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ABSTRACT 

 

This study compares the physico-chemical conditions and composition of benthic 

macroinvertebrates from five rhithral (snowmelt-fed) and five kryal (glacially-fed) lake outlet 

streams in the North Cascade Mountains, WA.  Non-metric, non-parametric cluster and 

association analysis (NMCAA) clearly separated outlet streams of kryal and rhithral origin 

based on physico-chemical and taxon variables.  Kryal lake outlets were characterized by 

lower water temperatures, unstable in-stream channels and higher turbidity, discharge and 

fine substrates than rhithral sites.  A total of 24,985 specimens representing 93 

macroinvertebrate taxa were collected.  Rhithral lake outlets had significantly higher 

densities and supported more taxa than kryal sites (9,049 ind./m2 and 77 taxa versus 821 

ind./m2 and 35 taxa).  Chironomidae were the dominant taxon amongst all sites, although 

densities and taxa richness were one-third in the kryal lake outlets when compared to rhithral 

sites.  Rhithral lake outlets contained higher densities of non-insect taxa such as Acari, 

Oligochaeta, Nemathelminthes, Planariidae and crustaceans.  Water temperature, stream 

discharge and turbidity were the variables most strongly correlated to density and taxa 

richness.  My results suggest that glacial presence was the dominant factor influencing in-

stream environmental conditions and subsequently macroinvertebrate assemblages of alpine 

lake outlet streams. 
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1 INTRODUCTION 

1.1  ALPINE STREAM TYPES 

Alpine environments represent the upper limits of terrestrial and freshwater ecosystems in 

both a physical and biological sense, generally characterized by exposed rock surfaces, steep 

gradients, extreme seasonality and highly specialized biotic communities adapted to these 

conditions.  Within these environments, between the permanent snowline and treeline, three 

general types of stream systems have been defined based upon their primary water source: 

kryal streams, which are glacially-fed; rhithral streams, which are dominated by seasonal 

snowmelt; and krenal streams, which are groundwater fed (Steffan 1971, Ward 1994, Brittain 

and Milner 2001).  The difference in water sources among these streams affects their 

physical and chemical properties which in turn affect the resident macroinvertebrate 

communities (Milner and Petts 1994, Tockner et al. 1997, Brittain et al. 2000, Füreder et al. 

2000, Füreder et al. 2001, Lods-Crozet et al. 2001, Hieber et al. 2005).   

 

1.2  DIFFERENCES BETWEEN KRYAL, KRENAL, AND RHITHRAL STREAMS 

Among these stream types, kryal streams embody the harshest, most dynamic alpine 

environment for biota, especially in the summer when there are high diel fluctuations in 

water temperature, discharge, and concentrations of suspended solids and nutrients as 

glaciers melt during the day and refreeze at night (Milner and Petts 1994, Ward 1994, 

Füreder et al. 2001).  In comparison, rhithral streams generally have less pronounced 

fluctuations in discharge and higher maximum temperatures (Zbinden et al. 2008).  In a study 

conducted in the Swiss Alps, Hieber et al. (2002) found that levels of ammonia, nitrate, 
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particulate phosphorus and total suspended solids were also significantly higher in glacial-fed 

systems than those dominated by snowmelt.   

 

The differences between kryal and rhithral streams are also seen when comparing 

macroinvertebrate fauna, diversity, and abundance.  In general, alpine streams are located on 

the declining limb of the harshness-diversity curve, where environmental harshness is high 

and taxonomic diversity is low (Figure 1; Tockner et al. 1997).  The harshness-diversity 

curve states that species diversity peaks at intermediate environmental disturbance levels 

when conditions favor the coexistence of competitive and disturbance-tolerant species 

(Mackey and Currie 2001).  Within this characterization, however, the range of 

environmental harshness and its affect on macroinvertebrate diversity is also dependent on 

the primary water source.  Rhithral streams have been found to have more diverse and taxon-

rich assemblages than kryal streams (Hieber et al. 2005).  Füreder et al. (2001) found that 

although the Chironomidae (Diptera) represent one of the major taxa in glacial stream 

systems, their taxa richness was one-half to one-third compared to krenal streams during the 

summer months.   

 

1.3  LAKE OUTLETS 

Recent research has also focused on the physical, chemical, and biotic characteristics of 

alpine lake outlets, a transition zone between lentic (“still water”) and lotic (“flowing water”) 

environments (Wotton 1995, Kownacki et al. 1997, Donath and Robinson 2001, Hieber et al. 

2001, 2002, and 2005, Brunke 2004, Boggero and Lencioni 2006, Maiolini et al. 2006).  

Lake outlets are a unique habitat within a stream system that is strongly influenced by the 
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characteristics of the lake that feeds them (Richardson and Mackay 1991, Donath and 

Robinson 2001).  Although the macroinvertebrate fauna of lake outlets is most similar to 

streams and rivers, the characteristics of the lake (i.e. size, temperature, allochthonous inputs) 

can affect the lake outlet community (Wotton 1995).  

  

Lakes generally stabilize outlet streams by increasing water temperature and decreasing daily 

temperature and discharge fluctuations, especially in glacially-fed systems (Donath and 

Robinson 2001, Hieber et al. 2002).  In the summer, warm epilimnic surface water 

discharging into the outlet may increase macroinvertbrate metabolism (Richardson and 

Mackay 1991) and digestive function (Wotton 1995).  Lakes also contribute food sources to 

outlet streams in the form of detritus from decomposition of dead biota, faecal material, and 

dissolved organic matter (Wotton 1988).  Research has shown that non-glacial lake outlets 

had more diverse and abundant macroinvertebrate communities than glacial-fed lake outlets 

(Füreder et al. 2001, Hieber et al. 2005, Maiolini 2006).   

 

1.4  GLACIER RETREAT IN THE NORTH CASCADES 

Approximately 10% of the earth’s land surface is now covered by glaciers as opposed to 32% 

during the glacial maxima of the Pleistocene era (1,808,000 to 11,550 Years Before Present; 

Brittain and Milner 2001).  Over the last century, there has been a general pattern of glacial 

retreat in most regions of the world (IAHS (ICSI) – UNEP – UNESCO 2008).  Glaciers in 

the North Cascades lost on average more than 9.5 meters in thickness and 20 to 40% of their 

volume between 1984 and 2005 (Pelto 2006).  Similar to the harsh environmental conditions 

for macroinvertebrates induced by glacial melt during warm summer days, increased overall 
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melting may result in reduced stream temperatures, decreased channel stability, and altered 

sediment loads that could potentially reduce the diversity of macroinvertebrate communities 

in kryal streams (Brittain and Milner 2001).  As warming continues, the contribution of 

meltwater from glaciers and snowpack will decrease as these sources are exhausted earlier in 

the summer or disappear entirely, resulting in a less harsh physico-chemical stream habitat 

(Hannah et al. 2007).  Subsequently, species from lower altitudes may colonize these 

streams.  Although local in-stream diversity and abundance may increase, the loss of kryal 

habitats may lead to an overall reduction in regional-scale diversity (Brown et al. 2007).  

Long-term monitoring of changes could be used to document effects of climate change 

(Brittain and Milner 2001).  

 

1.5  OBJECTIVES 

The main objective of my study was to compare benthic macroinvertebrate assemblages 

between kryal and rhithral lake outlets in the North Cascades, Washington.  Krenal streams 

were not included in the study due to time and access limitations.  When differences were 

found between kryal and rhithral macroinvertebrate assemblages, I sought to determine 

which, if any, physico-chemical parameters were influencing these differences.  Glacial and 

alpine lake outlet research has been centered on European systems (Kownacki et al. 1997, 

Brittain and Milner 2001, Donath and Robinson 2001, Hieber et al. 2001, 2002, and 2005, 

Brunke 2004, Boggero and Lencioni 2006, Maiolini et al. 2006).  My study will broaden the 

geographical scope of glacial and alpine lake outlet research and provide a base-line of kryal 

and rhithral lake outlet data for the North Cascades.   
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2 MATERIALS AND METHODS 

2.1  REGIONAL DESCRIPTION 

The northern-most portion of the Cascade Mountains, known as the North Cascades, differ 

from the southern Cascades not only by their characteristic jagged profile, but also by their 

geologic composition.  Large portions of the North Cascades are comprised of large granitic 

batholiths and folded, partially metamorphosed, ancient sedimentary rock that stretch over 

150 km from Snoqualmie Pass in Washington State to British Columbia’s Fraser River 

valley.  They are bounded to the west by the Puget Sound coastal lowlands and to the east by 

the Okanogan Highlands and Columbia River.  The North Cascades are noted for their steep 

relief, rising to peaks over 3,000 m, remote terrain, and glaciated landscape.  They drain 

thousands of kilometers of streams into several major watersheds including the Fraser, 

Stehekin, Nooksack, and Skagit.  Due to their orientation and proximity to the Puget Sound 

and Pacific Ocean, the North Cascades intercept moisture coming in from the Pacific, 

creating a distinct west to east precipitation pattern.  Annual precipitation on the west side of 

the mountains averages 280 cm while at Lake Chelan on the east side the average is less than 

90 cm (Weisburg 1988). 

  

2.2  SITE DESCRIPTIONS 

Study sites were located at or above treeline between 1117 and 1755 m on the western slope 

of the North Cascade Mountain range within the North Cascades National Park (NOCA) 

boundary (Figure 2).  Sites included 10 lake outlets comprised of five kryal and five rhithral 

systems (Table 1).  All lake outlets were first-order streams (Wetzel 2001).  All sites were 

located within the subalpine/alpine ecoregions of the park where continuous forest is 
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replaced by alpine heaths, meadows, barren rock and permanent snow and ice fields 

(Weisburg 1988).  Alpine lakes and streams in the North Cascades were historically fishless.  

To represent these ecosystems, outlet streams fed by fishless lakes were chosen as study 

sites.  Fishless status was determined by reviewing NOCA’s compilation of stocking records 

and fish observations (National Park Service 2008).  Kryal lake outlet sites were located in 

five different catchments throughout the western region of the park, while four of the five 

rhithral lake outlet sites were in the Little Beaver Creek catchment.  Two of these sites, 

Upper Middle and Lower Middle, are a chain of lakes.  Upper Middle lake outlet is the inlet 

to Lower Middle lake.   

 

I worked in conjunction with NOCA’s aquatics program to select and sample my study sites.  

Each summer NOCA samples near-shore benthic invertebrates and water chemistry of 20 

alpine lakes for long-term monitoring.  To enhance the understanding of these lake systems, 

three of my 10 sites were lake outlets from these lakes (EP-11-01, Lousy, and Price).  Due to 

difficult access, four of my study sites (Ouzel, M-25-01, EP-11-01, and Lousy) were 

accessed via helicopter.  At these sites, habitat measurements and macroinvertebrate and 

water samples were collected by NOCA’s aquatic biologists Ashley Rawhouser and Carmen 

Welch.  I hiked into the remaining six sites.  

 

2.3  PHYSICAL MEASUREMENTS 

Geographic location, lake area, and site elevation of each study site were determined using 

Geographic Information Systems (GIS) data from NOCA and Western Washington 

University (ESRI, ArcGIS 9.2).  Watershed characteristics are reported in Table 1.  The 
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remaining physico-chemical measurements and macroinvertebrate sampling were conducted 

between 31 August and 20 September 2007. 

 

2.3.1 Channel Stability 

Channel stability is the measure of a stream channel’s resistance to changes in flow and 

sediment load and its capacity to adjust and recover from these changes (Pfankuch 1975).  

Channel stability is a key factor affecting the instream habitat conditions for benthic 

macroinvertebrates and affects the community structure of alpine and especially glacial 

streams (Milner and Petts 1994, Burgherr and Ward 2000).  Numerous channel stability 

indices exist and each index relies on different sets of field measurements to determine 

stability in relation to a “stable” reference stream (Rosgen 2001).  We assessed channel 

stability in the field using the channel bottom component of the Pfankuch stability index 

(PSI) to classify my stream reaches into four categories of channel bottom stability (< 15 

excellent, 16 - 30 good, 31 - 45 fair, 46 - 60 poor).  This index is based on several qualitative 

observations of the stream bottom including rock angularity, consolidation, size distribution 

and aquatic vegetation cover (Table 2).  I chose this index because it focused on instream 

habitat, was a quickly assessed in the field, and was used by Hieber et al. (2002) in a similar 

study in the Alps.  

 

2.3.2 Discharge 

Lake outlet discharge (cubic meters per second; CMS) measurements were made at each 

study site using the neutrally buoyant object procedure (U.S. EPA 2004).  At each site a 

segment of the stream reach was selected that was deep and long enough to float a small stick 
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between 10 and 30 seconds.  Average width and depth of the float segment was determined 

from measurements of one to three channel cross-sections depending on the variability in 

channel width and depth throughout the segment.  A stopwatch was used to measure the 

average time required to float the object through the segment based on three trials.  Discharge 

in cubic meters per second was determined based on the following equation (U.S. EPA 

1997): 

Flow = ALC/T 

Where: 

A = average cross-sectional area of the stream (average width times average depth) (m) 

L = float length (m) 

C = 0.8 (correction factor for rocky bottom streams) 

T = average time (seconds) 

 

2.3.3  Substrate 

The relative percent cover of each substrate type was visually estimated for the entire stream 

reach.  Substrate types were delineated based upon size fractions and included bedrock 

(>4906 mm), boulders (256 to 4096 mm), cobble (65 to 256 mm), gravel (2 to 65 mm), sand 

0.06 to 2 mm, and silt (< 0.06 mm).  I reduced the number of substrate variables tested in 

principal components and non-metric conceptual clustering analyses to focus on those 

variables which most strongly affect macroinvertebrate communities.  I combined percent 

cover of sand and silt to create a percent fine sediment variable and combined percent cover 

of boulder and bedrock substrate to create a percent boulder/bedrock variable.    
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2.4  WATER CHEMISTRY 

2.4.1  Field Methods 

Water chemistry measurements and samples were collected midway along the stream reach 

between the location of the third and fourth macroinvertebrate samples.  Water temperature 

and dissolved oxygen were measured in the field using a Yellow Springs Instrument (YSI) 

field meter or a field thermometer and Hach Dissolved Oxygen kit (Model OX-2P).  Water 

samples for alkalinity, conductivity, pH, turbidity, total phosphorus, total nitrogen, and total 

suspended solids were collected in clean, acid-washed (2 N HCl) 1-Liter polyethylene 

bottles.  Due to the remote location of the study site and short holding times, water samples 

for anions, soluble reactive phosphate, nitrate, and ammonia were filtered through glass fibre 

filters (Whatman GF/F filters; 0.45-µm) in the field using a Nalgene filtering apparatus.  

Filtered water for anion analysis was stored in a 60-mL polyethylene bottle that had not been 

acid washed.  Filtered water for soluble reactive phosphate and nitrate analysis was collected 

in a clean, acid-washed (2 N HCl) 60-mL polytheylene bottle.  Prior to collecting each 

sample, bottles were rinsed three times with filtered stream water.  Sample bottles were filled 

to the rim and care was taken to not introduce any particulate matter into the sample.  For 

ammonia analysis, 25 mL of the filtered stream water was collected in a clean, acid-washed, 

graduated tube and acidified to a pH less than 2 with 0.5 mL of 1 N HCl.  For chlorophyll a 

analysis, 500 mL of stream water was filtered through a 0.45-µm glass fiber filter in the field, 

and the filter was stored in a 25-mL plastic scintillation vial.  To minimize post-collection 

photosynthesis, stream water was filtered in the dark by placing a piece of clothing over the 

filtering apparatus.  In addition, we wrapped each scintillation vial in foil.  All water samples 

were stored in cooler bags or dry bags packed with snow and kept in cold water until they 
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were transported to the Institute for Watershed Studies (IWS) at Western Washington 

University in Bellingham, WA, a Washington State Department of Ecology accredited 

laboratory.  No more than three days elapsed between water collection and storage in the 

laboratory.   

 

2.4.2 Laboratory Processing 

Each sample was analyzed for pH, conductivity, phosphorus (total phosphorus and soluble 

reactive phosphate), nitrogen (total nitrogen, nitrate, and ammonia), turbidity, total 

suspended solids, alkalinity, and chlorophyll a.  Water samples were processed according to 

the Standard Methods for the Examination of Water and Wastewater (Eaton et al. 2005; 

Table 3).  Laboratory analysis measured combined concentrations of nitrate and nitrite.  In 

freshwater systems nitrite is readily oxidized to form nitrate and only represents a small 

fraction of the combined concentration.  For ease of reading in the remainder of this 

document, I will use the term nitrate to describe the combined concentration of nitrate and 

nitrite.  Turbidity, total suspended solids, conductivity, pH, and alkalinity were measured at 

IWS within seven days of collection.  Cholorophyll a analysis was conducted within one 

month of sample collection.  Soluble reactive phosphate, total phosphorus, ammonia, and 

nitrate were analyzed within 45 days of collection at IWS.   

 

Anions (Br, Cl, Fl, NO3, and SO4) were initially measured within 50 days of collection using 

high performance ion chromatography (HPIC).  Most of the sample concentrations from this 

analysis were below the standard curve for each of the tested anions.  Anions were 

reanalyzed in January 2009 using lower standard concentrations.  Sulfate measurements for 
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three lake outlet sites were within the standard curve range for both 2007 and 2009 analyses.  

The difference between 2007 and 2009 sulfate concentrations for these three sites ranged 

from 0.0 to -0.85 ppm.  The 2007 sulfate concentrations were used for analysis for these 

three sites.  Data analyzed in 2009 were used for the remaining sites and anions.  Due to the 

long time between collection and analysis, anion results were statistically analyzed separately 

from the other physico-chemical parameters. 

