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ABSTRACT

Use of a small-diameter core drill has allowed the paleomagnetic sampling of the 

rims of fractured pillow basalts of the lower Crescent Formation in the northern Olym

pic Mountains. The pillows selected have spherical or oblate morphologies which typ

ically develop on horizontal or mildly-dipping surfaces. Pillow keel structures and 

sedimentary interbeds were used to obtain bedding attitudes and top directions for use 

in structural corrections. All specimens were subjected to progressive thermal demag

netization. After removal of a low blocking-temperamre recent overprint, stable end

points were reached by 580°C in 11 of the 33 sites sampled Garge within-site scatter 

was commonly observed in the remaining sites). Among the accepted sites, within-site 

scatter was small and correction for bedding tilt significantly reduced the scatter 

between sites. The mean paleomagnetic pole for this investigation is 86.4° north lati

tude, 170.0° east longitude, A^^=16.5° which agrees with the expected early to middle 

Eocene pole for North America. When combined with previous work from subaerial 

basalt exposures of the upper Crescent Formation in and near the eastern Olympic 

Mountains, these results (80.7° north latimde, 192.0° east longitude, A^^ =8.0°, N=46) 

show no significant rotation (0.8° ± 14.4°) or poleward displacement (-3.6 ± 8.5). 

Analysis of the magnetic mineralogy suggests that the remanence is early, if not pri

mary. The pole, therefore, should be valid for tectonic interpretation of the region. A 

circular distribution of virtual geomagnetic poles after correction for bedding tilt sup

ports the hypothesis that the northern Crescent Formation experienced deformation due 

to the rise, in a dome-like fashion, of the sediments of the Olympic Core terrane. Ero

sion of a partial dome open to the west could have produced the curvature seen in the
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outcrop pattern of the Crescent Formation. The lack of significant rotation of the 

northernmost Coast Ranges is in contrast with the net clockwise rotation seen to the 

south. A possible explanation for this difference may be that southern Vancouver 

Island acted as a backstop thereby restricting rotational deformation. In addition, the 

Olympic Mountains may have been north of the rotational influence of differential 

Basin and Range extension.
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INTRODUCTION

The Coast Ranges of Oregon and Washington are characterized by Paleocene to 

middle Eocene basalt accumulations that were accreted to or are the result of a rift 

within the western margin of North America. Paleomagnetic rotations of the Coast 

Range basalts increase from none at the north [Beck and Engebretson, 1982; Irving 

and Massey, 1990; this paper] to as much as 80° of net clockwise rotation to the south 

[Simpson and Cox, 1977; Wells et al., 1985; Beck, 1989; Wells, 1990] (Figure 1). 

Wells and HeUer [1988] addressed the relative contribution of three proposed rotation 

mechanisms: rotation during accretion [Simpson and Cox, 1977; Magill et al., 1981; 

Duncan, 1982], non-rigid dextral shear rotation due to coupling between North Amer

ica and the obliquely converging Farallon or Kula plates [Beck, 1976, 1980], and rigid 

rotation due to differential extension of the Basin and Range Province [Simpson and 

Cox, 1977; Magill et al., 1981; Heller, 1983; Frei et al., 1984; Gromm6 et al., 1986]. 

Wells and Heller [1988] concluded that a combination of rotations due to Basin and 

Range extension and oblique convergence fits the geologic and paleomagnetic data 

without invoking complicated accretion models. The lack of rotation found in the 

northern Coast Range must indicate a tectonic history different from the exposures to 

the south.

In the Olympic Mountains of northwestern Washington, the basalts of the Coast 

Range belong to the Crescent Formation. Their outcropi pattern shows a distinct curva

ture (Figure 2). The curvature could be an artifact of a primary distribution of basalts, 

perhaps reflecting two centers of extrusion [Cady, 1975; Tabor and Cady, 1978b]. 

Alternatively, the curvature could represent folding of a linear trend of basalts about
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Figure 1: Generalized geologic map of the Oregon and Washington Coast Ranges 
showing paleomagnetic rotations (arrows pointing due north imply no net rotation) in 
Paleocene to middle Eocene oceanic basalts. Note north to south increase in amount 
of rotation. MIC: Metchosin Igneous Complex [Irving and Massey, 1990], OM: 
Olympic Mountains [this study], BH: Black Hills [Globerman et al., 1982], WH: Wil- 
lipa Hills [Wells and Coe, 1985], SR: Siletz River [Simpson and Cox, 1977], RF: 
Roseburg Formation [Wells et al., 1985]. Geology from Snavely [1987].
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Figure 2: Generalized geologic map of the Olympic Peninsula showing the curvature 
of the Crescent Formation outcrop pattern and paleomagnetic sampling localities. PM: 
Pyramid Mountain, LS: Lake Sutherland, HR: Hurricane Ridge, and MP: Maynard 
Peak [this study], KP: Kydikabbit Point, TP: Tongue Point [Moyer, 1985], MW: 
Mount Walker [Wamock, 1989], PT/PL: Port Townsend/Port Ludlow [Beck and Enge- 
bretson, 1982; Wamock, 1989], BR: Bremerton [Beck and Engebretson, 1982; Purdy, 
1987]. Seds: Sedimentary rock formations; UCF: upper Crescent Formation; LCF: 
lower Crescent Formation; BMU: Blue Mountain unit. Geology from Tabor and Cady 
[1978a].
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vertical axes (oroclinal bending of Carey [1958]), erosion of a layered sequence 

deformed into an eastward-plunging antiform [Weaver, 1937], or erosion of a dome

like structure [Cady, 1975]. Understanding the deformation which resulted in the cur

vature will contribute to our understanding of the emplacement of the subduction com

plex, partially bounded by the curvature. Paleomagnetic methods should aid in resolv

ing this structural problem. Early unpublished studies, however, found the basalts of 

the Crescent Formation to be magnetically useless [M.E. Beck Jr., personal communi

cation, 1988].

Recent paleomagnetic studies of the Crescent Formation in and near the Olympic 

Moimtains, and of the correlative Metchosin Igneous Complex on southern Vancouver 

Island (Figure 2), have reported both clockwise and counterclockwise rotations, as well 

as concordance. The study of Beck and Engebretson [1982], supplemented by Purdy 

[1987] and Wamock [1989], lacked the broad geographic coverage required to unravel 

the regional structural and tectonic history. Moyer [1985] studied predominantly sedi

mentary rocks overlying the Crescent Formation, most of which failed to retain their 

primary remanence. Irving and Massey [1990] studied intmsive rocks of the Metcho

sin Igneous Complex which lacked structural control on a local scale. The goal of this 

project was to study the paleomagnetism of the Crescent basalts of the northern Olym

pic Mountains where better stratigraphic control and large areal extent might be 

sufficient to make sense of the existing ambiguous directions and to learn about the 

emplacement and deformation of the rocks of the Olympic Mountains.
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GEOLOGIC SETTING

The Olympic Mountains are comprised of two major fault-bounded terranes: the 

Olympic Core terrane and the Crescent terrane [Tabor and Cady, 1978b; Silberling et 

al., 1984] (Figme 2). The Olympic Core terrane, in fault contact with the Crescent ter

rane on the north, east and southeast (Figure 2), represents a subduction complex of 

Eocene to Miocene marine turbidites that have been metamorphosed to the prehnite- 

pumpellyite, low-grade greenschist, and the blueschist facies in the eastern portion of 

the complex with a general increase in metamorphic grade from west to east [Tabor 

and Cady, 1978a; Brandon and Calderwood, 1990].

The Crescent terrane is separated from the Olympic Core terrane by the Hurricane 

Ridge and Calawah faults [Tabor and Cady, 1978a; Gower, 1960] (Figure 2). The 

Leech River fault on Vancouver Island marks the northern boundary [Clowes et al., 

1987] and to the east lies a poorly-defined boundary within the Puget Lowland 

[Roberts, 1990] (Figure 2). The Blue Mountain unit lies at the base of Crescent ter

rane stratigraphy and consists of continentally-derived sediments [Cady, 1975]. The 

Blue Mountain unit is overlain by and laterally interfingers with the lower member of 

the lower to middle Eocene Crescent Formation [Cady, 1975], characterized by subma

rine pillow basalt with minor clastic sediments and red limestone lenses. In the 

eastern section, the lower Crescent Formation is overlain by subaerial basalts that are 

considered to be the "upper member" of the Crescent Formation by Glassley [1974]. 

The Crescent Formation is overlain by upper Eocene to lower Miocene unmetamor

phosed marine clastic sediments (Figure 2). On a regional scale, the basalts of the 

lower (Hrescent Formation and the lower portion of the upper (Crescent Formation
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appear to have been metamoiphosed to the prehnite-pumpellyite facies; locally, lower 

Crescent basalts have been metamorphosed to the greenschist facies [Glassley, 1974].

Early estimates of the age of the lower Crescent Formation were made by correla

tion of Foraminifera from intraflow limestone lenses. Foraminifera from the lower 

Crescent Formation indicate a lower to middle Eocene age [Ran, 1964; Cady et al., 

1972]. Recent ^Ar/^^Ar whole-rock age dates from the lower and upper Crescent 

basalts in the Olympic Mountains [Babcock et al., 1991] range from 45.4 ± 0.6 Ma to 

56.0 ±1.0 Ma and confirm the fossil dates.

The Crescent Formation has been interpreted as a seamount chain that was 

accreted to North America [Snavely et al., 1968; Duncan, 1982]. There are several 

problems with this interpretation. First, the interfingering of continentally derived sedi

ments of the Blue Mountain imit at the base of the Crescent terrane and the conform

able marine clastic sedimentary units overlying the Crescent Formation suggest a 

near-shore setting [Cady, 1975]. Second, the three-meter diameter clasts of quartz 

diorite that have been found within the eastern section of the Crescent Formation also 

indicate a near-shore setting [Cady, 1975]. Third, recent structural and stratigraphic 

studies of the Metchosin Igneous Complex [Brandon and Massey, 1985; Massey, 1986] 

and the basalts of the eastern section of the Crescent Formation [Clark, 1989; Babcock 

et al., 1992] suggest that a continental margin rift setting [Wells et al., 1984] may be a 

more appropriate interpretation. Fourth, if the Crescent basalts formed on either the 

Farallon or Kula plate at their time of extrusion, modeled plate motions would predict 

paleomagnetic inclinations significantly shallower than observed [Wells et al., 1984; 

Einarsen and Engebretson, 1987].
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An alternative model for the formation of the Crescent basalts is based on plate 

reconstractions [Babcock et al., 1992]. The Kula and Farallon plates are the only two 

plates known to have interacted with northwestern North America at the time of extru

sion. Plate tectonic models for the region during the Eocene show that the Kula- 

Farallon ridge was impinging upon North America, creating a ridge-trench-trench triple 

junction [Engebretson et al., 1985; Stock and Molnar, 1988]. The geometry of this tri

ple junction suggests that a "no-slab window" may have been responsible for back-arc 

rifting in a near-shore basin [Babcock et al., 1992] (Figure 3). In addition, the Yel

lowstone hotspot may have contributed to observed age progressions and geochemical 

signatures [Duncan, 1982; Wells et al., 1984; Babcock et al., 1992].
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Figure 3: Continental margin rift-basin model for the lower Eocene showing the 
geometry of the no-slab window [Babcock et al., 1992]. Darker shaded areas are 
hypothetical basalt exposures. Azimuth of trench from Wells and Heller [1988]; plate 
motions from Engebretson and others [1985] are in km/m.y. relative to North Amer
ica.
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PALEOMAGNEHSM

Sample Collection and Determination of Paleohorizontal

Five to fourteen (mostly six to eight) cores were collected from each of 33 sites 

of pillow basalt of the lower Clrcscent Formation in the northern Olympic Mountains. 

