

Western Washington University Western CEDAR

WWU Graduate School Collection

WWU Graduate and Undergraduate Scholarship

2011

Evaluating the contribution to toxicity of weak black liquor in pulp mill effluents

Renee L. Ragsdale Western Washington University

Follow this and additional works at: https://cedar.wwu.edu/wwuet

Part of the Environmental Sciences Commons

Recommended Citation

Ragsdale, Renee L., "Evaluating the contribution to toxicity of weak black liquor in pulp mill effluents" (2011). *WWU Graduate School Collection*. 181. https://cedar.wwu.edu/wwuet/181

This Masters Thesis is brought to you for free and open access by the WWU Graduate and Undergraduate Scholarship at Western CEDAR. It has been accepted for inclusion in WWU Graduate School Collection by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.

EVALUATING THE CONTRIBUTION TO TOXICITY OF WEAK BLACK LIQUOR IN PULP MILL EFFLUENTS

.

By

Renee L. Ragsdale

Accepted in Partial Completion of the Requirements for the Degree Master of Science

Moheb A. Ghali, Dean of the Graduate School

ADVISORY COMMITTEE

Chair, Dr. Ruth M. Sofield

Dr. Robin A. Matthews

Dr. Devon A. Cancilla

MASTER'S THESIS

In presenting this thesis in partial fulfillment of the requirements for a master's degree at Western Washington University, I grant to Western Washington University the non-exclusive royalty-free right to archive, reproduce, distribute, and display the thesis in any and all forms, including electronic format, via any digital library mechanisms maintained by WWU.

I represent and warrant this is my original work, and does not infringe or violate any rights of others. I warrant that I have obtained written permissions from the owner of any third party copyrighted material included in these files.

I acknowledge that I retain ownership rights to the copyright of this work, including but not limited to the right to use all or part of this work in future works, such as articles or books.

Library users are granted permission for individual, research and non - commercial reproduction of this work for educational purposes only. Any further digital posting of this document requires specific permission from the author.

Any copying or publication of this thesis for commercial purposes, or for financial gain, is not allowed without my written permission.

Renee Ragsdale November 2011

EVALUATING THE CONTRIBUTION TO TOXICITY OF WEAK BLACK LIQUOR IN PULP MILL EFFLUENTS

A Thesis Presented to The Faculty of Western Washington University

In Partial Fulfillment Of the Requirements for the Degree Master of Science

> by Renee L. Ragsdale November 2011

ABSTRACT

Weak black liquor (WBL) losses in pulp mills may affect effluent treatment efficiencies and may be linked to aquatic toxicity observed in final mill effluents. Best management practices (BMP) for controlling losses of WBL have been effective at reducing WBL from entering the mill effluent treatment system, but it is unclear at what level WBL may contribute to increased toxicity, or whether specific chemical compounds found in WBL may be consistently responsible. The objective of this study was to evaluate the contribution of WBL in biologically-treated bleached kraft pulp mill effluents to toxicity, and to assess effluent chemical parameters that may correlate with biological responses. Weak black liquor and untreated wastewater (as it enters the biological treatment system) were collected from four bleached kraft mills along with mill-treated effluent samples. To simulate a range of potential WBL losses, various concentrations of WBL were added to untreated wastewater from each mill and treated in bench top aerobic reactors to mimic biological treatment (biotreatment). Following laboratory biotreatment, toxicity of the resulting "simulated effluents" (as well as mill-treated effluents) were evaluated using 48-h Mytilus galloprovincialis embryo-larval development and 7-d Ceriodaphnia dubia survival and reproduction chronic toxicity tests. All effluent samples were chemically characterized for pH, color, conductivity, turbidity, total suspended solids (TSS), polyphenols, hardness, alkalinity, salinity, biochemical oxygen demand (BOD), dissolved chemical oxygen demand (DCOD), dissolved organic carbon (DOC), resin acids (RAs), and phytosterols. Correlation analysis was used to determine if there were significant correlations between: 1) WBL solids and simulated effluent chemical parameters; 2) WBL solids and chronic toxicity to *M. galloprovincialis* and *C. dubia*; 3) effluent (mill-treated and simulated) chemical parameters and chronic toxicity to M.

iv

galloprovincialis and C. dubia; and 4) between the two chronic toxicity tests. Multivariate methods including cluster analysis (hierarchical, kmeans, and non-metric Riffle) and PCA were also used to explore the data for patterns, and to identify effluent chemical parameters that might relate to WBL solids or effluent toxicity. Results were that the 48-h EC50 for *M. galloprovincialis* embryo-larval development appears to be a more sensitive endpoint than the 7-d C. dubia reproduction with respect to both mill-treated and simulated effluent samples. For the simulated effluent samples, color, DCOD, and polyphenols were positively correlated with WBL solids. For three out of four mills, color and polyphenols were negatively correlated with the 48-h EC50 for *M. galloprovincialis* embryo-larval development (i.e. as the EC50 decreased (toxicity increased) these chemical parameters increased)). For two out of four mills, DCOD was negatively correlated with the 48-h EC50 for *M. galloprovincialis* embryo-larval development. Significant negative correlations were also observed between the 48-h EC50 for M. galloprovincialis embryo-larval development and abietic acid (one mill out of four) and between the 48-h EC50 for M. galloprovincialis embryo-larval development conductivity (one mill out of four). None of the measured chemical parameters correlated with chronic toxicity to C. dubia. A significant negative correlation was also observed between the 48-h EC50 for *M. galloprovincialis* embryo-larval development, and between WBL solids and the 7-d IC25 C. dubia reproduction (i.e. as WBL solids increased the toxicity increased (as indicated by a decrease in EC50/IC25)). A correlation was not found between the two chronic toxicity tests. Consistent across all multivariate methods, simulated effluent samples appeared to group together based on mill rather than on the amount of WBL solids added.

V

ACKNOWLEDGMENTS

This project would not have been possible without the help of many people. First and foremost, I would like to thank my husband, Randall, and my daughter, Eliza, for their endless support, patience, encouragement, and love.

I would like to extend thanks for the support from several colleagues at the National Council for Air and Stream Improvement (NCASI) who provided guidance during project development, including Dennis Borton, Robert Fisher, Tim Hall, Ashok Jain, Larry LaFleur, Steve Stratton, William Thacker, and Ron Yeske.

I am deeply grateful to my manager at the NCASI Northwest Aquatic Biology Facility (NABF), Camille Flinders, for her willingness to go above and beyond to support this research from beginning to end, and for her assistance with project development and document editing. I would like to express my gratitude to Joan Ikoma of NCASI NABF for patiently sharing her wisdom regarding *Mytilus galloprovincialis* toxicity tests, as well as always making sure that I had all the supplies that I needed for my laboratory work. I would also like to thank Bill Arthurs and Jeanette Redmond, my colleagues at the NCASI NABF laboratory, who assisted me with analytical activities, and worked some long days to make sure that everything was completed.

I owe a huge thank you to my wonderful colleagues at the NCASI West Coast Regional Center (WCRC) who carried out additional chemical analysis, assisted with project development, coordinated with the mills, and completed effluent biotreatment. This research would not have been possible without the hard work, long hours, and dedication of Terry Bousquet, David Campbell, Diana Cook, Dean Hoy, Ron Messmer, and Jan Napack. Also, I

vi

would like to extend thanks to Marg Stewart for coordinating the shipping of sample containers to the mills.

I would also like to thank Ray Philbeck and Bill Streblow at the NCASI Southern Aquatic Biology Facility (SABF) for completing all of the toxicity tests with *Ceriodaphnia dubia*, as well as performing the laboratory biotreatment of the Mill D samples.

Although their identities are anonymous to me, I am thankful to the management and personnel at the four mills who were willing to provide samples for this research project.

I am deeply grateful for guidance and inspiration provided by my thesis advisor, Dr. Ruth Sofield. I am thankful for Ruth's flexibility and positive outlook when the study design changed, and when things didn't quite go as planned in the laboratory. Her knowledge and attention to detail were essential in writing this thesis and in formulating the study design. Also, I appreciate her continued support despite being on different continents for the last year of my research project.

I would also like to thank my committee members, Dr. Devon Cancilla, for asking insightful questions, and Dr. Robin Matthews, for providing expertise with assistance R coding and statistical analysis.

Finally, I would like to thank NCASI and its member companies for making this research project possible through their generous support.

vii

ABSTRACT		iv
ACKNOWL	EDGMENTS	vi
LIST OF TA	BLES	xi
LIST OF FIG	URES	xvii
LIST OF AB	BREVIATIONS	. xxiv
KEY TERMS	5	. xxvi
	ODUCTION	
1.1 Kra	Ift Pulping Process and Weak Black Liquor	1
1.1.1	Kraft Pulping Process	
1.1.2	Recovery of Weak Black Liquor	
1.1.3	Effluent Treatment and Weak Black Liquor Losses	
1.1.4	Weak Black Liquor Contribution to Mill Effluent	
	ole Effluent Toxicity Testing	
1.2.1	Freshwater Whole Effluent Toxicity Tests	
1.2.2	Marine and Estuarine Whole Effluent Toxicity Tests	
	erature Review: Toxicity of Weak Black Liquor	
1.3.1	Sub-lethal Effects	
1.3.2	Lethal Effects	
	ject Overview and Research Objectives	
1.4.1	Laboratory Biotreatment	
1.4.2	Toxicity Testing	
1.4.2	Chemical Analysis	
1.4.4	Collaboration with National Council for Air and Stream Improvement	
1.4.4	Research Contribution	
	HODS	
	ll Selection	
	nple Collection	
	poratory Biotreatment	
2.4 48- 2.4.1	h Mytilus galloprovincialis Embryo-larval Development Tests	
	Test Method	
2.4.2	Test Organisms	
2.4.3	Brine Preparation	
2.4.4	Filtered Seawater Preparation	33
2.4.5	Test Chambers	
2.4.6	Toxicity Test Solution Preparation	
2.4.7	Spawning	
2.4.8	Selection of Gametes	
2.4.9	Fertilization	
2.4.10	Test Initiation	
2.4.11	Test Termination	
2.4.12	Stocking Densities	
2.4.13	Enumeration of Larvae	
2.4.14	Quality Control	
2.4.15	Calculation of Endpoints	47

TABLE OF CONTENTS

2.5	7-d Ceriodaphnia dubia Survival and Reproduction Tests	47
2.6	Chemical Analysis	
2.6.1	Basic Chemical Analysis of Mill-Treated Effluents and Simulated Efflue	ents 50
2.6.2	2 National Council for Air and Stream Improvement Chemical Analysis of	Mill-
Trea	ted Effluents and Simulated Effluents	
2.6.3	Background Chemical Analysis by National Council for Air and Stream	
Impr	ovement	
2.7	Statistical Analysis	
2.7.1	Assumptions	54
2.7.2	2 Toxicity Tests	55
2.7.3	8 Correlation Analysis	55
2.7.4	Multivariate Analysis	56
	ESULTS	58
3.1	Biotreatment	58
3.2	Chemical Analysis of Mill-Treated Effluents and Simulated Effluents	69
3.2.1		
3.2.2		
3.2.3	5	
3.3	Toxicity Tests	
3.3.1		
3.3.2		
3.4	Correlation Analysis	
3.4.1	•	
3.4.2	•	
3.4.3		
3.4.4	5	
	Multivariate Analysis	
3.5.1	2	
3.5.2		
3.5.3	e e	
3.5.4	6	
	ISCUSSION	
	ONCLUSIONS	
	NCES	
	IX A West Coast Regional Center Laboratory Biotreatment Standard Operatir	
	Procedure	-
APPEND	IX B Test Chamber Chemistry for Mytilus galloprovincialis Toxicity Tests	
	IX C Bivalve Spawning Data Sheet	
	IX D Environmental Chamber Temperature Summary for <i>Mytilus galloprovin</i>	
	Toxicity Tests	
APPEND	IX E Bivalve Bioassay Data Sheet	
	IX F Northwest Aquatic Biology Facility Control Chart Criteria and Method	105
	Detection Limits	184
APPEND	IX G Northwest Aquatic Biology Facility Polyphenols Calibration Curve	
	IX H West Coast Regional Center QA/QC and Lower Calibration Limits for	100
	Phytosterols and Resin Acids	189
	1 11, 100101010 und 1000111 1 10100	107

APPENDIX I ToxCalc Summary Sheets Mytilus galloprovincialis Effluent Tests	s 191
APPENDIX J ToxCalc Summary Sheets Mytilus galloprovincialis Reference To	oxicant Tests
	220
APPENDIX K Mytilus galloprovincialis Reference Toxicant Control Chart	
APPENDIX L Southern Aquatic Biology Facility Summary Sheets for Ceriodap	ohnia dubia
Toxicity Tests	229
APPENDIX M Shapiro-Wilk's Tests for Normality	
APPENDIX N Spearman's rho Correlation Analysis	
APPENDIX O Kmeans Clustering Cluster Means	
APPENDIX P Riffle Clusering Proportional Reduction in Error Scores	
APPENDIX Q Principal Component Analysis Variable Loadings	

LIST OF TABLES

Table 1. List of National Council for air and Stream Improvment facilities contributing to
research efforts
Table 2. Laboratory activities conducted solely by National Council for Air and Stream
Improvement researchers. SABF: Southern Aquatic Biology Facility; WCRC:
West Coast Regional Center; WBL: weak black liquor; ASB-TPWW: aerated
stabilization basin treatment pond wastewater; ASB-influent: aerated stabilization
basin influent
Table 3. Summary of mill process type and furnish type using data from Fisher-Solve™.
TPY: tons of pulp per year; ADST: air dry short tons; PNW: pacific northwest;
SE: southeast
Table 4. Sample collection dates at study initiation for mill-treated effluent, aerated
stabilization basin influent, and aerated stabilization basin treatement pond
wastewater. NCASI: National Council for Air and Stream Improvement
Table 5. Summary of simulated mill effluents for each of the four mills (WBL: weak black
liquor)
Table 6. 48-h Mytilus galloprovincialis toxicity test descriptions, test methods, endpoints and
contribution to research. WBL: weak black liquor
Table 7. Summary of Mytilus galloprovincialis toxicity tests. WBL: weak black liquor 31
Table 8. Mixing chart for mill-treated and simulated effluent toxicity test solutions for
exposure concentrations in Mytilus galloprovincialis tests
Table 9. 7-d Ceriodaphnia dubia survival and reproduction toxicity test descriptions, test
methods, endpoints and contribution to research. WBL: weak black liquor 48
Table 10. 7-d Ceriodaphnia dubia survival and reproduction tests and sampling dates 49
Table 11. Summary of laboratory biotreatment including test days, volume, and duration.
`ASB: aerated stabilization basin; TPWW: treatment pond wastewater; WBL:
weak black liquor
Table 12. Chemical analysis of weak black liquor samples collected from four bleached kraft
mills. COD: chemical oxygen demand; DCOD: dissolved chemical oxygen
demand; TOC: total organic carbon; DOC: dissolved organic carbon; BOD:
biochemical oxygen demand. Analysis conducted by National Council for Air and
Stream Improvement researchers at the West Coast Regional Center 59
Table 13. Chemical analysis of aerated stabilization basin influent samples collected from
four bleached kraft mills. COD: chemical oxygen demand; DCOD: dissolved
chemical oxygen demand; TSS: total suspended solids; DOC: dissolved organic
carbon. Analysis conducted by National Council for Air and Stream Improvement
researchers at the West Coast Regional Center 59
Table 14. Chemical analysis of aerated stabilization basin treatment pond wastewater
samples collected from four bleached kraft mills. COD: chemical oxygen demand;
DCOD: dissolved chemical oxygen demand; TSS: total suspended solids; TOC:
total organic carbon; DOC: dissolved organic carbon. Analysis conducted by
National Council for Air and Stream Improvement researchers at the West Coast
Regional Center
Table 15. Chemical analysis of unspiked reactor control before and after overnight aeration
(D(-1) and D(0), respectively). COD: chemical oxygen demand; DCOD: dissolved

	chemical oxygen demand; TSS: total suspended solids; DOC: dissolved organic carbon. Analysis conducted by National Council for Air and Stream Improvement
	researchers at the West Coast Regional Center or Southern Aquatic Biology
	Facility
Table 16.	Mill A reactor chemistry as measured during 7 day laboratory biotreatment.
	Analysis conducted by National Council for Air and Stream Improvement
	researchers at the West Coast Regional Center. DCOD: dissolved chemical oxygen
	demand; DOC: dissolved organic carbon
Table 17.	Mill B reactor chemistry as measured during 5 day laboratory biotreatment.
	Analysis conducted by National Council for Air and Stream Improvement
	researchers at the West Coast Regional Center. DCOD: dissolved chemical oxygen
	demand; DOC: dissolved organic carbon
Table 18.	Mill C reactor chemistry as measured during 10 day laboratory biotreatment.
	Analysis conducted by National Council for Air and Stream Improvement
	researchers at the West Coast Regional Center. DCOD: dissolved chemical oxygen
	demand; COD: chemical oxygen demand; DOC: dissolved organic carbon 64
Table 19.	Mill D reactor chemistry as measured during 8 day laboratory biotreatment.
	Analysis conducted by National Council for Air and Stream Improvement
	researchers at the Southern Aquatic Biology Facility. DCOD: dissolved chemical
	oxygen demand; COD: chemical oxygen demand; DOC: dissolved organic carbon.
T 11 O O	
Table 20.	Results for basic chemical analysis of mill-treated and simulated effluent samples
	from four bleached kraft mills. Simulated effluent samples analyzed after
	completion of laboratory biotreatment. WBL: weak black liquor; TSS: total
	suspended solids; BOD: biochemical oxygen demand; DCOD: dissolved chemical oxygen demand; DOC: dissolved organic carbon
Table 21	Results of phytosterol analysis of mill-treated and simulated effluent samples.
	Simulated effluent samples analyzed after completion of laboratory biotreatment.
	WBL: weak black liquor
Table 22.	Results of resin acid analysis of mill-treated and simulated effluent samples.
1 4010 221	Simulated effluent samples were analyzed after completion of laboratory
	biotreatment. WBL: weak black liquor; ND: non-detect
Table 23.	Results of 48-h <i>Mytilus galloprovincialis</i> embryo-larval development toxicity tests
	for four bleached kraft mils. Units for NOEC, LOEC and EC50 are % Effluent.
	Bold and italicized EC50s indicate spiked effluent samples that were significantly
	different from the reactor control. CI: Confidence Interval; WBL: weak black
	liquor
Table 24.	Results of 48-h Mytilus galloprovincialis embryo-larval development toxicity tests
	with copper chloride (reference toxicant). CI: confidence interval
Table 25.	Control performance (percent normality and percent survival) for 48-h Mytilus
	galloprovincialis embryo-larval development toxicity tests. WBL: weak black
	liquor
Table 26.	Comparison of 48-h Mytilus galloprovincialis embryo-larval development toxicity
	tests with settled and unsettled Mill B and Mill C weak black liquor spike 5
	simulated effluents. Units for NOEC, LOEC and EC50 are % Effluent. CI:
	confidence intervals; WBL: weak black liquor

Table 27. Results of 7-d <i>Ceriodaphnia dubia</i> survival and reproduction toxicity tests with mill-treated and simulated effluent samples from four bleached kraft mills. Units for NOEC, LOEC and IC25 are % Effluent. Bold and italicized IC25s indicate spiked effluent samples tests that were significantly different from the reactor control. CI: confidence intervals; WBL: weak black liquor; NC: not calculated; NA: not available
Table 28. Correlation analysis between weak black liquor solids and chemical parameters with simulated effluent samples. *: Statistically significant (Spearman's rho $p \le 0.01$ and Pearson's r $p \le 0.05$); NS: not significant; NC: not calculated
Table 29. Correlation analysis using Spearman's rho between the 48-h EC50 <i>Mytilus</i> galloprovincialis embryo-larval development and chemical parameters with mill- treated and simulated effluent samples. *: statistically significant (Spearman's rho $p \le 0.01$); NS: not significant; TSS: total suspended solids; BOD: biochemical oxygen demand; DCOD: dissolved chemical oxygen demand; DOC: dissolved organic carbon
Table 30. Correlation analysis using Spearman's rho between the 7-d IC25 for <i>Ceriodaphnia dubia</i> survival and chemical parameters with mill-treated and simulated effluent samples. NS: not significant (Spearman's rho $p \ge 0.01$); TSS: total suspended solids; BOD: biochemical oxygen demand; DCOD: dissolved chemical oxygen demand; DOC: dissolved organic carbon. 98
Table 31. Correlation analysis using Spearman's rho between the 7-d IC25 for <i>Ceriodaphnia dubia</i> reproduction and chemical parameters with mill-treated and simulated effluent samples. NS: not significant (Spearman's rho $p \ge 0.01$); TSS: total suspended solids; BOD: biochemical oxygen demand; DCOD: dissolved chemical oxygen demand; DOC: dissolved organic carbon
Table 32. Hierarchical clustering association analysis table for simulated effluent samples based on chemical parameters with four clusters and samples classified by mill. Values in the "Cluster" columns indicate the number of effluent samples placed into each cluster. df: degrees of freedom.112
Table 33. Hierarchical clustering association analysis table for simulated effluent samples based on chemical parameters with three clusters and samples classified by mill. Values in the "Cluster" columns indicate the number of effluent samples placed into each cluster
Table 34. Hierarchical clustering association analysis table for simulated effluent samples based on chemical parameters with two clusters and samples classified by mill. Values in the "Cluster" columns indicate the number of effluent samples placed into each cluster
Table 35. Kmeans clustering association analysis table for simulated effluent samples with four clusters and samples classified by mill. Values in the "Cluster" columns indicate the number of effluent samples placed into each cluster
Table 36. Kmeans clustering association analysis table for simulated effluent samples with four clusters and samples classified by weak black liquor treatment. Values in the "Cluster" columns indicate the number of effluent samples placed into each cluster.

Table 37.	Kmeans clustering association analysis table for simulated effluent samples with three clusters and samples classified by mill. Values in the "Cluster" columns
	indicate the number of effluent samples placed into each cluster 125
Table 38.	Kmeans clustering association analysis table for simulated effluent samples with
	three clusters and samples classified by weak black liquor treatment. Values in the
	"Cluster" columns indicate the number of effluent samples placed into each
	cluster
Table 30	Kmeans clustering association analysis table for simulated effluent samples with
1 auto 39.	• • •
	two clusters and samples classified by mill. Values in the "Cluster" columns
T 11 40	indicate the number of effluent samples placed into each cluster
Table 40.	Kmeans clustering association analysis table for simulated effluent samples with
	two clusters and samples classified by weak black liquor treatment. Values in the
	"Cluster" columns indicate the number of effluent samples placed into each
	cluster
Table 41.	Riffle clustering association analysis table for simulated effluent samples with four
	clusters and samples classified by mill. Values in the "Cluster" columns indicate
	the number of effluent samples placed into each cluster
Table 42.	Riffle clustering association analysis table for simulated effluent samples with four
	clusters and samples classified by weak black liquor treatment. Values in the
	"Cluster" columns indicate the number of effluent samples placed into each
	cluster
Table 12	Riffle clustering association analysis table for simulated effluent samples with
1 abie 45.	
	three clusters and samples classified by mill. Values in the "Cluster" columns
TT 1 1 4 4	indicate the number of effluent samples placed into each cluster
Table 44.	Riffle clustering association analysis table for simulated effluent samples with
	three clusters and samples classified by weak black liquor treatment. Values in the
	"Cluster" columns indicate the number of effluent samples placed into each
	cluster
Table 45.	Riffle clustering association analysis table for simulated effluent samples with two
	clusters and samples classified by mill. Values in the "Cluster" columns indicate
	the number of effluent samples placed into each cluster
Table 46.	Riffle clustering association analysis table for simulated effluent samples with two
	clusters and samples classified by weak black liquor treatment. Values in the
	"Cluster" columns indicate the number of effluent samples placed into each cluster
Table 47	Proportional and cumulative variance for first 10 principal components using
1 auto +7.	simulated effluent chemistry data
T_{a} h la 40	
Table 48.	Test chamber chemistry for 48-h <i>Mytilus galloprovincialis</i> embryo-larval
	development tests measured at test initiation and test termination for Mill A mill-
	treated and simulated effluent samples. NM: not measured; DO: dissolved oxygen;
	WBL: weak black liquor
Table 49.	Test chamber chemistry for 48-h Mytilus. galloprovincialis embryo-larval
	development tests measured at test initiation and test termination for reference
	toxicant tests run with Mill A samples. NM: not measured; DO: dissolved oxygen.

Table 50.	Test chamber chemistry for 48-h <i>Mytilus galloprovincialis</i> embryo-larval development tests measured at test initiation and test termination for Mill B mill-treated and simulated effluent samples. NM: not measured; DO: dissolved oxygen; WBL: weak black liquor
Table 51.	Test chamber chemistry for 48-h <i>Mytilus galloprovincialis</i> embryo-larval development tests measured at test initiation and test termination for reference toxicant tests run with Mill B samples. NM: not measured; DO: dissolved oxygen
Table 52.	Test chamber chemistry for 48-h <i>Mytilus galloprovincialis</i> embryo-larval development tests measured at test initiation and test termination for Mill C mill-treated and simulated effluent samples. NM: not measured; DO: dissolved oxygen; WBL: weak black liquor
Table 53.	Test chamber chemistry for 48-h <i>Mytilus. galloprovincialis</i> embryo-larval development tests measured at test initiation and test termination for reference toxicant tests run with Mill C samples. NM: not measured; DO: dissolved oxygen
Table 54.	Test chamber chemistry for 48-h <i>Mytilus. galloprovincialis</i> embryo-larval development tests measured at test initiation and test termination for Mill D mill-treated and simulated effluent samples. NM: not measured; DO: dissolved oxygen; WBL: weak black liquor
Table 55.	Test chamber chemistry for 48-h <i>Mytilus galloprovincialis</i> embryo-larval development tests measured at test initiation and test termination for reference toxicant tests run with Mill D samples. NM: not measured; DO: dissolved oxygen
Table 56.	Minimum, maximum, and mean temperatures of environmental chamber during 48-h <i>Mytilus galloprovincialis</i> embryo-larval development tests for Mill B, Mill C, and Mill D. Temperature measured continuously using Onset Stow Away TidbiT Temp Loggers
Table 57.	Northwest Aquatic Biology Facility control chart criteria for check standards. SD: standard deviation; BOD: biochemical oxygen demand; TSS: total suspended solids
Table 58.	Northwest Aquatic Biology Facility control chart criteria for check duplicates. SD: standard deviation; RPD: relative percent difference; BOD: biochemical oxygen demand; TSS: total suspended solids; NA: not available
Table 59.	Summary of National Council for Air and Stream Improvement Northwest Aquatic Biology Facility 2010 water quality method detection limits. MDL: method detection limit, RSD: relative standard deviation; BOD: biochemical oxygen demand; TSS: total suspended solids
Table 60.	National Council for Air and Stream Improvement West Coast Regional Center QA/QC criteria for phytosterols. RPD: relative percent difference
Table 61.	National Council for Air and Stream Improvement West Coast Regional Center lower calibration limits (LCLs) for phytosterols
Table 62.	National Council for Air and Stream Improvement West Coast Regional Center QA/QC criteria for resin acids (RAs). RPD: relative percent difference
Table 63.	National Council for Air and Stream Improvement West Coast Regional Center lower calibration limits (LCLs) for resin acids (RAs)

Table 64.	Results of Shapiro-Wilks test for normality showing test statistic (W) and p-
	values.WBL: weak black liquor; TSS: total suspended solids; BOD: biochemical
	oxygen demand; DCOD: dissolved chemical oxygen demand; DOC: dissolved
	organic carbon
Table 65.	Spearman's rho correlation analysis of effluent chemical parameters showing p-
	values. Data from all four mills were pooled together for correlation analysis. Bold
	numbers indicate significant correlations.WBL: weak black liquor; TSS: total
	suspended solids; BOD: biochemical oxygen demand; DCOD: dissolved chemical
	oxygen demand; DOC: dissolved organic carbon
Table 66.	Kmeans cluster means with four clusters. TSS: total suspended solids; BOD:
	biochemical oxygen demand; DCOD: dissolved chemical oxygen demand; DOC:
	dissolved organic carbon
Table 67.	Kmeans cluster means with three clusters. TSS: total suspended solids; BOD:
	biochemical oxygen demand; DCOD: dissolved chemical oxygen demand; DOC:
	dissolved organic carbon
Table 68.	Kmeans cluster means with two clusters. TSS: total suspended solids; BOD:
	biochemical oxygen demand; DCOD: dissolved chemical oxygen demand; DOC:
	dissolved organic carbon
Table 69.	Proportional reduction in error scores for Riffle runs with four clusters. TSS: total
	suspended solids; BOD: biochemical oxygen demand; DCOD: dissolved chemical
	oxygen demand; DOC: dissolved organic carbon
Table 70.	Proportional reduction in error scores for Riffle runs with three clusters. TSS: total
	suspended solids; BOD: biochemical oxygen demand; DCOD: dissolved chemical
	oxygen demand; DOC: dissolved organic carbon
Table 71.	Proportional reduction in error scores for Riffle runs with two clusters. TSS: total
	suspended solids; BOD: biochemical oxygen demand; DCOD: dissolved chemical
	oxygen demand; DOC: dissolved organic carbon
Table 72.	Principal component analysis variable loadings for first 10 principal components
	for nonrandom data file. TSS: total suspended solids; BOD: biochemical oxygen
	demand; DCOD: dissolved chemical oxygen demand; DOC: dissolved organic
T 11 C 2	carbon
Table 73.	Proportional and cumulative variance for first 10 principal components using
	simulated effluent chemistry data for nonrandom and random data files

LIST OF FIGURES

Figure 1. Kraft pulping process. Dotted red line indicates the chemical recovery loop. (Figure
adapted from: http://cerig.efpg.inpg.fr/)
Figure 2. Analysis by Carey et al. (2002) examining relationship between estimated weak
black liquor losses and sub-lethal toxicity to fish and daphnia using Cycle 2
Environmental Effects Monitoring data from six bleached kraft mills in British
Columbia, Canada. (Figure adapted from Carey et al. 2002)
Figure 3. Analysis conducted by McCubbin in 2000 examining relationship between
estimated weak black liquor losses and sub-lethal toxicity to Ceriodaphnia dubia
using Cycle 2 Environmental Effects Monitoring data from five bleached kraft
mills in Ontario, Canada. (Figure adapted from Carey et al. 2002)
Figure 4. Mill-treated effluent sample analysis. Circles indicate toxicity tests, squares
indicate chemical analysis, line type indicates National Council for Air and Stream
Improvement laboratory
Figure 5. Simulated effluent sample analysis, where simulated effluent is laboratory
biotreated aerated stabilization influent, aerated stabilization basin treatment pond
wastewater, and weak black liquor (where relevant) collected from the mill.
Circles indicate toxicity tests, squares indicate chemical analysis, line type
indicates National Council for Air and Stream Improvement laboratory. ¹ Weak
black liquor was not added to one simulated effluent sample per mill, and is
identified in this report as the reactor control. Ceriodaphnia dubia tests conducted
for a subset of simulated effluent samples
Figure 6. West Coast Regional Center laboratory biotreatment of Mill A simulated effluent
samples. The reactor on the left contains only aerated stabilization basin influent
and aerated stabilization basin treatment pond wastewater (reactor control), and the
reactor on the right contains aerated stabilization basin influent, aerated
stabilization basin treatment pond wastewater, and the highest spike level of weak
black liquor (WBL spike 5)
Figure 7. <i>Mytilus galloprovincialis</i> . (Source: http://nas.er.usgs.gov/)
Figure 8. Diagram of a single 48-h Mytilus galloprovincialis effluent toxicity test set-up
showing vials labeled to include all replicate tests concentrations, controls, and
stocking densities (SD)
Figure 9. Test chambers for <i>Mytilus galloprovincialis</i> 48-h embryo-larval development
toxicity tests
Figure 10. <i>Mytilus galloprovincialis</i> prior to test spawning
Figure 11. Spawning beakers with male <i>Mytilus galloprovincialis</i>
Figure 12. Environmental chamber at initiation of 48-h Mytilus galloprovincialis test
Figure 13. Normal D-shaped shell of <i>Mytilus galloprovincialis</i> larvae
Figure 14. Abnormal <i>Mytils galloprovincialis</i> larvae
Figure 15. Mill A dissolved chemical oxygen demand of simulated effluent samples
measured during laboratory biotreatment
Figure 16. Mill B dissolved chemical oxygen demand of simulated effluent samples
measured during laboratory biotreatment
Figure 17. Mill C dissolved chemical oxygen demand of simulated effluent samples
measured during laboratory biotreatment

Figure	18.	Mill D dissolved chemical oxygen demand of simulated effluent samples measured during laboratory biotreatment
Figure	19.	Results of 48-h <i>Mytilus galloprovincialis</i> embryo-larval development toxicity tests for mill-treated and simulated effluent samples from four bleached kraft mills. Error bars indicate 95% confidence intervals. WBL: weak black liquor
Figure	20.	Results of 48-h <i>Mytilus galloprovincialis</i> embryo-larval development toxicity tests with copper chloride (reference toxicant). Error bars indicate 95% confidence interval. Labels on x-axis indicates which mill (A-D) and effluent type (simulated or mill) the reference toxicant coincides with
Figure	21.	Scatterplot of weak black liquor solids vs. color showing significant positive correlation for pooled data (data coded to denote mill). Correlation significant based on Pearson's r
Figure	22.	Scatterplot of weak black liquor solids vs. dissolved chemical oxygen demand showing significant positive correlation for pooled data (data coded to denote mill). Correlation significant based on Pearson's r
Figure	23.	Scatterplot of weak black liquor solids vs. polyphenols showing significant positive correlation for pooled data (data coded to denote mill). Correlation significant based on Pearson's r
Figure	24.	Scatterplot of 48-h EC50 (% effluent) <i>Mytilus galloprovincialis</i> embryo-larval development versus weak black liquor solids showing significant negative correlation for pooled data (data coded to denote mill). Correlation significant based on Spearman's rho
-		Scatterplot of 7-d IC25 <i>Ceriodaphnia dubia</i> reproduction versus weak black liquor solids showing significant negative correlation for pooled data (data coded to denote mill). Correlation significant based on Spearman's rho
U		Scatterplot of 48-h EC50 <i>Mytilus galloprovincialis</i> embryo-larval development versus abietic acid. Significant negative correlation based on Spearman's rho for Mill A
Figure	27.	Scatterplot of 48-h EC50 <i>Mytilus galloprovincialis</i> embryo-larval development versus color. Significant negative correlations based on Spearman's rho for Mill A, Mill B, and Mill C
Figure		Scatterplot of 48-h EC50 <i>Mytilus galloprovincialis</i> embryo-larval development versus polyphenols. Significant negative correlations based on Spearman's rho for Mill A, Mill B, and Mill C
-		Scatterplot of 48-h EC50 <i>Mytilus galloprovincialis</i> embryo-larval development versus conductivity. Significant negative correlation based on Spearman's rho for Mill B
Figure	30.	Scatterplot of 48-h EC50 <i>Mytilus galloprovincialis</i> embryo-larval development versus dissolved chemical oxygen demand (DCOD). Significant negative correlations based on Spearman's rho for Mill B and Mill C
Figure	31.	Scatterplot of 48-h EC50 <i>Mytilus galloprovincialis</i> embryo-larval development versus dissolved organic carbon (DOC). Significant negative correlation based on Spearman's rho for Mill C
Figure	32.	Scatterplot of 48-h EC50 <i>Mytilus galloprovincialis</i> embryo-larval development versus 7-d IC25 <i>Ceriodaphnia dubia</i> reproduction for pooled data (data coded to

	denote mill). Correlation not significant based on Spearman's rho. NS: not
Eigung 22	106 Southard of 48 h EC50 Mutilus callonnavia siglis embras lorgel development
Figure 55.	Scatterplot of 48-h EC50 <i>Mytilus galloprovincialis</i> embryo-larval development
	versus 7-d IC25 <i>Ceriodaphnia dubia</i> reproduction for pooled data (data coded to
	denote mill). Correlation not significant based on Spearman's rho. NS: not
F ' 24	significant
Figure 34.	Hierarchical clustering of simulated effluent samples using chemical parameters
	and Canberra distances with the Average cluster method and four clusters. Letters $(A, B, C, and D)$ on the noningermanial to the mill
Eigene 25	(A, B, C, and D) on the x-axis correspond to the mill
Figure 55.	Hierarchical clustering of simulated effluent samples using chemical parameters
	and Euclidean distances with the Average and Centroid cluster methods and four clusters. Letters (A. B. C. and D) on the view of a correspond to the mill
Eiguro 26	clusters. Letters (A, B, C, and D) on the x-axis correspond to the mill
rigule 50.	Hierarchical clustering of simulated effluent samples using chemical parameters and Canberra distances with the Average cluster method and three clusters.
	Letters (A, B, C, and D) on the x-axis correspond to the mill
Figure 37	Hierarchical clustering of simulated effluent samples using chemical parameters
rigule 57.	and Euclidean distances with the Average and Centroid cluster methods and three
	clusters. Letters (A, B, C, and D) on the x-axis correspond to the mill
Figure 38	Hierarchical clustering of simulated effluent samples using chemical parameters
riguit 56.	and Canberra distances with the Average cluster method and two clusters. Letters
	(A, B, C, and D) on the x-axis correspond to the mill
Figure 30	Hierarchical clustering of simulated effluent samples using chemical parameters
I iguit 57.	and Euclidean distances with the Average and Centroid cluster methods and three
	clusters. Letters (A, B, C, and D) on the x-axis correspond to the mill
Figure 40	Kmeans clustering bivariate plot using turbidity and conductivity with simulated
1 15010 40.	effluent samples from four bleached kraft mills and four clusters
Figure 41	Kmeans clustering bivariate plot using turbidity and conductivity with simulated
115010 11	effluent samples from four bleached kraft mills and three clusters
Figure 42.	Kmeans clustering bivariate plot using turbidity and conductivity with simulated
	effluent samples from four bleached kraft mills and two clusters
Figure 43.	Riffle clustering bivariate plot using hardness and conductivity with simulated
8	effluent samples from four bleached kraft mills and four clusters
Figure 44.	Riffle clustering bivariate plot using dissolved organic carbon and conductivity
0	with simulated effluent samples from four bleached kraft mills and three clusters.
Figure 45.	Riffle clustering bivariate plot using color and dissolved organic carbon with
U	simulated effluent samples from four bleached kraft mills and two clusters 141
Figure 46.	Principal component analysis variable loading of simulated effluent samples for
U	first two principal components. ¹ Palustric acid and dissolved chemical oxygen
	demand (DCOD)
Figure 47.	Principal component analysis ordination of simulated effluent samples. Samples
-	coded to denote mill
Figure 48.	Principal component analysis ordination of simulated effluent samples. Samples
-	coded to denote weak black liquor treatment147
Figure 49.	National Council for Air and Stream Improvement Northwest Aquatic Biology
	Facility polyphenols calibration curve

Figure	50.	ToxCalc summary sheet including dose-response curve for Mill A mill-treated	
Figuro	51	effluent sample ToxCalc summary sheet including dose-response curve for Mill A reactor cont	
Figure	51.	simulated effluent sample.	
Figure	52	ToxCalc summary sheet including dose-response curve for Mill A weak black	
Tiguic	52.	liquor spike 1 simulated effluent sample.	
Figure	53	ToxCalc summary sheet including dose-response curve for Mill A weak black	175
Inguie	55.	liquor spike 2 simulated effluent sample.	194
Figure	54	ToxCalc summary sheet including dose-response curve for Mill A weak black	
8	e	liquor spike 3 simulated effluent sample.	
Figure	55.	ToxCalc summary sheet including dose-response curve for Mill A weak black	
0		liquor spike 4 simulated effluent sample.	
Figure	56.	ToxCalc summary sheet including dose-response curve for Mill A weak black	
U		liquor spike 5 simulated effluent sample.	
Figure	57.	ToxCalc summary sheet including dose-response curve for Mill B mill-treated	
-		effluent sample.	198
Figure	58.	ToxCalc summary sheet including dose-response curve for Mill B reactor cont	
		simulated effluent sample.	199
Figure	59.	ToxCalc summary sheet including dose-response curve for Mill B weak black	
		liquor spike 1 simulated effluent sample.	200
Figure	60.	ToxCalc summary sheet including dose-response curve for Mill B weak black	
		liquor spike 2 simulated effluent sample.	201
Figure	61.	ToxCalc summary sheet including dose-response curve for Mill B weak black	
		liquor spike 3 simulated effluent sample.	202
Figure	62.	ToxCalc summary sheet including dose-response curve for Mill B weak black	•••
т.		liquor spike 4 simulated effluent sample.	203
Figure	63.	ToxCalc summary sheet including dose-response curve for Mill B weak black	201
D :	C 1	liquor spike 5 simulated effluent sample.	204
Figure	64.	ToxCalc summary sheet including dose-response curve for Mill B weak black	205
Eigung	65	liquor spike 5 simulated effluent sample (unsettled).	205
Figure	03.	ToxCalc summary sheet including dose-response curve for weak black liquor mill tracted offluent sample	206
Figuro	66	mill-treated effluent sample ToxCalc summary sheet including dose-response curve for weak black liquor	200
Figure	00.	reactor control simulated effluent sample	207
Figure	67	ToxCalc summary sheet including dose-response curve for Mill C weak black	207
I Iguic	07.	liquor spike 1 simulated effluent sample.	208
Figure	68	ToxCalc summary sheet including dose-response curve for Mill C weak black	200
Inguie	00.	liquor spike 2 simulated effluent sample.	209
Figure	69.	ToxCalc summary sheet including dose-response curve for Mill C weak black	_ 0 >
0		liquor spike 3 simulated effluent sample.	210
Figure	70.	ToxCalc summary sheet including dose-response curve for Mill C weak black	
U		liquor spike 4 simulated effluent sample.	211
Figure	71.	ToxCalc summary sheet including dose-response curve for Mill C weak black	
-		liquor spike 5 simulated effluent sample.	212
Figure	72.	ToxCalc summary sheet including dose-response curve for Mill C weak black	
		liquor spike 5 simulated effluent sample (unsettled)	213

Figure 7	3. ToxCalc summary sheet including dose-response curve for Mill D mill-treated
	effluent sample
Figure 7	4. ToxCalc summary sheet including dose-response curve for Mill D reactor control
r' 7	simulated effluent sample
Figure /:	5. ToxCalc summary sheet including dose-response curve for Mill D weak black liquor spike 1 simulated effluent sample
Figure 7	5. ToxCalc summary sheet including dose-response curve for Mill D weak black
I Iguie /	liquor spike 2 simulated effluent sample
Figure 7	7. ToxCalc summary sheet including dose-response curve for Mill D weak black
U	liquor spike 3 simulated effluent sample
Figure 7	8. ToxCalc summary sheet including dose-response curve for Mill D weak black
	liquor spike 5 simulated effluent sample
Figure 7	9. ToxCalc summary sheet including dose-response curve for Mill A reference
	toxicant test using copper chloride run alongside mill-treated effluent sample 220
Figure 8). ToxCalc summary sheet including dose-response curve for Mill A reference
-	toxicant test using copper chloride run alongside simulated effluent samples 221
Figure 8	1. ToxCalc summary sheet including dose-response curve for Mill B reference
0	toxicant test using copper chloride run alongside mill-treated effluent sample 222
Figure 8	2. ToxCalc summary sheet including dose-response curve for Mill B reference
8	toxicant test using copper chloride run alongside simulated effluent samples 223
Figure 8	3. ToxCalc summary sheet including dose-response curve for Mill C reference
1 15010 0	toxicant test using copper chloride run alongside mill-treated effluent sample. 224
Figure 8	4. ToxCalc summary sheet including dose-response curve for Mill C reference
riguie o	toxicant test using copper chloride run alongside simulated effluent samples 225
Eigung 0	
Figure 8.	5. ToxCalc summary sheet including dose-response curve for Mill D reference
F' 0	toxicant test using copper chloride run alongside mill-treated effluent sample 226
Figure 8	6. ToxCalc summary sheet including dose-response curve for Mill D reference
F ' 0	toxicant test using copper chloride run alongside simulated effluent samples 227
Figure 8	7. Control chart for 48-h EC50 Mytilus galloprovincialis embryo-larval development
	toxicity tests with reference toxicant (CuCl). Methods for control charting
	followed guidance provided by Environment Canada (2005)
-	8. Summary sheet for <i>Ceriodaphnia dubia</i> toxicity test with Mill A mill effluent. 229
Figure 8	9. Summary sheet of test chamber chemistry for <i>Ceriodaphnia dubia</i> toxicity test
	with Mill A mill effluent
Figure 9	D. Summary sheet for <i>Ceriodaphnia dubia</i> toxicity test with Mill A reactor control.
Figure 9	1. Summary sheet of test chamber chemistry for <i>Ceriodaphnia dubia</i> toxicity test
U	with Mill A reactor control
Figure 92	2. Summary sheet for <i>Ceriodaphnia dubia</i> toxicity test with Mill A weak black
0	liquor spike 2
Figure 9	3. Summary sheet of test chamber chemistry for <i>Ceriodaphnia dubia</i> toxicity test
i iguite y	with Mill A weak black liquor spike 2
Figure 9	4. Summary sheet for <i>Ceriodaphnia dubia</i> toxicity test with Mill A weak black
1 15010)	liquor spike 5
Figure 0	5. Summary sheet of test chamber chemistry for <i>Ceriodaphnia dubia</i> toxicity test
i iguit 9.	with Mill A weak black liquor spike 5
	will will a weak black liquol spike 3

Figure 96. Summary sheet for Ceriodaphnia dubia toxicity test with Mill B mill-effluent. 237
Figure 97. Summary sheet of test chamber chemistry for Ceriodaphnia dubia toxicity test
with Mill B mill-effluent
Figure 98. Summary sheet for <i>Ceriodaphnia dubia</i> toxicity test with Mill B reactor control.
Figure 99. Summary sheet of test chamber chemistry for <i>Ceriodaphnia dubia</i> toxicity test
with Mill B reactor control
Figure 100. Summary sheet for <i>Ceriodaphnia dubia</i> toxicity test with Mill B weak black
liquor spike 2
Figure 101. Summary sheet of test chamber chemistry for <i>Ceriodaphnia dubia</i> toxicity test
with Mill B weak black liquor spike 2
Figure 102. Summary sheet for <i>Ceriodaphnia dubia</i> toxicity test with Mill B weak black
liquor spike 5
Figure 103. Summary sheet of test chamber chemistry for Ceriodaphnia dubia toxicity test
with Mill B weak black liquor spike 5
Figure 104. Summary sheet for <i>Ceriodaphnia dubia</i> toxicity test with Mill C mill-effluent.
Figure 105. Summary sheet of test chamber chemistry for <i>Ceriodaphnia dubia</i> toxicity test
with Mill C mill-effluent
Figure 106. Summary sheet for <i>Ceriodaphnia dubia</i> toxicity test with Mill C reactor control. 247
Figure 107. Summary sheet of test chamber chemistry for <i>Ceriodaphnia dubia</i> toxicity test
with Mill C reactor control
Figure 108. Summary sheet for Ceriodaphnia dubia toxicity test with Mill C weak black
liquor spike 2
Figure 109. Summary sheet of test chamber chemistry for <i>Ceriodaphnia dubia</i> toxicity test
with Mill C weak black liquor spike 2
Figure 110. Summary sheet for <i>Ceriodaphnia dubia</i> toxicity test with Mill C weak black
liquor spike 5
Figure 111. Summary sheet of test chamber chemistry for Ceriodaphnia dubia toxicity test
with Mill C weak black liquor spike 5
Figure 112. Summary sheet for <i>Ceriodaphnia dubia</i> toxicity test with Mill D mill-effluent.
253
Figure 113. Summary sheet of test chamber chemistry for <i>Ceriodaphnia dubia</i> toxicity test
with Mill D mill-effluent
Figure 114. Summary sheet for <i>Ceriodaphnia dubia</i> toxicity test with Mill D reactor control.
255
Figure 115. Summary sheet of test chamber chemistry for <i>Ceriodaphnia dubia</i> toxicity test
with Mill D reactor control. 256
Figure 116. Summary sheet for <i>Ceriodaphnia dubia</i> toxicity test with Mill D weak black
liquor spike 2
Figure 117. Summary sheet of test chamber chemistry for <i>Ceriodaphnia dubia</i> toxicity test
with Mill D weak black liquor spike 2
liquor spike 5
$\mathbf{H}_{\mathbf{u}}\mathbf{v}\mathbf{t} = \mathbf{p}_{\mathbf{u}}\mathbf{v}\mathbf{t}$

Figure 119. Summary sheet of test chamber chemistry for <i>Ceriodaphnia dubia</i> toxicity test
with Mill D weak black liquor spike 5
Figure 120. Spearman's rho correlation analysis of effluent chemical parameters showing
correlation coefficients. Data from all four mills were pooled together for
correlation analysis. Bold numbers indicate significant correlations. TSS: total
suspended solids; BOD: biochemical oxygen demand; DCOD: dissolved chemical
oxygen demand; DOC: dissolved organic carbon
Figure 121. Principal component analysis (PCA) variance of simulated effluent samples with
respect to principal component for nonrandom and random data files
Figure 122. Principal component analysis (PCA) variable loading of simulated effluent
samples for first two principal components for nonrandom and random data files.
Figure 123. Principal component analysis (PCA) ordination of simulated effluent samples for
nonrandom and random data files. Samples coded to denote mill

LIST OF ABBREVIATIONS

°C	degrees Celsius
‰	parts per thousand
μg	microgram
ADST	air dry short tons
APHA	American Public Health Association
ASB	aerated stabilization basin
ASB-TPWW	aerated stabilization basin treatment pond wastewater
ASTM	American Society for Testing and Materials
BMP	best management practices
BOD	biochemical oxygen demand
CI	confidence intervals
COD	chemical oxygen demand
CuCl	copper chloride
CWA	Clean Water Act
CV	coefficient of variation
d	day
DCOD	dissolved chemical oxygen demand
DOC	dissolved organic carbon
D(X)	reactor day
ECF	elemental chlorine free
EEM	Environmental Effects Monitoring
EC50	median effective concentration
EL50	median effective loading rate
EROD	7-ethoxyresorufin-0-deethylase
h	hour
HSB	hypersaline brine
IC25	25% inhibition concentration
LCL	lower calibration limits
LL50	median lethal loading rate
LOEC	lowest observed effects concentration
MFO	mixed function oxygenase
NA	not available
NABF	Northwest Aquatic Biology Facility
Na_2S	sodium sulfide
NaOH	sodium hydroxide
NC	not calculated
NCASI	National Council for Air and Stream Improvement
ND	non detect
NM	not measured
NOEC	no observed effects concentration
NPDES	National Pollutant Discharge and Elimination System
NTU	nephelometric turbidity unit
PCA	principal component analysis

PCU	platinum cobalt units
PRE	proportional reduction in error
RA	resin acid
SABF	Southern Aquatic Biology Facility
SPMC	Shannon Point Marine Center
SOP	standard operating procedure
TEI	toxicity emission index
TER	toxicity emission rate
TPWW	treatment pond wastewater
TOC	total organic carbon
TPY	tons per year
TSS	total suspended solids
TU	toxic unit
v/v (%v/v)	volume/volume percentage
WBL	weak black liquor
WET	whole effluent toxicity
WCRC	West Coast Regional Center
WDOE	Washington State Department of Ecology
U.S. EPA	United States Environmental Protection Agency

¹KEY TERMS

Acute toxicity	A discernable adverse effect (lethal or sub-lethal) induced in the test organisms within a short period of exposure to a test material (usually a few days for larger organisms).
Aerated stabilization basin (ASB)	The most commonly used type of biological (secondary) treatment system for treating effluent from pulp and paper mills.
Alkalinity	The capacity of water to neutralize acid as a measure of titration of a water sample with a dilute acid to a specific pH endpoint.
Biological treatment	Form of wastewater treatment in which bacterial or biochemical action is intensified to stabilize, oxidize, and nitrify the unstable organic matter present; a type of secondary treatment (also known as biotreatment).
Black liquor	The spent pulping liquid after the alkaline process is complete; contains dissolved organic wood materials and inorganic compounds from the wood and original alkaline cooking liquor.
Chi-squared (χ^2)	A test statistic sometimes used in assessing the fit of a model to a set of data.
Chronic toxicity	Toxicity resulting from exposure to a toxin over an extended period of time.
Cluster rules	Legislation introduced by U. S. EPA in 1988 specific to effluents from pulp and paper mills.
Concentrated black liquor	Black liquor after final evaporation or concentration process; often referred to as strong black liquor.
Confidence limits	These limits on an EC50 (or IC25) represent the upper and lower concentrations, within which the true endpoint is thought to lie, for a stated level of probability.
Control	A treatment in a toxicity test that duplicates all the conditions of the exposure treatments but contains no test materials.
Digester	A batch or continuous vessel used for pulping fibrous raw materials to remove lignin and produce pulp.
Dissolved organic carbon (DOC)	The fraction of the organic carbon pool that is dissolved in water and that passes through a 0.45 μ m glass fiber filter.
Dunnett's test	A parametric, post-ANOVA test often used in the analysis of sub-lethal and chronic lethal effects data

¹Sources consulted for key terms included Environment Canada (2005), Newman and Unger (2003), Rand (1995), Smook (1990), TAPPI (1996), and Timbrell (2000).

D(X)	Reactor day. Where X is the reactor day relative to when WBL was added to the spiked biotreatment reactors. D(-1) indicates the sample was taken one day before reactors were spiked with WBL, D(0) corresponds to the day the reactors were spiked, and D(1) corresponds to one day after the reactors were spiked.
Early life stage (ELS) test	A critical life stage test using early life stages such as embryos or larvae based on the observation that the early life stage is the most sensitive in the species life cycle.
Effluent	A discharge of pollutants into the environment (partially, or completely treated, or in its natural state); generally used in regard to discharges into waters.
Effluent chemical parameters	Chemical analysis of mill-treated and simulated effluent samples.
Ethoxyresorufin-0- deethylase (EROD) activity	Units of activity for O-deethylation of ethoxyresorufin by ethoxyresorufin O-deethylase. Used to reflect cytochrome P- 450 monooxygenase activity.
Green liquor	Aqueous solution of sodium salts produced in the sulfate process by dissolving recovery boiler smelt in weak wash.
Hardwood	Wood from trees of the angiosperm class, usually with broad leaves and deciduous in temperature zones.
Inhibiting concentration (ICp)	Represents a point estimate of a concentration of test material that is estimated to cause a designated percent impairment in a quantitative biological function (where p is the percentage).
Inorganic	Pertaining to chemical compounds which do not contain carbon.
Integrated mill	A paper or board mill that produces all its own pulp.
Kraft pulping	The alkaline pulping process that uses a combination of sodium hydroxide and sodium sulfide; also known as sulfate pulping.
Laboratory biotreatment	A laboratory method used to biologically treat untreated mill effluent using 10-L bench-top aerobic reactors.
Lowest observed effect concentration (LOEC)	The lowest concentration of a material in a toxicity test that has a statistically significant different in response on the exposed population of test organisms compared with the controls.
Market pulp	Pulp sold as raw material to non-integrated paper mills.
Maximum likelihood estimation (MLE)	A parametric method used to fit dose-response or concentration- effect data to the log-normal, log-logistic, or other models; probit and logit approaches are most often applied with MLE methods.

Median effective concentration (EC50)	The concentration of material in water to which test organisms are exposed that is estimated to be effective in producing some sub-lethal response in 50% of the test organisms; usually expressed as a time dependent value (i.e. 48-h EC50).
Mill-treated effluent	Effluent that has been treated by a mill's wastewater treatment system.
Mixed function oxygenase (MFO)	The P-450 complex composed of cytochrome P450, NADPH- cytochrome P450 reductase, NADPH, and O2.
No observed effect concentration (NOEC)	The highest concentration of a material in a toxicity test that has no statistically significant adverse effect on the exposed population of test organisms compared with the controls.
Nonparametric analysis	Statistical technique that does not assume any underlying distribution for the data.
Parametric analysis	Uses a biostatistical method that considers the parameters of the population from which samples are drawn.
Phytosterols	A group of steroid alcohols, phytochemicals naturally occurring in plants.
Point estimate	A single numerical value that has been calculated or judged to represent a set of toxicity data (i.e. EC50 or IC25).
Primary treatment	The first major treatment in a wastewater treatment system; removes a substantial amount of suspended matter but little or no colloidal and dissolved matter.
Probit regression	Measures the relationship between the strength of a stimulus and the proportion of cases that exhibit a selected effect caused by the stimulus.
Pulp	General term to describe fibers after they are liberated from a fibrous raw material source such as wood chips, straw, cotton, or grasses.
Reactor control	Simulated effluent containing only ASB influent and ASB- TPWW (i.e. no added WBL)
Recovery boiler	A boiler used to recover pulping chemicals by burning off the organic material in kraft black liquor.
Resin acids	Principally monocarboxylic acids with the empirical formula C19H29COOH; can be classified into two groups (abietic or pimaric).

Secondary treatment	Wastewater treatment during which bacteria consume organic parts of the wastes; removes virtually all floating and settleable solids and approximately 90% of BOD and suspended solids.
Simulated effluents	Laboratory biotreated ASB influent, ASB-TPWW and WBL (for spiked reactors only).
Softwood	Wood from cone-bearing trees that usually retain needles or leaves for the entire year; commonly called evergreens.
Spearman-Karber	A non-parametric method to estimate the LC50, EC50, or LD50 when it is difficult or unnecessary to assume a specific model for the dose- or concentration-effect data.
Spiked reactors	Simulated effluent containing ASB influent, ASB-TPWW, and WBL.
Steel's many-one rank test	A non-parametric method, post-ANOVA test often employed in the analysis of sub-lethal and chronic lethal effects data.
Study initiation	When ASB-influent, ASB-TPWW and mill-treated effluent were collected for purposes of biotreatment, chemical analysis and toxicity tests.
Sub-lethal	Below the concentration that directly causes death.
Tertiary treatment	Wastewater treatment beyond the secondary (or biological) stage that includes removal of nutrients such as phosphorus, nitrogen, and a high percentage of suspended solids; can also be used to reduce color of effluents.
Test initiation	For toxicity tests, the start time of the exposure period.
Total organic carbon (TOC)	The sum of dissolved organic matter (DOM), particulate organic matter (POM), or suspended organic matter (SOM).
Toxicity	The inherent potential or capacity of an agent or material to cause adverse effects in a living organism when the organism is exposed to it.
WBL treatment/WBL spike level	Amount of WBL (g/L) added to spiked reactor.
Weak black liquor	Black liquor at a total concentration of about 15% dry solids.
White liquor	Aqueous solution of sodium salts derived from causticizing green liquor; main ingredients are caustic or sodium hydroxide, and sodium sulfide.
Whole effluent toxicity (WET)	The total toxic effect of an effluent measured directly with aquatic organisms in a toxicity test.

1.0 INTRODUCTION

1.1 Kraft Pulping Process and Weak Black Liquor

1.1.1 Kraft Pulping Process

Pulp and paper mill wastewater (effluent) is a complex mixture whose composition reflects primarily the contributions of a mill's pulping, bleaching and papermaking systems. The kraft pulping process (Figure 1) was developed in 1878 by C.F. Dahl and accounts for the majority of pulp produced worldwide. It can be used with any wood species and 75-80% of U.S. virgin pulp is produced by this method (Biermann 1996). Kraft pulp is used to make a variety of products, including "corrugated" boxes, grocery sacks, milk cartons and copier paper. Most kraft pulp mills in the U.S. are bleached kraft mills, and have mixed furnishes of hardwood and softwood (Kelly et al. 2004).

During the kraft pulping process, wood chips are cooked in a digester with a sodiumbased alkaline solution called white liquor, which consists of sodium sulfide (Na₂S) and sodium hydroxide (NaOH; Biermann 1996). This digestion separates the wood fibers (pulp) from the aqueous solution of dissolved wood components and spent pulping chemicals, which is referred to as weak black liquor (WBL; U.S. EPA 2002a). Weak black liquor is very alkaline (pH = 11.5-13.5), and an extremely complex mixture containing most of the original inorganic cooking elements and the degraded dissolved wood substance (Biermann 1996, Kelly et al. 2004). The organic component of WBL consists of alkali lignin and the sodium salts of the polysaccharinic acids, resin acids (RAs) and fatty acids (Adams et al. 1997). The composition of WBL is variable, and depends on the type of wood being pulped, as well as the pulping process (Hodson 1997).

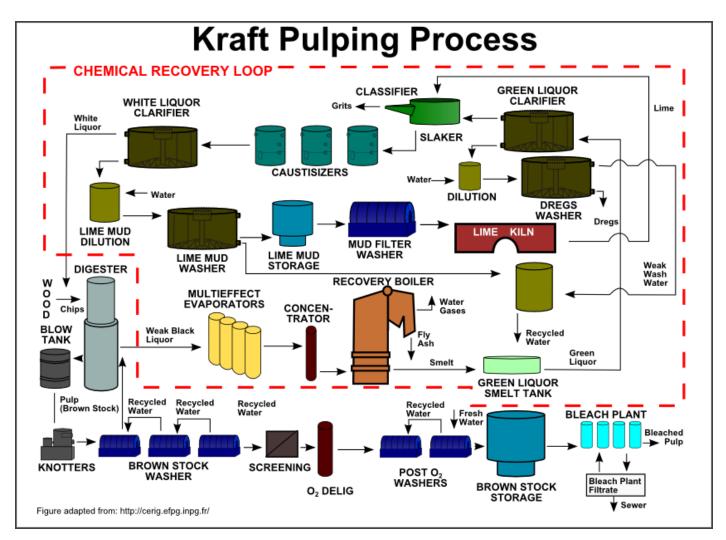


Figure 1. Kraft pulping process. Dotted red line indicates the chemical recovery loop. (Figure adapted from: <u>http://cerig.efpg.inpg.fr/</u>)

1.1.2 Recovery of Weak Black Liquor

A key component to the kraft pulping process is the chemical recovery of WBL. After digestion, WBL undergoes evaporation to concentrate the solids to become strong (or concentrated) black liquor. Strong black liquor is then burned in a recovery boiler which produces heat and green liquor (the partially recovered black liquor produced by dissolving the smelt from the recovery boiler in water). Further processing is used to convert the green liquor to white liquor.

The recovery system is economical because it recovers and regenerates the chemicals used in digestion and generates energy that is used by the mill; approximately two-thirds of the energy used by the pulp and paper industry is biomass fuels (primarily black liquor; NCASI 2011). The recovery process also reduces environmental impacts by diverting the black liquor from the pulp mill effluent treatment system (Rod'ko et al. 1996).

1.1.3 Effluent Treatment and Weak Black Liquor Losses

It is estimated that 97 to 99.5% of the WBL is recovered by washing the pulp (Carey et al. 2002). Some systemic losses of WBL from the pulp mill and recovery systems occur via pulp washers, evaporators, knotting and screening systems and other processes (Figure 1). Additionally, spills due to upset conditions may result in WBL losses beyond the 0.5 to 3% from systemic losses, although most mills have collection systems in place that are designed to capture and recover concentrated spilled black liquor. Small spills of WBL are often discharged at a controlled rate into a mill's wastewater treatment system (Barkley et al. 1986).

Wastewater from pulping, bleaching, chemical recovery, pulp drying, or papermaking and other processes is treated prior to discharging into a stream, lake, or marine system. Pulp and paper mill wastewater treatment systems typically consist of pretreatment, primary treatment, and secondary (biological) treatment. Pretreatment includes screening with coarse filters, grit removal and pH adjustment. During primary treatment, settleable solids are removed from the water by allowing them to settle; the mechanical clarifier is the method most commonly used. Secondary treatment consists of biological treatment and uses oxygen and microorganisms (bacteria and fungi) to remove oxygen-consuming materials in the effluent. This process reduces the level of pollutants entering aquatic systems (Hamner 1988), and typically reduces the biochemical oxygen demand (BOD) by 80-90% or more (Biermann 1996). Effluent is typically prepared for this phase by pH balancing and adding nutrients. Aerated stabilization basins (ASB) are most commonly used in secondary treatment at kraft mills (Biermann 1996, Hanmer 1988), and have been shown to effectively remove ~90% of the toxicity, BOD, and RAs (Chandrasekaran et al. 1978). Other secondary treatment methods include oxidation basins or use of the activated sludge process (Biermann 1996, Hanmer 1988). Tertiary treatment methods are rarely used, and are often aimed at reducing the color of effluent (Biermann 1996).

In 1998 the U. S. EPA introduced new regulations called the Pulp and Paper Cluster Rules. This regulation "protects human health and the environment by reducing toxic releases to the air and water from U.S. pulp and paper mills" (U.S. EPA 2011a). One component of the Cluster Rules is a requirement that each mill develops and implements a "Best Management Practices" (BMP) plan to control accidental discharges of black liquor (Carey et al. 2002).

1.1.4 Weak Black Liquor Contribution to Mill Effluent

Weak black liquor has a BOD approximately 100 times greater than normal mill effluent (Barkley et al. 1986) and is a primary contributor to the BOD and color load of mill effluents (Xiao 2005). Research conducted by Barkley et al. (1986) found that WBL (15% solids) increased mill effluent BOD and created an immediate oxygen demand due to the reduced sulfur. The RAs contained in WBL can induce aquatic toxicity at high concentrations (Barkley et al. 1996)

A study by Vadodaria (1999) examined the effect of black liquor on the activated sludge process. The investigators reported that black liquor affected all measured parameters of mill effluent (conductivity, COD, BOD, TOC and pH), and an addition of black liquor from 0% to 5% in total mill effluent increased chemical oxygen demand (COD) from 1000 to 7000 mg/L, while BOD increased from 250 to 1000 mg/L.

1.2 Whole Effluent Toxicity Testing

In accordance with the Clean Water Act (CWA), point source discharges into surface waters are regulated by the U.S. Environmental Protection Agency (U. S. EPA) and state agencies under the National Pollutant Discharge Elimination System (NPDES; U.S. EPA 2002a). The NPDES permitting program requires industrial dischargers to conduct routine testing, including acute and often chronic whole effluent toxicity (WET) tests to monitor the quality of their effluents and toxicity to aquatic biota (U.S. EPA 1995, 2002b, 2002c, 2002d). Whole effluent toxicity tests involve exposing specific test organisms to various concentrations of effluent to evaluate adverse biological effects with survival, reproduction, growth, and larval development, which are among the most common effects measured. Accepted methods for conducting WET tests have been published by the American Public Health Association (APHA), the American Society for Testing and Materials (ASTM) and the U.S. EPA. The frequency of WET testing depends on the NPDES permit, and is based on factors such as variability and degree of toxicity of the waste, production schedules, and process changes (U.S. EPA 2002b, 2002c, 2002d). Depending on the NPDES permit, WET test organisms may include freshwater, marine, or estuarine species.

1.2.1 Freshwater Whole Effluent Toxicity Tests

Acute freshwater WET tests include 24-96 h mortality tests with daphnids (*Ceriodaphia dubia, Daphnia pulex, D. magna*), fathead minnows (*Pimephales promelas*), and rainbow trout (*Oncorhynchus mykiss*; U.S. EPA 2002b). Freshwater WET tests for evaluating chronic toxicity of effluents include a 7-d survival and reproduction tests with *C. dubia*, 7-d survival and growth tests with *P. promelas*, and 96-h growth tests with a green algae (*Selenastrum capricornutum* Printz²; U.S. EPA 2002c). Currently, *C. dubia* and *P. Promelas* are the two most commonly used freshwater WET test organisms for evaluating the acute and chronic toxicity of pulp mill effluents in the U.S (U.S. EPA 2011b).

1.2.2 Marine and Estuarine Whole Effluent Toxicity Tests

Marine and estuarine WET tests for evaluating acute toxicity of effluents and receiving waters include 24-96 h mortality tests with mysid shrimp (*Americamysis bahia*), sheepshead minnow (*Cyprinodon variegatus*), and silverside (*Menidia beryllina*, *M. menidia*, and

²This name has been replaced by *Pseudokirchneriella subcapitata* (Korshikov) F. Hindák

M. peninsulae; U.S. EPA 2002b). Whole effluent toxicity tests for evaluating the chronic toxicity to estuarine and marine species include 24-96 h *C. variegatus* larval survival and growth; 24-96 h *C. variegatus* embryo-larval survival and teratogenicity; 24-96 h *M. beryllina* survival and growth; 24-96 h *A.bahia* survival, growth and fecundity test; 1 h 20 min sea urchin (*Arbacia puntulata*) fertilization test; and the red algae (*Champia parvula*) sexual reproduction test (U.S. EPA 2002d).

For facilities that discharge into the Pacific Ocean, short-term estuarine and marine chronic WET tests include a 7-d topsmelt (*Atherinops affinis*) larval growth and survival test; 24-96 h mysid (*Holmesimysis costata*) survival and growth test; 48-h pacific oyster (*Crassostrea gigas*)/mussel (*Mytilus sp.*) embryo-larval development test; 72-h sea urchin (*Strongylocentrotus purpatus/Dendraster excentricus* larval development test; 40 minute *S. purpatus/D. excentricus* fertilization test; 48-h red abalone (*Haliotis refuscens*) larval development test; and 48-h giant kelp (*Macrocystis pyrifa*) germination and growth test (U.S. EPA 1995). Currently, *A. bahia, Menidia spp.*, and *C.variegatus* are the most commonly used marine/estuarine WET test organisms for evaluating chronic and acute toxicity of pulp mill effluents in the U.S (U.S. EPA 2011b).

1.3 Literature Review: Toxicity of Weak Black Liquor

Although there are many studies examining the biotic response of exposure to pulp and paper mill effluent, studies addressing WBL specifically are relatively rare. Findings from studies examining the toxicity of WBL to aquatic organisms are summarized in the following two sections.

1.3.1 Sub-lethal Effects

Fish

Fish are the main organisms on which the toxicity of WBL has been evaluated. Weak black liquor is a potent inducer of mixed function oxygenase (MFO) activity in fish, and is one of the major sources of 7-ethoxyresorufin-*0*-deethylase (EROD) inducers in fish present in mill effluents (Carey et al. 2002, Sturm 1999).