 

2.4.3  Quality Control 

For quality assurance, duplicate field samples were collected at 10% of the study sites.  Field 

duplicates test the accuracy associated with sample collection.  In the laboratory, duplicate 

laboratory analyses were run on 10% of the samples to determine the accuracy of laboratory 

methods.  For nutrient analysis, two internal check standards (20 and 80% of the calibration 

curve) were measured to verify that analytical precision and calibration biases were 

acceptable.  No quality control measures were taken for temperature and dissolved oxygen 

measurements. 

 

2.5  MACROINVERTEBRATES 

2.5.1  Field Sampling 

Stream reaches were 30 m long and began 10 m downstream from the lake outlet. 

For nine of the ten stream reaches we collected six replicate macroinvertebrate samples.  Due 

to late summer low stream flow at Tapto, West, I collected only three replicate 

macroinvertebrate samples.  Macroinvertebrate sampling was started at the downstream end 

of the stream reach working upstream.  Samples were collected from riffle/fast- moving 
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habitats.  The sampling locations along the stream reach were chosen using a random number 

table.  One random number between 0 and 10 was generated for each sample to be collected 

and was multiplied by 10 to represent the percent upstream along the stream reach length the 

sampler would be placed (PNAMP 2006).  At all sampling sites the sampler was placed in 

the thalweg (deepest section) of the stream.  For example, if the random number 1 was 

generated, the sampler was placed in the thalweg of the stream 10% upstream of the total 

length of the stream reach (3 m).  If a sampling location was not suitable for sampling due to 

low flow, bedrock substrate, or pool habitat, another random number was generated until a 

suitable habitat was found.  Tapto West and Upper Tapto were dominated by bedrock and 

boulder substrate and sampling locations were not selected randomly, but rather by locating 

the only available sampling locations for that stream reach.   

 

At each sampling location, benthic macroinvertebrates were collected using a Surber sampler 

(0.09 m2, 500-µm mesh).  The Surber sampler was placed in the streambed with the open end 

facing upstream and the bottom frame of the sampler flush with the streambed.  Within the 

frame, all large stones and debris were picked up and carefully rubbed by hand so that any 

attached animals were swept downstream into the net; the stones were then discarded out of 

the frame.  After all of the larger stones had been removed from the frame, we stirred the 

remaining gravel and sand with a trowel to a depth up to 10 cm starting at the upstream end 

of the sampling frame (PNAMP 2006).  When boulders and bedrock prevented us from 

disturbing the substrate to a depth of 10 cm, we agitated the substrate as deep as possible.  

Macroinvertebrate samples were transferred to 500-mL Whirl-pak storage bags and fixed 

with 95% non-denatured ethanol.  All macroinvertebrate samples were stored in cooler bags 
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or dry bags packed with snow and kept in cold water until they were transported to IWS 

where they were topped off with 95% ethanol.   

 

2.5.2 Laboratory Processing 

At the onset of the laboratory processing, seven macroinvertebrate samples were sent to 

Rhithron Associates, Inc. (Missoula, MT) to be sorted and identified.  Rhithron Associates 

provided a reference collection from these samples that I used to familiarize myself with 

common North Cascades taxa.  I sorted the remaining 50 macroinvertebrate samples using a 

dissecting microscope by separating each macroinvertebrate specimen from the substrate and 

vegetation in the sample and placing it in a 70% ethanol and glycerin solution for later 

identification.  One Petri dish of sample material was sorted at a time and rescanned for any 

overlooked specimens after the initial sorting.  Each specimen was identified to the lowest 

possible taxonomic level.  Most macroinvertebrate specimens were identified to genus or 

species, depending on the availability of taxonomic keys.  All Chironomidae larvae were 

identified by Rhithron Associates to the species or genus level.   

 

2.5.3 Quality Control 

To determine sorting efficacy, sample residue from 10% of the sorted samples was randomly 

selected to be re-sorted.  Of the selected samples, a 20% aliquot of each residue was 

thoroughly re-sorted to check for overlooked specimens.  In addition, 10% of the sorted 

samples were randomly selected to be re-identified and enumerated.  Twelve percent of the 

samples collected were sorted and identified by Rhithron Associates.  All mature 

Chironomidae larvae were also identified by Rhithron Associates, representing 16% of the 
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total number of macroinvertebrate specimens collected.  As an additional quality control 

measure, representatives from 71% of the taxa I identified were sent to taxonomists for 

verification.  Representatives of all Trichoptera taxa were verified by Robert Wisseman 

(Aquatic Biology Associates, Inc.).  Ephemeroptera, Plecoptera, Coleoptera, Acari, and non-

midge Diptera representatives, along with representatives from all Chironomidae pupae, were 

sent to Rhithron Associates, Inc. for taxonomic verification.  Taxa identifications were 

corrected, if necessary, after verification.  Taxonomic resources I used for macroinvertebrate 

identification included: Pennak (1989), Thorp and Covich (1991), Merritt and Cummins 

(1996), Wiggins (1998), Stewart and Stark (2002), and Adams et al. (2004).  

 

2.6  DATA SCREENING 

Ammonia and soluble reactive phosphate measurements were below detection limits (10 and 

3 µg/L, respectively) at all sites and excluded from analysis (Table 4).  Some lake outlet sites 

had concentrations below detection limits for the remaining nutrient parameters, but were 

included for rank-based tests (PCA and NMCAA) because the majority of the sites had 

concentrations above detection limits.  Total suspended solid concentrations were below 

detection limits (2.6 mg/L) at all lake outlet sites and excluded from analysis. 

 

2.7  STATISTICAL ANALYSES 

2.7.1  Physico-chemical Parameters 

Physical and chemical parameters were analyzed with graphics and with both confirmatory 

and exploratory statistics.  Physico-chemical differences between kryal and rhithral lake 

outlet sites were described with box plots and Kruskal-Wallis tests with Wilcoxon contrasts 



15 
 
 

 

(Kruskal and Wallis 1952).  The Kruskal-Wallis test is a non-parametric method for testing 

equality of population medians among groups using ranked data.  

 

I used principal components analysis (PCA) to determine if lake outlet sites ordinated by 

primary water source based on physico-chemical variables.  This linear model searches for 

combinations of variables that explain the most variance in the data.  The first principal 

component accounts for as much of the variability in the data as possible, and each 

succeeding component accounts for as much of the remaining variability as possible (Pearson 

1901).  All physico-chemical data were log10 (x +1) transformed prior to conducting the 

ordination in order to improve the fit. 

 

To explore clustering patterns within the physico-chemical data set, I used non-metric 

conceptual clustering with association analysis (NMCAA) based on RIFFLE software 

(Matthews and Hearne 1991).  Non-metric conceptual clustering utilizes all levels of data 

without requiring transformation, is able to detect and control for noisy variables, and is not 

sensitive to missing data.  Non-metric conceptual clustering is a powerful tool that does not 

use distance metrics, but rather evaluates each variable independently and compares it to an 

evolving clustering scheme based on common properties.  Non-metric conceptual clustering 

searches the dataset iteratively and arrives a final cluster solution when the largest number of 

variables are associated with the strongest cluster solution.  Chi-squared tests (P < 0.05) were 

conducted on the generated clusters to measure the degree of association with physico-

chemical parameters.  Non-metric conceptual clustering also measures the proportional 
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reduction in error (PRE) for each variable reporting how strong a particular variable is in 

predicting cluster membership. 

 

2.7.2  Macroinvertebrates 

2.7.2a  Assemblage Composition 

Macroinvertebrate density per square meter was calculated for each sample and averaged for 

the number of samples taken per sampling reach.  Total, non-insect, and Chironomidae 

density and taxa richness were compared using nonparametric Kruskal-Wallis tests with 

Wilcoxon contrasts (Kruskal and Wallis 1952).  I also visually compared the distribution of 

taxa that were only present at either rhithral or kryal lake outlet sites. 

 

2.7.2b Functional Feeding Groups 

Taxa were placed into functional feeding groups of collector filterer, collector gatherer, 

macrophyte shredder, shredder, scraper, predator, parasite, omnivore, and unknown feeding 

group based on Merritt and Cummins (1996) with modifications by Wisseman and Doughty 

(2004).  I used graphical analyses to examine the differences in functional feeding groups 

between rhithral and kryal lake outlet sites. 

 

2.7.2c Habit Types 

Taxa were placed into habit types of skater, floater, planktonic, diver, swimmer, clinger, 

sprawler, climber, burrower, attacher, miner, and hyporheic based on Merritt and Cummins 

(1996) with modifications by Wisseman and Doughty (2004).  Habits describe the mode by 

which macroinvertebrates maintain their location within the aquatic habitat.  Determining the 
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habit types of macroinvertebrates can also tell something about environmental conditions 

where they were collected (i.e. substrate, flow, turbulence; Merritt and Cummins 1996).  I 

used graphical analyses to examine the differences in habit types between rhithral and kryal 

lake outlet sites. 

 

2.7.2d Cluster Analysis 

Differences in macroinvertebrate assemblage composition among sites were analyzed using 

NMCAA for macroinvertebrate density per square meter values for each taxon. Based on 

NMCAA results, I conducted nonparametric Kruskal-Wallis tests with Wilcoxon contrasts 

(Kruskal and Wallis 1952) between kryal and rhithral sites for taxon variables with strong 

predictive power of cluster membership based upon their PRE scores. 

 

In addition, I used hierarchical clustering (Euclidean distance and Ward’s linkage) to classify 

taxa presence/absence data.  Although the Euclidean distance metric is designed for 

continuous data, it is acceptable for use with binary data when there are many variables, a 

trait common to macroinvertebrate studies (Pielou 1984).  Ward’s linkage is a minimum 

variance clustering method and is a useful metric when clusters are of equal size, such as in 

this study (Everitt 1993).   

 

2.7.3 Invertebrate-habitat relationship 

I used non-metric conceptual clustering to determine if combined physico-chemical and 

macroinvertebrate data would cluster based on primary water source.  To explore the 

relationship between environmental conditions and macroinvertebrate communities, I ran 
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Kendall’s correlation analysis (Kendall 1938) on all physico-chemical variables and selected 

macroinvertebrate indices (Total, EPT, Non-Insect, and Chironomidae densities and Total, 

EPT, Non-insect, and Chironomidae taxon richness). 

 

3 RESULTS AND DISCUSSION 

3.1  PHYSICO-CHEMICAL PARAMETERS 

3.1.1 Principal Components Analysis 

Principal Components Analysis clearly ordinated kryal and rhithral sites based on physico-

chemical variables (Figure 3).  Sixty percent of the cumulative variance was explained by the 

first two principal components.  Turbidity was the variable with the greatest influence in 

moving sample ordinations toward the west on PC1 and percent fine substrate was the most 

influential variable for movement south on PC2.  Kryal sites were ordinated along these 

variables with higher turbidity and percent fine substrates than the rhithral sites.  Kryal lake 

outlets were also ordinated with higher nitrate and alkalinity concentrations, increased stream 

discharge, lake surface area, and lower in-stream stability.  Rhithral sites were ordinated with 

higher percentages of boulder and bedrock substrate, total nitrogen and chlorophyll a 

concentrations and water temperature. 

 

3.1.2 Cluster Analysis 

To explore the physico-chemical differences between lake outlet sites, I also conducted 

NMCAA.  Non-metric conceptual clustering of physico-chemical variables also clearly 

separated kryal and rhithral lake outlet sites.  Chi-squared testing for association between 
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cluster classifications identified that 35% of the NMCAA iterations were significantly 

associated with kryal and rhithral water sources (chi-square = 6.4, df =1, P = 0.01).  Of the 

twenty non-metric conceptual clustering iterations, this significant cluster solution was 

repeated seven times with no misclassifications (100% accuracy). 

 

Eleven of the nineteen physico-chemical variables had principal reduction in error scores 

equal to or greater than 0.50 and were selected as the best indicators of water source (Table 

5).  A PRE score of 0.50 indicates that the ability to predict variables based upon cluster 

membership into kryal and rhithral categories is increased by 50% over an uninformed 

prediction based purely on chance.  Three of these variables, water temperature, dissolved 

oxygen, and stream discharge, had PRE scores of 1.0.  In the case of water temperature, 

dissolved oxygen, and stream discharge, the ability to predict variables based upon cluster 

membership was increased by 100% over an uninformed prediction.  Randomizing the 

physico-chemical data set and producing no significant clusters associated with kryal and 

rhithral primary water source.  This result suggests that the cluster membership into kryal and 

rhithral categories was not likely to occur by chance. 

 

3.1.3 Descriptive Statistics, Boxplots, and Multisample Tests 

Ordination and cluster analysis highlighted several physico-chemical variables that separated 

kryal and rhithral lake outlet sites.  For these and the other physico-chemical variables I used 

descriptive statistics, boxplots, and Kruskal-Wallis tests to detail the differences between 

kryal and rhithral lake outlets.   
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3.1.3a Geographical Location 

Although not statistically different (Figure 4, Table 6) as separate variables, study site 

elevation and longitude were top variables predicting non-metric conceptual clustering 

membership (Table 5).  Rhithral study sites were generally higher and less variable in 

elevation than kryal sites (Figure 5).  This may be due in part to the closer geographical 

distances of four of the five rhithral sites, which were all located in the Little Beaver Creek 

drainage (Figure 2).   

 

3.1.3b Lake Surface Area 

Although no statistically significant differences were found between kryal and rhithral lake 

surface area (Figure 4, Table 6), the variable had a PRE score of 0.60 for the physico-

chemical NMCAA (Table 5).  Overall, lakes feeding kryal outlet streams were larger in 

surface area than rhithral lakes.  Lakes influence the channel stability, primary productivity, 

and discharge and thermal regimes of outlet streams (Milner and Petts 1994).  The degree of 

this influence may be related to lake size (Gustafson 2008).  

 

3.1.3c Discharge 

Lake outlet discharge was significantly higher at kryal sites than at rhithral sites (Figure 4, 

Table 6).  In an alpine environment, discharge is primarily affected by water source and 

seasonal changes in weather.  In a kryal stream, discharge slowly increases over the spring as 

first snow and then glacial meltwater enter the system.  After the surrounding snowpack has 

melted away, glacial melt is the primary source of water into the stream.  Discharge reaches a 

peak mid-summer when the higher zones of the glacier also begin melting.  In the Northern 
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Hemisphere, this peak in discharge usually occurs in July.  In contrast, rhithral streams can 

have a peak in discharge as early as April then decline over the summer as winter snowpack 

melts away (Milner and Petts 1994).   

 

The timing and intensity of these discharge peaks may be mitigated by the presence of a lake 

upstream, which can stabilize the discharge regime of outlet streams (Spence and Hynes 

1971, Milner and Petts 1994).  At my lake outlet sites, discharge was measured in late 

August and September, well past the predicted peaks for both stream types.  The rhithral 

streams had mostly returned to their baseflow, with some sites in the Little Beaver Creek 

basin barely flowing.  The higher discharge measured at the kryal sites in late summer 

indicates that the year-round permanence of a glacier contributes meltwater to these streams 

throughout the entire summer season.    

 

3.1.3d Pfankuch Bottom Index of Channel Stability  

Discharge also has a strong influence over the physical characteristics of lotic environments.  

The volume and velocity of water work to form and alter stream channels.  Kryal streams 

were significantly more unstable than corresponding rhithral streams based on the PSI 

(Figure 4, Table 6).  Channel stability in kryal streams rated from poor to good (values 60 - 

16), whereas rhithral streams ranged from good to excellent (30 - < 15).  These results 

support similar findings from studies in Europe that also found kryal streams to be more 

unstable (Milner and Petts 1994, Ward 1994, Hieber et al. 2001).  The seasonal and diel 

changes in discharge from glacial meltwater may influence in-stream stability through 

shifting channels and altering bedloads (Milner and Petts 1994, Brittain and Milner 2001).   
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3.1.3e Substrate 

When evaluated individually, percent silt, boulder, and bedrock substrates were significantly 

different between kryal and rhithral lake outlet sites (Figure 5, Table 6).  Percent silt and 

boulder substrates were higher in kryal lake outlets, while percent bedrock was higher in 

rhithral sites.  For PCA and NMCAA analyses, these variables were reduced to percent fine 

sediment (silt plus sand) and percent boulder/bedrock.  Percent fine sediment was a top 

variable in both PCA (Figure 3) and NMCAA analyses (Table 5).  Kryal outlet streams had 

significantly higher percent fine substrates than rhithral outlet streams, likely due to the 

contribution of rock flour from melting glaciers (Figure 4, Table 6; Milner and Petts 1994).   

 

3.1.3f Water Temperature and Dissolved Oxygen 

Water temperature has been found to be one of the leading physico-chemical characteristics 

distinguishing kryal from rhithral streams with kryal streams typically not exceeding 10° C 

during summer months (Milner and Petts 1994).  At my kryal sites water temperatures 

ranged from 2.2 to 7.2° C (median = 4.8° C), whereas rhithral sites had water temperatures 

ranging from 9.5 to 12.0° C (median = 10.2° C; Table 4).  Not only was water temperature 

significantly lower at kryal lake outlets (Figure 4, Table 6), but it was one of the top non-

metric conceptual clustering variables predicting cluster membership (Table 5).  Kryal sites 

have cold water temperatures throughout the summer because of the continued contribution 

of glacial meltwater (Milner and Petts 1994).  Kryal lake outlets were more oxygenated due 

to cooler temperatures and higher discharge although, overall, rhithral sites were still near or 

at oxygen saturation ((9 - 10 mg/L or 90 - 100%; Figure 4, Table 6).   
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3.1.3g Turbidity, Total Suspended Solids and Chlorophyll a 

Turbidity and total suspended solids (TSS) are both measures of suspended solids in the 

water column.  Turbidity measures the amount of light scattered from a sample (more 

suspended particles cause greater scattering), whereas TSS measures the weight of the 

particles per volume of water (Wetzel 2001).  Based upon a review of kryal research, Milner 

and Petts (1994) found that kryal stream turbidity and TSS concentrations in the summer 

were generally greater than 30 NTU and 20 mg l -1, respectively, from the contribution of 

rock flour.  Rock flour (aka. glacial flour) is finely ground, clay-sized particles of rock that 

are produced as glaciers cause rocks to grind beneath them during advance and retreat.  

