 

Millimeters 

(mm) 

Gravel Size  Mass of Sample 

Retained in 

Milliliters (ml) 

Percentage 

8 2.36 Pebbles/Gravels/Coarse 

Sand 

n/a n/a 

40 0.425 Medium Sand 4.94 9.88% 

200 .0029 Fine Sand 45.01 90.02% 

270 .0021 Silt / Clay n/a n/a 

CHARCOAL SUB-SAMPLES 

BAG 11: Not tested, single piece of burnt wood.  

BAG 12: 5 ml sub-sample size                                                                                  

Sieve 

Size 

(Tyler) 

Opening in 

Millimeters 

(mm) 

Gravel Size  Mass of Sample 

Retained in 

Milliliters (ml) 

Percentage 

8 2.36 Pebbles/Gravels/Coarse 

Sand 

2.37 47.4% 

40 0.425 Medium Sand 1.52 30.4% 

200 .0029 Fine Sand 0.89 17.8% 

270 .0021 Silt / Clay 0.09 1.8% 

BAG 13: 5 ml sub-sample size                                                                                  

Sieve 

Size 

(Tyler) 

Opening in 

Millimeters 

(mm) 

Gravel Size  Mass of Sample 

Retained in 

Milliliters (ml) 

Percentage 

8 2.36 Pebbles/Gravels/Coarse 

Sand 

.81 (charcoal and 

shell) 

16.2% 

40 0.425 Medium Sand 2.59 51.8% 

200 .0029 Fine Sand 1.89 37.8% 

270 .0021 Silt / Clay 0.14 2.8% 

BAG 14: 5 ml sub-sample size                                                                                  
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Sieve 

Size 

(Tyler) 

Opening in 

Millimeters 

(mm) 

Gravel Size  Mass of Sample 

Retained in 

Milliliters (ml) 

Percentage 

8 2.36 Pebbles/Gravels/Coarse 

Sand 

2.46 (charcoal 

and shell) 

49.2% 

40 0.425 Medium Sand 1.42 28.4% 

200 .0029 Fine Sand 1.03 20.6% 

270 .0021 Silt / Clay 1.14 22.8% 

BAG 17A: 25 ml sub-sample size                                                                                  

Sieve 

Size 

(Tyler) 

Opening in 

Millimeters 

(mm) 

Gravel Size  Mass of Sample 

Retained in 

Milliliters (ml) 

Percentage 

8 2.36 Pebbles/Gravels/Coarse 

Sand 

9.03 (charcoal 

and shell) 

36.12% 

40 0.425 Medium Sand 8.40 33.6% 

200 .0029 Fine Sand 6.43 12.86% 

270 .0021 Silt / Clay 1.25 2.5% 

BAG 19: 25 ml sub-sample size                                                                                  

Sieve 

Size 

(Tyler) 

Opening in 

Millimeters 

(mm) 

Gravel Size  Mass of Sample 

Retained in 

Milliliters (ml) 

Percentage 

8 2.36 Pebbles/Gravels/Coarse 

Sand 

9.87 (charcoal 

and shell) 

39.48% 

40 0.425 Medium Sand 10.29 41.2% 

200 .0029 Fine Sand 4.68 18.72% 

270 .0021 Silt / Clay .90 1.8% 

BAG 23A: 25 ml sub-sample size                                                                                  

Sieve 

Size 

(Tyler) 

Opening in 

Millimeters 

(mm) 

Gravel Size  Mass of Sample 

Retained in 

Milliliters (ml) 

Percentage 

8 2.36 Pebbles/Gravels/Coarse 

Sand 

10.88(charcoal 

and shell) 

43.52% 

40 0.425 Medium Sand 8.60 34.4% 

200 .0029 Fine Sand 4.37 17.48% 
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270 .0021 Silt / Clay .83 3.32% 

BAG 26: 25 ml sub-sample size                                                                                  

Sieve 

Size 

(Tyler) 

Opening in 

Millimeters 

(mm) 

Gravel Size  Mass of Sample 

Retained in 

Milliliters (ml) 

Percentage 

8 2.36 Pebbles/Gravels/Coarse 

Sand 

9.33(charcoal 

and shell) 

37.32% 

40 0.425 Medium Sand 9.28 37.12% 

200 .0029 Fine Sand 6.54 26.16% 

270 .0021 Silt / Clay .13 .52% 

BAG 27: 25 ml sub-sample size                                                                                  

Sieve 

Size 

(Tyler) 

Opening in 

Millimeters 

(mm) 

Gravel Size  Mass of Sample 

Retained in 

Milliliters (ml) 