Only roadcuts were sampled in order to obtain the freshest possible rock for magnetic 

analysis, and to cover the largest area with the time and resources available. Suitable 

roadcuts from the Dosewallips River (southeast) to Ellis Mountain (west) were sam

pled (Figure 2). Active logging and highly-weathered exposure discouraged sampling 

west of Ellis Mountain.

Six sites near Lake Sutherland (LS) were sampled with a standard 2.54 cm diam

eter core drill. Remaining sites were drilled with a specially-designed, battery-operated 

drill in order to sample fractured pillow rims precisely with a smaller (0.9 cm diame

ter) bit. Rims were targeted because a pilot project early in this study showed that 

rims are more likely than pillow cores to record a stable magnetization (Figirre 4).

Samples were oriented in situ using a sun compass, checked with a magnetic 

compass. In the absence of sun, a second compass held away from the outcrop 

verified the absence of detrimental magnetic gradients. The 2.54 and 0.9 cm diameter 

cores were cut into specimens 2.25 and 0.8 cm in length, respectively.

Pillows selected had a spherical or oblate morphology which typically develop on 

horizontal or gently dipping surfaces [Ballard and Moore, 1977]. Orientations of pil

low keel structures and sedimentary interbeds agreed and were used to obtain bedding 

attitudes and top directions. To minimize error, several estimates of strike and dip
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Figure 4: Stability of a 0.4T isothermal remanent magnetization (IRM) to alternating 
field demagnetization for the rim and core of a single pillow. Samples were first given 
an IRM in a IT field down the length of the specimen (z-axis), then in a 0.4T field 
perpendicular to the z-axis. This was done to isolate the component of magnetization 
which had coercivities matching those of the natural remanent magnetization. This 
diagram shows only the component of the axis that carries the 0.4T IRM. The rim 
shows a stable, nearly linear decay in magnetization with increased peak alternating 
field. The core, however, shows a rapid decrease by 20 mT indicating that the 
remanence is carried primarily by low coeicivity (unstable) minerals.
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were made at each site and averaged using Fisher [1953] statistics.

Measurement and Demagnetization of NRM

Measvuements of magnetic remanence were made on a Schonstedt SSM-la 

spinner magnetometer interfaced with a microcomputer. Four separate estimates of 

each of three orthogonal components of magnetization where made by measuring the 

specimen in six unique orientations. The specimen’s direction and moment were cal

culated from the averages of these estimates. Reliability of the direction was calcu

lated as Ypg from the standard deviations of the estimates [Bidden and Arthur, 1981]. 

Specimens with greater than or equal to 15° were rejected. 15° was chosen as a 

critical value in order to filter out specimens with poorly defined magnetizations. 

Specimens had natural remanent magnetization (NRM) intensities ranging from 10’^ to 

10 A/m. The majority of specimens fell within the range of 10’^ to 1 A/m. One 

site’s magnetization was weaker than the noise level of the magnetometer, and yielded 

no useful results.

To test stability and determine the blocking temperature spectra of the magnetiza

tions, two pilot specimens (in most cases from the same core) from each site were sub

jected to two different types of progressive demagnetization: alternating field (AF) and 

thermal. The AF pilot specimens were demagnetized in a Schonstedt GSD-5 tumbling 

specimen demagnetizer at 15 levels between 10 and 100 mT. Thermal pilots were 

demagnetized in air at 13 levels between 100° and 580°C in a custom-made 

magnetically-shielded oven. Oven calibration experiments established that tempera- 

mres are accurate to within 10° below the set point Before initial heating, and after
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each subsequent step, magnetic susceptibility was measured to monitor thermally 

induced changes in magnetic mineralogy. Because it appeared that the bulk of the 

magnetization was carried by a relatively high coercivity, fine-grained, Ti-poor 

titanomagnetite, all remaining specimens were thermally demagnetized with seven 

steps from 300° to 585°C.

Analysis of NRM Demagnetization

Magnetizations measured before and throughout progressive demagnetization, 

plotted as orthogonal projections of their vector endpoints [Zijderveld, 1967], define a 

demagnetization path. Linear segments of a specimen’s demagnetization path probably 

reflect demagnetization of only one component of magnetization. Most specimens 

recorded two linear segments, one of which is interpreted as a relatively weak over

print that was not fully demagnetized until 200° to 300°C (Figure 5). Directions of the 

stable components were determined using the free-line method of principal component 

analysis [Kirschvink, 1980] (Appendix). This method involves a linear transformation 

of the specimen’s coordinate system to a new origin at the "center of mass" of the vec

tor endpoints that define the selected linear segment of the demagnetization path. The 

resulting eigenvectors are in the directions of maximum, intermediate, and minimum 

variance. These variances correspond to the maximum, intermediate, and minimum 

eigenvalues which may be used to judge the linearity of the remanence. Their square 

roots yield standard deviations in each of the three directions, which are used to calcu

late the maximum angular deviation (MAD). 15° was used as a critical value of MAD 

in order to filter out samples with unacceptably non-linear directions.

12



Figure 5: Orthogonal projection of thermal demagnetization path for specimen 
PMOIOIOI showing removal of an overprint by approximately 300°C. The free line 
method of principal component analysis [Kirschvink, 1980] allows the extraction of 
portions (in this case 350® to 560°C) of the demagnetization path without regard to 
other components that may be present. Closed circles: projection onto horizontal 
plane. Open circles: projection onto vertical west-east plane.
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Principal component analysis is equally applicable to directional datasets, each 

direction being a unit vector. The eigenvector in the direction of maximum variance is 

the least-squares best-fit direction. The intermediate and minimum eigenvectors 

correspond to the long and short axes of the distribution. MAD is a close approxima

tion of angular standard deviation and is useful in describing dispersion. This averag

ing technique was used to provide eigenvalues required for a test of circularity and to 

quantify within-site dispersion.

The distribution of sample directions within each site was checked for circularity 

at the 95% confidence level using a method outlined by Schmidt [1990]. This was an 

aid in identifying sites possibly biased by a recent magnetization. This test involves 

the comparison of the ratio of the intermediate and minimum eigenvalues for N direc

tions with tabulated critical values. With one exception, all sites that passed subse

quent confidence tests had distributions that were circular at the 95% confidence level. 

Site PM03 had typical variation in inclination, but atypically small variation in declina

tion (Figure 6). This apparent streaking may be due to minor differential rotations 

within the site or variable contributions from a minor stable secondary component of 

magnetization. Mean directions for all sites were calculated using Fisher’s method 

[1953].

Sites were excluded if they had unusually large angular deviations (MAD > 15°) 

or mean directions with uselessly large confidence regions (a^^ > 15°). Accepted 

site-mean directions were converted into virtual geomagnetic poles (VGPs) for com

parison with reference poles. Structural correction of the site-mean directions involved

rotating the in situ remanence directions to paleohorizontal about the local strike.

14
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Figure 6: Equal-area projection of sample directions for two sites. The long and short 
axes of the ellipses are oriented in the directions of the intermediate and minimnm 
eigenvalues. Site PM03 is the only site for which the hypothesis that the samples 
were drawn from a circular distribution can be rejected at the 95% confidence level 
[Schmidt, 1990]. All other sites, for example PM04, may appear elliptical, but due to 
the small number of sample directions the assumption that the distribution is circular 
cannot be rejected at the 95% confidence level.
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Correction of a plunging structure requires complex models and many assumptions 

[MacDonald, 1980]. An attempt was made to define a possible fold axis using struc

tural data compiled from this study and the map of Tabor and Cady [1978a], however, 

large scatter of bedding plane poles (where top indicators were present) prevented an 

accurate determination. Correction for a possible plimging fold appears to be unneces

sary because the site-mean VGPs are circularly distributed at the 95% confidence level 

[Schmidt, 1990].

Paleomagnetic Directions

Of the sites that passed confidence screenings, two sites (LSOl and PM06) were 

excluded from this study on the suspicion that they were sampled from recently rotated 

blocks. Site LSOl was located within the Mount Storm King landslide p:x»gan and 

Schuster, 1991] and site PM06 had a bedding orientation at a right angle to the orien

tations of adjacent sites. Site HR03 was excluded on suspicion of being completely 

remagnetized; its uncorrected direction was that of the present-day field. Site TPOl, 

sampled by Moyer [1985], was included because it was Crescent basalt and techniques 

similar to those of this study were used for its analysis.

Paleomagnetic and structural data are summarized in Table 1. Using the test of 

McElhinny [1964], the reduction in scatter on correction for tilt is significant at the 

95% confidence level (Figure 7). Localities LS and MP have upward directions indi

cating that acquisition of magnetization spanned at least one reversal of the dipole 

field. Differences of site-mean directions obtained from adjacent flows were verified 

as significant using the test of McFadden and Lowes [1981]. Two sites at the HR

16
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Figure 7: Equal-area projections of site-mean directions for the lower Crescent Forma
tion before (a) and after (b) correction for bedding tilt. Closed symbols indicate down
ward directions and open symbols represent upward directions. Circles are a^^-
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locality had indistinguishable directions at the 95% confidence level. This similarity 

appears to be fortuitous because two sites with significantly different magnetizations, 

yet having the same polarity, stratigraphically separate them.

Site-mean VGPs are circularly distributed at the 95% confidence level [Schmidt, 

1990] but show large (27°) between-site dispersion; this will be discussed in the next 

section. The paleomagnetic pole obtained by averaging site-mean VGPs is 86.4° north 

latitude, 170.0° east longitude, and A^^=16.5°. This is virtually identical to the 44-54 

Ma craton pole of Diehl and others [1983] (Table 3).

Comparison with Previous Paleomagnetic Studies

Results from this study were compared to previous work from the upper Crescent 

Formation [Beck and Engebretson, 1982; Purdy, 1987; Wamock, 1989] (Tables 2 and 

3). Reexamination of the Mt. Walker (MW) locality of Wamock [1989] resulted in 

recalculation of the MW dataset. This dataset originally had been corrected assuming 

that two homoclinal sections were sampled. On reexamination, this appeared to be 

inappropriate for two sites. New independent structural corrections produce a more 

uniform distribution and no significant rotation (Table 3), which is consistent with the 

Bremerton (BR) subaerial exposures studied by Beck and Engebretson [1982] and 

Purdy [1987].