When glacial ice melts during the summer these particles become suspended and distributed 

throughout the stream.   

 

Median turbidity concentration at my kryal lake outlet sites was 12.6 NTU, lower than the 

typical concentration of 30 NTU, although significantly higher than rhithral sites (Figure 4, 

Table 6).  Turbidity was also a top variable in both PCA (Figure 3) and NMCAA analyses 

(Table 5).  In this study, TSS concentrations were below detection limits and excluded from 

analysis (Table 4).  The fact that turbidity values were measurable and TSS was not may be 

due to the limitations of field research in a remote, mountainous location.  As a result of 

weight restrictions, only 500 mL of water was carried out to filter for total suspended solids.  

This volume turned out to be insufficient to yield detectable levels of suspended solids.  The 

lower than typical values for both turbidity and TSS at my kryal lake outlets was most likely 

due to rock flour settling out in the lake before discharging into the outlet stream.  Although 

below detection limits, I ran analyses to determine if there were any patterns in the TSS data 
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relative to primary water source.  Lake outlet TSS was positively correlated to turbidity 

(Kendall’s τ = 0.73, P = 0.002) and significantly higher in kryal lake outlet sites (Kruskal-

Wallis chi-squared = 5.8, df = 1, P = 0.02). 

 

Chlorophyll a is a measure of algal productivity.  High turbidity can reduce primary 

production by limiting the penetration of light into the water column (Milner and Petts 1994).  

Although not significantly different between sites (Figure 4, Table 6), non-metric conceptual 

clustering found that chlorophyll a was an important indicator variable identifying water 

source (Table 5).  Overall, chlorophyll a was higher and more variable at rhithral lake outlets 

than kryal lake outlets.  Warmer water temperatures along with greater light penetration in 

rhithral lake outlets likely created a more hospitable environment for primary production than 

kryal sites.  The presence of aquatic mosses at rhithral lake outlet sites in comparison to little 

or no aquatic moss found at kryal sites (personal observation) further support these findings.   

 

3.1.3h Nutrients: Nitrogen and Phosphorus 

Overall, nutrient concentrations were low at all lake outlet sites indicating these are 

oligotrophic (low productivity) systems limited by nitrogen and phosphorus (Table 4).  

Although not statistically significant, nitrate was one of the top physico-chemical variables 

predicting kyral and rhithral cluster membership (Table 5).  In an alpine ecosystem, nitrogen 

enters aquatic environments primarily although meltwater from glaciers and snowpacks 

(Barica and Armstrong 1971, Malard et al. 1999).  Nitrogen is deposited onto the tops of 

glaciers and snowpack through atmospheric deposition and is stored underneath them as 

organic matter decomposes.  Phosphorus is the nutrient primarily limiting biological 
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productivity in aquatic ecosystems (Wetzel 2001).  Research has linked particulate 

phosphorus concentration with seasonal and diel discharge pulses in kryal streams (Tockner 

et al. 1997, Hieber et al. 2001).  Phosphorus tends to bind to the surface of small inorganic 

and organic matter and is often moved from terrestrial to aquatic environments through 

runoff (Wetzel 2001).  Phosphorus has been found to be correlated with total suspended solid 

concentration in other alpine streams (Hieber et al. 2001).  The overall low values of both 

TSS and phosphorus at my lake outlets may be because oligotrophic alpine lakes often act as 

sinks rather than sources of particles (Hieber et al. 2001).   

 

3.1.3i Alkalinity, pH, and Conductivity 

Alkalinity, pH, and conductivity are related in aquatic systems (Matthews et al. 2006).  

Conductivity and pH are measures of dissolved ions in the water.  Conductivity measures the 

ability of a solution to carry an electrical flow (Wetzel 2001).  Acidity, reported as pH, is 

determined by measuring the proton activity of hydrogen ions in a solution (National 

Research Council 1983).  Alkalinity is the ability of a solution to neutralize (buffer) acids and 

is usually related to the levels of carbonate ions (carbonic acid, carbonate, and bicarbonate) 

in the water.  Higher carbonate levels in water result in a higher buffering capacity (Wetzel 

2001). 

 

The range of pH values at all lake outlet sites was 4.8 to 6.7 (median 6.2; Table 4), and 

values were not significantly different between kryal and rhithral lake outlets (Table 6).  The 

pH of natural waters ranges from < 2 to 12, where pH 7 is neutral, values below 7 are 

increasingly acidic and values above 7 increasingly basic (Wetzel 2001).   In natural waters, 
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lethal effects of acidity typically occur at a pH of 4.5 (Wetzel 2001), although negative 

effects in biological communities are seen starting at pH values just below 6.0 (Mills and 

Schindler 1986).  Rhithral sites Upper Tapto, Tapto West and Lower Middle and kryal site 

M-25-01 all had pH values below 6.0 (Table 4).   

 

Overall, all lake outlets had low alkalinities (< 5.5 mg/L) indicating that they have low 

buffering capacity and are vulnerable to acidification (Table 4).  Alkalinity was significantly 

correlated to pH (Kendall’s τ = 0.87, P = 0.0001), and those sites with the lowest pH (< 6.0) 

also had the lowest alkalinities (< 1 mg/L).  Although not significantly different, alkalinities 

were generally higher at kryal sites than rhithral sites (median values 2.8 and 0.6 mg/L as 

CaCO3, respectively; Table 6).  In their survey of 54 North Cascades lakes, Loranger et al. 

(1986) found that bedrock appeared to be the controlling factor for surface water acid 

neutralizing capacity.  Acid neutralizing capacity is closely related to alkalinity and is a 

measure of the overall buffering capacity of a solution to acidification.  Slow weathering 

processes and the infrequent occurrence of carbonate rocks such as limestone and dolomite in 

the North Cascades result in low buffering capacity of surface waters (Loranger et al. 1986, 

Holloway 1993).   

 

Conductivity was not significantly different between kryal and rhithral sites (Table 6).  

Conductivity has been defined as one of the important water quality variables characterizing 

kryal streams (Milner and Petts 1994).  Conductivity of ice melt is usually less than 10 µS 

cm-1, but can reach values up to 50 µS cm-1 through ionic enrichment from groundwater 

inputs (Milner and Petts 1994).  Conductivity at kryal lake outlet sites was below 50 µS cm-1 
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ranging from 3.8 to 24.2 µS cm-1 (median = 16.8 µS cm-1; Table 4).  Conductivity at rhithral 

lake outlets ranged between 4.3 and 76.6 µS cm-1 (median = 9.3 µS cm-1). 

 

Conductivity was highest at the rhithral site Lower Middle (76.6 µS cm-1), which also had the 

lowest pH and alkalinity measurements (4.8 and < 0.1 mg/L, respectively; Table 4).  This 

lake outlet was unusual in that there was iron hydroxide (FeOH) precipitate covering all 

substrate in the stream along with the littoral edge of the upstream lake (Figure 6).  High iron 

concentration in the lake outlet could explain the high conductivity measurement. Reddish, 

iron-rich rocks were seen surrounding this lake.  An input of groundwater, rich in iron, may 

be the cause of the iron precipitate in Lower Middle lake and outlet stream.  An alternate 

explanation could be the low pH at this site may be releasing iron from terrestrial soils and 

lake sediments into the lake and outlet stream (Schindler 1988).  In comparison, Upper 

Middle lake and its outlet stream that feed into Lower Middle lake did not show any iron 

precipitate and had pH, alkalinity, and conductivity values of 6.2, 2.4 mg/L, and  

26.8 µS cm-1, respectively (Table 4).  

 

3.1.3j Anions 

There were no statistically significant differences between kryal and rhithral lake outlets for 

fluoride, chloride, sulfate, and nitrate anions (Table 6).  Bromide anions were not detected at 

any of the lake outlet stream sites (Table 4). 
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3.2  MACROINVERTEBRATES 

3.2.1  Assemblage Composition 

A total of 93 macroinvertebrate taxa were represented by 24,985 specimens collected from 

all lake outlet sites.  Of the 93 taxa collected, 27 were from the orders Ephemeroptera, 

Plecoptera, or Trichoptera (EPT), 47 were Diptera, and 19 were Collembola, Coleoptera, 

Hemiptera and non-insects (Table 7).  Rhithral lake outlets had significantly higher densities 

and supported more taxa than kryal sites (Figure 7).  A total of 77 macroinvertebrate taxa 

were collected at rhithral lake outlet sites and the mean density of individuals per square 

meter was 9,049.  At kryal lake outlets, 35 taxa were collected and the mean 

macroinvertebrate density was 821 individuals/m2.  Chironomidae was the numerically 

dominant taxon amongst all sites, although densities and taxon richness were 1/3 in the kryal 

lake outlets when compared to rhithral sites.  Rhithral lake outlets contained significantly 

higher densities and numbers of non-insect taxa such as Acari (mites), Oligochaeta 

(segmented worms), Nemathelminthes (nematodes), Planariidae (planaria) and crustaceans 

(copepods) (Figure 7). 

 

3.2.2  Trophic Structure 

Collector-gatherers were the dominant functional feeding group at both rhithral and kryal 

lake outlets (Table 8). These results reflect the large number of collector-gatherer chironomid 

taxa found at these sites.  Omnivores were the second most dominant functional feeding 

group at the kryal sites (29%), most likely driven by the large numbers of the plecopteran 

Taenionema sp. Banks collected at the Ouzel Lake outlet.  Parasites and predators were the 

second and third most dominant functional feeding group at the rhithral outlets (12 and 10%, 
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respectively).  Parasites were composed of the large numbers of Acari and Nematodes 

collected at these sites.  Acari, commonly known as mites, are a diverse group and depending 

on the species can be classified as either parasite or predator.  For this analysis I placed half 

of the Acari collected in the parasite FFG and the other half in the predator FFG.  The 

predators at rhithral lake outlets were composed of Acari, Coleoptera, Diptera, Plecoptera, 

and Trichoptera species.    

 

Functional Feeding Groups (FFG) describe the way in which an organism feeds and can help 

explain food web interactions within a stream. Filter feeder taxa typically dominate low to 

mid-elevation lake outlets (Richardson and Mackay 1991).  In alpine lake outlets, however, 

this pattern does not always hold true.  Some alpine studies have found filter-feeders to be 

the dominant taxa (Kownacki et al. 1997, Donath and Robinson 2001), while others found 

collectors and collector-gatherers to be the dominant functional feeding groups (Hieber et al. 

2005, Hamerlík et al. 2006).  High concentration of seston (suspended particles) flowing 

from the upstream lake is the factor most often attributed to high densities of filter feeders in 

outlet streams (Richardson and Mackay 1991).  The low concentrations of seston flowing out 

of many oligotrophic alpine lakes may explain why filter feeders are not always dominant in 

these outlets (Hamerlík et al. 2006).  Low TSS, turbidity, and cholorphyll a concentrations at 

my lake outlets support this theory.  In addition, particulates tend to settle out of the water 

column in slow moving water such as that found in lakes.  As water speeds up during the 

transition from lentic to lotic environments in a lake outlet, less seston may settle. 
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3.2.3  Habit Types 

Sprawlers were the dominant habit taxa type for kryal lake outlets (55%) followed by 

burrowers (24%) and clingers (10%; Table 9).  The habit for almost half of specimens (49%) 

from the rhithral lake outlets is unknown due to a lack of habitat information on many 

benthic invertebrate taxa.  Of the taxa with known habit types, the top three were sprawlers 

(21%), clingers (17%), and burrowers (8%).  Many of the chironomid taxa collected at both 

kryal and rhitral sites were sprawlers.  Sprawlers crawl on substrates such as rocks, fine 

sediments, woody debris, and leaf packs in running and still waters.  Chironomid sprawlers 

often reside in porous areas of rocks or debris and may become partially covered with 

sediment.  Clingers are able to remain stationary on substrates in flowing water usually due 

to specialized grasping claws, hooks, or ventral attachment discs.  Burrowers are benthic 

insects that burrow and live in the soft bottom substrates of slower moving sections or bank 

areas of streams (Merritt and Cummins 1996).  

 

3.2.4  Cluster Analysis 

The non-metric conceptual clustering results suggest that benthic invertebrate communities 

were responding to the different primary water sources.  Chi-square testing for association 

between cluster classifications identified that 60% of non-metric conceptual clustering 

iterations were significantly associated with kryal and rhithral water sources (chi-square = 

3.75, df = 1, P = 0.05).  Three different significant cluster solutions each repeated four times 

were derived from the 20 non-metric conceptual clustering iterations (Table 10).  

Classification accuracy was similar among the cluster solutions with only one stream site 

misclassified in each cluster solution (90% accuracy).  Different stream sites were 
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misclassified in each of the three cluster solutions.  Tapto West was misclassified as a kryal 

site in cluster a, Lower Middle was misclassified as a kryal site in cluster b and M-25-01 was 

misclassified as a rhithral site in cluster solution c. 

 

The misclassification of these three stream sites can be understood by exploring the variables 

with the highest PRE scores for each of the three different cluster solutions.  In cluster 

solution a Tapto West was misclassified as a kryal stream.  In this cluster solution 

Eukiefferiella claripennis Group Lundbeck and Setvena sp. Illies were the top two variables 

with PRE scores of 1.0.  Eukiefferiella claripennis Gr. was not found in any of the kryal sites 

(Table 7).  At Tapto West, Eukiefferiella claripennis Gr. density was 7.4 individuals m2, 

whereas the other 4 rhithral sites had a median density of 39 individuals m2.  Similarly, 

Setvena sp., were not found at any of the kryal streams sites or at Tapto West. 

 

Lower Middle was misclassified in cluster solution b.  Nine invertebrate taxon variables had 

PRE scores of 1.0: Acari, Corynoneura sp. Winnertz, early instar Ephemeroptera, early instar 

Plecopterea, Harpacticoida, Polycelis coronata Girard, Rhyacophila rotunda Gr. Banks, 

Setvena sp., and Zapada columbiana Claassen (Table 10).  Harpacticoida, Rhyacophila 

rotunda Gr., Setvena sp., and Zapada columbiana were not found at any of the kryal lake 

outlet sites and their densities were lower at Lower Middle relative to the other rhithral sites. 

 

In cluster solution c, M-25-01 was misclassified as a rhithral site.  Megarcys sp. Klapálek and 

Rhithrogena sp. Eaton were the top two PRE variables with scores of 1.0 in this cluster 

solution (Table 10).  In both cases no specimens from these taxa were found at M-25-01 or 
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any of the rhithral sites.  M-25-01, located in the Diobsud Creek drainage, is a unique site. 

This kryal lake has recently emerged from Bacon Glacier over the past 60 years as the glacier 

has receded (Figure 9).  The few summers that the lake has been ice-free have left little time 

for invertebrates to colonize the lake and outlet stream as shown by the small numbers of 

specimens collected (15 ind.) represented by only five taxa (Oligochaeta, Nematoda, and the 

chironomids Diamesa sp. Meige, Dipocladius sp.Kieffer, Orthocladius sp. Wulp).     

 

For each taxon variable, I averaged the PRE scores for all three cluster solutions to determine 

which variables had a mean PRE score equal to or above 0.5.  When combined, 17 of the 118 

invertebrate taxon variables had mean PRE scores equal to or above 0.5 and possessed the 

highest predictive power in assigning sites into kryal and rhithral categories (Table 5).  The 

highest mean PRE score for the combined cluster solutions was 0.78 for early instar 

Chironomidae densities.  Although numerous at all sites, chironomid densities were 

significantly higher at rhithral lake outlets, especially for early instar larvae (Figure 8). 

Randomizing the macroinvertebrate data weakened the results producing no significant 

clusters associated with kryal and rhithral primary water source.  This provides further 

evidence that cluster membership into kryal and rhithral categories was not likely to occur by 

chance. 

 

3.2.5  Hierarchical Clustering 

Hierarchical clustering of presence/absence macroinvertebrate data reinforced non-metric 

conceptual clustering results that primary water source was a determinant in structuring 
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macroinvertebrate communities.  Kryal and rhithral sites were clearly separated using 

squared Euclidean distance with Ward’s Method (Figure 10). 

 

3.2.6  Comparison of Macroinvertebrate Distributions 

Of the 93 taxa collected from all study sites, 55 were only found at rhithral outlet streams 

(Table 11).  Twenty-five of these 55 taxa were in the Chironomidae family.  The 

chironomids Eukiefferiella claripennis Gr. and Rheocricotopus sp. Thienemann and Harnisch 

were collected at all five rhithral sites; Zavrelimyia sp.Kittkau  and Corynoneura sp. were 

found at four sites; and Eukieffella brehmi Group Gowin, Psectrocladius sp. Kieffer, and 

Micropsectra sp. Kieffer at three sites.  The remaining 48 chironmid taxa were collected at 

only one or two rhithral sites.  From the EPT taxa, Zapada columbiana was found at all 

rhithral lake outlets and Setvena sp. and Rhyacophila rotunda Gr. were found at four of the 

five rhithral outlets.  Springtails from the Poduridae family were found at four rhithral sites 

and those from the Isotomidae family were found at three lake outlets. 

 

Twelve macroinvertebrate taxa were only collected at kryal lake outlets (Table 11).  Of these 

12, two taxa, the plecopteran Megarcys sp. and ephemeropteran Rhithrogena sp. were found 

at all five kryal lake outlets.  The Ephemeropteran Epeorus spp. (E. deceptivus 

McDunnough, E. grandis McDunnough or both) and the chironomid Parothocladius sp. were 

found at three of the five sites.  The remaining eight taxa were collected at only one or two 

kryal outlet streams. 
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When comparing the distribution of taxa between kryal and rhithral lake outlet streams, two 

divergent groupings become apparent.  The perlodid Megarcys sp. was only collected at 

kryal lake outlets, while Setvena sp. was only found at rhithral sites.  Anatomically, these 

genera are very similar separated primarily by an extra set of gills on Megarcys sp. (Merritt 

and Cummins 1996).  Both of these taxa are clingers adapted to life in fast-moving water.  