Research by Schnell et al. (1993) examined a variety of waste streams within a bleached kraft mill to identify which mill effluent waste streams were responsible for MFO/EROD activity in fish. Results were that untreated WBL at 0.045% (v/v) showed an 8-fold average level of induction in juvenile *O. mykiss*. Aerobic biological treatment, however, reduced the EROD induction potency to biologically insignificant levels.

Experiments by Hodson et al. (1997) using WBL from six bleached kraft mills demonstrated that untreated WBL at low concentrations caused increased MFO activity, with significant increased EROD activity of *O. mykiss* at concentrations ranging from 0.001 to 0.01% (v/v). The authors also found that potency appeared the highest for black liquors derived from hardwood pulping versus softwood. When EROD activity was normalized to dissolved organic carbon (DOC), however, the differences in potency were reduced. Results support the hypothesis that EROD-inducing agents in black liquor are wood extractives (rather than the breakdown products of lignin, cellulose, or hemicellulose), and that natural components of wood can cause MFO induction in fish (Hodson et al. 1997). In another study, Sturm et al. (1999) exposed juvenile *O. mykiss* to 0.01% untreated black liquor for 4 to 8 d in the laboratory and found a two fold increase in EROD induction relative to the controls. Although it is unknown which compounds in black liquor induce MFO activity, Burnison et al. (1996) used a Toxicity Identification and Evaluation (TIE) approach to identify which effluent fraction causes MFO induction in fish. Results were that the majority of the EROD activity were found in the moderately non-polar region of the chromatogram $(K_{ow} = 4.6 \text{ to } 5.1).$

Studies have also been conducted to examine the link between WBL and patterns of endocrine disruption and other organ-level responses in fish. A study published by Zacharewski et al. (1995) used *in vitro* recombinant receptor/reporter gene assays to examine untreated pulp and paper mill black liquor for estrogenic, dioxin-like, and anti-estrogenic activity. Results were that black liquor contains estrogenic and dioxin-like ligands. The researchers concluded that further studies are required to identify the compounds, and to determine if these ligands are responsible for adverse effects observed in fish exposed mill effluents.

Environment Canada's Environmental Effects Monitoring (EEM) program is a regulatory program in which the response of aquatic biota to pulp and paper mill effluent exposure is assessed through field sampling and laboratory testing in three-year cycles (Lowell et al. 2005). In a review paper by Carey et al. (2002), research conducted by McCubbin in 2000 was highlighted that examined the relationship between estimated WBL losses (where WBL losses were estimated based on mass balances provided by mill personnel) and sub-lethal toxicity to *C. dubia* for five bleached kraft mill in Ontario using Cycle 2 data from the EEM program (Section 1.3.1 - C. dubia). Carey et al. (2002) employed a similar approach using Cycle 2 EEM data, but instead focused on bleached kraft mills

located in British Columbia to examine relationships between estimated WBL losses and sub-lethal and lethal effects to aquatic organisms (fish, daphnids, and algae). Using Cycle 2 EEM data from six bleached kraft mills in British Columbia, Carey et al. (2002) reports a trend of increasing sub-lethal toxicity to fish (i.e. decrease in IC25) with increasing estimated WBL losses ($R^2 = 0.1843$; p-value not reported; Figure 2). Additional results by Carey et al. (2002) using the Cycle 2 EEM data are discussed in Section 1.3.1 – *C. dubia* and in Section 1.3.2.

A field study in 2008 examined the exposure of fish populations after a black liquor spill using RA analysis of bile from two species of wild fish, perch (*Perca fluviatilis*) and roach (*Rutilus rutilus*). Results showed elevated concentrations of RAs in the bile in the weeks following the spill (Meriläinen and Oikari 2008).

A literature review to examine the roles of various compounds of altered fish reproduction found that reduced use of molecular chlorine, improved condensate handling, and increased WBL spill control improved reproductive performance (Hewitt et al. 2008). Unfortunately this improvement could not be attributed to a specific process modification, as the mills studied performed multiple modifications simultaneously.

Ceriodaphnia dubia

As mentioned previously, a review by Carey et al. (2002) evaluated an analysis conducted in 2000 by McCubbin which explored the relationship between estimated WBL losses and *C*. *dubia* sub-lethal toxicity using Cycle 2 EEM data from five bleached kraft mills in Ontario. The review of McCubbin's data by Carey et al. (2002) indicated a general trend of increased

sub-lethal toxicity to *C. dubia* (i.e. decreased IC25) with increased estimated WBL losses $(R^2 = 0.8864; p$ -value not reported; Figure 3). Carey et al. (2002) further explored the relationship between estimated WBL losses and sub-lethal toxicity to *C. dubia* using Cycle 2 EEM data from six bleached kraft mills in British Columbia. Results found a trend of increased sub-lethal toxicity to *C. dubia* (i.e. decreased IC25) with increased estimated WBL losses $(R^2 = 0.6121; p$ -value not reported; Figure 2).

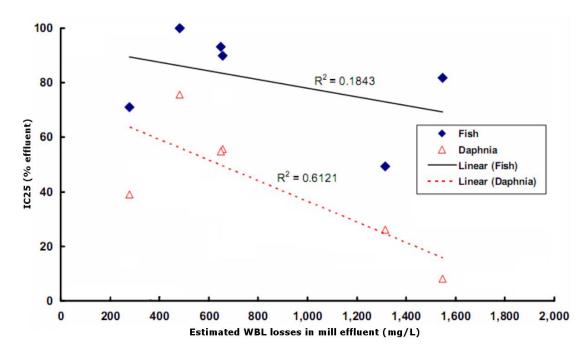


Figure 2. Analysis by Carey et al. (2002) examining relationship between estimated weak black liquor losses and sub-lethal toxicity to fish and daphnia using Cycle 2 Environmental Effects Monitoring data from six bleached kraft mills in British Columbia, Canada. (Figure adapted from Carey et al. 2002).

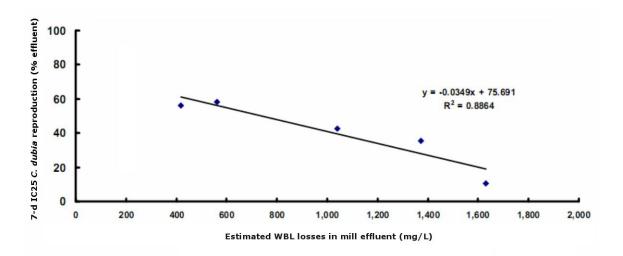


Figure 3. Analysis conducted by McCubbin in 2000 examining relationship between estimated weak black liquor losses and sub-lethal toxicity to *Ceriodaphnia dubia* using Cycle 2 Environmental Effects Monitoring data from five bleached kraft mills in Ontario, Canada. (Figure adapted from Carey et al. 2002).

1.3.2 Lethal Effects

A number of studies have been conducted evaluating the lethal effects of WBL exposure on aquatic biota, with most of these studies conducted on effluents from Canadian mills. An eight-month study at a mill in British Columbia examined the effectiveness of an aerated lagoon in detoxifying kraft pulp mill effluent using acute toxicity tests with sockeye fry (*Oncorhynchus nerka*). Results were that aerated lagoons were generally capable of detoxifying effluent; there were, however, some instances where black liquor spills were responsible for substandard detoxification. These black liquor spills sometimes disrupted treatment system performance, which resulted in final effluent toxicity (Servizi and Gordon 1973). Similarly, a one-month study of a bleached kraft mill in British Columbia examined the effectiveness of an ASB in removing toxicity using 96-h tests with *O. mykiss* (Chandrasekaran et al. 1978). Examination of the bioassay results were that toxic compounds in the mill effluent were biodegradable and treated effectively in an ASB, peak black liquor losses, however, coincided with peak values of both toxicity emission rate (TER) and toxicity emission index (TEI).

Using Cycle 2 EEM data from nine bleached kraft mills in British Columbia (as described in Section 1.3.1), Carey et al. (2002) examined the relationship between lethal effects to fish and estimated WBL losses. Results from this analysis do not suggest that there is a relationship between WBL losses and acute toxicity to fish.

Kelley et al. (2004) studied the acute toxicity of untreated strong black liquor from an elemental chlorine free (ECF) kraft mill, where strong black liquor is 50-70% solids compared to 15% solids in WBL. Tests were conducted to determine the 48-h median lethal

loading rate (LL50) for *D.magna* and the 96-h LL50 for *P. promelas* (where loading rate is defined as the total amount of substance added to water). Results were that the LL50 for both organisms was >1000 mg/L strong black liquor (Kelly et al. 2004).

1.4 Project Overview and Research Objectives

The primary objectives of this study were to evaluate the contribution of WBL in biologically treated kraft mill effluents to chronic effluent toxicity, and to assess effluent chemical parameters that may correlate with biological responses and increased WBL solids. The following sections (1.4.1 through 1.4.3) provide a brief overview of project and research objectives with more detailed descriptions of individual test methods in Section 2.

1.4.1 Laboratory Biotreatment

To simulate a range of systemic WBL losses and WBL spills at a pulp mill, different volumes of WBL (i.e. WBL treatments) were added to untreated wastewater (influent) from four U.S. bleached kraft pulp mills. This resulted in a range of WBL concentrations, in addition to a control where no WBL was added, that were biologically treated in benchtop laboratory bioreactors. The objective of the laboratory biotreatment was to mimic the secondary treatment of pulp mill effluent, and produce a series of simulated effluents in which varying levels of WBL losses had occurred.

1.4.2 Toxicity Testing

48-h Mytilus galloprovincialis Embryo-Larval Development Test

Following laboratory biotreatment, the chronic toxicity of the resulting simulated effluents were evaluated using 48-h *Mytilus galloprovincialis* embryo-larval development toxicity tests. In addition to toxicity tests conducted with the simulated effluent samples, tests were also conducted using mill-treated effluents without added WBL. The objective of these tests was to determine if toxicity increased as the amount of WBL solids in the simulated effluent samples increased.

Mytilus galloprovincialis were selected as the primary test organism for this study due to their sensitivity to toxicants, ease of use for conducting multiple chronic WET tests concurrently, and the availability of quality test organisms from a local supplier. Additionally, tests with *Mytilus spp.* are cost effective; do not require expensive equipment; and are short term assays, taking hours or days rather than weeks for completion (Johnson 1988).

7-d Ceriodaphnia. dubia Survival and Reproduction

Although *C. dubia* are commonly used by pulp mills for the purpose of meeting NPDES WET testing requirements (U.S. EPA 2011b), it was not logistically feasible to conduct toxicity tests using *C. dubia* on all of the simulated effluents concurrently for this project. As such, a sub-set of the simulated effluent samples were selected for 7-d *C. dubia* survival and reproduction tests conducted by researchers at the National Council for Air and Stream Improvement (NCASI; see Section 1.4.4). All of the mill-treated effluents samples were also evaluated using the 7-d *C. dubia* survival and reproduction tests.

The objective of these tests was to determine if toxicity increased as the amount of WBL solids in the simulated effluent samples increased. Results from the *C. dubia* toxicity tests were also compared to results of *M. galloprovincialis* toxicity tests to evaluate the relative sensitivities of these two test organisms with respect to WBL, and to determine if there was a correlation in toxicity response between these two test methods.

1.4.3 Chemical Analysis

Upon completion of laboratory biotreatment, all mill-treated and simulated effluent samples were analyzed for the following chemical parameters: pH, color, conductivity, turbidity, total suspended solids (TSS), polyphenols, hardness, alkalinity, salinity, BOD, dissolved chemical oxygen demand (DCOD), DOC, phytosterols, and RAs. The purpose of these analyses was to see if any of the chemical parameters correlated with: 1) toxicity to *C. dubia*; 2) toxicity to *M. galloprovincialis*; and 3) increased WBL solids. It should be noted that if there is good laboratory biotreatment efficiency, then the concentrations of some of the chemical parameters will likely not correlate with increased WBL solids.

1.4.4 Collaboration with National Council for Air and Stream Improvement

Research for this project was supported by NCASI, and is part of a larger on-going study examining the effects of biologically treated WBL to aquatic organisms. The author of this thesis is a researcher at the NCASI Northwest Aquatic Biology Facility (NABF), and other NCASI laboratories assisting with research for this project are shown in Table 1. Some of the laboratory work and results presented in this report were conducted solely by NCASI researchers without the author's assistance, and are noted as such in the Table 2 and in the Methods section (Section 2). All toxicity tests with *M. galloprovincialis* were carried out at the NCASI NABF with NCASI researchers assisting the author with test set-up and termination. Basic chemical analysis of all effluent samples was conducted at the NCASI NABF laboratory, with some laboratory assistance from NCASI researchers.

Table 1. List of National Council for air and Stream Improvment facilities contributing to research efforts.

NCASI Laboratory	Location	Expertise
Northwest Aquatic Biology Facility (NABF)	Anacortes, WA	Aquatic Biology
Southern Aquatic Biology Facility (SABF)	New Bern, NC	Aquatic Biology
West Coast Regional Center (WCRC)	Corvallis, OR	Chemistry

Table 2. Laboratory activities conducted solely by National Council for Air and Stream Improvement researchers. SABF: Southern Aquatic Biology Facility; WCRC: West Coast Regional Center; WBL: weak black liquor; ASB-TPWW: aerated stabilization basin treatment pond wastewater; ASB-influent: aerated stabilization basin influent.

NCASI Facility	Parameter	Sample
SABF	7-d <i>C. dubia</i> survival and reproduction toxicity tests	mill-treated effluents, simulated effluents
	Laboratory biotreatment (Mill D)	simulated effluents
WCRC	Biochemical oxygen demand (BOD)	WBL
	Chemical oxygen demand (COD)	WBL, ASB-influent, ASB- TPWW
	Conductivity	ASB-influent
	Dissolved chemical oxygen demand (DCOD)	mill-treated effluents, simulated effluents, WBL, ASB-influent, ASB-TPWW
	Dissolved organic carbon (DOC)	mill-treated effluent, simulated effluents, WBL, ASB-influent, ABS-TPWW
	Laboratory biotreatment (Mills A, B, C)	simulated effluents
	Resin acids (pimaric acid, sandrocopimaric acid, isopimaric acid, palustric acid, dehydroabietic acid, abietic acid, neoabietic acid)	mill-treated effluents, simulated effluents
	Solids analysis	WBL
	Sterols (campesterol, stigmastanol, beta- sitosterol, stigmasterol)	mill-treated effluents, simulated effluents
	Total organic carbon (TOC)	WBL, ASB-TPWW
	Total suspended solids (TSS)	ASB-TPWW, ASB-influent, ASB-TPWW

1.4.5 Research Contribution

Results from this study will benefit the pulp and paper industry by helping mill managers further identify mill effluent components that may be contributing to final chronic effluent toxicity. This will allow them to implement BMP necessary to reduce WBL losses and potential adverse impacts to the aquatic environment.

2.0 METHODS

2.1 Mill Selection

Four bleached kraft pulp mills were selected by NCASI researchers for this study using Fisher-SolveTM, a database containing information about every operating pulp and paper mill in the world making over 50 tons per day. The selection criteria for the four mills were as follows: 1) bleached kraft pulp mills; 2) two mills from the pacific northwest region and two from the southeast region of the United States; 3) wood furnishes within each region having a similar mix of species; 4) all mills having low WBL losses when operating under normal conditions; 5) mills with ASB biotreatment systems (i.e. no activated sludge plants); and 6) mills with either integrated paper making or market pulp mills (Steve Stratton, Regional Manager, NCASI, personal communication). An integrated mill is a mill where pulp, pulp and paper, or pulp and paperboard are produced, whereas a non-integrated mill is one where paper or paperboard are manufactured but pulp is not produced on-site (Hanmer 1988). In the case of integrated mills, a further criterion was that purchased + recycled fiber should be < 20% total with a minimum of 80% of the pulp made on site. A summary of mill processes and furnish types for the four selected mills for this study are shown in Table 3

				% TPY (pulp)			
Mill	Region	Site Type	TPY All Pulp by Site (ADST)	Fir	Pine	Oak	Gum
Mill A	PNW	Integrated*	217,350	100			
Mill B	PNW	Integrated	549,780	90	10		
Mill C	SE	Integrated*	367,500		100		
Mill D	SE	Integrated	331,508		71	15	15

Table 3. Summary of mill process type and furnish type using data from Fisher-Solve[™]. TPY: tons of pulp per year; ADST: air dry short tons; PNW: pacific northwest; SE: southeast.

*Pulp only

2.2 Sample Collection

The week prior to study initiation, sample bottles were shipped to each of the four mills to collect WBL. This WBL sample was used to conduct solids and other analytical measurements (BOD, COD, DCOD, DOC, and TOC) by NCASI researchers at the WCRC in advance of study initiation, and was used to determine appropriate WBL spiking concentrations for the simulated effluents (Table 2).

One week later (study initiation), the following samples were collected from each of the four mills: 60 L of ASB influent, 10 L of mill-treated effluent, 10 L of ASB treatment pond wastewater (ASB-TPWW; liquid taken from the ASB near the influent end to provide a source of active biological seed), and 1 L of WBL. For mills A and D, NCASI researchers collected the samples on-site. Samples for Mills B and C were collected by mill personnel. In all cases, samples were either transported in person or shipped on ice priority overnight to the appropriate NCASI laboratory. Sample collection dates are shown in Table 4.

Table 4. Sample collection dates at study initiation for mill-treated effluent, aerated stabilization basin influent, and aerated stabilization basin treatement pond wastewater. NCASI: National Council for Air and Stream Improvement.

Mill	Sampling Collection Date	Collected By
А	08/31/2010	NCASI researchers
В	10/19/2010	Mill personnel
С	11/02/2010	Mill personnel
D	02/08/2011	NCASI researchers

Mill-treated effluent samples were sent from each mill directly to: 1) NCASI NABF laboratory for chemical analysis and 48-h *M. galloprovincialis* embryo-larval development toxicity tests, 2) NCASI SABF for 7-d *C. dubia* survival and reproduction toxicity tests, and 3) NCASI WCRC for chemical analysis (Figure 4).

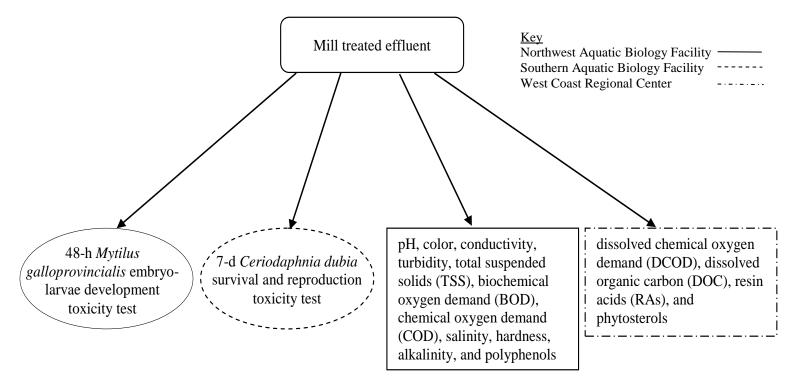


Figure 4. Mill-treated effluent sample analysis. Circles indicate toxicity tests, squares indicate chemical analysis, line type indicates National Council for Air and Stream Improvement laboratory

The ASB influent, ASB-TPWW, and WBL were sent to either the NCASI WCRC (Mills A, B, and C) or the NCASI SABF (Mill D) for laboratory biotreatment. After laboratory biotreatment, these simulated effluent samples were sent to: 1) NCASI NABF laboratory for chemical analysis and 48-h *M. galloprovincialis* embryo-larval development toxicity tests, 2) NCASI SABF for 7-d *C. dubia* survival and reproduction toxicity tests, and 3) NCASI WCRC for chemical analysis (Figure 5). Samples of the ASB influent and ASB-TPWW were also sent to the WCRC for analysis of COD, conductivity, DCOD, DOC, TOC, and TSS (Table 2).

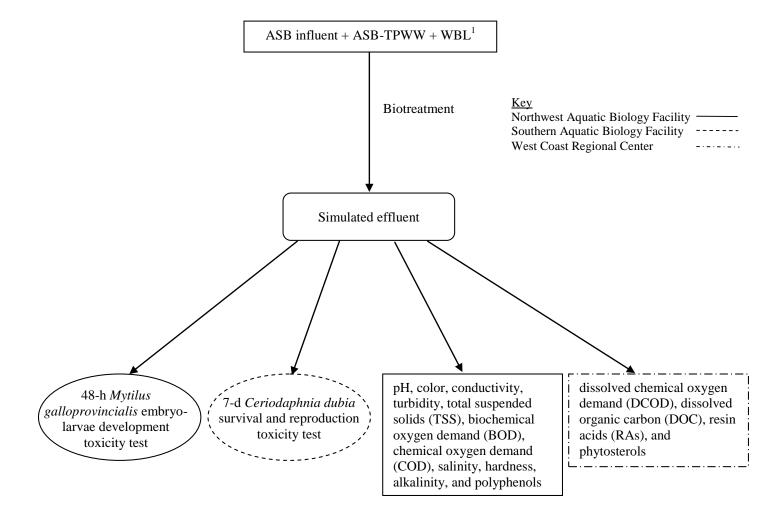


Figure 5. Simulated effluent sample analysis, where simulated effluent is laboratory biotreated aerated stabilization influent, aerated stabilization basin treatment pond wastewater, and weak black liquor (where relevant) collected from the mill. Circles indicate toxicity tests, squares indicate chemical analysis, line type indicates National Council for Air and Stream Improvement laboratory. ¹Weak black liquor was not added to one simulated effluent sample per mill, and is identified in this report as the reactor control. *Ceriodaphnia dubia* tests conducted for a subset of simulated effluent samples.

2.3 Laboratory Biotreatment

For each of the four mills, a series of simulated effluents were created in the laboratory using bench top aerobic reactors (Figure 6). Laboratory biotreatment of simulated effluents was carried out by NCASI researchers at the WCRC or the SABF. Biotreatment at the WCRC was conducted using six bench top aerobic reactors for Mills A, B and C, while biotreatment at SABF used five bench top aerobic rectors for Mill D. Biotreatment reactors were prepared using 8.5 L of ASB-influent and 1.5 L of ASB-TPWW collected at the front end of the treatment pond to ensure the reactors were sufficiently biologically active. Dissolved oxygen content was monitored throughout the study to verify that the system did not become oxygen deficient and pH and temperature were monitored to ensure they were consistent with typical treatment system processes. The standard operating procedure (SOP) used at the NCASI WCRC and the NCASI SABF for biotreatment of simulated effluent samples can be found in Appendix A.

To represent a range of WBL losses at a mill, six simulated effluents were created for mills A, B, and C, and five simulated effluents were created for Mill D. Appropriate spiking concentrations were determined by NCASI researchers at the WCRC. Factors considered in calculating WBL spiking levels included: 1) the solids content, COD, DCOD, and DOC of WBL collected one week prior to test initiation; 2) the COD, DCOD, and DOC analysis of ASB-influent, and ASB-TPWW collected at test initiation; and 3) the COD, DCOD, TSS, and DOC analysis of the unspiked reactor control measured on the day before and on the day WBL was added to the spiked reactors (Table 2). Analytical test methods can be found in Section 2.6 (COD, DCOD, DOC, TSS, and WBL solids). Ultimately, WBL spiking

concentrations were based primarily on COD normalized on a WBL solid weight basis. Weak black liquor spike levels (i.e. WBL treatments) for simulated effluents were chosen to cover a range of systemic WBL losses, with the highest spiked reactor containing enough WBL to equal approximately two times the background COD concentration measured in unspiked reactor control and the lowest spiked reactor containing enough WBL so that the COD spike was significantly greater than background COD levels in the reactor control. A summary of the simulated effluents for each of the four mills, along with the chosen WBL spiking levels are shown in Table 5.

This simulated effluent served as a control, hereafter referred to as "reactor control", as no WBL was added. The purpose of the reactor control was to establish the baseline toxicity and concentrations of chemical parameters for the simulated effluent samples. The remaining reactors contained ASB influent, ASB-TPWW, and different additions of WBL (hereafter referred to as "spiked reactors"). The reactor control and spiked reactors will be referred to as simulated effluents when no distinction between the two is needed.

Every 1-3 d, a small aliquot was taken from each reactor for DCOD analysis by WCRC or SABF researchers. The reactors were run until a stable DCOD was reached in all of the reactors, at which point the simulated effluents were considered fully treated and ready for chronic toxicity testing (with *M. galloprovincialis* and *C. dubia*) and chemical analysis (Figure 5). For Mill B, Mill C, and Mill D, simulated effluent samples were allowed to settle before they were sampled. Because Mill A samples were not settled, for Mill B and Mill C, a side by side comparison of settled and unsettled samples taken from the highest spiked reactor (WBL spike 5) were analyzed to determine if the toxicity results were comparable (see Section 3.3.1).

Figure 6. West Coast Regional Center laboratory biotreatment of Mill A simulated effluent samples. The reactor on the left contains only aerated stabilization basin influent and aerated stabilization basin treatment pond wastewater (reactor control), and the reactor on the right contains aerated stabilization basin influent, aerated stabilization basin treatment pond wastewater, and the highest spike level of weak black liquor (WBL spike 5).

		Effluent	Spiking Level
Mill	Description	Sample Code	(WBL solids added (g/L))
А	Reactor control	A-RWW-Ctrl	0.000
	WBL spike 1	A-RWBL-1	0.097
	WBL spike 2	A-RWBL-2	0.193
	WBL spike 3	A-RWBL-3	0.290
	WBL spike 4	A-RWBL-4	0.386
	WBL spike 5	A-RWBL-5	0.483
В	Reactor control	B-RWW-Ctrl	0.000
	WBL spike 1	B-RWBL-1	0.092
	WBL spike 2	B-RWBL-2	0.185
	WBL spike 3	B-RWBL-3	0.277
	WBL spike 4	B-RWBL-4	0.370
	WBL spike 5	B-RWBL-5	0.462
С	Reactor control	C-RWW-Ctrl	0.000
	WBL spike 1	C-RWBL-1	0.083
	WBL spike 2	C-RWBL-2	0.167
	WBL spike 3	C-RWBL-3	0.250
	WBL spike 4	C-RWBL-4	0.334
	WBL spike 5	C-RWBL-5	0.417
D	Reactor control	D-RWW-Ctrl	0.000
	WBL spike 1	D-RWBL-1	0.103
	WBL spike 2	D-RWBL-2	0.206
	WBL spike 4	D-RWBL-3	0.309
	WBL spike 5	D-RWBL-5	0.515

Table 5. Summary of simulated mill effluents for each of the four mills (WBL: weak black liquor).

2.4 48-h Mytilus galloprovincialis Embryo-larval Development Tests

2.4.1 Test Method

For each of the four mills, 48-h *M. galloprovincialis* embryo-larval development toxicity tests were conducted with mill-treated effluent and each of the simulated effluents. A list of *M. galloprovincialis* toxicity test methods and endpoints are shown in Table 6. All toxicity tests with *M. galloprovincialis* were carried out at the NCASI NABF in Anacortes, WA and followed U.S. EPA methods (1995) with modifications described in Washington State Department of Ecology (WDOE 2008). For each mill, toxicity tests with the mill-treated effluent were conducted prior to toxicity tests with the simulated mill effluents (Table 7). A dilution series with seven concentrations of effluent were used, with filtered seawater the dilution water, for tests with mill-treated and simulated effluents. An individual effluent concentration in a dilution series for each effluent sample is hereafter referred to as "toxicity test treatment," and is designated as toxicity test treatment 1-7 (with 1 having the lowest percent effluent concentration and 7 having the highest percent effluent concentration). Each toxicity test treatment contained four replicates (designated A, B, C, and D).

Effluent samples were held at 4°C until testing, which occurred 1-4 d after sampling of mill-treated effluent or simulated effluents (Table 7). For each set of toxicity tests, a reference toxicant test with copper chloride (CuCl) was run concurrently following methods described by the U.S. EPA (1995).

Sample		Test Method	Endpoint	Contribution to research
Mill-treated e	effluent	U.S. EPA 1995, WDOE 2008	EC50	Determine if mill-treated effluent is toxic to <i>M. galloprovincialis</i> .
Reference to	oxicant (CuCl) ¹	U.S. EPA 1995, WDOE 2008	EC50	Determine quality and sensitivity of test organisms.
Simulated effluent	Reactor control	U.S. EPA 1995, WDOE 2008	EC50	Determine if simulated effluent with no added WBL is toxic to <i>M. galloprovincialis</i> .
	WBL spike 1	U.S. EPA 1995, WDOE 2008	EC50	Determine if simulated effluent with added WBL is toxic to <i>M. galloprovincialis</i> .
	WBL spike 2	U.S. EPA 1995, WDOE 2008	EC50	Determine if simulated effluent with added WBL is toxic to <i>M. galloprovincialis</i> .
	WBL spike 3	U.S. EPA 1995, WDOE 2008	EC50	Determine if simulated effluent with added WBL is toxic to <i>M. galloprovincialis</i> .
	WBL spike 4	U.S. EPA 1995, WDOE 2008	EC50	Determine if simulated effluent with added WBL is toxic to <i>M. galloprovincialis.</i>
	i	U.S. EPA 1995,		Determine if simulated effluent with added WBL is toxic to

Table 6. 48-h *Mytilus galloprovincialis* toxicity test descriptions, test methods, endpoints and contribution to research. WBL: weak black liquor.

¹CuCl reference toxicant test run concurrently with mill-treated effluent toxicity test and with simulated effluent toxicity tests.

	Somula Description	Some la Coda	Sampling/ Collection	Test	Test
<u>Mill</u> A	Sample Description	Sample Code	Date	Initiation	Termination
A	Mill effluent	A-Effluent	8/31/2010	9/1/2010	9/3/2010
	Reference toxicant: CuCl	A-RT-Effluent	0/0/2010	9/1/2010	9/3/2010
	Unspiked reactor control	A-RWW-Ctrl	9/8/2010	9/9/2010	9/11/2010
	WBL spike 1	A-RWBL-1	9/8/2010	9/9/2010	9/11/2010 9/11/2010
	WBL spike 2	A-RWBL-2	9/8/2010	9/9/2010	
	WBL spike 3	A-RWBL-3	9/8/2010	9/9/2010	9/11/2010
	WBL spike 4	A-RWBL-4	9/8/2010	9/9/2010	9/11/2010
	WBL spike 5	A-RWBL-5	9/8/2010	9/9/2010	9/11/2010
	Reference toxicant: CuCl	A-RT-Reactors	40/40/0040	9/9/2010	9/11/2010
В	Mill effluent	B-Effluent	10/19/2010	10/22/2010	10/24/2010
	Reference toxicant: CuCl	B-RT-Effluent		10/22/2010	10/24/2010
	Unspiked reactor control	B-RWW-Ctrl	10/28/2010	11/1/2010	11/3/2010
	WBL spike 1	B-RWBL-1	10/28/2010	11/1/2010	11/3/2010
	WBL spike 2	B-RWBL-2	10/28/2010	11/1/2010	11/3/2010
	WBL spike 3	B-RWBL-3	10/28/2010	11/1/2010	11/3/2010
	WBL spike 4	B-RWBL-4	10/28/2010	11/1/2010	11/3/2010
	WBL spike 5	B-RWBL-5	10/28/2010	11/1/2010	11/3/2010
	WBL spike 5 (unsettled)	B-RWBL-5	10/28/2010	11/1/2010	11/3/2010
	Reference toxicant: CuCl	B-RT-Reactors		11/1/2010	11/3/2010
С	Mill effluent	C-Effluent	11/2/2010	11/4/2010	11/6/2010
	Reference toxicant: CuCl	C-RT-Effluent		11/4/2010	11/6/2010
	Unspiked reactor control	C-RWW-Ctrl	11/15/2010	11/17/2010	11/19/2010
	WBL spike 1	C-RWBL-1	11/15/2010	11/17/2010	11/19/2010
	WBL spike 2	C-RWBL-2	11/15/2010	11/17/2010	11/19/2010
	WBL spike 3	C-RWBL-3	11/15/2010	11/17/2010	11/19/2010
	WBL spike 4	C-RWBL-4	11/15/2010	11/17/2010	11/19/2010
	WBL spike 5	C-RWBL-5	11/15/2010	11/17/2010	11/19/2010
	WBL spike 5 (unsettled)	B-RWBL-5	10/28/2010	11/1/2010	11/3/2010
	Reference toxicant: CuCl	C-RT-Reactors		11/17/2010	11/19/2010
D	Mill effluent	D-Effluent	2/8/2011	2/9/2011	2/11/2011
	Reference toxicant: CuCl	D-RT-Effluent		2/9/2011	2/11/2011
	Unspiked reactor control	D-RWW-Ctrl	2/17/2011	2/21/2011	2/23/2011
	WBL spike 1	D-RWBL-1	2/17/2011	2/21/2011	2/23/2011
	WBL spike 2	D-RWBL-2	2/17/2011	2/21/2011	2/23/2011
	WBL spike 3	D-RWBL-3	2/17/2011	2/21/2011	2/23/2011
	WBL spike 5	D-RWBL-5	2/17/2011	2/21/2011	2/23/2011
	Reference toxicant: CuCl	D-RT-Reactors		2/21/2011	2/23/2011

Table 7. Summary of *Mytilus galloprovincialis* toxicity tests. WBL: weak black liquor.

2.4.2 Test Organisms

Mytilus galloprovincialis (Figure 7) is a test species approved by the U.S. EPA for chronic WET testing under the NPDES permitting program. Test organisms raised in Totten Bay Inlet near Shelton, WA were obtained from Taylor Shellfish Farm, Bellingham, WA, and housed at Shannon Point Marine Center (SPMC) in Anacortes, WA in flow-through seawater tanks until test initiation.

Figure 7. *Mytilus galloprovincialis*. (Source: http://nas.er.usgs.gov/)

2.4.3 Brine Preparation

A few days prior to the test, hypersaline brine (HSB) for use in adjusting the salinity of test solutions was prepared by filtering seawater collected from SPMC. Seawater was collected from the spigots supplying seawater to the test organisms using 1-gal glass bottles. Sample bottles were rinsed thoroughly with seawater from the spigot prior to collection. At the

NABF laboratory, seawater was filtered using a 10-µm Nitex cloth placed over a plastic funnel. The plastic funnel was placed into a 1-L Erlenmeyer flask. Once filtered, approximately 3 L of filtered seawater was poured into a 1-gal Cubitainer[®] and placed in a freezer for 24 to 36 h, or until frozen solid. A day in advance of the test, the Cubitainer[®] was removed from the freezer and placed onto the laboratory bench. The spigot was opened, and as the seawater melted, the liquid was collected in a 1-L beaker. The salinity of the melting seawater was checked periodically using a refractometer until the brine reached 100 parts per thousand (‰). Once the brine reached 100 ‰, it was covered with plastic wrap and stored at 4°C until test day.

2.4.4 Filtered Seawater Preparation

The day before the test, seawater was collected from SPMC to prepare filtered seawater for use in test solutions. Seawater filtering and collection methods followed those described previously. Once filtered, seawater was poured into 1-L glass beakers, covered with plastic wrap, and placed into an environmental chamber adjusted to $18 \pm 1^{\circ}$ C. A non-mercury glass thermometer was used to check the temperature of the environmental chamber.

2.4.5 Test Chambers

The day before the test, test chambers (shell vials: 7-dram, 29.35 x 65 mm) were labeled with the test treatment (C for control, BC for brine control, and #1-7 for the seven effluent dilutions) and replicate (A-D). An additional replicate (E) was added for the purpose of measuring chemistry in the test chamber upon test termination. Additionally, six vials were labeled for stocking densities. For the reference toxicant test, there were six test Cu treatments (test treatments #1-6) and a control (test treatment C) with five replicates (A-E), and six vials labeled for stocking densities. Test chambers were placed into glass baking dishes and arranged with rows of replicates of the same concentration, and in increasing concentration for ease of distributing test solutions into the vials (Figure 8). Each baking dish was labeled with the appropriate sample code (Table 7). The glass baking dishes were covered with plastic wrap until test initiation (Figure 9).

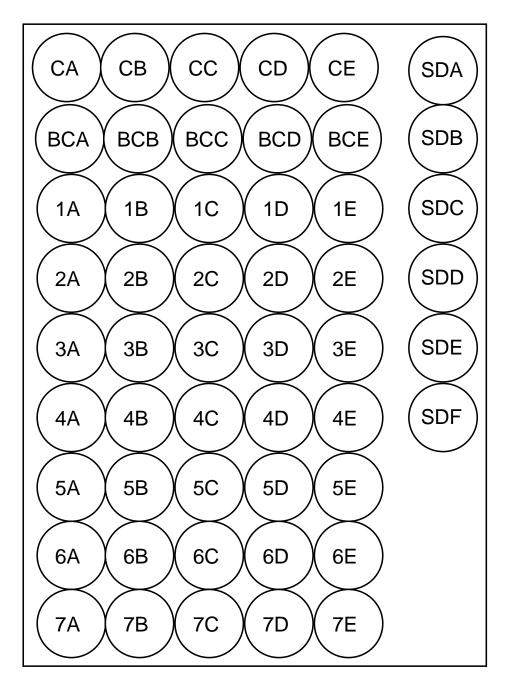


Figure 8. Diagram of a single 48-h *Mytilus galloprovincialis* effluent toxicity test set-up showing vials labeled to include all replicate tests concentrations, controls, and stocking densities (SD).

Figure 9. Test chambers for *Mytilus galloprovincialis* 48-h embryo-larval development toxicity tests.

2.4.6 Toxicity Test Solution Preparation

All toxicity test solutions, controls for effluent (mill-treated and simulated), and reference toxicant tests were made using the filtered seawater stored in the environmental chamber at $18 \pm 1^{\circ}$ C and the HSB stored at 4°C. For each toxicity test concentration, 70 ml of test solution was mixed in 25 x 200 mm KIMAX borosilicate glass culture tubes or in 250-ml glass beakers.

In addition to a seawater control, a brine control was used for all effluent (simulated and mill-treated) toxicity tests. The brine control was prepared by mixing HSB and Barnstead DI water to achieve the same volume of brine found in the highest effluent toxicity test concentration tested using brine (i.e. if 70% effluent is the highest effluent concentration tested, 21 ml HSB was used per 70 ml test solution; Table 8). Once prepared, the brine control was poured into a 1-L glass beaker, covered with plastic wrap, and placed into an environmental chamber adjusted to $18 \pm 1^{\circ}$ C.

Toxicity test treatments for mill-treated and simulated effluents included: a control (filtered seawater), brine control (HSB + Barnstead DI water), and seven effluent concentrations for Mills A and B (1.09, 2.19, 4.38, 8.75, 17.5, 35, and 70% effluent) and for Mills C and D (1.09, 2.19, 3.28, 4.38, 8.75, 17.5, and 35 effluent; Table 8). The target test salinity for the effluent toxicity tests was 30 ± 2 ‰. Effluent test concentrations and volumes are shown in Table 8.

Effluent concentration (%)	Total Volume required (ml)	Effluent (ml)	Brine (ml)	Filtered Seawater (ml)
^a 70.00	70	49.00	21.00	0.00
35.00	70	24.50	10.50	35.00
17.50	70	12.25	5.25	52.50
8.75	70	6.13	2.63	61.25
4.38	70	3.06	1.31	65.63
^b 3.28	70	2.30	0.98	66.72
2.19	70	1.53	0.66	67.81
1.09	70	0.77	0.33	68.91

Table 8. Mixing chart for mill-treated and simulated effluent toxicity test solutions for exposure concentrations in *Mytilus galloprovincialis* tests.

^a Not used for weak black liquor spike 5 for Mills C and D ^b Used only for weak black liquor spike 5 for Mills C and D

A reference toxicant test using CuCl was run concurrently with each set of milltreated and simulated effluent toxicity tests according to U.S. EPA methods (U.S EPA 1995). Test treatments for all reference toxicant tests included: a control (filtered sweater) and six CuCl test concentrations (3.0, 4.5, 6.6, 9.6, 13.8, & 20.4 µg Cu/L as CuCl) with five replicates per treatment and six stocking densities. Barnstead DI water was used to make the copper stock solutions (2000 mg/L) and sub-stock solution (3 mg/L).

After test solutions were mixed, salinity was checked to ensure that all test solutions were 30 $\% \pm 2$. Each test chamber was then filled with 10 ml of appropriate test solution using a 10-ml automatic pipette. Stocking density test chambers (n=6 per test) were filled with 10 ml of filtered seawater. Once filled, test chambers were randomized within each baking dish, covered with plastic wrap, and placed in the environmental chamber set at $18 \pm 1^{\circ}$ C until test initiation.

The remaining 20 ml of test solution in the culture tubes/beakers (extra solution left over after filling the test chambers) were covered with plastic wrap and placed in the environmental chamber set at $18 \pm 1^{\circ}$ C and used later to determine pH and temperature at test initiation (Appendix B).

2.4.7 Spawning

The morning of the test, 18 adult *M. galloprovincialis* were collected from the SPMC holding tanks along with seawater to be used for spawning. Seawater was collected from the spigots using several 1-gal glass bottles and 1-gal Cubitainers[®]. At the NABF, mussels were placed in a glass baking dish containing unfiltered seawater and placed into an environmental chamber set at 12°C to prevent the mussels from spawning prematurely.

To induce spawning, mussels were placed in a glass baking dish and covered with unfiltered seawater heated to 20°C (Figure 10). Algae concentrate (Algae Diet C-5, Hilton's Coast Seafoods Company), was also used to promote spawning. A dilute mixture of algae was prepared by adding a small amount of algae concentrate with a disposable plastic pipette into a plastic specimen cup filled with 20°C seawater. The diluted algal mixture was then added to the glass baking dish containing the mussels to induce the mussels to pump.

Individuals that began to spawn were quickly removed from the baking dish, rinsed with unfiltered seawater to remove any live sperm, and placed into 250-ml spawning beakers containing 20°C unfiltered seawater to collect the gametes. Each spawning beaker was labeled with the time spawning began and the sex of the gametes (Figure 11). Spawning information was also recorded on the *Bivalve Spawning Data Sheet* (Appendix C).

Figure 10. Mytilus galloprovincialis prior to test spawning.



Figure 11. Spawning beakers with male *Mytilus galloprovincialis*.

2.4.8 Selection of Gametes

Samples of gametes were examined under an inverted microscope to determine quality. Only the highest quality gametes (highly active sperm and full round eggs) were selected for use. Gametes from at least two males and two females were pooled and used on each test day. A clean transfer pipette was used to combine equal amounts of eggs from each female in a 400-ml glass beaker containing approximately 200 ml of filtered 18°C seawater and labeled as "egg stock solution." Sperm were pooled by pouring an equal volume of liquid from each male spawning beaker into a 400-ml beaker labeled, "sperm stock solution."

2.4.9 Fertilization

Three embryo solutions were prepared by carefully pouring equal volumes of the egg stock solution into three 250-ml beakers. Each beaker was diluted to approximately 200 ml using 18°C filtered seawater; the volume of dilution water added was dependent on the concentration and volume of the original egg stock solution. Each beaker was diluted to achieve a density of approximately 150 eggs per 10 ml; this was accomplished by adding dilution water to the three beakers until print could be read through the beakers. A manual pipette was used to add 100, 300, or 700 μ l of sperm stock solution to the three beakers. The three embryo solutions were mixed gently with glass Pasteur pipettes, and time of fertilization was recorded on the *Bivalve Spawning Data Sheet* (Appendix C).

Embryo solutions were kept in suspension by frequent agitation with glass Pasteur pipettes. Approximately 1-h after fertilization, fertilization success was checked in each of the three embryo solutions. After gentle stirring with a Pasteur pipette, a 20 µl aliquot of each embryo solution was placed onto a glass microscope slide and examined using an inverted

microscope. Percent fertilization was determined by counting the number of fertilized and unfertilized eggs in each sperm dilution. Fertilization was determined by: 1) the presence of a polar body; or 2) cell division. Of the three embryo solutions, the solution with > 90% fertilization and with the lowest volume of sperm added was selected. Once the appropriate embryo solution was selected, three 20-ml aliquots were counted to calculate mean percent fertilization and to determine the appropriate embryo stocking volume. The embryo stocking volume was calculated so that approximately 150 embryos were stocked into each test chamber. Embryos from the same spawn were used when multiple tests were run concurrently.

2.4.10 Test Initiation

Fertilized embryos were added to each test chamber within 4 h of fertilization using a micropipette. Embryos were kept in suspension by gentle stirring with a glass Pasteur pipette during stocking. After embryos were added to each test chamber, the stocking density test chambers for each test were removed and fixed by adding 100 μ l of formaldehyde to each vial; these were later used to determine initial stocking density of test organisms (Section 2.4.12). The glass baking dish was covered with plastic wrap and placed into the environmental chamber set at 18 ± 1 °C with a the photoperiod set at 16 h light/8 h dark (Figure 12). Because multiple tests were run simultaneously, baking dishes were arranged randomly within the environmental chamber to minimize any potential light or temperature gradients. Onset Stow Away TidbiT Temp Loggers in the environmental chamber were used to monitor temperature continuously throughout the duration of the tests for Mill B, Mill C

and Mill D (Appendix D). Two non-mercury glass thermometers were used to measure temperature twice per day in the environmental chambers during the tests for Mill A.

For each effluent (mill-treated or simulated effluent) or reference toxicant test, pH and temperature were measured in both the lowest and highest toxicity test treatment at test initiation using the 20 ml of test solution left over after dispensing test solutions to the test chambers. Additionally, pH and temperature of the control (filtered seawater) and brine control (HSB + Barnstead DI) were measured in the test solution left over after dispensing test solutions to the test chambers. Methods for measuring pH and temperature can be found in Section 2.6.

Figure 12. Environmental chamber at initiation of 48-h Mytilus galloprovincialis test.

2.4.11 Test Termination

After 48 h, all replicates labeled, "E," were removed from the glass baking dishes. All remaining replicates (A, B, C, D) were terminated by adding 100 μ l of formaldehyde to each vial. Each test chamber was capped securely with a plastic lid until embryos could be enumerated.

Using the unpreserved test chambers (replicate E), pH, dissolved oxygen (DO) and salinity were checked in lowest and highest test concentrations for all effluent and reference toxicant tests (Appendix B). Salinity, pH, and DO were also measured on a sub-set (approximately half) of the replicate E controls (filtered seawater) and brine controls (HSB + Barnstead DI). Chemistry measurements for the sub-set of control and brine control test chambers were selected at random and included at a minimum 50% of the available control chambers. Dissolved oxygen (in mg/L) was measured with a YSI 55 meter. Details for measuring pH and salinity can be found in Section 2.6.

2.4.12 Stocking Densities

To calculate a stocking density for each test, the number of fertilized eggs was counted in each stocking density vial. The mean of the six replicates was calculated to determine the mean stocking density for each test. This number was used later as the number added to each test chamber for the percent survival calculations in the controls.

2.4.13 Enumeration of Larvae

Preserved larvae in each test chamber were counted and classified as normal or abnormal using an inverted microscope. Normal larvae were those with a clearly defined D-shaped shell (Figure 13), while abnormal larvae were veligers with an incomplete shell or trochophore larvae (Figure 14). For each test, the D-shaped cell criterion was recalibrated using the control larvae as a reference. Meatless larvae with completed D-shaped cells were counted as normal. For each test, all "A" replicates were counted first in order of increasing test concentration followed by "B" replicates (i.e. all four replicates of a test concentration were not counted in succession). If 100% abnormal larvae were observed in a test concentrations were not). If this pattern remained consistent while counting across replicates (i.e. all four replicates had two consecutive test concentrations with 100 % abnormality) then enumeration of the higher test concentration showed 100% abnormality, then the next highest test concentration was not terminated until there were two consecutive test concentrations showing 100% abnormality in all replicates). All larval counts were recorded on the *Bivalve Bioassay Data Sheet* (Appendix E).

Figure 13. Normal D-shaped shell of *Mytilus galloprovincialis* larvae

Figure 14. Abnormal Mytils galloprovincialis larvae

2.4.14 Quality Control

Control performance (survival and normality) and stocking density coefficient of variation (CV) were calculated for each test. The target criterion for stocking density CV was \leq 15 and the target criterion for the controls was \geq 70% survival compared to the stocking densities and \geq 70% normal shell development (based on survivors; WDOE 2008).

2.4.15 Calculation of Endpoints

All endpoints for the 48-h *M. galloprovincialis* embryo-larval development toxicity tests were calculated using ToxCalc statistical software (Version 5.0.231; Tidepool Scientific Software, McKinleyville, CA, USA). The no observed effects concentration (NOEC) and lowest observed effects concentration (LOEC) values were calculated using a hypothesis testing approach such as Dunnett's Procedure or Steel's Many-one Rank Test. The EC50s were calculated using Probit regression. If data did not meet the requirements for Probit regression, the Spearman-Karber or the trimmed Spearman-Karber method was used as described by U.S. EPA (1995) and Environment Canada (2005). For each reference toxicant test with CuCl, the EC50 was calculated and plotted on a control chart maintained at the NCASI NABF.

2.5 7-d Ceriodaphnia dubia Survival and Reproduction Tests

A series of 7-d *Ceriodaphnia dubia* survival and reproduction chronic toxicity tests were conducted by NCASI researchers at the SABF following U.S. EPA WET test methods (U.S EPA 2002c). *Ceriodaphnia dubia* toxicity tests were conducted using the mill-treated effluent, the reactor control, and the two of the simulated effluents (WBL spike 2 and WBL spike 5) for all four mills. A summary of 7-d *C. dubia* survival and reproduction toxicity tests, endpoints, and sampling dates are shown in Table 9 and Table 10.

Test organisms, *C. dubia* neonates (\leq 24 hours old at test initiation), were obtained from in-house cultures maintained at the SABF. For all tests, synthetic moderately hard water was used as the dilution water (U.S. EPA 2002c) to create a standard 0.5 dilution series with four test concentrations (100, 50, 25 and 12.5% effluent) with five replicates per test concentration and one test organism per replicate. All endpoints for the *C. dubia* 7-d survival and reproduction toxicity tests (NOEC, LOEC, and 25% inhibition concentration [IC25³]) were calculated using the ICPIN statistical program. Linear interpolation was used to calculate IC25s.

Table 9. 7-d Ceriodaphnia dubia survival and reproduction toxicity test descriptions, test
methods, endpoints and contribution to research. WBL: weak black liquor.

S	Sample	Test Method	Endpoint	Contribution to research
Mill-treated	effluent	U.S. EPA 2002c	IC25	Determine if mill-treated effluent is toxic to <i>C. dubia</i> .
Simulated effluent	Reactor control	U.S. EPA 2002c	IC25	Determine if simulated effluent with no added WBL is toxic to <i>C. dubia</i> .
	WBL spike 2	U.S. EPA 2002c	IC25	Determine if simulated effluent with added WBL is toxic to <i>C. dubia</i> .
	WBL spike 5	U.S. EPA 2002c	IC25	Determine if simulated effluent with added WBL is toxic to <i>C. dubia</i> .

³The IC25 is reported here and throughout this document (though it should be identified as the LC25) because the EPA recommends the IC25 for regulatory use (den Besten 2005, U.S. EPA 2009).

	1		1	L	0
Mill	Sample Description	Sample Code	Sampling/ Collection Date	Test Initiation	Test Termination
	Mill effluent	A-Effluent	8/31/2010	9/8/2010	9/14/2010
А	Unspiked reactor control	A-RWW-Ctrl	9/8/2010	9/14/2010	9/20/2010
A	WBL spike 2	A-RWBL-2	9/8/2010	9/14/2010	9/20/2010
	WBL spike 5	A-RWBL-5	9/8/2010	9/9/2010	9/11/2010
	Mill effluent	B-Effluent	10/19/2010	10/25/2010	10/31/2010
в	Unspiked reactor control	B-RWW-Ctrl	10/28/2010	11/2/2010	11/8/2010
D	WBL spike 2	B-RWBL-2	10/28/2010	11/2/2010	11/8/2010
	WBL spike 5	B-RWBL-5	10/28/2010	11/2/2010	11/8/2010
	Mill effluent	C-Effluent	11/2/2010	11/11/2010	11/17/2010
~	Unspiked reactor control	C-RWW-Ctrl	11/15/2010	11/17/2010	11/23/2010
С	WBL spike 2	C-RWBL-2	11/15/2010	11/17/2010	11/23/2010
	WBL spike 5	C-RWBL-5	11/15/2010	11/17/2010	11/23/2010
	Mill effluent	D-Effluent	2/8/2011	2/11/2011	2/18/2011
-	Unspiked reactor control	D-RWW-Ctrl	2/17/2011	2/21/2011	2/27/2011
D	WBL spike 2	D-RWBL-2	2/17/2011	2/21/2011	2/27/2011
	WBL spike 5	D-RWBL-5	2/17/2011	2/21/2011	2/27/2011

Table 10. 7-d *Ceriodaphnia dubia* survival and reproduction tests and sampling dates

2.6 Chemical Analysis

2.6.1 Basic Chemical Analysis of Mill-Treated Effluents and Simulated Effluents

Mill-treated effluent and simulated effluents (sampled after completion of laboratory biotreatment) were analyzed for pH, color, conductivity, turbidity, TSS, BOD, COD, salinity, hardness, alkalinity, and polyphenols at the NCASI NABF laboratory. Unless otherwise noted: 1) all samples were stored at 4°C and measurements were made as soon as possible (within 24 h of sampling); 2) reagent grade water (Barnstead DI) was used for preparation of all standards and effluent dilutions; 3) reagent grade chemicals were used for the preparations of all standards; 4) all samples were measured in duplicate, and the readings were averaged to provide a single number; and 5) control charts maintained at NABF were used to check the performance of standards and duplicates for all test parameters. The control charting method used at NABF follows instructions provided by the WDOE; control chart criteria for standards and duplicates as well as method detection limits (MDLs) for the chemical parameters listed in this section (2.6.1) can be found in Appendix F.

pН

pH was measured using a Hach sensION[™]2 pH meter and methods were based on the Electrometric Method (4500-H⁺; APHA 1998). The pH meter was calibrated each time it was used with a three-point calibration (pH 7.0, pH 10.0, and pH 4.01). After calibration, the pH meter was checked with an 8.0 buffer standard.

Color

Color measurements were based on NCASI (2000). This method was developed to provide a technique for color measurement in pulping wastewaters and their receiving waters. A spectrophotometer (Hach DR/2010) was used to measure the absorbance of a sample at 465 µm once the sample was adjusted to pH 7.6 and filtered through a 0.8 µm membrane filter to remove turbidity. Color was determined by comparing the absorbance of the sample to the absorbance of a platinum cobalt color standard. Prior to each use, the spectrophotometer was checked with a 500 platinum cobalt stock standard (Hach #1414-53).

Conductivity

Conductivity was measured using a Hach Model 44600 conductivity meter and followed methods by Hach (2003). The conductivity meter was checked with 1000 μ s/cm and 1990 μ s/cm conductivity standards prior to each use.

Turbidity

Nephelometric turbidity was measured using a Hach Model 2100P turbidimeter based on APHA (1998) with modifications following Hach (2003). The turbidimeter was checked prior to each use with a StablCal 20.0 nephelometric turbidity unit (NTU) standard (Hach #26594-05).

Total Suspended Solids

Total suspended solids were measured following APHA (1998). A 20 mg/L TSS standard (using Sigmacell[®] cellulose) was prepared in conjunction with each batch of samples.

Biochemical Oxygen Demand

The BOD method followed APHA (1998). Dissolved oxygen of the BOD samples were measured using a YSI model 58 DO meter with self-stirring BOD probe (YSI model 5905). Prior to each set of tests, the DO probe was calibrated using the BOD dilution water. Dissolved oxygen of the BOD dilution water was determined following Hach (2003). The BOD seed source was primary effluent provided by the Anacortes Wastewater Treatment Plant (Anacortes, WA) and each batch of tests included two seed controls (6 ml and 9 ml). For each set of tests, a dilution water blank and standard solution of 198 mg/L glucoseglutamic acid standard (North Central Laboratories) was run alongside the effluent samples. For each effluent sample, a dilution series consisting of four effluent concentrations was used to determine the final BOD.

Salinity

A salinity refractometer (Reichert Precision Salinity Tester: Model 13104190) was used to measure salinity. This unit is automatically temperature compensated to provide accurate readings at temperatures from 16°C to 38°C.

52

Hardness

Hardness measurements were based on methods by APHA (1998) with modifications following Hach (2003) using a Hach digital titrator. Alongside each batch of samples, a 100 mg/L hardness standard was prepared using a 10,000 mg/L CaCO₃ stock standard solution (Hach #2187-10).

Alkalinity

Alkalinity was measured using a Hach digital titrator and pH meter (Hach sensIONTM2 pH meter), and followed methods by Hach (2003). Samples were titrated with 1.600 N sulfuric acid (H_2SO_4 ; Hach #14389-01) until a pH of 4.5 was reached. Alongside each batch of samples, a 100 mg/L alkalinity standard was prepared using a 25,000 mg/L CaCO₃ stock standard solution (Hach #14278-10).

Polyphenols

Polyphenol samples were analyzed using a spectrophotometer (Hach DR/2010) with the wavelength set to 700 ηm, and followed Hach (2003). An 8 mg/L tannic acid standard (Sigma-Aldrich #403040-50G) was prepared and analyzed alongside each batch of samples. A linear regression equation derived from an eight point calibration curve conducted and maintained at NCASI NABF was used to calculate polyphenol concentrations (in mg/L; Appendix G).

2.6.2 National Council for Air and Stream Improvement Chemical Analysis of Mill-Treated Effluents and Simulated Effluents

Analysis of DCOD, DOC, RAs, and phytosterols were conducted by NCASI researchers at the WCRC. Methods for DOC and DCOD analysis were based on Hach (2003). Resin acids and phytosterols were analyzed following methods by NCASI (1997). QA/QC criteria lower calibration limits (LCLs) for phytosterols and RAs are summarized in Appendix H.

2.6.3 Background Chemical Analysis by National Council for Air and Stream Improvement

Preliminary chemical analysis of WBL, ASB-influent, ASB-TPWW, and the unspiked reactor control measured on the day before and on the day WBL was added to the spiked reactors were conducted by NCASI researchers at the WCRC and the SABF. Parameters measured included: BOD, COD, DCOD, DOC, TSS, and WBL solids. Methods for measuring BOD and TSS followed APHA (1998); COD, DCOD, and DOC measurements followed Hach (2003); and WBL solids measurements followed TAPPI (2009).

2.7 Statistical Analysis

All statistical analyses were calculated using R statistical software version 2.10.0 (The R Foundation for Statistical Computing, Vienna, Austria) unless noted otherwise.

2.7.1 Assumptions

For correlation analysis and multivariate methods, Shapiro-Wilk's tests were used to determine if data fit a normal distribution for parametric testing. If data did not meet the assumptions for parametric testing, non-parametric methods were selected. Non-parametric methods were also used when data contained censored data (i.e. values below detection limit or IC25/EC50s > 100%).

2.7.2 Toxicity Tests

For the *M. galloprovincialis* toxicity tests, endpoints used for statistical analysis were calculated as described in section 2.4.15. *Ceridaphnia dubia* endpoints used in statistical analysis were calculated as described in section 2.5. For all toxicity tests, significant differences between samples were indicated by the 95% confidence intervals (CI), with no overlap in CIs indicating a significant difference.

2.7.3 Correlation Analysis

Correlation analysis was used to determine if there were significant correlations between: 1) WBL solids and simulated effluent chemical parameters, as described in Section 1.4.3; 2) WBL solids and chronic toxicity to *M. galloprovincialis* and *C. dubia*; 3) effluent (milltreated and simulated) chemical parameters and chronic toxicity to *M. galloprovincialis* and *C. dubia*; and 4) between the two chronic toxicity tests. In cases where both variables met the assumptions for parametric testing, Pearson's r was used with the p-value set at 0.05. In cases where one or both parameters did not meet the assumptions for parametric testing, Spearman's rho was used with p-value set at 0.01. The conservative p-value for the nonparametric tests was used because the rank-based Spearman's rho cannot calculate an exact p-value when there are tied values (Crawley 2007).

2.7.4 Multivariate Analysis

Multivariate analysis was also used to examine the relationships between toxicity, WBL solids, and chemical parameters. Multivariate methods are a powerful tool for exploring data to find patterns that might not be apparent using confirmatory statistical methods such as correlation analysis. For all multivariate tests, non-parametric Spearman's rho correlation analysis was used to identify if there were redundant variables that should be excluded from the multivariate analysis.

Clustering Methods

Three clustering methods, hierarchical clustering, kmeans clustering, and nonmetric Riffle clustering, were used to explore how the simulated effluent samples grouped together based on the chemical analysis. The clustering methods used for this study are considered uninformed, which means that known groups (such as mill or WBL treatment) were not identified during cluster analysis. For all clustering methods, a technique called association analysis was used after cluster analysis to measure the degree of association between generated clusters and known groups (i.e. mill or WBL treatment; Matthews et al. 1995). Association analysis uses Pearson's χ^2 tests to determine if clustering with samples defined by a known group is random (with the null hypothesis that clustering with samples defined by group is random).

One of the most commonly used clustering methods is hierarchical clustering (Balcan and Gupta 2010). This method calculates the distances between all of the points and groups them together. With hierarchical clustering, there are multiple distance and clustering methods available. The selection of the appropriate distance and clustering method is dependent upon the data, as certain combinations are better for handling outliers, and heteroscedasticity.

Kmeans clustering is a divisive clustering method that uses the within groups sum of squares to group the samples together to minimize distance between points (Crawley 2007). This method can be sensitive to heteroscedastic variance because it relies on the within groups sum of squares. Kmeans clusters are based on iterations; therefore, repeated kmeans clustering can produce different results (Torres et al. 2009). For this reason, repeated kmeans clustering was used to verify that clusters were stable.

Riffle clustering is a nonparametric and nonmetric (does not use *n*-dimensional distance metrics to define similarity distance metrics) clustering method (Matthews 2011, Matthews and Hearne 1991). Riffle is a robust clustering method that works well with heteroscedastic data and is able to identify variables that don't contribute to clustering and exclude them (Matthews 2011, Matthews and Hearne 1991).

Principal Component Analysis

Principal component analysis (PCA) was used to explore which chemical parameters might explain: 1) the differences in toxicity between samples, and 2) the differences in WBL solids between samples. Principal component analysis is a linear model that uses all variables to find combinations of variables that explain the most variance in the data (Crawley 2007). These different combinations of variables are called principal components (PC), and the most variation is explained by PC1, followed by PC2, and so on. A successful ordination will explain most of the variance in the first three principal components.

3.0 RESULTS

3.1 Biotreatment

A summary table of laboratory biotreatment of simulated effluent samples for each of the four mills including test days, volume, and duration is shown in Table 11. In this section, reactor days (D) are labeled in the format D(X), where X is the reactor day relative to when WBL was added to the spiked biotreatment reactors. D(-1) indicates the sample was taken one day before reactors were spiked with WBL, D(0) corresponds to the day the reactors were spiked, and D(1) corresponds to one day after the reactors were spiked, and so on (i.e. D(10) indicates 10 days after reactors were spiked). Results of the initial chemical analysis of WBL, ASB-influent, ASB-TPWW, and unspiked reactor control samples are shown in Table 12 - Table 15. The WBL spike levels used for the simulated effluents are shown in Table 5.

Table 11. Summary of laboratory biotreatment including test days, volume, and duration. `ASB: aerated stabilization basin; TPWW: treatment pond wastewater; WBL: weak black liquor.

	Mill A	Mill B	Mill C	Mill D
Reactor Set-up	8/31/2010	10/22/2010	11/4/2010	2/8/2011
ASB Influent (L)	8.5	8.5	8.5	8.5
ASB-TPWW (L)	1.5	1.5	1.5	1.5
Total volume (L)	10	10	10	10
WBL spike date	9/1/2010	10/23/2010	11/5/2010	2/9/2011
End date	9/8/2010	10/28/2010	11/15/2010	2/17/2011
Reactor days	7	5	10	8

Table 12. Chemical analysis of weak black liquor samples collected from four bleached kraft mills. COD: chemical oxygen demand; DCOD: dissolved chemical oxygen demand; TOC: total organic carbon; DOC: dissolved organic carbon; BOD: biochemical oxygen demand. Analysis conducted by National Council for Air and Stream Improvement researchers at the West Coast Regional Center.

Parameter (units)	Mill A	Mill B	Mill C	Mill D
Solids content (% w/w basis)	17.2	14.6	16.1	18.87
Density (g/ml)	1.123	1.055	1.036	1.091
WBL solids (g/ml)	0.19	0.15	0.17	0.21
COD solids basis (mg/g)	958	1051	1067	1022
COD (mg/L)	1.85E+05	1.62E+05	1.78E+05	2.10E+05
DCOD (mg/L)	NM	1.56E+05	1.75E+05	2.11E+05
TOC (mg/L)	5.38E+04	NM	5.68E+04	NM
DOC (mg/L)	5.08E+04	4.90E+04	5.49E+04	NM
BOD (mg/L)	2.27E+04	2.81E+04	2.90E+04	NM

NM: Not Measured

Table 13. Chemical analysis of aerated stabilization basin influent samples collected from four bleached kraft mills. COD: chemical oxygen demand; DCOD: dissolved chemical oxygen demand; TSS: total suspended solids; DOC: dissolved organic carbon. Analysis conducted by National Council for Air and Stream Improvement researchers at the West Coast Regional Center.

Parameter (units)	Mill A	Mill B	Mill C	Mill D
COD (mg/L)	1,037	741	1297	437
DCOD (mg/L)	NM	677	1229	412
TSS (mg/L)	NM	76.1	92.9	22.5
DOC (mg/L)	NM	234	454	127
Conductivity (us)	NM	1432	435	NM
1: Not Maggurod				

NM: Not Measured

Table 14. Chemical analysis of aerated stabilization basin treatment pond wastewater samples collected from four bleached kraft mills. COD: chemical oxygen demand; DCOD: dissolved chemical oxygen demand; TSS: total suspended solids; TOC: total organic carbon; DOC: dissolved organic carbon. Analysis conducted by National Council for Air and Stream Improvement researchers at the West Coast Regional Center.

Parameter (units)	Mill A	Mill B	Mill C	Mill D
COD (mg/L)	524	472	853	367
DCOD (mg/L)	NM	358	720	308
TSS (mg/L)	NM	88.3	187	51.9
TOC (mg/L)	NM	NM	257	NM
DOC (mg/L)	NM	110	220	104

NM: Not Measured

Table 15. Chemical analysis of unspiked reactor control before and after overnight aeration (D(-1) and D(0), respectively). COD: chemical oxygen demand; DCOD: dissolved chemical oxygen demand; TSS: total suspended solids; DOC: dissolved organic carbon. Analysis conducted by National Council for Air and Stream Improvement researchers at the West Coast Regional Center or Southern Aquatic Biology Facility

	Parameter	Mil A	Mill B	Mill C	Mill D
Before overnight	COD (mg/L)	NM	NM	1220	NM
aeration D(-1)	DCOD (mg/L)	415	629	1106	NM
	COD (mg/L)	NM	682	1069	680
	DCOD (mg/L)	NM	NM	887	663
After overnight	TSS (mg/L)	NM	105	164	NM
aeration D(0)	DOC (mg/L)	NM	166	NM	NM
	Conductivity (µS)	NM	1516	NM	NM

NM: Not Measured

Biotreatment efficiency was monitored by regular analysis of DCOD (Table 16 - Table 19; Figure 15 - Figure 18). Overall DCOD reductions during biotreatment of simulated effluents were variable between mills in terms of the level of DCOD reduction and the time for biotreatment to occur. Mill B showed the lowest percent reduction in DCOD (31-37%), while Mill D showed the greatest with percent reduction ranging from 37-65%. Reduction in DCOD was similar for Mills A (41-53%) and C (44-47%). Although biotreatment efficiencies between mills were different, the % DCOD reductions in the spiked reactors within each mill were similar to those in the reactor control indicating good treatment efficiency of WBL. Only Mill D showed declining treatment efficiency in relation to increasing WBL spike levels (e.g. control 65% DCOD reduction compared with 37% in Spike level 5).

For Mill B and Mill D, RAs were measured in the control and the highest spiked reactor (WBL spike 5) before and after biotreatment to estimate treatment efficiencies. Results were that estimated treatment efficiencies ranged from 96.1 to 100% for the highest spiked reactor (WBL spike 5) and from 67.2 to 100% for the reactor control.

The time required for complete biotreatment also varied between mills. Biotreatment occurred most quickly in Mill B with DCOD stabilizing after 5 days. Heavy foaming and high solids content that caused clogging of pumps during the biotreatment of Mill C resulted in DCOD that did not stabilize until D(10). Biotreatment in Mill A and D were completed after 7 and 8 days, respectively.

61

Other chemical parameters monitored during laboratory biotreatment included conductivity, DOC, COD, temperature and pH. Results of those analyses can be found in Table 16 - Table 19.

Table 16. Mill A reactor chemistry as measured during 7 day laboratory biotreatment. Analysis conducted by National Council for Air and Stream Improvement researchers at the West Coast Regional Center. DCOD: dissolved chemical oxygen demand; DOC: dissolved organic carbon

	WBL Solids		DCOD (mg/L)					Conductivity (µS) DOC (mg/L)			<u>Temp(⁰C)</u>	pН
Description	(g)	D(0)	D(1)	D(2)	D(4)	D(6)	D(7)	D(3)-D(4)	D(0)	D(7)	Mean	Mean
Reactor control	0	267	178	150	132	132	125	829	78	36	29.7	7.9
WBL spike 1	0.966	312	221	189	178	166	162	964	84	42	NM	NM
WBL spike 2	1.932	392	308	232	219	194	198	1049	108	48	NM	NM
WBL spike 3	2.897	435	337	273	278	267	257	1108	114	69	NM	NM
WBL spike 4	3.863	522	403	333	317	294	289	1193	120	72	NM	NM
WBL spike 5	4.829	600	465	369	369	310	314	1287	143	78	29.9	8.2

NM: Not Measured

Table 17. Mill B reactor chemistry as measured during 5 day laboratory biotreatment. Analysis conducted by National Council for Air and Stream Improvement researchers at the West Coast Regional Center. DCOD: dissolved chemical oxygen demand; DOC: dissolved organic carbon

	WBL Solids		DCOD (n	ng/L)		Conductivity (µS)	DOC (mg/L)	<u>Temp(ºC)</u>	<u>рН</u>
Description	(g)	D(0)	D(2)	D(4)	D(5)	D(5)	D(5)	Mean	Mean
Reactor control	0.000	486	342	314	310	1597	109	29.9	30.5
WBL spike 1	0.924	572	399	367	360	1662	122	NM	NM
WBL spike 2	1.849	629	463	442	429	1739	150	NM	NM
WBL spike 3	2.773	702	522	499	486	1787	160	NM	NM
WBL spike 4	3.698	798	595	556	549	1848	168	NM	NM
WBL spike 5	4.622	910	670	634	613	1910	175	8.3	8.4
NIM: Nat Manager									

NM: Not Measured

Table 18. Mill C reactor chemistry as measured during 10 day laboratory biotreatment. Analysis conducted by National Council for Air and Stream Improvement researchers at the West Coast Regional Center. DCOD: dissolved chemical oxygen demand; COD: chemical oxygen demand; DOC: dissolved organic carbon.