Although the Port Townsend/Port Ludlow (PT/PL) locality of Beck and Engebret

son [1982], supplemented by Wamock [1989], records a possible counterclockwise 

rotation (-17° ± 39°), its mean is not significantly different from the expected direction 

(Table 3). A probable explanation is that single-level AF demagnetization (in the
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Table 2: Site-Mean Virtual Geomagnetic Poles for the Crescent Formation

Site N
Uncorrected

N.Lat E.lon
Corrected

N.Lat E.Lon
PLOl 9 -803 345.6 -45.2 311.6
PL03 6 -64.1 113 -59.7 285.1
PTOl 7 -81.7 260.6 -73.0 208.1
PT02 6 -69.4 230.9 -62.1 215.8
PT03 6 -6.1 24.0 -57.6 15.9
PT04 5 -0.2 52.1 -50.7 79.1
PT05 6 -163 11.6 -61.3 3373
PT06 6 -13.7 9.9 -34.4 344.8
PT07 8 -31.9 119.8 -44.5 114.4
PT08 9 -57.1 43.9 -53.6 345.1
PT09 8 1.2 34.0 -40.0 17.1
BROl 6 -623 209.7 -84.1 175.9
BR02 6 -66.8 2113 -86.9 116.1
BR03 5 -773 1613 -72.5 80.6
BR04 4 -51.6 168.1 -60.7 178.0
BROS 7 -70.2 150.9 -86.0 140.6
BR06 3 -70.6 138.5 -83.5 93.0
BR07 6 -56.4 165.1 -66.9 175.8
BR08 9 -72.9 23.0 -72.9 23.0
BR09 4 -59.1 145.9 -75.0 89.2
BRIO 5 -58.1 157.4 -80.7 1053
BRll 7 ^1.8 357.0 -53.2 279.6
BR12 7 -11.1 173 -26.1 357.1
BR13 7 -29.7 30.9 -54.8 13.4
BR14 11 -73.7 140.1 -85.5 48.9
MWOl 6 -46.8 293.4 -85.3 336.3
MW02 6 40.1 1143 70.7 129.6
MW03 6 35.8 116.2 61.9 147.4
MW04 6 46.5 119.2 72.5 220.4
MW05 7 463 107.9 84.1 171.9
MW06 7 26.9 139.4 39.3 189.6
MW07 5 603 1333 45.9 279.9
MW08 4 40.4 145.0 48.6 230.6
MWIO 6 52.7 110.9 78.4 269.9
HROl 3 -15.8 263.4 78.6 299.6
HR02 5 -9.6 241.7 87.5 105.8
HR04 4 -11.4 246.6 65.5 7.7
LS02 3 19.8 3363 -60.8 300.4
LS06 4 31.2 336.8 -61.3 339.1
MPOl 7 -16.7 40.1 -52.3 164.0
MP02 8 15.9 347.4 -57.8 573
PMOl 7 1.1 161.1 36.5 163.2
PM02 6 -15.9 197.9 58.3 2173
PM03 6 -19.9 2243 84.9 288.1
PM04 7 -3.9 177.2 69.9 85.2
TPOl 16 63.6 340.1 67.3 6.2

N: number of accepted samples.
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range of 10 to 30 mT) used in these earlier studies did not completely remove recent 

overprints.

A comparison of the paleomagnetic directions of different stmctural domains in 

and around the northern 01ynq)ic Mountains was undertaken to aid in the understand

ing of the deformation involved. This was facilitated because the basalts of the Cres

cent Formation were extruded and magnetized during the Eocene when apparent polar 

wander was relatively steady [Diehl et al., 1983]. Four essentially homoclinal struc

tural domains (MW, BR, PT/PL, and this study) allowed the use of the fold test 

[McFadden and Jones, 1981] to determine whether the lower and upper Crescent For

mation record a common dipole field. At the 95% confidence level, the four domains 

passed the fold test after correction for bedding tilt (Figure 8). In order to verify that 

the normal and reverse sites share a common mean, the reversal test of McFadden and 

Lowes [1981] also was applied. The data passed the test at the 95% confidence level 

after correction for tilt

The observed 27° of dispersion in the data from this study and the 28° in the

combined dataset is larger than one might expect from compilations of previous studies

and a simple model of paleosecular variation [McFadden and McElhinny, 1984]:

between 18° and 20° for latitude 48° during the Eocene. However, the model of

McFadden and McElhinny [1984] is based on studies with VGP distributions that have

been arbitrarily screened for poles which lie at low to middle latitudes and may

explain the observed discrepancy [Kristjansson and Johannesson, 1989]. Comparison

with other paleomagnetic studies of the Oregon and Washington Cloast Range basalts

[Simpson and Cox, 1977; Globerman et al., 1982; Beck and Engebretson, 1982; Wells
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90

Figure 8: Equal-area polar projections of site-mean VGPs for the combined data ftom 
the Crescent Formation before (a) and after (b) correction for bedding tilt. The 
expected 44-54 Ma pole of Diehl and others [1983] (diamond) is also shown. Closed 
symbols indicate upper hemisphere poles and open symbols represent the antipoles of 
lower hemisphere VGPs. Circles are OM: Olympic Mountains.
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Averaging the site-mean VGPs of all four domains appears to be a good approxi

mation of the paleomagnetic pole for the northern and eastern sections of the Crescent 

Formation. Comparison of this mean pole with the pole expected for North America 

shows no significant discordance (Table 3; Figure 8).

Timing of Acquisition of Magnetization

Because a pre-deformational magnetization is not necessarily a primary magneti

zation [Burmester et al., 1990], a detailed analysis of the magnetic minerals is required 

in order to fully unravel the paleomagnetic history of the region. Geochemical results 

from the lower Crescent Formation indicate that the Ti02 content is slightly higher 

than expected for mid-oceanic ridge basalts [Babcock et al., 1992]. This high Ti02 

content and observations from fresh pillows dredged from active mid-oceanic ridges 

[Irving, 1970; Irving et al., 1970] support the assumption that the primary magnetic 

phase was titanomagnetite. In addition, observation of polished thin sections from a 

pillow core reveals skeletal growth crystal morphologies (mostly cruciform) typical of 

rapidly quenched titanomagnetite (Figm-e 9). Under typical conditions of low tempera

ture sea-floor alteration, titanomagnetite readily oxidizes to a metastable titanomaghem- 

ite [Ozdemir, 1987].

Two Curie temperature measurements were made firom the rim and core of a sin

gle pillow [C.S. Gromm6, personal communication, 1991]. Figure 10 shows the 

results of these measurements. The thermomagnetic curves show a behavior charac

teristic of pure magnetite with a minor amount of pyrrhotite in the rim of the pillow.

and Coe, 1985] reveals that large dispersions are typical.
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Figure 9: Photomicrograph of a polished thin section of a pillow core under reflected 
light. Skeletal growth crystal morphologies (crucifonn type) are typical of rapidly 
quenched titanomagnetite [Haggerty, 1991]. The field of view is approximately 0.25 
mm wide.
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Figure 10: Thermomagnetic curves for the rim and core of a single pillow. Specimens 
were heated in a field of 232.2 mT. The curves are characteristic of essentially pure 
magnetite with a minor amount of pyrrhotite in the rim. Similarity between heating 
and cooling curves (as shown by arrows) indicates that there were negligible 
thermally-induced mineralogical changes.
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indicating that the magnetic minerals have been altered. The occurrence of pyrrhotite 

may be the result of a reducing environment either during cooling or reheating [Irving 

et al., 1970], while magnetite is likely the result of the inversion of titanomaghemite 

caused by reheating. Heating between approximately 250® and 300°C (the approxi

mate range for the prehnite-pumpellyite facies of metamorphism [Liou, 1971]) causes 

titanomaghemite to invert to ilmenite and a titanomagnetite which is magnetically 

indistinguishable from pure magnetite [Ozdemir, 1987]. Because of recrystallization 

caused by inversion, the primary direction of remanence was lost. The remanence 

observed, therefore, is most likely a chemical remanent magnetization (CRM) oriented 

parallel to the earth’s field at the time of reheating.

There are two ways to achieve the prehnite-pumpellyite facies: sea-floor hydroth

ermal metamorphism [Alt et al., 1986] and burial metamorphism [Coombs et al., 

1959]. Sea-floor metamorphism to the prehnite-pumpellyite facies may explain the 

metamorphism of the lower Crescent Formation; however, the base of the subaerial 

rocks of the upper Crescent Formation also is metamorphosed favoring binial. The 

presence of sedimentary rocks overlying the northern and eastern sections of the Cres

cent Formation indicates that burial was likely slow enough to have remagnetized each 

pillow flow at a distinct time, thus recording secular variation.

Subaerial basalts of the upper Crescent Formation appear to have a primary mag

netization because analysis of polished thin sections reveals a texture which is charac

teristic of extreme oxidation [Haggerty, 1991] (Figure 11). High oxygen fugacity con

ditions during cooling produce the exsolution of titanomagnetite into Ti-rich and Ti-

poor phases; the Ti-rich phase then oxidizes to hematite and pseudobrookite [Grommd
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Figure 11: Photomicrograph of a polished thin section of a subaerial basalt from the 
upper Crescent Formation showing an extreme oxidation texture of titanomagnetite 
[Haggerty, 1991] under reflected light. High oxygen fugacity conditions during cool
ing result in exsolution of titanomagnetite into Ti-rich and Ti-poor phases. The Ti-rich 
phase readily oxidizes to hematite (white) and pseudobrookite (gray) [Grommd et al., 
1969]. The field of view is approximately 0.25 mm wide.
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et al., 1969]. Rapid oxidation would explain why the Ti-poor phase and hematite 

share a single component of magnetization. Moreover, the presence of a single reverse 

direction, sandwiched between normally magnetized flows at the MW locality, is 

difficult to explain by total remagnetization. The magnetization of the upper Crescent 

Formation should have been unaffected by reheating because exsolution had already 

taken place raising the Curie temperature to 580°C.

The successful multi-limb fold test between the upper and lower Crescent Forma

tion indicates that they record a common dipole field before deformation. Assuming 

that the upper Crescent Formation records a primary magnetization, the lower Crescent 

Formation must have acquired a field-controlled CRM while still horizontal. Agree

ment between this CRM and the primary thermal remanent magnetization of gabbros 

of the Metchosin Igneous Complex on Vancouver Island [Irving and Massey, 1990], 

suggests that no major rotation occurred before remagnetization of the lower Crescent 

Formation. This agreement, however, is based on Irving and Massey’s [1990] assump

tion that the entire exposure of the Metchosin Igneous Complex is approximately hor

izontal and is continuous with the Crescent Formation. Consistency between the pri

mary magnetizations of the upper Crescent Formation and the Metchosin Igneous 

Complex favors their assumption.

In spite of the physical alteration of the Crescent basalts, the magnetization 

appears to be early, possibly primary. The paleomagnetic pole determined from the 

combined dataset is believed to be valid for tectonic analysis of the region.
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REGIONAL TECTONICS

Defommtion of the Crescent Formation

Proposed models for the deformation of the Crescent Formation in the Olympic 

Mountains can be tested using paleomagnetism. The oroclinal bending model of Carey 

[1958] involves the folding of an originally linear trend of basalts about vertical axes. 

Figure 12a illustrates the predicted distribution of paleomagnetic declinations after 

correction for bedding tilt about strike. The result shows a fanning of declinations 

which is not observed; therefore this model is dismissed. However, it should be noted 

that exposures south of Mount Walker (Figure 2) remain unconstrained paleomagneti- 

cally.