Some differences exist between these genera, Megarcys are omnivores, whereas, Setvena are 

predators.  Megarcys is also cold stenotherms; capable of living and growing within a limited 

range of temperatures, making them suitable for a glacial environment.  Similarly, Zapada 

oregonensis Gr. was only collected at kryal sites, while Zapada columbiana was only found 

at rhithral sites.  These nemourids are anatomically separated by a slight difference in their 

gill structure with Zapada columbiana having a constriction in its neck gills while Zapada 

oregonensis Gr. does not.  Both taxa are shredders and sprawler/clingers, and mostly grow 

during the fall (Adams et al. 2004). 

 

The fact that there is no overlap in distribution between these two closely related taxonomic 

groups suggests that primary water source is the driving factor.  However, I did not find any 

literature suggesting that Megarcys and Zapada oregonensis Gr. are only present in kryal 

systems or that Zapada columbiana and Setvena are not.  At Mt. Rainier National Park 

(MORA), also located in the Cascades, Megarcys sp., Setvena sp., Zapada oregonensis Gr., 

and Zapada columbiana were collected in both glacial and non-glacial streams and rivers 

(Kondratieff and Lechleitner 2002).  
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If primary water source is not excluding these taxa, perhaps they have yet to disperse to all of 

the various study sites.  In the alpine environment, migration via larval drift or adult flight is 

difficult due to the low biogeographical connectivity between mountainous watersheds 

(Monaghan et al. 2005) and the short ice-free season.  Glaciers blanketed the region during 

the most recent glacial event, the Wisconsin glaciation, which began about 80,000 years ago 

and ended around 10,000 years ago (USGS 2003).  Four of the five rhithral sites are located 

within the Little Beaver Creek drainage, making dispersal between these sites easier.  

However, both Setvena and Zapada columbiana were also collected at Upper Thornton lake 

outlet, over 20 kilometers from the other study sites.  In addition, the kryal sites were spread 

out throughout the entire western slope of the park suggesting that these taxa had equal 

opportunity to also disperse to the rhithral lake outlet sites.  Elevation could also possibly be 

driving these distribution patterns.  In general, rhithral lake outlets were higher in elevation 

than kryal sites and Megarcys and Zapada oregonensis Gr. could be replaced by Setvena and 

Zapada columbiana with increasing elevation.  Zapada oregonensis Gr. was not collected 

above 1,208 m.  Megarcys, however, was found at elevations 192 m higher than sites where 

Setvena was collected.   

 

It could be that these taxa have a preference for primary water source but will colonize 

outside of these groups.  Mt. Rainier National Park has more biogeographical connectivity 

than the multiple peaks in NOCA because its watersheds all originate off one volcanic peak.  

This landscape feature may explain why these taxa have already dispersed throughout 

MORA, but have not yet done so in NOCA.  Macroinvertebrate sampling from more streams 
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throughout the park may help to determine if indeed primary water source is influencing 

distribution. 

 

3.3  INVERTEBRATE-HABITAT RELATIONSHIP 

3.3.1  Cluster Analysis 

The non-metric conceptual clustering clearly separated outlet streams of kryal and rhithral 

origin based on physico-chemical and taxon variables.  Chi-square testing for association 

among the cluster classifications identified that 35% of the non-metric conceptual clustering 

trials were significantly associated with kryal and rhithral sources (chi-square = 6.4, df =1, P 

= 0.01).  Of the twenty NMCAA iterations, one significant cluster solution was derived and 

repeated seven times with no misclassifications of lake outlet sites (100% accuracy). 

 

Twenty-nine of the 137 physico-chemical and invertebrate variables had PRE scores that 

were equal to or above 0.50 and were considered the variables with the best predictive power 

for clustering kryal and rhithral sites (Table 5).  Ten of the 11 top physico-chemical variables 

and 15 of the 17 top macroinvertebrate variables were also selected in the combined data set.  

Of the combined data set, dissolved oxygen, early instar Chironomidae, stream discharge and 

water temperature were the variables with the highest PRE values at 1.0.  Randomizing the 

combined data set weakened the results producing no significant clusters associated with 

kryal and rhithral primary water source.  This provides further evidence that cluster 

membership into kryal and rhithral categories was not likely to occur by chance. 
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3.3.2  Correlation Analysis 

To understand how lake outlet physico-chemical parameters potentially affected 

macroinvertebrate communities at my study sites, I ran Kendall’s non-parametric correlation 

analysis on all physico-chemical variables and selected macroinvertebrate indices (total, 

EPT, non-insect, and Chironomidae densities and total, EPT, non-insect, and Chironomidae 

taxon richness).  Multiple significant correlations were found between invertebrate indices 

and physico-chemical variables (Figure 11, Table 12).  

 

3.3.2a  Water Temperature 

Water temperature was positively correlated to total and non-insect densities and total and 

non-insect taxon richness (Figure 11, Table 12).  In my study, lake outlet water temperature 

appeared to be a dominant physico-chemical variable driving differences in 

macroinvertebrate assemblages between kryal and rhithral sites.  It was significantly lower in 

kryal lake outlets, was one of the top variables predicting clustering in non-metric conceptual 

clustering, and was significantly correlated to several invertebrate indicies (Figure 4 and 14, 

Tables 5, 6, and 10).  Water temperature has long been recognized as one of the primary 

physical habitat factors influencing macroinvertebrate distribution and diversity (Vannote 

and Sweeney 1980, Vannote et al.1980, Ward 1985) especially in alpine streams (Milner and 

Petts 1994).  In lotic waters, water temperature controls the rates of primary and secondary 

production, including the growth rates of macroinvertebrates.  Water source is the primary 

driver of water temperature in alpine streams (Brown et al. 2003). 
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3.3.2b pH, Alkalinity and Turbidity 

Richness of EPT taxa increased with both pH and alkalinity concentrations (Figure 11, Table 

12).  These results suggest that EPT taxa are particularly sensitive to acidic environments.  

Total and non-insect densities and EPT richness of taxa were negatively correlated to 

turbidity levels (Figure 11, Table 12).  High turbidity can affect macroinvertebrate 

communities by reducing primary production through decreased light penetration, though 

discharge regime and channel stability must also be considered (Milner and Petts 1994).   

 

3.3.2c Discharge and Pfankuch Bottom Index of Channel Stability 

Non-insect taxa richness decreased with channel stability and densities decreased with 

increased discharge (Figure 11, Table 12).  High discharge may lead to substrate and channel 

movement within the stream and limit the types of macroinvertebrates present because of the 

challenge in adapting to this physically shifting environment.  High discharge in the summer 

may also make it difficult for macroinvertebrates to emerge (Milner and Petts 1994).  The 

channel bottom of a stream is a completely aquatic environment and the location where 

macroinvertebrates feed, develop, and seek shelter.  Based on the PSI, low channel stability 

implies not only movement of substrate within the channel, but a low resistance to and 

recovery from the forces stream flow may exert on it (Pfankuch 1975).  If the stream bottom 

is frequently altered, it may reduce macroinvertebrate diversity to a few specialized taxa that 

are adapted to highly dynamic disturbance environment (Milner and Petts 1994).  Some non-

insect taxa, such as oligochaetes and nematodes, burrow into the stream bottom and may be 

adversely affected by frequent disturbance.  In this study, high discharge and low channel 

stability were associated with kryal lake outlets.  These features are characteristic of kryal 
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habitats and the lack of non-insect taxa present in is similar to studies from Europe (Hieber et 

al. 2005).    

 

3.3.2d Percent Fine Sediment 

Non-insect taxon richness was negatively correlated with the percentage of fine sediment 

composing the stream substrate (Figure 11, Table 12).  As the percentage of fines increased, 

non-insect taxon richness decreased.  Fine sediments, such as silt and sand, may fill the 

interstitial spaces between larger pieces of gravel, decreasing the amount of available oxygen 

reaching macroinvertebrates living there.  The character and type of substrate also affects the 

ability of insects to adhere, cling, burrow and build (Mackay 1977, Minshall 1984).  

 

3.3.2e Lake Surface Area 

Previous research has shown significant correlation between lake area and outlet chironomid 

taxa richness (Bitušík et al. 2006) while another study found that lakes with areas greater 

than 5 ha were colonized by more EPT taxa than smaller lakes (Hamerlík et al. 2006).  The 

only significant correlation between lake surface area and macroinvertebrate density and 

richness indices in my study was a negative correlation between lake surface area and EPT 

density (Figure 11, Table 12).  I found that as lake size increased EPT density decreased, 

showing the opposite effect of what Hamerlík et al. (2006) reported, probably because in my 

study, the larger lakes were glacially-fed. 
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3.3.2f Dissolved Oxygen 

Dissolved oxygen concentrations ranged from 9 to 13 mg/L in all stream sites indicating 

oxygen saturation (Table 4).  Ecologically, the difference between kryal and rhithral lake 

outlet dissolved oxygen concentrations would not be considered significant; however, 

dissolved oxygen was continually found to be a top variable determining clustering patterns 

in NMCAA (Table 5).  In addition, dissolved oxygen concentration was significantly higher 

in kryal lake outlets than rhithral lake outlets (Figure 4, Table 6).  To explore if there could 

be ecologically significant validity to this clustering, I ran Kendall’s non-parametric 

correlation analysis on dissolved oxygen and all macroinvertebrate taxa collected at my study 

sites. 

 

Sixteen of the 118 taxa had significant correlations with dissolved oxygen (P < 0.05; Figure 

12).  Microspectra sp., Rheocricotopus sp., Zapada columbiana, Poduridae, Harpacticoida G. 

O. Sars, and early instar Chironomidae densities increased with decreasing dissolved oxygen 

concentrations.  Megarcys sp. and Rhithrogena sp. on the other hand were positively 

correlated with dissolved oxygen concentration.  These results suggest that Megarcys sp. and 

Rhithrogena sp. thrive in a stream saturated with oxygen, while the other taxa are sensitive to 

saturation or more tolerant of lower oxygen environments.  It is important to note, however, 

that with the exception of early instar Chironomidae, all of these taxa were found either at 

rhithral or kryal lake outlet sites, but not at both (Table 11).  The correlations found between 

dissolved oxygen and macroinvertebrate taxa may have more to do with the multiple 

physico-chemical differences between kryal and rhithral lake outlets than to a true ecological 

significance.  For example, at our lake outlet sites, dissolved oxygen was negatively 
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correlated to elevation (Kendall’s τ = -0.51, P < 0.05), because with increasing altitude, the 

relative pressure decreases reducing gas solubility.  In general, rhithral lake outlet sites were 

higher in elevation and had significantly higher dissolved oxygen concentrations.  More 

research considering multiple physico-chemical variables and including a broader range of 

dissolved oxygen concentrations is needed to verify these results.   

 

3.3.3 Predictive Model for Kryal Benthic Invertebrate Assemblages 

From a synthesis of European and Alaskan literature, Milner and Petts (1994) first proposed 

and then modified (Milner et al. 2001) a conceptual model to predict the structure of 

macroinvertebrate assemblages in glacial streams based upon water temperature and channel 

stability (Figure 13).  The model is only applied to the summer meltwater season when 

glacial melt is driving daily fluctions in abiotic variables that have a strong influence on 

macroinvertebrate communities (Milner et al. 2001). 

 

In kryal streams when maximum summer water temperatures do not exceed 2° C and channel 

stability is low, chironomids from the family Diamesinae and especially those from the genus 

Diamesa dominate the macroinvertebrate community.  Diamesa are generally cold adapted 

(Oliver 1983) and possess strong posterior proleg claws enabling them to grip substrate in the 

strong currents from cold glacial meltwaters (Milner and Petts 1994).  As temperatures rise 

between 2 and 4 °C, chironomids from the Orthocladiinae subfamily begin to colonize; if 

channel stability is increased, tipulids and oligochaetes may be added to the community.  

Above 4° C, other dipterans (Simuliidae and Empididae) along with ephemeropterans 

(Baetidae) and plecopterans (Perlodidae and Taeniopterygidae) may colonize.  With 
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increasing temperatures and channel stability, additional EPT and dipteran taxa are added to 

the community (Milner and Petts 1994).   

 

Although I could not directly compare my results to the model because I only took one water 

temperature measurement, I did use the model to determine if my study sites in the North 

Cascades held similar communities to kryal streams in Alaska and Europe.  Of the 

chironomids collected in this study, kryal lake outlets were dominated by two chironomid 

subfamilies, Orthocladiinae (62%) and Diamesinae (38%), with midges from the Diamesa 

genus representing 36% of the total number of chironomids collected.  In addition, several 

EPT (Ameletidae, Ephemereliidae, Heptageniidae, Capniidae, Nemouridae, Perlodidae, 

Taeniopterygidae, Limnephilidae) and Dipteran (Tipulidae) taxa were collected at most of 

the kryal lake outlet sites, along with non-insects Oligochaeta, Nematoda, Polycelis 

coronata, Cyclopoida Burmeister, Araneae, and Acari.  Based on the conceptual model, the 

community structure found at my kryal lake outlet sites is most similar to those seen at kryal 

streams with maximum summer water temperature above 8° C and high channel stability.   

 

From the one measurement taken I did not find water temperatures above 8° C at any of my 

kryal lake outlet sites, emphasizing the need for more comprehensive thermal regime 

measurements to develop and refine models of community structure (Table 4).  Channel 

stability at my kryal sites ranged from 18 to 50 (good to very poor) and did not show any 

similar community structure patterns in relation to channel stability as those found in the 

conceptual model (Figure 14).  In addition, temperature and channel stability were not 

correlated at my kryal sites as shown in the conceptual model.  Milner and Petts (1994) 
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acknowledged that their model would be modified by the presence of a lake, which can 

ameliorate physical conditions such as temperature and channel stability within the stream 

downstream (Milner et al. 2001).  Studies including more kryal sites throughout the region 

would be needed to determine if this conceptual model is relevant to North Cascade glacial 

streams and outlets. 

   

4 SUMMARY AND IMPLICATIONS 

From my study it is clear that the primary water source has shaped the physical and chemical 

features of North Cascade lake outlet streams, which in turn have influenced 

macroinvertebrate assemblages.  Similar to studies from Europe, the presence of a glacier 

was a major determinant driving several physical and chemical characteristics of lake outlet 

streams.  As a glacier melts throughout the summer it contributes ice water and rock flour to 

streams and lakes downstream.  Water temperatures decrease while discharge increases.  

Cold water temperatures and high discharge lead to saturation of dissolved oxygen.  Diel and 

seasonal discharge fluctuations alter stream beds resulting in dynamic channel conditions.  

Rock flour increases turbidity in the water column reducing light penetration.  This 

combination of frequently disturbed stream beds and reduced light penetration may lead to a 

decrease in primary production.  As rock flour settles out into lake and stream beds, the 

percentage of fine sediments increases.  These physico-chemical conditions create a harsh 

environment for benthic macroinvertebrate communities.   

 

Hieber et al. (2005) modified a conceptual model first introduced by Poff (1997) describing 

the habitats of alpine stream systems as nested landscape filters that screen out regional 



44 
 
 

 

species based upon their organismal traits (Figure 15).  The assumption is that given a long 

enough period of time, all species are capable of dispersing to all locales in the region.  The 

absence or low abundance of certain species at some locations must therefore be the result of 

selective filters.  Filters are habitat features that can be defined at any scale (Poff 1997).  

Climate is the largest scale landscape filter determining the temperature and flow regime 

(permanent or intermittent) of alpine streams and thereby filtering out some taxa unsuited for 

these environments.  Primary water source is the next filter shaping physico-chemical 

characteristics within the stream.  The number and types of taxa passing through or blocked 

by this filter depend upon the water source.  As applied to this study, kryal streams may be 

blocking out more taxa than rhithral streams, but let those pass that are tolerant to their harsh 

environmental conditions.  Füreder (2007), found that taxa that are habitat specialists adapted 

to cold temperatures, low nutrient levels and high adult mobility are predominant in glacial 

streams.  Channel type represents the next filter to the regional pool of alpine taxa.  In this 

model lake outlets are classified as a channel type with the presence of an upstream lake 

affecting the water temperature, seasonality, and amount of transported organic matter in the 

outlet.  At the smallest scale, differences in substrate or food resources can filter or favor 

certain taxa.  Biotic interactions, touched upon but not modeled, may also constrain the 

distribution of certain taxa. 

 

The one taxon passing through all of these filters at my lake outlet sites and dominating 

macroinvertebrate assemblages was Chironomidae.  The family Chironomidae is the most 

widely distributed in freshwater ecosystems represented by approximately 15,000 species 

(Merritt and Cummins 1996).  Chironomids evolved several hundred million years ago in 
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cold running water and have a wide range of tolerance from very sensitive to very tolerant 

(Lencioni and Rossaro 2005).  On the tolerant end, some chironomid taxa are adapted to 

extreme environmental conditions such as desiccation, anoxia, low temperatures and freezing 

(Danks 1971, Danks and Oliver 1972).  Their dominance in alpine ecosystems is in part due 

to their variety of adaptations to overwintering including their migration activity, cocoon 

building, supercooling, and freezing tolerance (Irons et al. 1993).  Chironomidae is a diverse 

family with species filling many different niches in alpine streams.  Understanding the habit 

type, function feeding group membership, phenology, and toleratnce to abiotic conditions of 

its species can help us to further understand alpine macroinvertebrate communities. 