			:OD g/L)			<u>COD</u> (mg/L)		<u>Conductivity</u> (µS)	<u>DOC</u> (mg/L)		<u>Temp</u> <u>(⁰C)</u>	<u>pH</u>		
Description	(g)	D(0)	D(3)	D(4)	D(5)	D(7)	D(10)	D(0)	D(10)	D(10)	D(0)	D(10)	Mean	Mean
Reactor control	0.000	887	604	566	551	498	467	1069	562	3480	297	157	29.4	8.2
WBL spike 1	0.834	962	638	614	614	546	519	NM	584	3550	325	163	NM	NM
WBL spike 2	1.668	1012	675	643	634	582	544	NM	575	3660	349	174	NM	NM
WBL spike 3	2.502	1069	698	668	634	600	571	NM	731	3680	370	191	NM	NM
WBL spike 4	3.336	1167	759	736	704	695	630	NM	797	3740	410	200	NM	NM
WBL spike 5	4.170	1207	802	777	765	695	673	1476	817	3780	423	211	29.8	8.2

NM: Not Measured

Table 19. Mill D reactor chemistry as measured during 8 day laboratory biotreatment. Analysis conducted by National Council for Air and Stream Improvement researchers at the Southern Aquatic Biology Facility. DCOD: dissolved chemical oxygen demand; COD: chemical oxygen demand; DOC: dissolved organic carbon.

		DCOD						DD	Conductivity	DOC	Temp		
	Solids <u>(mg/L)</u>							<u>(m</u>	<u>1/L)</u>	<u>(µS)</u>	<u>(mg/L)</u>	<u>(°C)</u>	<u>рН</u>
Description	(g)	D(0)	D(2)	D(5)	D(6)	D(7)	D(8)	D(0)	D(8)	D(8)	D(8)	Mean	Mean
Reactor control	0	663	314	315	248	246	230	680	257	1773	70	29.8	8.4
WBL spike 1	0.966	739	332	316	299	276	279	764	382	1830	75	NM	NM
WBL spike 2	1.932	758	370	372	380	341	332	835	342	1908	104	NM	NM
WBL spike 3	2.897	775	465	574	371	370	433	882	473	1979	110	NM	NM
WBL spike 5	4.829	878	549	589	491	508	550	1001	567	2140	127	29.7	8.5

NM: Not Measured

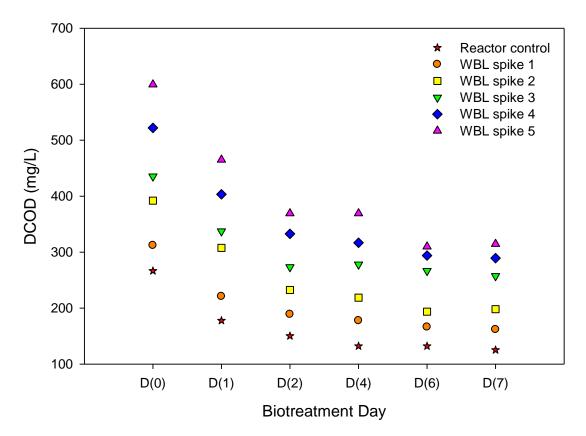


Figure 15. Mill A dissolved chemical oxygen demand of simulated effluent samples measured during laboratory biotreatment.

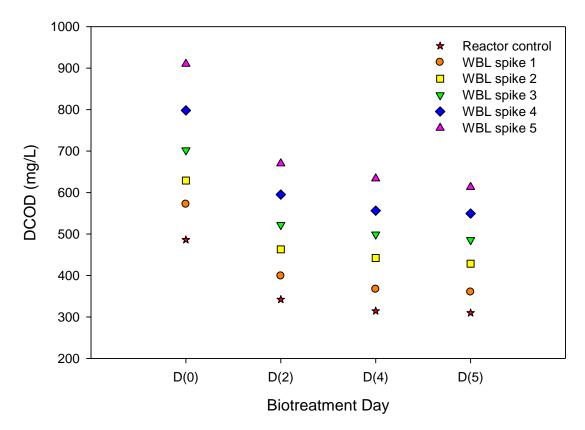


Figure 16. Mill B dissolved chemical oxygen demand of simulated effluent samples measured during laboratory biotreatment.

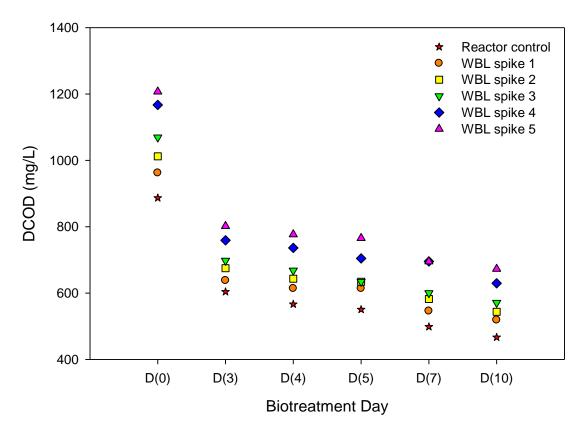


Figure 17. Mill C dissolved chemical oxygen demand of simulated effluent samples measured during laboratory biotreatment.

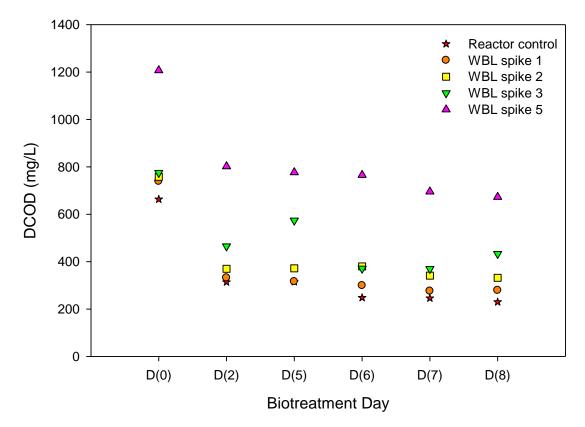


Figure 18. Mill D dissolved chemical oxygen demand of simulated effluent samples measured during laboratory biotreatment.

3.2 Chemical Analysis of Mill-Treated Effluents and Simulated Effluents

Results of chemical analyses of the simulated effluent samples (after completion of laboratory biotreatment) and mill-treated effluents samples can be found in Sections 3.2.1 through 3.2.3. Because efficient laboratory biotreatment may reduce some of these chemical parameters, patterns with increased WBL solids may not always be observed. For all samples except for Mill A, the reactors solids were settled prior to sampling the simulated effluents.

3.2.1 Basic Chemical Analysis of Mill-Treated Effluents and Simulated Effluents

pH of mill-treated and simulated effluent samples ranged from 7.67 (Mill B mill effluent) to 8.69 (Mill C WBL spike 3; Table 20). pH did not appear to change predictably with increased WBL solids. Because pH was held between 7 and 8.5 during laboratory biotreatment, this would explain why there was little difference in pH among the reactors.

Color was variable across mills and effluents ranging from 2.74 (Mill A reactor control) to 1905 PCU (Mill C WBL spike 5; Table 20). Among effluent types (mill-treated and simulated effluents) and WBL spiking levels (WBL spike 1 through WBL spike 5) Mill C effluents had the highest color. For all four mills, color increased with increasing WBL spike levels with the lowest color was observed in the reactor control effluent samples.

Conductivity ranged from 918 µs/cm (Mill A reactor control) to 3900 µs/cm (Mill C WBL spike 5; Table 20). For all four mills, conductivity increased as WBL solids increased. The Mill C reactor control effluent, however, had higher conductivity compared to the lowest WBL spiked Mill C effluent (WBL spike 1; Table 20). Across all effluent types and WBL spikes, Mill C had the highest conductivity.

Turbidity ranged from 3.7 ntu (Mill D reactor control) to 94.4 ntu (Mill A WBL spike 5; Table 20). For 5 out of the 7 effluents types, Mill B effluents had the highest turbidity; for the remaining two effluent types (WBL spike 4 and WBL spike 5) Mill A effluent samples had the highest turbidity (Table 20).

Total suspended solids ranged from 6.4 mg/L (Mill D reactor control) to 113.4 mg/L (Mill A WBL spike 5). For all of the WBL spiked effluents, Mill A had the highest TSS; for the mill-treated effluent and reactor control effluents, Mill B had the highest. It is likely that the higher levels of TSS observed for the Mill A spiked effluents were due to the fact that the samples were collected prior to settling. Across all mills, TSS did not appear to show any clear trend with increased WBL solids.

Polyphenols ranged from 11.72 mg/L (Mill D reactor control) to 78.86 mg/L (Mill B WBL spike 5; Table 20). For all four mills, polyphenol concentrations increased with increasing WBL spike levels with the lowest polyphenol concentrations observed in the reactor control effluent samples.

Salinity ranged from 2 to 4 ‰, with the highest salinity observed in the Mill D WBL spike 3 and Mill D WBL spike 5 effluent samples (Table 20). Salinity showed no clear trend with increasing WBL solids.

Hardness ranged from 40.1 mg/L (Mill A WBL spike 1) to 214 mg/L (Mill C mill effluent). Across all effluent types and WBL spiking levels, Mill C effluents had the highest hardness, while Mill A had the lowest hardness Hardness did not show any clear trend with increasing WBL solids.

Alkalinity ranged from 144 mg/L (Mill A reactor control) to 473 mg/L (Mill C mill effluent). Across all effluent types and WBL spiking levels, Mill C effluents had the highest alkalinity. For all of the simulated effluents (i.e. the reactor control and all WBL spiked effluents) Mill A had the lowest alkalinities. Of the mill-treated effluents, Mill B had the lowest alkalinity (Table 20).

Biochemical oxygen demand ranged from 4.8 mg/L (Mill C WBL spike 3) to 27.2 mg/L (Mill B mill effluent). For all of the WBL spiked reactors, Mill D had the highest BODs. Biochemical oxygen demand was not measured for the mill-treated effluent from Mill A. For Mill B and Mill C, the mill-treated effluents had higher BODs compared to the simulated effluents. Biochemical oxygen demand showed no clear trend with increased WBL solids.

Dissolved chemical oxygen demand ranged from 125 mg/L (Mill A reactor control) to 673 mg/L (Mill C WBL spike 5; Table 20). Across all effluent types (mill-treated and simulated effluents) and WBL spiking levels, DCOD was the highest in Mill C samples and the lowest in Mill A samples. For all four mills, DCOD increased with increasing WBL spike levels and the lowest DCOD levels were observed in the reactor control effluent samples.

Dissolved organic carbon ranged from 36 mg/L (Mill A WBL spike 2) to 211 mg/L (Mill C WBL spike 5; Table 20). For Mill C and Mill D, DOC increased as WBL solids increased; this trend, however, was not observed for effluent samples from mills A and B.

Table 20. Results for basic chemical analysis of mill-treated and simulated effluent samples from four bleached kraft mills. Simulated effluent samples analyzed after completion of laboratory biotreatment. WBL: weak black liquor; TSS: total suspended solids; BOD: biochemical oxygen demand; DCOD: dissolved chemical oxygen demand; DOC: dissolved organic carbon.

			Color	Conductivity	Turbidity	TSS	Polyphenols	Hardness	Alkalinity	Salinity	BOD	DCOD	DOC
Mill	Sample	рН	(PCU)	(µs/cm)	(ntu)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(ppt)	(mg/L)	(mg/L)	(mg/L)
Α	Mill effluent	7.80	611	1977	9.6	11.7	23.95	94	374	3	NM	342	102
	Reactor control	8.18	274	918	42.9	56.0	15.45	43	144	2	7.2	125	72
	WBL Spike 1	8.16	422	990	52.6	77.5	27.42	40	156	2	7.0	162	78
	WBL Spike 2	7.87	604	1077	66.8	88.5	38.68	46	165	2	9.4	198	36
	WBL Spike 3	7.81	816	1157	72.0	87.5	51.11	42	169	2	8.2	257	42
	WBL Spike 4	7.99	923	1232	82.3	95.0	58.70	43	191	2	9.5	289	48
	WBL Spike 5	7.77	975	1318	94.4	113.4	71.73	48	192	2	11.2	314	69
В	Mill effluent	7.67	732	1650	44.6	36.5	34.29	102	258	2	27.2	356	115
	Reactor control	8.33	623	1630	87.0	79.0	25.72	149	268	3	15.3	310	168
	WBL Spike 1	8.20	776	1696	72.4	67.4	37.20	158	288	2	12.7	360	175
	WBL Spike 2	8.45	999	1769	70.6	57.7	46.73	145	304	2	14.5	429	109
	WBL Spike 3	8.27	1233	1830	83.3	70.0	59.17	151	328	2	12.2	486	122
	WBL Spike 4	8.24	1440	1885	65.9	55.0	68.33	147	343	2	10.9	549	150
	WBL Spike 5	8.14	1641	1948	74.0	61.7	78.86	145	369	2	17.8	613	160
С	Mill effluent	7.89	1170	3445	18.5	21.0	35.40	214	473	3	19.3	490	154
	Reactor control	8.44	1068	3610	14.1	27.0	26.70	207	379	2	18.3	467	157
	WBL Spike 1	8.52	1181	3595	15.2	21.5	34.43	208	388	2	7.9	519	163
	WBL Spike 2	8.51	1342	3720	14.0	18.7	38.03	192	400	2	7.2	544	174
	WBL Spike 3	8.69	1475	3785	18.4	23.0	46.27	200	411	2	4.8	571	191
	WBL Spike 4	8.52	1599	3830	25.0	27.8	56.68	208	419	2	9.1	630	200
	WBL Spike 5	8.66	1905	3900	39.4	48.8	65.51	204	439	2	14.6	673	211
D	Mill effluent	7.89	584	2300	25.1	21.0	35.80	158	413	2	23.9	385	127
	Reactor control	8.43	308	1735	3.7	6.4	11.72	128	269	3	6.2	230	70
	WBL Spike 1	8.47	407	1841	10.4	10.3	20.68	144	315	3	26.4	279	75
	WBL Spike 2	8.44	522	1916	13.0	11.0	27.82	128	307	3	15.9	332	104
	WBL Spike 3	8.18	614	1998	24.7	41.7	36.98	132	294	4	16.3	433	110
	WBL Spike 5	8.56	821	2180	31.5	23.0	52.82	132	364	4	25.0	550	127

NM = not measured

3.2.2 Phytosterols

The four main phytosterols in pulp and paper mill effluent (campesterol, stigmastanol, betasitosterol, and stigmasterol) were measured in mill-treated and simulated effluents. Among the four phytosterols measured, beta-sitosterol was found in the greatest concentration in most effluents. Campesterol concentrations ranged from 1.19 (Mill D reactor control) to 80.12 µg/L (Mill A WBL spike 5; Table 21). Across all effluent types (mill-treated and simulated effluents) and WBL spiking levels, campesterol levels were the highest in Mill A effluent samples, while Mill D had the lowest. Stigmastanol ranged from 5.35 (Mill D WBL spike 2) to 138.00 µg/L (Mill C WBL spike 3; Table 21). For all but one of the simulated effluents (WBL spike 5), Mill C effluents showed the highest stigmastanol concentrations while Mill D had the lowest. No trend, however, was observed between stigmastanol concentrations and WBL solids following biotreatment.

Beta-sitosterol ranged from 10.63 (Mill D reactor control) to 315 μ g/L (Mill C WBL spike 3; Table 21). For all but one of the simulated effluents (WBL spike 3), Mill A effluent samples had the highest beta-sitosterol concentrations. For all but one simulated effluent (WBL spike 1) the lowest concentrations of beta-sitosterol were in Mill D. Stigmasterol ranged from 2.67 (Mill D WBL spike 5) to 40.64 μ g/L (Mill A WBL spike 3). For all of the WBL spiked effluent samples, Mill A had the highest stigmasterol concentrations. For all of the simulated effluents (including the reactor control effluents), Mill D had the lowest stigmasterol concentrations. Stigmasterol showed no clear trend with WBL solids following biotreatment.

	_	Campesterol	Stigmastanol	Beta-sitosterol	Stigmasterol
Mill	Sample	(µg/L)	(µg/L)	(µg/L)	(µg/L)
А	Mill effluent	25.8	26.7	80.8	35.5
	Reactor control	11.5	12.6	38.5	7.69
	WBL spike 1	19.6	10.8	67.2	15.3
	WBL spike 2	67.2	26.8	179.8	35.6
	WBL spike 3	67.9	55.4	214.0	40.6
	WBL spike 4	56.5	32.2	162.7	32.1
	WBL spike 5	80.1	56.8	184.1	30.3
В	Mill effluent	10.6	23.9	34.1	16.7
	Reactor control	8.71	39.3	32.5	15.9
	WBL spike 1	6.47	27.0	25.4	12.8
	WBL spike 2	10.6	53.4	41.1	18.8
	WBL spike 3	12.5	49.4	41.2	18.6
	WBL spike 4	9.68	41.1	34.1	15.6
	WBL spike 5	5.45	58.8	37.2	15.8
С	Mill effluent	1.87	5.92	21.2	8.00
	Reactor control	2.21	76.2	11.6	5.95
	WBL spike 1	2.18	70.2	12.5	6.11
	WBL spike 2	2.84	84.1	15.7	7.86
	WBL spike 3	10.4	138.0	315.0	10.2
	WBL spike 4	2.10	64.7	32.2	7.06
	WBL spike 5	2.34	51.8	55.2	6.86
D	Mill effluent	11.1	14.7	86.6	14.5
	Reactor control	1.19	6.30	10.6	2.81
	WBL spike 1	1.51	6.31	13.9	3.31
	WBL spike 2	2.04	5.35	15.6	3.37
	WBL spike 3	1.94	6.41	14.3	3.25
	WBL spike 5	1.39	5.97	11.4	2.67

Table 21. Results of phytosterol analysis of mill-treated and simulated effluent samples. Simulated effluent samples analyzed after completion of laboratory biotreatment. WBL: weak black liquor.

3.2.3 Resin Acids

The concentrations of seven RAs were measured in simulated effluent samples after laboratory biotreatment as well as in the mill-treated effluent samples. In addition, for Mill B and Mill D, RAs were measured in the reactor control and in the highest spiked reactor (WBL spike 5) before and after laboratory biotreatment to estimate treatment efficiencies (Section 3.1). A comparison of RA concentrations for Mill B and Mill D found that estimated treatment efficiencies ranged from 96.1 to 100% for the highest spiked reactor (WBL spike 5) and from 67.2 to 100% for the reactor control. Resin acid levels in simulated effluent samples after laboratory biotreatment were variable and appeared unrelated to WBL spike levels (Table 22). Because RAs are typically reduced during biotreatment, a clear trend between WBL solids and RAs after laboratory biotreatment would not be expected with the WBL spiking levels used for this study.

Several of the effluent samples tested for RAs were below detection limits. Only two RAs (dehydroabietic acid and abietic acid) were present and above the detection limit in all samples. Overall, Mill A had the most non-detects (35 out of 49). The only RA that appeared to increase with WBL solids was abietic acid; this relationship was later examined using correlation analysis (Section 3.4.1). For Mills C and D, the highest concentrations of RAs were observed in the mill-treated effluents compared to simulated effluents. The higher levels in the Mill C and Mill D mill-treated effluents could be due to better treatment efficiency achieved in the laboratory compared to the mill (though this could not be verified using results from this study), or they could be due to higher levels of RAs in the untreated effluent prior to mill treatment (compared to RAs in the untreated effluent prior to laboratory biotreatment). For Mills A and B, the highest concentrations of RAs were generally observed in the highest spiked reactor (WBL spike 5).

	Palustric									
Mill	Sample	Pimaric acid (µg/L)	Sandracopimaric acid (µg/L)	lsopimaric acid (μg/L)	acid (µg/L)	Dehydroabietic acid (µg/L)	Abietic acid (µg/L)	Neoabietic acid (µg/L)		
A	Mill effluent	ND	ND	ND	ND	1.33	2.88	ND		
	Reactor control	ND	ND	ND	ND	1.75	1.99	ND		
	WBL spike 1	ND	ND	ND	ND	2.28	2.54	ND		
	WBL spike 2	ND	ND	ND	ND	2.66	3.56	ND		
	WBL spike 3	ND	ND	ND	ND	2.96	3.83	ND		
	WBL spike 4	ND	ND	ND	ND	3.00	4.44	ND		
	WBL spike 5	ND	ND	ND	ND	3.56	5.54	ND		
В	Mill effluent	4.36	ND	4.47	2.05	4.96	7.27	1.49		
	Reactor control	2.40	ND	5.38	2.45	5.46	11.7	1.58		
	WBL spike 1	ND	ND	5.04	2.06	5.64	10.2	2.00		
	WBL spike 2	ND	ND	4.56	2.50	4.34	8.92	1.84		
	WBL spike 3	ND	ND	5.62	2.96	5.56	11.7	2.06		
	WBL spike 4	ND	ND	5.32	3.16	5.66	11.3	1.72		
	WBL spike 5	ND	ND	6.08	2.96	7.08	13.2	2.46		
С	Mill effluent	29.4	7.12	27.2	19.8	133.0	128.2	15.4		
	Reactor control	ND	ND	1.34	ND	6.78	7.80	ND		
	WBL spike 1	2.98	ND	2.58	3.16	9.90	12.1	1.50		
	WBL spike 2	2.44	ND	2.62	3.42	8.52	11.4	1.46		
	WBL spike 3	3.44	ND	3.62	2.48	12.7	14.4	2.12		
	WBL spike 4	5.12	ND	5.26	4.24	19.7	21.6	3.40		
	WBL spike 5	4.10	ND	3.82	4.76	16.3	19.1	2.62		
D	Mill effluent	165.7	22.8	60.2	25.4	242.8	526.4	30.1		
	Reactor control	1.27	ND	ND	0.99	4.57	4.01	ND		
	WBL spike 1	2.79	ND	1.45	1.37	9.18	7.74	1.47		
	WBL spike 2	2.72	ND	1.38	1.48	9.14	8.54	ND		
	WBL spike 3	3.19	ND	1.41	1.31	10.9	7.09	1.20		
	WBL spike 5	4.83	ND	2.42	2.74	15.8	25.4	2.81		

Table 22. Results of resin acid analysis of mill-treated and simulated effluent samples. Simulated effluent samples were analyzed after completion of laboratory biotreatment. WBL: weak black liquor; ND: non-detect.

3.3 Toxicity Tests

Results of 48-h *M. galloprovincialis* embryo-larval development and 7-d *C. dubia* survival and reproduction toxicity tests can be found in Sections 3.3.1 through 3.3.2.

A significant difference between samples is noted when there was no overlap in the 95% CIs.

3.3.1 48-h Mytilus galloprovincialis Embryo-larval Development

Results of 48-h *M. galloprovincialis* embryo-larval development toxicity tests are shown in Table 23 and in Figure 19, with concentration-response curves found in Appendix I. For all four mills, the lowest toxicity (i.e. the highest EC50) was observed in the reactor control effluent samples and the highest toxicity (i.e. the lowest EC50) was observed in the WBL spike 5 effluent samples. For Mill A and Mill B, toxicity of the mill-treated effluent fell within levels between those observed in WBL spike 1 and WBL spike 2. The Mill C and Mill D mill-treated effluents showed very similar toxicity to the WBL spike 1 effluent samples.

For Mill A and C, significant differences in toxicity were observed between all simulated effluent samples, except between WBL spike 4 and WBL spike 5 (Table 23, Figure 19). Significant differences were observed between all Mill B simulated effluent samples as well as between all Mill D simulated effluent samples. For the simulated effluent samples from all four mills, as WBL solids increased, EC50s decreased (i.e. toxicity increased).

Table 23. Results of 48-h *Mytilus galloprovincialis* embryo-larval development toxicity tests for four bleached kraft mils. Units for NOEC, LOEC and EC50 are % Effluent. Bold and italicized EC50s indicate spiked effluent samples that were significantly different from the reactor control. CI: Confidence Interval; WBL: weak black liquor.

			WBL		-		
Mill	Sampla	Test date	Solids	NOEC	LOEC	EC50	95% CI EC50
A	Sample Mill effluent	9/1/2010	(g/L) NA	4.4	8.75	7.1	6.9-7.3
A		9/9/2010	0.000	4.4 8.75	17.5	20.6	20.0-21.2
	Reactor control				8.75		
	WBL spike 1	9/9/2010	0.097	4.4		9.8 6.4	9.5-10.1
	WBL spike 2	9/9/2010	0.193	2.2	4.4	6.1	5.9-6.2
	WBL spike 3	9/9/2010	0.290	2.2	4.4	4.6	4.5-4.8
	WBL spike 4	9/9/2010	0.386	1.1	2.2	2.9	2.7-3.0
	WBL spike 5	9/9/2010	0.483	1.1	2.2	2.9	2.9-3.0
В	Mill effluent	10/22/2010	NA	1.1	2.2	5.6	5.5-5.8
	Reactor control	11/1/2010	0.000	4.4	8.75	8.6	8.4-8.8
	WBL spike 1	11/1/2010	0.092	2.2	4.4	6.0	5.9-6.1
	WBL spike 2	11/1/2010	0.185	2.2	4.4	3.8	3.6-3.9
	WBL spike 3	11/1/2010	0.277	1.1	2.2	2.9	2.8-2.9
	WBL spike 4	11/1/2010	0.370	1.1	2.2	2.3	2.3-2.4
	WBL spike 5	11/1/2010	0.462	1.1	2.2	1.8	1.7-1.8
С	Mill effluent	11/4/2010	NA	4.4	8.8	7.5	7.3-7.7
	Reactor control	11/17/2010	0.000	4.4	8.8	11.3	11.0-11.5
	WBL spike 1	11/17/2010	0.083	1.1	2.2	7.2	6.8-7.4
	WBL spike 2	11/17/2010	0.167	2.2	4.4	5.7	5.5-6.0
	WBL spike 3	11/17/2010	0.250	2.2	4.4	4.5	4.4-4.7
	WBL spike 4	11/17/2010	0.334	1.1	2.2	2.9	2.8-3.0
	WBL spike 5	11/17/2010	0.417	1.1	2.2	2.7	2.5-2.8
D	Mill effluent	2/9/2011	NA	2.2	4.4	5.5	5.4-5.6
	Reactor control	2/21/2011	0.000	4.4	8.8	11.6	11.4-11.9
	WBL spike 1	2/21/2011	0.103	1.1	2.2	5.6	5.5-5.8
	WBL spike 2	2/21/2011	0.206	1.1	2.2	4.9	4.7-5.1999
	WBL spike 3	2/21/2011	0.309	1.1	2.2	3.8	3.6-4.0
	WBL spike 5	2/21/2011	0.515	1.1	2.2	2.1	2.0-2.2
	WBE Spike 5		0.010	1.1	<i>4.4</i>	4 . 1	2.0 2.2

NA: Not Available

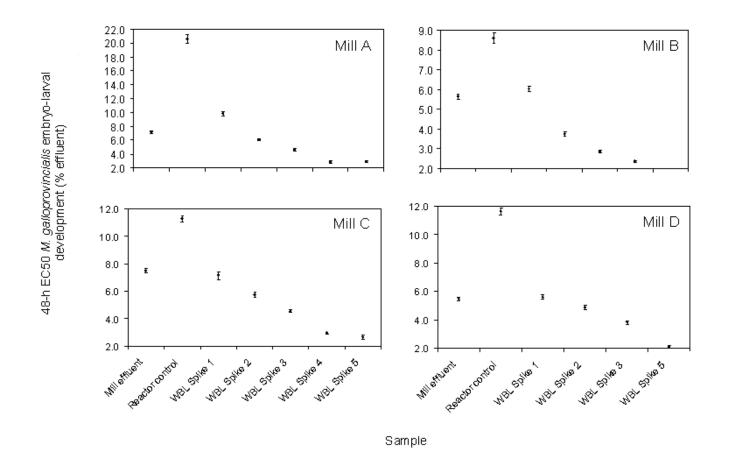


Figure 19. Results of 48-h *Mytilus galloprovincialis* embryo-larval development toxicity tests for mill-treated and simulated effluent samples from four bleached kraft mills. Error bars indicate 95% confidence intervals. WBL: weak black liquor.

Reference Toxicant Tests

Results of 48-h *M. galloprovincialis* embryo-larval development toxicity tests with a reference toxicant (copper chloride) are shown in Table 24 and in Figure 20. Concentration response curves are included in Appendix J. The control chart showing performance of mussel stock can be found in Appendix K.

Table 24. Results of 48-h *Mytilus galloprovincialis* embryo-larval development toxicity tests with copper chloride (reference toxicant). CI: confidence interval

	Effluent samples					
Mill	tested concurrently	Test date	NOEC	LOEC	EC50	95% CI EC50
А	Mill effluent	9/1/2010	6.6	9.6	11.0	10.9-11.2
	Simulated effluents	9/9/2010	4.5	6.6	10.2	9.9-10.4
В	Mill effluent	10/22/2010	3	4.5	9.0	6.5-11.2
	Simulated effluents	11/1/2010	3	4.5	8.0	7.9-8.0
С	Mill effluent	11/4/2010	3	4.5	8.6	8.5-8.8
	Simulated effluents	11/17/2010	9.6	13.8	8.7	8.5-8.8
D	Mill effluent	2/9/2011	4.5	6.6	8.6	8.5-8.8
	Simulated effluents	2/21/2011	4.5	6.6	8.8	7.8-9.5

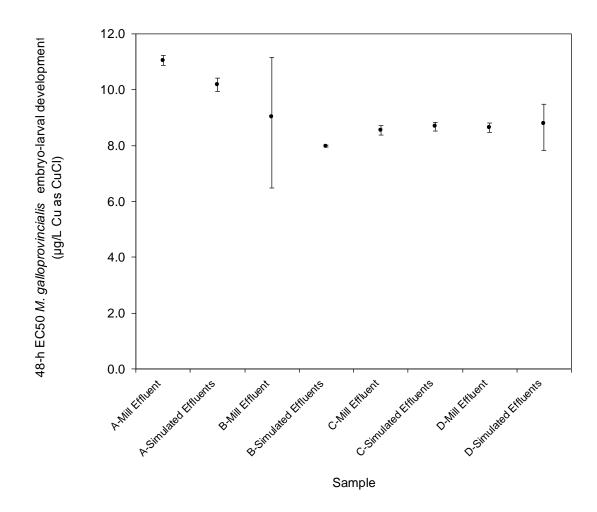


Figure 20. Results of 48-h *Mytilus galloprovincialis* embryo-larval development toxicity tests with copper chloride (reference toxicant). Error bars indicate 95% confidence interval. Labels on x-axis indicates which mill (A-D) and effluent type (simulated or mill) the reference toxicant coincides with.

Control Performance

Performance of dilution water controls for 48-h *M. galloprovincialis* embryo-larval development toxicity tests is shown in Table 25. Mean percent survival and mean percent normal in the controls were above the test criteria of >70% for all toxicity tests (Table 25).

Mill	Sample	Test date	Mean percent survival	Mean percent normal
А	Mill effluent	9/1/2010	97.7	95.8
	Reference toxicant (CuCl)	9/1/2010	96.5	96.0
	Reactor control	9/9/2010	87.1	92.7
	WBL spike 1	9/9/2010	94.5	91.3
	WBL spike 2	9/9/2010	99.0	94.7
	WBL spike 3	9/9/2010	82.9	92.8
	WBL spike 4	9/9/2010	94.8	93.3
	WBL spike 5	9/9/2010	91.5	93.6
	Reference toxicant (CuCl)	9/9/2010	97.0	93.4
В	Mill effluent	10/22/2010	98.4	98.0
	Reference toxicant (CuCl)	10/22/2010	98.6	97.2
	Reactor control	11/1/2010	92.4	92.4
	WBL spike 1	11/1/2010	95.8	93.7
	WBL spike 2	11/1/2010	95.9	94.1
	WBL spike 3	11/1/2010	93.2	95.1
	WBL spike 4	11/1/2010	86.3	93.9
	WBL spike 5	11/1/2010	94.3	93.1
	WBL spike 5 (unsettled)	11/1/2010	96.5	92.1
	Reference toxicant (CuCl)	11/1/2010	89.4	93.2
С	Mill effluent	11/4/2010	93.7	91.8
	Reference toxicant (CuCl)	11/4/2010	96.4	90.3
	Reactor control	11/17/2010	91.7	95.3
	WBL spike 1	11/17/2010	89.7	94.8
	WBL spike 2	11/17/2010	92.1	94.3
	WBL spike 3	11/17/2010	93.2	94.4
	WBL spike 4	11/17/2010	97.5	93.7
	WBL spike 5	11/17/2010	94.9	94.6
	WBL spike 5 (unsettled)	11/17/2010	99.7	93.9
	Reference toxicant (CuCl)	11/17/2010	97.3	94.1
D	Mill effluent	2/9/2011	92.1	95.9
	Reference toxicant (CuCl)	2/9/2011	98.3	93.6
	Reactor control	2/21/2011	80.2	89.8
	WBL spike 1	2/21/2011	82.7	92.8
	WBL spike 2	2/21/2011	72.2	89.3
	WBL spike 3	2/21/2011	79.7	86.6
	WBL spike 5	2/21/2011	88.4	88.0
	Reference toxicant (CuCl)	2/21/2011	88.8	90.9

Table 25. Control performance (percent normality and percent survival) for 48-h *Mytilus galloprovincialis* embryo-larval development toxicity tests. WBL: weak black liquor.

Settled and Unsettled Effluent Samples

A comparison of results from 48-h *M. galloprovincialis* embryo-larval development toxicity tests with unsettled and settled effluent samples of Mill B WBL spike 5 and Mill C WBL spike 5 simulated effluents are shown in Table 26; summary sheets from ToxCalc can be found in Appendix I. No significant differences in toxicity were observed for Mill B and Mill C WBL spike 5 settled and unsettled simulated effluents. Because there was no significant difference, toxicity results from Mill A (settled) were compared to Mills B, C, and D (unsettled).

Table 26. Comparison of 48-h *Mytilus galloprovincialis* embryo-larval development toxicity tests with settled and unsettled Mill B and Mill C weak black liquor spike 5 simulated effluents. Units for NOEC, LOEC and EC50 are % Effluent. CI: confidence intervals; WBL: weak black liquor.

Mill	Sample	Test date	WBL Solids (g/L)	NOEC	LOEC	EC50	95% CI EC50
В	WBL spike 5 (settled)	11/1/2010	0.462	1.1	2.2	1.8	1.7-1.8
	WBL spike 5 (unsettled)	11/1/2010	0.462	1.1	2.2	1.8	1.7-1.8
С	WBL spike 5 (settled)	11/17/2010	0.417	1.1	2.2	2.7	2.5-2.8
	WBL spike 5 (unsettled)	11/17/2010	0.417	1.1	2.2	2.8	2.5-3.1

3.3.2 7-d Ceriodaphnia dubia Survival and Reproduction

Results of the 7-d *C. dubia* survival and reproduction toxicity tests conducted by NCASI researchers at the SABF are shown in Table 27. Summary sheets provided by the NCASI SABF laboratory can be found in Appendix L. The IC25 for *C. dubia* survival was >100% effluent in all but three effluent samples (Mill A WBL spike 5, Mill B WBL spike 2, and Mill B WBL spike 5).

The IC25 for *C. dubia* reproduction was >100% effluent for three of the samples (Mill A mill effluent, Mill A reactor control, and Mill B mill effluent; Table 27). The highest toxicity (i.e. the lowest IC25) for *C. dubia* reproduction was observed in the Mill A WBL spike 5 effluent sample (Table 27). For Mill A, a significant difference in IC25 for reproduction was observed between WBL spike 2 and WBL spike 5 (Table 27). For Mill B, significant differences in IC25 for reproduction were observed between the reactor control and WBL spike 5, and between WBL spike 2 and WBL spike 5 (Table 27). For Mill C, a significant difference in IC25 for reproduction was observed between the mill effluent and the reactor control (Table 27). There were significant differences between all of the Mill C simulated effluent samples, with WBL spike 5 having the highest variability (Table 27). For Mill D, significant differences in IC25 for reproduction were observed between the reactor control and WBL spike 5, and between WBL spike 5 having the highest variability (Table 27). For Mill D, significant differences in IC25 for reproduction were observed between the reactor control and WBL spike 5, and between WBL spike 2 and WBL spike 5 (Table 27). For Mill C simulated effluent samples, with WBL spike 5 having the highest variability (Table 27). For Mill D, significant differences in IC25 for reproduction were observed between the reactor control and WBL spike 5, and between WBL spike 2 and WBL spike 5 (Table 27). For all simulated effluent samples, as WBL solids increased, the IC25 for *C. dubia* reproduction decreased (i.e. toxicity increased; Table 27).

Table 27. Results of 7-d *Ceriodaphnia dubia* survival and reproduction toxicity tests with mill-treated and simulated effluent samples from four bleached kraft mills. Units for NOEC, LOEC and IC25 are % Effluent. Bold and italicized IC25s indicate spiked effluent samples tests that were significantly different from the reactor control. CI: confidence intervals; WBL: weak black liquor; NC: not calculated; NA: not available.

			WBL		<u>S</u> ı	urvival			Repro	duction	
Mill	Sample	Test date	Solids (g/L)	NOEC	LOEC	IC25	95% CI IC25	NOEC	LOEC	IC25	95% CI IC25
А	Mill effluent	9/8/2010	NA	100	>100	>100	NC	100	>100	>100	NC
	Reactor control	9/14/2010	0.000	100	>100	>100	NC	100	>100	>100	NC
	WBL spike 2	9/14/2010	0.193	100	>100	>100	NC	50	100	61.6	57.6-64.2
	WBL spike 5	9/9/2010	0.483	100	>100	35.4	31.9-56.3	100	100	16.7	14.6-17.5
В	Mill effluent	10/25/2010	NA	100	>100	>100	NC	100	>100	>100	NC
	Reactor control	11/2/2010	0.000	100	>100	>100	NC	50	100	52.2	44.6-57.7
	WBL spike 2	11/2/2010	0.185	100	>100	81.2	NC	50	100	46.5	35.0-58.1
	WBL spike 5	11/2/2010	0.462	100	>100	45.8	NC	25	50	24.6	20.9-28.4
С	Mill effluent	11/11/2010	NA	100	>100	>100	NC	50	100	51.6	35.8-55.5
	Reactor control	11/17/2010	0.000	100	>100	>100	NC	50	100	65.4	61.6-66.8
	WBL spike 2	11/17/2010	0.167	100	>100	>100	NC	50	100	62.2	59.8-62.7
	WBL spike 5	11/17/2010	0.417	100	>100	>100	NC	50	100	60.1	24.4-62.7
D	Mill effluent	2/11/2011	NA	100	>100	>100	NC	50	100	60.5	50.0-66.5
	Reactor control	2/21/2011	0.000	100	>100	>100	NC	25	50	48.1	37.0-57.2
	WBL spike 2	2/21/2011	0.206	100	>100	>100	NC	25	50	35.2	32.5-41.3
	WBL spike 5	2/21/2011	0.515	100	>100	>100	NC	25	50	29.8	27.1-32.0

3.4 Correlation Analysis

The purpose of the correlation analysis was to determine if there were significant correlations between: 1) WBL solids and simulated effluent chemical parameters (as described in Section 1.4.3); 2) WBL solids and chronic toxicity to *M. galloprovincialis* and *C. dubia*; 3) effluent (mill-treated and simulated) chemical parameters and chronic toxicity to M. galloprovincialis and C. dubia; and 4) between the two chronic toxicity tests. In cases where both variables met the assumptions for parametric testing, Pearson's r was used with p-value set at 0.05. In cases where one or both parameters did not meet all of the assumptions for parametric testing, Spearman's rho was used with p-value set at 0.01. The conservative p-value for the non-parametric tests was used because the rank-based Spearman's rho cannot calculate an exact p-value when there are tied values. All data were pooled together (rather than examining each mill individually for correlation analysis between: 1) WBL solids and effluent chemical parameters; 2) WBL solids and chronic toxicity to M. galloprovincialis and C. dubia and 3) between the two chronic toxicity tests. For the correlation analysis between effluent (mill-treated and simulated) chemical parameters and chronic toxicity to M. galloprovincialis and C. dubia;, data were not pooled, and samples from each mill were examined separately.

Results of Shapriro Wilk's tests were that the following variables did not fit a normal distribution: 48-h EC50 *M. galloprovincialis* embryo-larval development, 7-d IC25 *C. dubia* survival, conductivity, turbidity, hardness, salinity, campesterol, stigmastanol, beta-sitosterol, stigmasterol, pimaric acid, sandracopimaric acid, isopimaric acid, palustric acid, dehydroabietic acid, abietic acid, and neoabietic acid (Appendix M).

There were some cases where variables were normally distributed but contained censored data (i.e. values that were below detection limit or toxicity tests where the IC25 was >100%). The 7-d IC25 for *C. dubia* reproduction met the normality assumption for parametric testing, but contained IC25 values that were >100%. IC25 values >100% were entered as 100%, and the non-parametric Spearman's rho was used instead of Pearson's r. For some of the chemical parameters (primarily the RAs), results were below detection limits. When this was the case, the detection limit was entered and used for the analysis, along with non-parametric Spearman's rho correlation analysis.

3.4.1 Weak Black Liquor Solids and Chemical Parameters

Statistically significant positive correlations were observed between WBL solids and: color (Pearson's r = 0.54; p = 0.007), DCOD (Pearson's r = 0.50; p = 0.014), and polyphenols (Pearson's r = 0.89; p > 0.001; Figure 21 - Figure 23; Table 28).

Tested Parameter	Pearson's r	Spearman's rho	p-value
рН	-0.18		NS
Color	0.54		*
Conductivity		0.25	NS
Turbidity		0.33	NS
TSS	0.27		NS
Polyphenols	0.89		*
Hardness		-0.08	NS
Alkalinity	0.20		NS
Salinity		0.18	NS
BOD	0.21		NS
DCOD	0.50		*
DOC	0.07		NS
Campesterol		0.13	NS
Stigmastanol		0.08	NS
Beta-sitosterol		0.34	NS
Stigmasterol		0.19	NS
Pimaric acid		0.16	NS
Sandracopimaric acid		NA	NC
Isopimaric acid		0.17	NS
Palustric acid		0.30	NS
Dehydroabietic acid		0.31	NS
Abietic acid		0.36	NS
Neoabietic acid		0.39	NS

Table 28. Correlation analysis between weak black liquor solids and chemical parameters with simulated effluent samples. *: Statistically significant (Spearman's rho $p \le 0.01$ and Pearson's r $p \le 0.05$); NS: not significant; NC: not calculated.

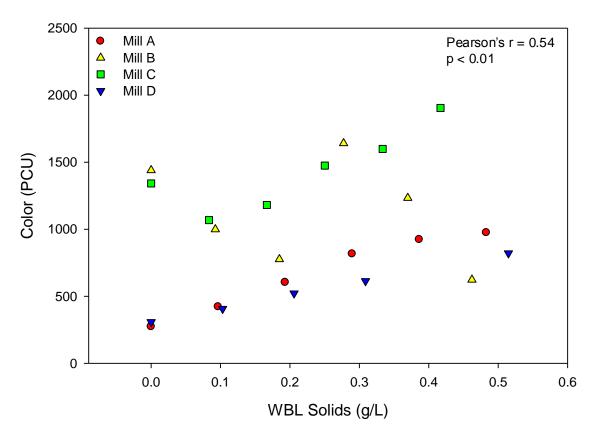


Figure 21. Scatterplot of weak black liquor solids vs. color showing significant positive correlation for pooled data (data coded to denote mill). Correlation significant based on Pearson's r.

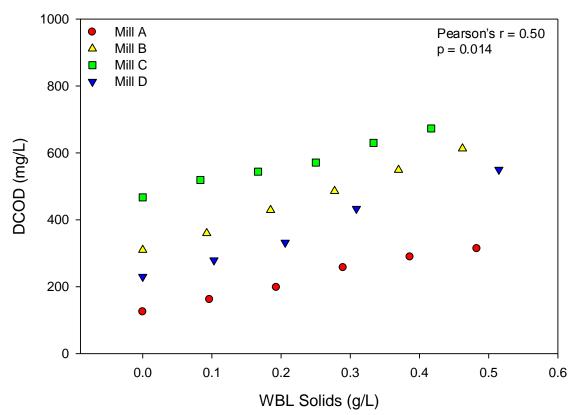


Figure 22. Scatterplot of weak black liquor solids vs. dissolved chemical oxygen demand showing significant positive correlation for pooled data (data coded to denote mill). Correlation significant based on Pearson's r.

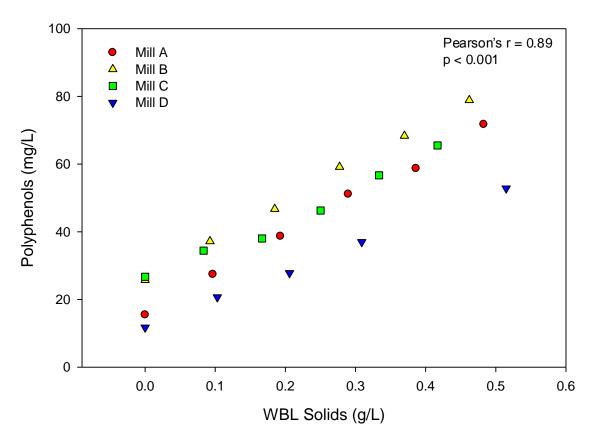


Figure 23. Scatterplot of weak black liquor solids vs. polyphenols showing significant positive correlation for pooled data (data coded to denote mill). Correlation significant based on Pearson's r.

3.4.2 Weak Black Liquor Solids and Toxicity

Statistically significant negative correlations were observed between WBL solids and the 48-h EC50 *M. galloprovincialis* embryo-larval development (Spearman's rho = -0.93; p > 0.001), and between WBL solids and the 7-d IC25 *C. dubia* reproduction (Spearman's rho = -0.73; p > 0.01; Figure 24 and Figure 25, respectively). There was no significant relationship between WBL solids and the 7-d IC25 for *C. dubia* survival.

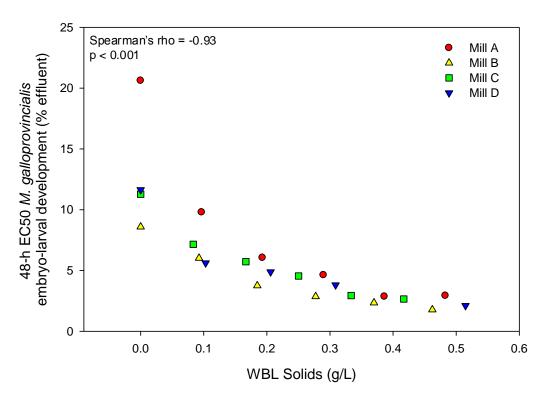


Figure 24. Scatterplot of 48-h EC50 (% effluent) *Mytilus galloprovincialis* embryo-larval development versus weak black liquor solids showing significant negative correlation for pooled data (data coded to denote mill). Correlation significant based on Spearman's rho.



Figure 25. Scatterplot of 7-d IC25 *Ceriodaphnia dubia* reproduction versus weak black liquor solids showing significant negative correlation for pooled data (data coded to denote mill). Correlation significant based on Spearman's rho.

3.4.3 Chemistry and Toxicity

For Mill A, statistically significant negative correlations (p > 0.01) were found between the 48-h EC50 M. galloprovincialis embryo-larval development and: abietic acid (Spearman's rho = -0.96; p < 0.01), color (Spearman's rho = -0.93; p < 0.01), and polyphenols (Spearman's rho = -0.93; p < 0.01; Figure 26 - Figure 28; Table 29). For Mill B, statistically significant negative correlations (p > 0.01) were found between the 48-h EC50 *M. galloprovincialis* embryo-larval development and: color (Spearman's rho = -0.96; p < 0.01; Figure 27; Table 29), conductivity (Spearman's rho = -0.96; p < 0.01; Figure 29), DCOD (Spearman's rho = -0.96; p < 0.01; Figure 30), and polyphenols (Spearman's rho = -0.93; p < 0.01; Figure 28; Table 29). For Mill C, statistically significant negative correlations (p > 0.01) were found between the 48-h EC50 M. galloprovincialis embryolarval development and: color (Spearman's rho = -1.00; p < 0.001; Figure 27), DCOD (Spearman's rho = -1.00; p < 0.001; Figure 30), DOC (Spearman's rho = -0.96; p < 0.01; Figure 31), and polyphenols (Spearman's rho = -0.96; p < 0.01; Figure 28; Table 29). No significant correlations were found between the 48-h EC50 M. galloprovincialis embryolarval development and effluent chemical parameters measured for Mill D (Table 29). No statistically significant correlations were found between any of the effluent chemical parameters and 7-d IC25 for C. dubia survival or reproduction (Table 30 and Table 31).

Table 29. Correlation analysis using Spearman's rho between the 48-h EC50 *Mytilus galloprovincialis* embryo-larval development and chemical parameters with mill-treated and simulated effluent samples. *: statistically significant (Spearman's rho $p \le 0.01$); NS: not significant; TSS: total suspended solids; BOD: biochemical oxygen demand; DCOD: dissolved chemical oxygen demand; DOC: dissolved organic carbon.

	Mill A		Mill B		Mill C		Mill D	
		р-		p-		р-		p-
Tested parameter	Spearman's rho	value						
рН	0.54	NS	0.21	NS	-0.77	NS	-0.26	NS
Color	-0.93	*	-0.96	*	-1.00	*	-0.94	NS
Conductivity	-0.61	NS	-0.96	*	-0.89	NS	-0.66	NS
Turbidity	-0.86	NS	0.18	NS	-0.64	NS	-0.83	NS
TSS	-0.82	NS	0.36	NS	-0.54	NS	-0.89	NS
Polyphenols	-0.93	*	-0.96	*	-0.96	*	-0.94	NS
Hardness	-0.29	NS	0.31	NS	0.34	NS	-0.03	NS
Alkalinity	-0.61	NS	-0.89	NS	-0.46	NS	-0.31	NS
Salinity	0.20	NS	0.61	NS	-0.37	NS	-0.68	NS
BOD	-0.83	NS	0.21	NS	0.39	NS	-0.26	NS
DCOD	-0.61	NS	-0.96	*	-1.00	*	-0.94	NS
DOC	0.54	NS	0.29	NS	-0.96	*	-0.75	NS
Campesterol	-0.79	NS	0.04	NS	-0.32	NS	-0.20	NS
Stigmastanol	-0.86	NS	-0.71	NS	0.07	NS	0.20	NS
Beta-sitosterol	-0.75	NS	-0.63	NS	-0.79	NS	-0.20	NS
Stigmasterol	-0.46	NS	0.00	NS	-0.25	NS	0.26	NS
Pimaric acid	NA	NA	0.58	NS	-0.39	NS	-0.54	NS
Sandracopimaric acid	NA	NA	NA	NA	0.41	NS	0.13	NS
Isopimaric acid	NA	NA	-0.46	NS	-0.43	NS	-0.37	NS
Palustric acid	NA	NA	-0.79	NS	-0.36	NS	-0.43	NS
Dehydroabietic acid	-0.86	NS	-0.57	NS	-0.39	NS	-0.54	NS
Abietic acid	-0.96	*	-0.32	NS	-0.39	NS	-0.43	NS
Neoabietic acid	NA	NA	-0.57	NS	0.39	NS	-0.29	NS

Table 30. Correlation analysis using Spearman's rho between the 7-d IC25 for *Ceriodaphnia dubia* survival and chemical parameters with mill-treated and simulated effluent samples. NS: not significant (Spearman's rho $p \ge 0.01$); TSS: total suspended solids; BOD: biochemical oxygen demand; DCOD: dissolved chemical oxygen demand; DOC: dissolved organic carbon.

	Mill A		Mill B		Mill C		Mill D	
		p-		p-		p-		p-
Tested parameter	Spearman's rho	value						
рН	0.77	NS	-0.21	NS	NA	NA	NA	NA
Color	-0.77	NS	-0.95	NS	NA	NA	NA	NA
Conductivity	-0.26	NS	-0.95	NS	NA	NA	NA	NA
Turbidity	-0.77	NS	-0.11	NS	NA	NA	NA	NA
TSS	-0.77	NS	-0.11	NS	NA	NA	NA	NA
Polyphenols	-0.77	NS	-0.95	NS	NA	NA	NA	NA
Hardness	-0.26	NS	0.00	NS	NA	NA	NA	NA
Alkalinity	-0.26	NS	-0.95	NS	NA	NA	NA	NA
Salinity	0.33	NS	0.54	NS	NA	NA	NA	NA
BOD	-0.87	NS	0.21	NS	NA	NA	NA	NA
DCOD	-0.26	NS	-0.95	NS	NA	NA	NA	NA
DOC	0.26	NS	0.21	NS	NA	NA	NA	NA
Campesterol	-0.77	NS	0.63	NS	NA	NA	NA	NA
Stigmastanol	-0.77	NS	-0.95	NS	NA	NA	NA	NA
Beta-sitosterol	-0.77	NS	-0.74	NS	NA	NA	NA	NA
Stigmasterol	0.26	NS	0.32	NS	NA	NA	NA	NA
Pimaric acid	NA	NA	0.89	NS	NA	NA	NA	NA
Sandracopimaric acid	NA	NA	NA	NA	NA	NA	NA	NA
Isopimaric acid	NA	NA	-0.63	NA	NA	NA	NA	NA
Palustric acid	NA	NA	-0.95	NS	NA	NA	NA	NA
Dehydroabietic acid	-0.77	NS	-0.32	NS	NA	NA	NA	NA
Abietic acid	-0.77	NS	-0.63	NS	NA	NA	NA	NA
Neoabietic acid	NA	NA	-0.95	NS	NA	NA	NA	NA

Table 31. Correlation analysis using Spearman's rho between the 7-d IC25 for *Ceriodaphnia dubia* reproduction and chemical parameters with mill-treated and simulated effluent samples. NS: not significant (Spearman's rho $p \ge 0.01$); TSS: total suspended solids; BOD: biochemical oxygen demand; DCOD: dissolved chemical oxygen demand; DOC: dissolved organic carbon.

	Mill A		Mill B		Mill C	Mill C		Mill D	
Tested parameter	Spearman's rho	p- value							
pH	0.63	NS	-0.40	NS	0.20	NS	-1.00	NS	
Color	-0.63	NS	-0.80	NS	0.40	NS	-0.40	NS	
Conductivity	-0.11	NS	-0.80	NS	0.20	NS	0.20	NS	
Turbidity	-0.95	NS	-0.40	NS	-0.60	NS	-0.40	NS	
TSS	-0.95	NS	-0.40	NS	0.00	NS	-0.40	NS	
Polyphenols	-0.95	NS	-0.80	NS	-0.40	NS	0.40	NS	
Hardness	-0.11	NS	-0.32	NS	-0.40	NS	0.32	NS	
Alkalinity	-0.11	NS	-1.00	NS	-1.00	NS	0.20	NS	
Salinity	0.54	NS	0.26	NS	-1.00	NS	-0.95	NS	
BOD	-1.00	NS	-0.40	NS	-0.40	NS	-0.40	NS	
DCOD	-0.11	NS	-0.80	NS	-0.40	NS	-0.40	NS	
DOC	0.74	NS	0.00	NS	0.20	NS	-0.11	NS	
Campesterol	-0.95	NS	-0.80	NS	0.40	NS	0.40	NS	
Stigmastanol	-0.95	NS	-1.00	NS	0.80	NS	0.80	NS	
Beta-sitosterol	-0.95	NS	-0.60	NS	-0.80	NS	0.40	NS	
Stigmasterol	-0.21	NS	-0.40	NS	-0.80	NS	0.80	NS	
Pimaric acid	NA	NA	0.95	NS	-1.00	NS	0.20	NS	
Sandracopimaric acid	NA	NA	NA	NA	-0.77	NS	0.77	NS	
Isopimaric acid	NA	NA	-0.80	NS	-1.00	NS	0.20	NS	
Palustric acid	NA	NA	-1.00	NS	-1.00	NS	0.20	NS	
Dehydroabietic acid	-0.95	NS	-0.40	NS	-1.00	NS	0.20	NS	
Abietic acid	-0.95	NS	-0.80	NS	-1.00	NS	0.20	NS	
Neoabietic acid	NA	NA	-1.00	NS	-1.00	NS	0.32	NS	

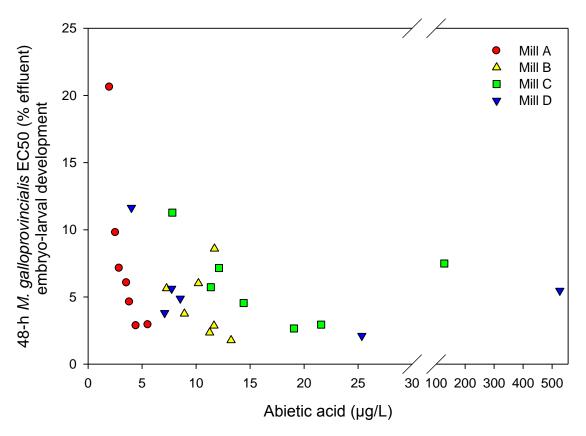


Figure 26. Scatterplot of 48-h EC50 *Mytilus galloprovincialis* embryo-larval development versus abietic acid. Significant negative correlation based on Spearman's rho for Mill A.

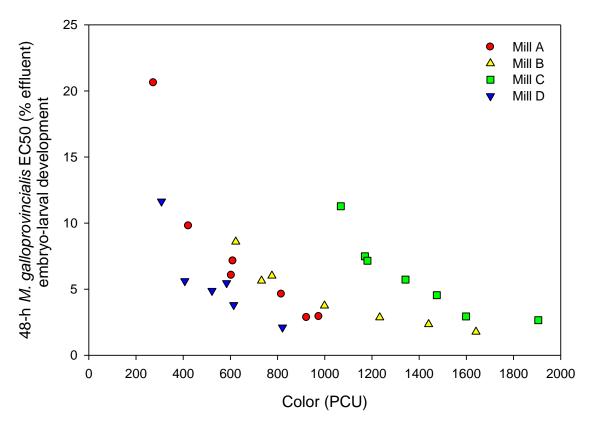


Figure 27. Scatterplot of 48-h EC50 *Mytilus galloprovincialis* embryo-larval development versus color. Significant negative correlations based on Spearman's rho for Mill A, Mill B, and Mill C.

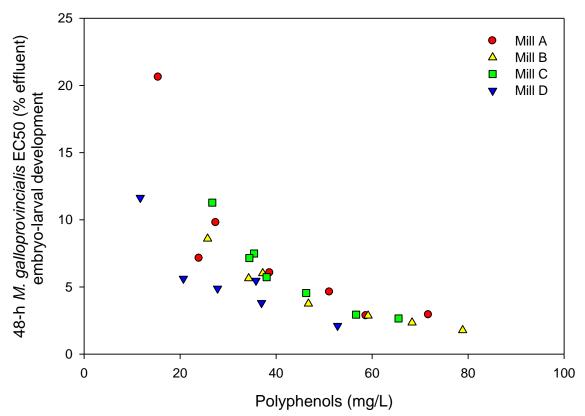


Figure 28. Scatterplot of 48-h EC50 *Mytilus galloprovincialis* embryo-larval development versus polyphenols. Significant negative correlations based on Spearman's rho for Mill A, Mill B, and Mill C.

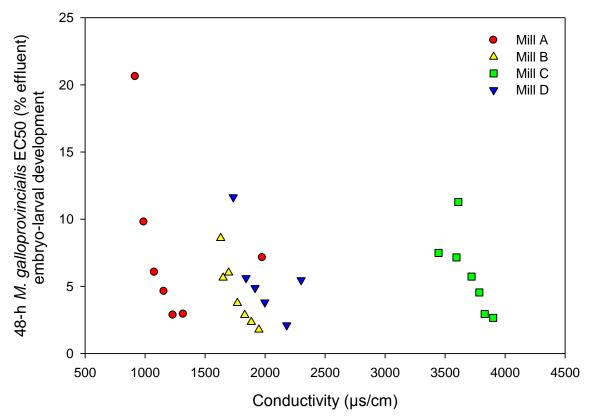


Figure 29. Scatterplot of 48-h EC50 *Mytilus galloprovincialis* embryo-larval development versus conductivity. Significant negative correlation based on Spearman's rho for Mill B.

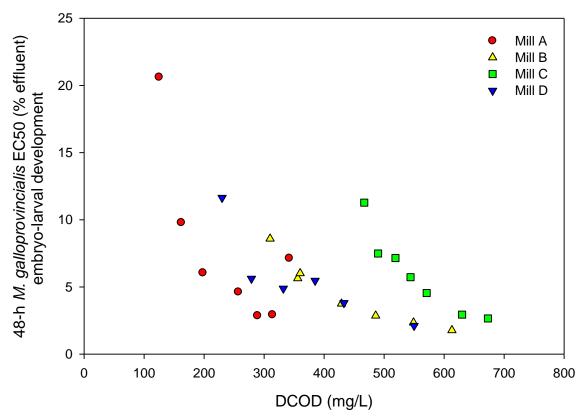


Figure 30. Scatterplot of 48-h EC50 *Mytilus galloprovincialis* embryo-larval development versus dissolved chemical oxygen demand (DCOD). Significant negative correlations based on Spearman's rho for Mill B and Mill C.

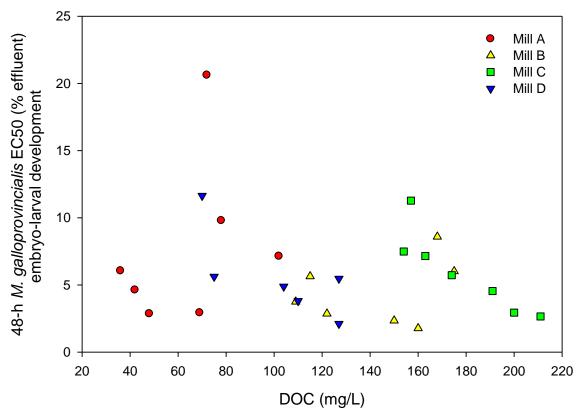


Figure 31. Scatterplot of 48-h EC50 *Mytilus galloprovincialis* embryo-larval development versus dissolved organic carbon (DOC). Significant negative correlation based on Spearman's rho for Mill C.

3.4.4 Toxicity Tests – Organism and Effects Endpoint Comparison

Based on the conservative threshold of $p \le 0.01$, statistically significant correlations were not observed between the 48-h EC50 *M. galloprovincialis* embryo-larval development and the 7d IC25 *C. dubia* reproduction (Spearman's rho = 0.60; p = 0.013) or between the 48-h EC50 *M. galloprovincialis* embryo-larval development and the 7-d IC25 *C. dubia* survival (Spearman's rho = 0.54; p = 0.031; Figure 32 and Figure 33, respectively).

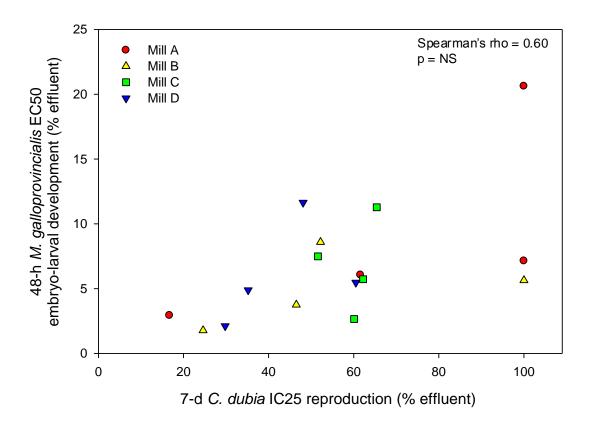


Figure 32. Scatterplot of 48-h EC50 *Mytilus galloprovincialis* embryo-larval development versus 7-d IC25 *Ceriodaphnia dubia* reproduction for pooled data (data coded to denote mill). Correlation not significant based on Spearman's rho. NS: not significant.

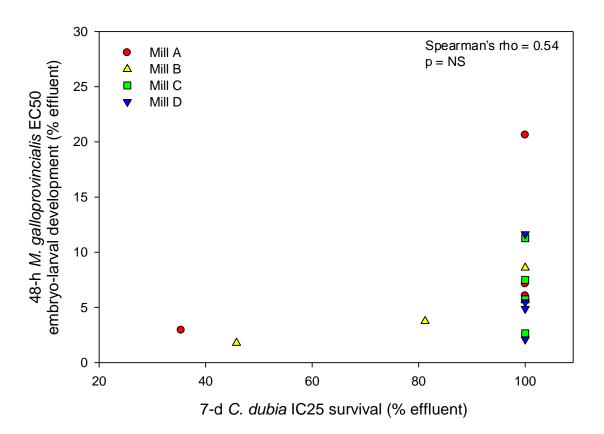


Figure 33. Scatterplot of 48-h EC50 *Mytilus galloprovincialis* embryo-larval development versus 7-d IC25 *Ceriodaphnia dubia* reproduction for pooled data (data coded to denote mill). Correlation not significant based on Spearman's rho. NS: not significant.

3.5 Multivariate Analysis

Using the correlation.r source file developed by Dr. Geoffrey Matthews (Computer Science Department, WWU) correlation coefficients and p-values were calculated between all 23 of the effluent chemistry parameter-pairs to examine relationships and identify and eliminate redundant variables from the multivariate analysis. Non-parametric correlation analysis (Spearman's rho) found 96 significant correlations between the variables (Appendix N). A significant positive correlation (Spearman's rho = 0.86, p > 0.001) was found between hardness and alkalinity. Hardness and alkalinity were both positively correlated with DCOD, DOC, and six of seven RAs. Hardness and alkalinity are measured in mg of CaCO₃ and show a positive correlation these were considered redundant and alkalinity was excluded from multivariate analysis. The results of multivariate analysis can be found in sections 3.5.1 through 3.5.4.

3.5.1 Hierarchical Clustering

Hierarchical clustering was used to explore how simulated effluent samples were grouping together based on the chemical analysis. The goal of the hierarchical clustering was to determine if samples with similar toxicity or similar additions of WBL solids grouped together. Because correlation analysis showed a non-random mill effluent effect (i.e. it appears that samples from the sample mill are grouping together), the first step of this exploratory analysis was to use clustering to determine if samples from the same mill group together using all of the chemistry data,

Because some of the chemical parameters included probable outliers, hierarchical distance and clustering methods were selected that were robust to outliers. Three combinations of distance/clustering methods were used, including: 1) Euclidean distances with Average clustering; 2) Euclidean distances with Centroid clustering: and 3) Canberra distances with Average clustering. More than one hierarchical distance/clustering combination was used to confirm that patterns observed in the data were consistent across different distance/clustering combinations. Euclidean and Canberra distances are more robust with respect to heteroscedastic variance, while the Average (Bayesian) and Centroid clustering methods are less sensitive to outliers.

As a first step, four clusters were requested to see if samples were clustering according to mill (based on the chemical analysis of simulated effluent samples). Requesting four clusters, hierarchical clustering with Canberra distances and the average clustering method put samples from each of the four mills into their own group (Figure 34). Euclidean distances with Average and Centroid clustering placed samples from Mill A and Mill C into their own group (Figure 35). Euclidean distances with Average and Centroid clustering also put all samples from Mill D into the one cluster; however samples from Mill B were split between two clusters (Figure 35). Results of association analysis with four clusters and the three different methods showed that clustering was not random (Table 32), and that samples were not clustering based on toxicity or WBL solids (as clusters could be classified by mill regardless of EC50 or amount of WBL solids added).

Canberra/Average

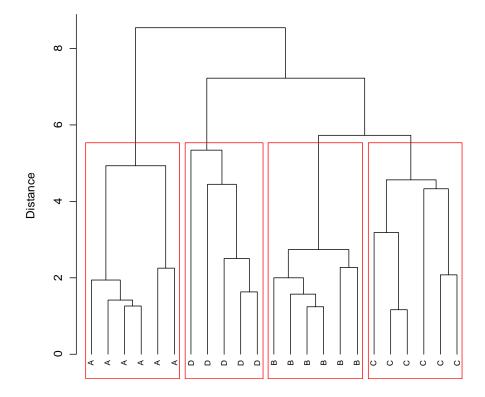
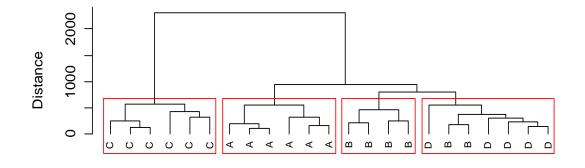



Figure 34. Hierarchical clustering of simulated effluent samples using chemical parameters and Canberra distances with the Average cluster method and four clusters. Letters (A, B, C, and D) on the x-axis correspond to the mill.

Euclidean/Average

Euclidean/Centroid

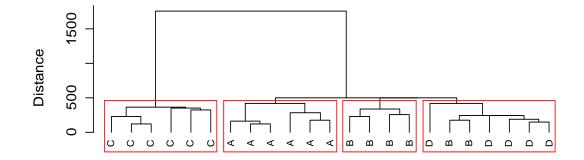


Figure 35. Hierarchical clustering of simulated effluent samples using chemical parameters and Euclidean distances with the Average and Centroid cluster methods and four clusters. Letters (A, B, C, and D) on the x-axis correspond to the mill

Table 32. Hierarchical clustering association analysis table for simulated effluent samples based on chemical parameters with four clusters and samples classified by mill. Values in the "Cluster" columns indicate the number of effluent samples placed into each cluster. df: degrees of freedom.