Erosion of a layered sequence deformed into an eastward-plunging antiform 

[Weaver, 1937] could have produced a curvature. If this were the appropriate model, 

structural correction solely for bedding tilt would have resulted in false rotations due to 

failure to correct for plunge [MacDonald, 1980] (Figure 12b). Because no such pattern 

is evident in the data, this model also can be rejected.

Erosion of a dome structure would also result in a curved outcrop pattern [Cady, 

1975]. A domal uplift rotates bedding about horizontal axes (strike). Because correc

tion for bedding tilts about their strike produces a circular distribution of VGPs, the 

simplest model that describes the deformation and is consistent with the paleomagnetic 

data, is a domal uplift. The outcrop pattern of the Crescent Formation does not 

display a complete circular dome; but is open to the west and southwest. An explana

tion for this configuration is that the northern and eastern sections represent two
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Figure 12: Predicted paleomagnetic declinations after correction for local bedding tilt 
about strike from models proposed for the deformation of the Crescent Formation 
(shaded region): (a) folding about a vertical axis [Carey, 1958]; (b) erosion of an 
eastward-plunging antiform [Weaver, 1937]; (c) erosion of a dome-like structure 
[Cady, 1975]. Solid circles in pre-deformation figures represent possible extrusion 
centers. Large arrows represent general plate motions; small arrows represent 
paleomagnetic declinations. Note that the sites shown in the southern Olympic Moun
tains have not yet been measured paleomagnetically.
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centers of extrusion [Cady, 1975] with flows thinning towards the west (Figure 12c). 

If this were the case, the present curvature may, in part, reflect a primary distribution 

of basalts.

Secondary components of magnetization from the sedimentary rocks of the 

northwestern Olympic Peninsula record a later defonnational event which produced the 

approximate 40° clockwise bend of the western tip of the Crescent Formation [Moyer, 

1985] (Figure 12c). The western tip of the Crescent Formation appears to have been 

rotated (clockwise) towards the backstop created by Vancouver Island due to oblique 

convergence of the Farallon and/or Kula plates in conjunction with underthrusting of 

the subduction complex [Moyer, 1985]. Equivocal results were obtained from six sites 

near Kydikabbit Point at the far northwest end of the Olympic Peninsula (Figure 2). 

These sites were interpreted as retaining their primary remanence, showing a counter

clockwise rotation of 70° [Moyer, 1985]. This rotation may represent a local tectonic 

effect that requires further investigation to fully understand.

Formation of the subduction complex of the Olympic Core terrane must have 

included a large upward as well as a minor northeastward component. The northeast

ward component, possibly reflecting plate convergence, overturned the beds at the 

Lake Sutherland locality (Figiue 2). Factors contributing to the upward component 

may include: isostatic rise of the relatively buoyant sediments of the subduction com

plex [Cady, 1975], upward arching of the down-going Juan de Fuca plate caused by 

the curved geometry of the trench [Brandon and Calderwood, 1990], or tectonic thick

ening during formation of the subduction complex [Cady, 1975; Davis and Hyndman, 

1989]. Tectonic thickening is preferred because it is consistent with models describing
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the fonnation of accrctionaiy wedges [Davis et al., 1983].

Davis and Hyndman [1989] applied the critically-tapered wedge model [Davis et 

al., 1983] to the Olympic Mountains. The shallow dip (8° to 10°) of the subducting 

Juan de Fuca plate [Crosson and Owens, 1987] and the large supply of sediment 

migrating towards the embayment, perhaps aided by the northward component of plate 

convergence [Beck and Engebretson, 1982] (Figure 12c), permit the uplift of the accre

tionary prism to the elevation of approximately 2000 meters [Davis and Hyndman, 

1989].

Relation to Regional Paleomagnetic Rotations

The concordant paleomagnetic pole determined from this study is consistent with 

the pole from uncorrected directions of the correlative Metchosin Igneous Complex on 

southern Vancouver Island [Irving and Massey, 1990], perhaps verifying their assump

tion that the entire exposure of the Metchosin Igneous Complex is approximately hor

izontal. Concordance also agrees with marginal rift-basin models involving in situ for

mation [Wells et al., 1984; Brandon and Massey, 1985; Massey, 1986; Clark, 1989; 

Babcock et al., 1992]. In contrast, the observation of no significant net rotation is 

anomalous for the Oregon and Washington Coast Ranges.

The lack of significant rotation could represent a history of equal and opposite 

rotations, but there is no geologic evidence for such rotations south of the Olympic 

Mountains. In addition, a complex history of rotation would have had to affect, to the 

same degree, both the steeply-dipping beds within the northern Olympic Mountains 

(this study) and the shallowly-dipping beds farther east (PT/PL and BR localities).
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Such structural cohesion has not been observed in the Crescent Formation of the Wil-

lipa Hills of southwestern Washington. Rather, they appear to have been differentially 

rotated between closely spaced structural domains [Wells and Coe, 1985] (Figure 1).

No rotation may simply represent the lack of a rotational mechanism. Wells and 

Heller [1988] developed a model that describes the rotations of the Coast Ranges. 

60% of the rotation was attributed to differential north-south extension of the Basin 

and Range Province [Simpson and Clox, 1977; Magill et al., 1981; Heller, 1983; Frei et 

al., Gromm6 et al., 1986], and 40% was due to non-rigid dextral shear caused by cou

pling diuing oblique convergence [Beck, 1976, 1980]. Given the possibility that the 

Olympic Moimtains were north of the influence of the Basin and Range Province, a 

significant proportion of the rotational mechanism (oblique convergence) may still have 

been present. Factors unique to the area may have prevented rotation. The east-west 

trending Clallam syncline just north of the Olympic Mountains (Figure 2) indicates 

that north-south shortening of the Coast Range basalts in northwestern Washington is 

accommodated by large-scale folding as well as faulting. Southern Vancouver Island 

possibly acted as a backstop restricting major northward displacement or rotation of 

the northern Crescent Formation [Beck and Engebretson, 1982].
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CONCLUSIONS

Previous paleomagnetic studies of the basalts of the lower Crescent Formation 

have failed. The discovery that rims are more likely than pillow cores to record a 

stable magnetization and the use of a small-diameter core drill, which allowed the 

sampling of these fractured rims, contributed greatly to the success of this study.

Three conclusions can be drawn from the paleomagnetic analysis. First, the 

stable remanent magnetization measured within the Crescent Formation appears to be 

early, before significant deformation and possibly primary. This conclusion is based 

on rock-magnetic evidence suggesting that the subaerial basalts of the upper Crescent 

Formation retained their primary remanence. A positive multi-limb fold test between 

exposures of the upper and lower Crescent Formation indicates that the remanence in 

the lower Crescent was likely acquired early and while horizontal.

Second, correction for bedding rotations about strike at four different structural 

domains produces a circular distribution of VGPs. The simplest model which fits the 

paleomagnetic data is a dome-like uplift of the Olympic Mountains that was likely the 

result of tectonic thickening during the formation of the subduction complex of the 

Olympic Core terrane [Cady, 1975; Davis and Hyndman, 1989]. Shallow subduction 

and a continuous sediment supply, perhaps aided by the northward component of plate 

convergence, allowed the uplift [Davis and Hyndman, 1989].

Third, the northern Crescent Formation shows no significant net rotation. This 

concordance agrees with the in situ results from the Metchosin Igneous Complex stu

died by Irving and Massey [1990]. Concordance is also in agreement with models
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which describe the extrusion of the Crescent basalts in a marginal rift-basin [Wells et 

al., 1984; Brandon and Massey, 1985; Massey, 1986; Clark, 1989; Babcock et al., 

1992]. The Olympic Mountains may have been located north of the influence of Basin 

and Range extension, eliminating more than half of the mechanism of rotation 

predicted by the model of Wells and Heller [1988]. In addition, southern Vancouver 

Island may have acted as a backstop, thereby inhibiting major northward displacement 

and rotation [Beck and Engebretson, 1982]. Regardless of the mechanisms, the results 

presented here demonstrate that the northern Olympic Mountains have experienced a 

deformational history different from correlative Coast Range exposures to the south.
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Notes: Dec and Inc: declination and inclination of sample directions; R: length of resultant vector; 
MAD: maximum angular deviaticm; Demag. Range: °C for thermal, mT fw AF; Demag. Method: ther
mal (t), alternating field (a), N: number of points used for line-fit; Line-Fit Type: (o) origin and (c) cen
troid are anchored and free-lines of Kirschvink [1980]; DipAz: azimuth of down-dip vector, Dip: angle 
of bedding tilt (angles greater than 90° indicate overturned beds); *: 7^5 > 15°; t: sample was loose 
before orienting.

Site BQOl; N.Lac 47.83, Eion: 236.98, DipAz: 120, Dip: 95

Sample Dec Inc R MAD
Demag. Range 
Low High

Demag.
Method N

Line-Fit
Type

90BQ010101t 181.4 -25.2 3.289E-04 6.1 450 560 t 4 0
90BQ010101t 185.0 -25.0 1.510E-04 12.7 450 560 t 4 c
90BQ010201 124.5 -12.5 4.691E-04 2.5 500 575 t 4 0
90BQ010201 137.2 -7.1 6.394E-05 12.3 500 575 t 4 c
90BQ010301 345.6 +57.6 1.717E-03 8.6 100 300 t 5 0
90BQ010301 351.2 +66.0 1.210E-03 2.0 100 300 t 5 c
90BQ010401* 146.3 -20.9 5.578E-04 2.3 450 575 t 5 0
90BQ010401* 151.0 -19.7 1.454E-04 7.5 450 575 t 5 c
90BQ010501* 147.0 -20.2 4.186E-03 1.7 300 575 t 6 0
90BQ010501* 148.7 -19.3 1.666E-03 3.9 300 575 t 6 c
90BQ010601 328.6 +57.3 9.824E-05 13.0 300 300 t 1 0

Site EMOl; N.Lat: 48.21, Eion: 235.67, DipAz: 22, Dip: 80

Demag. Range
Sample Dec Inc R MAD Low High

Demag.
Method N

Line-Fit
Type

90EM010101 44.6 +26.2 1.534E-03 1.8 300 560 t 5 0
90EM010101 45.3 +28.3 7.161E-04 2.9 300 560 t 5 c
90EM010201 61.2 +25.4 2.507E-03 1.9 350 560 t 6 0
90EM010201 59.5 +26.3 1.097E-03 3.9 350 560 t 6 c
90EM010301* 19.1 -68.5 6.150E-04 2.7 300 560 t 5 0
90EM010301* 23.9 -70.2 2.663E-04 5.6 300 560 t 5 c
90EM010401t 35.5 -2.5 4.486E-03 0.8 300 575 t 6 0
90EM010401t 35.3 -2.2 2.645E-03 1.2 300 575 t 6 c
90EM010501 53.3 +22.0 1.829E-03 2.4 300 560 t 5 0
90EM010501 52.6 +23.3 9285E-04 4.3 300 560 t 5 c
90EM010601 67.1 +32.4 2.933E-03 3.2 300 560 t 5 0
90EM010601 67.5 +32.5 1.887E-03 4.9 300 560 t 5 c
90EM010701 62.7 +41.1 1.077E-03 1.5 450 560 t 4 0
90EM010701 63.2 +43.2 5.547E-04 1.6 450 560 t 4 c
90EM010801 235.2 +3.0 2.698E-03 1.7 300 560 t 5 0
90EM010801 234.6 +4.4 1.418E-03 2.6 300 560 t 5 c
90EM010901 224.5 +9.6 4.481E-03 1.5 300 560 t 5 0
90EM010901 223.5 +10.6 2.572E-03 2.0 300 560 t 5 c
90EM011001 221.6 -2.0 8.426E-04 0.9 450 560 t 4 0
90EM011001 221.7 -1.7 4.457E-04 1.7 450 560 t 4 c
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Locality ER; N.Lac 48.04, Eion: 236.41, DipAz: 10, Dip; 90