 

Alpine ecosystems are subject to high winds, cold temperatures, extended periods of snow 

cover and low humidity and precipitation.  The combination of these conditions make alpine 

environments one of the most biologically demanding on the earth and sensitive indicators to 

climate change (Brown et al. 2007, Füreder 2007).  Glacial retreat has been recorded in the 

North Cascades and is evident at one of my study sites, M-25-01, a newly formed lake that is 

a direct result of glacial retreat.  This study provides evidence that glacial macroinvertebrate 

communities have unique species that differ from rhithral lake outlets within the North 

Cascades.  Increased glacial meltwater from warming may alter macroinvertebrate 

communities as they shift from those associated with kryal water source to those associated 

with rhithral water source.  A loss of kryal-based aquatic habitats may result in a loss of 

specialists and decreased regional biodiversity.  Continued warming could also lead to a loss 

of permanent snowpack and those species associated with rhithral lake outlets.  Long-term 

macroinvertebrate studies of North Cascade kryal and rhithral streams are needed to further 
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understand the function and structure of these groups and their response to effects of climate 

change.   

 
 
5 LITERATURE CITED 

 
Adams, J., M. Vaughan, and S. H. Black. 2004. Stream bugs as biomonitors: a guide to 
Pacific Northwest macroinvertbrate monitoring and identification. Xerces Society, Portland. 
 
APHA. 2005. Standard Methods for the Examination of Water and Wastewater, 21th Edition. 
American Public Health Association, American Water Works Association, and Water 
Environment Federation, Washington, DC. 

 
Barica, J. and F. A. J. Armstrong. 1971. Contribution by snow to the nutrient budget of some 
small northwest Ontario lakes. Limnology and Oceanography 16: 891-899. 
 
Bitušík, P., M. Svitok, P. Kološta, and M. Hubková. 2006. Classification of the Tatra 
Mountain lakes (Slovakia) using chironomids (Diptera, Chironomidae). Biologia, Bratislava 
18: S191-S201. 
 
Boggero, A. and V. Lencioni. 2006. Macroinvertebrates assemblages of high altitude lakes, 
inlets and outlets in the southern Alps. Archiv für Hydrobiologie 165:37-61. 
 
Brittain, J. E., H. Adalsteinsson, E. Castella, G. M. Gislason, V. Lencioni, B. Lods, Crozet, 
B. Maiolini, A. M. Milner, G.E. Petts, and S. J. Saltveit. 2000. Towards a conceptual 
understanding of arctic and alpine streams. Verhandlungen der Internationale Vereinigung 
für Theoretische und Angewandte Limnologie 27:740-743. 
 
Brittian, J. E., and A. M. Milner. 2001. Ecology of glacier-fed rivers: current status and 
concepts. Freshwater Biology 46:1571-1578. 
 
Brown, L. E., D. M. Hannah, and A. M. Milner. 2003. Alpine stream habitat classification: 
and alternative approach incorporating the role of dynamic water source contributions. 
Arctic, Antarctic, and Alpine Research 35: 313 – 322. 
 
Brown, L. E., D. M. Hannah, and A. M. Milner. 2007. Vulnerability of alpine stream 
biodiversity to shrinking glaciers and snowpacks. Global Change Biology 13: 958 – 966. 
 
Brunke, M. 2004. Stream typology and lake outlets – a perspective towards validation and 
assessment from northern Germany (Schleswig-Holstein). Limnologica 34:460-478. 
 
Burgherr, P. and J. V. Ward. 2000. Zoobenthos of kryal and lake outlet biotopes in a glacial 
flood plain. Verhandlungen der Internationale Vereinigung der Limnologie 22:1986-1991. 



47 
 
 

 

 
Danks, H. V. 1971. Overwintering of some north temperate and arctic Chironomidae. II. 
Chironomid biology. Canadian Entomologist 103: 1875-1910. 
 
Danks, H. V. and D. R. Oliver. 1972. Seasonal emergence of some high arctic Chironomidae 
(Diptera). Canadian Entomologist 104: 661-686. 
 
Donath, U. and C. T. Robinson. 2001. Ecological characteristics of lake outlets in Alpine 
environments of the Swiss Alps. Archiv für Hydrobiologie 150:207-225. 
 
Eaton, A. D., L. S. Clesceri, E. W. Rice, and A. E. Greenberg. 2005. Standard methods for 
examination of water and wastewater, 21st edition. American Water Works Association, 
Denver. 

 
Everitt, B. S. 1993. Cluster Analysis. John Wiley & Sons, New York, New York. 
 
Füreder, L. 2007. Life at the edge: habitat condition and bottom fauna of alpine running 
waters. International Review of Hydrobiology 92: 491 – 513. 
 
Füreder, L., C. Schütz, M. Wallinger, and R. Burger. 2001. Physico-chemistry and aquatic 
insects of a glacier-fed and a spring-fed alpine stream. Freshwater Biology 46:1673-1690. 
 
Füreder, L., C. Schütz, R. Burger, and M. Wallinger. 2000. Seasonal abundance and 
community structure of Chironomidae in two contrasting high alpine streams. 
Verhandlungen der Internationale Vereinigung der Limnologie. 27: 1596–1601. 
 
Gustafson, M. P. 2008. Effects of thermal regime on mayfly assemblages in mountain 
streams. Hydrobiologia 605: 235-246. 
 
Hamerlík, L., F. Šporka, and Z. ZaŤovičová. 2006. Macroinvertebrates of inlets and outlets 
of the Tatra Mountain lakes (Slovakia). Biologia, Bratislava 18: S167-S179. 
 
Hannah, D. M., L. E. Brown, A. M. Milner, A. M. Gurnell, G. R. McGregor, G. E. Petts, B. 
P. G. Smith, and D. L. Snook. 2007. Integrating climate – hydrology – ecology for alpine 
river systems. Aquatic Conservation: Marine and Freshwater Ecosystems 17: 636 – 656. 
 
Hieber, M., C. T. Robinson, S. R. Rushfort, and U. Uehlinger. 2001. Algal communities 
associated with different alpine stream types. Arctic, Antarctic and Alpine Research 33: 447-
456. 
 
Hieber, M., C. T. Robinson, U. Uehlinger, and J. V. Ward. 2002. Are alpine lake outlets  less 
harsh than other alpine streams? Archiv für Hydrobiologie 154:199-223. 
 



48 
 
 

 

Hieber, M., C. T. Robinson, U. Uehlinger, and J. V. Ward. 2005. A comparison of benthic 
macroinvertebrate assemblages among different types of alpine streams. Freshwater Biology 
50:2087-2100.  
 
Holloway, J. M. 1993. Hydrogeochemical interactions in a subalpine watershed, Mount 
Baker National Recreation Area, Washington. M.S. Thesis, Western Washington University, 
Bellingham, Washington. 
 
International Union of Geodesy and Geophysics (IAHS) (ICSI) – UNEP – UNESCO. 2008. 
Fluctuations of glaciers IX. IAHS (ICSI) – UNEP – UNESCO, Paris. 
Irons, J. G. III, L. K. Miller, and M. K. Oswood. 1993. Ecological adaptations of aquatic 
macroinvertebrates to overwintering in interior Alaska (USA) subarctic streams. Canadian 
Journal of Zoology 71: 98-108. 
 
Kendall, M. 1938. A new measure of rank correlation. Biometrika 30: 81-89. 
 
Kruskal, W. H. and W. A. Wallis. 1952. Use of ranks in one-criterion variance analysis. 
Journal of the American Statistical Association 47: 583-621. 
 
Kondratieff, B. C. and R. A. Lechleitner. 2002. Stoneflies (Plecoptera) of Mount Rainier 
National Park, Washington. Western North American Naturalist 62: 385-404. 
 
Kownacki, A., E. Dumnicka, J. Galas, B. Kawecka, and K. Wojtan. 1997. Ecological 
characteristics of a high mountain lake-outlet stream (Tatra Mts, Poland). Archiv für 
Hydrobiologie 139:113-128. 
 
Lencioni, V. and B. Rossaro. 2005. Microdistribution of chironomids (Diptera: 
Chironomidae) in Alpine streams: an autoecological perspective. Hydrobiologia 533: 61–76. 
 
Lods-Crozet, B., E. Castella, D. Cambin, C. Ilg, S. Knispel, and H. Mayor-Siméant. 2001. 
Macroinvertebrate community structure in relation to environmental variables in a Swiss 
glacial stream. Freshwater Biology 46:1641-1661. 
 
Loranger, T. J., D. F. Brakke, M. B. Bonoff, and B. F. Gall. 1986. Temporal variability of 
lake waters in the North Cascades Mountains (Washington, USA). Water, Air, and Soil 
Pollution 31:123-129. 
 
Mackay, R. J. 1977. Behaviour of Pycnopsche (Trichoptera: Limnephilidae) on mineral 
substrates in laboratory streams. Ecology 58: 191-195. 
 
Mackey, R. L. and D. J. Currie. 2001. The diversity-disturbance relationship: is it generally 
strong and peaked?  Ecology 82: 3479-3492. 
 



49 
 
 

 

Maiolini, B., V. Lencioni, A. Boggero, B. Thaler, A. F. Lotter, and B. Rossaro. 2006. 
Zoobenthic communities of inlets and outlets of high altitude Alpine lakes. Hydrobiologia 
562: 217-229. 
 
Malard, F., K. Tockner, J. V. Ward. 1999. Shifting dominance of subcatchment water sources 
and flow paths in a glacial floodplain, Val Roseg, Switzerland. Arctic, Antarctic, Alpine 
Research 31: 135–150. 
 
Matthews, G.B. and J. Hearn. 1991. Clustering without a metric. IEEE Transactions on 
Pattern Analysis and Machine Intelligence 13(2):175-184. 
 
Matthews, R. A., J. Vandersypen, and K. Hitchko. 2006. Lake Samish monitoring project: 
2006 final report. Final Report prepared for the Samish Water District, November 3, 2006, 
Bellingham, WA. 

 
Merritt, R. W. and K. W. Cummins. 1996. Aquatic insects of North America, 3rd edition. 
Kendall/Hunt Publishing Company, Dubuque, Iowa. 
 
Milner, A. M., and G. E. Petts. 1994. Glacial rivers: physical habitat and ecology.  Freshwater 
Biology 32:295-307. 
 
Milner, A. M., J. E. Brittain, E. Castella, and G. E. Petts. 2001. Trends of macroinvertebrate 
community structure in glacier-fed rivers in relation to environmental conditions: a synthesis. 
Freshwater Biology 46: 1833-1847. 
 
Mills, K. H., and D. W. Schindler. 1986. Biological indicators of lake acidification. Water, 
Air, and Soil Pollution 30:779-789. 
 
Minshall, G. W. 1984. Aquatic insect-substratum relationships. In Resh, V. H. and 
Rosenberg, D. M. (eds), The Ecology of Aquatic Insects. New York and London: Praeger 
Publishers, 358-400. 
 
Monaghan, M. T., C. T. Robinson, P. T. Spaak, and J. V. Ward. 2005. Macroinvertebrate 
diversity in fragmented Alpine streams; implications for freshwater conservation. Aquatic 
Sciences 67: 454-464. 
 
National Park Service. 2008. North Cascades National Park Service Complex mountain lakes 
fishery management plan: environmental impact statement. Sedro-Woolley, WA 507p. 
 
National Research Council. 1983. Acid Deposition: Atmospheric Processes in Eastern North 
America. National Academy Press, Washington D.C. 
 
Oliver, D. R. 1983. The larvae of Diamesinae (Diptera: Chironomidae) of the Holarctic 
region-keys and diagnoses. Chironomidae of the Holarctic region. Part 1. Larvae (Ed. T. 
Wiederholm), pp. 115-131. Entomologica Scandinavia Supplement No. 19. 



50 
 
 

 

 
Pacific Northwest Aquatic Monitoring Partnership (PNAMP). 2006. Field and laboratory 
methods for the collection of benthic macroinvertebrates in wadeable streams of the Pacific 
Northwest (draft).  Available online at 
http://www.pnamp.org/web/Workgroups/meetings.cfm?strWGShort=General&meeting=all  
(accessed 10 April 2009). 

 
Pearson, K. 1901. On lines and planes of closest fit to systems of points in space. 
Philosophical Magazine 2: 559-572. 
 
Pelto, M.S. 2006. The current disequilibrium of North Cascade glaciers. Hydrological 
Processes 20: 769-779. 
 
Pennak, R. W. 1989. Freshwater invertebrates of the United States, 3rd edition. John Wiley & 
Sons, Inc., New York, NY. 
 
Pfankuch, D. J. 1975. Stream reach inventory and channel stability evaluation. USDA Forest 
Service, R1-75-002. Government Printing Office #696-260/200, Washington D.C. 26p. 
 
Pielou, E. C. 1984. The interpretation of ecological data: a primer on classification and 
ordination. John Wiley & Sons, Inc., New York, New York. 
 
Poff, N.L. 1997. Landscape filters and species traits: towards mechanistic understanding and 
prediction in stream ecology. Journal of the North American Benthological Society 16: 391-
409. 
 
Richardson, J. S., and R. J. Mackay. 1991. Lake outlets and the distribution of filter feeders: 
an assessment of hypotheses. Oikos 62: 370-380. 
 
Rosgen, D.L. 2001. A stream channel stability assessment methodology. Pages 18-26 in 
Proceedings of the 7th Federal Interagency Sedimentation Conference, Volume II 
March 25-29, Reno, Nev. Wildland Hydrology, Pagosa Springs, CO. 
 
Schindler, D. W. 1988. Effects of acid rain on freshwater ecosystems.  Science 239:149-157. 
 
Spence, J. A., and H. B. N. Hynes. 1971. Differences in benthos upstream and downstream of 
an impoundment. Journal of the Fisheries Research Board of Canada 28: 35-43. 
 
Steffan, A. W. 1971. Chironomid (Diptera) biocoenoses in Scandinavian glacier brooks. The 
Canadian Entomologist 103:477-486. 
 
Stewart, K. W.  and B. P. Stark . 2002. Nymphs of North American stonefly genera 
(Plecoptera). 2nd Edition The Caddis Press. Columbus. 
 



51 
 
 

 

Thorp, J. H. and A. P. Covich. 1991. Ecology and classification of North American 
freshwater invertebrates. Academic Press, Inc., San Diego. 
 
Tockner, K., F. Malard, P. Burgherr, C. T. Robinson, U. Uehlinger, R. Zah, and J. V. Ward. 
1997. Physico-chemical characterisation of channel types in a glacial floodplain ecosystem 
(Val Roseg, Switzerland). Archiv für Hydrobiologie 140:433-463.  
 
U.S. EPA. 2004. Wadeable stream assessment: field operations manual. EPA841-B-04-004. 
U.S. Environmental Protection Agency, Office of Water and Office of Research and 
Development, Washington, DC. 
 
U. S. EPA 1997. Volunteer stream monitoring: a methods manual. EPA 841-B-97-003. 
November U. S. Environmental Protection Agency, Office of Wetlands, Oceans & 
Watersheds, 4503F, Washington, DC 20460 
 
U.S. Geological Survey (USGS). 2003. Ice sheets and glaciations.  Available online at 
http://vulcan.wr.usgs.gov/Glossary/Glaciers/IceSheets/description_ice_sheets.html 
(accessed 6 July 2009). 
 
Vannote, R. L. and B. W. Sweeney. 1980. Geographic analysis of thermal equilibria: a 
conceptual model for evaluating the effect of natural and modified thermal regimes on 
aquatic insect communities. The American Naturalist 115: 667-695. 
 
Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell, and C. E. Cushing. 1980. The 
river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130-137. 
 
Ward, J. V., 1994. Ecology of alpine streams. Freshwater Biology 32:277-294. 
 
Ward, J. V. 1985. Thermal characteristics of running waters. Hydrobiologia 125: 31-46 
 
Weisburg, S. 1988. North Cascades: the story behind the scenery. KC Publications, Inc., Las 
Vegas. 
 
Wetzel, R. G. 2001. Limnology: Lake and River Ecosystems, Third Edition. Academic Press, 
San Diego. 
 
Wiggins, G. B. 1998. Larvae of the North American caddisfly genera (Trichoptera) 2nd 
edition. University of Toronto Press, Inc., Toronto. 
 
Wisseman, R.W. and K. Doughty 2004. Final: Characterization of benthic invertebrate 
communities in the Clackamas River wastershed, Oregon. Submitted to Portland General 
Electric Company, Portland, Oregon, Relicensing of the Clackamas Hydroelectric Project on 
the Clackamas River, Clackamas County, Oregon (FERC no. 2195).  
 



52 
 
 

 

Wotton, R. S. 1995. Temperature and lake outlet communities. Journal of Thermal Biology 
20: 121-125.  
 
Wotton, R. S. 1988. Dissolved organic material and trophic dynamics. BioScience 38: 172-
178. 
 
Zbinden, M., M. Hieber, C. T. Robinson, and U. Uehlinger. 2008. Short-term colonization 
patterns of macroinvertebrates in alpine streams. Archiv für Hydrobiologie 171:75-86. 
 



53 
 

6       FIGURES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



54 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Modified harshness-diversity curve adapted from Tockner et al. (1997).  
Alpine streams are positioned on the descending limb of the harshness-diversity 
curve. 
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Figure 2. Map showing the locations of the rhithral and kryal lake outlet study sites. 
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Figure 3. Biplot of PCA results delineating lake outlet sites into rhithral (solid line) and 
kryal (dashed line) categories based on physico-chemical variables (Pearson 1901). Area 
= lake surface area, Elev = elevation, Turb = turbidity, Cond = conductivity,  Alk = 
alkalinity, Chla = chlorophyll a, TP = total phosphorus, TN = total nitrogen, SRP = 
soluble reactive phosphorus, NO3 = nitrate/nitrite, Temp = water temperature, CMS = 
discharge, PSI = Pfankuch stability index, % Fines = % Fines, % BldBed = % Boulder & 
Bedrock.  Physico-chemical variables latitude, longitude, lake surface, pH, and dissolved 
oxygen loaded along coordinates 0, 0 and are not shown. 
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Figure 4.  Box plots comparing the median, 25th, and 75th percentiles (boxes), and the 
maximum and minimum values (whiskers) between kryal and rhithral lake outlet sites for 
physico-chemical variables with NMCAA PRE scores > 0.50.  The PRE scores for 
physico-chemical and combined data set NMCAA are reported along with Kruskal-Wallis 
chi-squared significance tests (Kruskal and Wallis 1952).  Line through Nitrate/Nitrate 
box plots denotes analysis detection limit.  
 