Distance/Cluster	Mill	Cluster 1	Cluster 2	Cluster 3	Cluster 4	χ²	df	p-value
Euclidean/Average	А	6	0	0	0			
	В	0	2	4	0	56.9524	0	5.16E-09
	С	0	0	0	6	56.9524	9	5.16E-09
	D	0	5	0	0			
Euclidean/Centroid	А	6	0	0	0			
	В	0	2	4	0	56.9524	9	5.16E-09
	С	0	0	0	6	50.9524	9	5.102-09
	D	0	5	0	0			
Canberra/Average	А	6	0	0	0			
	В	0	6	0	0	60	0	2.39E-11
	С	0	0	6	0	69	9	2.39E-11
	D	0	0	0	5			

Requesting three clusters, hierarchical clustering with Canberra distances and the average clustering method put samples from Mill A and Mill D each into their own group, with all samples from Mill B and Mill C in the same cluster (Figure 36). Euclidean distances with Average and Centroid clustering placed samples from Mill A and Mill C into their own group with all samples from Mill B and Mill D in the same cluster (Figure 37). Results of association analysis with three clusters and the three different methods showed that clustering was not random (Table 33), and that samples were not clustering based on toxicity or WBL solids.

Canberra/Average

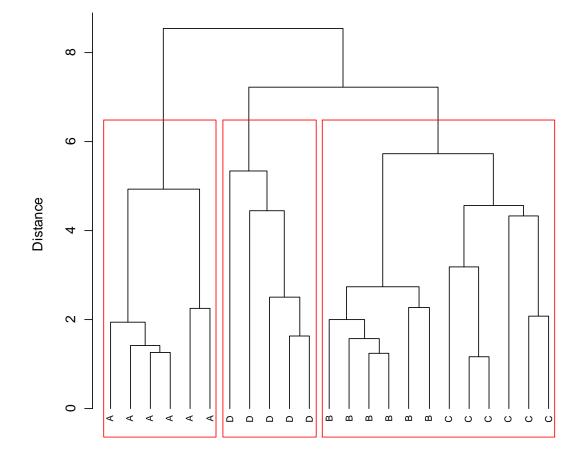
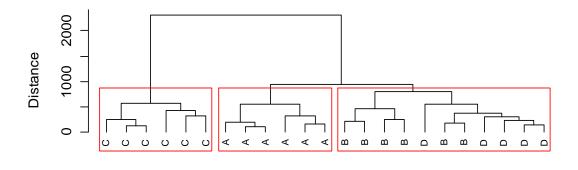



Figure 36. Hierarchical clustering of simulated effluent samples using chemical parameters and Canberra distances with the Average cluster method and three clusters. Letters (A, B, C, and D) on the x-axis correspond to the mill.

Euclidean/Average

Euclidean/Centroid

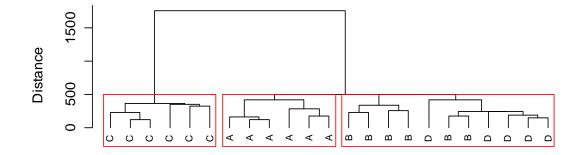


Figure 37. Hierarchical clustering of simulated effluent samples using chemical parameters and Euclidean distances with the Average and Centroid cluster methods and three clusters. Letters (A, B, C, and D) on the x-axis correspond to the mill.

Table 33. Hierarchical clustering association analysis table for simulated effluent samples based on chemical parameters with three clusters and samples classified by mill. Values in the "Cluster" columns indicate the number of effluent samples placed into each cluster.

Distance/Cluster	Mill	Cluster 1	Cluster 2	Cluster 3	χ²	df	p-value
Euclidean/Average	А	6	0	0			
	В	0	6	0	46	6	2.96E-08
	С	0	0	6	40	0	2.90E-00
	D	0	5	0			
Euclidean/Centroid	А	6	0	0			
	В	0	6	0	46	6	2.96E-08
	С	0	0	6	40	0	2.902-00
	D	0	5	0			
Canberra/Average	А	6	0	0			
	В	0	6	0	46	6	2.96E-08
	С	0	6	0	40	0	2.902-00
	D	0	0	5			

Finally, requesting two clusters, hierarchical clustering with Canberra distances and the average clustering method put samples from Mill A into their own group, with all remaining samples in the second cluster (Figure 38). Euclidean distances with Average and Centroid clustering placed samples from Mill A and Mill C into their own group with all samples from Mill B and Mill D in the same cluster (Figure 39). Results of association analysis with three clusters and the three different methods showed that clustering was not random (Table 34), and that samples were not clustering based on toxicity or WBL solids.

Canberra/Average

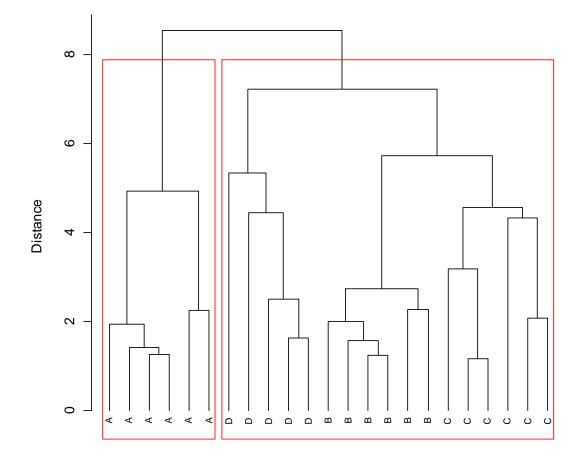
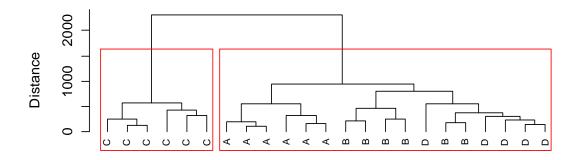



Figure 38. Hierarchical clustering of simulated effluent samples using chemical parameters and Canberra distances with the Average cluster method and two clusters. Letters (A, B, C, and D) on the x-axis correspond to the mill.

Euclidean/Average

Euclidean/Centroid



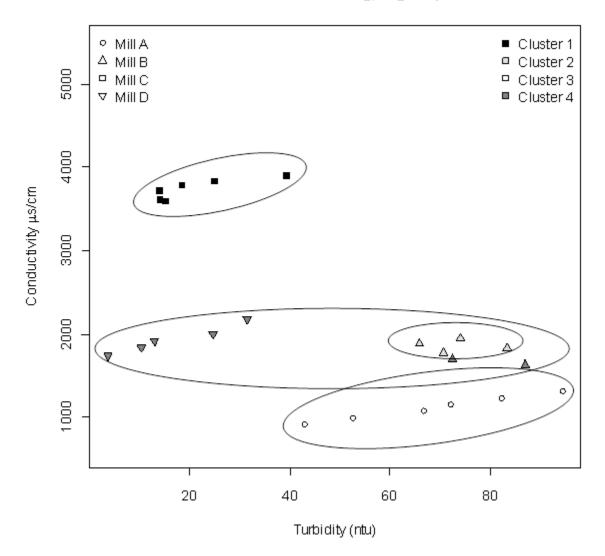
Figure 39. Hierarchical clustering of simulated effluent samples using chemical parameters and Euclidean distances with the Average and Centroid cluster methods and three clusters. Letters (A, B, C, and D) on the x-axis correspond to the mill.

Table 34. Hierarchical clustering association analysis table for simulated effluent samples based on chemical parameters with two clusters and samples classified by mill. Values in the "Cluster" columns indicate the number of effluent samples placed into each cluster.

Distance/Cluster	Mill	Cluster 1	Cluster 2	χ ²	df	p-value
Euclidean/Average	А	6	0			
	В	6	0	23	3	4.04E-05
	С	0	6	23	5	4.04E-05
	D	5	0			
Euclidean/Centroid	А	6	0			
	В	6	0	23	3	4.04E-05
	С	0	6	23	3	4.04E-05
	D	5	0			
Canberra/Average	А	6	0			
	В	0	6	23	2	
	С	0	6	23	3	4.04E-05
	D	0	5			

3.5.2 Kmeans Clustering

Kmeans clustering was also used to explore how the simulated effluent chemistry data grouped together based on the chemical analysis. As with hierarchical clustering, this clustering technique was used to see if simulated effluent samples with similar toxicity or WBL solids grouped together. Kmeans clustering shows how strongly each variable contributes to the separation between the different clusters. Therefore if samples with similar toxicity or WBL solids are clustered together, it may be possible to identify the specific chemical parameters that are driving the trend. Because results of kmeans clustering is based on iterations, results can change each time the analysis is conducted; as such, repeated kmeans clustering runs were used to verify that results were stable. Association analysis was used to determine if kmeans clustering results were random when samples were classified by mill or WBL treatment.


First, kmeans clustering was used to determine if samples would cluster into four groups (i.e. if the samples from the four mills would each cluster into their own group). Repeated kmeans runs found that 80% of the time (4 out of 5 runs), samples from Mill A and samples from Mill C each had their own cluster, samples from Mill D were all in the same cluster, and samples from Mill B were split between two clusters (Table 35). Association analysis showed that clustering with samples classified by mill was non-random (Table 35). Two variables with good separation between cluster centers (Appendix O) were chosen to plot the results of the multivariate kmeans clustering with four groups (Figure 40). Association analysis showed that kmeans clustering using the simulated effluent chemistry

data was not able to separate the samples into four groups with samples classified by WBL

treatment, and that clustering was random (Table 36).

Table 35. Kmeans clustering association analysis table for simulated effluent samples with four clusters and samples classified by mill. Values in the "Cluster" columns indicate the number of effluent samples placed into each cluster.

Kmeans Run	Mill	Cluster 1	Cluster 2	Cluster 3	Cluster 4	χ²	df	p-value
Run 1	Α	0	0	6	0			
	В	0	4	0	2	56.9524	9	5.16E-09
	С	6	0	0	0	<u> </u>	9	5.16E-09
	D	0	0	0	5			
Run 2	А	0	6	0	0			
	В	0	0	2	4	56.9524	9	5.16E-09
	С	6	0	0	0	50.5524	3	5.102-03
	D	0	0	5	0			
Run 3	Α	0	6	0	0			
	В	2	0	4	0	56.9524	9	5.16E-09
	С	0	0	0	6	50.5524		5.10E-05
	D	5	0	0	0			
Run 4	Α	0	0	6	0			
	В	2	4	0	0	56.9524	9	5.16E-09
	С	0	0	0	6	30.3324	3	5.10L-03
	D	5	0	0	0			
Run 5	А	6	0	0	0			
	В	2	4	0	0	30.9919	9	2.97E-04
	С	0	0	3	3	00.3313	3	2.37 2-04
	D	3	2	0	0			

Kmeans Clustering, 4 groups

Figure 40. Kmeans clustering bivariate plot using turbidity and conductivity with simulated effluent samples from four bleached kraft mills and four clusters.

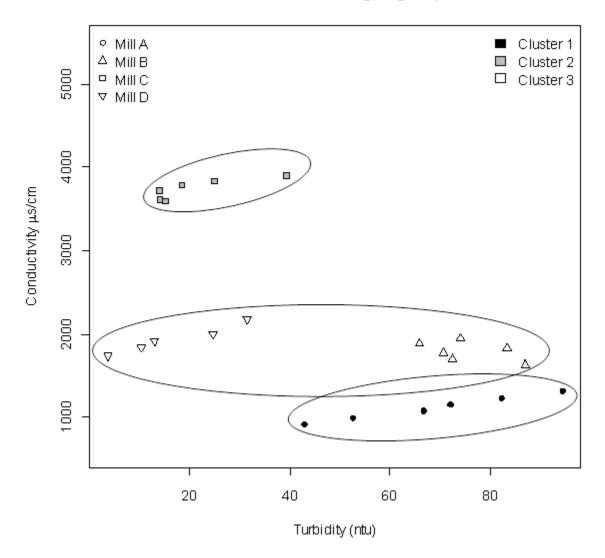

Kmeans Run	WBL Solids	Cluster 1	Cluster 2	Cluster 3	Cluster 4	χ²	df	p-value
	Desites sector	-				70		
Run 1	Reactor control	1	2	1	0			
	WBL spike 1	1	2	1	0			
	WBL spike 2	1	1	1	1	4.4038	15	0.996
	WBL spike 3	1	1	1	1			
	WBL spike 4	1	0	1	1			
	WBL spike 5	1	1	1	1			
Run 2	Reactor control	1	0	1	2			
	WBL spike 1	1	0	1	2			
	WBL spike 2	1	1	1	1	4.4038	15	0.996
	WBL spike 3	1	1	1	1	4.4038	15	0.990
	WBL spike 4	1	1	1	0			
	WBL spike 5	1	1	1	1			
Run 3	Reactor control	1	0	2	1			
	WBL spike 1	1	0	2	1			
	WBL spike 2	1	1	1	1	4.4038	15	0.996
	WBL spike 3	1	1	1	1	4.4030		0.996
	WBL spike 4	1	1	0	1			
	WBL spike 5	1	1	1	1			
Run 4	Reactor control	2	0	1	1			
	WBL spike 1	2	0	1	1			
	WBL spike 2	2	0	1	1	0.0500	4 -	0.070
	WBL spike 3	2	1	0	1	6.3598	15	0.973
	WBL spike 4	1	1	0	1			
	WBL spike 5	2	1	0	1			
Run 5	Reactor control	1	0	2	1			
	WBL spike 1	1	0	2	1			
	WBL spike 2	1	0	2	1	0.0500	4 -	
	WBL spike 3	1	1	2	0	6.3598	15	0.973
	WBL spike 4	1	1	1	0			
	WBL spike 5	1	1	2	0			

Table 36. Kmeans clustering association analysis table for simulated effluent samples with four clusters and samples classified by weak black liquor treatment. Values in the "Cluster" columns indicate the number of effluent samples placed into each cluster.

Next, kmeans was also used to determine if samples would cluster into three groups. Consistent across most repeated kmeans clustering runs was Mill C simulated effluent samples grouping separate and simulated effluent samples from Mills B and D grouping together (Table 37). Two variables with good separation between cluster centers (Appendix O) were chosen to plot the results of the multivariate kmeans clustering with three groups (Figure 41). Results of association analysis showed that kmeans clustering was not able to separate the samples into three groups with samples classified by WBL treatment, and that clustering was random (Table 38).

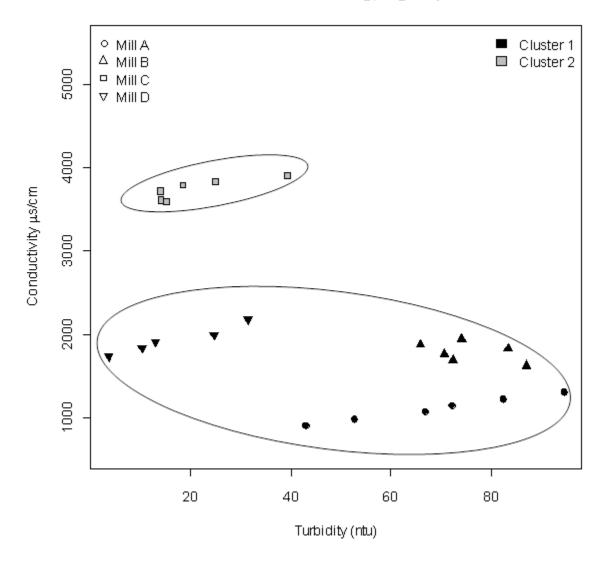
Kmeans Run	Mill	Cluster 1	Cluster 2	Cluster 3	χ²	df	p-value
Run 1	А	0	6	0			
	В	6	0	0	46	6	2.96E-08
	С	0	0	6	40	0	2.90E-00
	D	5	0	0			
Run 2	А	6	0	0			
	В	0	0	6	46	6	2.96E-08
	С	0	6	0	40	0	2.90E-00
	D	0	0	5			
Run 3	А	6	0	0			
	В	2	4	0	30.9919	6	2.54E-05
	С	0	0	6	30.9919	0	2.046-00
	D	3	2	0			
Run 4	А	0	6	0			
	В	0	2	4	30.9919	6	2.54E-05
	С	6	0	0	30.3313	0	2.042-00
	D	0	3	2			
Run 5	А	0	0	6			
	В	0	0	6	23	6	7.97E-04
	С	3	3	0	23	U	7.97⊑-04
	D	0	0	5			

Table 37. Kmeans clustering association analysis table for simulated effluent samples with three clusters and samples classified by mill. Values in the "Cluster" columns indicate the number of effluent samples placed into each cluster.

Kmeans Clustering, 3 groups

Figure 41. Kmeans clustering bivariate plot using turbidity and conductivity with simulated effluent samples from four bleached kraft mills and three clusters.

Kmeans Run	WBL Solids	Cluster 1	Cluster 2	Cluster 3	χ²	df	p-value
Run 1	Reactor control	1	2	1			
	WBL spike 1	1	2	1			
	WBL spike 2	1	2	1	0.2904	10	1.000
	WBL spike 3	1	2	1	0.2904	10	1.000
	WBL spike 4	1	1	1			
	WBL spike 5	1	2	1			
Run 2	Reactor control	3	0	1			
	WBL spike 1	3	0	1			
	WBL spike 2	2	1	1	6.2146	10	0.797
	WBL spike 3	1	2	1	0.2140	10	0.797
	WBL spike 4	1	1	1			
	WBL spike 5	1	2	1			
Run 3	Reactor control	1	1	2		10	
	WBL spike 1	1	1	2			
	WBL spike 2	1	1	2	0.2904		1.000
	WBL spike 3	1	1	2	0.2304		1.000
	WBL spike 4	1	1	1			
	WBL spike 5	1	1	2			
Run 4	Reactor control	2	1	1			
	WBL spike 1	2	1	1			
	WBL spike 2	2	1	1	0.2904	10	1.000
	WBL spike 3	2	1	1	0.2904	10	1.000
	WBL spike 4	1	1	1			
	WBL spike 5	2	1	1			
Run 5	Reactor control	1	1	2			
	WBL spike 1	1	1	2			
	WBL spike 2	1	1	2	0.2004	10	1.000
	WBL spike 3	1	1	2	0.2904	10	1.000
	WBL spike 4	1	1	1			
	WBL spike 5	1	1	2			


Table 38. Kmeans clustering association analysis table for simulated effluent samples with three clusters and samples classified by weak black liquor treatment. Values in the "Cluster" columns indicate the number of effluent samples placed into each cluster.

Finally, kmeans was used to determine if samples would cluster into two groups.

Repeated kmeans runs found that results were stable, with Mill C simulated effluent samples grouping separate from simulated effluent samples from the other three mills (Table 39). Association analysis showed that kmeans clustering with samples classified by mill was nonrandom (Table 39). Two variables with good separation between cluster centers (Appendix O) were chosen (conductivity and turbidity) to plot the results of the multivariate kmeans clustering with two groups (Figure 42). Association analysis showed that kmeans clustering was not able to separate the samples into two groups with samples classified by WBL treatment, and that clustering was random (Table 40).

Kmeans Run	Mill	Cluster 1	Cluster 2	χ²	df	p-value
Run 1	А	6	0			
	В	6	0	23	3	4.04E-05
	С	0	6	23	3	4.04E-03
	D	5	0			
Run 2	А	6	0			
	В	6	0	23	3	4.04E-05
	С	0	6	25	5	4.042-03
	D	5	0			
Run 3	А	6	0			
	В	6	0	23	3	4.04E-05
	С	0	6	25		4.042-03
	D	5	0			
Run 4	А	0	6			
	В	0	6	23	3	4.04E-05
	С	6	0	25	5	4.042-03
	D	0	5			
Run 5	А	0	6			
	В	0	6	23	3	4.04E-05
	С	6	0		3	4.040-00
	D	0	5			

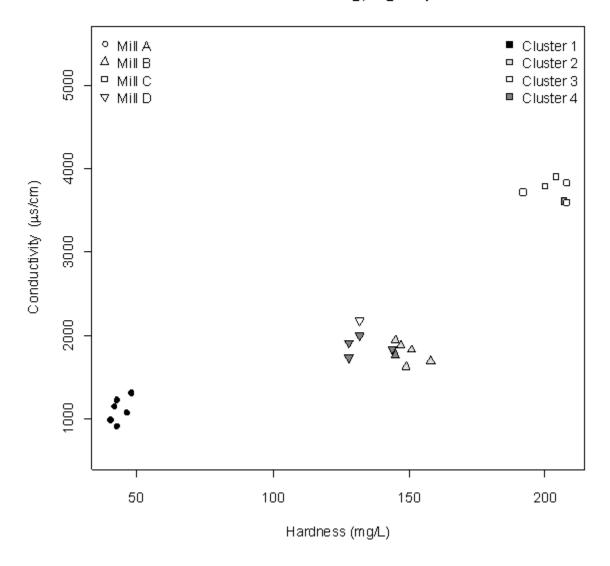
Table 39. Kmeans clustering association analysis table for simulated effluent samples with two clusters and samples classified by mill. Values in the "Cluster" columns indicate the number of effluent samples placed into each cluster.

Kmeans Clustering, 2 groups

Figure 42. Kmeans clustering bivariate plot using turbidity and conductivity with simulated effluent samples from four bleached kraft mills and two clusters.

Kmeans Run	WBL Solids	Cluster 1	Cluster 2	χ²	df	p-value
Run 1	Reactor control	1	3			
	WBL spike 1	1	3			
	WBL spike 2	1	3	0.094	5	1.000
	WBL spike 3	1	3	0.094	5	1.000
	WBL spike 4	1	2			
	WBL spike 5	1	3			
Run 2	Reactor control	1	3			
	WBL spike 1	1	3			
	WBL spike 2	1	3	0.094	5	1.000
	WBL spike 3	1	3	0.094	5	1.000
	WBL spike 4	1	2			
	WBL spike 5	1	3			
Run 3	Reactor control	1	3			
	WBL spike 1	1	3			
	WBL spike 2	1	3	0.094	5	1.000
	WBL spike 3	1	3	0.094	5	1.000
	WBL spike 4	1	2			
	WBL spike 5	1	3			
Run 4	Reactor control	3	1			
	WBL spike 1	3	1			
	WBL spike 2	3	1	0.094	5	1.000
	WBL spike 3	3	1	0.094	5	1.000
	WBL spike 4	2	1			
	WBL spike 5	3	1			
Run 5	Reactor control	1	3			
	WBL spike 1	1	3			
	WBL spike 2	1	3	0.094	5	1.000
	WBL spike 3	1	3	0.094	0	1.000
	WBL spike 4	1	2			
	WBL spike 5	1	3			

Table 40. Kmeans clustering association analysis table for simulated effluent samples with two clusters and samples classified by weak black liquor treatment. Values in the "Cluster" columns indicate the number of effluent samples placed into each cluster.


3.5.3 Riffle Clustering

Using the simulated effluent chemistry data, Riffle clustering was used to see if simulated effluent samples grouped by WBL treatment or by mill. Riffle clustering is a non-metric and non-parametric clustering method. Riffle does not use distance metrics (like hierarchical and kmeans clustering), rather each variable is examined independently (Matthews 2011). Another feature of Riffle clustering is the ability to identify variables that don't contribute to clustering, and exclude them (Matthews 2011). For this reason, Riffle is a good option when variance is heteroscedastic. Similar to kmeans clustering, this technique shows which variables are contributing to separation between clusters using proportional reduction in error (PRE) scores. Variables with high PRE scores are those that contribute most to the separation seen between clusters. As is the case for kmeans clustering, repeated analysis (Riffle runs) can produce different results. For this reason, multiple Riffle runs were conducted to determine if results remained stable.

Requesting four clusters, Riffle runs separated the samples into four groups. Association analysis showed that Riffle was unable to cluster the data based on mill, although clustering was non-random (Table 41). Consistent across all Riffle runs, simulated effluent samples from Mill A clustered separate from other samples (Table 41). Two variables with high PRE scores (Appendix P) were chosen to plot the results of the multivariate Riffle clustering with four groups (Figure 43). Association analysis also found that Riffle clustering was not able to separate the data into four groups based on WBL treatment (Table 42).

Kmeans Run	Mill	Cluster 1	Cluster 2	Cluster 3	Cluster 4	χ²	df	p-value
Run 1	А	6	0	0	0			
	В	0	6	0	0	44.9048	9	0.615.07
	С	0	0	6	0	44.9046	9	9.61E-07
	D	0	3	1	1			
Run 2	А	6	0	0	0			
	В	0	5	0	1	49.45	9	1.37E-07
	С	0	0	5	1	49.45	9	1.37 E-07
	D	0	0	1	4			
Run 3	А	6	0	0	0			
	В	0	5	0	1	49.45	9	1.37E-07
	С	0	0	5	1	49.45	9	1.37 E-07
	D	0	0	1	4			
Run 4	А	6	0	0	0			
	В	0	1	5	0	43.0307	9	2.13E-06
	С	0	0	0	6	43.0307	9	2.13E-00
	D	0	0	4	1			
Run 5	А	6	0	0	0			
	В	0	5	0	1	55.2256	9	1.10E-08
	С	0	0	6	0	00.2200	э	1.100-06
	D	0	1	0	4			

Table 41. Riffle clustering association analysis table for simulated effluent samples with four clusters and samples classified by mill. Values in the "Cluster" columns indicate the number of effluent samples placed into each cluster.

Riffle Clustering, 4 groups

Figure 43. Riffle clustering bivariate plot using hardness and conductivity with simulated effluent samples from four bleached kraft mills and four clusters.

Table 42. Riffle clustering association analysis table for simulated effluent samples with four clusters and samples classified by weak black liquor treatment. Values in the "Cluster" columns indicate the number of effluent samples placed into each cluster.

Riffle Run	WBL Solids	Cluster 1	Cluster 2	Cluster 3	Cluster 4	χ²	df	p-value
Run 1	Reactor control	1	2	1	0			
	WBL spike 1	1	2	1	0			
	WBL spike 2	1	2	1	0	6.2824	15	0.975
	WBL spike 3	1	1	1	1	0.2024	15	0.975
	WBL spike 4	1	1	1	0			
	WBL spike 5	1	1	2	0			
Run 2	Reactor control	1	1	0	2			
	WBL spike 1	1	1	1	1			
	WBL spike 2	1	0	1	2	6.7722	15	0.964
	WBL spike 3	1	1	1	1	0.7722	15	0.904
	WBL spike 4	1	1	1	0			
	WBL spike 5	1	1	2	0			
Run 3	Reactor control	1	1	1	1			
	WBL spike 1	1	1	1	1		15	
	WBL spike 2	1	1	1	1	0.9583		1.000
	WBL spike 3	1	1	1	1	0.9565		1.000
	WBL spike 4	1	1	1	0			
	WBL spike 5	1	1	1	1			
Run 4	Reactor control	2	1	0	1			
	WBL spike 1	1	1	1	1			
	WBL spike 2	1	1	0	2	10.6694	15	0.776
	WBL spike 3	1	1	1	1	10.0094	15	0.770
	WBL spike 4	1	1	1	0			
	WBL spike 5	1	0	3	0			
Run 5	Reactor control	3	1	0	0			
	WBL spike 1	1	2	0	1			
	WBL spike 2	1	1	1	1	15.5729	15	0.411
	WBL spike 3	1	0	2	1	15.5729	15	0.411
	WBL spike 4	1	0	2	0			
	WBL spike 5	1	0	3	0			

Next, Riffle clustering was used to determine if samples could be grouped into three clusters. Association analysis showed that Riffle clustering with samples classified by mill was non-random, although there were several misclassifications (Table 43). Two variables with high PRE scores (Appendix P) were chosen to plot the results of the multivariate Riffle clustering with three groups (Figure 44). Riffle clustering was not able to separate the data into three groups based on WBL treatment; association analysis showed that clustering with samples classified by WBL treatment was random (Table 44).

Table 43. Riffle clustering association analysis table for simulated effluent samples with three clusters and samples classified by mill. Values in the "Cluster" columns indicate the number of effluent samples placed into each cluster.

Riffle Run	Mill	Cluster 1	Cluster 2	Cluster 3	χ²	df	p-value
Run 1	А	6	0	0			
	В	0	4	2	28.0868	6	9.05E-05
	С	0	5	1	20.0000	0	9.052-05
	D	1	0	4			
Run 2	А	6	0	0			
	В	0	4	2	22.9589	6	8.10E-04
	С	0	1	5	22.9509	0	0.10E-04
	D	2	2	1			
Run 3	А	5	1	0			
	В	2	4	0	24.0268	6	5.16E-04
	С	0	3	3	24.0200	0	5.102-04
	D	0	0	5			
Run 4	А	6	0	0			
	В	0	6	0	31.1732	6	2.35E-05
	С	0	1	5	51.1752	0	2.332-03
	D	2	1	2			
Run 5	А	6	0	0			
	В	0	4	2	22.9589	6	8.10E-04
	С	0	1	5	22.3003	U	0.102-04
	D	2	2	1			

Riffle Clustering, 3 groups

Figure 44. Riffle clustering bivariate plot using dissolved organic carbon and conductivity with simulated effluent samples from four bleached kraft mills and three clusters.

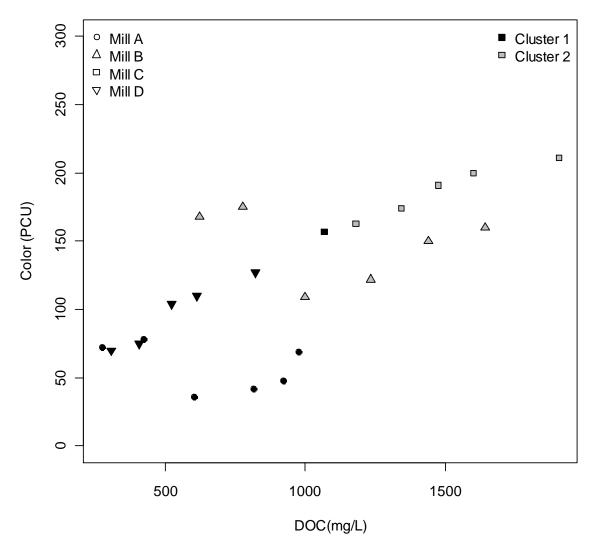

Riffle Run	WBL Solids	Cluster 1	Cluster 2	Cluster 3	χ²	df	p-value
Run 1	Reactor control	3	1	0			
	WBL spike 1	1	2	1			
	WBL spike 2	2	1	1	5.9873	10	0.816
	WBL spike 3	2	0	2	0.9075	10	0.010
	WBL spike 4	1	1	1			
	WBL spike 5	1	1	2			
Run 2	Reactor control	3	0	1			
	WBL spike 1	2	1	1			
	WBL spike 2	1	1	2	8.7961	10	0.552
	WBL spike 3	1	2	1	0.7901	10	0.552
	WBL spike 4	1	2	0			
	WBL spike 5	0	2	2			
Run 3	Reactor control	1	1	2		10	
	WBL spike 1	1	1	2			
	WBL spike 2	2	1	1	4.4836		0.923
	WBL spike 3	2	1	1	4.4030		0.923
	WBL spike 4	1	2	0			
	WBL spike 5	1	2	1			
Run 4	Reactor control	0	1	3			
	WBL spike 1	1	1	2			
	WBL spike 2	2	1	1	8.3854	10	0.591
	WBL spike 3	2	1	1	0.3034	10	0.591
	WBL spike 4	1	2	0			
	WBL spike 5	2	0	2			
Run 5	Reactor control	3	0	1			
	WBL spike 1	1	1	2			
	WBL spike 2	1	2	1	5.4762	10	0.857
	WBL spike 3	1	2	1	J.4/02	10	0.007
	WBL spike 4	1	1	1			
	WBL spike 5	1	1	2			

Table 44. Riffle clustering association analysis table for simulated effluent samples with three clusters and samples classified by weak black liquor treatment. Values in the "Cluster" columns indicate the number of effluent samples placed into each cluster.

Finally, requesting two clusters, Riffle separated the samples into two groups. Association analysis showed that Riffle clustering with samples classified by mill was non-random, although for most Riffle runs samples from the same mill were split between two different clusters (Table 45). No patterns in groupings were apparent across repeated Riffle runs. Two variables with consistently high PRE scores (Appendix P) were chosen to plot the results of the multivariate Riffle clustering with three groups (Figure 45). Riffle clustering was not able to separate the data into two groups with samples classified by WBL treatment; association analysis showed that clustering was random (Table 46).

Riffle Run	Mill	Cluster 1	Cluster 2	χ²	df	p-value	
Run 1	А	6	0		3		
	В	4	2	12.8475		4.98E-03	
	С	0	6	12.0475	3		
	D	2	3				
Run 2	А	6	0				
	В	0	6	16.4543	3	9.15E-04	
	С	1	5	10.4545	3		
	D	4	1				
Run 3	А	6	0	12.8475	3	4.98E-03	
	В	4	2				
	С	0	6	12.0475	3	4.902-03	
	D	2	3				
Run 4	А	6	0		3	9.15E-04	
	В	1	5	16.4543			
	С	0	6	10.4545	3		
	D	4	1				
Run 5	А	5	1				
	В	6	0	19.6604	3	2.00E-04	
	С	0	6	19.0004	3	2.00E-04	
	D	0	5				

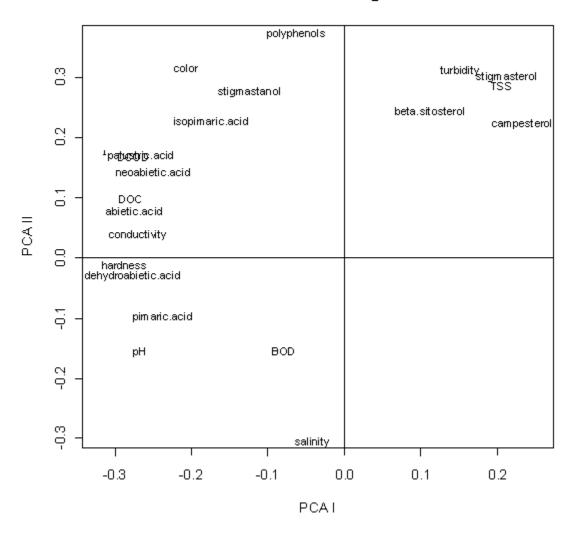
Table 45. Riffle clustering association analysis table for simulated effluent samples with two clusters and samples classified by mill. Values in the "Cluster" columns indicate the number of effluent samples placed into each cluster.

Riffle Clustering, 2 groups

Figure 45. Riffle clustering bivariate plot using color and dissolved organic carbon with simulated effluent samples from four bleached kraft mills and two clusters.

Riffle Run	WBL Solids	Cluster 1	Cluster 2	χ²	df	p-value	
Run 1	Reactor control	3	1		5	0.654	
	WBL spike 1	3	1				
	WBL spike 2	2	2	3.2961			
	WBL spike 3	2	2	3.2901			
	WBL spike 4	1	2				
	WBL spike 5	1	3				
Run 2	Reactor control	3	1				
	WBL spike 1	2	2		5	0.807	
	WBL spike 2	2	2	2.2942			
	WBL spike 3	2	2	2.2942			
	WBL spike 4	1	2				
	WBL spike 5	1	3				
Run 3	Reactor control	3	1		5	0.654	
	WBL spike 1	3	1				
	WBL spike 2	2	2	3.2961			
	WBL spike 3	2	2	3.2901			
	WBL spike 4	1	2				
	WBL spike 5	1	3				
Run 4	Reactor control	2	2			0.807	
	WBL spike 1	2	2		5		
	WBL spike 2	3	1	2.2942			
	WBL spike 3	2	2	2.2942			
	WBL spike 4	1	2				
	WBL spike 5	1	3				
Run 5	Reactor control	1	3				
	WBL spike 1	2	2				
	WBL spike 2	2	2	1.2923	5	0.936	
	WBL spike 3	2	2	1.2325			
	WBL spike 4	2	1				
	WBL spike 5	2	2				

Table 46. Riffle clustering association analysis table for simulated effluent samples with two clusters and samples classified by weak black liquor treatment. Values in the "Cluster" columns indicate the number of effluent samples placed into each cluster


3.5.4 Principal Component Analysis

Principal component analysis found that the first three principal components (PC) explained 82.7% of cumulative variance between samples (Table 47). An exponential drop-off of proportion of variance was also observed, which indicates sample ordination (Appendix Q). Principal component 1 included turbidity, TSS, beta-sitosterol, stigmasterol, and campesterol; PC 2 included polyphenols, color, turbidity, stigmasterol TSS, stigmastanol, beta-sitosterol, isopimaric acid, campesterol, palustric acid, DCOD, and neoabietic acid (Appendix Q). Principal component analysis variable loadings for the first two principal components are shown in Figure 46. Results of PCA found that simulated effluent samples appeared to ordinate by mill (Figure 47) rather than by WBL treatment (Figure 48).

Randomization testing was also used to determine the strength of the PCA analysis. Three data files were created where the association between known groups (mill and WBL treatment) and the results of the chemical analysis were randomized. Principal component analysis using the three random data files found that data did not ordinate by mill (Appendix Q). Variance plots for the three random files showed a gentle decline in proportion of variance in contrast to the exponential drop-off observed in the non-random data file (Appendix Q). For the random data files, only 39.2, 39.4, and 40.3% of the variance was explained by the first three principal components as compared to 82.7% for the non-random data (Appendix Q). A visual evaluation of PCA ordination plots found that the three randomized data files do not show ordination by mill (Appendix Q).

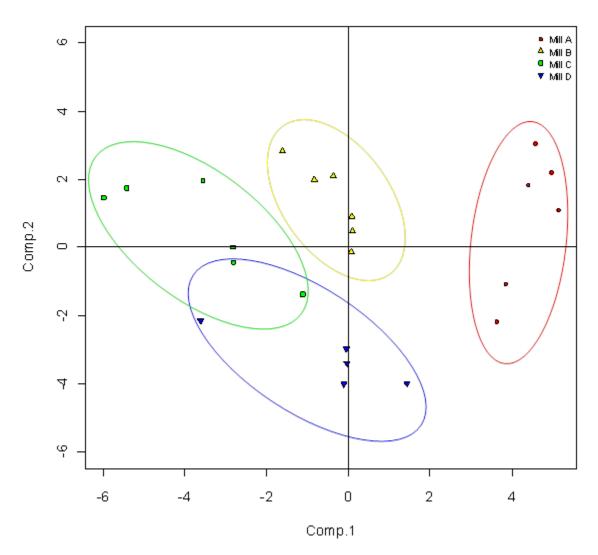

	Comp.1	Comp.2	Comp.3	Comp.4	Comp.5	Comp.6	Comp.7	Comp.8	Comp.9	Comp.10
Standard deviation	3.186489	2.191155	1.484539	1.238598	0.815213	0.704011	0.540579	0.539932	0.405287	0.375475
Proportion of Variance	0.48351	0.228627	0.104946	0.073054	0.031646	0.023602	0.013915	0.013882	0.007822	0.006713
Cumulative proportion	0.48351	0.712137	0.817082	0.890136	0.921782	0.945384	0.959299	0.973181	0.981003	0.987716

Table 47. Proportional and cumulative variance for first 10 principal components using simulated effluent chemistry data.

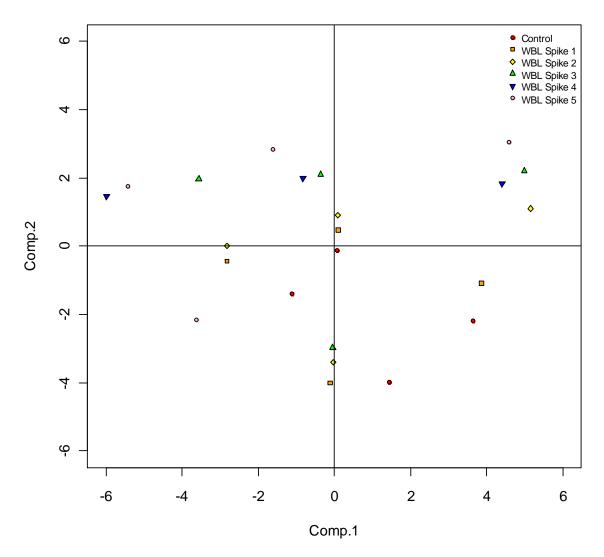

Variable Loadings

Figure 46. Principal component analysis variable loading of simulated effluent samples for first two principal components. ¹Palustric acid and dissolved chemical oxygen demand (DCOD).

Mill Ordination

Figure 47. Principal component analysis ordination of simulated effluent samples. Samples coded to denote mill.

WBL Treatment Ordination

Figure 48. Principal component analysis ordination of simulated effluent samples. Samples coded to denote weak black liquor treatment.

4.0 **DISCUSSION**

The 48-h EC50 for *M. galloprovincialis* embryo-larval development appears to be a more sensitive endpoint than the 7-d *C. dubia* reproduction with respect to both mill-treated and simulated effluent samples. Some effluent samples that showed chronic toxicity to *M. galloprovincialis* did not show chronic toxicity to *C. dubia*. Due to the sensitivity of *M. galloprovincialis*, significant differences in the 48-h EC50 for embryo-larval development were observed between simulated effluent samples. For all four mills, as the concentration of WBL solids in the simulated effluent samples increased, toxicity to *M. galloprovincialis* increased (i.e. the EC50 decreased).

Correlation analysis was able to find significant relationships between WBL solids and three effluent chemical parameters. Significant positive correlations were found between WBL solids and color, DCOD, and polyphenols. Correlation analysis only indicates a significant relationship (not causation), so it may be that some other chemical parameter not measured during this study is more indicative of WBL losses and co-varies with some (or all) of these three chemical parameters. Currently, mill personnel monitor various chemical parameters such as COD, conductivity, and color for the purpose of monitoring WBL losses; these parameters, however, are not specific to WBL and other sources such as the bleach plant contribute to the base load (Steve Stratton, Regional Manager, NCASI, personal communication). Results from this study confirmed the relationship between WBL solids and color, and between WBL solids and COD (measured in this study as DCOD).

Results of correlation analysis using the mill-treated and simulated effluent samples also found significant relationships between chemical parameters and toxicity to M. galloprovincialis. For three out of the four mills (Mill A, Mill B, and Mill C), color and polyphenols were negatively correlated with the 48-h EC50 for M. galloprovincialis embryolarval development (i.e. as the EC50 decreased (toxicity increased) these chemical parameters increased). For two out of four mills (Mill B and Mill C), DCOD was negatively correlated with the 48-h EC50 for *M. galloprovincialis* embryo development. Significant negative correlations were observed between the 48-h EC50 for *M. galloprovincialis* embryo-larval development and abietic acid (Mill A), conductivity (Mill B), and DOC (Mill C). No significant correlations were found between the 48-h EC50 for *M. galloprovincialis* embryo-larval development and Mill D effluent chemical parameters. Again, correlation analysis between these variables only indicates a significant relationship (not causation); further studies could determine whether or not increased abietic acid, color, conductivity, DOC, DCOD, and polyphenols contribute directly to increased toxicity, or if instead they covary with another chemical substance that was not measured during this study. Because color, DCOD, and polyphenols correlate with both WBL solids and increased toxicity to aquatic organisms, examination of these endpoints could be useful to mill personnel in monitoring the potential significance of WBL losses.

Correlation analysis found significant negative correlations between WBL solids and the 48-h EC50 for *M. galloprovincialis* embryo-larval development, and between WBL solids and the 7-d IC25 *C. dubia* reproduction (i.e. as WBL solids increased the toxicity increased (as indicated by a decrease in EC50/IC25)). Results from this study confirm findings reported by Carey et al. (2002) who observed a general trend of increased sub-lethal toxicity (reproduction) to *C. dubia* as estimated WBL losses increased. A significant correlation was not observed between *C. dubia* survival and WBL solids. Whether or not increased WBL is the cause of increased toxicity could be confirmed with further studies that use replication of WBL treatments within a mill instead of a single replicate per WBL treatment as was done here (i.e. simulated effluents from the same mill having the same additions of WBL solids across multiple replicates) and linear regression to predict toxicity based on addition of WBL solids. For this to be logistically feasible (due to laboratory space and time constraints), it is likely that fewer WBL treatment concentrations (i.e. spike levels) would be tested at the same time so that each WBL treatment concentration being examined could be tested in replicate concurrently.

Multivariate methods including cluster analysis (hierarchical, kmeans, and non-metric Riffle) and PCA were used to explore the data for patterns, with the goal of identifying effluent chemical parameters that might relate to WBL solids or effluent toxicity. Consistent across all multivariate methods, simulated effluent samples appeared to be grouping together based on mill rather than on the amount of WBL added (i.e. WBL treatment). Because simulated effluent samples from the same mill were grouping together regardless of WBL solids, it was not possible to identify effluent chemical parameters that were related to increased WBL solids with multivariate methods.

Multivariate methods were also used to identify effluent chemical parameters that might correspond to increased effluent toxicity (i.e. decreased EC50/IC25). If effluent samples with similar toxicity (i.e. similar IC25/EC50s) grouped together, then these methods may have identified the specific chemical parameters driving this trend. Because samples grouped together based on mill (A, B, C, or D) rather than on toxicity (i.e. all effluent samples from Mill A were grouping together and represented samples with a range of IC25s/EC50s), it was not possible to determine specific effluent chemical parameters that consistently corresponded to increased toxicity using multivariate methods.

It was unclear using data from the 48-h embryo-larval development *M. galloprovincialis* toxicity tests whether furnish type (i.e. the type of wood being pulped) was an important factor in the toxicity of biologically treated WBL in kraft mill effluents. The highest toxicity (i.e. lowest EC50s) of WBL-spiked simulated effluent samples were observed for Mill B samples, which uses primarily softwood, while the lowest toxicity (i.e. the highest EC50s) was observed in samples from a mill that also uses softwood (Mill A).

Results from the 7-d *C. dubia* survival and reproduction tests also did not clearly show that furnish type was an important factor in toxicity of biologically treated WBL. For WBL spiked simulated effluent samples, Mill C had the lowest toxicity (i.e. the highest IC25s); across the highest WBL spiked simulated effluent samples (WBL spike 5), Mill A had the highest toxicity (i.e. the lowest IC25).

As with most laboratory studies, the application of results to field situations (or in this case - mill operations) can be challenging. Although the laboratory biotreatment was designed to replicate secondary (biological) treatment at a bleached kraft mill, it is not possible to fully reproduce this process in the laboratory. Because biotreatment ranged from 5-10 d depending on the mill, it may be that some of the simulated effluent samples were more fully treated than others. It is possible that the five day biotreatment of Mill B simulated effluent samples was not sufficient to reduce toxicity, and accounted for simulated effluent samples from this mill having the highest toxicity. Overall DCOD reduction in the

Mill B reactors during biotreatment was 31-37% compared to 41-53% for Mill A, 44-47% for Mill C, and 37-65% for Mill D. Analysis of RAs measured before and after biotreatment to estimate treatment efficiencies for the highest spiked reactor (WBL spike 5) and the reactor control for Mill B and Mill C, however, found that estimated treatment efficiencies ranged from 96.1 to 100% for the highest spiked reactor (WBL spike 5) and from 67.2 to 100% for the reactor control. Due to heavy foaming and high solids content that clogged the aquarium pumps, a longer biotreatment (10 days) was required for Mill C simulated effluent samples. This additional time was required to allow the DCOD to stabilize. Based on the estimated treatment efficiencies using the DCOD data, however, biotreatment of Mill C simulated effluent samples appear similar to those for Mills A and D.

During this study, biotreatment efficiency was measured in terms of overall DCOD reduction. Because reactors from all four mills showed similar reductions in DCOD, all data were pooled together to examine the relationship between WBL solids and effluent chemical parameters. It could be, however, that not all effluent chemical parameters were reduced by the same degree across all four mills during the laboratory biotreatment. For this reason, future studies could examine the relationship between WBL solids and effluent chemical parameters for un-pooled data (i.e. each mill examined individually). Future work might also measure effluent chemical parameters before and after laboratory biotreatment to examine if individual effluent chemical parameters correlate with increased WBL solids before and after biotreatment (for the un-pooled data), and determine if trends are consistent across different mills

Three months prior to the sampling of Mill D for this study, aeration was decreased in the ASB treatment pond which lead to lowered treatment pond DO levels and high effluent BOD. In an effort to increase DO in the final effluent, the mill used pumps to recycle effluent back through the treatment system. During this same time period, the mill experienced a fiber line liquor (dilute WBL) spill. Once BOD levels had decreased, the amount of effluent being recycled through the treatment system was reduced. When Mill D was sampled for this study, approximately 20% of the effluent was still being recycled back into the mill treatment system. According to mill personnel, the treatment system was almost back at normal levels and the treatment system process was fairly representative (Terry Bousquet, Project Leader, NCASI, personal communication). Results of the RA analysis of the Mill D mill-treated effluent sample, however, were over 1 ppm, which is usually indicative of seeing a black liquor spill at a mill (Diana Cook, Principal Research Scientist, NCASI, personal communication). Estimated treatment efficiencies (based on DCOD reductions) for the Mill D simulated effluent samples were also highly variable. Compared to the three other milltreated effluent samples, Mill D showed the highest toxicity to M. galloprovincialis. For the C. dubia tests, however, the Mill C mill-treated effluent sample was more toxic compared to the Mill D mill-treated effluent sample.

Although *M. galloprovincialis* was the primary test organism for this study, the majority of pulp mills in the U.S. have NPDES permits that require the use of *C. dubia* for chronic WET testing (U.S. EPA 2011b). Due to logistical constraints, it was not feasible to conduct toxicity tests with *C. dubia* on all of the simulated effluent samples, so a subset of samples was also tested with *C. dubia*. Results from this study were that *M. galloprovincialis*

are a more sensitive test organism compared to *C. dubia* chronic endpoints with respect to WBL. Although a significant correlation was not found between the toxicity results of the two organisms for this study, analysis of unpublished data generated by NCASI using 124 effluent samples found a significant positive correlation between the IC25 for *C. dubia* reproduction and the 48-h EC50 for *M. galloprovincialis* embryo-larval development (Spearman's rho = 0.57, p < 0.001). The lack of a significant correlation between those measures in this study could be due to not enough tests being conducted concurrently.

While there was a significant correlation between WBL solids and toxicity to both test species, it may be that different chemical parameters present in WBL are responsible for the increased toxicity. In this study, none of the effluent chemical parameters examined correlated with increased toxicity to *C. dubia* chronic endpoints. The lack of a significant correlation between effluent chemical parameters and toxicity to *C. dubia* chronic endpoints in this study could be due to not enough tests being conducted. Future work should investigate the relationship between these two chronic tests to determine if increased toxicity is due to the same effluent chemical parameter(s). One approach would be to examine individual chemical parameters that correlated with increased toxicity to *M. galloprovincialis* (i.e. abietic acid, color, conductivity, DOC, DCOD, and polyphenols) to see if there is a relationship between these parameters and increased toxicity to *C. dubia* chronic endpoints.

Analysis by Carey et al. (2002) using Cycle 2 EEM data from six bleached kraft mills in British Columbia found a general trend of increased sub-lethal (reproductive) toxicity to fish with increased.estimated WBL losses. Because the 7-d *P. promelas* survival and growth toxicity tests is the second most commonly used freshwater WET test for evaluating the chronic toxicity of mill effluents to aquatic organisms under the NPDES permitting system (U.S. EPA 2011b), further studies might also be conducted to confirm findings by Carey et al. (2002). Future work might focus on other marine and estuarine WET test species; those currently used for evaluating chronic WET of pulp mill effluents include *Menidia spp* and *A*, *bahia*; (U.S. EPA 2011b).

5.0 CONCLUSIONS

This study provides the first results about the chronic and sub-lethal toxicity of treated WBL to aquatic organisms. Similar to studies previously conducted using untreated WBL, an increase in chronic toxicity was observed as the amount of treated WBL increased. Although increased WBL solids were related to increased chronic toxicity to both test organisms, *M. galloprovincialis* appear to be a more sensitive test organism with respect to WBL. Color, DCOD, and polyphenols were positively correlated with increased WBL, and of those three parameters, color and polyphenols were negatively correlated with the 48-h EC50 for *M. galloprovincialis* embryo-larval development.

Future research could focus on individual effluent chemical parameters that correlated with either toxicity or WBL solids (i.e. abietic acid, color, conductivity, DOC, DCOD or polyphenols) to further determine effluent components in WBL that might contribute to final mill effluent toxicity. One approach could be to determine the chemistry and toxicity of biotreated mill effluent samples with variable levels (or extreme high or extreme low levels) of these individual chemical parameters. This would provide information about whether or not the relationship between the chemical parameter and WBL solids, or between the chemical parameter and toxicity is consistent across a wide range of possible values. To

confirm if an individual chemical parameter correlates with WBL solids and effluent toxicity, a TIE correlation or species sensitivity approach could be used. The TIE correlation approach uses toxic units (TUs) to examine the relationship between effluent toxicity and the toxicity of an individual chemical parameter to determine if there is a consistent relationship between the concentration of a specific toxicant (i.e. chemical parameter) and effluent toxicity (Mount and Norberg-King 1993). This would require additional testing of mill effluents having a wide range of toxicities (in addition do a wide range of chemical measurements). The TIE species sensitivity approach uses toxicity tests with two different organisms of varying sensitivities to determine the ratio of toxicity of a suspect toxicant (i.e. individual chemical parameter) to the toxicity of the effluent sample. If the individual chemical parameter is responsible for toxicity, the ratio between toxicity of the individual parameter and toxicity of mill effluent will be the same for the two test organisms (Mount and Norberg-King 1993). It is possible, however, that some unmeasured effluent chemical parameter(s) may be related to increased toxicity and WBL losses, so future work might also use different tools to identify the unknown parameters(s). One such approach might be to use a combination of GC-MS and PCA to look for trends in the more comprehensive chemical data. Another factor to consider is particle size analysis of the WBL solids; it may be that particle size of WBL components is an important factor in bioavailability and toxicity to aquatic organisms.

Results of the multivariate analysis were that simulated effluent samples were most similar based on mill origin, rather than factors such as chronic toxicity or WBL solids. Because effluent composition between mills was so variable, it is difficult to apply findings from this study to other bleached kraft mills in the U.S. To overcome this challenge, one approach might be to use composite samples from several mills to evaluate the chronic toxicity and composition of WBL. The composite sample approach would however need to take into account several factors, including whether the resulting composite sample would have an additive, antagonistic, or synergistic, effect on chronic toxicity. The overall goal of this approach would be to determine more broadly which WBL chemical parameters generally contribute to increased toxicity.

REFERENCES

- Adams TN, Frederick WJ, Grace TM, Hupa M, Lisa K, Jones AK, Tran H. 1997. *Kraft Recovery Boilers*. TAPPI Press, Atlanta, GA, USA.
- American Public Health Association (APHA). 1998. *Standard Methods for the Examination* of Water and Wastewater, 20th ed. American Public Health Association, American Water Works Association, and Water Pollution Control Federation. Washington, DC, USA.
- Balcan M, Gupta P. 2010. Robust Hierarchical Clustering. In Kalai AT, Mohri M, eds, *Proceedings of the 23rd Conference on Learning Theory (COLT)*. OmniPress for the Association for Computational Learning, Madison, WI, USA, pp 282-294.
- Barkley WA, Hardan KJ, Anderson DH, Folster HG. 1986. Characterization of weak black liquor and its effect on aerated lagoon operation. In Water Pollution Control Federation, ed, *Proceedings of the Industrial Wastes Symposia*. Water Pollution Control Federation, Alexandria, VA, USA, pp 1-16.
- Biermann CJ. 1996. *Handbook of Pulping and Papermaking*. Academic Press, San Diego, CA, USA.
- Burnison BK, Hodson PV, Nuttley DJ, Efler S. 1996. A bleached-kraft mill effluent fraction causing induction of a fish mixed-function oxygenase enzyme. *Environ Toxicol Chem* 15:1524-1531.
- Carey JC, Hall E, McCubbin N. 2002. Review of scientific basis for AOX effluent standard in British Columbia. Report prepared for Minister of Water, Land and Air Protection of British Columbia. Ministry of Water, Land and Air Protection in British Columbia, Vancouver, BC, Canada.
- Chandrasekaran K, Reis R, Tanner G, Rogers H. 1978. Removing toxicity in an aerated stabilization basin. *Pulp and Paper Canada* 79:65-75.
- Crawley MJ. 2007. The R Book. John Wiley & Sons Ltd., Chichester, UK.
- den Besten PJ. 2005. *Ecological Testing of Freshwater and Marine Systems*. Taylor & Francis Group, LLC, Boca Raton, FL, USA.
- Environment Canada. 2005 (with June 2007 amendments). Guidance document on statistical methods for environmental toxicity tests. EPS 1/RM/46. Environment Canada, Method Development and Applications Section, Environmental Technology Centre, Ottawa, ON, Canada.
- Hach. 2003. Water Analysis Handbook. Hach Company, Loveland, CO, USA.
- Hanmer R. 1988. Environmental protection in the United States pulp, paper, and paperboard industry; an overview of regulation of wastewater under the U.S. Clean Water Act. *Water Sci Technol* 20:1-7.
- Hewitt LM, Kovacs TG, Dubé MG, MacLatchy DL, Martel PH, McMaster ME, Paice MG, Parrott JL, van den Heuvel MR, Van Der Kraak GJ. 2008. Altered reproduction in fish

exposed to pulp and paper mill effluents; roles of individual compounds and mill operating conditions. *Environ Toxicol Chem* 27:682-697.

- Hodson PV, Maj MK, Efler S, Burnison BK, van Heiningen ARP, Girard R, Carey JH. 1997. MFO induction in fish by spent cooking liquors from kraft pulp mills. *Environ Toxicol Chem* 16:908-916.
- Johnson D. 1988. Development of *Mytilus edulis* embryos: a bioassay for polluted waters. *Mar Ecol Prog Ser* 45:135-138.
- Kelly CR, Hargreaves TL, Golden R, Holm SE, Deardorff TL, Festa JL. 2004. Toxicity investigations associated with *Daphnia magna* and *Pimephales promelas* exposed to spent pulping liquor from an elemental chlorine free kraft mill. In Borton DL Hall TJ, Fisher RL, Thomas JF. eds, *Pulp and Paper Mill Effluent Environmental Fate and Effects*. DEStech Publications, Inc., Lancaster, PA, USA, pp 304-309.
- Lowell RB, Ring B, Pastershank G, Walker S, Trudel L, Hedley K. 2005. National assessment of pulp and paper environmental effects monitoring data: Findings from cycles 1 through 3. NWRI Scientific Assessment Report Series 5. National Water Research Institute, Burlington, ON, Canada.
- Meriläinen P, Oikari A. 2008. Exposure assessment of fishes to a modern pulp and paper mill effluents after a black liquor spill. *Environ Monit Assess* 144:419-435.
- Matthews, R.A. 2011. Multivariate analysis nonmetric clustering. Western Washington University, Bellingham, WA, USA. Retrieved August 30th, 2011 from http://ceratium.ietc.wwu.edu/IWS2/people/classes/classes/ESCI503/cluster2BMR.pdf
- Matthews G, Hearne J. 1991. Clustering without a metric. *IEEE Trans Pattern Anal Mach Intell* 13:175-184.
- Matthews GB, Matthews RA, Landis WG. 1995. Nonmetrics clutering and association analysis: implications for the evaluation of multispecies toxicity test and field monitoring. In Hughes JS, Biddinger GR, Mones E, eds, *Environmental Toxicology and Risk Assessment*, 3rd Vol. American Society for Testing and Materials, Philadelphia, PA, USA, pp 79-93.
- Mount DI, Norberg-King TJ. 1993. Methods for aquatic toxicity identification evaluations: phase III toxicity confirmation procedures for samples exhibiting acute and chronic toxicity. EPA-600-R-92-081. U.S. Environmental Protection Agency, Office of Research and Development, Deluth, MN, USA.
- National Council for Air and Stream Improvement, Inc. (NCASI). 1997. Methods manual. National Council for Air and Stream Improvement, Inc., Research Triangle Park, NC, USA.

_____. 2000. An update of procedures for the measurement of color in pulp mill wastewaters. Technical Bulletin No. 803. National Council for Air and Stream Improvement, Inc., Research Triangle Park, NC, USA.

.2011. NCASI study of GHG and energy benefits of using black liquor presented to EPA. NCASI Bulletin Board Vol 37(2): 1.

- Newman MC, Unger MA. 2003. *Fundamentals of Ecotoxicology*. CRC Press, Boca Raton, FL, USA.
- Rand GM. 1995. *Fundamentals of Aquatic Toxicology*, 2nd ed. Taylor & Francis, Washington, DC, USA.
- Rod'ko Y, Scott BF, Carey JH. 1996. Analysis of pulp mill black liquor for organosulfur compounds using GC/atomic emission detection. In Servos MS, Munkittrick KR, Carey JH, Van der Kraak GV, eds, *Environmental Fate and Effects of Pulp and Paper Mill Effluents*, St. Lucie Press, Delray Beach, FL, USA, pp 195-202.
- Servizi JA, Gordon RW. 1973. Detotoxification of kraft pulp-mill effluent by an aerated lagoon. *Pulp and Paper Magazine of Canada* 74:103-110.
- Schnell A, Hodson PV, Steel P, Melcer H, Carey JH. 1993. Optimized biological treatment of bleached kraft mill effluents for the enhanced removal of toxic compounds and MFO induction response in fish. In Canadian Pulp and Paper Association, ed, *Proceedings of the 1993 Environment Conference Technical Section*, Montréal, Québec, Canada, pp 97-111.
- Smook GA. 1990. *Handbook of Pulp and Paper Terminology*. Angus Wilde Publications, Vancouver, BC, Canada.
- Sturm A, Hodson PV, Carey JH, Hansen P-D. 1999. Hepatic UDP-glucuronosyltransferase in Rainbow trout (*Oncorhynchus mykiss*) and preliminary assessment of respond to pulp mill cooking liquor. *Bull Environ Contam Toxicol* 62:608-615.
- Technical Association of the Pulp and Paper Industry (TAPPI). 1996. *Dictionary of Paper*, 5th ed. TAPPI Press, Atlanta, GA, USA.

____. 2009. T650 om-09 solids content of black liquor. TAPPI Press, Atlanta, GA, USA.

- Timbrell J. 2000. *Principles of Biochemical Toxicology*, 3rd ed, Taylor & Francis, Philadelphia, PA, USA.
- Torres GJ, Basnet RB, Sung AH, Mukkamala S, Ribeiro BM. 2009. A similarity measure for clustering and its applications. *Int J Electr Comput Syst Eng* 3:164-170.
- U. S. Environmental Protection Agency (U. S. EPA). 1995. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to west coast marine and estuarine organisms, 1st ed. EPA-600-R-95-136. U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA.

_____. 2002a. Profile of the pulp and paper industry. EPA-310-R-02-002. U.S. Environmental Protection Agency, Office of Compliance Sector Notebook Project, Washington, DC, USA.

_____.2002b. Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms, 5th ed. EPA-821-R-02-012. U.S. Environmental Protection Agency, Office of Water, Washington, DC, USA.

_____.2002c. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms, 4th ed. EPA-821-R-02-013. U.S. Environmental Protection Agency, Office of Water, Washington, DC, USA.

_____. 2002d. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to marine and estuarine organisms, 3rd ed. EPA-821-R-02-014. U.S. Environmental Protection Agency, Office of Water, Washington, DC, USA.

_____.2009. *Ceriodaphnia dubia* chronic toxicity test report form. U.S. Environmental Protection Agency, Region 8, Denver, CO, USA. Retrieved November 1st, 2011 from <u>http://www.epa.gov/region8/water/wet/pdf/Ceriodaphnia%20dubia%20CHRONIC%20T</u> <u>OXICITY%20TEST%20REPORT%20FORMAT.pdf.</u>

.2011a. Effluent guidelines – pulp and paper rulemaking actions- final pulp and paper cluster rule. U.S. Environmental Protection Agency, Office of Water, Washington, DC, USA. Retrieved July 1st, 2011 from

http://water.epa.gov/scitech/wastetech/guide/pulppaper/cluster.cfm.

_____. 2011b. Water data systems – permit compliance system. U.S. Environmental Protection Agency, Office of Compliance, Washington, DC, USA. Retrieved July 13th, 2011 from http://www.epa.gov/oecaerth/data/systems/water/index.html.

- Vadodaria SJ. 1999. Effect of black liquor on the activated sludge process: An experimental investigation of black liquor on the activated sludge treatment of bleached kraft mill effluents. M.S. Thesis. McGill University, Montreal, QC,Canada.
- Washington State Department of Ecology (WDOE). 2008. Laboratory guidance and whole effluent toxicity test review criteria. WQ-R-95-80. Washington State Department of Ecology, Water Quality Program, Olympia, WA, USA.
- Zacharewski TR, Berhane K, Gillesby BE. 1995. Detection of estrogen- and dioxin-like activity in pulp and paper mill black liquor and effluent using *in vitro* recombinant receptor/reporter gene assays. *Environ Sci Technol* 29:2140-2146.

Xiao, C. 2005. Black liquor from crop straw pulping as a potassium source and soil amendment. PhD thesis. Washington State University, Pullman, WA, USA.

APPENDIX A

West Coat Regional Center Laboratory Biotreatment Standard Operating Procedure

1.0 Sampling and background analysis

Sample bottles and blue ice need to be shipped to the mill and arrangements made for sample collection at least two weeks prior to sampling to avoid overnight or short term shipping costs. Ideally, the mill should collect the materials on Monday and ship Tuesday, but with this large a volume we found that some of the mills had problems with this, so it is very difficult to anticipate exactly when the reactor set-up begins.

Sample Type	Volume Collected
FE - Final Effluent	7 x 1L
INF - 1° Clarifier Effluent (Influent to Treatment)	20 gallons
TPWW-Treatment Pond Wastewater	8 gallons
WBL – Weak Black Liquor	20 x 30 ml

Note: We asked the mill to collect and ship the WBL prior to sampling so we could conduct solids and other analytical measurements in advance of the reactor set-up. Shipping of WBL requires special handling in order to be shipped under a small quantity exception for dangerous goods.

Treated effluent:

- WCRC –3 Liters split and preserved as follows:
 - 1 L pH 2 preserved (as per phytosterols)
 - 500 ml pH 10 preserved (as per RAs)
 - 500 ml unpreserved for GC/MS screening
 - 100 ml to be filtered and preserved to pH 2 for DOC and DCOD
- NABF:
 - 2 liters amber glass, unpreserved for NABF bioassays and chemistry
- SABF
 - 2 liter amber glass, unpreserved for bioassays

Weak Black Liquor: Composite all 20 containers of WBL

- WBL Neat: Conduct a solids determination from the composite sample.
- WBL reactor spiking solution: Dilute a portion 1:1 and pH adjust to between 9 and 10 in order to facilitate transfer of WBL aliquots to reactors and minimize the need to adjust reactor pH after spiking.
- WBL Analytical Dilution: Prepare 1:200 dilution of WBL for COD, DCOD, BOD, and TOC background analyses.

Influent and treatment pond wastewaters:

- Aliquots of influent and treatment pond wastewaters should be collected and preserved as needed for background analyses of solids, COD, DCOD, BOD and DOC.
- Influent and treatment pond wastewaters should be partitioned into BLSS reactors on the day of arrival.

2.0 Equipment and operations

2.1 Monitoring with YSI probes:

A YSI 5200 Recirculation System Monitor and a YSI 5562 probe module will be used for measuring dissolved oxygen (DO), temperature, pH, oxidation reduction potential (ORP), and conductivity.

Acquisition of the YSI 5200 monitors data output is made via a RJ-45 Cat 5 network cable connected to a serial port on the computer and the data is viewed and managed by AquaManager-Windows software.

The probes sensors will be checked for proper performance before runs each day of testing by using appropriate standards for calibration or calibration verification.

2.2 Reactor chamber and gas flow regulation:

A glass three door refrigerator is used for maintaining temperature equilibrium in the reactors. Temperature in the carboy will be maintained at 30 ± 2 °C by a separate carboy filled with water which is wrapped with a 12 **X** 24 inch rubber silicone heating pad controlled by a cyclic on/off controller and a rheostat power controller. Temperature control is verified using the YSI probe.

Compressed air and nitrogen with two stage regulators are connected to a stainless steel three-way valve, an on/off toggle valve and a flow meter for flow management.

Flow rate is monitored by a 0-2 L/min flow meter calibrated at test flow rates with a 1000 ml glass bubble meter.

The probe module, gas inlet and a ¹/₄ inch OD Teflon® exit line are positioned in holes cut into a # 12 silicone rubber stopper.

2.3 Miscellaneous equipment

Syringe filters, Acrodisc glass, 25 mm dia. (1.0 µm) VWR, Cat. # 28143-986

Syringe filters 0.45 µm

Ammonia dipsticks

3.0 Reactor set-up

3.1 Reactor preparation

To each of six reactors add 8.5 L of ASB influent into a glass carboy. In order to ensure each reactor make-up is the same, mix the contents of 3 gallon containers into a large carboy and transfer 2 liters of the combined mix to each carboy, continue to combine and distribute ASB influent until each reactor contains 8.5 L. Attach a submersible aquarium pump, via the pumps suction cup feet, to the bottom on one side of the carboy. Insert a 1 inch spherical air stone connected with Tygon[®] tubing to an aquarium pump manifold on the opposite side and purge with room air at approximately 1.5L/min for one hour then add 1.5 L of ASB-TPWW to each reactor using a dipstick and add nutrients to all reactors, if necessary. Collect an aliquot of sample from one of the reactors to conduct background COD and DCOD measurements. It is necessary to run the reactors overnight to promote biological activity and achieve the desired reactor temperatures.

Place YSI 5200 probes in the control and (RWBL-5). Monitor for DO, temperature, pH, ORP and conductivity. Nutrients are likely to be consumed and DO levels will likely drop overnight. Therefore, the nutrient levels should be checked again prior to spiking with WBL. After purging overnight, spike each reactor with WBL. The WBL volumes are determined based on the WBL solids content in an attempt to ensure that nominally equivalent amounts of WBL were added in each study.

3.2 Reactor monitoring and analysis

Day 0: Take an aliquot from each reactor for COD/DCOD measurements. Take an 800 ml aliquot from the control and RWBL-5, allow solids to settle, decant off ~ 600 ml, filter a 30 ml portion for ortho-phosphate and ammonia analysis and pH 10 preserve the remainder for RA/FA analyses. If necessary, add nutrients. Ensure the aeration systems are not plugged.