Sample Dec Inc R MAD
Demag. Range 
Low High

Demag.
Method N

Line-Ht
Type

90ER010201 80.1 -1.2 6.096E-03 3.3 300 560 t 5 0
90ER010201 67.7 +20.6 4.358E-04 35.6 300 560 t 5 c
90ER010401 113.0 +26.7 2.723E-03 1.1 450 560 t 4 0
90ER010401 115.7 +39.6 1.904E-04 8.5 450 560 t 4 c
90ER010501 74.2 +7.9 1J211E-02 1.5 300 585 t 7 0
90ER010501 74.6 +10.2 2.384E-03 7.1 300 585 t 7 c
90ER010601 84.4 +10.1 9.578E-03 3.1 300 585 t 7 0
90ER010601 85.5 +12.1 2.673E-03 10.7 300 585 t 7 c
90ER010701 70.9 +5.2 7.547E-03 1.5 500 580 t 5 0
90ER010701 72.6 +4.9 3.577E-03 2.4 500 580 t 5 c
90ER020101 44.5 -10.4 4.335E-03 1.8 450 585 t 6 0
90ER020101 46.1 -9.9 1.580E-03 4.6 450 585 t 6 c
90ER020201 32.8 -16.9 2.201E-03 1.9 450 575 t 5 0
90ER020201 30.4 -15.1 3.411E-04 11.9 450 575 t 5 c
90ER020301 14.8 -1.4 1.481E-04 4.5 500 575 t 4 0
90ER020301 20.1 +8.3 4.323E-05 10.2 500 575 t 4 c
90ER020401 15.7 +17.0 5.396E-03 2.7 250 580 t 10 0
90ER020401 16.8 +17.6 1.712E-03 8.2 250 580 t 10 c
90ER020501 8.9 +13.4 6.443E-03 2.8 300 575 t 6 0
90ER020501 8.1 +13.6 1.799E-03 9.9 300 575 t 6 c
90ER020601 13.4 +7.9 3.463E-03 1.7 300 575 t 6 0
90ER020601 11.6 +10.3 9.550E-04 5.2 300 575 t 6 c
90ER020701t 37.7 +14.9 8.590E-04 5.4 300 560 t 5 0
90ER020701I 30.2 +40.4 1.481E-04 19.7 300 560 t 5 c
90ER030101 10.3 +47.1 1.934E-02 1.5 300 575 t 6 0
90ER030101 9.7 +46.4 8.192E-03 3.4 300 575 t 6 c
90ER030301 17.5 +40.9 7.194E-03 2.1 300 560 t 5 o
90ER030301 17.9 +42.6 2.211E-03 6.5 300 560 t 5 c
90ER030401 24.6 +16.9 3270E-02 1.5 300 575 t 6 0
90ER030401 24.5 +17.4 1.310E-02 3.7 300 575 t 6 c
90ER030501 9.9 +49.6 4.400E-03 1.7 300 560 t 5 0
90ER030501 10.9 +55.3 6.670E-04 9.7 300 560 t 5 c
90ER030601* 17.0 +34.8 7.210E-03 1.7 300 560 t 7 o
90ER030601* 15.3 +36.9 7.720E-04 15.5 300 560 t 7 c
90ER040101 16.4 +45.3 1.552E-02 1.2 300 575 t 6 0
90ER040101 16.7 +45.1 5.555E-03 3.3 300 575 t 6 c
90ER040201 45.8 +30.6 1.160E-02 1.0 300 575 t 8 0
90ER040201 47.0 +31.5 2.845E-03 4.0 300 575 t 8 c
90ER040301 38.6 +46.2 1.729E-02 1.1 300 575 t 6 o
90ER040301 38.2 +46.6 6.936E-03 2.7 300 575 t 6 c
90ER040401 38.1 +31.4 1.328E-03 2.3 300 560 t 5 o
90ER040401 51.5 +36.3 1.541E-04 15.0 300 560 t 5 c
90ER040501 74.3 +59.0 3.950E-04 1.8 450 560 t 4 0
90ER040501 53.5 +52.2 4.042E-05 11.9 450 560 t 4 c
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Site HROl; N.Lac 47.99. Eion: 236.62, DipAz: 346. Dip: 69

Sample Dec Inc R MAD
Demag. Range 
Low High

Demag.
Method N

Line-Fit
Type

89HR010101* 172.2 +29.6 1.198E-04 2.8 450 575 t 7 0
89HR010101* 177.0 +30.7 4.955E-05 4.9 450 575 t 7 c
89HR010201t 27.4 +45.1 2.057E-05 8.0 450 575 t 7 0
89HR010201t 11.4 +55.7 7.403E-06 15.9 450 575 t 7 c
89HR010301t 166.3 +42.9 3.008E-05 8.9 450 570 t 6 o
89HR010301t 166.2 +49.0 1.464E-05 16.6 450 570 t 6 c
89HR010401t 145.4 +50.8 2.794E-04 2.5 450 570 t 6 0
89HR010401t 143.5 +53.9 1.087E-04 5.4 450 570 t 6 c
89HR010501t 185.2 +36.2 5.094E-05 3.6 450 560 t 5 0
89HR010501t 185.8 +35.5 2.808E-05 6.4 450 560 t 5 c
90HR010602 151.6 +34.1 3.415E-04 3.4 300 540 t 4 0
90HR010602 151.6 +35.9 1.642E-04 6.8 300 540 t 4 c
90HR010701 164.8 +28.5 l.lOlE-03 3.2 300 540 t 4 o
90HR010701 150.9 +42.8 1.903E-04 3.6 300 540 t 4 c
90HR010801 152.8 +35.3 1.324E-04 1.6 475 560 t 4 0
90HR010801 153.6 +37.7 4.807E-05 3.4 475 560 t 4 c

SiteHR02; N.LaC 47.99, EIx)n:

Sample Dec Inc

236.62, DipAz:

R

355, Dip: 64

Demag. Range 
MAD Low High

Demag.
Method N

Line-Fit
Type

90HR020101t 191.9 +61.7 2.870E-04 13.9 300 540 t 7 0
90HR020101t 212.9 +79.3 1.704E-04 10.1 300 540 t 7 c
90HR020202 188.7 +35.3 3.646E-04 2.4 450 560 t 4 o
90HR020202 184.0 +37.5 1.254E-04 5.2 450 560 t 4 c
90HR020301 178.0 +43.0 7.717E-04 4.0 450 560 t 4 0
90HR020301 156.3 +61.4 1.240E-04 12.1 450 560 t 4 c
90HR020401 165.9 +49.5 1.906E-04 2.7 475 560 t 4 0
90HR020401 161.6 +53.5 6.945E-05 5.2 475 560 t 4 c
90HR020501 174.5 +59.3 2.679E-04 2.0 450 560 t 4 0
90HR020501 181.9 +59.3 4.796E-05 10.1 450 560 t 4 c
90HR020602 177.2 +39.1 1.513E-03 1.4 450 560 t 4 o
90HR020602 179.5 +43.8 3.039E-04 4.9 450 560 t 4 c
90HR020701* 316.5 +75.2 2.806E-04 3.2 300 560 t 5 0
90HR020701* 312.9 +72.7 1.373E-04 5.7 300 560 t 5 c
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Site HR03; N.Lat 47.99, Eion: 236.62, DipAz: 359, Dip; 69

Sample Dec Inc R MAD
Demag. Range 
Low High

Demag.
Method N

Line-Fit
Type

90HR030101 16.8 +71.0 5.618E-04 2.1 15 65 a 8 0
90HR030101 11.8 468.2 2.023E-04 4.5 15 65 a 8 c
90HR030201 14.8 468.4 6.315E-04 1.9 10 40 a 4 0
90HR030201 8.9 +68.5 3.070E-04 3.0 10 40 a 4 c
90HR030301 28.4 +67.9 2.960E-03 2.3 20 90 a 8 0
90HR030301 29.6 +68.7 1.749E-03 3.7 20 90 a 8 c
90HR030401* 21.8 +75.7 7.493E-05 6.7 350 560 t 6 0
90HR030401* 31.8 +82.5 3.982E-05 9.5 350 560 t 6 c
90HR030502* 115.0 +74.6 5.482E-05 1.6 450 540 t 3 0
90HR030502* 108.6 +70.1 9.667E-06 7.3 450 540 t 3 c
90HR030601 162.8 +68.4 1.573E-04 6.9 300 540 t 4 0
90HR030601 156.0 +82.2 6.842E-05 4.9 300 540 t 4 c
90HR030703 26.4 +77.9 1.134E-03 2.6 300 575 t 6 0
90HR030703 18.8 +76.5 7.401E-04 2.7 300 575 t 6 c

SiteHR04; N.Lat 47.99, Eion:

Sample Dec Inc

236.62, DipAz: 5, Dip: 80

R MAD
Demag. Range 
Low High

Demag.
Method N

Line-Fit
Type

90HR040101 180.9 +50.2 3.390E-04 2.6 20 45 a 6 0
90HR040101 184.1 +50.1 1.373E-04 6.0 20 45 a 6 c
90HR040201t 23.4 +65.7 1.410E-04 3.5 350 560 t 6 0
90HR040201t 17.3 +66.3 6.933E-05 6.4 350 560 t 6 c
90HR040301 166.1 +48.8 2.075E-04 2.8 20 50 a 4 o
90HR040301 168.5 +45.4 1.208E-04 1.3 20 50 a 4 c
90HR040401 171.4 +47.4 1.008E-04 3.3 450 560 t 4 0
90HR040401 176.2 +53.7 3.447E-05 6.0 450 560 t 4 c
90HR040501t 249.3 +74.7 2.432E-04 3.2 20 60 a 5 0
90HR040501t 264.5 +77.7 l.lllE-04 4.7 20 60 a 5 c
90HR040601 162.6 +44.5 1.970E-04 3.3 300 540 t 4 0
90HR040601 148.6 +44.2 5.082E-05 8.0 300 540 t 4 c
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Site HR05; N.Lac 47.99, Eion: 236.63, DipAz: 25, Dip: 60