* indicates significantly different, P ≤ 0.05 
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Figure 4 continued.  
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Figure 5. Box plots comparing the median, 25th, and 75th percentiles (boxes), and the 
maximum and minimum values (whiskers) between kryal and rhithral lake outlet sites 
for percent silt, boulder, and bedrock substrate variables. Kruskal-Wallis chi-squared 
significance tests results reported (Kruskal and Wallis 1952).  
 
* indicates significantly different, P ≤ 0.05   
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Figure 6. Photographs of Lower Middle lake and outlet stream site. Iron hydroxide 
(FeOH) precipitate covered all substrate in the stream along with the littoral edge of the 
upstream lake. 
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Figure 7.  Box plots comparing the median, 25th, and 75th percentiles (boxes), and the 
maximum and minimum values (whiskers) between kryal and rhithral lake outlet sites for 
macroinvertebrate richness and density data. Kruskal-Wallis chi-squared significance 
tests reported (Kruskal and Wallis 1952).  
 
* indicates significantly different, P ≤ 0.05) 
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Figure 8.  Box plots comparing the median, 25th, and 75th percentiles (boxes), and the 
maximum and minimum values (whiskers) for kryal and rhithral lake outlet sites for 
macroinvertebrate taxon densities with NMCAA mean PRE scores > 0.50 (Matthews and 
Hearne 1991).  PRE scores for macroinvertebrate and combined data set NMCAA reported 
along with Kruskal-Wallis chi-squared significance tests (Kruskal and Wallis 1952). 
 
* indicates significantly different, P ≤ 0.05) 
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Figure 8 continued. 
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Figure 8 continued. 
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Figure 9. Aerial photographs (above) of the emergence of M-25-01 lake over the past 60 years.  Below is a recent photograph of 
receding Bacon Glacier and the ice-free lake taken in September, 2007.  
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Figure 10. Cluster dendrogram of lake outlet study sites based on benthic macro-
invertebrates.  Euclidean distance measure and Ward’s linkage metrics (Everitt 1993) 
were used on presence/absence data. 
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Figure 11. Statistically significant (P ≤ 0.05) Kendall’s correlation analyses (Kendall 1938) 
between physico-chemical variables and macroinvertebrate density and richness indices.  
Correlation statistic and p-value reported.  No EPT taxa were collected at kryal site M-25-
01, therefore this site is not plotted against pH, alkalinity, and lake surface area for EPT 
taxon richness or density.   
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Figure 11 continued. 
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Figure 11 continued. 
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Figure 12. Dissolved oxygen concentration (mg/L) and macroinvertebrate taxon density 
(ind./square meter) for lake outlet sites for statistically significant (P < 0.05) Kendall’s 
correlation analyses (Kendall 1938). 
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Figure 12 continued.  
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Figure 13. Milner et al.’s (2001) modified conceptual model describing the likely first 
appearance of macroinvertebrate taxa along and upstream-downstream continuum from 
the glacier margin with increasing water temperature and channel stability during the melt 
season for European glacier-fed rivers.  Arrows indicate taxa that may be found across 
this temperature range in other geographical areas – SA = South America, NA = North 
America. 
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Figure 14. Plot of kryal lake outlet channel stability and water temperature measurements 
with table of macroinvertebrate taxa collected at each kryal lake outlet site.  In 
comparison to Milner et al.’s (2001) modified conceptual model (Figure 13), my kryal 
lake outlet sites do not follow the same pattern of likely first appearance in relation to 
water temperature and channel stability.   
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Figure 15. Conceptual model of landscape filters (Hieber et al. 2005) determining 
assemblage composition in different alpine stream types.  Each hierarchical level 
represents an environmental feature and the dominant habitat characteristics that further 
filter the invertebrate species.  Macroinvertebrate drawings used with permission from the 
artist Christine Elder.  
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7  TABLES 
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Site Site Code Type Elevation (m) Latitude (UTM) Longitude (UTM) Lake Area (Hectares) Discharge (CMS) Pfankuch Index %Fines % Boulder/Bedrock
EP-11-01 EP-11-01 Kryal 1209 636832 5382068 4.3 3.77 23 7 66
Lousy Lousy Kryal 1117 624383 5410182 8.5 0.81 33 0 30
M-25-01 M-25-01 Kryal 1602 610362 5390356 15.6 0.19 18 60 20
Ouzel Ouzel Kryal 1728 627097 5424803 1.1 0.88 50 40 0
Price Price Kryal 1193 602078 5412477 21.3 1.12 33 6 8
Middle, Lower MidLow Rhithral 1707 620947 5415997 1.2 0.07 17 0 45
Middle, Upper MidUp Rhithral 1740 620657 5416104 1.8 0.04 15 0 18
Tapto, Upper TapUp Rhithral 1756 619540 5415758 4.1 0.01 17 0 12
Tapto, West TapWest Rhithral 1725 619168 5415773 0.9 0.02 17 0 33
Thornton, Upper UpThorn Rhithral 1536 622059 5394358 12.7 0.06 18 6 10

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Location and general physical characteristics of the lake outlet study sites.  Site codes are for lake outlets used in the text. 



 

 

77

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

Table 2. Pfankuch index of bottom stability (PSI; Pfankuch 1975) rating system for lake outlet sites.  Totals from each of the 
rating categories were added together to determine the stream stability index for the stream reach (< 15 excellent, 16 – 30 good,  
31 – 45 fair, 46 – 60 poor).  
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Analyte Abbr. Method Reference (AHPA 2005)
Detection or     
Sensitivity Limit

Alkalinity Alk SM2320, titration  + 0.6 mg/L

Conductivity – lab Cond SM2510  + 0.8 µS/cm

Dissolved Oxygen – field DO
SM4500-O G., membrane electrode (field meter)   
or drop count titration/modified Winkler

 + 0.1 mg/L (field meter) 
or 0.2 mg/L (drop count)

Nitrogen – ammonia NH3 SM4500-NH3 H., flow inject, phenate 10 µg Nitrogen/L

Nitrogen – nitrate/nitrite NO3 SM4500-NO3 I., flow inject,     Cd reduction 10 µg Nitrogen/L

Nitrogen – total TN SM4500-N C., flow inject, persulfate digest 20 µg -Nitrogen/L

pH – lab pH SM4500-H+, electometric lab  + 0.1 units

Phosphorus – soluble reactive SRP SM4500- P G., flow inject 3 µg Phosphorus/L

Phosphorus – total TP SM4500- P H., flow inject, persulfate digest 5 µg Phosphorus/L

Temperature – field Temp
SM2550 thermistor (field meter)                            
or field thermometer

 + 0.1 C

Total Suspended Solids TSS 2540D 2.6 mg L-1

Turbidity Turb SM2130, nephelometric  + 0.2 NTU

Chlorophyll a Chla SM10200 H  + 0.1 mg/m3

 
 
 
 
 
 
 
 
 

 
 

 
 

 
 
 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3. Summary of analytical methods used for lake outlet water chemistry as outlined 
by the Institute for Watershed Studies.  Nitrate/nitrite is a measure of combined 
concentrations of nitrate and nitrite 
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Site Sampling Date Type Temp DO pH Alk. Cond. TSS* Turb. Chla TP SRP* TN NO3 NH3* Br Cl Fl NO3-An SO4
EP-11-01 Aug 31, 2007 Kryal 2.2 11.9 6.7 4.7 16.8 0.0177* 17.5 0.12 20.21 2.90* 26.9 21.5 1.5* 0 0.09 0.00 0.00 0.51
Lousy Sept 11, 2007 Kryal 6.0 12.9 6.7 5.5 24.2 0.0295* 51.1 0.03 16.28 1.93* 6.7* 20.0 2.0* 0 0.14 0.00 0.08 0.66
Ouzel Sept 12, 2007 Kryal 4.3 11.8 6.2 1.3 3.8 0.0080* 9.5 0.14 7.06 2.30* 9.8* 13.0 -4.5* 0 0.17 0.01* 0.01 0.05
Price Sept 2, 2007 Kryal 7.2 11.4 6.5 2.8 11.0 0.0043* 12.6 0.59 6.42 1.60* 3.0* 0.5* -3.3* 0 0.13 0.02 0.02 0.48
M-25-01 Sept 20, 2007 Kryal 4.8 10.4 5.1 0.0* 18.6 0.0010* 0.9 0.18 0.02 -0.03* 18.7* 20.7 -4.7* 0 0.13 0.00 0.08 0.73
Median 4.8 11.8 6.5 3.8 16.8 0.0080 12.6 0.14 7.06 2.1 9.8 20.0 1.8 0.0 0.13 0.00 0.02 0.51
Standard Deviation 1.9 0.9 0.7 1.9 7.8 0.0121 19.3 0.2 8.14 0.6 9.7 8.9 0.4 0.0 0.03 0.01 0.04 0.26
Middle, Lower Sept 9, 2007 Rhithral 9.5 10.0 4.8 0.0* 76.6 0.0016* 3.2 0.02 17.73 1.64* 0.6* 4.6* -4.9* 0 0.14 0.15 0.00 0.91
Middle, Upper Sept 9, 2007 Rhithral 9.5 10.0 6.2 2.4 26.8 0.0004* 0.4 1.20 7.00 3.31* 13.7* 1.1* -1.1* 0 0.10 0.03 0.03 0.76
Tapto, Upper Sept 10, 2007 Rhithral 10.5 10.0 5.7 -0.4* 4.3 0.0007* 0.2 2.15 0.63 1.60* 44.1 2.8* 1.6* 0 0.12 0.00 0.00 0.34
Tapto, West Sept 9, 2007 Rhithral 12.0 9.0 5.7 0.6 9.3 -0.0012* 0.4 0.30 0.52 0.79* 41.7 5.2* 7.2* 0 0.12 0.01* 0.01 0.57
Thornton, Upper Sept 15, 2007 Rhithral 10.2 10.0 6.2 1.4 5.5 0.0005* 0.2 0.21 4.34 0.71* 18.3* 0.6* -4.7* 0 0.13 0.06 0.00 0.23
Median 10.2 10.0 5.7 1.4 9.3 0.0006 0.4 0.30 4.30 1.6 18.3 2.8 4.4 0.0 0.1 0.0 0.00 0.57
Standard Deviation 1.0 0.4 0.6 0.9 30.5 0.0007 1.3 0.89 7.09 1.0 18.7 2.0 4.0 0.0 0.0 0.1 0.01 0.28

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
    *Values below detection limits. 
 

Table 4. Water chemistry of lake outlet study sites. TSS, SRP, and NH3 were excluded from analysis. Temp = water temperature 
C°, DO = dissolved oxygen (mg/L), Alk.= alkalinity (mg/L, Cond. = Conductivity (μS/cm), TSS = total suspended solids (mg/L), 
Turb. = turbidity (NTU), Chla = Chlorophyll a (mg/m3), TP = total phosphorus (μg - P/L), SRP = soluble reactive phosphorus 
(μg - P/L), TN = total nitrogen (μg - N/L), NO3 = nitrate/nitrite (μg - N/L), NH3 = ammonia (μg - N/L), Br = bromide (mg/L),     
Cl = chloride (mg/L), Fl = flouride (mg/L), NO3-An = nitrate/nitrite (mg/L) anion analysis, SO4 = sulfate (mg/L).   
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Variable Mean PRE Score Variable PRE Variable PRE
Early Instar Chironomidae 0.78 Dissolved Oxygen 1.00 Dissolved Oxygen 1.00
Acari 0.67 Early Instar Chironomidae 1.00 Stream Discharge 1.00
Corynoneura sp. 0.67 Stream Discharge 1.00 Water Temperature 1.00
Early Instar Ephemeroptera 0.67 Water Temperature 1.00 Pfankuch Stability Index 0.78
Early Instar Plecoptera 0.67 Acari 0.78 Chlorophyll a 0.60
Eukiefferiella claripennis  Gr. 0.67 Corynoneura sp. 0.78 Elevation 0.60
Harpacticoida 0.67 Early Instar Ephemeroptera 0.78 Lake Surface Area 0.60
Megarcys sp. 0.67 Early Instar Plecoptera 0.78 Longitude (UTM Easting) 0.60
Polycelis coronata 0.67 Eukiefferiella claripennis  Gr. 0.78 Nitrate/Nitrite 0.60
Rhithrogena sp. 0.67 Harpacticoida 0.78 Turbidity 0.60
Rhyacophila rotunda  Gr. 0.67 Megarcys sp. 0.78 % Fine Sediment 0.50
Setvena sp. 0.67 Pfankuch Stability Index 0.78
Zapada columbiana 0.67 Poduridae 0.78
Zavrelimyia sp. 0.67 Polycelis coronata 0.78
Isotomidae 0.51 Rheocricotopus sp. 0.78
Poduridae 0.50 Rhithrogena sp. 0.78
Rheocricotopus sp. 0.50 Rhyacophila rotunda  Gr. 0.78

Setvena sp. 0.78
Zapada columbiana 0.78
Zavrelimyia sp. 0.78
Ameletus sp. 0.60
Chlorophyll a 0.60
Elevation 0.60
Lake Surface Area 0.60
Longitude 0.60
Nematoda 0.60
Nitrate/Nitrite 0.60
Oligochaeta 0.60
Turbidity 0.60

Benthic Invertebrate Dataset Combined Dataset Physico-Chemical Dataset

Table 5. Non-metric clustering PRE scores for the variables possessing the highest 
predictive power in assigning sites to kryal and rhithral lake outlet sites for benthic 
invertebrate, combined, and physico-chemical datasets (Matthews and Hearne 1991).  
Three significant cluster solutions were found for the benthic invertebrate dataset and the 
mean PRE score is reported.  The combined and physico-chemical datasets each had a 
single significant cluster solution.  
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Physico-chemical Parameter Chi-Square P-value
Elevation (ft) 3.15 0.08
Latitude (UTM) 0.27 0.60
Longitude (UTM) 1.32 0.25
Lake Surface Area (hectares) 1.84 0.17
Water Temperature (C°) 6.86 0.01*
Dissolved Oxygen (mg/L) 7.26 0.01*
Stream Discharge (CMS) 6.82 0.01*

Pfankuch Stability Index (PSI) 6.52 0.01*
pH 1.84 0.17
Specific Conductance (µS/cm) 0.01 0.92
Alkalinity (mg/L) 1.84 0.17
Turbidity (NTU) 5.77 0.02*

Chlorophyll a  (mg/m3) 1.32 0.25
Total Phosphorus (μg-P/L) 0.53 0.46
Total Nitrogen (μg-N/L) 0.53 0.46
Nitrate/Nitrite (μg-N/L) 2.45 0.12
% Silt Substrate 3.72 0.05*
% Sand Substrate 1.12 0.29
% Gravel Substrate 0.55 0.46
% Cobble Substrate 2.47 0.12
% Boulder Substrate 4.48 0.03*
% Bedrock Substrate 4.04 0.04*
% Fines (Silt & Sand) 4.05 0.04*
% Boulder/Bedrock 0.1 0.75
Flouride (mg/L) 2.97 0.08
Chloride (mg/L) 1.11 0.29
Bromide (mg/L) NA NA
Nitrate/Nitrite (mg/L) 2.22 0.14
Sulfate (mg/L) 0.27 0.60

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
   * indicates significantly different, P < 0.05 
 
 
 
 
 

Table 6. Kruskal-Wallis multisample tests with Chi-square approximation between kryal 
and rhithral lake outlet sites for physico-chemical variables (Kruskal and Wallis 1952).   
Soluble reactive phosphorus, ammonia, and total suspended solid concentrations were all 
below detection limit and not included in test. 
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Phylum Class Order Family (Subfamily) Genus species Kryal Rhithral
Arthropoda Insecta Ephemeroptera Ameletidae Ameletus sp.Eaton x x

Ephemerellidae Drunella doddsi Needham x
Heptageniidae Cinygmula sp. McDunnough x

Epeorus deceptivus McDunnough x
Epeorus grandis McDunnough x
Rhithrogena sp. Eaton x

Plecoptera Capniidae Capnura sp. Banks x x
Utacapnia sp. Nebeker and Gaufin x

Nemouridae Podmosta  sp. Ricker x
Zapada columbiana Claassen x
Zapada Oregonensis  Gr. Claassen x
Megarcys sp. Klapálek x

Perlodidae Setvena sp. Illies x
Taeniopterygidae Taenionema sp. Banks x

Trichoptera Apataniidae Apatania sp. Kolenati x
Brachycentridae Micrasema sp. McLachlan x

Parapsyche elsis Milne x
Hydropsychidae Desmona mono Denning x
Limnephilidae Ecclisomyia sp.Banks x x

Ecclisocosmoecus scylla Milne x
Psychoglypha sp. Ross x x

Rhyacophilidae Rhyacophila brunnea  Gr. Banks x
Rhyacophila rotunda  Gr. Banks x
Rhyacophila verrula  Gr. Milne x x

Uenoidae Neothremma sp. Dodds & Hisaw x
Diptera Chironomidae

    (Chironominae) Micropsectra  sp. Kieffer x
Paracladopelma sp. Harnish x
Paratanytarsus sp. Bause x
Polypedilum sp. Kieffer x
Tanytarsus sp. Van Der Wulp x

    (Diamesinae) Diamesa sp. Meige x x
Pagastia sp. Oliver x
Pseudodiamesa sp. Goetghe buer x x