Daily: Take an aliquot from each reactor for DCOD measurements, check DO levels and ammonia levels. Add nutrients, if necessary. Run DCOD analyses daily or every other day to evaluate reactor treatment processes. Once the DCOD measurements have stabilized, discontinue the reactor (Day n) study.

Day n: Take an aliquot from each reactor for COD/DCOD measurements. Discontinue aeration and allow solids to settle for at least one hour. Siphon the effluent from each reactor avoiding the settled solids into their respective sample containers as noted below

Lab	Sample volumes/preservation
NABF	2 L unpreserved
SABF	2 L unpreserved
WCRC	1 L unpreserved
WCRC	1 L pH 2 preserved
WCRC	1 L pH 10 preserved
WCRC	0.03 L (Ctrl nutrients)

Ship aliquots to the respective laboratories on the date the reactors are discontinued.

Clean-up reactors, fill with water and ~ 100 ml RBS soap and let soak overnight. Rinse and set aside for next set-up.

APPENDIX B

Test Chamber Chemistry for Mytilus galloprovincialis Toxicity Tests

Table 48. Test chamber chemistry for 48-h *Mytilus galloprovincialis* embryo-larval development tests measured at test initiation and test termination for Mill A mill-treated and simulated effluent samples. NM: not measured; DO: dissolved oxygen; WBL: weak black liquor.

			Test Initiat	tion		Test Termina	tion
Effluent Sample	Test treatment	рΗ	Salinity (‰)	Temperature (°C)	рН	DO (mg/L)	Salinity (‰)
Mill-treated effluent	Control	NM	31	NM	7.8	6.9	30
	Brine Control	NM	30.5	NM	7.9	6.7	30
	1.1% effluent	NM	30	NM	8.0	6.9	31
	2.2% effluent	NM	30	NM	8.0	6.9	30
	4.4% effluent	NM	30	NM	8.0	7.0	31
	8.75% effluent	NM	30	NM	8.1	7.0	31
	17.5% effluent	NM	31	NM	8.2	7.0	31
	35% effluent	NM	31	NM	8.3	7.0	31
	70% effluent	NM	33	NM	8.4	6.9	33
Reactor Control	Control	7.78	32	19.0	7.89	6.85	30
	Brine Control	7.90	30	21.0	7.78	6.96	32
	1.1% effluent	7.90	32	20.5	7.88	6.91	32
	2.2% effluent	7.95	32	20.5	NM	NM	NM
	4.4% effluent	7.94	32	20.0	NM	NM	NM
	8.75% effluent	7.96	33	20.5	NM	NM	NM
	17.5% effluent	7.98	31	20.5	7.92	6.77	32
	35% effluent	8.04	32	20.5	NM	NM	NM
	70% effluent	8.10	32	21.0	NM	NM	NM
WBL Spike 1	Control	7.78	32	19.0	7.88	7.08	32
	Brine Control	7.90	30	21.0	7.79	7.13	32
	1.1% effluent	7.96	NM	21.0	7.83	7.25	32
	2.2% effluent	7.99	32	21.0	NM	NM	NM
	4.4% effluent	7.98	32	21.0	NM	NM	NM
	8.75% effluent	8.00	32	21.0	NM	NM	NM
	17.5% effluent	7.99	32	21.0	NM	NM	NM
	35% effluent	8.02	32	20.5	NM	NM	NM
	70% effluent	8.06	32	20.5	8.07	7.13	33

	- /		Test In	itiation		Test Termi	nation
Effluent Sample	Test treatment	pН	Salinity (‰)	Temperature (°C)	рH	DO (mg/L)	Salinity (‰)
WBL spike 2	Control	7.78	32	19.0	7.90	7.25	32
	Brine Control	7.90	30	21.0	7.76	7.23	32
	1.1% effluent	7.98	32	21.0	NM	NM	33
	2.2% effluent	8.00	32	20.5	7.89	7.32	32
	4.4% effluent	NM	NM	20.5	NM	NM	NM
	8.75% effluent	8.01	31	20.0	NM	NM	NM
	17.5% effluent	8.06	32	21.0	NM	NM	NM
	35% effluent	8.09	30	20.0	7.98	7.23	32
	70% effluent	8.13	32	20.0	NM	NM	32
WBL spike 3	Control	7.78	32	19.0	7.86	7.23	32
	Brine Control	7.90	30	21.0	7.75	7.19	31
	1.1% effluent	8.03	32	21.0	NM	NM	33
	2.2% effluent	NM	32	21.0	7.87	7.23	32
	4.4% effluent	NM	32	20.5	NM	NM	NM
	8.75% effluent	NM	32	20.0	NM	NM	NM
	17.5% effluent	NM	32	20.0	NM	NM	NM
	35% effluent	NM	32	20.5	NM	NM	NM
	70% effluent	8.15	32	20.0	8.08	7.14	33
WBL spike 4	Control	7.78	32	19.0	7.90	7.27	32
	Brine Control	7.90	30	21.0	7.78	7.29	31
	1.1% effluent	7.91	32	20.0	7.86	7.20	32
	2.2% effluent	NM	32	20.0	NM	NM	NM
	4.4% effluent	NM	32	20.0	NM	NM	NM
	8.75% effluent	NM	32	19.0	NM	NM	NM
	17.5% effluent	NM	32	18.5	NM	NM	NM
	35% effluent	NM	32	18.5	NM	NM	NM
	70% effluent	8.19	32	20.5	8.13	7.15	33

	Taat		Test In	itiation		Test Termination			
Effluent Sample	Test treatment	рН	Salinity (‰)	Temperature (°C)	рН	DO (mg/L)	Salinity (‰)		
WBL spike 5	Control	7.78	32	19.0	7.82	NM	NM		
	Brine Control	7.90	30	21.0	7.85	7.07	32		
	1.1% effluent	7.97	32	21.0	7.90	6.99	32		
	2.2% effluent	NM	32	21.0	NM	NM	NM		
	4.4% effluent	NM	32	20.5	NM	NM	NM		
	8.75% effluent	NM	32	20.0	NM	NM	NM		
	17.5% effluent	NM	32	21.0	NM	NM	NM		
	35% effluent	NM	32	21.0	NM	NM	NM		
	70% effluent	8.19	32	21.0	8.13	6.87	32		

Effluent samples			Test In	itiation		Test Termi	nation
tested concurrently	Test treatment	рΗ	Salinity (‰)	Temperature (°C)	рΗ	DO (mg/L)	Salinity (‰)
Mill effluent	Control	NM	31	NM	8.1	7.0	30
	3.0 µg/L Cu	NM	31	NM	8.0	6.9	31
	4.4 µg/L Cu	NM	30	NM	8.0	7.0	30
	6.5 µg/L Cu	NM	30	NM	8.0	7.0	30
	9.5 µg/L Cu	NM	30	NM	8.0	6.9	30
	13.9 µg/L Cu	NM	31	NM	8.0	6.9	31
	20.4 µg/L Cu	NM	31	NM	8.0	6.9	31
Simulated effluents	Control	7.78	32	19.0	7.93	7.01	31
	3.0 µg/L Cu	7.73	31	19.5	NM	6.90	32
	4.4 µg/L Cu	7.72	32	19.0	NM	NM	NM
	6.5 µg/L Cu	7.75	32	19.5	NM	NM	NM
	9.5 µg/L Cu	7.60	32	19.5	NM	NM	NM
	13.9 µg/L Cu	7.74	32	19.0	NM	NM	NM
	20.4 µg/L Cu	7.77	32	19.0	7.89	6.98	32

Table 49. Test chamber chemistry for 48-h *Mytilus. galloprovincialis* embryo-larval development tests measured at test initiation and test termination for reference toxicant tests run with Mill A samples. NM: not measured; DO: dissolved oxygen.

Table 50. Test chamber chemistry for 48-h *Mytilus galloprovincialis* embryo-larval development tests measured at test initiation and test termination for Mill B mill-treated and simulated effluent samples. NM: not measured; DO: dissolved oxygen; WBL: weak black liquor.

			Test Ini	tiation	Test Termination			
Effluent Sample	Test treatment	рН	Salinity (‰)	Temperature (°C)	pН	DO (mg/L)	Salinity (‰)	
Mill-treated effluent	Control	7.74	32	18.60	8.06	7.56	32	
	Brine Control	8.15	32	18.60	8.08	7.77	31	
	1.1% effluent	7.70	31	17.90	8.13	7.44	32	
	2.2% effluent	NM	32	NM	NM	NM	32	
	4.4% effluent	NM	32	NM	NM	NM	31	
	8.75% effluent	NM	32	NM	NM	NM	32	
	17.5% effluent	NM	28	NM	NM	NM	28	
	35% effluent	NM	32	NM	NM	NM	32	
	70% effluent	7.67	32	18.70	8.41	7.38	32	
Reactor control	Control	7.80	32	17.9	7.99	7.03	32	
	Brine Control	8.14	32	18.1	8.01	7.20	32	
	1.1% effluent	7.85	32	18.1	8.04	7.01	32	
	2.2% effluent	NM	32	NM	NM	NM	NM	
	4.4% effluent	NM	32	NM	NM	NM	NM	
	8.75% effluent	NM	32	NM	NM	NM	NM	
	17.5% effluent	NM	32	NM	NM	NM	NM	
	35% effluent	NM	32	NM	NM	NM	NM	
	70% effluent	8.16	32	17.8	8.35	6.94	32	
WBL spike 1	Control	NM	NM	NM	8.10	7.22	32	
	Brine Control	NM	NM	NM	8.05	7.32	31	
	1.1% effluent	7.84	32	18.0	8.05	7.03	33	
	2.2% effluent	32.00	32	NM	NM	NM	NM	
	4.4% effluent	32.00	32	NM	NM	NM	NM	
	8.75% effluent	32.00	32	NM	NM	NM	NM	
	17.5% effluent	NM	32	NM	NM	NM	NM	
	35% effluent	NM	32	NM	NM	NM	NM	
	70% effluent	8.11	32	18.1	8.40	7.05	32	

	Teet		Test In	itiation		Test Termi	nation
Effluent Sample	Test treatment	pН	Salinity (‰)	Temperature (°C)	pН	DO (mg/L)	Salinity (‰)
WBL spike 2	Control	NM	NM	NM	NM	NM	NM
I I	Brine Control	NM	NM	NM	NM	NM	NM
	1.1% effluent	7.86	32	18.3	8.07	7.07	32
	2.2% effluent	NM	32	NM	NM	NM	NM
	4.4% effluent	NM	32	NM	NM	NM	NM
	8.75% effluent	NM	32	NM	NM	NM	NM
	17.5% effluent	NM	32	NM	NM	NM	NM
	35% effluent	NM	32	NM	NM	NM	NM
	70% effluent	8.20	32	18.3	8.41	6.94	33
WBL spike 3	Control	NM	NM	NM	8.09	7.21	32
·	Brine Control	NM	NM	NM	8.02	7.18	31
	1.1% effluent	7.86	32	NM	8.04	7.27	32
	2.2% effluent	NM	32	NM	NM	NM	NM
	4.4% effluent	NM	32	NM	NM	NM	NM
	8.75% effluent	NM	32	NM	NM	NM	NM
	17.5% effluent	NM	32	NM	NM	NM	NM
	35% effluent	NM	32	NM	NM	NM	NM
	70% effluent	8.20	34	18.3	8.42	7.11	33
WBL spike 4	Control	NM	NM	NM	NM	NM	NM
-	Brine Control	NM	NM	NM	NM	NM	NM
	1.1% effluent	7.86	33	18.0	8.12	7.15	32
	2.2% effluent	NM	32	NM	NM	NM	NM
	4.4% effluent	NM	33	NM	NM	NM	NM
	8.75% effluent	NM	33	NM	NM	NM	NM
	17.5% effluent	NM	34	NM	NM	NM	NM
	35% effluent	NM	34	NM	NM	NM	NM
	70% effluent	8.15	34	18.3	8.46	7.13	34

	Test		Test In	itiation		Test Termi	nation
Effluent Sample	treatment	рΗ	Salinity (‰)	Temperature (°C)	рΗ	DO (mg/L)	Salinity (‰)
WBL spike 5	Control	NM	NM	NM	NM	NM	NM
-	Brine Control	NM	NM	NM	NM	NM	NM
	1.1% effluent	7.85	33	18.1	8.11	7.16	33
	2.2% effluent	NM	33	NM	NM	NM	NM
	4.4% effluent	NM	34	NM	NM	NM	NM
	8.75% effluent	NM	34	NM	NM	NM	NM
	17.5% effluent	NM	34	NM	NM	NM	NM
	35% effluent	NM	34	NM	NM	NM	NM
	70% effluent	8.13	34	18.1	8.47	7.11	34
WBL spike 5	Control	7.80	32	17.9	8.06	7.20	32
(unsettled sample)	Brine Control	8.14	32	18.1	8.03	7.12	32
	1.1% effluent	7.76	32	18.0	8.07	7.09	32
	2.2% effluent	NM	32	NM	NM	NM	NM
	3.3% effluent	NM	32	NM	NM	NM	NM
	4.4% effluent	NM	32	NM	NM	NM	NM
	8.75% effluent	NM	32	NM	NM	NM	NM
	17.5% effluent	NM	34	NM	NM	NM	NM
	35% effluent	8.19	34	18.0	8.45	7.21	32

Effluent samples	Test		Test In	itiation		Test Termi	nation
tested concurrently	treatment	рΗ	Salinity (‰)	Temperature (°C)	рΗ	DO (mg/L)	Salinity (‰)
Mill effluent	Control	7.74	32	18.60	8.13	7.55	30
	3.0 µg/L Cu	8.15	32	18.00	8.13	7.55	30
	4.4 µg/L Cu	7.88	32	NM	NM	NM	NM
	6.5 µg/L Cu	NM	32	NM	NM	NM	NM
	9.5 µg/L Cu	NM	32	NM	NM	NM	NM
	13.9 µg/L Cu	NM	32	NM	NM	NM	NM
	20.4 µg/L Cu	7.89	32	18.40	8.12	7.51	31
Simulated effluents	Control	7.80	32	17.9	8.09	7.16	32
	3.0 µg/L Cu	7.89	32	18.1	8.05	7.15	33
	4.4 µg/L Cu	NM	32	NM	NM	NM	NM
	6.5 µg/L Cu	NM	32	NM	NM	NM	NM
	9.5 µg/L Cu	NM	32	NM	NM	NM	NM
	13.9 µg/L Cu	NM	32	NM	NM	NM	NM
	20.4 µg/L Cu	7.88	31	18.0	8.06	6.96	32

Table 51. Test chamber chemistry for 48-h *Mytilus galloprovincialis* embryo-larval development tests measured at test initiation and test termination for reference toxicant tests run with Mill B samples. NM: not measured; DO: dissolved oxygen.

Table 52. Test chamber chemistry for 48-h *Mytilus galloprovincialis* embryo-larval development tests measured at test initiation and test termination for Mill C mill-treated and simulated effluent samples. NM: not measured; DO: dissolved oxygen; WBL: weak black liquor

	Test		Test In	itiation	Test Termination			
Effluent Sample	treatment	рΗ	Salinity (‰)	Temperature (°C)	рΗ	DO (mg/L)	Salinity (‰)	
Mill-treated effluent	Control	7.79	32	18.4	8.07	7.64	32	
	Brine Control	8.29	30	18.6	8.09	7.64	31	
	1.1% effluent	7.77	32	18.6	8.08	7.57	32	
	2.2% effluent	NM	32	NM	NM	NM	NM	
	4.4% effluent	NM	32	NM	NM	NM	NM	
	8.75% effluent	NM	32	NM	NM	NM	NM	
	17.5% effluent	NM	32	NM	NM	NM	NM	
	35% effluent	NM	33	NM	NM	NM	NM	
	70% effluent	7.87	33	19.1	8.52	7.42	33	
Reactor control	Control	7.75	32	19.2	7.44	7.33	31	
	Brine Control	8.06	30	18.8	7.74	7.27	32	
	1.1% effluent	7.78	31	18.6	7.90	7.31	32	
	2.2% effluent	NM	31	NM	NM	NM	NM	
	4.4% effluent	NM	31	NM	NM	NM	NM	
	8.75% effluent	NM	31	NM	NM	NM	NM	
	17.5% effluent	NM	32	NM	NM	NM	NM	
	35% effluent	NM	32	NM	NM	NM	NM	
	70% effluent	8.10	32	18.4	8.26	7.25	33	
WBL spike 1	Control	7.75	32	19.2	NM	NM	NM	
	Brine Control	8.06	30	18.8	NM	NM	NM	
	1.1% effluent	7.83	31	18.6	8.03	7.37	32	
	2.2% effluent	NM	31	NM	NM	NM	NM	
	4.4% effluent	NM	31	NM	NM	NM	NM	
	8.75% effluent	NM	31	NM	NM	NM	NM	
	17.5% effluent	NM	32	NM	NM	NM	NM	
	35% effluent	NM	32	NM	NM	NM	NM	
	70% effluent	8.13	32	18.8	8.30	7.21	34	

	Test		Test In	itiation	Test Termination			
Effluent Sample	treatment	рΗ	Salinity (‰)	Temperature (°C)	рΗ	DO (mg/L)	Salinity (‰)	
WBL spike 2	Control	7.75	32	19.2	7.97	7.44	32	
-	Brine Control	8.06	30	18.8	7.92	7.35	32	
	1.1% effluent	7.83	31	18.9	7.93	7.53	31	
	2.2% effluent	NM	31	NM	NM	NM	NM	
	4.4% effluent	NM	31	NM	NM	NM	NM	
	8.75% effluent	NM	31	NM	NM	NM	NM	
	17.5% effluent	NM	32	NM	NM	NM	NM	
	35% effluent	NM	32	NM	NM	NM	NM	
	70% effluent	8.16	32	18.8	8.32	7.78	33	
WBL spike 3	Control	7.75	32	19.2	NM	NM	NM	
-	Brine Control	8.06	30	18.8	NM	NM	NM	
	1.1% effluent	7.83	32	18.6	8.06	7.39	34	
	2.2% effluent	NM	32	NM	NM	NM	NM	
	4.4% effluent	NM	32	NM	NM	NM	NM	
	8.75% effluent	NM	32	NM	NM	NM	NM	
	17.5% effluent	NM	32	NM	NM	NM	NM	
	35% effluent	NM	32	NM	NM	NM	NM	
	70% effluent	8.14	32	18.9	8.31	7.27	34	
WBL spike 4	Control	7.75	32	19.2	7.93	7.32	32	
-	Brine Control	8.06	30	18.8	7.89	7.56	32	
	1.1% effluent	7.83	32	18.8	7.93	7.43	32	
	2.2% effluent	NM	31	NM	NM	NM	NM	
	4.4% effluent	NM	32	NM	NM	NM	NM	
	8.75% effluent	NM	32	NM	NM	NM	NM	
	17.5% effluent	NM	32	NM	NM	NM	NM	
	35% effluent	NM	32	NM	NM	NM	NM	
	70% effluent	8.14	33	18.9	8.31	7.29	34	

	Test		Test In	itiation		Test Termi	nation
Effluent Sample	treatment	рΗ	Salinity (‰)	Temperature (°C)	рΗ	DO (mg/L)	Salinity (‰)
WBL spike 5	Control	7.75	32	19.2	NM	NM	NM
	Brine Control	8.06	30	18.8	NM	NM	NM
	1.1% effluent	7.84	31	18.8	7.95	7.28	32
	2.2% effluent	NM	31	NM	NM	NM	NM
	3.3% effluent	NM	31	NM	NM	NM	NM
	4.4% effluent	NM	31	NM	NM	NM	NM
	8.75% effluent	NM	32	NM	NM	NM	NM
	17.5% effluent	NM	32	NM	NM	NM	NM
	35% effluent	8.05	32	19.0	8.20	7.44	32
WBL spike 5	Control	7.75	32	19.2	7.99	7.34	32
(unsettled sample)	Brine Control	8.06	30	18.8	7.91	7.36	32
	1.1% effluent	7.82	31	19.1	7.94	7.42	31
	2.2% effluent	NM	31	NM	NM	NM	NM
	3.3% effluent	NM	32	NM	NM	NM	NM
	4.4% effluent	NM	32	NM	NM	NM	NM
	8.75% effluent	NM	32	NM	NM	NM	NM
	17.5% effluent	NM	32	NM	NM	NM	NM
	35% effluent	8.12	33	18.5	8.20	7.16	32

Effluent samples	Test		Test In	itiation		Test Termi	nation
tested concurrently	treatment	рΗ	Salinity (‰)	Temperature (°C)	рΗ	DO (mg/L)	Salinity (‰)
Mill effluent	Control	7.79	32	18.4	8.16	7.65	32
	3.0 µg/L Cu	7.96	32	18.5	8.14	7.51	32
	4.4 µg/L Cu	NM	32	NM	NM	NM	NM
	6.5 µg/L Cu	NM	32	NM	NM	NM	NM
	9.5 µg/L Cu	NM	32	NM	NM	NM	NM
	13.9 µg/L Cu	NM	32	NM	NM	NM	NM
	20.4 µg/L Cu	7.92	32	18.7	8.13	7.48	32
Simulated effluents	Control	7.75	32	19.2	NM	NM	NM
	3.0 µg/L Cu	7.86	32	19.0	7.95	7.41	32
	4.4 µg/L Cu	NM	32	NM	NM	NM	NM
	6.5 µg/L Cu	NM	32	NM	NM	NM	NM
	9.5 µg/L Cu	NM	32	NM	NM	NM	NM
	13.9 µg/L Cu	NM	32	NM	NM	NM	NM
	20.4 µg/L Cu	7.83	31	19.0	7.93	7.37	32

Table 53. Test chamber chemistry for 48-h *Mytilus. galloprovincialis* embryo-larval development tests measured at test initiation and test termination for reference toxicant tests run with Mill C samples. NM: not measured; DO: dissolved oxygen

Table 54. Test chamber chemistry for 48-h *Mytilus. galloprovincialis* embryo-larval development tests measured at test initiation and test termination for Mill D mill-treated and simulated effluent samples. NM: not measured; DO: dissolved oxygen; WBL: weak black liquor.

	Test		Test In	itiation	Test Termination			
Effluent Sample	treatment	рΗ	Salinity (‰)	Temperature (°C)	рН	DO (mg/L)	Salinity (‰)	
Mill-treated effluent	Control	7.79	32	20.2	7.85	7.19	30	
	Brine Control	7.97	32	18.8	7.88	7.36	30	
	1.1% effluent	7.66	32	19.1	7.95	7.23	30	
	2.2% effluent	NM	32	NM	NM	NM	NM	
	4.4% effluent	NM	32	NM	NM	NM	NM	
	8.75% effluent	NM	31	NM	NM	NM	NM	
	17.5% effluent	NM	31	NM	NM	NM	NM	
	35% effluent	NM	32	NM	NM	NM	NM	
	70% effluent	7.63	32	20.8	8.30	7.19	33	
Reactor control	Control	7.60	30	19.4	NM	NM	NM	
	Brine Control	7.83	30	19.4	NM	NM	NM	
	1.1% effluent	7.53	30	17.9	NM	NM	NM	
	2.2% effluent	NM	30	NM	NM	NM	NM	
	4.4% effluent	NM	30	NM	NM	NM	NM	
	8.75% effluent	NM	30	NM	NM	NM	NM	
	17.5% effluent	NM	30	NM	NM	NM	NM	
	35% effluent	NM	31	NM	NM	NM	NM	
	70% effluent	7.89	32	19.8	NM	NM	NM	
WBL spike 1	Control	7.60	30	19.4	NM	NM	NM	
	Brine Control	7.83	30	19.4	NM	NM	NM	
	1.1% effluent	7.89	30	19.7	NM	NM	NM	
	2.2% effluent	NM	30	NM	NM	NM	NM	
	4.4% effluent	NM	30	NM	NM	NM	NM	
	8.75% effluent	NM	30	NM	NM	NM	NM	
	17.5% effluent	NM	31	NM	NM	NM	NM	
	35% effluent	NM	32	NM	NM	NM	NM	
	70% effluent	7.94	32	19.4	NM	NM	NM	

	Test		Test In	itiation		Test Term	ination
Effluent Sample	treatment	рΗ	Salinity (‰)	Temperature (°C)	рΗ	DO (mg/L)	Salinity (‰)
WBL spike 2	Control	7.60	30	19.4	NM	NM	NM
-	Brine Control	7.83	30	19.4	NM	NM	NM
	1.1% effluent	7.87	30	19.6	NM	NM	NM
	2.2% effluent	NM	30	NM	NM	NM	NM
	4.4% effluent	NM	30	NM	NM	NM	NM
	8.75% effluent	NM	30	NM	NM	NM	NM
	17.5% effluent	NM	31	NM	NM	NM	NM
	35% effluent	NM	31	NM	NM	NM	NM
	70% effluent	7.94	32	19.5	NM	NM	NM
WBL spike 3	Control	7.60	30	19.4	NM	NM	NM
	Brine Control	7.83	30	194.0	NM	NM	NM
	1.1% effluent	8.01	30	18.9	NM	NM	NM
	2.2% effluent	NM	30	NM	NM	NM	NM
	4.4% effluent	NM	30	NM	NM	NM	NM
	8.75% effluent	NM	30	NM	NM	NM	NM
	17.5% effluent	NM	31	NM	NM	NM	NM
	35% effluent	NM	31	NM	NM	NM	NM
	70% effluent	7.95	32	18.9	NM	NM	NM
WBL spike 5	Control	7.60	30	19.4	NM	NM	NM
	Brine Control	7.83	30	19.4	NM	NM	NM
	1.1% effluent	7.92	30	18.7	NM	NM	NM
	2.2% effluent	NM	30	NM	NM	NM	NM
	3.3% effluent	NM	30	NM	NM	NM	NM
	4.4% effluent	NM	30	NM	NM	NM	NM
	8.75% effluent	NM	31	NM	NM	NM	NM
	17.5% effluent	NM	31	NM	NM	NM	NM
	35% effluent	7.95	32	18.7	NM	NM	NM

Effluent samples	Test		Test In	itiation		Test Termi	nation
tested concurrently	treatment	рΗ	Salinity (‰)	Temperature (°C)	рΗ	DO (mg/L)	Salinity (‰)
Mill effluent	Control	7.79	32	20.2	8.00	7.19	31
	3.0 µg/L Cu	7.71	32	20.1	7.88	7.72	32
	4.4 µg/L Cu	NM	32	NM	NM	NM	NM
	6.5 µg/L Cu	NM	32	NM	NM	NM	NM
	9.5 µg/L Cu	NM	32	NM	NM	NM	NM
	13.9 µg/L Cu	NM	32	NM	NM	NM	NM
	20.4 µg/L Cu	7.69	32	20.4	7.92	7.54	32
Simulated effluents	Control	7.60	30	19.4	NM	NM	NM
	3.0 µg/L Cu	7.92	30	17.9	NM	NM	NM
	4.4 µg/L Cu	NM	30	NM	NM	NM	NM
	6.5 µg/L Cu	NM	30	NM	NM	NM	NM
	9.5 µg/L Cu	NM	30	NM	NM	NM	NM
	13.9 µg/L Cu	NM	30	NM	NM	NM	NM
	20.4 µg/L Cu	7.87	30	18.2	NM	NM	NM

Table 55. Test chamber chemistry for 48-h *Mytilus galloprovincialis* embryo-larval development tests measured at test initiation and test termination for reference toxicant tests run with Mill D samples. NM: not measured; DO: dissolved oxygen.

APPENDIX C

Bivalve Spawning Data Sheet

Date:		Test descrip	otion:		
Species:		Source:		Dat	e Received:
Time spawning attempt began:					
2 3 4 5 6	bawn S		Beaker 7 8 9 10 11 12	Time of spawn	
Number of natural spawning:		ma	ales	females	
Number of strip spawned used for	or fertilization:	ma	ales	females	
Number or natural spawned used	d for fertilization:	ma	ales	females	
Time of fertilization:					
Trial sperm dilution volume: Sperm suspension selected:		Bea	ker 2:	Beaker 3: _	
Egg count volume:	Fertilized: Fertilized: Fertilized: Mean fertilized:	ເ	Infertilized: Infertilized: Infertilized:	% Fertil % Fertil	ized: ized: ized: ized:
Volume of embryo suspension ac	dded to test chambers	s:			
Test stocking time:	Tes	st volume:		Embryo density in te	est chambers:

APPENDIX D

Environmental Chamber Temperature Summary for *Mytilus galloprovincialis* Toxicity Tests

Table 56. Minimum, maximum, and mean temperatures of environmental chamber during 48-h *Mytilus galloprovincialis* embryolarval development tests for Mill B, Mill C, and Mill D. Temperature measured continuously using Onset Stow Away TidbiT Temp Loggers.

	Tes	st Date		Temperature (°C)	
Mill	Initiation	Termination	Min	Max	Mean
В	10/22/2010	10/24/2010	15.20	15.99	15.54
	11/1/2010	11/3/2010	17.14	18.26	17.61
С	11/4/2010	11/6/2010	17.14	18.10	17.50
	11/17/2010	11/19/2010	17.95	18.92	18.33
D	2/9/2011	2/9/2011	17.62	18.64	18.15
	2/21/2011	2/23/2011	17.62	18.74	18.20

APPENDIX E

Bivalve Bioassay Data Sheet

Species:					Corvall	is code	:				NOEC:	-		
Start date/time:					End da	ite/time	:				LOEC:	-		
Date brine prepared:					Analys	t:				_	EC50:	-		
Sample Description:											Date sar	npled:		
Stocking densities: Number fertilized:		A		В		С		D		E		F	M	ean
Norm	Replic Abnorm		% Norm	Norm	Replic Abnorm		% Norm	Norm	Replic Abnorm	% Norm	Norm	Replic Abnorm		% Norm
Control										 				
Brine Control										 				
Treatment 1										 				
Treatment 2										 				
Treatment 3										 				
Treatment 4										 				
Treatment 5										 				
Treatment 6										 				
Treatment 7										 				

APPENDIX F

Northwest Aquatic Biology Facility Control Chart Criteria and Method Detection Limits

Standards

When a standard value is greater or less than 2 SD from the mean it is said to have exceeded warning limits (WL) and 3 SD from the baseline is the action limit (AL; Table D-1). Exceedance of WL indicates that the quality of the analysis needs to be considered along with other factors (e.g. duplicates and sample concentrations) and a redo of the standard is recommended. Exceedance of AL should be corrected before any samples or duplicates are analyzed. The standard should be repoured, the glassware recleaned, and the stock standard should be remade if necessary.

Table 57. Northwest Aquatic Biology Facility control chart criteria for check standards. SD: standard deviation; BOD: biochemical oxygen demand; TSS: total suspended solids.

	Check			Warning	Action
Parameter	Standard	Mean	SD	Limits	Limits
pH	8.00	7.99	0.03	7.931-8.049	7.902-8.075
Color (PCU)	500	499.7	4.1	491.5-507.9	487.3-512.1
Conductivity (µs/cm)	1000	1005.4	5.1	995.1-1015.7	990-1020.8
	1990	2005.8	8.7	1988.4-2023.2	1979.7-2031.9
Turbidity (NTU)	20.0	20.1	0.2	19.68-20.59	19.45-20.82
BOD (mg/L)	198	202	26	150.0-254.0	124.0-279.9
TSS (mg/L)	20	18.1	1.8	14.5-21.7	12.6-23.5
Hardness (mg/L)	100	96.4	2.8	90.7-102.0	87.9-104.8
Alkalinity (mg/L)	100	98	2.9	92.1-103.8	89.2-106.7
Polyphenols (mg/L)	8.0	7.9	0.1	7.6-8.1	7.4-8.3

Duplicates

Duplicate control charting consists of recording the values of two duplicates and comparing the ongoing trend of the difference between them. The difference is not based on the absolute difference between them but on the relative percent difference (RPD) which is computed by the following formula:

 $RPD = [(duplicate \ 1 - duplicate \ 2) \div (mean \ of \ the \ two \ duplicates)] \times 100$

WL and AL are then based on the SD of the RPD and are thus similar to standard control charts: WL equals 2 SD and AL equals 3 SD. These are not compared to a mean, but to zero (i.e., a baseline of no difference between the two duplicates; Table D-2).

Table 58. Northwest Aquatic Biology Facility control chart criteria for check duplicates. SD: standard deviation; RPD: relative percent difference; BOD: biochemical oxygen demand; TSS: total suspended solids; NA: not available..

Parameter	SD	Warning Limits (% RPD)	Action Limits (% RPD)
рН	1.35	2.7	4.05
Color (PCU)	7.13	14.26	21.4
Conductivity (µs/cm)	8.16	16.32	24.49
Turbidity (NTU)	1.65	3.3	4.96
^a BOD (mg/L)	NA	NA	NA
TSS (mg/L)	18.13	36.27	54.4
Hardness (mg/L)	4.02	8.03	12.05
Alkalinity (mg/L)	1.74	3.47	5.21
Polyphenols (mg/L)	1.85	3.7	5.55

^aBOD duplicate criteria based on method requirement of minimum dissolve d oxygen depletion of 2 mg/L.

Method Detection Limits

Method detection limits (MDLs) are determined for water quality parameters at NABF. The MDL is defined as the lowest quantity of a substance that can be measured with 99% confidence that the analyte concentration is greater than zero. MDLs vary lab to lab and depend on a variety of factors such as reagent lot, analyst, instrument, and sample type. For reporting purposes at NABF, any value below the MDL is considered non-detect (ND). An MDL should be determined for each water quality parameter (exceptions are BOD, conductivity, and pH). Current MDLs were either calculated based on control chart standard data or on seven measure of a standard. Any MDL should be recalculated if there are changes in method, instrument, analyst, or when a new calibration curve is prepared.

Procedure

- 1. Estimate the detection limit for the water quality parameter. For example, Hach provides an EDL (Estimated Detection Limit) for each of its methods, and this value can be a starting concentration for determining the lab MDL.
- 2. Prepare a standard between 1 and 5 times the estimated MDL.
- 3. Prepare a minimum of seven aliquots of the standard and process each through the entire analytical method.
- 4. If a blank measurement is required to calculate the measured level of analyte, obtain a separate blank measurement for each sample aliquot analyzed. Average the blank measurements and subtract this value from sample measurements.

Calculation in Excel

- 1. Determine the mean: = *average* (*range*).
- 2. Determine the pooled standard deviation: = *stdevp* (*range*).
- 3. Determine the % relative standard deviation (RSD): = (pooled SD/mean)*100.
- 4. Determine % recovery: = (*standard value/standard result*)*100.

5. Determine the one-sided t distribution for seven samples. For seven samples (with six degrees of freedom), the t value for a 99% confidence interval is 3.143. If more than seven samples are used to determine the MDL, a t distribution calculator can be easily found on-line.

6. Determine the MDL (seven samples): = stdevp*3.143.

MDLs determined at NABF for 2010 for each water quality parameter are located in the following summary table (D3).

Table 59. Summary of National Council for Air and Stream Improvement Northwest
Aquatic Biology Facility 2010 water quality method detection limits. MDL: method
detection limit, RSD: relative standard deviation; BOD: biochemical oxygen demand; TSS:
total suspended solids.

Parameter	MDL	Standard Concentration	%RSD	% Recovery
Alkalinity	8 mg/L	100 mg/L	3	98.5
BOD ^a	2 mg/L			
Color ^b	5 PCU	14 PCU =river water sample	12.3	
Hardness	3 mg/L	15 mg/L	8.9	96.2
Polyphenols	0.01 mg/L	0.2 mg/L	2.2	101
TSS	4 mg/L	20 mg/L	8.2	92.1
Turbidity	0.6 NTU	20 NTU	1.3	100

 $^{\rm a}$ BOD MDL based on method requirement of minimum dissolved oxygen $% 10^{-1}$ depletion of 2 mg/L $^{\rm a}$

^b River water sample used for color MDL determinations

APPENDIX G

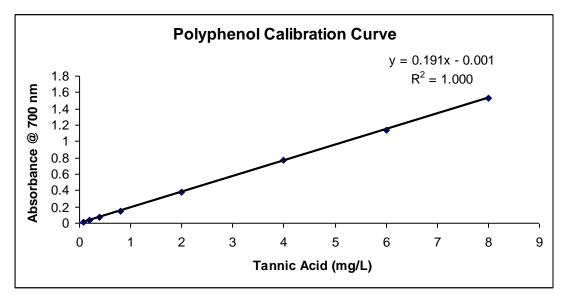


Figure 49. National Council for Air and Stream Improvement Northwest Aquatic Biology Facility polyphenols calibration curve.

APPENDIX H

West Coast Regional Center QA/QC and Lower Calibration Limits for Phytosterols and Resin Acids

Table 60. National Council for Air and Stream Improvement West Coast Regional Center QA/QC criteria for phytosterols. RPD: relative percent difference.

Daily Calibration	Precision	Matrix Spike	Surrogate	Method
/erification	000		Ganogalo	INETION
	RPD	Recovery	Recovery	Blanks
% deviation from		(%)	(%)	(µg/L)
verage response				
actor				
±15	<15	40 - 120		<0.50
±15	<15	40 - 120		<0.50
±15	<15	40 - 120		<0.50
±15	<15	40 - 120		<0.50
±15	<15	*NA	40 -125	<0.50
1	actor ±15 ±15 ±15 ±15 ±15 ±15	±15 <15	transmission ± 15 <15	(19)actor ± 15

*NA=not applicable

Note: Instrument DFTPP tune criteria must meet or exceed method specifications

Table 61. National Council for Air and Stream Improvement West Coast Regional Center lower calibration limits (LCLs) for phytosterols.

Parameter	LCL
Campesterol (µg/L)	1.35
Stigmasterol (µg/L)	1.15
Beta-sitosterol (µg/L)	2.44
Stigmastanol (µg/L)	1.00

Table 62. National Council for Air and Stream Improvement West Coast Regional Center
QA/QC criteria for resin acids (RAs). RPD: relative percent difference.
Mathadi NGASI DA/EA 85.02 (NGASI 1007)

Parameter	Daily Calibration	Precision	Matrix Spike	Surrogate	Method
	Verification %	RPD	% Recovery	% Recovery	Blanks (µg/L)
	deviation from				
	average response				
	factor				
Pimaric acid	±15	<15	60 - 120		<0.50
Sandracopimaric acid	±15	<15	65 - 120		<0.50
Isopimaric acid	±15	<15	65 - 120		<0.50
Palustric acid	±15	<15	40 - 120		<0.50
Dehydroabietic acid	±15	<15	70 - 120		<0.50
Abietic acid	±15	<15	70 - 120		<0.50
Neoabietic acid	±15	<15	50 - 120		<0.50
Heptadecanoic acid (Surrogate)	±15	<15	NA	70 - 120	<0.50
O-Methyl podocarpic acid (Surrogate)	±15	<15	NA	70 - 120	<0.50

Note: Instrument DFTPP tune criteria must meet or exceed method specifications

Parameter	LCL
Pimaric acid (µg/L)	0.92
Sandracopimaric acid (µg/L)	0.94
Isopimaric acid (µg/L)	1.12
Palustric acid (µg/L)	0.99
Dehydroabietic acid (µg/L)	1.10
Abietic acid (µg/L)	1.00
Neoabietic acid (µg/L)	0.99

Table 63. National Council for Air and Stream Improvement West Coast Regional Center lower calibration limits (LCLs) for resin acids (RAs).

APPENDIX I ToxCalc Summary Sheets for *Mytilus galloprovincialis* Effluent Tests

			Biv	valve Larval S	urvival and De	evelopme	ent Test-Prop	ortion Nor	nal			
Start Date: 9	/1/2010	1	Fest ID:	24667			Sample ID:		Mill A Mill Efflu	Jent		
End Date: 9	/3/2010	L	_ab ID:	NABF			Sample Type	:	Bleached Krat	ťt		
Sample Date8	/31/2010	F	Protocol:	EPAW 95-EP	A West Coast		Test Species		MG-Mytilus ga	alloprovincialis		
Comments:	Mill A mill-tre	eated effluent										
Conc-%	1	2	3	4								
B-Control	0.9742	0.9397	0.9470	0.9430								
D-Control	0.9669	0.9638	0.9459	0.9573								
1.09	0.9338	0.9517	0.9786	0.9632								
2.19	0.9329	0.9281	0.9820	0.9576								
4.38	0.9470	0.9104	0.9177	0.9136								
8.75	0.3394	0.2039	0.2439	0.1304								
17.5	0.0000	0.0000	0.0000	0.0000								
35	0.0000	0.0000	0.0000	0.0000								
				Transform	Arcsin Squar	e Root		Rank	1-Tailed	Numl	her	Total
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	Res		Number
B-Control	0.9510	0.9922	1.3501		1.4095	2.971	4					
D-Control	0.9585	1.0000	1.3665		1.3878	1.665	4				25	601
1.09	0.9568	0.9983	1.3654		1.4239	3.495	4	17.00	10.00			
2.19	0.9502	0.9913	1.3520		1.4364	4.653	4	16.00	10.00			
4.38	0.9222	0.9621	1.2894		1.3385	2.573	4	11.00	10.00		47	605
*8.75	0.2294	0.2394	0.4941		0.6219	21.229	4	10.00	10.00		454	596
*17.5	0.0000	0.0000	0.0468		0.0574	15.555	4	10.00	10.00		478	478
*35	0.0000	0.0000	0.0452		0.0471	3.206	4	10.00	10.00			
Auxiliary Tes	10						Statistic		Critical	Ske		Kurt
Shapiro-Wilk		tos pormal d	istribution (n > 0.01			Statistic 0.9248849		Critical 0.896			2.9034188
Bartlett's Test				• •			32.009022		16.811893	0.2030	5555	2.5034100
The control m		•		,			0.711848		2.4469118			
Hypothesis 1		<u> </u>	NOEC	LOEC	ChV	TU	0.711040		2.4403110			
Steel's Many-			4.38		6.1907189	10						
Treatments vs		001		0.10								
	000000				Trimmed S	pearman	-Karber					
Trim Level	EC50	95%	CL									
0.0%												
5.0%	7.1360	6.9438	7.3336									
10.0%	7.0316	6.8317	7.2372					1.0				
20.0%	6.8819	6.6839	7.0856					-				
Auto-3.8%	7.1640	6.9742	7.3589					0.9 -				
								0.8				
								-		4		
								0.7 -		1		
								06		1		
							use			/		
							od	0.5		/		
							les	0.6 0.5 0.4				
							L.	-	/			
								0.3 -	1			
								0.2				
								-	/			
								0.1 -				
								0.0	· · · · · · ·			
								1		10		100

Figure 50. ToxCalc summary sheet including dose-response curve for Mill A mill-treated effluent sample.

Dose ug/L

			Biv	alve Larval	Survival and De	evelopme	ent Test-Pro	portion Nor	mal			
Start Date:	9/9/2010		Test ID:	24668			Sample ID:		Mill A React	or Control		
End Date:			Lab ID:	NABF			Sample Typ	e:	Simulated e	ffluent		
Sample Date	9/8/2010		Protocol:	EPAW 95-E	PA West Coast		Test Species	s:	MG-Mytilus	galloprovincia	alis	
Comments:	Mill A reactor	control										
Conc-%	1	2	3	4								
B-Control	0.9172	0.9272	0.9178	0.9106								
D-Control	0.9744	0.8810	0.9073	0.9462								
1.09	0.9054	0.9600	0.9220									
2.19	0.9357	0.9286	0.9259	0.8944								
4.38	0.9048	0.9343										
8.75	0.8958	0.9128	0.9396									
17.5	0.6807	0.6667	0.6241	0.7192								
35	0.0000	0.0000										
70	0.0000	0.0000	0.0000									
•			<u> </u>		: Arcsin Squar				1-Tailed		Number	Total
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	<u>N</u>	t-Stat	Critical	MSD	Resp	Number
B-Control	0.9182	0.9903			1.2975	0.978					10	500
D-Control	0.9272	1.0000			1.4100	6.462		0.000	0.054	0.0000	40	563
1.09 2.19	0.9308 0.9211	1.0039 0.9935	1.3075 1.2874		1.3694 1.3145	3.618 2.547	4 4	-0.029 0.619	2.651 2.651	0.0822 0.0822		
4.38	0.9211	0.9935	1.2874		1.3145	2.547		0.619	2.651	0.0822		
4.36	0.9208	0.9929			1.3225	3.468		1.366	2.651	0.0822	54	587
*17.5	0.9077	0.9790			1.0123	4.352		11.102	2.651	0.0822	182	556
*35	0.0000	0.0000			0.0508	2.462		37.507	2.651	0.0888	305	305
*70	0.0000	0.0000	0.0490	0.0400	0.0498	9.013		40.659	2.651	0.0822	303	305
Auxiliary Te		0.0000	0.0431	0.0400	0.0498	9.013	Statistic	40.035	Critical	0.0022	Skew	Kurt
	k's Test indica	tes normal	distribution (n > 0.01			0.9689444		0.902		0.2964832	1.0749424
•	st indicates un			,			26.155411		18.475307		0.2004002	1.07 40424
	means are not	•		,			0.6030847		2.4469118			
	Test (1-tail, 0		NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Bonferroni t			8.75	17.5	12.374369	-			1.1458036		1.9E-24	7,23
Treatments												
					Trimmed S	pearman	n-Karber					
Trim Level	EC50	95%	6 CL			-						
0.0%												
5.0%	20.621	20.021	21.239									
10.0%	20.954	20.250	21.682					1.0				
20.0%	21.503	20.396	22.670					-			1	
Auto-2.3%	20.429	19.868	21.006					0.9				
								0.8 -				
								0.7				
											/	
								90.6 0.5 0.4				
								ö 05			1	
								s			1	
							c c	2 0.4 -			1	
								0.3				
								-		۴	•	
								0.2				
								0.1				1
								0.0				
								0.0 +		10		100
										10		100

Figure 51. ToxCalc summary sheet including dose-response curve for Mill A reactor control simulated effluent sample.

Dose ug/L

Start Date: 9	/9/2010	-	Test ID:	24669			Sample ID:	ortion Norr	Mill A WBL Sp	oike 1		
End Date: 9				NABF			Sample Type:		Simulated effl			
Sample Date 9					PA West Coast		Test Species:			alloprovincialis		
Comments: N												
Conc-%	1	2	3	4								
B-Control	0.9091	0.8832	0.9200	0.9343								
D-Control	0.9067	0.9301	0.9128	0.9014								
1.09	0.9351	0.9362	0.9058	0.9313								
2.19	0.8533	0.9085	0.9016	0.8766								
4.38	0.9235	0.8855	0.9206	0.9449								
8.75	0.8456	0.8162	0.7094	0.1543								
17.5	0.0000	0.0000	0.0000	0.0000								
35	0.0000	0.0000	0.0000	0.0000								
		_			: Arcsin Squar			Rank	1-Tailed	Numb	ər	Total
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	Resp		Number
B-Control	0.9117	0.9988	1.2705	1.2220	1.3116	2.965	4					
D-Control	0.9127	1.0000	1.2715	1.2514	1.3032	1.777	4				51	584
1.09	0.9271	1.0157	1.2982	1.2588	1.3154	2.049	4	23.00	10.00			
2.19	0.8850	0.9697	1.2262	1.1778	1.2635	3.191	4	13.00	10.00		40	
4.38	0.9186	1.0065	1.2838	1.2256	1.3338	3.465	4	20.00	10.00		46	567
*8.75 *17.5	0.6314 0.0000	0.6917 0.0000	0.9250	0.4037 0.0430	1.1670 0.0505	38.336 8.003	4 4	10.00 10.00	10.00		217 178	551 478
			0.0461 0.0526	0.0430	0.0505	25.360	4	10.00	10.00 10.00		+/0	470
								10.00	10.00			
*35	0.0000	0.0000	0.0320	0.0424	0.0713	23.300						
Auxiliary Tes	ts					23.300	Statistic		Critical	Skew		Kurt
Auxiliary Tes Shapiro-Wilk's	ts Test indica	tes non-norn	nal distributi	on (p <= 0.01		23.300	0.6134204		0.896			
Auxiliary Tes Shapiro-Wilk's Bartlett's Test	ts Test indica indicates un	tes non-norn lequal variar	nal distributi nces (p = 1.4	on (p <= 0.01 I7E-10)		23.300	0.6134204 57.461887		0.896 16.811893			
Auxiliary Tes Shapiro-Wilk's Bartlett's Test The control m	ts Test indica indicates un eans are not	tes non-norn lequal varian significantly	nal distributi nces (p = 1.4 / different (p	on (p <= 0.01 I7E-10) = 0.97))		0.6134204		0.896			
Auxiliary Tes Shapiro-Wilk's Bartlett's Test The control m Hypothesis T	ts Test indica indicates un eans are not est (1-tail, 0	tes non-norm lequal variar significantly 1. 05)	nal distributi nces (p = 1.4 v different (p NOEC	on (p <= 0.01 I7E-10) = 0.97) LOEC) ChV	TU	0.6134204 57.461887		0.896 16.811893			
Auxiliary Tes Shapiro-Wilk's Bartlett's Test The control m Hypothesis T Steel's Many-0	ts Test indica indicates un eans are not est (1-tail, 0 One Rank Te	tes non-norm lequal variar significantly 1. 05)	nal distributi nces (p = 1.4 / different (p	on (p <= 0.01 I7E-10) = 0.97))		0.6134204 57.461887		0.896 16.811893			
Auxiliary Tes Shapiro-Wilk's Bartlett's Test The control m Hypothesis T Steel's Many-0	ts Test indica indicates un eans are not est (1-tail, 0 One Rank Te	tes non-norm lequal variar significantly 1. 05)	nal distributi nces (p = 1.4 v different (p NOEC	on (p <= 0.01 I7E-10) = 0.97) LOEC) ChV 6.1907189	TU	0.6134204 57.461887 0.041686		0.896 16.811893			
Auxiliary Tes Shapiro-Wilk's Bartlett's Test The control mo lypothesis T Steel's Many-(Treatments vs Trim Level	ts Test indica indicates un eans are not est (1-tail, 0 Dne Rank Te D-Control EC50	tes non-norm lequal variar s significantly 0.05) est 95%	nal distributi nces (p = 1.4 different (p NOEC 4.38	on (p <= 0.01 I7E-10) = 0.97) LOEC) ChV	TU	0.6134204 57.461887 0.041686		0.896 16.811893			
Auxiliary Tes Shapiro-Wilk's Shartlett's Test The control m Appothesis T Steel's Many-0 rreatments vs Frim Level 0.0%	ts 5 Test indica indicates un eans are not est (1-tail, 0 Dne Rank Te 5 D-Control EC50 9.791	tes non-norm lequal variar s significantly 0.05) est 95% 9.522	nal distributi nces (p = 1.4 different (p NOEC 4.38 CL 10.068	on (p <= 0.01 I7E-10) = 0.97) LOEC) ChV 6.1907189	TU	0.6134204 57.461887 0.041686		0.896 16.811893			
Auxiliary Tes Shapiro-Wilk's Bartlett's Test The control m Hypothesis T Steel's Many-(Treatments vs Frim Level 0.0% 5.0%	ts Test indica indicates un eans are not est (1-tail, 0 Dne Rank Te : D-Control EC50 9.791 9.900	tes non-norm equal variar significantly 105) ast 95% 9.522 9.595	nal distributi nces (p = 1.4 different (p NOEC 4.38 CL 10.068 10.214	on (p <= 0.01 I7E-10) = 0.97) LOEC) ChV 6.1907189	TU	0.6134204 57.461887 0.041686		0.896 16.811893			
Auxiliary Tes shapiro-Wilk's Bartlett's Test he control m ypothesis T steel's Many-(reatments vs Frim Level 0.0% 5.0% 10.0%	ts Test indicates un eans are not est (1-tail, 0 One Rank Te D-Control EC50 9.791 9.900 10.006	tes non-norm equal variar significantly .05) est 9.522 9.595 9.652	nal distributi nces (p = 1.4 different (p NOEC 4.38 CL 10.068 10.214 10.373	on (p <= 0.01 I7E-10) = 0.97) LOEC) ChV 6.1907189	TU	0.6134204 57.461887 0.041686	1.0	0.896 16.811893			
Auxiliary Tes shapiro-Wilk's Bartlett's Test the control m ypothesis T steel's Many-(Treatments vs Trim Level 0.0% 5.0% 10.0% 20.0%	ts Test indicates un eans are not east (1-tail, 0 One Rank Te D-Control EC50 9.791 9.900 10.006 10.204	tes non-norm lequal variar significantly .05) est 9.522 9.595 9.652 9.652 9.681	nal distributi cces (p = 1.4 / different (p NOEC 4.38 CL 10.068 10.214 10.373 10.754	on (p <= 0.01 I7E-10) = 0.97) LOEC) ChV 6.1907189	TU	0.6134204 57.461887 0.041686	1.0	0.896 16.811893			
Auxiliary Tes Shapiro-Wilk's Sartlett's Test The control m typothesis T Steel's Many-(Treatments vs Trim Level 0.0% 5.0% 10.0% 20.0%	ts Test indicates un eans are not est (1-tail, 0 One Rank Te D-Control EC50 9.791 9.900 10.006	tes non-norm equal variar significantly .05) est 9.522 9.595 9.652	nal distributi nces (p = 1.4 different (p NOEC 4.38 CL 10.068 10.214 10.373	on (p <= 0.01 I7E-10) = 0.97) LOEC) ChV 6.1907189	TU	0.6134204 57.461887 0.041686	0.9	0.896 16.811893			
Auxiliary Tes Shapiro-Wilk's Bartlett's Test Ine control m Hypothesis T Steel's Many-(Treatments vs Trim Level 0.0% 5.0% 10.0%	ts Test indicates un eans are not east (1-tail, 0 One Rank Te D-Control EC50 9.791 9.900 10.006 10.204	tes non-norm lequal variar significantly .05) est 9.522 9.595 9.652 9.652 9.681	nal distributi cces (p = 1.4 / different (p NOEC 4.38 CL 10.068 10.214 10.373 10.754	on (p <= 0.01 I7E-10) = 0.97) LOEC) ChV 6.1907189	TU	0.6134204 57.461887 0.041686	0.9 0.8	0.896 16.811893			Kurt 13.978432
Auxiliary Tes Shapiro-Wilk's Sartlett's Test The control m Hypothesis T Steel's Many-(Treatments vs Trim Level 0.0% 5.0% 10.0% 20.0%	ts Test indicates un eans are not east (1-tail, 0 One Rank Te D-Control EC50 9.791 9.900 10.006 10.204	tes non-norm lequal variar significantly .05) est 9.522 9.595 9.652 9.652 9.681	nal distributi cces (p = 1.4 / different (p NOEC 4.38 CL 10.068 10.214 10.373 10.754	on (p <= 0.01 I7E-10) = 0.97) LOEC) ChV 6.1907189	TU	0.6134204 57.461887 0.041686	0.9	0.896 16.811893			
Auxiliary Tes Shapiro-Wilk's Sartlett's Test The control m Hypothesis T Steel's Many-(Treatments vs Trim Level 0.0% 5.0% 10.0% 20.0%	ts Test indicates un eans are not east (1-tail, 0 One Rank Te D-Control EC50 9.791 9.900 10.006 10.204	tes non-norm lequal variar significantly .05) est 9.522 9.595 9.652 9.652 9.681	nal distributi cces (p = 1.4 / different (p NOEC 4.38 CL 10.068 10.214 10.373 10.754	on (p <= 0.01 I7E-10) = 0.97) LOEC) ChV 6.1907189	TU	0.6134204 57.461887 0.041686	0.9 0.8 0.7 0.6	0.896 16.811893			
Auxiliary Tes Shapiro-Wilk's Sartlett's Test The control m Hypothesis T Steel's Many-(Treatments vs Trim Level 0.0% 5.0% 10.0% 20.0%	ts Test indicates un eans are not east (1-tail, 0 One Rank Te D-Control EC50 9.791 9.900 10.006 10.204	tes non-norm lequal variar significantly .05) est 9.522 9.595 9.652 9.652 9.681	nal distributi cces (p = 1.4 / different (p NOEC 4.38 CL 10.068 10.214 10.373 10.754	on (p <= 0.01 I7E-10) = 0.97) LOEC) ChV 6.1907189	TU	0.6134204 57.461887 0.041686	0.9 0.8 0.7 0.6	0.896 16.811893			
Auxiliary Tes Shapiro-Wilk's Sartlett's Test The control m Hypothesis T Steel's Many-(Treatments vs Trim Level 0.0% 5.0% 10.0% 20.0%	ts Test indicates un eans are not east (1-tail, 0 One Rank Te D-Control EC50 9.791 9.900 10.006 10.204	tes non-norm lequal variar significantly .05) est 9.522 9.595 9.652 9.652 9.681	nal distributi cces (p = 1.4 / different (p NOEC 4.38 CL 10.068 10.214 10.373 10.754	on (p <= 0.01 I7E-10) = 0.97) LOEC) ChV 6.1907189	TU	0.6134204 57.461887 0.041686	0.9 0.8 0.7 0.6	0.896 16.811893			
Auxiliary Tes Shapiro-Wilk's Sartlett's Test The control m Hypothesis T Steel's Many-(Treatments vs Trim Level 0.0% 5.0% 10.0% 20.0%	ts Test indicates un eans are not east (1-tail, 0 One Rank Te D-Control EC50 9.791 9.900 10.006 10.204	tes non-norm lequal variar significantly .05) est 9.522 9.595 9.652 9.652 9.681	nal distributi cces (p = 1.4 / different (p NOEC 4.38 CL 10.068 10.214 10.373 10.754	on (p <= 0.01 I7E-10) = 0.97) LOEC) ChV 6.1907189	TU	0.6134204 57.461887 0.041686	0.9 0.8 0.7 0.6 0.5 0.4	0.896 16.811893			
Auxiliary Tes Shapiro-Wilk's Sartlett's Test The control m Hypothesis T Steel's Many-(Treatments vs Trim Level 0.0% 5.0% 10.0% 20.0%	ts Test indicates un eans are not east (1-tail, 0 One Rank Te D-Control EC50 9.791 9.900 10.006 10.204	tes non-norm lequal variar significantly .05) est 9.522 9.595 9.652 9.652 9.681	nal distributi cces (p = 1.4 / different (p NOEC 4.38 CL 10.068 10.214 10.373 10.754	on (p <= 0.01 I7E-10) = 0.97) LOEC) ChV 6.1907189	TU	0.6134204 57.461887 0.041686	0.9 0.8 0.7 0.6	0.896 16.811893			
Auxiliary Tes Shapiro-Wilk's Sartlett's Test The control m Hypothesis T Steel's Many-(Treatments vs Trim Level 0.0% 5.0% 10.0% 20.0%	ts Test indicates un eans are not east (1-tail, 0 One Rank Te D-Control EC50 9.791 9.900 10.006 10.204	tes non-norm lequal variar significantly .05) est 9.522 9.595 9.652 9.652 9.681	nal distributi cces (p = 1.4 / different (p NOEC 4.38 CL 10.068 10.214 10.373 10.754	on (p <= 0.01 I7E-10) = 0.97) LOEC) ChV 6.1907189	TU	0.6134204 57.461887 0.041686	0.9 0.8 0.7 0.6 0.5 0.4	0.896 16.811893			
Auxiliary Tes Shapiro-Wilk's Sartlett's Test The control m Hypothesis T Steel's Many-(Treatments vs Trim Level 0.0% 5.0% 10.0% 20.0%	ts Test indicates un eans are not east (1-tail, 0 One Rank Te D-Control EC50 9.791 9.900 10.006 10.204	tes non-norm lequal variar significantly .05) est 9.522 9.595 9.652 9.652 9.681	nal distributi cces (p = 1.4 / different (p NOEC 4.38 CL 10.068 10.214 10.373 10.754	on (p <= 0.01 I7E-10) = 0.97) LOEC) ChV 6.1907189	TU	0.6134204 57.461887 0.041686	0.9 0.8 0.7 0.6 0.5 0.4 0.3	0.896 16.811893			
Auxiliary Tes Shapiro-Wilk's Sartlett's Test The control m Hypothesis T Steel's Many-(Treatments vs Trim Level 0.0% 5.0% 10.0% 20.0%	ts Test indicates un eans are not east (1-tail, 0 One Rank Te D-Control EC50 9.791 9.900 10.006 10.204	tes non-norm lequal variar significantly .05) est 9.522 9.595 9.652 9.652 9.681	nal distributi cces (p = 1.4 / different (p NOEC 4.38 CL 10.068 10.214 10.373 10.754	on (p <= 0.01 I7E-10) = 0.97) LOEC) ChV 6.1907189	TU	0.6134204 57.461887 0.041686	0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.2	0.896 16.811893			
Auxiliary Tes Shapiro-Wilk's Sartlett's Test The control m Hypothesis T Steel's Many-(Treatments vs Trim Level 0.0% 5.0% 10.0% 20.0%	ts Test indicates un eans are not east (1-tail, 0 One Rank Te D-Control EC50 9.791 9.900 10.006 10.204	tes non-norm lequal variar significantly .05) est 9.522 9.595 9.652 9.652 9.681	nal distributi cces (p = 1.4 / different (p NOEC 4.38 CL 10.068 10.214 10.373 10.754	on (p <= 0.01 I7E-10) = 0.97) LOEC) ChV 6.1907189	TU	0.6134204 57.461887 0.041686	0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0	0.896 16.811893			
Auxiliary Tes Shapiro-Wilk's Sartlett's Test The control m ypothesis T Steel's Many-(Treatments vs Trim Level 0.0% 5.0% 10.0% 20.0%	ts Test indicates un eans are not east (1-tail, 0 One Rank Te D-Control EC50 9.791 9.900 10.006 10.204	tes non-norm lequal variar significantly .05) est 9.522 9.595 9.652 9.652 9.681	nal distributi cces (p = 1.4 / different (p NOEC 4.38 CL 10.068 10.214 10.373 10.754	on (p <= 0.01 I7E-10) = 0.97) LOEC) ChV 6.1907189	TU	0.6134204 57.461887 0.041686	0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.2	0.896 16.811893			

Figure 52. ToxCalc summary sheet including dose-response curve for Mill A weak black liquor spike 1 simulated effluent sample.

			Biv	valve Larval Survival and Develo	opment Test-Proportion	n Normal
Start Date: 9	/9/2010	٦	Fest ID:	24670	Sample ID:	Mill A WBL Spike 2
End Date: 9	/11/2010	L	ab ID:	NABF	Sample Type:	Simulated effluent
Sample Date 9	/8/2010	F	Protocol:	EPAW 95-EPA West Coast	Test Species:	MG-Mytilus galloprovincialis
Comments: M	/ill A WBL sp	ike 2				
Conc-%	1	2	3	4		
B-Control	0.9343	0.9214	0.9141	0.9241		
D-Control	0.9427	0.9548	0.9359	0.9545		
1.09	0.9321	0.9220	0.9143			
2.19	0.9324	0.9225	0.8867	0.9291		
4.38	0.8113	0.8944	0.8583	0.8960		
8.75	0.0000	0.0000	0.0000	0.0000		
17.5	0.0000	0.0000	0.0000	0.0000		

		_		Transform: Arcsin Square Root 1-Tailed			1-Tailed			Number	Total	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Resp	Number
B-Control	0.9235	0.9752	1.2908	1.2733	1.3116	1.231	4				42	550
D-Control	0.9470	1.0000	1.3391	1.3148	1.3567	1.544	4					
1.09	0.9228	0.9744	1.2895	1.2737	1.3072	1.305	3	0.057	2.567	0.0586		
2.19	0.9177	0.9690	1.2813	1.2274	1.3078	2.871	4	0.450	2.567	0.0542	46	554
*4.38	0.8650	0.9134	1.1971	1.1215	1.2424	4.762	4	4.435	2.567	0.0542	66	500
*8.75	0.0000	0.0000	0.0424	0.0410	0.0442	3.235	4	59.088	2.567	0.0542	559	559
*17.5	0.0000	0.0000	0.0444	0.0420	0.0498	8.177	4	58.992	2.567	0.0542		

Auxiliary Tests	uxiliary Tests								Skew	Kurt
Shapiro-Wilk's Test indicates non-n		0.8787702		0.881		-1.067292	2.799029			
Bartlett's Test indicates unequal var	iances (p = 3.4	I0E-05)			28.150763		15.086272			
The control means are significantly	different (p = 0	.01)			3.7029811		2.4469118			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Bonferroni t Test	2.19	4.38	3.0971277		0.0312405	0.0338231	1.5570618	0.0008929	2.1E-22	5, 17
Treatments vs B-Control										

Trimmed Spearman-Karber

Trim Level	EC50	95% C	L
0.0%			
5.0%	6.0506	5.9208	6.1833
10.0%	6.0549	6.0047	6.1056
20.0%	6.0549	6.0047	6.1056
Auto-0.7%	5 9493	5 8598	6 0403

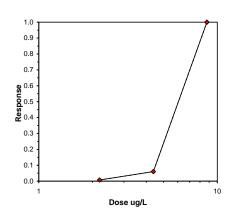


Figure 53. ToxCalc summary sheet including dose-response curve for Mill A weak black liquor spike 2 simulated effluent sample.

			Biv	alve Larval S	Survival and De	evelopme	ent Test-Propo	ortion Norr	nal		
Start Date: 9	9/9/2010		Test ID:	24671			Sample ID:		Mill A WBL Spike :	3	
End Date: 9			_ab ID:	NABF			Sample Type:		Simulated effluent		
Sample Dat(9	9/8/2010	F	Protocol:	EPAW 95-EF	PA West Coast		Test Species:		MG-Mytilus gallop	rovincialis	
Comments: I	Mill A WBL s	pike 3									
Conc-%	1	2	3	4							
B-Control	0.8966	0.9041	0.9325	0.9412							
D-Control	0.9203	0.9535	0.9097	0.9302							
1.09	0.9026	0.8684	0.9120								
2.19	0.8851	0.9385	0.9040	0.9531							
4.38	0.4658	0.7613	0.4141								
8.75	0.0000	0.0000	0.0000								
17.5	0.0000	0.0000	0.0000	0.0000							
					: Arcsin Squar			Rank	1-Tailed	Number	Total
Conc-%	Mean	N-Mean	Mean	Min		CV%	N	Sum	Critical	Resp	Number
B-Control	0.9186	0.9894	1.2833		1.3258	3.105	4				
D-Control	0.9284	1.0000	1.3018		1.3534	2.899	4			39	540
1.09	0.9020	0.9716	1.2541		1.2937	3.183	4	13.00	10.00		
2.19	0.9202	0.9911	1.2883		1.3526	4.530	4	16.00	10.00	46	
*4.38	0.5087	0.5479	0.7972		1.0603	22.339	4	10.00	10.00	230	
*8.75	0.0000	0.0000	0.0469		0.0524	8.626	4	10.00	10.00	462	462
*17.5	0.0000	0.0000	0.0452	0.0435	0.0484	4.944	4	10.00	10.00		
Auxiliary Tes	te						Statistic		Critical	Skew	Kurt
Shapiro-Wilk'		ites non-norr	nal distribut	ion (p <= 0.01)		0.7904604		0.884	2.092398	8.2972673
Bartlett's Test					,		39.859138		15.086272	2.002000	0.2012010
The control m		•		,			0.6740269		2.4469118		
Hypothesis T			NOEC	LOEC	ChV	τu					
Steel's Many-		,	2.19		3.0971277	-					
Treatments ve											
					Trimmed S	pearman	-Karber				
Trim Level	EC50	95%	CL								
0.0%			-								
5.0%	4.6240	4.4678	4.7856								
10.0%	4.6508	4.4734	4.8352				1.0 T			 _	
20.0%	4.7039	4.4583	4.9631							/	
	4.6031	4.4597	4 7540								
Auto-1.1%	4.0031		4.7512				0.9				
Auto-1.1%	4.0031		4.7512				0.8				
Auto-1.1%	4.0031		4.7512				0.8 0.7				
Auto-1.1%	4.0031		4.7312				0.8 0.7				
Auto-1.1%	4.0051		4./312				0.8 0.7		ø		
Auto-1.1%	4.0001		4.7312				0.8		Å		
Auto-1.1%	4.0001		4.7512				0.8 0.7 9 0.6 0.5 9 0.5 0.5 0.3 0.2		*		
Auto-1.1%	4.0001		4.7512				0.8 0.7 90.6 0.5 0.5 0.4 0.3 0.2 0.1				
Auto-1.1%	4.0001		4.7512				0.8 0.7 9 0.6 0.5 9 0.5 0.5 0.3 0.2		Dose ug/L	10	

Figure 54. ToxCalc summary sheet including dose-response curve for Mill A weak black liquor spike 3 simulated effluent sample.