Demag. Range Demag. Line-Fit
Sample Dec Inc R MAD Low High Method N Type

90HR050101 254.0 +29.4 3.170E-04 1.5 450 560 t 4 0
90HR050101 255.5 +27.5 1.437E-04 2.1 450 560 t 4 c
90HR050201* 330.4 +65.6 6.126E-04 3.9 20 60 a 8 0
90HR050201* 350.2 +59.0 1.873E-04 4.7 20 60 a 8 c
90HR050301 238.5 +38.0 6.907E-04 3.6 350 560 t 6 0
90HR050301 239.7 +42.6 2.704E-04 7.7 350 560 t 6 c
90HR050401* 236.7 +35.3 5.582E-05 4.8 450 560 t 4 0
90HR050401* 237.3 +43.7 1.994E-05 9.9 450 560 t 4 c
90HR050501* 251.2 +8.4 2.080E-04 4.5 450 560 t 4 0
90HR050501* 254.6 +18.2 4.722E-05 16.8 450 560 t 4 c
90HR050601 234.0 +26.1 3.698E-04 2.5 450 560 t 4 0
90HR050601 240.3 +33.2 4.407E-05 18.7 450 560 t 4 c
90HR050701 243.5 +20.7 2.623E-04 1.6 450 575 t 5 o
90HR050701 246.9 +21.0 8.598E-05 3.7 450 575 t 5 c

Site LCOl; Niat: 48.07, Ei<m: 236.21, DipAz: 356, Dip: 66

Demag. Range Demag. Line-Fit
Sample Dec Inc R MAD Low High Method N Type

90LC010101 181.7 +19.4 1.623E-02 1.7 300 560 t 5 0
90LC010101 181.2 +19.3 7.810E-03 3.6 300 560 t 5 c
90LC010201 189.5 +86.2 3.279E-03 2.8 10 50 a 8 0
90LC010201 181.9 +85.1 2.068E-03 4.1 10 50 a 8 c
90LC010302* 74.6 -64.7 3.016E-02 0.9 300 575 t 6 0
90LC010302* 256.1 +65.2 1.841E-02 1.0 300 575 t 6 c
90LC010401 138.5 +61.8 1.251E-03 2.4 10 25 a 4 0
90LC010401 144.3 +60.3 5.360E-04 4.2 10 25 a 4 c
90LC010501 187.3 +50.5 1.026E-01 0.8 250 560 t 8 0
90LC010501 187.0 +50.4 5.208E-02 1.5 250 560 t 8 c
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Site LC02; Niat: 48.07, Eion: 236.22, DipAz: 8, Dip: 80

Sample Dec Inc R MAD
Demag. Range 
Low High

Demag.
Method N

Line-Fit
Type

90LC020101 181.3 449.9 1.465E-03 3.1 450 540 t 3 0
90LC020101 171.2 +53.3 4.812E-04 5.7 450 540 t 3 c
90LC020301t 228.7 +55.5 1.352E-03 9.4 300 540 t 4 0
90LC020301t 2242 +65.5 6294E-04 16.4 300 540 t 4 c
90LC020401 204.5 +39.8 1.439E-03 5.0 300 540 t 4 o
90LC020401 208.1 +37.8 6.657E-04 10.0 300 540 t 4 c
90LC020501* 147.9 -32.5 2.656E-03 5.0 450 560 t 4 0
90LC020501* 152.9 -36.4 1.556E-03 5.1 450 560 t 4 c
90LC020601 234.3 +13.4 2.267E-03 4.5 300 500 t 3 0
90LC020601 236.8 +27.2 6.313E-04 7.1 300 500 t 3 c
90LCX)20701 213.9 +25.6 3.460E-03 4.9 300 540 t 4 o
90LC020701 213.7 +29.0 1.465E-03 10.8 300 540 t 4 c
90LCX)20801 193.6 +29.1 1.366E-03 1.5 450 560 t 4 0
90LC020801 193.1 +30.4 9.063E-04 1.3 450 560 t 4 c
90LC020901 205.5 +43.0 1.503E-03 3.6 300 540 t 4 0
90LC020901 208.1 +46.8 6.484E-04 6.9 300 540 t 4 c
90LC021001 201.8 +39.4 4.329E-03 2.5 300 500 t 3 0
90LC021001 199.0 +43.7 1.733E-03 3.3 300 500 t 3 c
90LC021101 181.6 +18.3 4.885E-03 2.4 300 540 t 4 0
90LC021101 181.2 +19.7 2.131E-03 5.3 300 540 t 4 c
90LC021201 212.4 +31.6 8.221E-03 1.5 300 540 t 4 0
90LC021201 211.0 +31.1 3.699E-03 3.0 300 540 t 4 c
90LC021301 208.3 +32.2 1.854E-03 1.4 450 575 t 5 o
90LC021301 210.2 +31.8 8.881E-04 2.4 450 575 t 5 c
90LC021401 181.7 +41.9 6.574E-03 2.7 300 500 t 5 o
90LC021401 163.1 +40.6 1.009E-03 10.2 300 500 t 5 c

Site LC03; Niat 48.07, Eitm:

Sample Dec Inc

236.22, DipAz:

R

10, Dip: 85

Demag. Range 
MAD Low High

Demag.
Method N

Line-Fit
Type

90LC030101 272.8 +22.0 1.292E-03 9.5 300 540 t 6 0
90LC030101 275.2 +12.4 6.146E-04 16.7 300 540 t 6 c
90LC030301* 305.0 +74.2 2.222E-04 24.6 300 500 t 3 o
90LC030301* 356.1 +40.0 1.356E-04 4.7 300 500 t 3 c
90LC030401* 18.3 +69.5 3.263E-04 9.2 300 500 t 3 0
90LC030401* 66.6 +51.9 9.431E-05 17.0 300 500 t 3 c
90LC030501* 24.1 +75.8 2.873E-04 1.5 300 500 t 3 0
90LC030501* 18.8 +76.5 1.441E-04 2.4 300 500 t 3 c
90LC030601* 314.9 +69.7 3.119E-04 5.6 300 500 t 3 0
90LC030601* 330.3 +64.9 1.677E-04 5.4 300 500 t 3 c
90LC030701* 12.3 +47.8 2.826E-04 11.7 300 500 t 3 0
90LC030701* 8.6 +30.6 1.572E-04 7.3 300 500 t 3 c
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Site LSOl; N.Lat 48.06, El.on: 236.31, DipAz: 25, Dip: 140

Sample Dec Inc R MAD
Demag. Range 
Low High

Demag.
Method N

Line-Fit
Type

90LS010101 344.0 -74.8 2.183E-03 1.6 300 560 t 5 0
90LS010101 348.3 -74.6 1.032E-03 3.1 300 560 t 5 c
90LS010201 280.0 -69.7 2.285E-03 1.5 300 560 t 5 0
90LS010201 277.1 -70.4 1.070E-03 3.0 300 560 t 5 c
90LS010301 350.0 -80.1 5.628E-03 0.9 300 560 t 5 o
90LS010301 354.9 -80.1 3.149E-03 1.3 300 560 t 5 c
90LS010401 335.4 -84.8 2.178E-03 1.3 300 540 t 4 o
90LS010401 348.4 -84.8 9.977E-04 2.5 300 540 t 4 c
90LS010501 16.9 -74.0 8.293E-03 0.4 300 560 t 5 o
90LS010501 18.0 -74.2 4.943E-03 0.5 300 560 t 5 c
90LS010601* 9.2 -79.5 3.742E-03 0.6 300 560 t 5 0
90LS010601* 11.7 -79.5 1.912E-03 1.1 300 560 t 5 c

Site LS02; N.Lat 48.05, EJLon:

Sample Dec Inc

236.30, DipAz: 32, Dip: 131

Demag. Range
R MAD Low High

Demag.
Method N

Line-Fit
Type

90LS020101* 73.2 +19.9 1.250E-03 2.1 450 560 t 4 0
90LS020101* 75.3 +22.3 4.462E-04 4.8 450 560 t 4 c
90LS020201t 104.6 +2.1 6.590E-04 5.1 300 500 t 3 o
90LS020201t 108.4 +27.3 1.315E-04 6.2 300 500 t 3 c
90LS020301 71.8 +14.0 1.600E-02 0.8 300 560 t 5 0
90LS020301 72.0 +14.2 9.008E-03 1.3 300 560 t 5 c
90LS020401 72.8 +8.4 2.283E-03 1.5 300 540 t 4 0
90LS020401 71.6 +10.1 8.809E-04 32 300 540 t 4 c
90LS020501* 44.9 +9.9 3.578E-03 1.6 300 560 t 5 0
90LS020501* 46.2 +10.4 1.932E-03 2.5 300 560 t 5 c
90LS020601* 82.1 +4.0 1.464E-03 1.9 300 540 t 4 o
90LS020601* 81.7 +6.7 5.661E-04 4.0 300 540 t 4 c
90LS020701* 49.2 +34.5 9.988E-03 12 300 560 t 5 0
90LS020701* 49.0 +34.7 5.441E-03 2.1 300 560 t 5 c
90LS020801 64.4 +21.6 9.416E-03 1.9 300 540 t 4 0
90LS020801 64.0 +23.2 3.854E-03 42 300 540 t 4 c
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Site LS03; N.Lac 48.05, Eion: 236.29, DipAz: 358, Dip; 117

Sample Dec Inc R MAD
Demag. Range 
Low High

Demag.
Method N

Line-Fit
Type

90LS030101* 71.4 +29.7 1.958E-04 1.7 25 50 a 6 0
90LS030101* 71.8 +30.9 1.204E-04 2.2 25 50 a 6 c
90LS030201* 73.3 +28.4 2.688E-03 0.8 450 560 t 4 o
90LS030201* 73.0 +29.6 1.143E-03 1.2 450 560 t 4 c
90LS030301* 75.1 +28.8 2.996E-03 1.9 300 540 t 4 0
90LS030301* 75.7 +29.4 9.937E-04 5.7 300 540 t 4 c
90LS030401* 63.2 +26.4 1.369E-03 2.1 300 540 t 4 o
90LS030401* 57.6 +27.0 4.626E-04 3.5 300 540 t 4 c
90LS030501* 72.0 +34.5 3.303E-03 4.5 150 500 t 8 0
90LS030501* 98.7 +82.2 3.348E-04 14.8 150 500 t 8 c
90LS030601* 80.8 +25.0 5.022E-03 0.8 300 500 t 3 0
90LS030601* 72.7 +19.0 3.650E-04 6.1 300 500 t 3 c
90LS030701* 72.3 +29.1 8.927E-04 1.8 450 560 t 4 0
90LS030701* 71.6 +30.4 4.366E-04 3.2 450 560 t 4 c

SiteLS04; N.Lac 48.05, Eion:

Sample Dec Inc

236.29, DipAz: 10, Dip: 128

Demag. Range
R MAD Low High

Demag.
Method N

Line-Fit
Type

90LS040101* 43.8 +13.0 2.487E-04 6.5 300 540 t 4 0
90LS040101* 40.9 +8.0 1.013E-04 14.4 300 540 t 4 c
90LS040201* 68.0 +36.4 3.089E-02 0.7 300 560 t 5 0
90LS040201* 68.3 +36.2 1.665E-02 1.2 300 560 t 5 c
90LS040301* 40.9 +4.3 3.298E-04 6.0 300 560 t 5 0
90LS040301* 38.4 +6.5 1.655E-04 11.1 300 560 t 5 c
90LS040401* 78.7 +33.5 8.966E-04 4.8 300 560 t 5 0
90LS040401* 83.4 +36.2 4.683E-04 7.4 300 560 t 5 c
90LS040501* 81.8 +20.4 1.660E-03 3.3 300 560 t 5 o
90LS040501* 79.6 +19.4 9.052E-04 5.5 300 560 t 5 c
90LS040601* 118.7 +19.5 3.443E-03 1.2 450 560 t 4 0
90LS040601* 117.5 +18.5 1.915E-03 1.1 450 560 t 4 c
90LS040701 99.0 +41.9 5.205E-03 1.9 300 600 t 10 o
90LS040701 93.9 +40.3 1.840E-03 3.0 300 600 t 10 c
90LS040801t 1.4 +34.6 6.226E-03 1.3 300 540 t 4 0
90LS040801t 2.1 +37.0 2.240E-03 2.3 300 540 t 4 c
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Site LS05; N.Lat; 48.05, Eion: 236.30, DipAz: 40, Dip: 125