    (Orthocladiinae) Chaetocladius dentiforceps Gr. Edwards x x
Chaetocladius sp. Kieffer x x
Corynoneura  sp. Winnertz x
Diplocladius sp. Kieffer x x
Eukiefferiella brehmi Gr. Gowin x
Eukiefferiella claripennis  Gr. Lundbeck x
Eukiefferiella devonica  Gr. Edwards x
Eukiefferiella gracei Gr. Edwards x x
Heleniella sp. Saether x
Heterotrissocladius marcidus Walker x
Hydrobaenus sp. Fries x x
Krenosmittia sp. Thienemann x
Limnophyes sp. Eaton x
Nanocladius parvulus Gr. Keiffer x
Nanocladius sp. Kieffer x
Orthocladius sp. Wulp x x
Orthocladius (Euorthocladius) Thienemann x x
Orthocladius (Orthocladius) Wulp x x

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 7. List of all taxa found at kryal and rhithral lake outlet sites. 
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Phylum Class Order Family (Subfamily) Genus species Kryal Rhithral
Arthropoda Insecta Diptera Chironomidae

    (Orthocladiinae) Parametriocnemus sp. Thienemann x
Parorthocladius sp. x
Psectrocladius sp. Kieffer x
Psectrocladius sordidellus Gr. Zetterstedt x
Pseudorthocladius sp. x
Psilometriocnemus sp. Saether x
Rheocricotopus sp. Thienemann and Harnisch x
Rheocricotopus fuscipes  Gr.Kieffer x
Synorthocladius sp. x
Thienemanniella sp. Kieffer x x
Tvetenia sp.Kieffer x x
Tvetenia bavarica  Gr. Goetghebuer x x

    (Podonominae) Parochlus sp. Edwards x
    (Tanypodinae) Krenopelopia sp. Fittkan x

Procladius sp. Skuse x
Thienemannimyia  Gr. x
Zavrelimyia sp. Kittkau x

Tipulidae Gonomyodes sp. x
Hesperoconopa sp. Alexander x
Pedicia sp. Latreille x
Molophilus sp. Curtis x

Ceratopogonidae
    Ceratopogoninae (subfamily) x

Atrichopogen sp. x
Empididae Clinocera sp. Meigen x

Oreogeton sp. Schiner x
Simulidae Simulium sp. Latreille x

Piezosimulium sp. x
Dicranota sp. x

Hemiptera Heteroptera (suborder) x
Homoptera (suborder) x

Coleoptera Dytiscidae
    (Dytiscinae) x

Agabus sp. Leach x
Hydrocolus sp. Roughley and Larson, Alarie and Roughley x
Hygrotus sp. Stephens x
Stictotarsus striatellus LeConte x

Hydroporinae 
    (Hydroporinae) x
Hydrophilidae Latreille x
    (Sphaeridiinae) x
Staphylinidae Latreille x

Stenus sp. Latreille x
Arachnidae Acari (subclass) x

Araneae x
Entognatha Collembola Isotomidae x

Poduridae x
Maxillopoda Harpacticoida G. O. Sars x

Cyclopoida Burmeister x x
Calanoida  G. O. Sars x

Annelida Oligochaeta x x
Platyhelminthes Turbellaria Tricladida Planariidae Polycelis coronata Girard x x
Nematoda x x

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Table 7 continued. 
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FFG Kryal Rhithral
Collector-Gatherer 51 65
Omnivore 29 3
Shredder 7 3
Unknown 4 6
Scraper 4 1
Predator 3 10
Parasite 2 12
Macrophyte Shredder 0 <1
Collector-Filterer 0 <1
Totals 100 100

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 8. Relative percentage of  functional feeding groups (FFG) present at kryal and 
rhithral lake outlet streams, based on abundance (Merritt and Cummin 1996 with 
modifications by Wisseman and Doughty 2004). 
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Habit Type Kryal Rhithral
Sprawlers 54 21
Burrowers 24 8
Unknown 11 49
Clingers 10 17
Attachers 0 1
Swimmers <1 4
Hyporheic <1 <1
Totals 100 100

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 9. Relative percentage of  habit groups present at kryal and rhithral lake outlet 
streams, based on abundance (Merritt and Cummin 1996 with modifications by Wisseman 
and Doughty 2004). 
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Cluster Solution a Cluster Solution b Cluster Solution c
Tapto West Misclassified Lower Middle Misclassified M-25-01 Misclassified
Category Cluster 1 Cluster 2 Category Cluster 1 Cluster 2 Category Cluster 1 Cluster 2
Kryal 6 0 Kryal 6 0 Kryal 4 0
Rhithral 0 4 Rhithral 0 4 Rhithral 0 6

Variable PRE Variable PRE Variable PRE
Eukiefferiella claripennis  Gr. 1.0 Acari 1.0 Megarcys sp. 1
Setvena sp. 1.0 Corynoneura sp. 1.0 Rhithrogena sp. 1
Early Instar Chironomidae 0.78 Early Instar Ephemeroptera 1.0 Early Instar Chironomidae 0.78
Isotomidae 0.71 Early Instar Plecoptera 1.0 Parorthocladius sp. 0.71
Acari 0.5 Harpacticoida 1.0 Acari 0.5
Corynoneura sp. 0.5 Polycelis coronata 1.0 Corynoneura sp. 0.5
Early Instar Ephemeroptera 0.5 Rhyacophila rotunda  Gr. 1.0 Cyclopoidae 0.5
Early Instar Plecoptera 0.5 Setvena sp. 1.0 Diamesa sp. 0.5
Harpacticoida 0.5 Zapada columbiana 1.0 Early Instar Ephemeroptera 0.5
Megarcys sp. 0.5 Ameletus sp. 0.78 Early Instar Plecoptera 0.5
Orthocladius (Orthocladius) 0.5 Early Instar Chironomidae 0.78 Eukiefferiella brehmi Gr. 0.5
Poduridae 0.5 Oligochaeta 0.78 Eukiefferiella claripennis Gr. 0.5
Polycelis coronata 0.5 Eukiefferiella brehmi Gr. 0.71 Eukiefferiella gracei  Gr. 0.5
Pseudodiamesa sp. 0.5 Isotomidae 0.71 Harpacticoida 0.5
Rheocricotopus sp. 0.5 Micropsectra sp. 0.71 Micropsectra sp. 0.5
Rhithrogena sp. 0.5 Cyclopoidae 0.5 Orthocladius (Orthocladius) 0.5
Rhyacophila rotunda  Gr. 0.5 Eukiefferiella claripennis  Gr. 0.5 Poduridae 0.5
Rhyacophila verrula  Gr. 0.5 Eukiefferiella gracei  Gr. 0.5 Polycelis coronata 0.5
Tvetenia sp. 0.5 Megarcys sp. 0.5 Rheocricotopus sp. 0.5
Zapada columbiana 0.5 Orthocladius (Orthocladius) 0.5 Rhyacophila Rotunda Gr. 0.5
Zavrelimyia sp. 0.5 Poduridae 0.5 Setvena sp. 0.5

Rheocricotopus sp. 0.5 Thienemanniella sp. 0.5
Rhithrogena sp. 0.5 Zapada columbiana 0.5
Thienemanniella sp. 0.5 Zavrelimyia sp. 0.5
Zavrelimyia sp. 0.5

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Table 10.  Contingency tables of the significant (chi-squared, P < 0.05) site classifications 
for benthic macoinvertebrate NMCAA cluster solutions (Matthews and Hearne 1991).  
Three different cluster solutions were significantly associated with kryal and rhithral 
water sources.  In each cluster solution a different lake outlet site was misclassified.  
Tapto West was misclassified as a kryal site in cluster a, Lower Middle was misclassified 
as a kryal site in cluster b and M-25-01 was misclassified as a rhithral site in cluster 
solution c.  Below each contingency table are the associated PRE values for the variables 
with scores > 0.50.  
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Rhithral No. of Sites Rhithral No. of Sites 
PLECOPTERA Continued
Zapada columbiana 5 Clinocera sp. 1
Setvena sp. 4 Oreogeton sp. 1

Simulium sp. 1
TRICHOPTERA Piezosimulium sp. 1
Rhyacophilla rotunda  Gr. 4 Dicranota sp. 1
Rhyacophilla brunnea  Gr. 2
Neothremma sp. 2 COLEOPTERA
Apatania sp. 1 Hygrotus sp. 2
Micrasema sp. 1 Agabus sp. 1
Desmona  mono 1 Dytiscinae 1
Parapsyche elsis 1 Stictotarus striatellus 1
Ecclisocosmoecus scylla 1 Sphaeridiinae 1

Stenus sp. 1
DIPTERA Hydrocolus sp. 1
Chironomidae
Eukiefferiella claripennis Gr. 5 OTHER
Rheocricotopus sp. 5 Harpacticoida 5
Zavrelimyia sp. 4 Poduridae 4
Corynoneura sp. 4 Isotomidae 3
Eukieffella brehmi Gr. 3 Heteroptera 1
Psectrocladius sp. 3 Homoptera 1
Micropsectra sp. 3 Calanoida 1
Eukiefferiella devonica  Gr. 2
Heterotrissocladius marcidus 2 Kryal No. of Sites 
Parochlus sp. 2 PLECOPTERA
Rheocricotopus fuscipes Gr. 2 Megarcys sp. 5
Heleniella sp. 1 Zapada oregonensis Gr. 2
Krenosmittia sp. 1 Utacapnia sp. 2
Krenopelopia sp. 1 Taenionema sp. 2
Limnophyes sp. 1 Podmosta sp. 2
Nanocladius sp. 1
Pagastia sp. 1 EPHEMEROPTERA
Parametriocnemus sp. 1 Rhithrogena sp. 5
Paratanytarsus sp. 1 Epeorus spp. 3
Polypedilum sp. 1 Drunella doddsii 1
Procladius sp. 1 Cinygmula sp. 1
Psectrocladius sordidellus Gr. 1
Pseudorthocladius sp. 1 DIPTERA
Psilometriocnemus sp. 1 Chironomidae
Synorthocladius sp. 1 Parorthocladius sp. 3
Tanytarsus sp. 1 Tipulidae
Thienemannimyia Gr. 1 Gonomyodes sp. 2
Paracladopelma sp. 1 Hesperoconopa sp. 1
Other Dipterans Molophilus sp. 1
Ceratopogoninae 2
Pedicia sp. 2

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 11. Non-overlapping taxa in kryal and rhithral lake outlet streams.  The number of 
sites at which each taxon was present is also reported. 
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Table 12. Results of significant (P < 0.05) Kendall’s correlation analyses between macroinvertebrate density and diversity 
indices and physico-chemical variables.   

Macroinvertebrate Indicies Physico-chemical Variable Kendall’s τ P-value 

Total Density +water temp; -discharge; -DO; -turbidity +0.58; -0.51; -0.55; -0.51  0.024; 0.047; 0.033; 0.047 

EPT Density -lake surface area -0.51 0.047 

Non-Insect Density +water temp; -discharge; -DO; -turbidity +0.67; -0.51; -0.79; -0.60 0.007; 0.047; 0.002; 0.017 

Total taxon richness +water temp +0.57 0.024 

EPT taxon richness +pH; +alkalinity +0.71; +0.61  0.007; 0.019 

Non-insect taxon richness 
+water temp; -discharge; -DO; -turbidity;     
-PSI; -%Fines 

+0.77; -0.65; -0.56; -0.60;  
-0.57; -0.63 

0.003; 0.01; 0.036; 0.022;  
0.047; 0.023 
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Site Original Sort 20% Re-sort Count % Sorting Efficacy
Upper Middle - 3 806 24 85
Lower Middle - 2 186 1 97
Lousy - 1 49 0 100
Lousy - 2 58 1 91
Upper Thornton - 1 429 6 93

 A    APPENDIX A: QUALITY CONTROL RESULTS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix A.1. Macroinvertebrate sorting quality control results for 5 randomly selected 
macroinvertebrate samples.  Data presented include number of specimens found in 
original sort, number of specimens found in re-sort of 20% of sample, and overall sorting 
efficacy.  Median sorting efficacy was 93%. 
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Taxa Original Quality Control Original Quality Control Original Quality Control Original Quality Control Original Quality Control
Heteroptera (sub-order) 0 0 0 0 1 1 0 0 0 0
Isotomidae (family) 0 0 0 0 0 0 1 1 0 0
Harpacticoida (order) 0 0 0 0 0 0 2 2 0 0
Calanoida (order) 0 0 0 0 0 0 1 1 0 0
Nematoda (phylum) 0 0 0 0 2 2 2 2 0 0
Polycelis coronata (Planariidae) 0 0 0 0 1 1 25 25 8 8
Araneae (Arachnidae) 1 1 0 0 0 0 0 0 0 0
Acari (Arachnidae) 0 0 0 0 22 22 4 4 5 5
Coleoptera (early instar) 0 0 0 0 1 1 0 0 0 0
Stictotarus striatellus (Dytiscidae) 0 0 0 0 2 2 1 1 3 3
Hydroporinae (Dytiscidae) 0 0 0 0 0 0 0 0 1 1
Ameletus (Ameletidae) 0 0 2 2 6 6 13 13 0 0
Rhithrogena (Heptageniidae) 4 4 0 0 0 0 0 0 0 0
Plecoptera (early instar) 1 1 0 0 0 0 3 3 0 0
Capniidae (family) 1 1 0 0 0 0 0 0 0 0
Utacapnia (Capniidae) 0 0 5 5 0 0 0 0 0 0
Nemouridae (early instar) 5 5 0 0 0 0 0 0 0 0
Zapada columbiana (Nemouridae) 0 0 0 0 3 3 55 55 0 0
Zapada oregonensis Gr. (Nemouridae) 3 3 0 0 0 0 0 0 0 0
Megarcys (Perlodidae) 2 2 1 1 0 0 0 0 0 0
Stevena  (Perlodidae) 0 0 0 0 1 1 0 0 0 0
Taenionema (Taeniopterygidae) 1 1 0 0 0 0 0 0 0 0
Desmona mono (Limnephilidae) 0 0 0 0 0 0 0 0 1 1
Psychoglypha (Limnephilidae) 0 0 1 1 0 0 0 0 0 0
Rhyacophila rotunda Gr. (Rhyacophilidae) 0 0 0 0 2 2 1 1 0 0
Ceratopogoninae (Ceratopogonidae) 0 0 0 0 1 1 0 0 0 0
Chironomidae (early instar) 10 10 2 2 56 56 143 143 137 132
Total 28 28 11 11 98 98 251 251 155 150

Upper Tapto - 6Lousy - 1 Price - 1 Upper Tapto - 1 Upper Tapto - 2

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix A.1a. Macroinvertebrate sample count quality control results for 5 randomly selected macroinvertebrate samples.  
Original and quality control counts presented for taxa found in each sample excluding Chironomidae subfamily, genera, and 
species counts which were counted by Rhithron Associates, Inc.  Original counts were 99% accurate. 
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Analyte Site Original Lab Duplicate Relative Difference (%) Absolute Difference Field Duplicate Relative Difference (%) Absolute Difference
pH Upper Thornton 6.230 6.1500 1 0.08 6.030 3 0.200
Turbidity (NTU) Upper Thornton 0.214 0.2210 3 0.01 0.266 24 -0.052
Conductivity (µS/cm) Upper Thornton 5.500 5.5000 0 0.00 5.300 4 0.200
Alkalinity (mg/L) Upper Thornton 1.400 1.4000 0 0.00 1.600 14 0.200

Middle, Upper 2.400 2.4000 0 0.00
Chlorophyll a (μg/L) Upper Thornton 0.212 0.2474 14 0.04 0.289 36 0.080
Total Phosphorus (μg-P/L) Upper Thornton 4.337* 4.0928* 6 0.24 4.465* 3 0.130

Ouzel 7.064 7.3605 4 0.30
Total Nitrogen (μg-N/L) Upper Thornton 18.292* 18.8681* 3 0.58 1.399* 92 16.892

Ouzel 9.758* 8.8161* 10 0.94
Soluble Reactive Phosphate (μg-P/L) Upper Thornton 0.708* 0.4321* 39 0.28 0.053* 92 0.657
Nitrate/Nitrite (μg-N/L) Upper Thornton 0.624* 0.4694* 25 0.15 1.413* 128 0.790
Ammonia (µg/L) Upper Thornton -4.704*  -6.0678* 22 1.36 -0.948* 80 3.752

Lousy 2.026 3.1983 37 1.17

Total Suspended Solids (mg/m3) Upper Thornton 0.001* -0.0003* 60 0.001 0.001 125 0.001
Dissolved Oxygen (mg/L) Upper Thornton 10.000 10.0000 0 0.00 10.000 0 0.000

   
 
 
 
 
 
 
 
 
 
 
 
                           
 
 

 
 

  * indicates concentration below detection limit

Appendix A.2. Summary of lab and field duplicate water quality control results for 10% of the samples collected. 
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Macroinvertebrate Taxa Sample
Nematoda 13
Oligochaeta 2
Acari 3
Ephemeroptera
    Ameletus sp. 1
Drunella doddsii 2
Cinygmula sp. 7
Epeorus grandis 1
Rhithrogena sp. 2
Plecoptera
    Podmosta sp. 1
    Zapada oregonensis  Gr. 130
    Perlodidae (early instar) 8
    Megarcys sp. 4
    Taeniopterygidae (early instar) 3
Tricoptera
    Limnephilidae (early instar) 4
    Rhyacophila verrula  Gr. 6
Chironomidae
    Chaetocladius sp. 20
    Diamesa sp. 117
    Eukiefferiella gracei  Gr. 34
    Hydrobaenus sp. 14
    Orthocladiinae (early instar) 7
    Orthocladius sp. 375
    Parorthocladius sp. 3
    Pseudodiamesa sp. 9
Tipulidae (early instar) 1
    Gonomyodes sp. 4
    Hesperoconopa sp. 1
    Molophilus sp. 1