Percentage 

8 2.36 Pebbles/Gravels/Coarse 

Sand 

2.61(charcoal 

and shell) 

10.44% 

40 0.425 Medium Sand 4.71 18.84% 

200 .0029 Fine Sand 17.49 69.96% 

270 .0021 Silt / Clay .15 0.6% 

SHELL SUB-SAMPLES 

BAG 34: 50 ml sub-sample size                                                                                  

Sieve 

Size 

(Tyler) 

Opening in 

Millimeters 

(mm) 

Gravel Size  Mass of Sample 

Retained in 

Milliliters (ml) 

Percentage 

8 2.36 Pebbles/Gravels/Coarse 

Sand 

32.87 65.74% 

40 0.425 Medium Sand 13.01 26.02% 

200 .0029 Fine Sand 0.15 0.3% 

270 .0021 Silt / Clay 0.83 1.66% 

BAG 35: 50 ml sub-sample size                                                                                  

Sieve 

Size 

(Tyler) 

Opening in 

Millimeters 

(mm) 

Gravel Size  Mass of Sample 

Retained in 

Milliliters (ml) 

Percentage 
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8 2.36 Pebbles/Gravels/Coarse 

Sand 

40.43 80.86% 

40 0.425 Medium Sand 7.77 15.54% 

200 .0029 Fine Sand 1.03 2.06% 

270 .0021 Silt / Clay .10 0.2% 

BAG 36: 50 ml sub-sample size                                                                                  

Sieve 

Size 

(Tyler) 

Opening in 

Millimeters 

(mm) 

Gravel Size  Mass of Sample 

Retained in 

Milliliters (ml) 

Percentage 

8 2.36 Pebbles/Gravels/Coarse 

Sand 

28.29 56.58% 

40 0.425 Medium Sand 15.41 30.82% 

200 .0029 Fine Sand 5.11 10.22% 

270 .0021 Silt / Clay .90 1.8% 

BAG 38: 50 ml sub-sample size                                                                                  

Sieve 

Size 

(Tyler) 

Opening in 

Millimeters 

(mm) 

Gravel Size  Mass of Sample 

Retained in 

Milliliters (ml) 

Percentage 

8 2.36 Pebbles/Gravels/Coarse 

Sand 

38.79 77.58% 

40 0.425 Medium Sand 6.72 13.44% 

200 .0029 Fine Sand 1.99 3.98% 

270 .0021 Silt / Clay .34 0.68% 

BAG 40: 50 ml sub-sample size                                                                                  

Sieve 

Size 

(Tyler) 

Opening in 

Millimeters 

(mm) 

Gravel Size  Mass of Sample 

Retained in 

Milliliters (ml) 

Percentage 

8 2.36 Pebbles/Gravels/Coarse 

Sand 

48.42 96.84% 

40 0.425 Medium Sand n/a n/a 

200 .0029 Fine Sand .58 1.16% 

270 .0021 Silt / Clay .11 0.22% 

BAG 40A: 50 ml sub-sample size                                                                                  
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Sieve 

Size 

(Tyler) 

Opening in 

Millimeters 

(mm) 

Gravel Size  Mass of Sample 

Retained in 

Milliliters (ml) 

Percentage 

8 2.36 Pebbles/Gravels/Coarse 

Sand 

26.68 53.36% 

40 0.425 Medium Sand 14.63 29.26% 

200 .0029 Fine Sand 7.11 14.22% 

270 .0021 Silt / Clay .92 1.84% 

BAG 40C: 50 ml sub-sample size                                                                                  

Sieve 

Size 

(Tyler) 

Opening in 

Millimeters 

(mm) 

Gravel Size  Mass of Sample 

Retained in 

Milliliters (ml) 

Percentage 

8 2.36 Pebbles/Gravels/Coarse 

Sand 

24.60 49.2% 

40 0.425 Medium Sand 12.74 25.48% 

200 .0029 Fine Sand 14.32 28.64% 

270 .0021 Silt / Clay 1.13 2.26% 

BAG 46: 50 ml sub-sample size                                                                                  

Sieve 

Size 

(Tyler) 

Opening in 

Millimeters 

(mm) 

Gravel Size  Mass of Sample 

Retained in 

Milliliters (ml) 

Percentage 

8 2.36 Pebbles/Gravels/Coarse 

Sand 

40.15 80.3% 

40 0.425 Medium Sand 7.46 14.92% 

200 .0029 Fine Sand 2.18 4.36% 

270 .0021 Silt / Clay .85 1.7% 
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Appendix I: Magnetic Susceptibility Results 
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Appendix J: Edge Analytical Total Phosphorous Data Report 
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