Sample Dec Inc R MAD
Demag. Range 
Low High

Demag.
Method N

Line-Fit
Type

90LS050101 259.1 +52.9 7.810E-04 2.8 300 560 t 5 o
90LS050101 261.3 +58.3 2.983E-04 4.1 300 560 t 5 c90LS050201* 237.3 +24.8 1.002E-03 4.0 300 540 t 4 0
90LS050201* 226.4 +29.0 2.798E-04 9.5 300 540 t 4 c90LS050301* 259.4 +28.3 9.043E-04 3.7 300 560 t 7 0
90LS050301* 259.5 +33.7 2.523E-04 11.8 300 560 t 7 c90LS050401* 242.3 +22.7 6.000E-04 3.5 450 560 t 4 0
90LS050401* 248.1 +25.7 2.241E-04 6.6 450 560 t 4 c90LS050501* 260.3 +23.6 1.069E-03 4.0 300 500 t 3 o90LS050501* 244.0 +53.4 1.388E-04 1.1 300 500 t 3 c90LS050601* 252.8 +17.4 1.182E-03 5.5 300 560 t 5 o90LS050601* 260.1 +33.1 3.283E-04 9.4 300 560 t 5 c
90LS050701* 252.3 +14.7 8.746E-04 1.9 450 560 t 4 0
90LS050701* 253.7 +16.3 4.265E-04 2.9 450 560 t 4 c

Site LS06; N.Lat 48.05, Eion: 236.30, DipAz: 32, Dip: 131

Sample Dec Inc R MAD
Demag. Range 
Low High

Demag.
Method N

Line-Fit
Type

90LS060101 56.3 +26.0 3.528E-03 1.8 300 575 t 6 0
90LS060101 57.6 +28.8 1.074E-03 5.0 300 575 t 6 c90LS060201* 55.0 +42.3 4.612E-04 3.1 300 575 t 6 0
90LS060201* 48.8 +43.4 1.784E-04 6.2 300 575 t 6 c90LS060301* 57.4 +35.9 7.619E-03 1.7 300 560 t 5 0
90LS060301* 56.7 +35.3 4.080E-03 2.9 300 560 t 5 c90LS060401* 48.4 +38.4 2.164E-03 1.7 300 560 t 5 0
90LS060401* 45.1 +41.1 7.724E-04 2.6 300 560 t 5 c90LS060501 65.3 +29.2 3.192E-03 1.2 300 580 t 9 0
90LS060501 65.0 +30.3 1.133E-03 3.3 300 580 t 9 c90LS060601* 73.3 +26.8 6.880E-04 2.0 300 560 t 5 o90LS060601* 71.1 +26.4 3.098E-04 3.8 300 560 t 5 c90LS060701 58.1 +19.5 1.688E-03 1.1 300 560 t 5 0
90LS060701 57.6 +20.9 6.238E-04 2.6 300 560 t 5 c90LS060801 65.4 +41.1 3.791E-03 0.6 300 560 t 5 o
90LS060801 65.5 +41.1 1.784E-03 1.2 300 560 t 5 c
90LS060901* 59.2 +33.1 2.073E-03 1.4 300 560 t 5 0
90LS060901* 57.6 +35.1 7.106E-04 3.3 300 560 t 5 c
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Site MPOl; N.LaC 47.92. Eion: 236.89, DipAz; 38. Dip; 62

Sample Dec Inc R MAD
Demag. Range 
Low High

Demag.
Method N

Line-Fit
Type

90MP010101 350.4 -67.1 1.308E-02 2.0 300 540 t 4 o
90MP010101 0.7 -61.8 3.417E-03 2.5 300 540 t 4 c
90MP010201 23.2 -74.4 5.374E-03 3.2 300 560 t 5 0
90MP010201 29.0 -70.5 1.830E-03 8.1 300 560 t 5 c
90MP010301 58.4 -88.4 2.844E-03 1.5 300 560 t 5 0
90MP010301 34.2 -87.6 1.277E-03 3.0 300 560 t 5 c
90MP010401 23.7 -56.1 1.902E-02 0.6 300 540 t 4 o
90MP010401 23.8 -55.0 5.690E-03 1.5 300 540 t 4 c
90MP010501 29.5 -63.4 2.087E-02 1.2 300 540 t 4 o
90MP010501 25.7 -63.0 7.628E-03 2.7 300 540 t 4 c
90MP010601t 59.7 ^5.4 3.920E-03 1.6 400 560 t 5 0
90MP010601t 58.7 -43.9 1.573E-03 3.6 400 560 t 5 c
90MP010701 42.6 -81.1 4.283E-03 5.8 300 560 t 5 0
90MP010701 52.2 -77.5 1.850E-03 12.5 300 560 t 5 c
90MP010801 94.6 -73.3 7.291E-03 3.0 450 560 t 4 0
90MP010801 82.0 -73.1 3.669E-03 4.3 450 560 t 4 c

Site MP02; N.Lat: 47.91, Eion: 236.89, DipAz: 60, Dip: 90

Demag. Range
Sample Dec Inc R MAD Low High

Demag.
Methcxi N

Line-Fit
Type

90MP020101 66.7 -5.0 2.566E-03 0.7 300 540 t 4 0
90MP020101 65.8 -5.0 1.293E-03 0.9 300 540 t 4 c
90MP020201 65.2 -6.9 2.720E-03 1.8 300 540 t 4 0
90MP020201 62.6 -7.3 1.148E-03 3.3 300 540 t 4 c
90MP020301 62.3 -1.5 1.025E-03 0.6 300 540 t 6 0
90MP020301 63.0 -2.5 3.903E-04 1.0 300 540 t 6 c
90MP020401 68.2 -.1 2.385E-03 0.9 450 560 t 4 o
90MP020401 68.8 -.7 1.036E-03 1.8 450 560 t 4 c
90MP020501 69.7 -4.0 2.319E-03 1.1 300 575 t 6 0
90MP020501 68.6 -3.7 1.289E-03 1.5 300 575 t 6 c
90MP020601 63.9 -2.6 6.044E-04 1.5 300 540 t 4 o
90MP020601 61.8 +2.0 1.549E-04 2.7 300 540 t 4 c90MP020701 58.5 -.5 1.627E-03 1.3 450 560 t 4 0
90MP020701 58.1 -.2 9.276E-04 2.1 450 560 t 4 c
90MP020801 65.1 -3.7 1.874E-03 0.8 300 540 t 4 0
90MP020801 66.0 -3.1 8.633E-04 1.2 300 540 t 4 c
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Site MP03; N.Lac 47.91, Eion: 236.88, D^Az: 42, Dip: 95

Donag. Range Demag. Line-Fit
Sample Dec Inc R MAD Low High Method N Type

90MP030101 77.4 -12.1 2.506E-03 3.7 450 560 t 4 0
90MP030101 73.6 -10.5 1.176E-03 6.4 450 560 t 4 c
90MP030201 56.6 -13.8 1.838E-03 3.7 300 540 t 4 0
90MP030201 55.9 -6.4 8.086E-04 2.0 300 540 t 4 c
90MP030301 56.5 -27.0 9.081E-04 5.3 300 560 t 5 0
90MP030301 54.9 -21.5 4.121E-04 9.8 300 560 t 5 c
90MP030401 48.1 -19.2 3.527E-03 1.5 300 540 t 4 0
90MP030401 44.2 -19.0 8.734E-04 4.7 300 540 t 4 c
90MP030501 50.6 -9.9 5.353E-04 2.8 400 560 t 5 0
90MP030501 49.0 -5.7 1.716E-04 7.3 400 560 t 5 c
90MP030601 80.4 +22.9 3.444E-03 2.3 300 540 t 4 0
90MP030601 78.1 +19.8 1.616E-03 2.3 300 540 t 4 c
90MP030701 63.5 +2.5 2.284E-03 4.1 300 540 t 4 0
90MP030701 61.6 +11.1 6.917E-04 9.9 300 540 t 4 c
90MP030801 33.1 -9.2 9.128E-03 2.2 300 540 t 4 0
90MP030801 35.3 -12.1 2.813E-03 6.0 300 540 t 4 c

Site PMOl; N.Lat 48.07, Eion: 236.19, DipAz: 50, Dip: 46

Sample Dec Inc R MAD
Demag. Range 
Low High

Demag.
Method N

Line-Fit
Type

90PM010101 267.2 +19.3 2.209E-03 0.7 300 560 t 7 0
90PM010101 268.1 +19.5 1.073E-03 0.8 300 560 t 7 c
90PM010201 257.2 +26.1 4.127E-03 0.5 300 540 t 4 0
90PM010201 257.3 +26.0 2.668E-03 0.8 300 540 t 4 c
90PM010301 254.0 +11.6 8.722E-03 0.5 300 540 t 4 o
90PM010301 254.0 +11.6 4.374E-03 1.1 300 540 t 4 c
90PM010401 260.9 +26.8 5.708E-04 1.4 300 540 t 4 0
90PM010401 259.8 +26.8 4.437E-04 0.8 300 540 t 4 c
90PM010501 263.4 +33.2 1.930E-03 1.5 300 560 t 5 0
90PM010501 262.4 +34.3 1.158E-03 1.9 300 560 t 5 c
90PM010601 259.1 +17.7 6.968E-03 0.6 300 540 t 4 0
90PM010601 259.5 +17.0 3.179E-03 1.1 300 540 t 4 c
90PM010701 256.6 +10.8 2.489E-03 1.3 300 575 t 6 0
90PM010701 255.9 +10.2 1.413E-03 1.9 300 575 t 6 c
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Site PM02; N.LaC 48.08, EJ-on: 236.14, DipAz; 30, Dip: 60

Sample Dec Inc R MAD Low High
90PM020101 221.0 +27.8 3.600E-02 0.9 300 560
90PM020101 219.4 +28.3 1.520E-02 1.4 300 560
90PM020201 212.1 +39.7 3.149E-03 1.5 300 540
90PM020201 213.5 +37.3 1.398E-03 1.6 300 540
90PM020302t 313.2 -13.8 7.836E-03 0.4 300 540
90PM020302t 313.0 -13.9 4.807E-03 0.6 300 540
90PM020401 223.2 +32.6 5.775E-03 1.8 300 540
90PM020401 223.4 +33.1 2.781E-03 3.8 300 540
90PM020501 226.5 +31.2 8.099E-02 0.4 0 500
90PM020501 46.5 -33.7 1.267E-02 1.3 0 500
90PM020601 218.2 +31.2 2.747E-02 0.9 300 540
90PM020601 217.8 +31.2 1.361E-02 1.9 300 540
90PM020701 211.9 +29.0 2.961E-02 0.4 300 540
90PM020701 31.2 -29.4 1.314E-02 0.4 300 540