    B         APPENDIX B: MACROINVERTEBRATE DATA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix B. Macroinvertebrates collected at study site, EP-11-01, 30 August 2007.  
Sample represents the number of individuals collected in a composite of six Surber 
samples (0.54 m2).    
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Macroinvertebrate Taxa 1 2 3 4 5 6
Oligochaeta 0 0 0 0 2 0
Polycelis coronata 0 0 0 0 1 0
Araneae 1 0 0 0 0 0
Ephemeroptera (early instar) 0 0 0 1 0 0
    Ameletus  sp. 0 0 0 1 0 0
    Epeorus deceptivus 0 10 1 1 0 1
    Rhithrogena  sp. 4 5 3 2 5 1
Plecoptera (early instar) 1 5 3 6 4 1
    Capniidae 1 0 0 0 0 0
    Utacapnia sp. 0 0 1 0 0 0
    Nemouridae (early instar) 5 0 0 0 0 0
    Podmosta  sp. 0 0 0 1 0 0
    Zapada oregonensis  Gr. 3 1 0 2 1 0
    Perlodidae (early instar) 0 0 3 6 0 1
    Megarcys sp. 2 2 18 1 2 3
    Taenionema sp. 1 0 0 1 0 0
Tricoptera
    Ecclisomyia sp. 0 1 0 0 0 0
Chironomidae (early instar) 10 3 0 25 2 0
    Chaetocladius dentiforceps Gr. 0 0 1 0 0 0
    Diamesa  sp. 1 0 7 4 0 0
    Orthocladius sp. 19 22 11 33 5 8
    Orthocladius(Euorthocladius) 0 0 0 2 0 0
    Orthocladius(Orthocladius) 0 9 0 12 0 2
    Tvetenia bavarica Gr. 0 0 0 3 0 0

Sample

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Appendix B (continued).  Macroinvertebrates collected at study site, Lousy, 11 September 
2007.  Units in numbers of macroinvertebrates per 0.09 m2.    
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Macroinvertebrate Taxa Sample
Nematoda 8
Oligochaeta 2
Chironimidae
    Diamesa sp. 1
    Diplocladius sp. 1
    Orthocladius sp. 3

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix B (continued). Macroinvertebrates collected at study site, M-25-01, 20 
September 2007.  Sample represents the number of individuals collected in a composite of 
six Surber samples (0.54 m2).    
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Macroinvertebrate Taxa Sample
Nematoda 18
Polycelis coronata 3
Ephemeroptera 1
    Epeorus  sp. 11
    Rhithrogena sp. 10
Plecoptera 1
    Plecoptera (early instar) 28
    Capniidae 1
    Capnura sp. 1
    Megarcys sp. 6
    Taenionema sp. 622
Chironomidae (early instar) 1
    Diamesa sp. 252
    Orthocladius sp. 4
    Orthocladius (Orthocladius) 5
    Parorthocladius sp. 39
    Pseudodiamesa sp. 1
    Thienemanniella sp. 1
    Tvetenia sp. 8
    Tvetenia bavarica  Gr. 1
Tipulidae
    Gonomyodes sp. 10

pp ( )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix B (continued). Macroinvertebrates collected at study site, Ouzel, 12 September 
2007.  Sample represents the number of individuals collected in a composite of six Surber 
samples (0.54 m2).    
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Macroinvertebrate Taxa 1 2 3 4 5 6
Cyclopoidae 0 0 1 0 0 0
Nematoda 0 0 0 0 2 0
Oligochaeta 0 1 0 0 11 0
Polycelis coronata 0 2 0 1 4 0
Araneae 0 1 0 0 0 0
Ephemeroptera
    Ameletus sp. 2 4 2 2 2 1
    Rhithrogena sp. 0 1 0 0 0 0
Plecoptera (early instar) 0 0 1 0 0 0
    Utacapnia sp. 5 1 5 2 4 0
    Megarcys sp. 1 0 0 2 1 1
Tricoptera
    Ecclisomyia sp. 0 0 0 0 1 0
    Psychoglypha  sp. 1 0 0 0 0 0
Chironomidae (early instar) 2 0 2 4 72 22
    Parorthocladius sp. 3 2 3 0 0 1
    Pseudodiamesa sp. 0 0 4 0 1 1
    Tvetenia sp. 0 0 0 1 1 0

Sample
pp ( ) y , , p

 
 
 
 

 
 
 
 
 
 
 
 

 
 

 
 

 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix B (continued).  Macroinvertebrates collected at study site, Price, 1 September 
2007.  Units in numbers of macroinvertebrates per 0.09 m2.    
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Macroinvertebrate Taxa 1 2 3 4 5 6
Isotomidae 0 0 0 1 0 0
Harpacticoida 8 19 134 90 6 104
Cyclopoidae 1 2 4 3 5 5
Nematoda 236 28 125 68 23 129
Oligochaeta 14 63 120 37 7 33
Polycelis coronata 11 13 48 100 3 29
Acari 23 31 164 93 8 208
Ephemeroptera 1 0 0 1 0 0
    Ephemeroptera (early instar) 1 3 4 1 0 2
    Ameletus sp. 1 3 12 16 1 2
Plecoptera 0 1 2 1 1 0
    Plecoptera (early instar) 5 5 4 6 3 6
    Capnura sp. 0 0 1 0 0 0
    Zapada columbiana 18 22 54 66 4 116
    Perlodidae (early instar) 0 4 7 4 0 2
    Setvena sp. 0 0 5 0 0 2
Trichoptera 0 1 2 0 0 0
    Micrasema sp. 0 0 1 0 0 0
    Ecclisomyia sp. 0 2 9 0 0 4
    Ecclisocosmoecus scylla 0 1 0 0 0 0
    Psychoglypha sp. 0 0 1 0 0 0
    Parapsyche elsis 1 0 0 2 0 0
    Rhyacophila rotunda  Gr. 0 0 1 4 0 1
    Rhyacophila verrula  Gr. 0 0 1 0 0 0
    Uenoidae 0 1 0 0 0 0
    Neothremma sp. 0 0 1 0 0 0
Chironomidae 0 1 0 0 0 0
    Chironomidae (early instar) 55 87 972 211 10 270
    Chaetocladius sp. 0 0 0 0 1 0
    Corynoneura sp. 0 2 2 5 3 3
    Diamesa sp. 1 1 0 0 0 0
    Eukiefferiella brehmi  Gr. 0 1 1 0 0 2
    Eukiefferiella claripennis  Gr. 16 1 14 25 3 29
    Eukiefferiella devonica  Gr. 1 0 0 0 0 0
    Eukiefferiella gracei  Gr. 11 1 2 2 0 17
    Heleniella sp. 0 0 2 0 0 0
    Krenosmittia sp. 1 0 0 1 0 1
    Micropsectra sp. 3 14 23 27 3 8
    Nanocladius sp. 6 3 19 10 1 8
    Nanocladius Parvulus Gr. 0 0 1 0 0 0
Orthocladiinae 0 0 1 0 0 0
   Orthocladius sp. 5 48 170 43 4 27
    Orthocladius(Euorthocladius) 2 0 0 0 0 3
    Orthocladius(Orthocladius) 0 1 0 0 0 0
    Parametriocnemus sp. 0 0 1 1 0 1
    Pseudodiamesa sp. 0 3 7 26 10 1
    Rheocricotopus sp. 4 14 4 15 3 5
    Synorthocladius sp. 0 10 29 2 2 1
    Thienemanniella sp. 0 1 0 0 1 1
    Thienemannimyia  Gr. 0 1 2 0 0 3
    Tvetenia sp. 0 1 2 3 1 1
    Tvetenia bavarica Gr. 1 0 0 0 1 0
    Zavrelimyia sp. 0 1 0 1 1 0
Empididae 3 4 0 3 0 2
    Oreogeton sp. 0 1 0 0 0 0
Simuliidae 0 0 2 0 0 1

Sample

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix B (continued).  Macroinvertebrates collected at study site, Upper Thornton,  
15 September 2007.  Units in numbers of macroinvertebrates per 0.09 m2.    
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Macroinvertebrate Taxa 1 2 3 4 5 6
Heteroptera 1 0 1 0 0 0
Isotomidae 0 1 1 1 0 0
Poduridae 0 0 0 1 0 0
Harpacticoida 0 2 8 10 38 0
Cyclopoidae 0 0 2 4 1 0
Calanoida 0 1 0 0 1 0
Nematoda 2 2 10 10 2 0
Oligochaeta 0 0 0 3 0 0
Polycelis coronata 1 25 54 1 12 8
Acari 22 4 121 129 157 5
Coleoptera 0 0 0 1 0 0
    Coleoptera (early instar) 1 0 0 1 0 0
    Stictotarsus striatellus 2 1 16 26 9 3
    Hydroporinae 0 0 0 8 6 1
Ephemeroptera 0 0 1 0 0 0
    Ephemeroptera (early instar) 0 0 0 2 10 0
    Ameletus sp. 6 13 5 23 26 0
Plecoptera (early instar) 0 3 22 1 4 0
    Zapada columbiana 3 55 47 0 0 0
    Setvena sp. 1 0 2 0 1 0
Trichoptera pupa 0 0 0 1 0 0
    Desmona mono 0 0 5 23 1 1
    Rhyacophila rotunda  Gr. 2 1 6 0 0 0
Ceratopogonidae 1 0 3 17 3 0
Chironomidae (early instar) 56 143 1979 358 586 137
    Chaetocladius dentiforceps Gr. 0 1 0 0 0 0
    Corynoneura sp. 7 27 31 10 18 2
    Eukiefferiella brehmi Gr. 0 4 0 0 2 0
    Eukiefferiella claripennis Gr. 1 0 9 4 9 0
    Heterotrissocladius marcidus 0 0 0 1 0 0
    Hydrobaenus sp. 0 0 1 0 3 0
    Orthocladius sp. 1 0 1 3 2 1
    Orthocladius(Euorthocladius) 0 0 0 1 0 0
    Paracladopelma sp. 0 0 0 1 0 0
    Procladius sp. 1 0 0 0 0 0
    Psectrocladius sp. 0 1 0 2 3 1
    Pseudodiamesa sp. 5 10 2 14 13 8
    Rheocricotopus sp. 0 0 0 0 1 0
    Tvetenia sp. 0 0 2 2 1 0
    Tvetenia bavarica  Gr. 0 0 1 0 1 0
    Zavrelimyia sp. 5 5 0 18 5 2

Sample

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Appendix B (continued).  Macroinvertebrates collected at study site, Upper Tapto,  
9 September 2007.  Units in numbers of macroinvertebrates per 0.09 m2.    
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Macroinvertebrate Taxa 1 2 3 4 5 6
Homoptera 0 1 1 0 0 0
Poduridae 1 1 1 0 0 0
Harpacticoida 2 2 4 0 0 1
Nematoda 61 107 100 26 74 7
Acari 1 1 0 2 1 0
Coleoptera
    Agabus sp. 0 0 0 0 1 0
    Dytiscinae 0 0 0 0 1 0
    Sphaeridiinae 1 0 0 0 0 0
    Staphylinidae 0 1 0 0 0 0
    Stenus sp. 0 1 0 0 0 0
    Hydroporinae 1 0 0 0 0 0
    Hygrotus sp. 1 0 0 0 0 0
Ephemeroptera
    Ameletus sp. 1 0 0 0 0 0
    Zapada columbiana 0 1 0 0 2 0
    Setvena sp. 1 0 0 0 0 1
Trichoptera
    Ecclisomyia sp. 1 0 0 0 0 0
    Rhyacophila verrula Gr. 0 0 1 0 0 0
Chironomidae (early instar) 5 24 23 11 144 62
    Chaetocladius sp. 1 0 0 0 2 0
    Eukiefferiella claripennis  Gr. 0 1 4 2 6 1
    Eukiefferiella gracei Gr. 0 0 1 0 0 0
    Krenopelopia sp. 1 0 0 0 0 0
    Orthocladius sp. 2 1 0 0 1 5
    Polypedilum sp. 1 0 0 0 0 0
    Psectrocladius sp. 45 37 12 48 57 67
    Psectrocladius sordidellus Gr. 2 0 0 0 0 0
    Pseudodiamesa sp. 7 3 0 0 2 2
    Pseudorthocladius sp. 0 0 0 1 0 0
    Rheocricotopus sp. 0 0 1 1 3 0
    Tvetenia sp. 0 4 0 0 1 1
    Tvetenia bavarica  Gr. 0 1 2 0 15 0
Tipuladae
    Pedicia sp. 1 0 0 0 1 1

Sample

 
 

 
 

 
 

 
 
 
 

 

 
 

 
 

 
 

Appendix B (continued).  Macroinvertebrates collected at study site, Lower Middle,  
9 September 2007.  Units in numbers of macroinvertebrates per 0.09 m2.    
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Macroinvertebrate Taxa 1 2 3 4 5 6
Isotomidae 0 0 0 2 0 0
Poduridae 1 0 0 0 0 0
Harpacticoida 23 0 41 120 24 9
Nematoda 0 0 8 7 0 0
Oligochaeta 1 0 6 0 0 0
Polycelis coronata 5 8 15 21 40 38
Acari 61 31 154 186 129 22
Ephemeroptera (early instar) 0 0 0 3 2 0
    Ameletus sp. 3 0 8 0 4 1
Plecoptera (early instar) 13 0 7 43 10 7
    Zapada columbiana 4 36 7 19 1 0
    Perlodidae (early instar) 4 16 19 20 0 0
    Setvena sp. 13 18 10 12 7 3
Trichoptera
    Apatania sp. 0 0 2 0 12 9
    Ecclisomyia sp. 0 0 0 0 0 2
Rhyacophilidae (early instar) 0 0 2 0 0 0
    Rhyacophila brunnea  Gr. 0 1 0 0 0 0
    Rhyacophila rotunda  Gr. 0 1 0 0 0 0
    Rhyacophila verrula  Gr. 5 3 12 15 7 4
    Neothremma sp. 0 0 1 0 0 0
Chironomidae (early instar) 205 0 397 202 113 39
    Corynoneura sp. 1 0 2 0 0 0
    Diamesa sp. 0 1 0 0 0 0
    Diplocladius sp. 1 0 0 0 0 0
    Eukiefferiella claripennis  Gr. 0 4 1 7 3 4
    Eukiefferiella devonica  Gr. 18 67 10 3 3 1
    Eukiefferiella Gracei Gr. 19 74 16 6 0 2
    Micropsectra sp. 3 0 1 4 2 2
    Orthocladiinae (early instar) 0 28 0 0 0 0
    Orthocladius sp. 22 18 17 7 5 2
    Orthocladius (Euorthocladius) 0 0 1 1 0 0
    Pagastia sp. 1 4 1 1 0 0
    Parochlus sp. 0 0 0 2 0 0
    Pseudodiamesa sp. 0 0 0 2 4 0
    Rheocricotopus sp. 5 0 7 15 1 0
    Thienemanniella sp. 0 0 0 0 1 1
    Tvetenia sp. 44 0 6 26 4 6
    Tvetenia bavarica  Gr. 41 376 51 170 3 13
    Zavrelimyia sp. 0 0 1 1 0 0
Empididae 0 0 2 0 0 0
    Clinocera sp. 1 1 0 1 0 0
Tipulidae
    Dicranota sp. 0 0 1 0 1 0
    Pedicia sp. 1 0 0 0 0 0

Sample

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix B (continued).  Macroinvertebrates collected at study site, Upper Middle,  
9 September 2007.  Units in numbers of macroinvertebrates per 0.09 m2.    
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Macroinvertebrate Taxa 1 2 3
Poduridae 0 1 2
Harpacticoida 0 11 227
Cyclopoidae 0 3 3
Nematoda 2 22 55
Oligochaeta 0 16 234
Polycelis coronata 2 1 75
Acari 3 37 1462
Coleoptera
    Dytiscidae 0 0 1
    Hydrocolus sp. 0 0 1
    Hygrotus sp. 0 10 17
Ephemeroptera 0 0 2
    Ephemeroptera (early instar) 0 12 470
     Ameletus sp. 23 29 60
Plecoptera (early instar) 0 1 211
    Zapada columbiana 10 54 124
    Perlodidae (early instar) 0 0 1
Trichoptera
    Psychoglypha sp. 0 1 1
    Rhyacophila rotunda  Gr. 3 3 44
Ceratopogonidae 0 61 195
    Atrichopogen sp. 0 0 1
Chironomidae (early instar) 13 335 4015
    Chaetocladius sp. 0 0 1
    Corynoneura sp. 0 44 86
    Eukiefferiella brehmi Gr. 1 0 11
    Eukiefferiella claripennis  Gr. 0 0 2
    Eukiefferiella gracei  Gr. 0 0 1
    Heterotrissocladius marcidus 0 0 1
    Limnophyes sp. 0 0 1
    Micropsectra sp. 0 13 67
    Orthocladius sp. 2 7 0
    Orthocladius (Orthocladius) 0 0 1
    Parametriocnemus sp. 0 0 3
    Parochlus sp. 0 0 69
    Psectrocladius sp. 0 2 0
    Psectrocladius sordidellus Gr. 0 0 2
    Psilometriocnemus sp. 0 0 2
    Rheocricotopus sp. 0 28 0
    Rheocricotopus fuscipes Gr. 0 0 137
    Tanytarsus sp. 0 3 0
    Thienemanniella sp. 0 0 1
    Tvetenia sp. 0 0 2
    Tvetenia bavarica  Gr. 0 10 493
    Zavrelimyia sp. 5 37 71
Simuliidae 0 0 1
    Simulium sp. 0 0 5
    Piezosimulium sp. 0 0 1

Sample

 
 
 
 

Appendix B (continued).  Macroinvertebrates collected at study site, Tapto West,  
9 September 2007.  Units in numbers of macroinvertebrates per 0.09 m2.    
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