	9/2010		Test ID:	24672	Sample ID:	Mill A WBL Spike 4		
End Date: 9/1	1/2010		Lab ID:	NABF	Sample Type:	Simulated effluent		
Sample Dati 9/8	3/2010		Protocol:	EPAW 95-EPA West Coast	5-EPA West Coast Test Species: MG-Mytilus galloprovincialis		cialis	
Comments: Mi	ill A WBL spi	ke 4						
Conc-%	1	2	3	4				
B-Control	0.9249	0.8623	0.9304	0.9103				
D-Control	0.9275	0.9281	0.9103	0.9667				
1.09	0.8983	0.9660	0.9167	0.9363				
2.19	0.8828	0.8915	0.8792	0.8723				
4.38	0.0000	0.0206	0.0000	0.0000				
8.75	0.0000	0.0000	0.0000	0.0000				
17.5	0.0000	0.0000	0.0000	0.0000				

		_		Transform:	Arcsin Squ	are Root		Rank	1-Tailed	Number	Total
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Resp	Number
B-Control	0.9070	0.9719	1.2635	1.1907	1.3038	4.040	4				
D-Control	0.9331	1.0000	1.3128	1.2666	1.3872	3.950	4			39	583
1.09	0.9293	0.9959	1.3063	1.2462	1.3853	4.581	4	17.00	10.00	39	566
*2.19	0.8815	0.9446	1.2194	1.2054	1.2351	1.014	4	10.00	10.00	65	547
*4.38	0.0052	0.0055	0.0747	0.0397	0.1441	63.754	4	10.00	10.00	417	419
*8.75	0.0000	0.0000	0.0437	0.0413	0.0457	4.979	4	10.00	10.00	526	526
*17.5	0.0000	0.0000	0.0423	0.0404	0.0442	5.041	4	10.00	10.00		

Auxiliary Te	sts						Statistic		Critical		Skew	Kurt
Shapiro-Will	d's Test indic	ates non-nor	mal distributi	on (p <= 0.0	1)		0.8566586		0.884		1.0384292	1.5329965
Bartlett's Te	st indicates u	nequal varia	nces (p = 8.3	4E-06)			31.256424		15.086272			
The control i	means are no	ot significantl	ly different (p	= 0.22)			1.3546336		2.4469118			
Hypothesis	Test (1-tail,	0.05)	NOEC	LOEC	ChV	TU						
Steel's Many	/-One Rank 1	Fest	1.09	2.19	1.5450243							
Treatments	vs D-Control											
					Maximu	m Likelihoo	d-Probit					
Parameter	Value	SE	95% Fiducia	al Limits		Control	Chi-Sq	Critical	P-value	Mu	Sigma	Iter
Slope	13.848651	0.9515066	11.983698	15.713604		0.0668954	0.0092966	5.9914646	1	0.4560728	0.0722092	5
Intercept	-1.315993	0.4109022	-2.121361	-0.510625								
TSCR	0.0678851	0.007421	0.05334	0.0824303								
Point	Probits	%	95% Fiducia	al Limits				1.0				•
EC01	2.674	1.9412839	1.8179533	2.0493822				0.9				
EC05	3.355	2.1741986	2.0604613	2.2776099				0.3				
EC10	3.718	2.3095797	2.1998299	2.4126331				0.8 -				
EC15	3.964	2.4056517	2.2975738	2.5099457				0.7				
EC20	4.158	2.4848489	2.3772625	2.5912587				· ·				
EC25	4.326	2.5548677	2.4469743	2.6640426			ê	0.6 -				
EC40	4.747	2.740178	2.6278786	2.8609442			ü	0.5				
EC50	5.000	2.8580694	2.7402533	2.9894255			ăs	0.6				
		0.004.0000	0.0550774	0.405000			e e	0.4 -				1
EC60	5.253	2.9810329	2.8553774	3.125926						111		

0.2

0.1

0.0

10

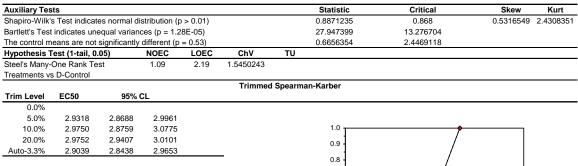
1 Dose ug/L Figure 55. ToxCalc summary sheet including dose-response curve for Mill A weak black

liquor spike 4 simulated effluent sample.

5.842 3.2873471 3.134427 3.4754483

6.036 3.3955709 3.230885 3.6016508

6.282 3.5368168 3.3554443 3.7681349


EC80

EC85

EC90

	Bivalve Larval Survival and Development Test-Proportion Normal											
Start Date: 9	/9/2010	Т	est ID:	24673	Sample ID:	Mill A WBL Spike 5						
End Date: 9	/11/2010	L	ab ID:	NABF	Sample Type:	Simulated effluent						
Sample Date	/8/2010	F	rotocol:	EPAW 95-EPA West Coast	Test Species:	MG-Mytilus galloprovincialis						
Comments:	Mill A WBL sp	oike 5										
Conc-%	1	2	3	4								
B-Control	0.9638	0.9217	0.8667	0.9236								
D-Control	0.9322	0.9658	0.9149	0.9308								
1.09	0.9154	0.9051	0.9051	0.8958								
2.19	0.8689	0.8014	0.8333	0.8583								
4.38	0.0000	0.0000	0.0000	0.0000								
8.75	0.0000	0.0000	0.0000	0.0000								

		_	Transform: Arcs		Arcsin Squ	are Root		Rank	1-Tailed	Number	Total	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N Sur		Critical	Resp	Number	
B-Control	0.9189	0.9819	1.2886	1.1970	1.3793	5.776	4					
D-Control	0.9359	1.0000	1.3178	1.2748	1.3847	3.561	4			34	535	
1.09	0.9054	0.9674	1.2583	1.2422	1.2756	1.088	4	11.00	10.00	52	548	
*2.19	0.8405	0.8980	1.1611	1.1089	1.2002	3.493	4	10.00	10.00	82	510	
*4.38	0.0000	0.0000	0.0475	0.0440	0.0488	4.889	4	10.00	10.00	446	446	
*8.75	0.0000	0.0000	0.0429	0.0406	0.0440	3.652	4	10.00	10.00			

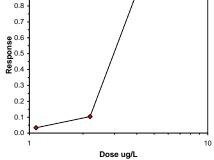


Figure 56. ToxCalc summary sheet including dose-response curve for Mill A weak black liquor spike 5 simulated effluent sample.

			Biv	valve Larval Survival and Develo	opment Test-Proportion	Normal
Start Date: 1	0/22/2010	Т	est ID:	24776	Sample ID:	Mill B Mill Effluent
End Date: 1	0/24/2010	L	ab ID:	NABF	Sample Type:	Bleached Kraft
Sample Dati 1	0/19/2010	P	rotocol:	EPAW 95-EPA West Coast	Test Species:	MG-Mytilus galloprovincialis
Comments: N	Mill B mill-trea	ted effluent				
Conc-%	1	2	3	4		
B-Control	0.9813	0.9871	0.9806	0.9821		
D-Control	0.9819	0.9874	0.9787	0.9737		
1.09	0.9749	0.9679	0.9708	0.9739		
2.19	0.9394	0.9709	0.9733	0.9618		
4.38	0.7169	0.7964	0.8690	0.9247		
8.75	0.0000	0.0000	0.0000	0.0000		
17.5	0.0000	0.0000	0.0000	0.0000		

				Transform:	Arcsin Squ	are Root		Rank	1-Tailed	Number	Total
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Resp	Number
B-Control	0.9828	1.0024	1.4395	1.4310	1.4570	0.823	4				
D-Control	0.9804	1.0000	1.4317	1.4079	1.4584	1.483	4			12	618
1.09	0.9719	0.9912	1.4024	1.3907	1.4117	0.677	4	12.00	10.00		
*2.19	0.9614	0.9805	1.3756	1.3221	1.4065	2.783	4	10.00	10.00	23	622
*4.38	0.8267	0.8432	1.1514	1.0097	1.2927	10.618	4	10.00	10.00	114	647
*8.75	0.0000	0.0000	0.0437	0.0377	0.0493	11.645	4	10.00	10.00	540	540
*17.5	0.0000	0.0000	0.0434	0.0402	0.0511	11.779	4	10.00	10.00		

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates non-r	ormal distributi	ion (p <= 0.0	01)		0.8071967	0.884	-0.056365	6.0206501
Bartlett's Test indicates unequal va	riances (p = 8.3	35E-07)			36.279243	15.086272		
The control means are not signification	ntly different (p	= 0.54)			0.6481779	2.4469118		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	τu				
Steel's Many One Bank Teet	1.00	2 10	1 5450242					

Steel's Many-One Rank Test1.092.191.5450243Treatments vs D-Control

				Trimmed Spearman-Karber	
Trim Level	EC50	95% (CL		
0.0%					
5.0%	5.6405	5.5132	5.7708		
10.0%	5.7437	5.5798	5.9125	10	•
20.0%	5.7962	5.7149	5.8787	1.0	
Auto-1.8%	5.5554	5.4398	5.6736	0.9 -	/
				0.8	

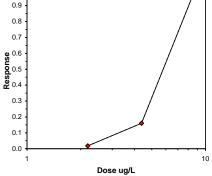


Figure 57. ToxCalc summary sheet including dose-response curve for Mill B mill-treated effluent sample.

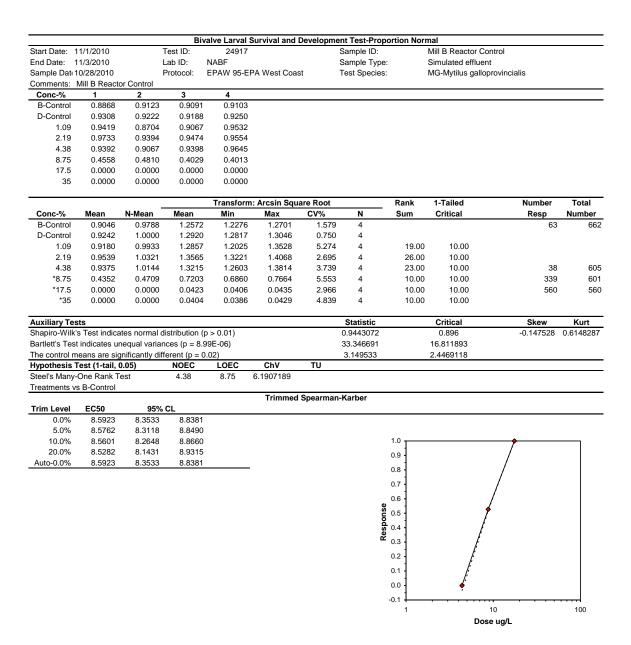


Figure 58. ToxCalc summary sheet including dose-response curve for Mill B reactor control simulated effluent sample.

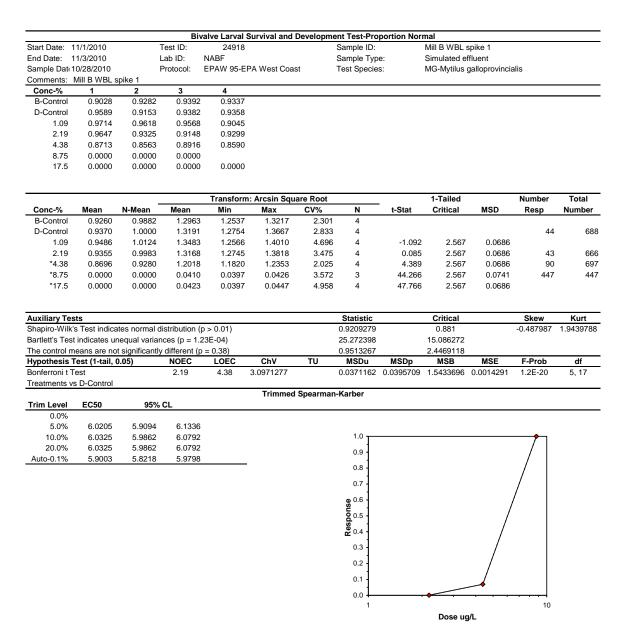


Figure 59. ToxCalc summary sheet including dose-response curve for Mill B weak black liquor spike 1 simulated effluent sample.

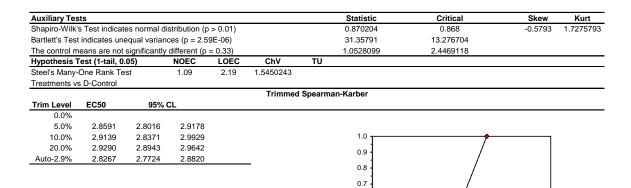

			Biv	alve Larval	Survival and De	evelopme	ent Test-Prop	ortion Nori	nal			
Start Date:	11/1/2010		Test ID:	24919			Sample ID:		Mill B WBL S	Spike 2		
End Date:			Lab ID:	NABF			Sample Type:		Bleached Kr			
Sample Dat	10/28/2010		Protocol:	EPAW 95-E	PA West Coast		Test Species:		MG-Mytilus of	alloprovincia	alis	
Comments:	Mill B WBL s	pike 2					·		, ,			
Conc-%	1	2	3	4								
B-Control	0.9005	0.8994	0.9557	0.9527								
D-Control	0.9441	0.9245	0.9553	0.9416								
1.09		0.9577	0.9500									
2.19	0.9116	0.9359	0.9157	0.9265								
4.38		0.1898	0.3172									
8.75		0.0000	0.0000									
17.5		0.0000	0.0000									
				Transform	n: Arcsin Squar	re Root		Rank	1-Tailed		Number	Total
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical		Resp	Number
B-Control		0.9848	1.3020		1.3587	4.715	4		5.1100al			
D-Control		1.0000	1.3273		1.3578	2.024	4				38	653
1.09		1.0078	1.3446		1.3777	2.813	4	21.00	10.00		00	000
2.19		0.9799	1.2890		1.3148	1.607	4	12.00		0.0683878	48	617
*4.38		0.3046	0.5628		0.6246	13.706	4	10.00		0.0683878	418	588
*8.75		0.0000	0.0431		0.0481	13.766	4	10.00		0.0683878	563	563
*17.5		0.0000	0.0413		0.0435	4.357	4	10.00	10.00	0.0000070	000	000
Auxiliary Te							Statistic		Critical		Skew	Kurt
	k's Test indica st indicates ur				1)		0.8606325 27.215322		0.884 15.086272		-1.566949	4.9737749
	means are no	•		,			0.7523713		2.4469118			
	Test (1-tail, 0	0	NOEC	LOEC	ChV	TU	0.7525715		2.4409110			
	y-One Rank T		2.19	4.38	3.0971277	10						
	vs D-Control	631	2.15	4.50	5.0571277							
ricatificitio	V3 D-Control				Trimmed S	nearman	-Karber					
Trim Level	EC50	95%	6 CL			pourman						
0.0%												
5.0%		3.6462	3.8655									
10.0%		3.5934	3.8283					1.0				
20.0%		3.5020	3.7660					0.9			/	
Auto-2.1%		3.6786	3.8885					-				
					-			0.8 -				
								0.7				
										/	*	
							¢,	0.6 -				
							ŭ.					
							suo	0.5				
							suods	0.5				
							Response	0.5				
								1				
								0.3				
								1				
								0.3	,			
								0.3 0.2 0.1]			
								0.3 0.2				

Figure 60. ToxCalc summary sheet including dose-response curve for Mill B weak black liquor spike 2 simulated effluent sample.

Dose ug/L

			Biv	alve Larval Survival and Develo	opment Test-Proportion	n Normal
Start Date: 1	1/1/2010	Т	est ID:	24920	Sample ID:	Mill B WBL Spike 3
End Date: 1	1/3/2010	L	ab ID:	NABF	Sample Type:	Bleached Kraft
Sample Date1	0/28/2010	F	Protocol:	EPAW 95-EPA West Coast	Test Species:	MG-Mytilus galloprovincialis
Comments: M	Vill B WBL sp	oike 3				
Conc-%	1	2	3	4		
B-Control	0.9351	0.9533	0.9222	0.9474		
D-Control	0.9273	0.9557	0.9695	0.9504		
1.09	0.9253	0.9360	0.9074	0.9244		
2.19	0.8344	0.8320	0.8170	0.7857		
4.38	0.0000	0.0000	0.0000	0.0000		
8.75	0.0000	0.0000	0.0000	0.0000		

				Transform:	Arcsin Squ	are Root		Rank	1-Tailed	Number	Total
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Resp	Number
B-Control	0.9395	0.9882	1.3234	1.2880	1.3531	2.176	4				
D-Control	0.9507	1.0000	1.3495	1.2977	1.3953	2.987	4			31	628
1.09	0.9233	0.9712	1.2907	1.2616	1.3151	1.707	4	11.00	10.00	52	680
*2.19	0.8173	0.8597	1.1296	1.0895	1.1517	2.531	4	10.00	10.00	133	734
*4.38	0.0000	0.0000	0.0401	0.0388	0.0418	3.508	4	10.00	10.00	625	625
*8.75	0.0000	0.0000	0.0403	0.0394	0.0407	1.545	4	10.00	10.00		

B 0.6 0.5 0.4

0.3 0.2 0.1 0.0

1

Dose ug/L

Figure 61. ToxCalc summary sheet including dose-response curve for Mill B weak black liquor spike 3 simulated effluent sample.

			Biv	alve Larval Survival and Develo	opment Test-Proportion	n Normal
Start Date: 1	1/1/2010		Fest ID:	24921	Sample ID:	Mill B WBL Spike 4
End Date: 1	1/3/2010	l	_ab ID:	NABF	Sample Type:	Bleached Kraft
Sample Date1	0/28/2010	F	Protocol:	EPAW 95-EPA West Coast	Test Species:	MG-Mytilus galloprovincialis
Comments: M	/ill B WBL sp	ike 4				
Conc-%	1	2	3	4		
B-Control	0.9627	0.9382	0.9503	0.9408		
D-Control	0.9477	0.9655	0.9394	0.9014		
1.09	0.9114	0.9306	0.9247	0.9167		
2.19	0.5338	0.5466	0.5568	0.6042		
4.38	0.0000	0.0000	0.0000	0.0000		
8.75	0.0000	0.0000	0.0000	0.0000		

		_		Transform:	Arcsin Squ	are Root		Rank	1-Tailed	Number	Total
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Resp	Number
B-Control	0.9480	1.0101	1.3418	1.3196	1.3765	1.924	4				
D-Control	0.9385	1.0000	1.3244	1.2514	1.3840	4.167	4			36	601
1.09	0.9208	0.9812	1.2859	1.2685	1.3043	1.229	4	14.00	10.00	49	621
*2.19	0.5603	0.5970	0.8460	0.8192	0.8903	3.670	4	10.00	10.00	300	686
*4.38	0.0000	0.0000	0.0422	0.0413	0.0435	2.352	4	10.00	10.00	563	563
*8.75	0.0000	0.0000	0.0398	0.0392	0.0404	1.319	4	10.00	10.00		

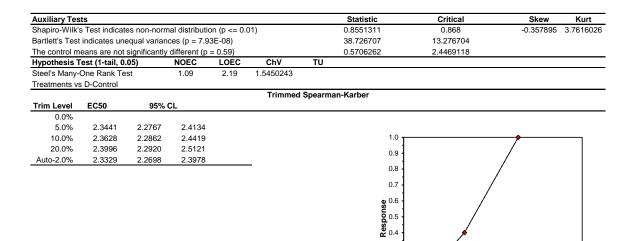


Figure 62. ToxCalc summary sheet including dose-response curve for Mill B weak black liquor spike 4 simulated effluent sample.

0.3 0.2 0.1 0.0

10

Dose ug/L

			Biv	valve Larval Survival and Develo	opment Test-Proportio	n Normal
Start Date:	11/1/2010	Т	est ID:	24922	Sample ID:	Mill B WBL Spike 5
End Date:	11/3/2010	L	ab ID:	NABF	Sample Type:	Bleached Kraft
Sample Date	10/28/2010	F	Protocol:	EPAW 95-EPA West Coast	Test Species:	MG-Mytilus galloprovincialis
Comments:	Mill B WBL sp	oike 5				
Conc-%	1	2	3	4		
B-Control	0.9276	0.9217	0.9286	0.9494		
D-Control	0.9136	0.9477	0.9294	0.9324		
1.09	0.9645	0.8993	0.9176	0.8750		
2.19	0.2229	0.2680	0.1838	0.1722		
4.38	0.0000	0.0000	0.0000	0.0000		
8.75	0.0000	0.0000	0.0000	0.0000		

				Transform:	Arcsin Squ	are Root		Rank	1-Tailed	Number	Total
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Resp	Number
B-Control	0.9318	1.0011	1.3074	1.2872	1.3438	1.909	4				
D-Control	0.9308	1.0000	1.3055	1.2724	1.3400	2.123	4			45	652
1.09	0.9141	0.9821	1.2796	1.2094	1.3812	5.754	4	15.00	10.00	53	630
*2.19	0.2117	0.2275	0.4767	0.4279	0.5441	11.021	4	10.00	10.00	477	606
*4.38	0.0000	0.0000	0.0406	0.0392	0.0417	2.775	4	10.00	10.00	609	609
*8.75	0.0000	0.0000	0.0414	0.0391	0.0432	4.205	4	10.00	10.00		

Auxiliary Tes	ts						Statistic	Critical	Skew	Kurt
Shapiro-Wilk'	s Test indicate	es normal dis	stribution (p	> 0.01)			0.8731666	0.868	0.9181076	2.3295426
Bartlett's Test	indicates une	equal variand	ces (p = 6.62	2E-07)			34.250607	13.276704		
The control m	eans are not	significantly	different (p	= 0.92)			0.1009613	2.4469118		
Hypothesis T	est (1-tail, 0.	05)	NOEC	LOEC	ChV	TU				
Steel's Many-	One Rank Te	st	1.09	2.19	1.5450243					
Treatments vs	s D-Control									
					Trimmed	Spearm	an-Karber			
Trim Level	EC50	95% C	CL							
0.0%										
5.0%	1.7692	1.7238	1.8159							
10.0%	1.7419	1.6951	1.7900				1.0			

20.0%

Auto-1.6%

1.7068

1.7902

1.6632

1.7465

1.7515

1.8350

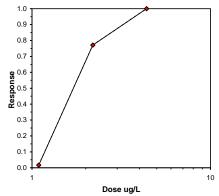


Figure 63. ToxCalc summary sheet including dose-response curve for Mill B weak black liquor spike 5 simulated effluent sample.

			Biv	valve Larval Survival and Develo	opment Test-Proportion	Normal
Start Date:	11/1/2010	Т	est ID:	24922	Sample ID:	Mill B WBL Spike 5 Unsettled
End Date:	11/3/2010	L	ab ID:	NABF	Sample Type:	Bleached Kraft
Sample Date	10/28/2010	P	rotocol:	EPAW 95-EPA West Coast	Test Species:	MG-Mytilus galloprovincialis
Comments:	Mill B WBL sp	ike 5 unsett	led			
Conc-ug/L	1	2	3	4		
B-Control	0.9281	0.9249	0.9317	0.8836		
D-Control	0.8935	0.9268	0.9301	0.9337		
1.09	0.9172	0.9097	0.9188	0.9101		
2.19	0.2536	0.2569	0.2109	0.1250		
4.38	0.0000	0.0000	0.0000	0.0000		
8.75	0.0000	0.0000	0.0000	0.0000		

				Transform:	Arcsin Squ	are Root		Rank	1-Tailed	Number	Total
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Resp	Number
B-Control	0.9170	0.9957	1.2803	1.2226	1.3063	3.036	4				
D-Control	0.9210	1.0000	1.2872	1.2383	1.3104	2.567	4			51	642
1.09	0.9140	0.9923	1.2732	1.2656	1.2818	0.661	4	14.00	10.00	57	664
*2.19	0.2116	0.2298	0.4745	0.3614	0.5316	16.730	4	10.00	10.00	452	573
*4.38	0.0000	0.0000	0.0417	0.0414	0.0418	0.489	4	10.00	10.00	576	576
*8.75	0.0000	0.0000	0.0398	0.0378	0.0427	6.090	4	10.00	10.00		

Auxiliary Tes	sts						Statistic		Critical	Skew	Kurt
Shapiro-Wilk	s Test indicat	es non-norm	al distributic	on (p <= 0.0	01)		0.7585536		0.868	-1.743603	6.2448789
Bartlett's Tes	t indicates une	ces (p = 1.19	9E-09)			47.519878		13.276704			
The control m	neans are not	different (p :	= 0.80)			0.2702006		2.4469118			
Hypothesis 1	Гest (1-tail, 0.	.05)	NOEC	LOEC	ChV	ΤU					
Steel's Many-	One Rank Te	st	1.09	2.19	1.5450243						
Treatments v	s D-Control										
					Trimmed	Spearm	an-Karber				
Trim Level	EC50	95% (CL								
0.0%											
5.0%	1.7760	1.7293	1.8239								
10.0%	1.7484	1.7002	1.7980					1.0			
20.0%	1.7129	1.6678	1.7592								

Auto-0.7%

1.7589

1.8032

1.8486

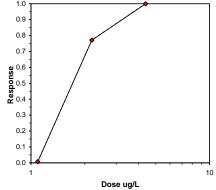


Figure 64. ToxCalc summary sheet including dose-response curve for Mill B weak black liquor spike 5 simulated effluent sample (unsettled).

			Biy	alve i arval S	Survival and D	evelopme	ent Test-Propo	ortion Nor	mal		
Start Date: 1	1/4/2010	т	est ID:	24924		ererepiin	Sample ID:		Mill C Mill Effluent		
and Date: 1			ab ID:	NABF			Sample Type:		Bleached Kraft		
ample Dati 1			Protocol:		PA West Coast		Test Species:		MG-Mytilus gallop	rovincialis	
•		eated effluent		217.01 00 21					ine injude gallep	i o vinici dano	
Conc-%	1	2	3	4							
B-Control	0.8836	0.9180	0.9139	0.8929							
D-Control	0.9114	0.9016	0.3275	0.9463							
1.09	0.9281	0.8865	0.8610	0.8659							
2.19	0.9118	0.9126	0.9091	0.8800							
4.38	0.8333	0.8539	0.8736	0.8757							
8.75	0.1867	0.2649	0.1749	0.2704							
17.5	0.0000	0.0000	0.0000								
35	0.0000	0.0000	0.0000								
				Transform	: Arcsin Squa	re Root		Rank	1-Tailed	Number	Total
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	Resp	Number
B-Control	0.9021	1.1690	1.2533	1.2226	1.2804	2.219	4				
D-Control	0.7717	1.0000	1.1166		1.3370	30.471	4			155	661
1.09	0.8854	1.1473	1.2278	1.1887	1.2994	4.122	4	16.00	10.00		
2.19	0.9034	1.1706	1.2553	1.2171	1.2706	2.044	4	19.00	10.00		
4.38	0.8591	1.1133	1.1867	1.1503	1.2105	2.373	4	14.00	10.00	106	747
*8.75	0.2242	0.2906	0.4914	0.4314	0.5469	12.366		10.00	10.00	538	693
*17.5	0.0000	0.0000	0.0375	0.0360	0.0407	5.767	4	10.00	10.00	716	716
*35	0.0000	0.0000	0.0386	0.0347	0.0400	6.744	4	10.00	10.00		
uxiliary Tes	ts						Statistic		Critical	Skew	Kurt
Shapiro-Wilk'	s Test indica	ates non-norm	nal distribut	ion (p <= 0.01)		0.6567013		0.896	-2.823194	13.730284
3artlett's Test	indicates u	nequal varian	ces (p = 6.4	40E-12)			64.160378		16.811893		
The control m	eans are no	t significantly	different (p	= 0.45)			0.8008982		2.4469118		
lypothesis T	'est (1-tail, (0.05)	NOEC	LOEC	ChV	TU					
Steel's Many-	One Rank T	est	4.38	8.75	6.1907189						
Freatments ve	D-Control										
					Trimmed S	Spearman	n-Karber				
Frim Level	EC50	95% (CL								
0.0%	7.4922	7.3182	7.6705								
5.0%	7.3797	7.1921	7.5722								
10.0%	7.2767	7.0777	7.4813				^{1.0} J				
20.0%	7.1139	6.9013	7.3330				0.9		/		
Auto-0.0%	7.4922	7.3182	7.6705				0.8		1		
							0.7		4		
									Į		
							0.6		f:		
							9 0.5		<i> </i> :		
							esu 0.5 0.4 0.3		<i> </i> ;		
							8 0.3		<i> </i> ;		
									l:		
							0.2		l:		
							0.1		<i> :</i>		
							0.0		↓ :		
							-0.1		1		
							-0.2		·		
							-0.2 +		10	100	
									Dose ug/L		

Figure 65. ToxCalc summary sheet including dose-response curve for weak black liquor mill-treated effluent sample.

			Riv	/alve Larval S	urvival and D	evelonme	ont Test-Pron	ortion Nor	nal			
Start Date: 1	1/17/2010		Test ID:	24986		creiopine	Sample ID:		Mill C Reactor	Control		
End Date: 1			Lab ID:	NABE			Sample Type:		Simulated effl			
Sample Dati 1			Protocol:		A West Coast		Test Species:		MG-Mytilus ga			
Comments: I		r control	1.000000	2.7.00 00 2.			root openioo.		ino injulio ge			
Conc-%	1	2	3	4								
B-Control	0.9787	0.9627	0.9471	0.9403								
D-Control	0.9457	0.9588	0.9529	0.9560								
1.09	0.9341	0.9579	0.9512	0.9278								
2.19	0.9604	0.9063	0.9527	0.9315								
4.38	0.9104	0.9476	0.9171	0.9133								
8.75	0.7624	0.8282	0.8233	0.8090								
17.5	0.0000	0.0000	0.0000	0.0000								
35	0.0000	0.0000	0.0000	0.0000								
				Transform:	Arcsin Squa	re Root		Rank	1-Tailed	Nu	Imber	Total
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	R	lesp	Number
B-Control	0.9572	1.0041	1.3659	1.3240	1.4244	3.284	4					
D-Control	0.9533	1.0000	1.3534	1.3355	1.3665	0.983	4				34	727
1.09	0.9428	0.9889	1.3306	1.2988	1.3641	2.302	4	14.00	10.00			
2.19	0.9377	0.9836	1.3219	1.2596	1.3705	3.748	4	15.00	10.00			
4.38	0.9221	0.9672	1.2893	1.2669	1.3399	2.642	4	11.00	10.00		61	782
*8.75	0.8057	0.8452	1.1151	1.0617	1.1434	3.333	4	10.00	10.00		143	737
*17.5	0.0000	0.0000	0.0393	0.0362	0.0423	6.680	4	10.00	10.00		656	656
*35	0.0000	0.0000	0.0380	0.0355	0.0397	4.960	4	10.00	10.00			
Auxiliary Tes	its						Statistic		Critical	s	kew	Kurt
Shapiro-Wilk'	s Test indica	ates normal	distribution (p > 0.01)			0.962661		0.896	-0.2	252498	0.6366211
Bartlett's Test	indicates u	nequal varia	nces (p = 1.	51E-04)			26.903662		16.811893			
The control m		0	2 1				0.5351905		2.4469118			
Hypothesis T			NOEC	LOEC	ChV	TU						
Steel's Many-		est	4.38	8.75	6.1907189							
Freatments ve	s D-Control					-						
					Trimmed S	Spearman	-Karber					
Trim Level	EC50	95%	6 CL									
0.0%	44 077	44.040	44 540									
5.0%	11.277	11.043	11.516					1.0				
10.0% 20.0%	11.511	11.210	11.819									
	11.615	11.466	11.766					0.9		1		
Auto-3.3%	11.176	10.951	11.405					0.8		1		
										1		
								0.7		1		
							0	0.6		/		
							use	0.6 0.5 0.4		1		
							od	0.5				
							sex	0.4				
								1		1		
								0.3		1		
								0.2		1		
										×		
								0.1				
								0.0				l
								1		10		100
									D	ose ug/L		

Figure 66. ToxCalc summary sheet including dose-response curve for weak black liquor reactor control simulated effluent sample.

			Biv	alve Larval S	Survival and I	Develonme	ent Test-Pro	nortion Nor	mal			
Start Date:	11/17/2010		Test ID:	24987		beveloping	Sample ID:		Mill C WBL	Snike 1		
	11/19/2010			NABF			Sample Type	۵.	Simulated et	•		
	11/15/2010				PA West Coas	st	Test Species			galloprovincia	alis	
•	Mill C WBL	spike 1		2.7.00 00 2.			. cor openio			ganoprotinion		
Conc-%	1	2	3	4								
B-Control	0.9255	0.9565	0.9427	0.9548								
D-Control	0.9581	0.9249	0.9341	0.9733								
1.09	0.9321	0.9179	0.9538									
2.19	0.9163	0.9200	0.8956	0.8846								
4.38	0.9147	0.9211	0.9113	0.8814								
8.75	0.2488	0.1475	0.1779	0.1737								
17.5		0.0000	0.0000	0.0000								
35		0.0000	0.0000	0.0000								
				Transform	: Arcsin Squ	are Root			1-Tailed		Number	Total
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
B-Control	0.9449	0.9971	1.3352	1.2943	1.3607	2.295	4			-		
D-Control	0.9476	1.0000	1.3439	1.2931	1,4065	3.846	4				39	757
1.09	0.9346	0.9863	1.3139	1.2803	1.3543	2.850	3	1.115	2.613	0.0702	40	611
*2.19	0.9041	0.9541	1.2568	1.2242	1.2840	2.273	4	3.499		0.0650	73	766
*4.38	0.9071	0.9573	1.2620	1.2191	1.2860	2.336	4	3.292		0.0650	75	819
*8.75	0.1870	0.1973	0.4454	0.3942	0.5222	12,194	4	36.117	2.613	0.0650	635	782
*17.5	0.0000	0.0000	0.0361	0.0340	0.0393	6.513	4	52.573		0.0650	776	776
*35	0.0000	0.0000	0.0376	0.0354	0.0398	5.496	4	52.510	2.613	0.0650		
Auxiliary Te	orto						Statistic		Critical		Skew	Kurt
	k's Test indica											
•							0.05/2512		0 904		0 5057122	0 607709
Partlatt's To				,			0.9542512		0.894		0.5057123	0.607708
	st indicates u	nequal varia	nces (p = 1.6	62E-04)			26.746212		16.811893		0.5057123	0.607708
The control	st indicates u means are no	nequal varia ot significantl	nces (p = 1.6 ly different (p	62E-04) = 0.78)	ChV	ти	26.746212 0.2904817	MSDn	16.811893 2.4469118	MSE		
The control Hypothesis	st indicates u means are no Test (1-tail,	nequal varia ot significantl	Inces (p = 1.6 ly different (p NOEC	2E-04) = 0.78) LOEC	ChV	TU	26.746212 0.2904817 MSDu	MSDp	16.811893 2.4469118 MSB	MSE	F-Prob	df
The control Hypothesis Bonferroni t	st indicates u means are no Test (1-tail, Test	nequal varia ot significantl	nces (p = 1.6 ly different (p	2E-04) = 0.78) LOEC	ChV 1.5450243	TU	26.746212 0.2904817		16.811893 2.4469118			
The control Hypothesis Bonferroni t	st indicates u means are no Test (1-tail,	nequal varia ot significantl	Inces (p = 1.6 ly different (p NOEC	2E-04) = 0.78) LOEC	1.5450243		26.746212 0.2904817 MSDu 0.0322039		16.811893 2.4469118 MSB		F-Prob	df
The control Hypothesis Bonferroni t Treatments	st indicates u means are no Test (1-tail, Test vs D-Control	nequal varia ot significanti 0.05)	nces (p = 1.6 ly different (p NOEC 1.09	52E-04) = 0.78) LOEC 2.19	1.5450243	Likelihoo	26.746212 0.2904817 MSDu 0.0322039 d-Probit	0.0339208	16.811893 2.4469118 MSB 1.4709212	0.0012376	F-Prob 1.9E-24	df 6, 20
The control Hypothesis Bonferroni t Treatments Parameter	st indicates u means are no Test (1-tail, Test vs D-Control Value	nequal varia ot significantl 0.05) SE	nces (p = 1.6 ly different (p NOEC 1.09 95% Fiducia	22E-04) = 0.78) LOEC 2.19	1.5450243 Maximum	Likelihoo Control	26.746212 0.2904817 MSDu 0.0322039 d-Probit Chi-Sq	0.0339208 Critical	16.811893 2.4469118 MSB 1.4709212 P-value	0.0012376 Mu	F-Prob 1.9E-24 Sigma	df 6, 20 Iter
The control Hypothesis Bonferroni t Treatments Parameter Slope	st indicates u means are no Test (1-tail, Test vs D-Control Value 9.5417558	nequal varia ot significanti 0.05) <u>SE</u> 0.7931601	nces (p = 1.6 ly different (p NOEC 1.09 95% Fiducia 7.987162	52E-04) = 0.78) LOEC 2.19 al Limits 11.09635	1.5450243 Maximum	Likelihoo Control	26.746212 0.2904817 MSDu 0.0322039 d-Probit Chi-Sq	0.0339208	16.811893 2.4469118 MSB 1.4709212	0.0012376	F-Prob 1.9E-24	df 6, 20
The control Hypothesis Bonferroni t Treatments Parameter Slope Intercept	st indicates u means are no Test (1-tail, Test vs D-Control Value 9.5417558 -3.153758	nequal varia ot significanti 0.05) SE 0.7931601 0.7359133	nces (p = 1.6 ly different (p NOEC 1.09 95% Fiducia 7.987162 -4.596148	32E-04) = 0.78) LOEC 2.19 al Limits 11.09635 -1.711368	1.5450243 Maximum	Likelihoo Control	26.746212 0.2904817 MSDu 0.0322039 d-Probit Chi-Sq	0.0339208 Critical	16.811893 2.4469118 MSB 1.4709212 P-value	0.0012376 Mu	F-Prob 1.9E-24 Sigma	df 6, 20 Iter
The control Hypothesis Bonferroni t Treatments Parameter Slope Intercept TSCR	st indicates u means are no Test (1-tail, Test vs D-Control Value 9.5417558 -3.153758 0.0714087	nequal varia ot significanti 0.05) SE 0.7931601 0.7359133 0.005538	nces (p = 1.6 ly different (p NOEC 1.09 95% Fiducia 7.987162 -4.596148 0.0605541	32E-04) = 0.78) LOEC 2.19 al Limits 11.09635 -1.711368 0.0822632	1.5450243 Maximum	Likelihoo Control	26.746212 0.2904817 MSDu 0.0322039 d-Probit Chi-Sq 7.0000751	0.0339208 Critical	16.811893 2.4469118 MSB 1.4709212 P-value	0.0012376 Mu	F-Prob 1.9E-24 Sigma	df 6, 20 Iter
The control Hypothesis Bonferroni t Treatments Parameter Slope ntercept TSCR Point	st indicates u means are no Test (1-tail, Test vs D-Control 9.5417558 -3.153758 0.0714087 Probits	nequal varia ot significanti 0.05) SE 0.7931601 0.7359133 0.005538 %	nces (p = 1.6 y different (p NOEC 1.09 95% Fiducia 7.987162 -4.596148 0.0605541 95% Fiducia	32E-04) = 0.78) LOEC 2.19 al Limits 11.09635 -1.711368 0.0822632 al Limits	1.5450243 Maximum	Likelihoo Control	26.746212 0.2904817 MSDu 0.0322039 d-Probit Chi-Sq 7.0000751	0.0339208 Critical	16.811893 2.4469118 MSB 1.4709212 P-value	0.0012376 Mu	F-Prob 1.9E-24 Sigma	df 6, 20 Iter
The control Hypothesis Bonferroni t Treatments Parameter Slope ntercept TSCR Point EC01	st indicates u means are no Test (1-tail, Test vs D-Control 9.5417558 -3.153758 0.0714087 Probits 2.674	nequal varia ot significanti 0.05) <u>SE</u> 0.7931601 0.7359133 0.005538 % 4.0806302	nces (p = 1.6 ly different (p NOEC 1.09 95% Fiducia 7.987162 -4.596148 0.0605541 95% Fiducia 3.5253648	32E-04) = 0.78) LOEC 2.19 al Limits 11.09635 -1.711368 0.0822632 al Limits 4.536921	1.5450243 Maximum	Likelihoo Control	26.746212 0.2904817 MSDu 0.0322039 d-Probit Chi-Sq 7.0000751	0.0339208 Critical	16.811893 2.4469118 MSB 1.4709212 P-value	0.0012376 Mu	F-Prob 1.9E-24 Sigma	df 6, 20 Iter
The control Hypothesis Bonferroni t Treatments Parameter Slope Intercept TSCR Point EC01 EC05	st indicates u means are no Test (1-tail, Test vs D-Control 9.5417558 -3.153758 0.0714087 Probits 2.674 3.355	nequal varia ot significanti 0.05) SE 0.7931601 0.7359133 0.005538 % 4.0806302 4.8100496	nces (p = 1.6 y different (p NOEC 1.09 95% Fiducia 7.987162 -4.596148 0.0605541 95% Fiducia 3.5253648 4.2876578	32E-04) = 0.78) LOEC 2.19 al Limits 11.09635 -1.711368 0.0822632 al Limits 4.536921 5.2297983	1.5450243 Maximum	Likelihoo Control	26.746212 0.2904817 MSDu 0.0322039 d-Probit Chi-Sq 7.0000751	0.0339208 Critical	16.811893 2.4469118 MSB 1.4709212 P-value	0.0012376 Mu	F-Prob 1.9E-24 Sigma	df 6, 20 Iter
The control Hypothesis Bonferroni t Treatments Parameter Slope ntercept TSCR Point EC01 EC05 EC10	st indicates u means are no Test (1-tail, Test vs D-Control 9.5417558 -3.153758 0.0714087 Probits 2.674 3.355 3.718	nequal varia ot significanti 0.05) SE 0.7931601 0.7359133 0.005538 % 4.0806302 4.8100496 5.2507885	nces (p = 1.6 y different (p NOEC 1.09 95% Fiducia 7.987162 -4.596148 0.0605541 95% Fiducia 3.5253648 4.2876578 4.7584071	32E-04) = 0.78) LOEC 2.19 al Limits 11.09635 -1.711368 0.0822632 al Limits 4.536921 5.2297983 5.6424783	1.5450243 Maximum	Likelihoo Control	26.746212 0.2904817 MSDu 0.0322039 d-Probit Chi-Sq 7.0000751 1.0 0.9 0.8 0.7	0.0339208 Critical	16.811893 2.4469118 MSB 1.4709212 P-value	0.0012376 Mu	F-Prob 1.9E-24 Sigma	df 6, 20 Iter
The control Hypothesis Bonferroni t Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15	st indicates u means are no Test (1-tail, Test vs D-Control 9.5417558 -3.153758 0.0714087 Probits 2.674 3.355 3.718 3.964	significanti 0.05) SE 0.7931601 0.7359133 0.005538 % 4.0806302 4.8100496 5.2507885 5.5707482	nces (p = 1.6 y different (p NOEC 1.09 95% Fiducia 7.987162 -4.596148 0.0605541 95% Fiducia 3.5253648 4.2876578 4.2876578 4.7584071 5.1042668	52E-04) = 0.78) LOEC 2.19 al Limits 11.09635 -1.711368 0.0822632 al Limits 4.536921 5.2297983 5.6424783 5.6424783 5.6424783	1.5450243 Maximum	Likelihoo Control	26.746212 0.2904817 MSDu 0.0322039 d-Probit Chi-Sq 7.0000751 1.0 0.9 0.8 0.7	0.0339208 Critical	16.811893 2.4469118 MSB 1.4709212 P-value	0.0012376 Mu	F-Prob 1.9E-24 Sigma	df 6, 20 Iter
The control Hypothesis 3onferroni t Treatments Parameter Slope ntercept TSCR Point EC01 EC05 EC10 EC15 EC20	st indicates u means are no Test (1-tail, Test vs D-Control 9.5417558 -3.153758 0.0714087 Probits 2.674 3.355 3.718 3.964 4.158	nequal varia ot significanti 0.05) 8E 0.7931601 0.7359133 0.005538 % 4.0806302 4.8100496 5.2507885 5.5707482 5.5707482 5.8388905	nces (p = 1.2 y different (p NOEC 1.09 95% Fiducia 7.987162 -4.596148 0.0605541 95% Fiducia 3.5253648 4.2876578 4.7584071 5.1042668 5.3964435	62E-04) = 0.78) LOEC 2.19 al Limits 11.09635 -1.711368 0.0822632 al Limits 4.536921 5.297983 5.6424783 5.5438727 6.187995	1.5450243 Maximum	Likelihoo Control	26.746212 0.2904817 MSDu 0.0322039 d-Probit Chi-Sq 7.0000751 1.0 0.9 0.8 0.7	0.0339208 Critical	16.811893 2.4469118 MSB 1.4709212 P-value	0.0012376 Mu	F-Prob 1.9E-24 Sigma	df 6, 20 Iter
The control Hypothesis 3onferroni t Freatments Parameter Slope ntercept FSCR Point EC01 EC05 EC10 EC15 EC20 EC25	st indicates u means are no Test (1-tail, Test vs D-Control 9.5417558 -3.153758 0.0714087 Probits 2.674 3.355 3.718 3.964 4.158 4.326	nequal varia ot significanti 0.05) SE 0.7931601 0.7959133 0.005538 % 4.0806302 4.8100496 5.2507885 5.5707482 5.8388905 6.0791958	nces (p = 1.6 y different (p NOEC 1.09 95% Fiducia 7.987162 -4.596148 0.0605541 95% Fiducia 3.5253648 4.2876578 4.2876578 4.7584071 5.1042668 5.3964435 5.3954435	32E-04) = 0.78) LOEC 2.19 al Limits 11.09635 -1.711368 0.0822632 al Limits 4.536921 5.2297983 5.6424783 5.9398727 6.187995 6.4097297	1.5450243 Maximum	Likelihoo Control	26.746212 0.2904817 MSDu 0.0322039 d-Probit Chi-Sq 7.0000751 1.0 0.9 0.8 0.7	0.0339208 Critical	16.811893 2.4469118 MSB 1.4709212 P-value	0.0012376 Mu	F-Prob 1.9E-24 Sigma	df 6, 20 Iter
The control Hypothesis 3onferroni t Treatments Parameter Slope ntercept FSCR 	st indicates u means are no Test (1-tail, Test vs D-Control 9.5417558 -3.153758 0.0714087 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747	nequal varia ot significanti 0.05)	nces (p = 1.6 y different (p NOEC 1.09 95% Fiducia 7.987162 -4.596148 0.0605541 95% Fiducia 3.5253648 4.2876578 4.2876578 4.7584071 5.1042668 5.3964435 5.3658474 6.3779023	32E-04) = 0.78) LOEC 2.19 al Limits 11.09635 -1.711368 0.0822632 0.0822632 d Limits 4.536921 5.2297983 5.6424783 5.6424783 5.9398727 6.187995 6.4097297 7.0088583	1.5450243 Maximum	Likelihoo Control	26.746212 0.2904817 MSDu 0.0322039 d-Probit Chi-Sq 7.0000751 1.0 0.9 0.8 0.7	0.0339208 Critical	16.811893 2.4469118 MSB 1.4709212 P-value	0.0012376 Mu	F-Prob 1.9E-24 Sigma	df 6, 20 Iter
The control Hypothesis 3onferroni t Treatments Parameter Slope ntercept ISCR Point EC01 EC05 EC10 EC05 EC10 EC15 EC20 EC25 EC40 EC50	st indicates u means are no Test (1-tail, Test vs D-Control 9.5417558 -3.153758 0.0714087 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000	significanti 0.05) 0.7931601 0.7359133 0.005538 % 4.0806302 4.8100496 5.2507885 5.5707482 5.838905 6.0791958 6.7295022 7.1537598	nces (p = 1.6 y different (p NOEC 1.09 95% Fiducia 7.987162 -4.596148 0.0605541 95% Fiducia 3.5253648 4.2876578 4.2876578 4.7584071 5.1042668 5.3964435 5.6598474 6.3779023 6.8476371	S2E-04) = 0.78) LOEC 2.19 al Limits 11.09635 -1.711368 0.0822632 al Limits 4.536921 5.2297983 5.6424783 5.9398727 6.187995 6.4097297 7.0088583 7.4017647	1.5450243 Maximum	Likelihoo Control	26.746212 0.2904817 MSDu 0.0322039 d-Probit Chi-Sq 7.0000751 1.0 0.9 0.8 0.7 0.6 50 0.5 50 0.4	0.0339208 Critical	16.811893 2.4469118 MSB 1.4709212 P-value	0.0012376 Mu	F-Prob 1.9E-24 Sigma	df 6, 20 Iter
The control Hypothesis 3onferroni t Treatments Parameter Slope ntercept TSCR Point EC01 EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC50 EC60	st indicates u means are no Test (1-tail, Test vs D-Control 9.5417558 -3.153758 -3.153758 -0.0714087 Probits 2.674 -3.355 -3.718 -3.964 -4.158 -4.326 -4.747 -5.000 -5.253	nequal varia ot significanti 0.05) 0.7931601 0.7359133 0.005538 % 4.0806302 4.8100496 5.2507885 5.5707482 5.8388905 6.0791958 6.7295022 7.1537598 7.6047645	nces (p = 1.6 y different (p NOEC 1.09 95% Fiducia 7.987162 4.596148 0.0605541 95% Fiducia 3.5253648 4.2876578 4.2876578 5.3964435 5.6598474 6.3779023 6.8476371 7.3433883	32E-04) = 0.78) LOEC 2.19 al Limits 11.09635 -1.711368 0.0822632 al Limits 5.2297983 5.6424783 5.9398727 6.187995 6.4097297 7.0088583 7.4017647 7.8258295	1.5450243 Maximum	Likelihoo Control	26.746212 0.2904817 MSDu 0.0322039 d-Probit Chi-Sq 7.0000751 1.0 0.9 0.8 0.7	0.0339208 Critical	16.811893 2.4469118 MSB 1.4709212 P-value	0.0012376 Mu	F-Prob 1.9E-24 Sigma	df 6, 20 Iter
The control Hypothesis Bonferroni t Treatments Parameter Slope Intercept TSCR Point EC01 EC01 EC05 EC10 EC15 EC20 EC15 EC20 EC25 EC40 EC55 EC60 EC50 EC60 EC75	st indicates u means are no Test (1-tail, Test vs D-Control 9.5417558 -3.153758 0.0714087 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.326 4.747 5.000 5.253 5.674	nequal varia ot significanti 0.05) 0.7931601 0.7359133 0.005538 % 4.0806302 4.8100496 5.2507885 5.5707482 5.5707482 5.5707482 5.5707482 5.6388905 6.0791958 6.7295022 7.1537598 7.6047645 8.4182646	nces (p = 1.6 y different (p NOEC 1.09 95% Fiducia 7.987162 -4.596148 0.0605541 95% Fiducia 3.5253648 4.2876578 4.7584071 5.1042668 5.3964435 5.6588474 6.3779023 6.8476371 7.3433883 8.2045031	22E-04) = 0.78) LOEC 2.19 al Limits 11.09635 -1.711368 0.0822632 al Limits 4.536921 5.297983 5.6424783 5.6424783 5.6424783 5.6424783 5.6497297 6.187995 6.4097297 7.0088583 7.4017647 7.8258295 8.6308842	1.5450243 Maximum	Likelihoo Control	26.746212 0.2904817 MSDu 0.0322039 d-Probit Chi-Sq 7.0000751 1.0 0.9 0.8 0.7 0.6 0.5 0.5 0.4	0.0339208 Critical	16.811893 2.4469118 MSB 1.4709212 P-value	0.0012376 Mu	F-Prob 1.9E-24 Sigma	df 6, 20 Iter
The control Hypothesis Bonferroni t Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC60 EC75 EC80	st indicates u means are no Test (1-tail, Test vs D-Control 9.5417558 -3.153758 0.0714087 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842	significanti 0.05) 0.7931601 0.7931601 0.795538 % 4.0806302 4.8100496 5.2507885 5.5707482 5.8388905 6.0791958 6.7295022 7.1537598 7.6047645 8.4182646 8.7647266	nces (p = 1.6 y different (p NOEC 1.09 95% Fiducia 7.987162 -4.596148 0.0605541 95% Fiducia 3.5253648 4.2876578 4.7584071 5.1042668 5.3964435 5.6598474 6.3779023 6.8476371 7.3433883 8.2045031 8.5493239	32E-04) = 0.78) LOEC 2.19 al Limits 11.09635 -1.711368 0.0822632 al Limits 4.536921 5.2297983 5.6424783 5.9398727 6.187995 6.4097297 7.0088583 7.4017647 7.8258295 8.6308842 8.6308842 8.9983455	1.5450243 Maximum	Likelihoo Control	26.746212 0.2904817 MSDu 0.0322039 d-Probit Chi-Sq 7.0000751 1.0 0.9 0.8 0.7 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.0 0.4 0.3 0.2	0.0339208 Critical	16.811893 2.4469118 MSB 1.4709212 P-value	0.0012376 Mu	F-Prob 1.9E-24 Sigma	df 6, 20 Iter
The control Hypothesis Bonferroni t Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC20 EC20 EC25 EC40 EC60 EC75 EC80 EC80 EC85	st indicates u means are no Test (1-tail, Test vs D-Control 9.5417558 -3.153758 0.0714087 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842 6.036	significanti 0.05) 0.7931601 0.7931601 0.7559133 0.005538 % 4.0806302 4.8100496 5.2507885 5.5707482 5.8388905 6.0791958 6.7295022 7.1537598 7.6047645 8.7647266 9.186608	nces (p = 1.6 y different (p NOEC 1.09 95% Fiducia 7.987162 -4.596148 0.0605541 95% Fiducia 3.5253648 4.2876578 4.2876578 4.2876578 5.3964435 5.6598474 6.3779023 6.8476371 7.3433883 8.2045031 8.5493239 8.5955071	32E-04) = 0.78) LOEC 2.19 2.19 11.09635 -1.711368 0.0822632 1 Limits 4.536921 5.2297983 5.6308727 6.187995 6.4097297 7.0088583 7.4017647 7.8258295 8.6308422 8.9883455 9.4665969	1.5450243 Maximum	Likelihoo Control	26.746212 0.2904817 MSDu 0.0322039 d-Probit Chi-Sq 7.0000751 1.0 0.9 0.8 0.7 0.6 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.4 0.3 0.4 0.3	0.0339208 Critical	16.811893 2.4469118 MSB 1.4709212 P-value	0.0012376 Mu	F-Prob 1.9E-24 Sigma	df 6, 20 Iter
The control Hypothesis Bonferroni t Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC50 EC50 EC60 EC50 EC60 EC50 EC60 EC50 EC60 EC60 EC60 EC61 EC62 EC60 EC50 EC60 EC60 </td <td>st indicates u means are no Test (1-tail, Test vs D-Control 9.5417558 -3.153758 0.0714087 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842 6.036 6.282</td> <td>significanti 0.1931601 0.7931601 0.7359133 0.005538 % 4.0806302 4.8100496 5.2507885 5.5707482 5.838905 6.0791958 6.7295022 7.1537598 7.6047645 8.7647266 9.186608 9.7463985</td> <td>nces (p = 1.6 y different (p NOEC 1.09 95% Fiducia 7.987162 -4.596148 0.0605541 95% Fiducia 3.5253648 4.2876578 4.2584071 5.1042668 5.3964435 5.6598474 6.3779023 6.8476371 7.3433883 8.2045031 8.5493239 9.458839</td> <td>32E-04) = 0.78) LOEC 2.19 al Limits 11.09635 -1.711368 0.0822632 al Limits 4.536921 5.6424783 5.6424783 5.6424783 7.0088583 7.4017647 7.8258295 8.6308842 8.9983455 9.4665969 10.11539</td> <td>1.5450243 Maximum</td> <td>Likelihoo Control</td> <td>26.746212 0.2904817 MSDu 0.0322039 d-Probit Chi-Sq 7.0000751 1.0 0.9 0.8 0.7 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.0 0.4 0.3 0.2</td> <td>0.0339208 Critical</td> <td>16.811893 2.4469118 MSB 1.4709212 P-value</td> <td>0.0012376 Mu</td> <td>F-Prob 1.9E-24 Sigma</td> <td>df 6, 20 Iter</td>	st indicates u means are no Test (1-tail, Test vs D-Control 9.5417558 -3.153758 0.0714087 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842 6.036 6.282	significanti 0.1931601 0.7931601 0.7359133 0.005538 % 4.0806302 4.8100496 5.2507885 5.5707482 5.838905 6.0791958 6.7295022 7.1537598 7.6047645 8.7647266 9.186608 9.7463985	nces (p = 1.6 y different (p NOEC 1.09 95% Fiducia 7.987162 -4.596148 0.0605541 95% Fiducia 3.5253648 4.2876578 4.2584071 5.1042668 5.3964435 5.6598474 6.3779023 6.8476371 7.3433883 8.2045031 8.5493239 9.458839	32E-04) = 0.78) LOEC 2.19 al Limits 11.09635 -1.711368 0.0822632 al Limits 4.536921 5.6424783 5.6424783 5.6424783 7.0088583 7.4017647 7.8258295 8.6308842 8.9983455 9.4665969 10.11539	1.5450243 Maximum	Likelihoo Control	26.746212 0.2904817 MSDu 0.0322039 d-Probit Chi-Sq 7.0000751 1.0 0.9 0.8 0.7 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.0 0.4 0.3 0.2	0.0339208 Critical	16.811893 2.4469118 MSB 1.4709212 P-value	0.0012376 Mu	F-Prob 1.9E-24 Sigma	df 6, 20 Iter
The control Hypothesis Bonferroni t	st indicates u means are no Test (1-tail, Test vs D-Control 9.5417558 -3.153758 -3.153758 -3.718 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842 6.036 6.282 6.645	significanti 0.05) 0.7931601 0.7931601 0.7559133 0.005538 % 4.0806302 4.8100496 5.2507885 5.5707482 5.8388905 6.0791958 6.7295022 7.1537598 7.6047645 8.7647266 9.186608	nces (p = 1.6 y different (p NOEC 1.09 95% Fiducia 7.987162 -4.596148 0.0605541 95% Fiducia 3.5253648 4.2876578 4.2584071 5.1042668 5.3964435 5.6598474 6.3779023 6.8476371 7.3433883 8.2045031 8.5493239 8.9505071 9.458839 10.236379	S2E-04) = 0.78) LOEC 2.19 al Limits 11.09635 -1.711368 0.0822632 al Limits 4.536921 5.6424783 5.6424783 5.6424783 5.6424783 5.4097297 7.0088583 7.4017647 7.8258295 8.630842 9.4665969 10.11539 11.191817	1.5450243 Maximum	Likelihoo Control	26.746212 0.2904817 MSDu 0.0322039 d-Probit Chi-Sq 7.0000751 1.0 0.9 0.8 0.7 0.9 0.8 0.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.0339208 Critical	16.811893 2.4469118 MSB 1.4709212 P-value	0.0012376 Mu	F-Prob 1.9E-24 Sigma	df 6, 20 Iter

Figure 67. ToxCalc summary sheet including dose-response curve for Mill C weak black liquor spike 1 simulated effluent sample.

			Biv	alvo Larval 9	Survival and	Developme	ont Test-Prov	nortion Nor	mal			
Start Date:	11/17/2010		Test ID:	24988			Sample ID:		Mill C WBL S	Snike 2		
End Date:				NABF			Sample Type	. .	Simulated ef	•		
	11/15/2010				PA West Coas	.t	Test Species		MG-Mytilus of		alie	
•	Mill C WBL	sniko 2	1 1010001.	EI AW 35-EI	A West Coat		rest opecies		MO-Mythus (Janoprovinci	ans	
Conc-%	1	2 2	3	4								
B-Control	0.9519	0.9312	0.9572	0.9895								
D-Control	0.9290	0.9400	0.9487	0.9558								
1.09	0.9457	0.9181	0.9524	0.9419								
2.19	0.8945	0.9385	0.9175	0.9502								
4.38	0.8838	0.9022	0.9121	0.8901								
4.30	0.0051	0.0061	0.0000	0.0000								
17.5		0.0001	0.0000	0.0000								
35	0.0000	0.0000	0.0000	0.0000								
	0.0000	0.0000	0.0000	0.0000								
					: Arcsin Squ			Rank	1-Tailed		Number	Total
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical		Resp	Number
B-Control	0.9575	1.0149	1.3714	1.3054	1.4680	5.023	4					
D-Control	0.9434	1.0000	1.3314	1.3010	1.3590	1.875	4				43	759
1.09	0.9395	0.9959	1.3235	1.2806	1.3508	2.285	4	17.00	10.00			
2.19	0.9252	0.9807	1.2964	1.2399	1.3459	3.588	4	14.00	10.00		59	785
*4.38	0.8970	0.9509	1.2446	1.2229	1.2698	1.676	4	10.00	10.00		87	832
*8.75	0.0028	0.0029	0.0562	0.0377	0.0779	37.996	4	10.00	10.00		710	712
*17.5	0.0000	0.0000	0.0359	0.0344	0.0378	4.102	4	10.00	10.00		777	777
*35	0.0000	0.0000	0.0355	0.0340	0.0365	3.222	4	10.00	10.00			
Auxiliary Te	ests						Statistic		Critical		Skew	Kurt
	k's lest indica	ates normal	distribution (r	0 > 0.01								
Bartlett's Te			distribution (p inces (p = 4.1	,			0.9743636		0.896		-0.370844	
	st indicates u	nequal varia	inces (p = 4.1	1E-05)			0.9743636 29.897276		0.896 16.811893			
The control	st indicates u means are no	nequal varia	inces (p = 4.1 ly different (p	1E-05) = 0.32)	ChV	TU	0.9743636		0.896			
The control Hypothesis	st indicates u means are no Test (1-tail,	nequal varia ot significant 0.05)	inces (p = 4.1	1E-05) = 0.32) LOEC	ChV 3.0971277	TU	0.9743636 29.897276		0.896 16.811893			
The control Hypothesis Steel's Many	st indicates u means are no	nequal varia ot significant 0.05)	Inces (p = 4.1 ly different (p NOEC	1E-05) = 0.32) LOEC		TU	0.9743636 29.897276		0.896 16.811893			
The control Hypothesis Steel's Many	st indicates u means are no Test (1-tail, y-One Rank 1	nequal varia ot significant 0.05)	Inces (p = 4.1 ly different (p NOEC	1E-05) = 0.32) LOEC	3.0971277	TU Likelihoo	0.9743636 29.897276 1.0915716		0.896 16.811893			0.7358703
The control Hypothesis Steel's Many Treatments	st indicates u means are no Test (1-tail, y-One Rank 1 vs D-Control Value	nequal varia ot significant 0.05) Fest SE	Inces (p = 4.1 ly different (p NOEC 2.19 95% Fiducia	1E-05) = 0.32) LOEC 4.38	3.0971277		0.9743636 29.897276 1.0915716 d-Probit Chi-Sq	Critical	0.896 16.811893	Mu	-0.370844 Sigma	
The control Hypothesis Steel's Many Treatments Parameter Slope	st indicates u means are no Test (1-tail, y-One Rank 1 vs D-Control Value	nequal varia ot significant 0.05) Fest <u>SE</u> 0.9119543	Inces (p = 4.1 ly different (p NOEC 2.19 95% Fiducia	1E-05) = 0.32) LOEC 4.38 al Limits 16.706038	3.0971277 Maximum	Likelihoo	0.9743636 29.897276 1.0915716 d-Probit Chi-Sq	Critical 5.9914646	0.896 16.811893 2.4469118	Mu 0.7578791	-0.370844	0.7358703
The control Hypothesis Steel's Many Treatments Parameter Slope Intercept	st indicates u means are no Test (1-tail, y-One Rank 1 vs D-Control Value 14.918608 -6.306501	nequal varia ot significant 0.05) Fest <u>SE</u> 0.9119543 0.6617541	nces (p = 4.1 ly different (p NOEC 2.19 95% Fiducia 13.131177 -7.60354	1E-05) = 0.32) LOEC 4.38 al Limits 16.706038 -5.009463	3.0971277 Maximum	Likelihoo Control	0.9743636 29.897276 1.0915716 d-Probit Chi-Sq 1.0529334		0.896 16.811893 2.4469118 P-value		-0.370844 Sigma	0.7358703
The control Hypothesis Steel's Many Treatments Parameter Slope Intercept TSCR	st indicates u means are no Test (1-tail, y-One Rank 1 vs D-Control Value 14.918608 -6.306501 0.0660622	nequal varia ot significant 0.05) Test 0.9119543 0.6617541 0.0063214	nces (p = 4.1 ly different (p NOEC 2.19 95% Fiducia 13.131177 -7.60354 0.0536723	1E-05) = 0.32) LOEC 4.38 al Limits 16.706038 -5.009463 0.0784521	3.0971277 Maximum	Likelihoo Control	0.9743636 29.897276 1.0915716 d-Probit Chi-Sq		0.896 16.811893 2.4469118 P-value		-0.370844 Sigma	0.7358703
The control Hypothesis Steel's Many Treatments Parameter Slope Intercept TSCR Point	st indicates u means are no Test (1-tail, y-One Rank T vs D-Control Value 14.918608 -6.306501 0.0660622 Probits	nequal varia ot significant 0.05) Test 0.9119543 0.6617541 0.0063214 %	95% Fiducia 13.131177 -7.60354 95% Fiducia 0.0536723 95% Fiducia	1E-05) = 0.32) LOEC 4.38 al Limits 16.706038 -5.009463 0.0784521 al Limits	3.0971277 Maximum	Likelihoo Control	0.9743636 29.897276 1.0915716 d-Probit Chi-Sq 1.0529334		0.896 16.811893 2.4469118 P-value		-0.370844 Sigma	0.7358703
The control Hypothesis Steel's Many Treatments Parameter Slope Intercept TSCR Point EC01	st indicates u means are no Test (1-tail, y-One Rank T vs D-Control Value 14.918608 -6.306501 0.0660622 Probits 2.674	nequal varia ot significant 0.05) Fest 0.9119543 0.6617541 0.0063214 % 3.9989238	95% Fiducia 13.131177 -7.60354 0.0536723 95% Fiducia 3.7801422	1E-05) = 0.32) LOEC 4.38 al Limits 16.706038 -5.009463 0.0784521 al Limits 4.1946	3.0971277 Maximum	Likelihoo Control	0.9743636 29.897276 1.0915716 d-Probit Chi-Sq 1.0529334		0.896 16.811893 2.4469118 P-value		-0.370844 Sigma	0.7358703
The control Hypothesis Steel's Many Treatments Parameter Slope Intercept TSCR Point EC01 EC05	st indicates u means are no Test (1-tail, y-One Rank T vs D-Control Value 14.918608 -6.306501 0.0660622 Probits 2.674 3.355	nequal varia ot significant 0.05) Fest 0.9119543 0.6617541 0.0063214 % 3.9989238 4.4424643	95% Fiducia 13.131177 -7.60354 0.0536723 95% Fiducia 3.7801422 4.2384053	1E-05) = 0.32) LOEC 4.38 al Limits 16.706038 -5.009463 0.0784521 al Limits 4.1946 4.6311457	3.0971277 Maximum	Likelihoo Control	0.9743636 29.897276 1.0915716 d-Probit Chi-Sq 1.0529334		0.896 16.811893 2.4469118 P-value		-0.370844 Sigma	0.7358703
The control Hypothesis Steel's Many Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10	st indicates u means are no Test (1-tail, y-One Rank 1 vs D-Control Value 14.918608 -6.306501 0.0660622 Probits 2.674 3.355 3.718	nequal varia ot significant 0.05) Fest 0.9119543 0.6617541 0.0063214 % 3.9989238 4.4424643 4.6986839	95% Fiducia 13.131177 -7.60354 0.0536723 95% Fiducia 3.7801422 4.2384053 4.5002943	1E-05) = 0.32) LOEC 4.38 16.706038 -5.009463 0.0784521 al Limits 4.1946 4.6311457 4.8872426	3.0971277 Maximum	Likelihoo Control	0.9743636 29.897276 1.0915716 d-Probit Chi-Sq 1.0529334		0.896 16.811893 2.4469118 P-value		-0.370844 Sigma	0.7358703
The control Hypothesis Steel's Many Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15	st indicates u means are no Test (1-tail, y-One Rank 1 vs D-Control 14.918608 -6.306501 0.0660622 Probits 2.674 3.355 3.718 3.964	nequal varia ot significant 0.05) Fest 0.9119543 0.6617541 0.0063214 % 3.9989238 4.4424643 4.6986839 4.8798514	state state 95% Fiducia 7 13.131177 -7.60354 0.0536723 95% Fiducia 3.7801422 4.2384053 4.5002943 4.6835847	1E-05) = 0.32) LOEC 4.38 al Limits 16.706038 -5.009463 0.0784521 al Limits 4.1946 4.6311457 4.8872426 5.0706747	3.0971277 Maximum	Likelihoo Control	0.9743636 29.897276 1.0915716 d-Probit Chi-Sq 1.0529334 1.0 0.9 0.8 0.7		0.896 16.811893 2.4469118 P-value		-0.370844 Sigma	0.7358703
The control Hypothesis Steel's Many Treatments Parameter Slope Intercept TSCR Point EC01 EC01 EC05 EC10 EC15 EC20	st indicates u means are no Test (1-tail, y-One Rank T vs D-Control 14.918608 -6.306501 0.0660622 Probits 2.674 3.355 3.718 3.964 4.158	nequal varia ot significant 0.05) Fest 0.9119543 0.6617541 0.0063214 % 3.9989238 4.4424643 4.6986839 4.8798514 5.0288065	95% Fiducia 13.131177 -7.60354 95% Fiducia 3.7801422 4.2384053 4.6835847 4.8328924	1E-05) = 0.32) LOEC 4.38 16.706038 -5.009463 0.0784521 al Limits 4.1946 4.6311457 4.8872426 5.0706747 5.2231685	3.0971277 Maximum	Likelihoo Control	0.9743636 29.897276 1.0915716 d-Probit Chi-Sq 1.0529334 1.0 0.9 0.8 0.7		0.896 16.811893 2.4469118 P-value		-0.370844 Sigma	0.7358703
The control Hypothesis Steel's Many Treatments Parameter Slope Intercept TSCR Point EC01 EC01 EC05 EC10 EC15 EC20 EC25	st indicates u means are no Test (1-tail, y-One Rank 1 vs D-Control Value 14.918608 -6.306501 0.0660622 Probits 2.674 3.355 3.718 3.964 4.158 4.326	nequal varia ot significant 0.05) Fest 0.9119543 0.6617541 0.0063214 % 3.9989238 4.4424643 4.6986839 4.8798514 5.0288065 5.1602152	95% Fiducia 2.19 95% Fiducia 13.131177 -7.60354 0.0536723 95% Fiducia 3.7801422 4.2384053 4.6835847 4.8328924 4.963469	1E-05) = 0.32) LOEC 4.38 16.706038 -5.009463 0.0784521 al Limits 4.1946 4.6311457 4.8872426 5.0706747 5.2231685 5.3590516	3.0971277 Maximum	Likelihoo Control	0.9743636 29.897276 1.0915716 d-Probit Chi-Sq 1.0529334 1.0 0.9 0.8 0.7		0.896 16.811893 2.4469118 P-value		-0.370844 Sigma	0.7358703
The control Hypothesis Steel's Many Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC20 EC225 EC40	st indicates u means are no Test (1-tail, y-One Rank 1 vs D-Control 14.918608 -6.306501 0.0660622 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747	nequal varia ot significant 0.05) Fest 0.9119543 0.6617541 0.0063214 % 3.9989238 4.4424643 4.6986839 4.8798514 5.0288065 5.1602152 5.5067729	95% Fiducia 13.131177 -7.60354 0.0536723 95% Fiducia 3.7801422 4.2384053 4.6835847 4.8328924 4.963469 5.3023687	1E-05) = 0.32) LOEC 4.38 16.706038 -5.009463 0.0784521 al Limits 4.1946 4.6311457 4.8872426 5.0706747 5.2231685 5.2390516 5.723798	3.0971277 Maximum	Likelihoo Control	0.9743636 29.897276 1.0915716 d-Probit Chi-Sq 1.0529334 1.0 0.9 0.8 0.7		0.896 16.811893 2.4469118 P-value		-0.370844 Sigma	0.7358703
The control Hypothesis Steel's Many Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC05 EC10 EC15 EC20 EC25 EC20 EC25 EC40 EC50	st indicates u means are no Test (1-tail, y-One Rank 1 txs D-Control 14.918608 -6.306501 0.0660622 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000	nequal varia t significant 0.05) Fest 0.9119543 0.6617541 0.0063214 % 3.9989238 4.4424643 4.6986839 4.8798514 5.028065 5.1602152 5.5067729 5.7263662	nces (p = 4.1 ly different (p NOEC 2.19 95% Fiducia 13.131177 -7.60354 0.0536723 95% Fiducia 3.7801422 4.2384053 4.5002943 4.6835847 4.8328924 4.963469 5.3023687 5.5129894	1E-05) = 0.32) LOEC 4.38 al Limits 16.706038 -5.009463 0.0784521 al Limits 4.1946 4.6311457 4.8872426 5.0706747 5.2231685 5.3590516 5.723798 5.9597168	3.0971277 Maximum	Likelihoo Control	0.9743636 29.897276 1.0915716 d-Probit Chi-Sq 1.0529334 1.0 0.9 0.8 0.7 0.8 0.7 0.6 g 0.6 g 0.6 g 0.4		0.896 16.811893 2.4469118 P-value		-0.370844 Sigma	0.7358703
The control Hypothesis Steel's Many Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC50 EC50 EC50 EC50 EC50 EC50	st indicates u means are no Test (1-tail, y-One Rank 1 vs D-Control 14.918608 6.306501 0.0660622 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253	nequal varia t significant 0.05) Fest 0.9119543 0.6617541 0.0063214 % 3.9989238 4.4424643 4.6986839 4.8798514 5.0288065 5.1602152 5.5067729 5.7263662 5.7263662 5.9547163	nces (p = 4.1 ly different (p NOEC 2.19 95% Fiducia 13.131177 -7.60354 0.0536723 95% Fiducia 3.7801422 4.2384053 4.5002943 4.6835847 4.8328924 4.963469 5.3023687 5.5129894 5.7288099	1E-05) = 0.32) LOEC 4.38 al Limits 16.706038 -5.009463 0.0784521 al Limits 4.1946 4.6311457 4.8872426 5.0706747 5.2231685 5.3590516 5.723798 5.9597168 6.2087894	3.0971277 Maximum	Likelihoo Control	0.9743636 29.897276 1.0915716 d-Probit Chi-Sq 1.0529334 1.0 0.9 0.8 0.7		0.896 16.811893 2.4469118 P-value		-0.370844 Sigma	0.7358703
The control Hypothesis Steel's Many Parameter Slope Intercept TSCR Point EC01 EC01 EC05 EC15 EC20 EC25 EC40 EC50 EC60 EC60 EC60 EC75	st indicates u means are no Test (1-tail, y-One Rank 1 vs D-Control 14.918608 -6.306501 0.0660622 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674	nequal varia <u>significant</u> 0.05) Fest	nces (p = 4.1 ly different (p NOEC 2.19 95% Fiducia 13.131177 -7.60354 0.0536723 95% Fiducia 3.7801422 4.2384053 4.5002943 4.6835847 4.8328924 4.963469 5.3023687 5.5129894 5.7288099 6.099822	1E-05) = 0.32) LOEC 4.38 16.706038 -5.009463 0.0784521 al Limits 4.1946 4.6311457 4.8872426 5.0706747 5.2231685 5.3590516 5.723798 5.9597168 6.2087894 6.6532699	3.0971277 Maximum	Likelihoo Control	0.9743636 29.897276 1.0915716 d-Probit Chi-Sq 1.0529334 1.0 0.9 0.8 0.7 9 0.8 0.7 9 0.6 9 0.6 9 0.5 9 9 0.4 0.3		0.896 16.811893 2.4469118 P-value		-0.370844 Sigma	0.7358703
The control Hypothesis Steel's Many Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC15 EC20 EC25 EC40 EC56 EC60 EC75 EC80	st indicates u means are no Test (1-tail, y-One Rank 1 vs D-Control 14.918608 -6.306501 0.0660622 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842	nequal varia <u>ot significant</u> 0.05) Fest 0.9119543 0.6617541 0.0063214 % 3.9989238 4.4424643 4.6986839 4.8798514 5.0288065 5.1602152 5.5067729 5.7263662 5.59547163 6.3546323 6.5206864	nces (p = 4.1 ly different (p NOEC 2.19 95% Fiducia 13.131177 -7.60354 0.0536723 95% Fiducia 3.7801422 4.2384053 4.6835847 4.8328924 4.8328924 4.8328924 4.963469 5.3023687 5.5129894 5.7288099 6.099822 6.2516168	1E-05) = 0.32) LOEC 4.38 16.706038 -5.009463 0.0784521 1 Limits 4.1946 4.6311457 4.872426 5.0706747 5.2231685 5.3590516 5.723798 5.9597168 6.2087894 6.6532699 6.8405663	3.0971277 Maximum	Likelihoo Control	0.9743636 29.897276 1.0915716 d-Probit Chi-Sq 1.0529334 1.0 0.9 0.8 0.7 0.8 0.7 0.5 9 0.6 0.5 9 0.4 0.3 0.2		0.896 16.811893 2.4469118 P-value		-0.370844 Sigma	0.7358703
The control Hypothesis Steel's Many Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC20 EC25 EC40 EC50 EC40 EC50 EC60 EC75 EC80 EC85	st indicates u means are no Test (1-tail, y-One Rank 1 vs D-Control 14.918608 -6.306501 0.0660622 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842 6.036	nequal varia ti significanti 0.05) Fest 0.9119543 0.6617541 0.0063214 % 3.9989238 4.4424643 4.6986839 4.8798514 5.0288065 5.1602152 5.5067729 5.7263662 5.5067729 5.7263662 5.526864 6.5206864 6.5206864 6.5206864	95% Fiducia 13.131177 -7.60354 0.0536723 95% Fiducia 3.7801422 4.2384053 4.6835847 4.8328924 4.963469 5.3023687 5.5129894 5.71288049 6.2516168 6.4320641	1E-05) = 0.32) LOEC 4.38 16.706038 -5.009463 0.0784521 1 Limits 4.1946 4.6311457 4.8872426 5.0706747 5.2231685 5.3590516 5.723798 5.2531685 5.35907168 6.2087894 6.6532699 6.8405663 7.0669347	3.0971277 Maximum	Likelihoo Control	0.9743636 29.897276 1.0915716 d-Probit Chi-Sq 1.0529334 1.0 0.9 0.8 0.7 9 0.8 0.7 9 0.6 9 0.6 9 0.5 9 9 0.4 0.3		0.896 16.811893 2.4469118 P-value		-0.370844 Sigma	0.7358703
The control Hypothesis Steel's Many Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC25 EC25 EC25 EC25 EC25 EC25 EC25	st indicates u means are no Test (1-tail, y-One Rank 1 14.918608 -6.306501 0.0660622 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842 6.036 6.282	nequal varia t significant 0.05) Fest 0.9119543 0.6617541 0.0063214 % 3.9989238 4.4424643 4.6986839 4.8798514 5.028065 5.1602152 5.5067729 5.7263662 5.9547163 6.3546323 6.5206864 6.7197273 6.9788201	ncces (p = 4.1) y different (p NOEC 2.19 95% Fiducia 13.131177 -7.60354 0.0536723 95% Fiducia 3.7801422 4.2384053 4.5002943 4.6835847 4.8328924 4.963469 5.3023687 5.129894 5.7288099 6.029822 6.4320641 6.647839	1E-05) = 0.32) LOEC 4.38 al Limits 16.706038 -5.009463 0.0784521 al Limits 4.1946 4.6311457 4.8872426 5.0706747 5.2231685 5.3590516 5.723798 5.9597168 6.2087894 6.632699 6.8405663 7.0669347 7.3643539	3.0971277 Maximum	Likelihoo Control	0.9743636 29.897276 1.0915716 d-Probit Chi-Sq 1.0529334 1.0 0.9 0.8 0.7 9 0.6 0.5 9 0.4 0.3 0.2 0.1		0.896 16.811893 2.4469118 P-value		-0.370844 Sigma	0.7358703
The control Hypothesis Steel's Many Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC10 EC15 EC20 EC20 EC25 EC20 EC25 EC20 EC25 EC20 EC50 EC50 EC75 EC80 EC85	st indicates u means are no Test (1-tail, y-One Rank T vs D-Control 14.918608 -6.306501 0.0660622 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842 6.036 6.282 6.645	nequal varia <u>significant</u> 0.05) Fest	95% Fiducia 13.131177 -7.60354 0.0536723 95% Fiducia 3.7801422 4.2384053 4.6835847 4.8328924 4.963469 5.3023687 5.5129894 5.71288049 6.2516168 6.4320641	1E-05) = 0.32) LOEC 4.38 16.706038 -5.009463 0.0784521 al Limits 4.1946 4.6311457 4.8872426 5.0706747 5.2231685 5.3590516 5.723798 6.52087894 6.6532699 6.8405663 7.0669347 7.3643539 7.3643539 7.8318202	3.0971277 Maximum	Likelihoo Control	0.9743636 29.897276 1.0915716 d-Probit Chi-Sq 1.0529334 1.0 0.9 0.8 0.7 0.8 0.7 0.5 9 0.6 0.5 9 0.4 0.3 0.2		0.896 16.811893 2.4469118 P-value		-0.370844 Sigma	0.7358703

Figure 68. ToxCalc summary sheet including dose-response curve for Mill C weak black liquor spike 2 simulated effluent sample.