Demag.
Method

Line-Fit 
N Type
5 o
5 c
4 o
4 c
5 o
5 c
4 o
4 c
4 o
4 c
4 o
4 c
4 o
4 c

Site PM03; N.LaC 48.08, Eion:

Sample Dec Inc

236.14, DipAz:

R

10, Dip: 74

Demag. Range 
MAD Low High

90PM030102 186.9 +43.6 1.021E-03 2.0 300 540
90PM030102 190.6 +41.9 3.941E-04 3.8 300 540
90PM030202 6.8 -28.2 3.350E-03 1.0 300 540
90PM030202 186.8 +28.5 1.503E-03 2.1 300 540
90PM030302t 342.5 +3.2 1.291E-02 1.1 300 500
90PM030302t 342.4 +3.9 2.654E-03 5.5 300 500
90PM030402 192.3 +33.5 4.805E-03 0.4 300 500
90PM03W02 192.9 +33.4 2.855E-03 0.3 300 500
90PM030502 190.2 +32.4 1.278E-02 1.7 300 540
90PM030502 190.2 +33.6 5.768E-03 3.5 300 540
90PM030601 195.3 +45.1 4.141E-03 1.2 300 540
90PM030601 196.2 +45.4 1.860E-03 2.5 300 540
90PM030702 193.8 +46.8 2.593E-03 1.5 300 500
90PM030702 195.8 +46.2 1.767E-03 0.9 300 500

Demag.
Method

t
t
t
t
t
t
t
t
t
t
t
t
t
t

Line-Fit 
N Type
4 o
4 c
4 o
4 c
3 0
3 c
3 o
3 c
4 o
4 c
6 o
6 c
3 o
3 c
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Site PM04; N.Lat; 48.08, Eion: 236.09, DipAz; 32, Dip; 87

Sample Dec Inc R MAD
Demag. Range 
Low High

Demag.
Method N

Line-Fit
Type

90PM040101 244.4 +19.3 3.327E-03 2.2 300 560 t 5 o
90PM040101 245.2 +21.3 1.748E-03 3.3 300 560 t 5 c
90PM040201 234.5 +33.3 2.454E-02 0.5 300 560 t 5 0
90PM040201 54.7 -33.1 1.563E-02 0.7 300 560 t 5 c
90PM040301 241.5 +38.5 2.990E-03 1.7 300 575 t 6 0
90PM040301 239.7 +38.3 1.721E-03 2.4 300 575 t 6 c
90PM040401 241.1 +27.0 4.882E-03 1.5 300 560 t 5 0
90PM040401 240.1 +27.6 3.035E-03 2.1 300 560 t 5 c
90PM040501 66.2 -39.3 5.645E-03 1.5 300 540 t 4 o
90PM040501 246.3 +39.3 2.972E-03 2.8 300 540 t 4 c
90PM040601 240.8 +34.5 2.957E-03 3.0 300 560 t 7 o
90PM040601 240.3 +36.9 1.129E-03 7.5 300 560 t 7 c
90PM040701 256.3 +21.4 1.648E-03 2.0 300 560 t 5 0
90PM040701 255.8 +23.3 9.009E-04 2.8 300 560 t 5 c

Site PM05; N.Lat 48.08, Eion: 236.08, DipAz: 22, Dip: 84

Sample Dec Inc R MAD
Demag. Range 
Low High

Demag.
Method N

Line-Fit
Type

90PM050101 261.0 +57.2 2.175E-03 3.6 300 540 t 4 0
90PM050101 264.2 +58.1 1.290E-03 5.5 300 540 t 4 c
90PM050201 215.1 +42.4 1.153E-02 3.1 0 500 t 4 0
90PM050201 215.8 +45.9 5.259E-03 5.6 0 500 t 4 c
90PM050301 249.8 +33.1 9.626E-04 3.8 300 540 t 4 0
90PM050301 253.5 +32.3 4.627E-04 7.0 300 540 t 4 c
90PM050401 248.2 +35.7 7.827E-03 1.6 300 500 t 3 0
90PM050401 69.9 -31.9 2.827E-03 1.2 300 500 t 3 c
90PM050501t 269.8 +1.7 2.461E-03 3.4 300 560 t 5 0
90PM050501t 267.7 -6.0 8.922E-04 3.9 300 560 t 5 c
90PM050601 264.6 +40.0 7.883E-04 2.2 400 575 t 6 0
90PM050601 263.7 +40.5 3.457E-04 4.9 400 575 t 6 c
90PM050701 245.0 +55.3 1.695E-03 2.0 450 560 t 4 0
90PM050701 245.4 +56.4 6.746E-04 4.9 450 560 t 4 c
90PM050801 260.4 +63.8 7.662E-04 5.0 300 300 t 1 0
90PM050901 276.2 +57.1 8.325E-04 2.1 450 540 t 3 0
90PM050901 274.7 +63.5 1.834E-04 7.0 450 540 t 3 c
90PM051001 247.6 +30.2 1.375E-03 1.3 500 585 t 5 0
90PM051001 67.2 -30.9 8.186E-04 2.0 500 585 t 5 c
90PM051101 259.1 +33.5 4.107E-03 1.4 300 540 t 4 0
90PM051101 258.4 +33.5 1.620E-03 3.4 300 540 t 4 c
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Site PM06; N.Lac 48.08, EJLon: 236.08, DipAz: 270, Dip: 45

Demag. Range Demag. Line-Fit
Sample Dec Inc R MAD Low High Method N Type

90PM060102 130.2 +79.2 2.584E-03 0.7 300 540 t 4 o
90PM060102 131.0 +79.0 2.028E-03 0.8 300 540 t 4 c
90PM060201 121.8 +73.5 6.146E-03 1.9 300 500 t 3 0
90PM060201 124.7 +72.2 3.904E-03 2.2 300 500 t 3 c
90PM060301 25.4 +67.0 6.270E-03 1.2 150 400 t 6 0
90PM060301 24.0 +65.3 1.009E-03 7.3 150 400 t 6 c
90PM060402 97.9 +80.6 2.400E-03 0.7 300 500 t 3 0
90PM060402 97.9 +80.0 1.573E-03 0.6 300 500 t 3 c
90PM060501 110.2 -58.7 4.262E-03 1.0 300 500 t 3 o
90PM060501 110.2 -58.4 2.757E-03 1.5 300 500 t 3 c
90PM060601 118.4 +77.5 5.909E-03 1.1 300 540 t 4 o
90PM060601 117.2 +77.0 4.357E-03 1.3 300 540 t 4 c
90PM060701 33.4 +66.8 5.421E-03 4.7 0 450 t 3 0
90PM060701 29.8 +72.8 2.501E-03 7.6 0 450 t 3 c

Site PM07; N.Lat 48.09, Eion: 236.08, DipAz: 60, Dip: 91

Sample Dec Inc R MAD
Demag. Range 
Low High

Demag.
Method N

Line-Fit
Type

90PM070101 252.0 +85.7 7.674E-04 8.1 150 475 t 7 0
90PM070101 21.9 +85.0 2.937E-04 18.6 150 475 t 7 c
90PM070201* 257.5 +35.6 2.450E-04 7.0 300 540 t 4 0
90PM070201* 260.8 +34.8 1.474E-04 11.0 300 540 t 4 c
90PM070301 201.1 +55.5 4.622E-04 5.4 450 540 t 3 0
90PM070301 212.6 +46.7 1.407E-04 13.3 450 540 t 3 c
90PM070401t 127.8 +19.0 5.138E-04 5.9 300 540 t 4 0
90PM070401t 123.7 +19.2 3.050E-04 8.6 300 540 t 4 c
90PM070501 263.0 +78.3 2.737E-04 6.9 300 540 t 4 0
90PM070501 244.3 +76.8 8.688E-05 20.6 300 540 t 4 c
90PM070601 231.7 +67.5 4.292E-04 3.6 300 560 t 5 o
90PM070601 231.9 +69.7 1.889E-04 7.8 300 560 t 5 c
90PM070701I 145.2 +57.6 8.839E-04 1.2 450 540 t 3 0
90PM070701t 147.9 +57.5 2.902E-04 3.2 450 540 t 3 c
90PM070801 255.9 +77.5 2.150E-04 5.5 300 540 t 4 o
90PM070801 208.1 +86.4 7.463E-05 11.5 300 540 t 4 c
90PM070901 241.4 +74.9 1.256E-04 3.1 450 540 t 3 0
90PM070901 213.7 +77.2 3.415E-05 8.5 450 540 t 3 c
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Site SPOl; N.LaC 48.08, E.Lon: 235.87, DipAz: 337, Dip: 45

Sample Dec Inc R MAD
Demag. Range 
Low High

Demag.
Method N

Line-Fit
Type

90SP010101 346.9 +50.7 6.696E-04 3.8 300 560 t 5 0
90SP010101 344.7 +55.1 3.897E-04 3.3 300 560 t 5 c
90SP010201 333.2 -18.8 7.378E-04 12.4 300 540 t 4 0
90SP010201 333.7 ^.8 4.561E-04 11.3 300 540 t 4 c
90SP010301 152.9 +22.8 1.116E-03 1.4 450 560 t 4 0
90SP010301 155.0 +22.8 3.388E-04 4.3 450 560 t 4 c
90SP010401 146.5 +37.5 3.277E-04 8.7 450 540 t 3 0
90SP010401 123.0 +19.4 1.049E-04 1.6 450 540 t 3 c
90SP010501 251.0 -21.1 1.444E-03 2.1 450 540 t 3 o
90SP010501 254.7 -8.6 2.142E-04 5.6 450 540 t 3 c
90SP010601 308.3 +64.3 1.718E-03 3.9 150 540 t 9 0
90SP010601 325.9 +68.0 6.505E-04 5.7 150 540 t 9 c

Site SP02; N.Lat 48.08, E.Lon: 235.87, DipAz: 337, Dip: 45

Sample Dec Inc R MAD
Demag. Range 
Low High

Demag.
Method N

Line-Fit
Type

90SP020101 251.4 +10.2 9.430E-04 2.4 450 540 t 3 o90SP020101 254.6 +12.7 2.810E-04 7.0 450 540 t 3 c90SP020201 37.7 +60.8 2.923E-03 2.2 0 500 t 4 o90SP020201 36.5 +58.9 2.169E-03 0.4 0 500 t 4 c90SP020301 277.1 +66.9 1.897E-03 5.4 300 540 t 4 090SP020301 310.9 +71.0 6.602E-04 8.5 300 540 t 4 c
90SP020402 341.7 +72.2 7.660E-05 4.4 450 540 t 3 0
90SP020402 332.1 +80.2 3.556E-05 2.5 450 540 t 3 c
90SP020501 304.3 +53.4 5.065E-04 4.1 450 540 t 3 0
90SP020501 331.1 +57.6 1.298E-04 2.8 450 540 t 3 c
90SP020601* 175.9 +83.2 7.036E-04 9.7 300 500 t 3 0
90SP020601* 18.6 +82.4 3.949E-04 5.3 300 500 t 3 c
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