					Survival and De	evelopme		ortion Nor			
Start Date: 1			Test ID:	24989			Sample ID:		Mill C WBL Spike	3	
End Date: 1	1/19/2010	l	Lab ID:	NABF			Sample Type:		Simulated effluent		
Sample Date1			Protocol:	EPAW 95-EF	PA West Coast		Test Species:		MG-Mytilus gallop	ovincialis	
Comments: I											
Conc-%	1	2	3	4							
B-Control	0.9572	0.4330	0.9213	0.9607							
D-Control	0.9639	0.9402	0.9535	0.9184							
1.09	0.9096	0.9115	0.9339	0.9206							
2.19	0.9394	0.8783	0.9254	0.9622							
4.38	0.5123	0.5865	0.5412	0.4709							
8.75	0.0000	0.0000	0.0000	0.0000							
17.5	0.0000	0.0000	0.0000	0.0000							
				Transform	: Arcsin Squar	e Root		Rank	1-Tailed	Number	Total
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	Resp	Number
B-Control	0.8180	0.8666	1.1846	0.7182	1.3712	26.443	4	Juin	United	Neap	Humbel
D-Control	0.9440	1.0000	1.3345	1.2810	1.3712	3.171	4			44	789
1.09	0.9189	0.9734	1.2825	1.2654	1.3108	1.618	4	12.00	10.00		100
2.19	0.9263	0.9813	1.3014	1.2034	1.3750	5.146	4	12.00	10.00	59	800
*4.38	0.5277	0.5590	0.8133	0.7562	0.8724	6.011	4	10.00	10.00	392	828
*8.75	0.0000	0.0000	0.0386	0.0359	0.0724	10.970	4	10.00	10.00	687	687
*17.5	0.0000	0.0000	0.0378	0.0355	0.0415	7.380	4	10.00	10.00	007	001
17.5	0.0000	0.0000	0.0370	0.0000	0.0415	7.500	7	10.00	10.00		
Auxiliary Tes	its						Statistic		Critical	Skew	Kurt
Shapiro-Wilk's	s Test indica	ites normal d	istribution (p > 0.01)			0.9324862		0.884	-0.3128	1.4652625
Bartlett's Test	indicates ur	nequal variar	nces (p = 1.6	64E-04)			24.638517		15.086272		
The control m	eans are no	t significantly	v different (p	= 0.38)			0.9486278		2.4469118		
Hypothesis T	'est (1-tail, 0	0.05)	NOEC	LOEC	ChV	TU					
Steel's Many-	One Rank T	est	2.19	4.38	3.0971277						
Freatments vs	s D-Control										
Trim Level	EC50	95%	CL		Trimmed S	pearman	-Karber				
0.0%											
5.0%	4.5480	4.4281	4.6712								
10.0%	4.5702	4.4348	4.7097				-	•			
20.0%	4.6145	4.4292	4.8075				1.	° .			7
Auto-1.9%	4.5343	4.4220	4.6495				0.	9 -		/	′
								<u>.</u>			
							0.	° .			
							0.	7 -		/	
							- 0	e 1			
							est o.	°.		/	
							ō 0.	5 -		/	
							.0 0. 80 0. 80 0.	4		۶	
							E 0.	7.			
							0.	3 -		/	
							0.	2			
								-			
							0.	1			
							0.	o I	, «		
								1			10
									Dose	.a/l	
									0036	lg/∟	

Figure 69. ToxCalc summary sheet including dose-response curve for Mill C weak black liquor spike 3 simulated effluent sample.

			Biv	alve Larval Survival and Develo	opment Test-Proportion	n Normal
Start Date: 1	1/17/2010	Т	est ID:	24990	Sample ID:	Mill C WBL Spike 4
End Date: 1	1/19/2010	L	ab ID:	NABF	Sample Type:	Simulated effluent
Sample Date1	1/15/2010	F	Protocol:	EPAW 95-EPA West Coast	Test Species:	MG-Mytilus galloprovincialis
Comments: I	Mill C WBL sp	oike 4				
Conc-%	1	2	3	4		
B-Control	0.9356	0.9607	0.9614	0.9256		
D-Control	0.9524	0.9353	0.9442	0.9171		
1.09	0.8896	0.9216	0.9119	0.9280		
2.19	0.8857	0.8580	0.8915	0.8507		
4.38	0.0159	0.0140	0.0233	0.0000		
8.75	0.0000	0.0000	0.0000	0.0000		
17.5	0.0000	0.0000	0.0000	0.0000		

				Transform:	Arcsin Squ	are Root		Rank	1-Tailed	Number	Total
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Resp	Number
B-Control	0.9458	1.0091	1.3382	1.2945	1.3730	2.984	4				
D-Control	0.9372	1.0000	1.3189	1.2788	1.3508	2.330	4			49	789
1.09	0.9128	0.9739	1.2719	1.2320	1.2991	2.298	4	12.00	10.00	68	793
*2.19	0.8715	0.9298	1.2049	1.1741	1.2352	2.502	4	10.00	10.00	102	799
*4.38	0.0133	0.0142	0.1111	0.0464	0.1531	41.017	4	10.00	10.00	723	734
*8.75	0.0000	0.0000	0.0361	0.0351	0.0367	1.891	4	10.00	10.00	770	770
*17.5	0.0000	0.0000	0.0339	0.0302	0.0379	9.842	4	10.00	10.00		

Auxiliary Tests			Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)			0.9364768	0.884	-0.796883	0.8290195
Bartlett's Test indicates unequal variances (p = 4.28E-05)			27.641438	15.086272		
The control means are not significantly different (p = 0.47)			0.7687951	2.4469118		
Hypothesis Test (1-tail, 0.05) NOEC LOEC	ChV	τu				

					Maximum Likelihoo	od-Probit					
Parameter	Value	SE	95% Fiducia	al Limits	Control	Chi-Sq	Critical	P-value	Mu	Sigma	Iter
Slope	12.330043	0.5700284	11.212788	13.447299	0.0621039	1.6104042	5.9914646	0.45	0.4679262	0.0811027	5
Intercept	-0.76955	0.2861345	-1.330374	-0.208727							
TSCR	0.073957	0.0065797	0.0610608	0.0868531							
Point	Probits	%	95% Fiducia	al Limits							
EC01	2.674	1.9021863	1.791733	2.0028054			1.0			A /	•
EC05	3.355	2.1603499	2.055587	2.2564898							
EC10	3.718	2.3120056	2.2106373	2.4058535			0.9				
EC15	3.964	2.4202968	2.3211461	2.5128863			0.8 -				
EC20	4.158	2.5099694	2.4124183	2.6018599			0.7				
EC25	4.326	2.5895436	2.4931664	2.6811389							
EC40	4.747	2.8014253	2.7066443	2.8941201			9.6 - 0.5 - 0.4 -				
EC50	5.000	2.9371504	2.8419201	3.0322872			Si o s		///		
EC60	5.253	3.0794512	2.9823021	3.1788135			d ^{0.3}		///		
EC75	5.674	3.3314181	3.2270197	3.4426448		c c	0 .4 •				
EC80	5.842	3.437035	3.3281633	3.5548663			0.3		///		
EC85	6.036	3.564378	3.4490668	3.6913693					///		
EC90	6.282	3.7313285	3.6059953	3.8721534			0.2 -		///		
EC95	6.645	3.9932663	3.8491001	4.1594503			0.1	1	//		
EC99	7.326	4.5352303	4.3428893	4.765118			··· .	Ŋ	/		

Figure 70. ToxCalc summary sheet including dose-response curve for Mill C weak black liquor spike 4 simulated effluent sample.

			Biv	valve Larval Survival and Develo	opment Test-Proportion	n Normal
Start Date: 1	1/17/2010	٦	Fest ID:	24991	Sample ID:	Mill C WBL Spike 5
End Date: 1	1/19/2010	L	ab ID:	NABF	Sample Type:	Simulated effluent
Sample Date1	1/15/2010	F	Protocol:	EPAW 95-EPA West Coast	Test Species:	MG-Mytilus galloprovincialis
Comments: I	Mill C WBL sp	oike 5				
Conc-%	1	2	3	4		
B-Control	0.9643	0.9453	0.9369	0.9630		
D-Control	0.9409	0.9534	0.9538	0.9352		
1.09	0.9124	0.9481	0.9318	0.9256		
2.19	0.7414	0.7978	0.8173	0.7608		
3.28	0.1006	0.1371	0.1461	0.1878		
4.38	0.0000	0.0000	0.0000	0.0000		
8.75	0.0000	0.0000	0.0000	0.0000		

				Transform:	Arcsin Squ	are Root		Rank	1-Tailed	Number	Total
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Resp	Number
B-Control	0.9524	1.0069	1.3523	1.3169	1.3807	2.334	4				
D-Control	0.9458	1.0000	1.3365	1.3134	1.3543	1.530	4			44	807
1.09	0.9295	0.9827	1.3031	1.2703	1.3410	2.259	4	12.00	10.00	59	841
*2.19	0.7793	0.8240	1.0827	1.0374	1.1291	3.848	4	10.00	10.00	191	852
*3.28	0.1429	0.1511	0.3856	0.3227	0.4482	13.361	4	10.00	10.00	656	767
*4.38	0.0000	0.0000	0.0376	0.0293	0.0505	24.129	4	10.00	10.00	790	790
*8.75	0.0000	0.0000	0.0356	0.0346	0.0362	1.998	4	10.00	10.00		

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates norma	al distribution (p	o > 0.01)			0.967466	0.884	0.0438535	0.9837569
Bartlett's Test indicates unequal var	iances (p = 1.5	5E-04)			24.760139	15.086272		
The control means are not significat	ntly different (p	= 0.43)			0.8423149	2.4469118		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	ΤU				

					Maximum Likelihoo	od-Probit					
Parameter	Value	SE	95% Fiducia	al Limits	Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	11.73319	0.7531169	8.4927898	14.973591	0.0545229	6.1630175	5.9914646	0.05	0.4236857	0.0852283	6
Intercept	0.028815	0.3420899	-1.443079	1.5007092							
TSCR	0.0632311	0.0105104	0.0180084	0.1084538							
Point	Probits	%	95% Fiducia	al Limits			1.0 -				
EC01	2.674	1.680409	1.3624229	1.9037832					(1		
EC05	3.355	1.9208684	1.6321089	2.1229376			0.9 -				
EC10	3.718	2.0628195	1.7950152	2.2524689			0.8		 P		
EC15	3.964	2.1644734	1.9126161	2.3460167							
EC20	4.158	2.2488255	2.0103657	2.424559			0.7 -				
EC25	4.326	2.3238072	2.0970577	2.4953898			a 0.6				
EC40	4.747	2.5240233	2.3250796	2.6916891			9.6 - 9.00 0.5 - 9.4 -				
EC50	5.000	2.6526852	2.4664807	2.8257611			8 ^{0.5}				
EC60	5.253	2.7879056	2.6086066	2.9754662			8 0.4				
EC75	5.674	3.0281078	2.842473	3.2657371			-				
EC80	5.842	3.1290728	2.9342356	3.3964369			0.3		///		
EC85	6.036	3.2510166	3.0409018	3.5601237			0.2 -				
EC90	6.282	3.4112235	3.1755189	3.7834211					7		
EC95	6.645	3.6633111	3.3781239	4.1501555			0.1				
EC99	7.326	4.1875157	3.7769728	4.9585319			0.0	///			

Figure 71. ToxCalc summary sheet including dose-response curve for Mill C weak black liquor spike 5 simulated effluent sample.

			Biv	valve Larval Survival and Develo	opment Test-Proportion	n Normal
Start Date:	11/17/2010	Т	est ID:	24992	Sample ID:	Mill C WBL Spike 5 Unsettled
End Date:	11/19/2010	L	ab ID:	NABF	Sample Type:	Simulated effluent
Sample Date	11/15/2010	P	rotocol:	EPAW 95-EPA West Coast	Test Species:	MG-Mytilus galloprovincialis
Comments:	Mill C WBL sp	oike 5 unsett	led			
Conc-%	1	2	3	4		
B-Control	0.9367	0.9695	0.9558	0.9399		
D-Control	0.9251	0.9571	0.9270	0.9466		
1.09	0.9466	0.9474	0.9309	0.9278		
2.19	0.8381	0.8537	0.8564	0.8341		
3.28	0.2071	0.2038	0.2536	0.1951		
4.38	0.0000	0.0000	0.0000	0.0000		
8.75	0.0000	0.0000	0.0000	0.0000		

				Transform:	Arcsin Squ	are Root		Rank	1-Tailed	Number	Total
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Resp	Number
B-Control	0.9505	1.0123	1.3485	1.3164	1.3954	2.703	4				
D-Control	0.9390	1.0000	1.3227	1.2936	1.3621	2.496	4			55	899
1.09	0.9382	0.9992	1.3201	1.2988	1.3393	1.616	4	19.50	10.00	50	816
*2.19	0.8456	0.9005	1.1671	1.1513	1.1821	1.316	4	10.00	10.00	127	820
*3.28	0.2149	0.2289	0.4815	0.4575	0.5277	6.530	4	10.00	10.00	623	794
*4.38	0.0000	0.0000	0.0340	0.0320	0.0359	5.728	4	10.00	10.00	871	871
*8.75	0.0000	0.0000	0.0358	0.0321	0.0392	8.070	4	10.00	10.00		

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates norm	al distribution (p > 0.01)			0.94957	0.884	0.7180785	0.494982
Bartlett's Test indicates unequal va	riances (p = 8.	13E-04)			20.992403	15.086272		
The control means are not significa	ntly different (p	= 0.33)			1.0500079	2.4469118		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	ΤU				
Steel's Many-One Rank Test	1.09	2.19	1.5450243					

Treatments vs D-Control

Freatments v	vs D-Control											
					Maxim	num Likelihoo	d-Probit					
Parameter	Value	SE	95% Fiducia	I Limits		Control	Chi-Sq	Critical	P-value	Mu	Sigma	Iter
Slope	12.581311	1.1485792	7.6393738	17.523249		0.0611791	10.70952	5.9914646	4.7E-03	0.4504923	0.079483	6
ntercept	-0.667784	0.5643568	-3.096015	1.7604472								
FSCR	0.0635392	0.0135321	0.0053153	0.1217632			^{1.0}			1		
Point	Probits	%	95% Fiducia	I Limits			0.9			$\boldsymbol{\mathcal{I}}$		
EC01	2.674	1.8432628	1.2977404	2.1667771					/	//		
EC05	3.355	2.0881152	1.5865616	2.3803681			0.8					
EC10	3.718	2.2316742	1.7639049	2.5056187			0.7		- 11	/		
EC15	3.964	2.334068	1.8932242	2.5957474			· •		- 11			
EC20	4.158	2.4187877	2.0015358	2.6712808			9 0.6					
EC25	4.326	2.4939162	2.0982177	2.739351			9.0 0.5 0.4 0.4					
EC40	4.747	2.6937391	2.3551864	2.9284257			Se i					
EC50	5.000	2.8215796	2.5160102	3.0589206			ĕ ^{0.4}]					
EC60	5.253	2.9554873	2.6775649	3.2074634			0.3					
EC75	5.674	3.1922931	2.937355	3.5083793				,				
EC80	5.842	3.291447	3.0353525	3.649801			0.2					
EC85	6.036	3.4109167	3.1459277	3.8313164			0.1		♦			
EC90	6.282	3.5674165	3.280712	4.0851022			0.0					
EC95	6.645	3.8126782	3.4756438	4.5125797			0.0 +-0	•			10	
EC99	7.326	4.3191409	3.842137	5.4825976			1		Deseu	a/I	10	
Significant he	eterogeneity	detected (p	= 4.73E-03)						Dose u	g/L		

Figure 72. ToxCalc summary sheet including dose-response curve for Mill C weak black liquor spike 5 simulated effluent sample (unsettled).

		III D Mill Effluent		Sample ID:		urvival and De	25128	est ID:		2/0/2011	Start Date:
		leached Kraft		Sample ID: Sample Type:			25128 NABF				End Date:
	incialic	IG-Mytilus galloprovir		Test Species:		A West Coast	EPAW 95-EPA				Sample Date:
	Incialis	iG-iniyilius galiopiovii		rest species.		A West Coast	EFAW 95-EFA			Mill D mill-tre	•
							4	3	2	1	Conc-%
							0.9753	0.9516	0.9551		B-Control
							0.9470	0.9508	0.9706		D-Control
							0.9447	0.9557	0.9253		1.09
							0.9318	0.9602	0.9257		2.19
							0.8000	0.8129	0.7320		4.38
							0.0000	0.0000	0.0000		8.75
							0.0000	0.0000	0.0000		17.5
mber To	Number	1-Tailed	Rank		e Root	Arcsin Squar	Transform:		-		
esp Nur	Resp	Critical	Sum	N	CV%	Max	Min	Mean	N-Mean	Mean	Conc-%
				4	2.221	1.4130	1.3490	1.3677	0.9995		B-Control
27	27			4	2.221	1.3984	1.3385	1.3689	1.0000		D-Control
		10.00	12.00	4	2.007	1.3587	1.2939	1.3286	0.9821		1.09
44		10.00	12.00	4	3.171	1.3700	1.2734	1.3112	0.9727		2.19
169		10.00	10.00	4	4.647	1.1234	1.0266	1.0726	0.8035		*4.38
639	639	10.00	10.00	4	1.958	0.0404	0.0388	0.0396	0.0000		*8.75
		10.00	10.00	4	3.949	0.0394	0.0363	0.0380	0.0000	0.0000	*17.5
kew K	Skew	Critical		Statistic						ests	Auxiliary Te
48715 -0.18	0.3248715	0.884		0.941799			o > 0.01)	stribution (p	tes normal o	k's Test indica	Shapiro-Will
		5.086272		32.735325			,		•	st indicates ur	
		2.4469118		0.0535111			,	ŭ	0	means are not	
					TU	ChV	LOEC	NOEC		; Test (1-tail, 0	
						3.0971277	4.38 3	2.19	est	y-One Rank To	
				Karbar		Trimmed S				vs D-Control	Treatments
				Karber	pearman	Trinineu 3		CL	95%	EC50	Trim Level
											0.0%
								5.5966	5.3440	5.4689	5.0%
								5.7338	5.4250		10.0%
;			1.0						5.5953	5.6845	20.0%
/								5.7751			
/			0.9					5.7751 5.5313	5.2933		Auto-2.7%
/											
			0.9								
			0.9 0.8 0.7								
	/		0.9 0.8 0.7								
	/		0.9 0.8 0.7								
	/		0.9 0.8 0.7								
			0.9								

Figure 73. ToxCalc summary sheet including dose-response curve for Mill D mill-treated effluent sample.

0.2 0.1 0.0

1

Dose ug/L

					Survival and D			ortion Nori			
Start Date:	2/21/2011		Test ID:	25133			Sample ID:		Mill D Reactor	Control	
	2/23/2011		Lab ID:	NABF			Sample Type:		Simulated Efflu		
Sample Dat	2/17/2011		Protocol:	EPAW 95-EF	PA West Coast		Test Species:		MG-Mytilus gal	loprovincialis	
	Mill D React	or Control									
Conc-%	1	2	3	4							
B-Control	0.8545	0.8811	0.8671	0.9205							
D-Control	0.8481	0.9071	0.8917	0.9453							
1.09	0.8813	0.8514	0.8784	0.9149							
2.19	0.9211	0.8807	0.8981	0.8686							
4.38	0.8247	0.8833	0.8457	0.8679							
8.75	0.7556	0.7862	0.8170	0.8385							
17.5	0.0000	0.0000	0.0000	0.0000							
35	0.0000	0.0000	0.0000	0.0000							
				T	A			Beat	4 7-11-1	Neurolean	T - 4 - 1
Cono %	Moon	N Moon	Mean		: Arcsin Squar	CV%	N	Rank	1-Tailed Critical	Number	Total
Conc-% B-Control	Mean 0.8808	N-Mean 0.9808	Mean 1.2202	Min 1.1795	Max 1.2850	3.775	4	Sum	Gritical	Resp	Number
D-Control		1.0000			1.2850	5.433	4			61	58
								10.00	10.00	01	50
1.09		0.9815			1.2748	3.361	4	16.00	10.00		
2.19		0.9934			1.2860	3.030	4	17.00	10.00		0.5
4.38		0.9525			1.2222	3.087	4	12.00	10.00	94	65
*8.75		0.8900			1.1573	4.082	4	10.00	10.00	129	63
*17.5		0.0000			0.0410	3.595	4	10.00	10.00	660	66
*35	0.0000	0.0000	0.0384	0.0338	0.0417	8.615	4	10.00	10.00		
Auxiliary T	ests						Statistic		Critical	Skew	Kurt
Shapiro-Wil	k's Test indica	ates normal	distribution (p > 0.01)			0.9658684		0.896	0.1480683	0.691905
Bartlett's Te	st indicates u	nequal varia	ances (p = 8.	77E-05)			28.159826		16.811893		
The control	means are no	ot significant	ly different (p	o = 0.49)			0.7361273		2.4469118		
lypothesis	s Test (1-tail,	0.05)	NOEC	LOEC	ChV	TU					
Steel's Man	y-One Rank T	est	4.38	8.75	6.1907189						
Treatments	vs D-Control										
reatmente											
					Trimmed S	pearman	-Karber				
Frim Level	EC50	95%	4 CL		Trimmed S	pearman	-Karber				
Frim Level 0.0%	EC50				Trimmed S	pearman	-Karber				
Trim Level 0.0% 5.0%	EC50 11.642	11.416	11.873		Trimmed S	pearman	-Karber				
Trim Level 0.0% 5.0% 10.0%	EC50 11.642 11.857	11.416 11.516	11.873 12.209		Trimmed S	pearman		1.0		•	
Trim Level 0.0% 5.0% 10.0% 20.0%	EC50 11.642 11.857 11.863	11.416 11.516 11.736	11.873 12.209 11.991		Trimmed S	pearman	1			•	
Trim Level 0.0% 5.0% 10.0%	EC50 11.642 11.857 11.863	11.416 11.516	11.873 12.209 11.991		Trimmed S	pearman	1	1.0			
Trim Level 0.0% 5.0% 10.0% 20.0%	EC50 11.642 11.857 11.863	11.416 11.516 11.736	11.873 12.209 11.991		Trimmed S	pearman	1				
Trim Level 0.0% 5.0% 10.0% 20.0%	EC50 11.642 11.857 11.863	11.416 11.516 11.736	11.873 12.209 11.991		Trimmed S	pearman	1).9).8			
Trim Level 0.0% 5.0% 10.0% 20.0%	EC50 11.642 11.857 11.863	11.416 11.516 11.736	11.873 12.209 11.991		Trimmed S	pearman).9).8).7			
Trim Level 0.0% 5.0% 10.0% 20.0%	EC50 11.642 11.857 11.863	11.416 11.516 11.736	11.873 12.209 11.991		Trimmed S	pearman).9).8).7			
Trim Level 0.0% 5.0% 10.0% 20.0%	EC50 11.642 11.857 11.863	11.416 11.516 11.736	11.873 12.209 11.991		Trimmed S	pearman).9).8).7			
Trim Level 0.0% 5.0% 10.0% 20.0%	EC50 11.642 11.857 11.863	11.416 11.516 11.736	11.873 12.209 11.991		Trimmed S	pearman).9).8).7			
Trim Level 0.0% 5.0% 10.0% 20.0%	EC50 11.642 11.857 11.863	11.416 11.516 11.736	11.873 12.209 11.991		Trimmed S	pearman).9).8).7			
Trim Level 0.0% 5.0% 10.0% 20.0%	EC50 11.642 11.857 11.863	11.416 11.516 11.736	11.873 12.209 11.991		Trimmed S	pearman	Response 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0).9).8).7).6).5 -			
Trim Level 0.0% 5.0% 10.0% 20.0%	EC50 11.642 11.857 11.863	11.416 11.516 11.736	11.873 12.209 11.991		Trimmed S	pearman	Response 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0).9).8).7			
Trim Level 0.0% 5.0% 10.0% 20.0%	EC50 11.642 11.857 11.863	11.416 11.516 11.736	11.873 12.209 11.991		Trimmed S	pearman	Sesponse () () () () () () () () () () () () ()).9).8).7).6).5 -			
Trim Level 0.0% 5.0% 10.0% 20.0%	EC50 11.642 11.857 11.863	11.416 11.516 11.736	11.873 12.209 11.991		Trimmed S	pearman	G Response 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0).9).8).7).7).5).5).4).3).2			
Tim Level 0.0% 5.0% 10.0% 20.0%	EC50 11.642 11.857 11.863	11.416 11.516 11.736	11.873 12.209 11.991		Trimmed S	pearman	G Response 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0).9).8).7).6).5).4			

Figure 74. ToxCalc summary sheet including dose-response curve for Mill D reactor control simulated effluent sample.

Dose ug/L

					Survival and D	010100					
Start Date: 2	/21/2011		Test ID:	25134			Sample ID:		Mill D WBL Spike	1	
End Date: 2	/23/2011		Lab ID:	NABF			Sample Type:		Simulated Effluent	t	
Sample Date2	/17/2011		Protocol:	EPAW 95-E	PA West Coast		Test Species:		MG-Mytilus gallop	rovincialis	
Comments: N	Mill D WBL s	spike 1									
Conc-%	1	2	3	4							
B-Control	0.8599	0.8571	0.8987	0.9568							
D-Control	0.9137	0.9512	0.9320	0.9091							
1.09	0.9221	0.8701	0.8610	0.8561							
2.19	0.8701	0.8855	0.8509	0.8511							
4.38	0.7208	0.7772	0.7517	0.7803							
8.75	0.0000	0.0000	0.0000	0.0000							
17.5	0.0000	0.0000	0.0000	0.0000							
				Transform	n: Arcsin Squa	ro Poot		Rank	1-Tailed	Number	Total
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	Resp	Number
B-Control	0.8931	0.9640	1.2447	1.1832	1.3614	6.677		ouiii	United	Nesh	Humbel
D-Control	0.8931	1.0000	1.2447	1.1632	1.3481	2.935				45	599
1.09	0.8773	0.9469	1.2151	1.1817	1.2879	4.053		12.00	10.00	78	634
*2.19	0.8644	0.9409	1.1942	1.1744	1.2257	2.068		12.00		84	622
*4.38	0.8644	0.9330	1.0564	1.0141	1.0830	3.030		10.00		154	63
*8.75	0.0000	0.0000	0.0399	0.0378	0.0432	6.563		10.00		634	63
*17.5	0.0000	0.0000	0.0399	0.0378	0.0432	4.215		10.00		034	03
17.5	0.0000	0.0000	0.0402	0.0300	0.0420	4.215	4	10.00	10.00		
Auxiliary Tes							Statistic		Critical	Skew	Kurt
Shapiro-Wilk's	s Test indica	ites normal o	distribution (o > 0.01)			0.9375674		0.884	0.9105699	1.2517056
Bartlett's Test	indicates ur	nequal varia	nces (p = 1.1	I9E-04)			25.353884		15.086272		
The control m	eans are no	t significantl	y different (p	= 0.29)			1.1677493		2.4469118		
lypothesis T			NOEC	LOEC	ChV	TU					
Steel's Many- Freatments vs		est	1.09	2.19	1.5450243						
F actors 1 and 1	5050	05%			Trimmed S	Spearman	-Karber				
77 10 10 10 10 10 10 10 10 10 10 10 10 10	EC50	95%									
5.0%											
10.0%	5.6197	5.4661	5.7775					1.0			
20.0%	5.7374	5.6482	5.8281					-			77
Auto-5.2%	5.4470	5.2920	5.6064					0.9 -			
								0.8			/
										/	′
								0.7 -		/	
							0	0.6		/	
							nse			/	
							od	0.6 0.5 0.4		/	
							ses	0.4		/	
										/	
								0.3 -		/	
								0.2		1	
										_	
								0.1			
								0.1			

Figure 75. ToxCalc summary sheet including dose-response curve for Mill D weak black liquor spike 1 simulated effluent sample.

1

Dose ug/L

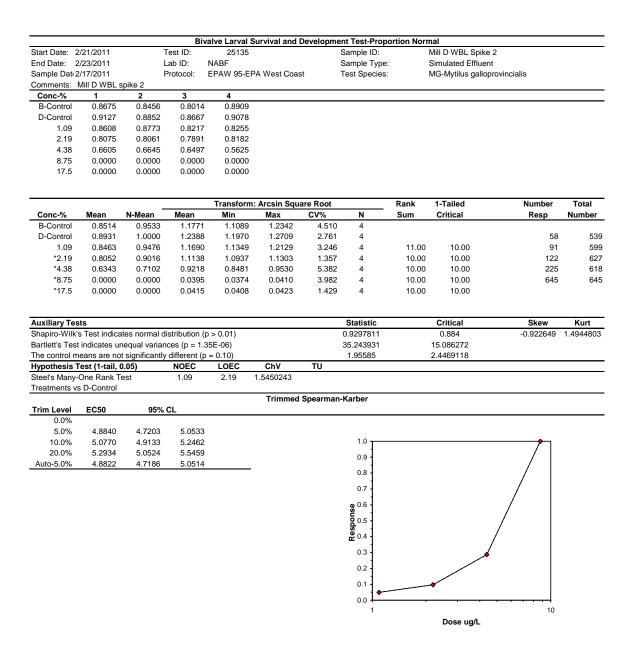


Figure 76. ToxCalc summary sheet including dose-response curve for Mill D weak black liquor spike 2 simulated effluent sample.

			Biv	alve Larval Survival and Develo	opment Test-Proportion	n Normal
Start Date:	2/21/2011	Т	est ID:	25136	Sample ID:	Mill D WBL Spike 3
End Date:	2/23/2011	L	ab ID:	NABF	Sample Type: Simulated Effluent	
Sample Date	2/17/2011	P	Protocol: EPAW 95-EPA West Coast		Test Species:	MG-Mytilus galloprovincialis
Comments:	Mill D WBL sp	oike 3				
Conc-%	1	2	3	4		
B-Control	0.8489	0.8344	0.8367	0.8993		
D-Control	0.9384	0.8652	0.8562	0.8705		
1.09	0.8500	0.8947	0.8733	0.8506		
2.19	0.8400	0.8077	0.8256	0.7843		
4.38	0.2356	0.2828	0.4088	0.2878		
8.75	0.0000	0.0000	0.0000	0.0000		
17.5	0.0000	0.0000	0.0000			

				Transform:	Arcsin Squ	are Root			1-Tailed		Number	Total
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Resp	Number
B-Control	0.8549	0.9686	1.1815	1.1517	1.2479	3.819	4					
D-Control	0.8826	1.0000	1.2248	1.1819	1.3199	5.221	4				68	579
1.09	0.8672	0.9825	1.1986	1.1731	1.2404	2.671	4	0.796	2.567	0.0847	80	597
*2.19	0.8144	0.9227	1.1260	1.0878	1.1593	2.735	4	2.997	2.567	0.0847	117	631
*4.38	0.3037	0.3441	0.5818	0.5068	0.6936	13.612	4	19.489	2.567	0.0847	417	595
*8.75	0.0000	0.0000	0.0426	0.0420	0.0435	1.667	4	35.833	2.567	0.0847	552	552
*17.5	0.0000	0.0000	0.0397	0.0386	0.0417	4.264	3	33.255	2.567	0.0915		

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates non-n	ormal distributi	on (p <= 0.	01)		0.8796091		0.881		1.2477988	2.4841122
Bartlett's Test indicates unequal val	riances (p = 3.1	I7E-06)			33.372753		15.086272			
The control means are not significa	ntly different (p	= 0.31)			1.1069226		2.4469118			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	ΤU	MSDu	MSDp	MSB	MSE	F-Prob	df
Bonferroni t Test	1.09	2.19	1.5450243		0.0644635	0.072839	1.1784406	0.0021771	4.1E-18	5, 17

Treatments v			1.09	2.15	1.5450245		0.0044033	0.072039	1.1764400	0.0021111	4.12-10	5, 17
rreaunents v	vs D-Control				Maximu	ım Likelihoo	d-Prohit					
Parameter	Value	SE	95% Fiducia	I Limits	Maximu	Control	Chi-Sa	Critical	P-value	Mu	Sigma	Iter
Slope	7.2633669	0.5493289				0.1174439	4.0704977	5.9914646	0.13	0.5806793	0.1376772	10
Intercept	0.7823133	0.3532266	0.0899892	1.4746375								
rscr .	0.1323967	0.0093957	0.1139811	0.1508123			1.0					
Point	Probits	%	95% Fiducia	I Limits	-		<u> </u>					
EC01	2.674	1.8213534	1.5522711	2.0531728	_		0.9					
EC05	3.355	2.2605829	1.9975551	2.4817771			0.8					
EC10	3.718	2.5365233	2.2840838	2.7468432			0.7					
EC15	3.964	2.741486	2.4995903	2.9423062								
EC20	4.158	2.9161323	2.6846506	3.108254			9.6 0.5 0.5 0.4					
EC25	4.326	3.0748039	2.8536424	3.2588102			ق _م ا					
EC40	4.747	3.513979	3.3230564	3.6769673			80°.			//		
EC50	5.000	3.8078451	3.6351803	3.961221			8 ^{0.4}		//	/		
EC60	5.253	4.1262867	3.9668782	4.2779307			0.3		///	·		
EC75	5.674	4.7156453	4.5496345	4.90089			-					
EC80	5.842	4.9722314	4.7898166	5.1878441			0.2 -					
EC85	6.036	5.2889874	5.0774961	5.5526948			0.1					
EC90	6.282	5.7163615	5.4544716	6.0591462					> /			
EC95	6.645	6.414135	6.0520929	6.9110322			0.0		·	· · ·		
EC99	7.326		7.3312127	8.8744468			1		Dose ug		10	

Figure 77. ToxCalc summary sheet including dose-response curve for Mill D weak black liquor spike 3 simulated effluent sample.

Start Date: 2/	21/2011	Т	est ID:	25138	Sample ID:	Mill D WBL Spike 5	
End Date: 2/	23/2011	L	Lab ID: NABF		Sample Type:	Simulated Effluent	
Sample Dati 2/	17/2011	F	Protocol:	EPAW 95-EPA West Coast	Test Species:	MG-Mytilus galloprovinciali	
Comments: N	/ill D WBL sp	oike 5					
Conc-%	1	2	3	4			
B-Control	0.8750	0.9295	0.8235	0.8611			
D-Control	0.8993	0.8623	0.8933	0.8661			
1.09	0.8523	0.8037	0.7917	0.8758			
2.19	0.4260	0.3563	0.3221	0.3913			
3.28	0.0280	0.0268	0.0417	0.0313			
4.38	0.0000	0.0000	0.0000	0.0000			
8.75	0.0000	0.0000	0.0000	0.0000			

				Transform:	Arcsin Squ	are Root		Rank	1-Tailed	Number	Total
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Resp	Number
B-Control	0.8723	0.9909	1.2094	1.1373	1.3020	5.690	4				
D-Control	0.8803	1.0000	1.2182	1.1906	1.2478	2.379	4			70	583
1.09	0.8309	0.9439	1.1489	1.0968	1.2106	4.675	4	12.00	10.00	104	617
*2.19	0.3739	0.4248	0.6575	0.6036	0.7112	7.049	4	10.00	10.00	413	662
*3.28	0.0319	0.0363	0.1790	0.1646	0.2056	10.380	4	10.00	10.00	554	572
*4.38	0.0000	0.0000	0.0401	0.0379	0.0418	4.222	4	10.00	10.00	624	624
*8.75	0.0000	0.0000	0.0402	0.0388	0.0426	4.215	4	10.00	10.00		

Auxiliary Tests	Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	0.9610446	0.884	0.1589783	0.3001926
Bartlett's Test indicates unequal variances (p = 1.40E-05)	30.116537	15.086272		
The control means are not significantly different (p = 0.82)	0.2353453	2.4469118		
Hypothesis Test (1-tail, 0.05) NOEC LOEC C	TU			

Steel's Many-One Rank Test 1.09 2.19 1.5450243 Treatments vs D-Control

					Maximum Likelihoo	od-Probit					
Parameter	Value	SE	95% Fiducia	al Limits	Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	9.462409	0.6218092	8.243663	10.681155	0.1200686	3.2989215	5.9914646	0.19	0.3238903	0.1056813	6
Intercept	1.9352171	0.2427926	1.4593435	2.4110907							
TSCR	0.1431215	0.010329	0.1228766	0.1633664							
Point	Probits	%	95% Fiducia	al Limits			1.0		•		_
EC01	2.674	1.1968475	1.074678	1.3014875							
EC05	3.355	1.4127328	1.2988198	1.5088349			0.9				
EC10	3.718	1.5433139	1.4364776	1.6329603			0.8	,			
EC15	3.964	1.6381689	1.537253	1.7227091			0.7		/		
EC20	4.158	1.7176975	1.6221413	1.797791			0.7				
EC25	4.326	1.788996	1.6984679	1.8650556		e	0.6 0.5 0.4				
EC40	4.747	1.9820577	1.9054444	2.0477091		ŝŭo	0.5				
EC50	5.000	2.1080958	2.039823	2.1683205		spe	0.5				
EC60	5.253	2.2421487	2.1806809	2.2991921		Re	0.4				
EC75	5.674	2.4841129	2.4248736	2.5467932			0.3				
EC80	5.842	2.5872238	2.5242057	2.6575369							
EC85	6.036	2.7128265	2.6419018	2.7961341			0.2				
EC90	6.282	2.8795618	2.7939387	2.9849739			0.1				
EC95	6.645	3.1457243	3.0302126	3.294338				/			
EC99	7.326	3.7131452	3.5193593	3.9742029			0.0		· ·		 10

Figure 78. ToxCalc summary sheet including dose-response curve for Mill D weak black liquor spike 5 simulated effluent sample.

APPENDIX J

ToxCalc Summary Sheets for Mytilus galloprovincialis Reference Toxicant Tests

		E	Bivalve L	arval Survival and	Develop	ment Test-Propo	rtion Normal
Start Date:	9/1/2010		Test ID:	A-RT-ME		Sample ID:	A-RT-ME
End Date:	9/3/2011		Lab ID:	NABF		Sample Type:	Reference Toxicant
Sample Date:			Protocol:	EPAW 95-EPA We	est Coast	Test Species:	MG-Mytilis galloprovincialis
Comments:	Mill A refe	rence tox	icant test	for mill-treated usir	ng copper	chloride	
Conc-ug/L	1	2	3	4			
D-Control	0.9689	0.9549	0.9781	0.9318			
3	0.9433	0.9533	0.9620	0.9708			
4.5	0.9534	0.9589	0.9133	0.9429			
6.6	0.9355	0.9689	0.9562	0.9057			
9.6	0.7961	0.8759	0.7292	0.7589			
	0.1000	0.0137	0.0942	0.0299			
13.8	0.1000	0.0107					

		_	Tra	ansform:	Arcsin So	uare Roo	t		1-Tailed		Number	Total
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Resp	Number
D-Control	0.9584	1.0000	1.3698	1.3066	1.4223	3.646	4				26	607
3	0.9573	0.9989	1.3642	1.3303	1.3991	2.157	4	0.131	2.451	0.1047		
4.5	0.9421	0.9830	1.3303	1.2720	1.3667	3.143	4	0.926	2.451	0.1047		
6.6	0.9416	0.9824	1.3315	1.2586	1.3936	4.399	4	0.896	2.451	0.1047	36	612
*9.6	0.7900	0.8242	1.0985	1.0235	1.2107	7.419	4	6.354	2.451	0.1047	122	582
*13.8	0.0594	0.0620	0.2312	0.1173	0.3218	43.978	4	26.662	2.451	0.1047	534	568
*20.4	0.0000	0.0000	0.0507	0.0457	0.0563	8.699	4	30.887	2.451	0.1047	396	396

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distribu	tion (p > 0	0.01)		0.98618		0.896		0.04336	-0.109
Bartlett's Test indicates equal var	iances (p =	0.01)			16.5273		16.8119			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	6.6	9.6	7.9599		0.05071	0.05281	1.32219	0.00365	4.4E-20	6, 21
Treatments vs D-Control										

			Maxir	num Likeliho	od-Probit	1				
Parameter	Value	SE	95% Fiducial Limits	Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	15.8197	0.71058	14.427 17.2125	0.04283	0.79614	5.99146	0.67	1.0432	0.06321	4
Intercept	-11.503	0.74633	-12.966 -10.04							
TSCR	0.05073	0.00631	0.03837 0.0631							
Point	Probits	ug/L	95% Fiducial Limits			1.0 —			•	
EC01	2.674	7.87319	7.57762 8.13487			··• T			y •	
EC05	3.355	8.69419	8.43781 8.92245			0.9		ľ		
EC10	3.718	9.16631	8.93251 9.37625			0.8				
EC15	3.964	9.49924	9.28054 9.69752							
EC20	4.158	9.77245	9.56514 9.9624			0.7				
EC25	4.326	10.0131	9.81474 10.197			9 0.6				
EC40	4.747	10.6461	10.4641 10.8219			Ë i				
EC50	5.000	11.046	10.8673 11.2245			0 .5				
EC60	5.253	11.4609	11.2786 11.6497			ö 0.4				
EC75	5.674	12.1854	11.9803 12.4097			0.3				
EC80	5.842	12.4855	12.2656 12.7301			0.3				
EC85	6.036	12.8446	12.6038 13.1172			0.2				
EC90	6.282	13.3111	13.0388 13.6249			0.1		I		
EC95	6.645	14.0339	13.7055 14.4201							
EC99	7.326	15.4974	15.0364 16.0527			0.0 🗕		· . <mark>¶ *</mark> .,		
						1		10		100
								Dose ug	/L	

Figure 79. ToxCalc summary sheet including dose-response curve for Mill A reference toxicant test using copper chloride run alongside mill-treated effluent sample.

			Bivalve L	arval Survival and Deve	elopment Test-Propo	rtion Normal
Start Date:	9/9/2010		Test ID:	A-RT-SE	Sample ID:	A-RT-SE
End Date:	9/11/2011		Lab ID:	NABF	Sample Type:	Reference Toxicant
Sample Date:			Protocol:	EPAW 95-EPA West Co	oast Test Species:	MG-Mytilis galloprovincialis
Comments:	Mill A refe	rence to:	xicant test	for simulated effluents u	ising copper ch	
Conc-ug/L	1	2	3	4		
D-Control	0.9281	0.9398	0.9565	0.9103		
3	0.9194	0.9133	0.8442	0.8906		
4.5	0.8758	0.9357	0.9403	0.8571		
6.6	0.8976	0.8805	0.8571	0.8692		
9.6	0.5390	0.5000	0.5734	0.5667		
13.8	0.0000	0.3514	0.0373	0.0000		
	0.0000	0.0000	0.0000	0.0000		

			Tra	ansform:	Arcsin S	quare Roo	t	Rank	1-Tailed	Number	Total
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Resp	Number
D-Control	0.9337	1.0000	1.3125	1.2667	1.3607	3.018	4			38	569
3	0.8919	0.9552	1.2384	1.1650	1.2829	4.302	4	12.00	10.00		
4.5	0.9022	0.9663	1.2581	1.1832	1.3240	5.691	4	15.00	10.00	57	575
*6.6	0.8761	0.9383	1.2117	1.1832	1.2451	2.174	4	10.00	10.00	72	588
*9.6	0.5448	0.5834	0.8303	0.7854	0.8591	4.032	4	10.00	10.00	257	567
*13.8	0.0972	0.1041	0.2282	0.0400	0.6345	122.742	4	10.00	10.00	535	593
*20.4	0.0000	0.0000	0.0444	0.0418	0.0473	5.264	4	10.00	10.00	511	511

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates nor	n-normal dis	stribution	(p <= 0.01)		0.74208	0.896	2.14901	10.4487
Bartlett's Test indicates unequal	variances (p	o = 1.71E	-07)		42.1536	16.8119		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	ΤU				
Steel's Many-One Rank Test	4.5	6.6	5.44977					
Treatments vs D-Control								

				Ma	ximum Likeliho	od-Probit					
Parameter	Value	SE	95% Fidu	cial Limits	Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	9.54766	0.47624	8.61422	10.4811	0.06678	2.69225	7.81473	0.44	1.00756	0.10474	5
Intercept	-4.6198	0.49559	-5.5912	-3.6485							
TSCR	0.08438	0.00771	0.06927	0.0995							
Point	Probits	ug/L	95% Fidu	cial Limits			1.0 -		4	,	_
EC01	2.674	5.80633	5.39104	6.17552			0.9			·	
EC05	3.355	6.84352	6.46087	7.18106			0.9		1		
EC10	3.718	7.47018	7.11315	7.78493			0.8 -				
EC15	3.964	7.92509	7.58842	8.22256			0.7				
EC20	4.158	8.30631	7.98727	8.5894					- 1		
EC25	4.326	8.64795	8.34467	8.91866			0.6 ·				
EC40	4.747	9.57244	9.30774	9.81601			5 05				
EC50	5.000	10.1755	9.92828	10.4109			d S				
EC60	5.253	10.8167	10.5763	11.0563		1	ö 0.4		T		
EC75	5.674	11.973	11.7073	12.2619			0.3				
EC80	5.842	12.4654	12.1749	12.7907			~ · ·				
EC85	6.036	13.0651	12.7356	13.4445			0.2				
EC90	6.282	13.8607	13.468	14.3252			0.1 -		1		
EC95	6.645	15.1299	14.6173	15.7534			0.0	♦	1		
EC99	7.326	17.8326	17.0156	18.8594			0.0 1		10		100
							I		Dose ug/		100
									Doge ug/		

Figure 80. ToxCalc summary sheet including dose-response curve for Mill A reference toxicant test using copper chloride run alongside simulated effluent samples.

			Bivalve L	arval Surviva	al and Develop	ment Test-Propo	ortion Normal
Start Date:	10/22/2010			B-RT-ME		Sample ID:	B-RT-ME
End Date:	10/24/201	1	Lab ID:	NABF		Sample Type:	Reference Toxicant
Sample Date:			Protocol:	EPAW 95-E	PA West Coast	Test Species:	MG-Mytilis galloprovincialis
Comments:	Mill B refe	rence to	xicant test	for mill-treate	ed effluent using	copper	
Conc-ug/L	1	2	3	4			
D-Control	0.9749	0.9589	0.9822	0.9725			
3	0.9662	0.9441	0.9492	0.9694			
4.5	0.9412	0.9326	0.9719	0.9497			
6.6	0.7310	0.7687	0.8133	0.8099			
9.6	0.4831	0.4604	0.5206	0.5506			
13.8	0.0000	0.0000	0.0000	0.0086			
20.4	0.0000	0.0000	0.0000	0.0000			

			Tra	ansform:	Arcsin So	quare Roo	t	_	1-Tailed		Number	Total
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Resp	Number
D-Control	0.9721	1.0000	1.4049	1.3667	1.4372	2.075	4				19	696
3	0.9572	0.9847	1.3641	1.3322	1.3949	2.267	4	1.713	2.451	0.0584	31	720
*4.5	0.9489	0.9760	1.3453	1.3083	1.4024	3.039	4	2.507	2.451	0.0584	36	700
*6.6	0.7807	0.8031	1.0845	1.0255	1.1240	4.296	4	13.459	2.451	0.0584	132	597
*9.6	0.5037	0.5181	0.7891	0.7458	0.8361	5.067	4	25.868	2.451	0.0584	331	669
*13.8	0.0022	0.0022	0.0541	0.0380	0.0930	48.359	4	56.743	2.451	0.0584	568	569
*20.4	0.0000	0.0000	0.0420	0.0397	0.0429	3.718	4	57.253	2.451	0.0584	569	569

Auxiliary Tests		Statistic		Critical		Skew	Kurt			
Shapiro-Wilk's Test indicates nor		0.97303		0.896		0.10498	-0.6581			
Bartlett's Test indicates equal var		15.2287		16.8119						
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	3	4.5	3.67423		0.02218	0.0228	1.44	0.00113	9.2E-26	6, 21
Treatments vs D-Control										

		Maximum Likelihood-Probit											
Parameter	Value	SE	95% Fidu	cial Limits	Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter		
Slope	8.8233	1.69906	4.10595	13.5406	0.0273	87.6809	9.48773	4.1E-18	0.95578	0.11334	7		
Intercept	-3.4331	1.66698	-8.0614	1.19517									
TSCR	0.04277	0.0213	-0.0164	0.10191									
Point	Probits	ug/L	95% Fidu	cial Limits			^{1.0} T		<u></u>				
EC01	2.674	4.92174	2.23337	6.36206			0.9						
EC05	3.355	5.87972	3.24595	7.20316			<u> </u>			/			
EC10	3.718	6.46446	3.95157	7.71629			0.8		// /	/			
EC15	3.964	6.89148	4.50412	8.09782			0.7		// /				
EC20	4.158	7.2509	4.98988	8.42796			0 06						
EC25	4.326	7.57415	5.43945	8.73583			0.6 0.5 0.4						
EC40	4.747	8.45405	6.68826	9.66535			8 0.5 -						
EC50	5.000	9.03188	7.48251	10.3967			So 0 4 1						
EC60	5.253	9.64921	8.25787	11.3367					/ //				
EC75	5.674	10.7702	9.41809	13.5227			0.3 -						
EC80	5.842	11.2503	9.83416	14.6331			0.2						
EC85	6.036	11.8371	10.2984	16.1115				,	/				
EC90	6.282	12.619	10.8646	18.2682			0.1		. //				
EC95	6.645	13.8739	11.6937	22.1345			0.0	·	•/ /				
EC99	7.326	16.5744	13.2965	32.0325			1		10		100		
Significant he	eterogeneity	detected	(p = 4.09E	-18)					Dose ug	J/L			

Figure 81. ToxCalc summary sheet including dose-response curve for Mill B reference toxicant test using copper chloride run alongside mill-treated effluent sample.

					val and Develop		
Start Date:	11/1/2010		Test ID:	B-RT-SE		Sample ID:	B-RT-SE
End Date:	11/3/2011		Lab ID:	NABF		Sample Type:	Reference Toxicant
Sample Date:			Protocol:	EPAW 95-I	EPA West Coast	Test Species:	MG-Mytilis galloprovincialis
Comments:	Mill B refe	rence to	xicant test	for simulate	ed effluents using	copper ch	
Conc-ug/L	1	2	3	4			
D-Control	0.9379	0.9191	0.9591	0.9124			
3	0.9295	0.9006	0.9225	0.9141			
4.5	0.8758	0.8299	0.8686	0.8608			
6.6	0.9349	0.9521	0.9375	0.9548			
9.6	0.0633	0.0503	0.0190	0.0196			
13.8	0.0000	0.0000	0.0000	0.0000			
20.4	0.0000	0.0000	0.0000	0.0000			

		_	Tra	ansform:	Arcsin So	uare Roo	t	Rank	1-Tailed	Number	Total
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Resp	Number
D-Control	0.9321	1.0000	1.3097	1.2703	1.3671	3.321	4			42	626
3	0.9167	0.9834	1.2786	1.2501	1.3020	1.745	4	15.00	10.00	52	622
*4.5	0.8588	0.9213	1.1862	1.1457	1.2107	2.399	4	10.00	10.00	84	595
6.6	0.9448	1.0136	1.3344	1.3128	1.3567	1.661	4	20.00	10.00	36	651
*9.6	0.0380	0.0408	0.1898	0.1382	0.2543	31.280	4	10.00	10.00	623	648
*13.8	0.0000	0.0000	0.0458	0.0423	0.0505	7.534	4	10.00	10.00	483	483
*20.4	0.0000	0.0000	0.0457	0.0434	0.0493	5.517	4	10.00	10.00		

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distribu	ition (p >	0.01)		0.96272	0.896	0.19312	0.2521
Bartlett's Test indicates unequal	variances (p	o = 3.23E	-04)		25.1301	16.8119		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	ΤU				
Steel's Many-One Rank Test	3	4.5	3.67423					
Treatments vs D-Control								

				Trimmed Spearman-Karber
Trim Level	EC50	95%	CL	
0.0%				
5.0%	7.9728	7.9388	8.0068	
10.0%	7.9728	7.9388	8.0068	
20.0%	7.9728	7.9388	8.0068	
Auto-1.8%	7.9168	7.8375	7.9969	

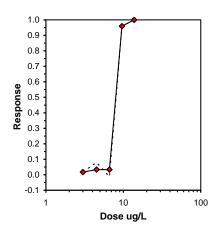


Figure 82. ToxCalc summary sheet including dose-response curve for Mill B reference toxicant test using copper chloride run alongside simulated effluent samples.

			Rivalvo I	arval Surviv	al and Develop	ment Test-Propo	rtion Normal
Start Date:	11/4/2010			C-RT-ME		Sample ID:	C-RT-ME
End Date:	11/6/2011		Lab ID:	NABF		Sample Type:	Reference Toxicant
Sample Date:			Protocol:	EPAW 95-E	EPA West Coast	Test Species:	MG-Mytilis galloprovincialis
Comments:	Mill C refe	rence to	xicant test	for mill-trea	ted effluent using	copper	
Conc-ug/L	1	2	3	4			
D-Control	0.8916	0.9221	0.9075	0.8907			
3	0.8768	0.8947	0.9139	0.9060			
4.5	0.8870	0.8867	0.8125	0.8481			
6.6	0.8160	0.7884	0.8528	0.8736			
9.6	0.1637	0.2313	0.2222	0.2404			
13.8	0.0000	0.0000	0.0000	0.0000			
20.4	0.0000	0.0000	0.0000	0.0000			

			Tra	ansform:	Arcsin Sc	uare Roo	t	Rank	1-Tailed	Number	Total
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Resp	Number
D-Control	0.9030	1.0000	1.2547	1.2339	1.2879	2.040	4			66	676
3	0.8979	0.9944	1.2462	1.2122	1.2730	2.113	4	17.00	10.00	62	609
*4.5	0.8586	0.9508	1.1872	1.1230	1.2280	4.264	4	10.00	10.00	94	661
*6.6	0.8327	0.9222	1.1511	1.0928	1.2074	4.430	4	10.00	10.00	117	697
*9.6	0.2144	0.2375	0.4804	0.4166	0.5125	9.043	4	10.00	10.00	559	712
*13.8	0.0000	0.0000	0.0431	0.0413	0.0444	3.087	4	10.00	10.00	539	539
*20.4	0.0000	0.0000	0.0440	0.0414	0.0493	8.181	4	10.00	10.00		

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distribu	ition (p >	0.01)		0.95169	0.896	-0.5129	0.13787
Bartlett's Test indicates unequal	variances (p	o = 1.31E	-04)		27.2272	16.8119		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	ΤU				
Steel's Many-One Rank Test	3	4.5	3.67423					
Treatments vs D-Control								

				Ма	aximum Likeliho	od-Probit	t				
Parameter	Value	SE	95% Fidu	cial Limits	Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	14.227	0.91744	12.4288	16.0252	0.09763	6.75421	7.81473	0.08	0.93223	0.07029	7
Intercept	-8.2628	0.88656	-10	-6.5252							
TSCR	0.11506	0.00716	0.10102	0.1291							
Point	Probits	ug/L	95% Fidu	cial Limits			1.0 🛨				
EC01	2.674	5.87101	5.47682	6.19948							
EC05	3.355	6.55563	6.2095	6.84203			0.9		/		
EC10	3.718	6.95265	6.63808	7.21274			0.8 -				
EC15	3.964	7.23402	6.94296	7.47508			0.7		1		
EC20	4.158	7.46574	7.19447	7.69117							
EC25	4.326	7.67044	7.41675	7.88232			80.6 0.5 0.4				
EC40	4.747	8.21149	8.00256	8.3908			5 0.5				
EC50	5.000	8.55518	8.37076	8.71887			8				
EC60	5.253	8.91326	8.74755	9.06843			e 0.4				
EC75	5.674	9.54198	9.38236	9.71116			0.3 -				
EC80	5.842	9.80361	9.63526	9.99069							
EC85	6.036	10.1176	9.93143	10.3342			0.2				
EC90	6.282	10.5271	10.3084	10.7924			0.1 -		4		
EC95	6.645	11.1646	10.8817	11.5215			0.0		• 👖		
EC99	7.326	12.4665	12.024	13.0472			0.0 +		10		100
									Dose ug	n/l	100

Figure 83. ToxCalc summary sheet including dose-response curve for Mill C reference toxicant test using copper chloride run alongside mill-treated effluent sample.

			Bivalve L	arval Surviva	l and Develop	ment Test-Propo	rtion Normal
Start Date:	11/17/2010)	Test ID:	C-RT-SE		Sample ID:	C-RT-SE
End Date:	11/19/2011	1	Lab ID:	NABF		Sample Type:	Reference Toxicant
Sample Date:			Protocol:	EPAW 95-EP	A West Coast	Test Species:	MG-Mytilis galloprovincialis
Comments:	Mill C refe	rence to	xicant test	for simulated	effluents using	copper ch	
Conc-ug/L	1	2	3	4			
D-Control	0.9518	0.9231	0.9581	0.9327			
3	0.9689	0.9347	0.9434	0.9482			
4.5	0.9211	0.9404	0.9246	0.9624			
6.6	0.9220	0.9055	0.9297	0.8688			
9.6	0.0000	0.9307	0.0000	0.0000			
13.8	0.0000	0.0000	0.0000	0.0000			
20.4	0.0000	0.0000	0.0000	0.0000			

		_	Tra	ansform:	Arcsin S	quare Roo	t	Rank	1-Tailed	Number	Total
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Resp	Number
D-Control	0.9414	1.0000	1.3281	1.2898	1.3647	2.628	4			49	846
3	0.9488	1.0078	1.3444	1.3123	1.3936	2.593	4	20.00	10.00		
4.5	0.9371	0.9954	1.3196	1.2860	1.3756	3.096	4	17.00	10.00		
6.6	0.9065	0.9629	1.2622	1.2001	1.3025	3.587	4	11.00	10.00	78	825
9.6	0.2327	0.2472	0.3532	0.0350	1.3044	179.541	4	11.00	10.00	590	778
*13.8	0.0000	0.0000	0.0354	0.0346	0.0368	2.858	4	10.00	10.00	800	800
*20.4	0.0000	0.0000	0.0369	0.0363	0.0381	2.213	4	10.00	10.00	734	734

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates nor	-normal dis	stribution (p <= 0.01)		0.53915	0.896	3.15815	15.7231
Bartlett's Test indicates unequal	ariances (o = 6.32E-	·18)		93.2738	16.8119		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	ΤU				
Steel's Many-One Rank Test	9.6	13.8	11.51					
Treatments vs D-Control								

				Max	amum Likeliho	od-Probit	t				
Parameter	Value	SE	95% Fidu	cial Limits	Control	Chi-Sq	Critical	P-value	Mu	Sigma	Iter
Slope	15.3864	1.00433	13.4179	17.3548	0.05792	0.95656	5.99146	0.62	0.93904	0.06499	4
Intercept	-9.4483	0.9733	-11.356	-7.5407							
TSCR	0.05998	0.0079	0.04449	0.07546		1.0			~ ~		
Point	Probits	ug/L	95% Fidu	cial Limits		0.9			·		
EC01	2.674	6.13537	5.7444	6.45854		0.9					
EC05	3.355	6.79411	6.45353	7.07359		0.8 -					
EC10	3.718	7.17372	6.86566	7.42617		0.7		†			
EC15	3.964	7.44175	7.15779	7.67467							
EC20	4.158	7.6619	7.3982	7.87874		9.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0					
EC25	4.326	7.85596	7.61028	8.05877		5 0.5					
EC40	4.747	8.36701	8.16778	8.53529		ds					
EC50	5.000	8.69032	8.51742	8.84084		e ^{0.4}		- 1			
EC60	5.253	9.02613	8.8747	9.1649		0.3 -					
EC75	5.674	9.61331	9.47399	9.75891		0.2					
EC80	5.842	9.85678	9.71105	10.0174		0.2					
EC85	6.036	10.1484	9.98728	10.3352		0.1 -					
EC90	6.282	10.5275	10.3371	10.7586		0.0		<u> </u>			
EC95	6.645	11.1158	10.8666	11.4307		0.0 1		10		100	
EC99	7.326	12.3092	11.9146	12.8275			I	Dose u	//	100	

Figure 84. ToxCalc summary sheet including dose-response curve for Mill C reference toxicant test using copper chloride run alongside simulated effluent samples.

Start Date: 2/9/2010 Test ID: D-RT-ME Sample ID: D-RT-ME End Date: 2/11/2011 Lab ID: NABF Sample Type: Reference Toxicant Sample Date: Protocol: EPAW 95-EPA West Coast Test Species: MG-Mytilis galloprovincialis Comments: Mill D reference toxicant test for mill-treated effluent using copper 0.9219 0.9639 0.9252 0.9325 3 0.9110 0.9337 0.9461 0.9304 4.5 0.9456 0.9133 0.9448 0.9382 6.6 0.8815 0.8947 0.8795 0.8868 9.6 0.2313 0.2287 0.3015 0.2000				Bivalve L	arval Surviva	and Develop	ment Test-Propo	ortion Normal
Sample Date: Protocol: EPAW 95-EPA West Coast Test Species: MG-Mytilis galloprovincialis Comments: Mill D reference toxicant test for mill-treated effluent using copper MG-Mytilis galloprovincialis Conc-ug/L 1 2 3 4 D-Control 0.9219 0.9639 0.9252 0.9325 3 0.9110 0.9337 0.9461 0.9304 4.5 0.9456 0.9133 0.9448 0.9382 6.6 0.8815 0.8947 0.8795 0.8868 9.6 0.2313 0.2287 0.3015 0.2000	Start Date:	2/9/2010						
Comments: Mill D reference toxicant test for mill-treated effluent using copper Conc-ug/L 1 2 3 4 D-Control 0.9219 0.9639 0.9252 0.9325 3 0.9110 0.9337 0.9461 0.9304 4.5 0.9456 0.9133 0.9448 0.9382 6.6 0.8815 0.8947 0.8795 0.8868 9.6 0.2313 0.2287 0.3015 0.2000	End Date:	2/11/2011		Lab ID:	NABF		Sample Type:	Reference Toxicant
Conc-ug/L 1 2 3 4 D-Control 0.9219 0.9639 0.9252 0.9325 3 0.9110 0.9337 0.9461 0.9304 4.5 0.9456 0.9133 0.9448 0.9382 6.6 0.8815 0.8947 0.8795 0.8868 9.6 0.2313 0.2287 0.3015 0.2000	Sample Date:			Protocol:	EPAW 95-EP	A West Coast	Test Species:	MG-Mytilis galloprovincialis
D-Control 0.9219 0.9639 0.9252 0.9325 3 0.9110 0.9337 0.9461 0.9304 4.5 0.9456 0.9133 0.9448 0.9382 6.6 0.8815 0.8947 0.8795 0.8868 9.6 0.2313 0.2287 0.3015 0.2000	Comments:	Mill D refe	rence to	xicant test	for mill-treated	d effluent using	copper	
3 0.9110 0.9337 0.9461 0.9304 4.5 0.9456 0.9133 0.9448 0.9382 6.6 0.8815 0.8947 0.8795 0.8868 9.6 0.2313 0.2287 0.3015 0.2000	Conc-ug/L	1	2	3	4			
4.5 0.9456 0.9133 0.9448 0.9382 6.6 0.8815 0.8947 0.8795 0.8868 9.6 0.2313 0.2287 0.3015 0.2000	D-Control	0.9219	0.9639	0.9252	0.9325			
6.6 0.8815 0.8947 0.8795 0.8868 9.6 0.2313 0.2287 0.3015 0.2000	3	0.9110	0.9337	0.9461	0.9304			
9.6 0.2313 0.2287 0.3015 0.2000	4.5	0.9456	0.9133	0.9448	0.9382			
	6.6	0.8815	0.8947	0.8795	0.8868			
13.8 0.0000 0.0000 0.0000	9.6	0.2313	0.2287	0.3015	0.2000			
	13.8	0.0000	0.0000	0.0000	0.0000			
20.4 0.0000 0.0000 0.0000 0.0000	20.4	0.0000	0.0000	0.0000	0.0000			

			Tra	ansform:	Arcsin Sc	uare Roo	t	Rank	1-Tailed	Number	Total
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Resp	Number
D-Control	0.9359	1.0000	1.3172	1.2875	1.3795	3.219	4			48	735
3	0.9303	0.9940	1.3046	1.2678	1.3365	2.172	4	18.00	10.00		
4.5	0.9355	0.9996	1.3151	1.2719	1.3353	2.255	4	19.00	10.00	43	661
*6.6	0.8856	0.9463	1.2259	1.2163	1.2404	0.878	4	10.00	10.00	74	650
*9.6	0.2404	0.2568	0.5113	0.4636	0.5813	9.727	4	10.00	10.00	535	707
*13.8	0.0000	0.0000	0.0388	0.0360	0.0403	5.018	4	10.00	10.00	669	669
*20.4	0.0000	0.0000	0.0448	0.0410	0.0495	8.545	4	10.00	10.00		

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distribu	ition (p >	0.01)		0.91009	0.896	0.79772	1.89395
Bartlett's Test indicates unequal	variances (p	o = 2.07E	-04)		26.1736	16.8119		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	ΤU				
Steel's Many-One Rank Test	4.5	6.6	5.44977					
Treatments vs D-Control								

				Ма	aximum Likeliho	od-Probit	1				
Parameter	Value	SE	95% Fidu	cial Limits	Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	14.4775	0.87088	12.7706	16.1844	0.06531	1.36307	5.99146	0.51	0.93669	0.06907	4
Intercept	-8.561	0.84251	-10.212	-6.9096							
TSCR	0.06652	0.00658	0.05363	0.0794							
Point	Probits	ug/L	95% Fidu	cial Limits			1.0		,		_
EC01	2.674	5.97042	5.60848	6.27549			0.9				
EC05	3.355	6.65392	6.3374	6.91917			0.9				
EC10	3.718	7.04972	6.76266	7.29027			0.8				
EC15	3.964	7.32998	7.06471	7.55277			0.7		†		
EC20	4.158	7.56065	7.3136	7.76893							
EC25	4.326	7.76431	7.53334	7.9601			B 0.6 0.5 0.4				
EC40	4.747	8.30219	8.11153	8.46841			5 _{0.5}]				
EC50	5.000	8.64355	8.4743	8.79617			ds				
EC60	5.253	8.99894	8.84517	9.14499			₽ ^{0.4}]				
EC75	5.674	9.62234	9.47059	9.78388			0.3				
EC80	5.842	9.88155	9.72052	10.0603			0.2				
EC85	6.036	10.1925	10.0139	10.399			0.2				
EC90	6.282	10.5977	10.388	10.8492			0.1				
EC95	6.645	11.2281	10.9581	11.5636			0.0		<u>// // // // // // // // // // // // // </u>		
EC99	7.326	12.5135	12.0949	13.0527			0.0 1		10		100
									Dose ug/	L	

Figure 85. ToxCalc summary sheet including dose-response curve for Mill D reference toxicant test using copper chloride run alongside mill-treated effluent sample.

			Bivalve L	arval Surviv	al and Develop	ment Test-Propo	rtion Normal
Start Date:	2/21/2010		Test ID:	D-RT-SE		Sample ID:	D-RT-SE
End Date:	2/23/2011		Lab ID:	NABF		Sample Type:	Reference Toxicant
Sample Date:			Protocol:	EPAW 95-E	PA West Coast	Test Species:	MG-Mytilis galloprovincialis
Comments:	Mill D refe	rence to	xicant test	for simulate	d effluents using	copper ch	
Conc-ug/L	1	2	3	4			
D-Control	0.9161	0.8889	0.9236	0.9068			
3	0.8846	0.8421	0.8521	0.8526			
4.5	0.8765	0.8908	0.9156	0.9040			
6.6	0.7284	0.8583	0.7808	0.7984			
9.6	0.2919	0.3386	0.3529	0.2857			
13.8	0.0000	0.0000	0.0000	0.0000			
20.4	0.0000	0.0000	0.0000	0.0000			

		_	Tra	ansform:	Arcsin Sc	uare Roo	t	Rank	1-Tailed	Number	Total
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Resp	Number
D-Control	0.9089	1.0000	1.2648	1.2310	1.2908	2.033	4			56	610
*3	0.8578	0.9439	1.1848	1.1622	1.2242	2.290	4	10.00	10.00	90	633
4.5	0.8967	0.9866	1.2444	1.2118	1.2760	2.225	4	14.00	10.00	63	612
*6.6	0.7915	0.8709	1.0991	1.0226	1.1849	6.102	4	10.00	10.00	119	557
*9.6	0.3173	0.3491	0.5980	0.5639	0.6361	6.018	4	10.00	10.00	418	612
*13.8	0.0000	0.0000	0.0422	0.0385	0.0449	6.521	4	10.00	10.00	568	568
*20.4	0.0000	0.0000	0.0416	0.0385	0.0437	5.453	4	10.00	10.00		

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distribu	ution (p > 0	0.01)		0.9484	0.896	0.32714	2.50452
Bartlett's Test indicates unequal	Bartlett's Test indicates unequal variances ($p = 1.23E-04$)					16.8119		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	ΤU				
Steel's Many-One Rank Test	<3	3						

Treatments vs D-Control

				Max	kimum Likeliho	od-Probit					
Parameter	Value	SE	95% Fidu	cial Limits	Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	11.6719	1.58293	6.63426	16.7095	0.0918	16.8872	7.81473	7.5E-04	0.94336	0.08568	8
Intercept	-6.0107	1.54673	-10.933	-1.0884							
TSCR	0.11724	0.01751	0.0615	0.17298							
Point	Probits	ug/L	95% Fidu	cial Limits			1.0				
EC01	2.674	5.54684	3.62602	6.6163					1/	·	
EC05	3.355	6.34502	4.57595	7.29579			0.9				
EC10	3.718	6.81647	5.17454	7.69459			0.8				
EC15	3.964	7.15418	5.61787	7.98181							
EC20	4.158	7.43449	5.99339	8.22289			0.7				
EC25	4.326	7.68369	6.33162	8.44067			9 0.6		M .		
EC40	4.747	8.34934	7.24186	9.05159			۳ ۾ K				
EC50	5.000	8.77723	7.81523	9.48381			<u>ö</u> ^{0.5}]				
EC60	5.253	9.22706	8.38597	9.99358			0.6 - 0.5 -				
EC75	5.674	10.0264	9.2701	11.0885		-	0.3				
EC80	5.842	10.3625	9.59082	11.6224			-				
EC85	6.036	10.7685	9.94721	12.3161			0.2		/		
EC90	6.282	11.302	10.3782	13.2945			0.1	,	/ 🛉		
EC95	6.645	12.1418	11.0021	14.9561			-	•	//		
EC99	7.326	13.889	12.1882	18.7873			0.0				
Significant he	terogeneity	detected	(p = 7.45E	-04)			1		10		100
								I	Dose ug/L	-	

Figure 86. ToxCalc summary sheet including dose-response curve for Mill D reference toxicant test using copper chloride run alongside simulated effluent samples.

APPENDIX K

Mytilus galloprovincialis Reference Toxicant Control Chart

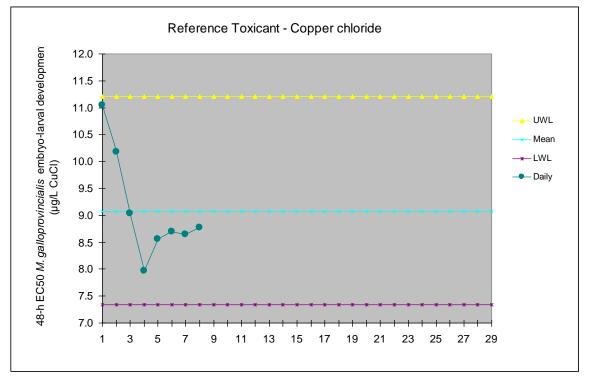


Figure 87. Control chart for 48-h EC50 *Mytilus galloprovincialis* embryo-larval development toxicity tests with reference toxicant (CuCl). Methods for control charting followed guidance provided by Environment Canada (2005).

APPENDIX L

Southern Aquatic Biology Facility Summary Sheets for Ceriodaphnia dubia Toxicity Tests

Black Liquor Spiking Study Support 7-d Bioassay TEST ORGANISM: Ceriodaphnia dubia **DATE:** 09/08/10 - 09/14/10 **SAMPLE ID:** #24667 A-EFF-BLSS

			YOU	UNG/A	DULT			
	<u>%SURVIVAL</u>		REF	PLICAT	TES		AVERAGE	
		<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	REPRODUCTIO	<u>N</u> <u>SD</u> ^a
CONTROL	100	32	40	39	36	39	37.2	3.3
6.25%	100	46	41	38	42	40	41.4	3.0
12.5%	100	40	47	43	40	46	43.2	3.3
25%	100	39	45	47	40	46	43.4	3.6
50%	100	40	40	45	43	41	41.8	2.2
100%	100	32	34	38	31	30	33.0	3.2
NaCl (1500mg/L)	80	28	22	19	23	4	$19.2^{*c}S^{d}$	9.1
Survival	NOEC= 100%		E C =>1			=>100%	IC25= >100%	
Reproduction	NOEC = 100%	LOF	$\mathbf{E}\mathbf{C} = >1$	00%	CV=	=>100%	IC25=>100%	
^a standard doviation								

standard deviation ^b confidence intervals

^c significant difference from the control (Dunnett's test p?0.05) ^d significant difference from the control (Steel's test p?0.05)

Figure 88. Summary sheet for Ceriodaphnia dubia toxicity test with Mill A mill effluent.

Black Liquor Spiking Study Support 7-d Bioassay TEST ORGANISM: Ceriodaphnia dubia DATE: 09/08/10 – 09/14/10 SAMPLE ID: #24667 A-EFF-BLSS

INITIAL WATER CHEMISTRY

	<u>pH</u>	<u>DO</u>	Cond.	<u>N</u>	<u>Temp.</u>	<u>(SD)</u> ^a	<u>Alkalinity</u>	<u>Hardness</u>
CONTROL	7.6	8.8	291	5	25.5	(0.3)	64	78
6.25%	7.8	8.7	399	5	25.5	(0.2)		
12.5%	7.8	9.8	506	5	25.5	(0.1)		
25%	7.8	9.4	704	5	25.5	(0.1)		
50%	7.9	9.1	1134	5	25.5	(0.1)		
100%	7.9	8.8	1934	5	25.5	(0.2)	348	92
NaCl (1500mg/L)	7.8	9.3	3190	5	25.5	(0.1)	60	80

FINAL WATER CHEMISTRY

	<u>рН</u>	<u>DO</u>	Cond.	<u>N</u>	<u>Temp.</u>	
CONTROL	7.9	7.3	330	6	25.5	(0.3)
6.25%	8.0	7.1	405	6	25.4	(0.2)
12.5%	8.1	7.0	513	6	25.4	(0.2)
25%	8.2	6.9	698	6	25.4	(0.2)
50%	8.4	6.7	1136	6	25.3	(0.2)
100%	8.6	6.7	1919	6	25.3	(0.3)
NaCl (1500mg/L)	8.0	6.9	3180	6	25.2	(0.3)

^a standard deviation

Figure 89. Summary sheet of test chamber chemistry for Ceriodaphnia dubia toxicity test with Mill A mill effluent.

TASK 10.2.09 Black Liquor Spiking Study 7-d Support Bioassay TEST ORGANISM: *Ceriodaphnia dubia* DATE: 09/14/10 – 09/20/10 SAMPLE ID: #24668 A-RWW-CTRL

	%SURVIVAL			UNG/A PLICAT			AVERAGE		
	<u>····</u>	<u>1</u>	2	<u>3</u>	4	<u>5</u>	REPRODUCTIO	<u>DN SD</u> ^a	
CONTROL	100	33	27	36	33	36	33.0	3.7	
12.5%	100	42	42	44	43	37	41.6	2.7	
25%	100	41	45	40	38	41	41.0	2.6	
50%	100	43	43	35	46	37	40.8	4.6	
100%	100	38	34	34	32	35	34.6	2.2	
Survival	NOEC = 100%	LOI	E C =>10	00%	CV=	= >100%	IC25 = >100%		
Reproduction	NOEC = 100%					CV =>100% IC25 =>100%			

^a standard deviation

Figure 90. Summary sheet for *Ceriodaphnia dubia* toxicity test with Mill A reactor control.

TASK 10.2.09 Black Liquor Spiking Study 7-d Support Bioassay TEST ORGANISM: *Ceriodaphnia dubia* DATE: 09/14/10 – 09/20/10 SAMPLE ID: #24668 A-RWW-CTRL

INITIAL WATER CHEMISTRY

CONTROL	<u>рН</u> 7.5	<u>DO</u> 7.7	<u>Cond.</u> 300	<u>N</u> 5	<u>Temp.</u> 25.5	<u>(SD)</u> ^a (0.1)	<u>Alkalinity</u> 54	Hardness 82
12.5%	7.6	7.5	373	5	25.4	(0.2)		
25%	7.6	7.4	446	5	25.4	(0.1)		
50%	7.7	7.5	555	5	25.4	(0.1)		
100%	7.8	7.5	904	5	25.4	(0.1)	152	50

FINAL WATER CHEMISTRY

CONTROL	<u>рН</u> 7.7	DO 7.3	<u>Cond.</u> 311	<u>N</u> 5	<u>Temp.</u> 25.5	(SD) (0.2)
12.5%	7.9	7.1	424	5	25.4	(0.1)
25%	7.8	7.0	454	5	25.3	(0.2)
50%	7.9	7.0	601	5	25.3	(0.2)
100%	8.1	7.1	892	5	25.3	(0.2)

^a standard deviation

Figure 91. Summary sheet of test chamber chemistry for *Ceriodaphnia dubia* toxicity test with Mill A reactor control.

TASK 10.2.09 Black Liquor Spiking Study 7-d Support Bioassay TEST ORGANISM: Ceriodaphnia dubia **DATE:** 09/14/10 - 09/20/10 SAMPLE ID: #24670 A-RWBL-2

	%SURVIVAL			UNG/A			AVERAGE	
	7050K (1 () 11	<u>1</u>	<u>2</u>	<u><u><u>3</u></u></u>	<u>4</u>	<u>5</u>	REPRODUCTIO	<u>N</u> <u>SD</u> ^a
CONTROL	100	33	27	36	33	36	33.0	3.7
12.5%	100	42	36	36	40	40	38.8	2.7
25%	100	34	45	43	38	40	40.0	4.3
50%	100	32	32	35	35	43	35.4	4.5
100%	100	0	2	2	8	4	$3.2^{*b}S^{c}$	3.0
							C	onfidence Intervals
Survival	NOEC = 100%	LOI	EC = >1	00%	CV=	=>100%	IC25 = >100%	
Reproduction	NOEC = 50%	LOI	$\mathbf{E}\mathbf{C} = 100$	0%	CV=	= 70.7%	IC25 = 61.6%	(57.6-64.2)

^a standard deviation

^b significant difference from the control (Dunnett's test p \leq 0.05) ^c significant difference from the control (Steel's test p \leq 0.05)

Figure 92. Summary sheet for Ceriodaphnia dubia toxicity test with Mill A weak black liquor spike 2.

TASK 10.2.09 Black Liquor Spiking Study 7-d Support Bioassay TEST ORGANISM: *Ceriodaphnia dubia* DATE: 09/14/10 – 09/20/10 SAMPLE ID: #24670 A-RWBL-2

INITIAL WATER CHEMISTRY

CONTROL	<u>рН</u> 7.5	<u>DO</u> 7.7	<u>Cond.</u> 300	<u>N</u> 5	<u>Temp.</u> 25.5	<u>(SD)</u> ^a (0.1)	AlkalinityHardness5482
12.5%	7.6	7.6	395	5	25.4	(0.2)	
25%	7.5	7.5	488	5	25.4	(0.1)	
50%	7.6	7.5	673	5	25.4	(0.1)	
100%	7.8	7.4	1065	5	25.4	(0.1)	170 52

FINAL WATER CHEMISTRY

CONTROL	<u>рН</u>	<u>DO</u>	<u>Cond.</u>	<u>N</u>	<u>Temp</u>	<u>(SD)</u>
	7.7	7.3	311	5	25.5	(0.2)
12.5%	7.7	7.3	407	5	25.4	$(0.1) \\ (0.2) \\ (0.2) \\ (0.2)$
25%	7.9	7.3	498	5	25.3	
50%	8.0	7.1	682	5	25.3	
100%	8.1	6.8	1046	5	25.3	

^a standard deviation

Figure 93. Summary sheet of test chamber chemistry for Ceriodaphnia dubia toxicity test with Mill A weak black liquor spike 2.

TASK 10.2.09 Black Liquor Spiking Study 7-d Support Bioassay TEST ORGANISM: Ceriodaphnia dubia **DATE:** 09/14/10 - 09/20/10 **SAMPLE ID:** #24673 A-RWBL-5

	%SURVIVAL			<u>JNG/A</u> PLICAT			AVERAGE	
	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	<u>1</u>	2	3	4	<u>5</u>	REPRODUCTIO	<u>N SD</u> ^a
CONTROL	100	33	27	36	33	36	33.0	3.7
12.5%	100	30	32	24	38	35	31.8	5.3
25%	100	8	13	11	10	13	$11.0^{*b}S^{c}$	2.1
50%	60	0	0	0	0	0	0.0*S	0.0
100%	60	0	0	0	0	0	0.0*S	0.0
~					~		-	onfidence Intervals
Survival	NOEC = 100%		EC = >10			=>100%	IC25= 35.4	(31.9-56.3)
Reproduction	NOEC = 12.5%	LOF	EC=259	%	CV=	: 17.7%	IC25 =16.7%	(14.6-17.5)

^a standard deviation

^b significant difference from the control (Dunnett's test $p \le 0.05$) ^c significant difference from the control (Steel's test $p \le 0.05$)

Figure 94. Summary sheet for *Ceriodaphnia dubia* toxicity test with Mill A weak black liquor spike 5.

TASK 10.2.09 Black Liquor Spiking Study 7-d Support Bioassay TEST ORGANISM: *Ceriodaphnia dubia* DATE: 09/14/10 – 09/20/10 SAMPLE ID: #24673 A-RWBL-5

INITIAL WATER CHEMISTRY

CONTROL	<u>рН</u> 7.5	<u>DO</u> 7.7	<u>Cond.</u> 300	<u>N</u> 5	<u>Temp.</u> 25.5	<u>(SD)</u> ^a (0.1)	AlkalinityHardness5482
12.5%	7.5	7.7	423	5	25.4	(0.2)	
25%	7.6	7.5	546	5	25.4	(0.1)	
50%	7.7	7.5	774	5	25.4	(0.1)	
100%	7.8	7.2	1295	5	25.4	(0.1)	196 50

FINAL WATER CHEMISTRY

CONTROL	<u>рН</u> 7.7	<u>DO</u> 7.3	<u>Cond.</u> 311	<u>N</u> 5	<u>Temp</u> 25.5	<u>(SD)</u> (0.2)
12.5%	7.8	7.1	457	5	25.4	$(0.1) \\ (0.2) \\ (0.2) \\ (0.2)$
25%	7.9	7.1	557	5	25.3	
50%	8.0	7.1	810	5	25.3	
100%	8.0	6.2	1274	5	25.3	

^a standard deviation

Figure 95. Summary sheet of test chamber chemistry for Ceriodaphnia dubia toxicity test with Mill A weak black liquor spike 5.

7-d Bioassay BLSS Support TEST ORGANISM: Ceriodaphnia dubia **DATE:** 10/25/10 – 10/31/10 SAMPLE ID: #24776 B-EFF

	%SURVIVAL		<u>OUNG/ADULT</u> EPLICATES AVERAGE					
	<u>····</u>	<u>1</u>	2	<u>3</u>	4	<u>5</u>	REPRODUCTION	<u>N</u> <u>SD</u> ^a
CONTROL	100	37	29	19	31	30	29.2	6.5
12.5%	100	34	44	39	37	40	38.8	3.7
25%	100	35	33	33	40	35	35.2	2.9
50%	100	34	34	38	39	37	36.4	2.3
100%	100	26	18	29	32	27	26.4	5.2
Survival	NOEC = 100%	LOF	E C =>10	00%	CV=	=>100%	IC25 = >100%	
Reproduction	NOEC = 100%	LOF	E C =>10	00%	CV=	=>100%	IC25 =>100%	

^a standard deviation ^b confidence intervals

Figure 96. Summary sheet for *Ceriodaphnia dubia* toxicity test with Mill B mill-effluent.

7-d Bioassay BLSS Support TEST ORGANISM: Ceriodaphnia dubia DATE: 10/25/10 – 10/31/10 SAMPLE ID: #24776 B-EFF

INITIAL WATER CHEMISTRY

	<u>pH</u>	DO	Cond.	<u>N</u>	<u>Temp.</u>	<u>(SD)</u> ^a	<u>Alkalinity</u>	<u>Hardness</u>
CONTROL	7.6	7.5	297	6	25.6	(0.4)	55	85
12.5%	7.8	7.7	415	6	25.5	(0.4)		
25%	7.8	7.7	577	6	25.6	(0.4)		
50%	7.9	7.6	931	6	25.6	(0.4)		
100%	8.0	7.4	1511	6	25.5	(0.4)	272	124

FINAL WATER CHEMISTRY

	<u>pH</u>	DO	Cond.	<u>N</u>	<u>Temp.</u>	<u>(SD)</u>
CONTROL	7.6	7.2	311	6	24.9	(0.2)
12.5%	7.8	7.1	477	6	24.9	(0.2)
25%	8.0	7.0	629	6	24.9	(0.2)
50%	8.1	6.7	951	6	24.9	(0.2)
100%	8.2	6.2	1579	6	24.9	(0.2)

^a standard deviation

Figure 97. Summary sheet of test chamber chemistry for Ceriodaphnia dubia toxicity test with Mill B mill-effluent.

BLSS Support 7-d Bioassay TEST ORGANISM: Ceriodaphnia dubia **DATE:** 11/02/10 – 11/08/10 SAMPLE ID: # 24917 (B-RWW-CTRL-DN)

				JNG/AI				
	<u>%SURVIVAL</u>	1		2 2 2		5	<u>AVERAGE</u> REPRODUCTION	<u>SD</u> ^a
		<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>KERKODUCTION</u>	<u>5D</u>
CONTROL	100	22	28	21	26	28	25.0	3.3
12.5%	100	36	43	40	40	40	39.8	2.5
25%	100	34	39	39	39	42	38.6	2.9
50%	100	31	28	20	27	29	27.0	4.2
100%	100	0	0	1	6	0	$1.4^{*b}S^{c}$	2.6
							Confi	dence Intervals
Survival	NOEC = 100%	LOF	C = >10	00%	CV=	:>100%	IC25 = >100%	
Reproduction	NOEC = 50%	LOF	C = 100)%	CV=	70.7%	IC25 = 52.2% (44.6-	57.7)

^a standard deviation ^b significant difference from the control (Dunnett's Test p≤0.05) ^c significant difference from the control (Steel's Test p≤0.05)

Figure 98. Summary sheet for *Ceriodaphnia dubia* toxicity test with Mill B reactor control.

BLSS Support 7-d Bioassay TEST ORGANISM: Ceriodaphnia dubia **DATE:** 11/02/10 – 11/08/10 SAMPLE ID: # 24917 (B-RWW-CTRL-DN

INITIAL WATER CHEMISTRY

	<u>pH</u>	DO	Cond.	<u>N</u>	<u>Temp</u>	<u>(SD)</u> ^a	<u>Alkalinity</u>	<u>Hardness</u>
CONTROL	7.7	7.6	301	6	25.2	(0.3)	55	86
12.5%	7.6	7.3	458	6	25.2	(0.4)		
25%	7.9	7.3	618	6	25.2	(0.4)		
50%	8.1	7.3	932	6	25.2	(0.4)		
100%	8.2	7.2	1547	6	25.2	(0.4)	292	134
			FINAL WATE	R CHEM	ISTRY			

FINAL WATER CHEMISTRY

	<u>pH</u>	DO	Cond.	<u>N</u>	<u>Temp.</u>	<u>(SD)</u>
CONTROL	7.6	7.9	310	5	25.7	(0.1)
12.5%	7.6	7.7	463	5	25.7	(0.1)
25%	8.0	7.7	619	5	25.6	(0.1)
50%	8.2	7.6	921	5	25.4	(0.1)
100%	8.3	7.0	1526	5	25.3	(0.1)

^a standard deviation

Figure 99. Summary sheet of test chamber chemistry for Ceriodaphnia dubia toxicity test with Mill B reactor control.

BLSS Support 7-d Bioassay TEST ORGANISM: Ceriodaphnia dubia **DATE:** 11/02/10 – 11/08/10 **SAMPLE ID:** #24919 (B-WBL-2-DN)

	<u>%SURVIVAL</u>			JNG/AI LICAT			AVERAGE	
		<u>1</u>	2	<u>3</u>	<u>4</u>	<u>5</u>	REPRODUCTION	<u>SD</u> ^a
CONTROL	100	22	28	21	26	28	25.0	3.3
12.5%	100	42	40	40	43	40	41.0	1.4
25%	100	33	40	43	36	38	38.0	3.8
50%	100	30	29	32	30	2	24.6	12.7
100%	60	0	0	0	0	0	$0^{*b}S^{c}$	0
							Co	nfidence Intervals
Survival	NOEC = 100%	LOF	EC = >10	00%	CV=	=>100%	IC25 = 81.2%	$(NA-NA)^d$
Reproduction	NOEC = 50%	LOF	EC = 100)%	CV=	70.7%	IC25 = 46.5%	(35.0 - 58.1)

^a standard deviation ^b significant difference from the control (Dunnett's Test p ≤ 0.05) ^c significant difference from the control (Steel's Test p ≤ 0.05) ^d survival IC25 confidence intervals not available

Figure 100. Summary sheet for Ceriodaphnia dubia toxicity test with Mill B weak black liquor spike 2.

BLSS Support 7-d Bioassay TEST ORGANISM: Ceriodaphnia dubia DATE: 11/02/10 – 11/08/10 SAMPLE ID: #24919 (B-WBL-2-DN)

8.3

8.5

7.7

7.2

INITIAL WATER CHEMISTRY

	<u>pH</u>	DO	Cond.	<u>N</u>	<u>Temp.</u>	<u>(SD)</u> ^a	<u>Alkalinity</u>	<u>Hardness</u>
CONTROL	7.7	7.6	301	6	25.2	(0.3)	55	86
12.5% 25% 50% 100%	7.8 7.9 8.2 8.3	7.5 7.5 7.4 7.2	462 651 983 1693	6 6 6 6	25.2 25.3 25.2 25.2	(0.4) (0.4) (0.3) (0.4)	348	168
			FINAL WATE	R CHEM	ISTRY			
	<u>pН</u>	DO	Cond.	<u>N</u>	<u>Temp.</u>	<u>(SD)</u>		
CONTROL	7.6	7.9	310	6	25.7	(0.1)		
12.5% 25%	8.0 8.1	7.8 7.9	493 658	6 6	25.2 25.1	(0.3) (0.3)		

^a standard deviation

50%

100%

Figure 101. Summary sheet of test chamber chemistry for Ceriodaphnia dubia toxicity test with Mill B weak black liquor spike 2.

24.9

24.7

6

6

(0.3)

(0.3)

987

1612

BLSS Support 7-d Bioassay TEST ORGANISM: Ceriodaphnia dubia **DATE:** 11/02/10 – 11/08/10 **SAMPLE ID:** #24922 (B-WBL-5-DN)

	<u>%SURVIVAL</u>	_		JNG/AL	<u>res</u>	_	AVERAGE	
		<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	REPRODUCTION	\underline{SD}^{a}
CONTROL	100	27	22	20	29	30	25.6	4.4
12.5%	100	38	35	34	41	34	36.4	3.0
25%	100	21	17	26	26	25	23.0	3.9
50%	60	2	4	2	0	2	$2.0^{*b}S^{c}$	1.4
100%	80	0	0	0	0	0	0*S	0
							Conf	ïdence Intervals
Survival	NOEC= 100%	LOI	EC = >10	00%	CV=	=>100%	IC25 = 45.8% (NA	$-NA)^d$
Reproduction	NOEC = 25%	LOI	EC = 509	%	CV=	= 35.4%	IC25 = 24.6% (20.9	- 28.4)

^a standard deviation

^b significant difference from the control (Dunnett's Test p \leq 0.05) ^c significant difference from the control (Steel's Test p \leq 0.05) ^d survival IC25 confidence intervals not available

Figure 102. Summary sheet for Ceriodaphnia dubia toxicity test with Mill B weak black liquor spike 5.

BLSS Support 7-d Bioassay TEST ORGANISM: Ceriodaphnia dubia DATE: 11/02/10 – 11/08/10 SAMPLE ID: #24922 (B-WBL-5-DN)

INITIAL WATER CHEMISTRY

	pН	DO	Cond.	<u>N</u>	<u>Temp.</u>	<u>(SD)</u> ^a	<u>Alkalinity</u>	<u>Hardness</u>			
CONTROL	7.5	7.5	297	6	25.1	(0.3)	55	86			
12.5% 25%	7.8 8.0	7.6 7.4	478 651	6 6	25.2 25.2	(0.3) (0.3)					
50% 100%	8.2 8.3	7.3 6.9	1055 1811	6 6	25.2 25.2	(0.4) (0.3)	392	150			
FINAL WATER CHEMISTRY											
	рH	DO	Cond.	<u>N</u>	<u>Temp.</u>	<u>(SD)</u>					
CONTROL	7.8	7.8	309	4	25.1	(0.1)					
12.5%	8.0	7.7	507	4	25.4	(0.1)					
25% 50%	8.2 8.4	7.8 7.7	7.4 1078	4 4	25.4 25.3	(0.1) (0.1)					
100%	8.5	6.6	1827	4	25.2	(0.1) (0.1)					

^a standard deviation

Figure 103. Summary sheet of test chamber chemistry for Ceriodaphnia dubia toxicity test with Mill B weak black liquor spike 5.

BLSS Support 7-d Bioassay TEST ORGANISM: Ceriodaphnia dubia **DATE:** 11/11/10 – 11/17/10 **SAMPLE ID:** #24924 (C-FE)

	%SURVIVAL		_	JNG/AI PLICAT			AVERAGE		
		<u>1</u>	2	<u>3</u>	<u>4</u>	<u>5</u>	REPRODUCTION SD ^a		
CONTROL	100	29	28	28	33	31	29.8 2.2		
12.5%	100	41	37	42	36	38	38.8 2.6		
25%	100	25	26	36	33	27	29.4 4.8		
50%	100	25	26	28	23	31	26.6 3.0		
100%	80	0	0	0	0	0	$0^{*b}S^c$ 0		
							Confidence Intervals		
Survival	NOEC= 100%	LOF	EC = >10	00%	CV=	=>100%	IC25 = >100%		
Reproduction	NOEC = 50%	LOF	EC = 100)%	CV=	- 70.7%	IC25 = 51.6% (35.8 – 55.5)		

^a standard deviation ^b significant difference from the control (Dunnett's Test $p \le 0.05$) ^c significant difference from the control (Steel's Test $p \le 0.05$)

Figure 104. Summary sheet for *Ceriodaphnia dubia* toxicity test with Mill C mill-effluent.

BLSS Support 7-d Bioassay TEST ORGANISM: Ceriodaphnia dubia DATE: 11/11/10 – 11/17/10 SAMPLE ID: #24924 (C-FE)

INITIAL WATER CHEMISTRY

	<u>pH</u>	DO	Cond.	<u>N</u>	<u>Temp.</u>	<u>(SD)</u> ^a	<u>Alkalinity</u>	<u>Hardness</u>			
CONTROL	7.6	8.0	297	6	25.2	(0.2)	56	84			
12.5%	7.9	8.2	690	6	25.2	(0.2)					
25%	8.0	8.1	1075	6	25.1	(0.2)					
50%	8.1	8.1	1787	6	25.2	(0.2)					
100%	8.0	7.8	3410	6	25.2	(0.2)	500	232			
FINAL WATER CHEMISTRY											
	<u>pH</u>	DO	Cond.	<u>N</u>	<u>Temp.</u>	<u>(SD)</u>					
CONTROL	7.7	8.0	318	6	25.4	(0.3)					
12.5%	8.1	7.9	708	6	25.4	(0.3)					
25%	8.3	7.8	1096	6	25.3	(0.3)					
50%	8.6	7.8	1842	6	25.3	(0.3)					
100%	8.7	7.5	3360	6	25.2	(0.3)					

^a standard deviation

Figure 105. Summary sheet of test chamber chemistry for Ceriodaphnia dubia toxicity test with Mill C mill-effluent.

BLSS Support 7-d Bioassay TEST ORGANISM: Ceriodaphnia dubia **DATE:** 11/17/10 – 11/23/10 **SAMPLE ID:** #24986 (C-RWW-CTRL-DN)

				JNG/A			
	<u>%SURVIVAL</u>	<u>1</u>	<u>REP</u> 2	<u>LICA</u>	<u>res</u> <u>4</u>	<u>5</u>	<u>AVERAGE</u> <u>REPRODUCTION</u> <u>SD</u> ^a
CONTROL	100	34	28	23	24	26	27.0 4.4
12.5%	100	44	31	42	44	35	39.2 5.9
25%	100	40	37	29	43	34	36.6 5.4
50%	100	40	35	34	34	30	34.6 3.6
100%	100	11	4	6	3	8	$6.4^{*b}S^{c}$ 3.2
							Confidence Intervals
Survival	NOEC = 100%	LOF	$\mathbf{E}\mathbf{C} = >10$	00%	CV=	=>100%	IC25 = >100%
Reproduction	NOEC = 50%	LOF	EC = 100	0%	CV=	= 70.7%	IC25 = 65.4% (61.6 – 66.8)

^a standard deviation

^b significant difference from the control (Dunnett's Test p \leq 0.05) ^c significant difference from the control (Steel's Test p \leq 0.05)

Figure 106. Summary sheet for *Ceriodaphnia dubia* toxicity test with Mill C reactor control.

BLSS Support 7-d Bioassay TEST ORGANISM: Ceriodaphnia dubia DATE: 11/17/10 – 11/23/10 SAMPLE ID: #24986 (C-RWW-CTRL-DN)

INITIAL WATER CHEMISTRY

	<u>pH</u>	DO	Cond.	<u>N</u>	<u>Temp.</u>	<u>(SD)</u> ^a	<u>Alkalinity</u>	<u>Hardness</u>			
CONTROL	7.7	8.0	297	6	24.9	(0.5)	56	84			
12.5%	8.0	8.1	700	6	25.0	(0.5)					
25%	8.2	8.0	1117	6	24.9	(0.5)					
50%	8.4	7.9	1897	6	24.9	(0.5)					
100%	8.6	7.9	3510	6	24.9	(0.5)	350	212			
FINAL WATER CHEMISTRY											
	<u>pH</u>	DO	Cond.	<u>N</u>	<u>Temp.</u>	<u>(SD)</u>					
CONTROL	7.6	7.9	309	6	25.1	(0.2)					
12.5%	7.9	7.8	716	6	25.2	(0.2)					
25%	8.1	7.8	1117	6	25.2	(0.2)					
50%	8.4	7.6	1888	6	25.2	(0.1)					
100%	8.6	7.4	3490	6	25.0	(0.3)					

^a standard deviation

Figure 107. Summary sheet of test chamber chemistry for *Ceriodaphnia dubia* toxicity test with Mill C reactor control.

BLSS Support 7-d Bioassay TEST ORGANISM: Ceriodaphnia dubia **DATE:** 11/17/10 – 11/23/10 SAMPLE ID: #24988 (C-RWBL-2-DN)

	%SURVIVAL			UNG/AD PLICAT			AVERAGE
	<u>705UKVIVAL</u>	<u>1</u>	<u>KEP</u>	<u><u>11CA</u></u>	<u>4</u>	<u>5</u>	<u>AVERAGE</u> <u>REPRODUCTION</u> <u>SD</u> ^a
CONTROL	100	34	28	23	24	26	27.0 4.4
12.5%	100	34	39	31	34	36	34.8 2.9
25%	100	38	32	37	42	35	36.8 3.7
50%	100	32	32	32	33	34	32.6 0.9
100%	100	1	0	0	0	0	$0.2^{*b}S^{c}$ 0.4
							Confidence Intervals
Survival	NOEC= 100%	LOF	$\mathbf{E}\mathbf{C} = >10$	00%	CV=	=>100%	IC25 = >100%
Reproduction	NOEC = 50%	LOF	EC = 100	0%	CV=	= 70.7%	IC25 = 62.2% (59.8 – 62.7)

^a standard deviation

^b significant difference from the control (Dunnett's Test p ≤ 0.05) ^c significant difference from the control (Steel's Test p ≤ 0.05)

Figure 108. Summary sheet for Ceriodaphnia dubia toxicity test with Mill C weak black liquor spike 2.

BLSS Support 7-d Bioassay TEST ORGANISM: Ceriodaphnia dubia DATE: 11/17/10 – 11/23/10 SAMPLE ID: #24988 (C-RWBL-2-DN)

INITIAL WATER CHEMISTRY

	<u>pH</u>	DO	Cond.	<u>N</u>	<u>Temp.</u>	<u>(SD)</u> ^a	<u>Alkalinity</u>	Hardness			
CONTROL	7.7	8.0	297	6	24.9	(0.5)	56	84			
12.5%	8.1	8.3	738	6	25.0	(0.5)					
25%	8.3	8.2	1157	6	25.0	(0.5)					
50%	8.6	8.2	1901	6	25.0	(0.5)					
100%	8.7	7.9	3660	6	25.0	(0.5)	392	208			
FINAL WATER CHEMISTRY											
	<u>pH</u>	DO	Cond.	<u>N</u>	<u>Temp.</u>	<u>(SD)</u>					
CONTROL	7.6	7.9	309	6	25.1	(0.2)					
12.5%	8.1	7.9	750	6	25.0	(0.3)					
25%	8.3	7.9	1168	6	24.8	(0.3)					
50%	8.5	7.8	1964	6	24.7	(0.4)					
100%	8.7	7.6	3630	6	24.7	(0.4)					

^a standard deviation

Figure 109. Summary sheet of test chamber chemistry for *Ceriodaphnia dubia* toxicity test with Mill C weak black liquor spike 2.

BLSS Support 7-d Bioassay TEST ORGANISM: Ceriodaphnia dubia **DATE:** 11/17/10 – 11/23/10 SAMPLE ID: #24991 (C-RWBL-5-DN)

			UNG/A PLICAT			AVERAGE			
		<u>1</u>	2	<u>3</u>	<u>4</u>	<u>5</u>	<u>REPRODUCTION</u> <u>SD</u> ^a		
CONTROL	100	34	28	23	24	26	27.0 4.4		
12.5%	100	45	42	39	36	35	39.4 4.2		
25%	100	40	39	38	42	8	33.4 14.1		
50%	100	36	32	34	27	27	31.2 4.1		
100%	80	0	0	0	1	1	$0.4^{*b}S^{c}$ 0.5		
							Confidence Intervals		
Survival	NOEC= 100%	LOI	$\mathbf{EC} = >100\%$ $\mathbf{CV} = >100\%$			=>100%	0% IC25= >100%		
Reproduction	NOEC = 50%	LOI	EC = 100	0%	CV=	= 70.7%	IC25 = 60.1% (24.4 – 62.7)		

^a standard deviation

^b significant difference from the control (Dunnett's Test p \leq 0.05) ^c significant difference from the control (Steel's Test p \leq 0.05)

Figure 110. Summary sheet for Ceriodaphnia dubia toxicity test with Mill C weak black liquor spike 5.

BLSS Support 7-d Bioassay TEST ORGANISM: Ceriodaphnia dubia DATE: 11/17/10 – 11/23/10 SAMPLE ID: #24991 (C-RWBL-5-DN)

INITIAL WATER CHEMISTRY

	<u>pH</u>	DO	Cond.	<u>N</u>	<u>Temp.</u>	<u>(SD)</u> ^a	<u>Alkalinity</u>	Hardness			
CONTROL	7.7	8.0	297	6	24.9	(0.5)	56	84			
12.5%	8.2	8.1	798	6	25.0	(0.5)					
25%	8.3	8.2	1191	6	25.1	(0.5)					
50%	8.5	8.2	1987	6	25.1	(0.5)					
100%	8.7	7.9	3700	6	25.0	(0.5)	412	200			
FINAL WATER CHEMISTRY											
	<u>pH</u>	DO	Cond.	<u>N</u>	<u>Temp.</u>	<u>(SD)</u>					
CONTROL	7.6	7.9	309	6	25.1	(0.2)					
12.5%	8.2	7.9	770	6	25.0	(0.3)					
25%	8.3	7.8	1206	6	24.8	(0.3)					
50%	8.5	7.7	2110	6	24.7	(0.4)					
100%	8.7	7.4	3780	6	24.7	(0.4)					

^a standard deviation

Figure 111. Summary sheet of test chamber chemistry for Ceriodaphnia dubia toxicity test with Mill C weak black liquor spike 5.

BLSS Support 7-d Bioassay TEST ORGANISM: *Ceriodaphnia dubia* DATE: 02/11/11 – 02/18/11 SAMPLE ID: #25128 (D-FE) Mill D Final Effluent

	<u>%SURVIVAL</u>			JNG/AI PLICAT			AVERAGE	
		<u>1</u>	2	<u>3</u>	<u>4</u>	<u>5</u>	REPRODUCT	ION SD
CONTROL	100	23	27	32	25	35	28.4	5.0
12.5%	100	21	35	37	36	32	32.2	6.5
25%	100	29	32	15	30	34	28.0	7.5
50%	100	33	26	25	28	23	27.0	3.8
100%	100	9	4	6	7	7	6.6*	1.8
								Confidence Intervals
Survival	NOEC = 100%	LOI	EC = >10	00%	ChV	=>100%	IC25 = >100%	
Reproduction	NOEC = 50%	LOI	EC = 100)%	ChV	<i>T</i> =70.7%	IC25 = 60.5%	(50.0 - 66.5)

SD= standard deviation

*=significant difference from the control (Dunnett's Test $p \le 0.05$)

Normal Distribution of Data

Bartlett's Test- B=6.755, Df=4 (Critical 1% value=13.28) = homogeneous variance

Figure 112. Summary sheet for Ceriodaphnia dubia toxicity test with Mill D mill-effluent.

BLSS Support 7-d Bioassay TEST ORGANISM: *Ceriodaphnia dubia* DATE: 02/11/11 – 02/18/11 SAMPLE ID: #25128 (D-FE) Mill D Final Effluent

8.1

8.3

8.5

7.8

7.5

7.1

INITIAL WATER CHEMISTRY

	<u>pH</u>	DO	Cond.	<u>N</u>	<u>Temp. (SD)</u>	<u>Alkalinity</u>	<u>Hardness</u>				
CONTROL	7.5	7.4	307	7	24.8 (0.4)	54	84				
12.5% 25% 50% 100%	7.5 7.7 7.8 7.9	7.6 7.6 7.5 7.3	572 811 1320 2310	7 7 7 7	$\begin{array}{rrrr} 24.9 & (0.4) \\ 24.9 & (0.3) \\ 24.9 & (0.3) \\ 24.9 & (0.3) \end{array}$	404	174				
FINAL WATER CHEMISTRY											
	<u>pH</u>	DO	Cond.	<u>N</u>	<u>Temp. (SD)</u>						
CONTROL	7.6	7.9	323	7	24.8 (0.2)						
12.5%	7.9	7.8	593	7	24.8 (0.1)						

(SD)= standard deviation

25%

50%

100%

Figure 113. Summary sheet of test chamber chemistry for Ceriodaphnia dubia toxicity test with Mill D mill-effluent.

858

1364

2310

7

7

7

24.8

24.9

24.7

(0.2)

(0.1)

(0.2)

BLSS Support 7-d Bioassay TEST ORGANISM: Ceriodaphnia dubia DATE: 02/21/11 – 02/27/11 SAMPLE ID: #25133 (D-RWW-CTRL)

		_	JNG/AI PLICAT			AVERAGE		
	<u>%SURVIVAL</u>	<u>1</u>	2	<u>3</u>	4	<u>5</u>	REPRODUCT	<u>TON</u> <u>SD</u>
CONTROL	100	28	27	26	29	32	28.4	2.3
12.5%	100	31	30	33	32	39	33.0	3.5
25%	100	33	24	30	24	30	28.2	4.0
50%	100	26	23	18	27	19	22.6*	4.0
100%	100	4	5	7	0	5	4.2*	2.6
								Confidence Intervals
Survival	NOEC = 100%	LOF	$\mathbf{C} = >10$	00%	ChV	=>100%	IC25 = >100%	
Reproduction	NOEC = 25%	LOF	$\mathbf{C} = 509$	%	ChV	= 35.4%	IC25 = 48.1%	(37.0% - 57.2%)

SD=standard deviation

*=significant difference from the control (Dunnett's Test p≤0.05)

Bartlett's Test – B=1.8, Df=4 (Critical 1% value=13.28) = homogeneous variance (Dunnett's Test)

Figure 114. Summary sheet for *Ceriodaphnia dubia* toxicity test with Mill D reactor control.

BLSS Support 7-d Bioassay TEST ORGANISM: Ceriodaphnia dubia DATE: 02/21/11 – 02/27/11 SAMPLE ID: #25133 (D-RWW-CTRL)

INITIAL WATER CHEMISTRY

	<u>pH</u>	DO	Cond.	<u>N</u>	<u>Temp.</u>	<u>(SD)</u> ^a	<u>Alkalinity</u>	Hardness
CONTROL	7.5	8.0	303	6	25.1	(0.5)	55	80
12.5%	7.9	8.0	485	6	25.1	(0.5)		
25% 50%	8.0 8.3	7.8 8.2	668 1024	6 6	25.1 25.2	(0.5) (0.5)		
100%	8.5	8.0	1718	6	25.1	(0.5)	274	138
			FINAL WATE	R CHEM	ISTRY			
	<u>pH</u>	DO	Cond.	<u>N</u>	<u>Temp.</u>	<u>(SD)</u>		
CONTROL	7.6	7.4	320	5	24.9	(0.5)		
12.5%	7.8	7.3	498	5	24.9	(0.4)		
25%	7.9	7.4	679	5	24.9	(0.4)		
50%	8.2	7.5	1036	5	24.9	(0.5)		
100%	8.4	7.4	1712	5	24.9	(0.5)		

^a standard deviation

Figure 115. Summary sheet of test chamber chemistry for *Ceriodaphnia dubia* toxicity test with Mill D reactor control.

BLSS Support 7-d Bioassay TEST ORGANISM: Ceriodaphnia dubia DATE: 02/21/11 – 02/27/11 SAMPLE ID: #25135 (D-RWBL-2)

	%SURVIVAL	<u>YOUNG/ADULT</u> REPLICATES					AVERAGE		
	<u></u>	<u>1</u>	2	<u>3</u>	4	<u>5</u>	REPRODUCT	ION SD	
CONTROL	100	28	27	26	29	32	28.4	2.3	
12.5%	100	33	30	29	24	32	29.6	3.5	
25%	100	25	32	32	32	34	31.0	3.5	
50%	100	12	7	13	1	25	11.6 S	8.9	
100%	100	0	0	0	0	2	0.4 S	0.9	
								Confidence Intervals	
Survival	NOEC = 100%	LOF	$\mathbf{C} = >10$	00%	ChV	f=>100%	IC25 = >100%		
Reproduction	NOEC = 25%	LOF	$\mathbf{C} = 509$	%	ChV	= 35.4%	IC25 = 35.2%	(32.5% - 41.3%)	

SD=standard deviation

S=significant difference from the control (Steel's Test $p \le 0.05$)

Bartlett's Test – B=16.8, Df=4 (Critical 1% value=13.28) = heterogeneous variance (Steel's Test)

Figure 116. Summary sheet for Ceriodaphnia dubia toxicity test with Mill D weak black liquor spike 2.

BLSS Support 7-d Bioassay TEST ORGANISM: Ceriodaphnia dubia DATE: 02/21/11 – 02/27/11 SAMPLE ID: #25135 (D-RWBL-2)

8.5

7.3

100%

INITIAL WATER CHEMISTRY

	<u>pH</u>	DO	Cond.	<u>N</u>	<u>Temp.</u>	<u>(SD)</u>	<u>Alkalinity</u>	<u>Hardness</u>			
CONTROL	7.5	8.0	303	5	25.0	(0.5)	55	80			
12.5% 25% 50% 100%	7.8 8.0 8.4 8.6	7.8 8.0 7.9 7.9	515 725 1131 1917	5 5 5 5	25.2 25.1 25.1 25.2	(0.5) (0.5) (0.5) (0.5)	316	141			
FINAL WATER CHEMISTRY											
	<u>pH</u>	DO	<u>Cond.</u>	<u>N</u>	<u>Temp.</u>	<u>(SD)</u>					
CONTROL	7.6	7.4	320	5	24.8	(0.4)					
12.5% 25% 50%	7.8 8.0 8.2	7.7 7.6 7.4	529 726 1131	5 5 5	25.0 24.9 24.9	(0.4) (0.5) (0.5)					

Figure 117. Summary sheet of test chamber chemistry for Ceriodaphnia dubia toxicity test with Mill D weak black liquor spike 2.

5

24.9

(0.4)

1904

BLSS Support 7-d Bioassay TEST ORGANISM: Ceriodaphnia dubia DATE: 02/21/11 – 02/27/11 SAMPLE ID: #25138 (D-RWBL-5)

	%SURVIVAL			JNG/AI LICAT			AVERAGE	
		<u>1</u>	2	<u>3</u>	<u>4</u>	<u>5</u>	REPRODUCT	<u>TON</u> <u>SD</u>
CONTROL	100	28	27	26	29	32	28.4	2.3
12.5%	100	36	32	30	28	28	30.8	3.3
25%	100	27	27	28	22	25	25.8	2.4
50%	100	6	10	6	4	9	7.0*	2.4
100%	100	0	0	0	0	0	0.0*	0.0
								Confidence Intervals
Survival	NOEC = 100%	LOF	$\mathbf{E}\mathbf{C} = >10$	00%	ChV	f=>100%	IC25 = >100%	
Reproduction	NOEC = 25%	LOF	EC = 509	%	ChV	= 35.4%	IC25 = 29.8%	(27.1% - 32.0%)

SD=standard deviation

*=significant difference from the control (Dunnett's Test p≤0.05)

Bartlett's Test – B=0.71, Df=3 (Critical 1% value=11.34) = homogeneous variance (Dunnett's Test)

Figure 118. Summary sheet for Ceriodaphnia dubia toxicity test with Mill D weak black liquor spike 5.

BLSS Support 7-d Bioassay TEST ORGANISM: Ceriodaphnia dubia DATE: 02/21/11 – 02/27/11 SAMPLE ID: #25138 (D-RWBL-5)

8.6

100%

7.3

INITIAL WATER CHEMISTRY

	<u>pH</u>	DO	Cond.	<u>N</u>	<u>Temp.</u>	<u>(SD)</u>	<u>Alkalinity</u>	Hardness
CONTROL	7.5	8.0	303	6	25.1	(0.5)	55	80
12.5% 25% 50% 100%	8.1 8.2 8.5 8.6	8.1 8.1 7.9 7.9	555 793 1274 2180	6 6 6	25.1 25.1 25.1 25.1	(0.5) (0.5) (0.5) (0.5)	378	138
		F	FINAL WATER (CHEM	IISTRY			
	<u>рН</u>	DO	Cond.	<u>N</u>	<u>Temp.</u>	<u>(SD)</u>		
CONTROL	7.6	7.4	320	5	24.9	(0.5)		
12.5% 25% 50%	7.9 8.1 8.3	7.5 7.4 7.4	561 793 1271	5 5 5	24.9 25.0 24.9	(0.4) (0.4) (0.4)		

Figure 119. Summary sheet of test chamber chemistry for Ceriodaphnia dubia toxicity test with Mill D weak black liquor spike 5.

2150

5

25.0

(0.4)

APPENDIX M

Shapiro-Wilk's Tests for Normality

Table 64. Results of Shapiro-Wilks test for normality showing test statistic (W) and p-values.WBL: weak black liquor; TSS: total suspended solids; BOD: biochemical oxygen demand; DCOD: dissolved chemical oxygen demand; DOC: dissolved organic carbon.

Parameter	W	p-value
WBL solids	0.9444	0.223
48-h EC50 M. galloprovincialis embryo-larval development	0.8046	0.000
7-d IC25 C. dubia reproduction	0.9150	0.140
7-d IC25 <i>C. dubia</i> survival	0.4859	0.000
рН	0.9396	0.119
Color	0.9599	0.367
Conductivity	0.8491	0.001
Turbidity	0.9029	0.016
TSS	0.9309	0.073
Polyphenols	0.9664	0.510
Hardness	0.8925	0.009
Alkalinity	0.9479	0.191
Salinity	0.6605	0.000
BOD	0.9231	0.053
DCOD	0.9761	0.766
DOC	0.9642	0.459
Campesterol	0.6494	0.000
Stigmastanol	0.8846	0.006
Beta-sitosterol	0.7155	0.000
Stigmasterol	0.8622	0.002
Pimaric acid	0.2686	0.000
Sandracopimaric acid	0.2631	0.000
Isopimaric acid	0.4073	0.000
Palustric acid	0.4674	0.000
Dehydroabietic acid	0.3731	0.000
Abietic acid	0.2970	0.000
Neoabietic acid	0.3794	0.000

APPENDIX N

Spearman's rho Correlation Analysis

Figure 120. Spearman's rho correlation analysis of effluent chemical parameters showing correlation coefficients. Data from all four mills were pooled together for correlation analysis. Bold numbers indicate significant correlations.TSS: total suspended solids; BOD: biochemical oxygen demand; DCOD: dissolved chemical oxygen demand; DOC: dissolved organic carbon.

					Spearman's	s rho						
Parameter	рН	Color (PCU)	Conductivity (µs/cm)	Turbidity (ntu)	TSS (mg/L)	Polyphenols (mg/L)	Hardness (mg/L)	Alkalinity (mg/L)	Salinity (ppt)	BOD (mg/L)	DCOD (mg/L)	DOC (mg/L)
рН												
Color (PCU)	0.361											
Conductivity (µs/cm)	0.597	0.600										
Turbidity (ntu)	-0.374	0.202	-0.548									
TSS (mg/L)	-0.393	0.135	-0.607	0.926								
Polyphenols (mg/L)	0.028	0.736	0.160	0.577	0.501							
Hardness (mg/L)	0.567	0.635	0.819	-0.261	-0.383	0.133						
Alkalinity (mg/L)	0.487	0.615	0.952	-0.464	-0.585	0.185	0.857					
Salinity (ppt)	0.061	-0.348	0.062	-0.285	-0.357	-0.242	-0.144	0.039				
BOD (mg/L)	-0.151	-0.056	0.188	-0.002	-0.190	-0.022	0.156	0.250	0.354			
DCOD (mg/L)	0.521	0.859	0.847	-0.109	-0.239	0.552	0.767	0.832	-0.074	0.184		
DOC (mg/L)	0.582	0.666	0.748	-0.114	-0.239	0.200	0.860	0.740	-0.112	0.088	0.815	
Campesterol (µg/L)	-0.619	-0.071	-0.578	0.603	0.687	0.252	-0.528	-0.496	-0.461	-0.313	-0.408	-0.436
Stigmastanol (µg/L)	0.254	0.723	0.313	0.227	0.282	0.468	0.392	0.276	-0.698	-0.365	0.454	0.437
Beta-sitosterol (µg/L)	-0.451	0.099	-0.333	0.518	0.582	0.402	-0.363	-0.241	-0.302	-0.306	-0.187	-0.268
Stigmasterol (µg/L)	-0.655	0.084	-0.512	0.650	0.660	0.338	-0.387	-0.372	-0.348	-0.150	-0.278	-0.341
Pimaric acid (µg/L)	0.345	0.111	0.622	-0.447	-0.572	-0.099	0.504	0.592	0.365	0.361	0.442	0.456
Sandracopimaric acid (µg/L)	-0.272	-0.063	0.235	-0.125	-0.272	-0.090	0.331	0.415	0.094	0.347	0.087	0.098
Isopimaric acid (µg/L)	0.201	0.507	0.452	0.179	-0.110	0.303	0.709	0.592	-0.029	0.426	0.643	0.703
Palustric acid (µg/L)	0.415	0.607	0.676	-0.051	-0.291	0.370	0.778	0.776	-0.009	0.248	0.781	0.750
Dehydroabietic acid (µg/L)	0.534	0.430	0.821	-0.352	-0.500	0.190	0.774	0.804	0.192	0.411	0.730	0.677
Abietic acid (µg/L)	0.489	0.618	0.731	-0.039	-0.278	0.374	0.822	0.805	0.045	0.352	0.810	0.783
Neoabietic acid (µg/L)	0.357	0.547	0.581	0.085	-0.170	0.394	0.707	0.692	0.075	0.366	0.745	0.716

					Spearman's	rho					
Parameter	Campesterol (µg/L)	Stigmastanol (µg/L)	Beta- sitosterol (µg/L)	Stigmasterol (µg/L)	Pimaric acid (µg/L)	Sandracopimaric acid (µg/L)	Isopimaric acid (µg/L)	Palustric acid (µg/L)	Dehydroabietic acid (µg/L)	Abietic acid (µg/L)	Neoabietic acid (µg/L)
рН											
Color (PCU)											
Conductivity (µs/cm)											
Turbidity (ntu)											
TSS (mg/L)											
Polyphenols (mg/L)											
Hardness (mg/L)											
Alkalinity (mg/L)											
Salinity (ppt)											
BOD (mg/L)											
DCOD (mg/L)											
DOC (mg/L)											
Campesterol (µg/L)											
Stigmastanol (µg/L)	0.279										
Beta-sitosterol (µg/L)	0.877	0.292									
Stigmasterol (µg/L)	0.888	0.290	0.798								
Pimaric acid (µg/L)	-0.580	-0.221	-0.323	-0.541							
Sandracopimaric acid (µg/L)	-0.081	-0.304	0.063	-0.016	0.482						
Isopimaric acid (µg/L)	-0.277	0.150	-0.127	-0.043	0.425	0.460					
Palustric acid (µg/L)	-0.385	0.191	-0.171	-0.224	0.610	0.463	0.867				
Dehydroabietic acid (µg/L)	-0.681	0.023	-0.394	-0.612	0.818	0.454	0.627	0.781			
Abietic acid (µg/L)	-0.465	0.211	-0.213	-0.306	0.656	0.454	0.831	0.909	0.868		
Neoabietic acid (µg/L)	-0.354	0.110	-0.088	-0.184	0.601	0.466	0.884	0.894	0.757	0.915	

Table 65. Spearman's rho correlation analysis of effluent chemical parameters showing p-values. Data from all four mills were pooled together for correlation analysis. Bold numbers indicate significant correlations.WBL: weak black liquor; TSS: total suspended solids; BOD: biochemical oxygen demand; DCOD: dissolved chemical oxygen demand; DOC: dissolved organic carbon.

					p-value	S						
Parameter	рН	Color (PCU)	Conductivity (µs/cm)	Turbidity (ntu)	TSS (mg/L)	Polyphenols (mg/L)	Hardness (mg/L)	Alkalinity (mg/L)	Salinity (ppt)	BOD (mg/L)	DCOD (mg/L)	DOC (mg/L)
рН												
Color (PCU)	0.065											
Conductivity (µs/cm)	0.001	0.001										
Turbidity (ntu)	0.055	0.311	0.004									
TSS (mg/L)	0.043	0.501	0.001	0.000								
Polyphenols (mg/L)	0.891	0.000	0.424	0.002	0.008							
Hardness (mg/L)	0.002	0.000	0.000	0.189	0.049	0.508						
Alkalinity (mg/L)	0.010	0.001	0.000	0.016	0.001	0.354	0.000					
Salinity (ppt)	0.763	0.076	0.759	0.149	0.068	0.223	0.472	0.845				
BOD (mg/L)	0.460	0.784	0.357	0.993	0.353	0.917	0.445	0.218	0.076			
DCOD (mg/L)	0.005	0.000	0.000	0.588	0.229	0.003	0.000	0.000	0.715	0.368		
DOC (mg/L)	0.001	0.000	0.000	0.570	0.230	0.317	0.000	0.000	0.580	0.671	0.000	
Campesterol (µg/L)	0.001	0.723	0.002	0.001	0.000	0.204	0.005	0.009	0.016	0.120	0.035	0.023
Stigmastanol (µg/L)	0.201	0.000	0.112	0.253	0.154	0.015	0.043	0.163	0.000	0.067	0.018	0.023
Beta-sitosterol (µg/L)	0.018	0.624	0.089	0.006	0.001	0.038	0.063	0.226	0.126	0.129	0.349	0.176
Stigmasterol (µg/L)	0.000	0.675	0.007	0.000	0.000	0.085	0.046	0.057	0.075	0.465	0.160	0.081
Pimaric acid (µg/L)	0.078	0.580	0.001	0.019	0.002	0.623	0.007	0.001	0.061	0.070	0.021	0.017
Sandracopimaric acid (µg/L)	0.169	0.754	0.238	0.534	0.170	0.655	0.092	0.031	0.643	0.083	0.665	0.626
Isopimaric acid (µg/L)	0.314	0.007	0.018	0.372	0.585	0.125	0.000	0.001	0.886	0.030	0.000	0.000
Palustric acid (µg/L)	0.031	0.001	0.000	0.799	0.141	0.058	0.000	0.000	0.964	0.221	0.000	0.000
Dehydroabietic acid (µg/L)	0.004	0.026	0.000	0.073	0.008	0.340	0.000	0.000	0.337	0.037	0.000	0.000
Abietic acid (µg/L)	0.010	0.001	0.000	0.847	0.161	0.056	0.000	0.000	0.825	0.078	0.000	0.000
Neoabietic acid (µg/L)	0.067	0.003	0.001	0.675	0.397	0.042	0.000	0.000	0.710	0.066	0.000	0.000

					p-values						
Parameter	Campesterol (µg/L)	Stigmastanol (µg/L)	Beta- sitosterol (µg/L)	Stigmasterol (µg/L)	Pimaric acid (µg/L)	Sandracopimaric acid (µg/L)		Palustric acid (µg/L)	Dehydroabietic acid (µg/L)	Abietic acid (µg/L)	Neoabietic acid (µg/L)
рН											
Color (PCU)											
Conductivity (µs/cm)											
Turbidity (ntu)											
TSS (mg/L)											
Polyphenols (mg/L)											
Hardness (mg/L)											
Alkalinity (mg/L)											
Salinity (ppt)											
BOD (mg/L)											
DCOD (mg/L)											
DOC (mg/L)											
Campesterol (µg/L)											
Stigmastanol (µg/L)	0.158										
Beta-sitosterol (µg/L)	0.000	0.139									
Stigmasterol (µg/L)	0.000	0.142	0.000								
Pimaric acid (µg/L)	0.002	0.267	0.101	0.004							
Sandracopimaric acid (µg/L)	0.689	0.124	0.754	0.936	0.011						
Isopimaric acid (µg/L)	0.162	0.455	0.529	0.831	0.027	0.016					
Palustric acid (µg/L)	0.047	0.341	0.394	0.262	0.001	0.015	0.000				
Dehydroabietic acid (µg/L)	0.000	0.909	0.042	0.001	0.000	0.017	0.000	0.000			
Abietic acid (µg/L)	0.015	0.290	0.286	0.120	0.000	0.017	0.000	0.000	0.000		
Neoabietic acid (µg/L)	0.070	0.585	0.662	0.358	0.001	0.014	0.000	0.000	0.000	0.000	

APPENDIX O

Kmeans Clustering Cluster Means

Table 66. Kmeans cluster means with four clusters. TSS: total suspended solids; BOD: biochemical oxygen demand; DCOD: dissolved chemical oxygen demand; DOC: dissolved organic carbon.

Kmeans Run	Chemical Parameter	Cluster 1	Cluster 2	Cluster 3	Cluster 4
Run 1	pН	8.556667	8.275	7.963333	8.372857
	Color	1428.333	1328.25	669	581.5714
	Conductivity	3740	1858	1115.333	1856.571
	Turbidity	21.01667	73.45	68.5	34.67143
	TSS	27.8	61.1	86.31667	34.11429
	Polyphenols	44.60083	63.26875	43.84817	30.41714
	Hardness	203.1667	147	43.53333	138.7143
	Salinity	1.983333	2	2	3.142857
	BOD	10.31667	13.85	8.725	16.82857
	DCOD	567.3333	519.25	224.1667	356.2857
	DOC	182.6667	135.25	57.5	118.4286
	Campesterol	3.678333	9.5425	50.46333	3.321429
	Stigmastanol	80.83333	50.665	32.44167	13.80429
	Beta-sitosterol	73.7	38.38	141.0483	17.66857
	Stigmasterol	7.34	17.22	26.92833	6.311429
	Pimaric acid	3.166667	0.92	0.92	2.588571
	Sandracopimaric acid	0.94	0.94	0.94	0.94
	Isopimaric acid	3.2	5.395	1.12	2.6
	Palustric acid	3.175	2.895	0.99	1.771429
	Dehydroabietic acid	12.30667	5.66	2.701667	8.661429
	Abietic acid	14.38667	11.27	3.65	10.66429
	Neoabietic acid	2.015	2.02	0.99	1.577143

Kmeans Run	Chemical Parameter	Cluster 1	Cluster 2	Cluster 3	Cluster 4
Run 2	рН	8.556667	7.963333	8.372857	8.275
	Color	1428.333	669	581.5714	1328.25
	Conductivity	3740	1115.333	1856.571	1858
	Turbidity	21.01667	68.5	34.67143	73.45
	TSS	27.8	86.31667	34.11429	61.1
	Polyphenols	44.60083	43.84817	30.41714	63.26875
	Hardness	203.1667	43.53333	138.7143	147
	Salinity	1.983333	2	3.142857	2
	BOD	10.31667	8.725	16.82857	13.85
	DCOD	567.3333	224.1667	356.2857	519.25
	DOC	182.6667	57.5	118.4286	135.25
	Campesterol	3.678333	50.46333	3.321429	9.5425
	Stigmastanol	80.83333	32.44167	13.80429	50.665
	Beta-sitosterol	73.7	141.0483	17.66857	38.38
	Stigmasterol	7.34	26.92833	6.311429	17.22
	Pimaric acid	3.166667	0.92	2.588571	0.92
	Sandracopimaric acid	0.94	0.94	0.94	0.94
	Isopimaric acid	3.2	1.12	2.6	5.395
	Palustric acid	3.175	0.99	1.771429	2.895
	Dehydroabietic acid	12.30667	2.701667	8.661429	5.66
	Abietic acid	14.38667	3.65	10.66429	11.27
	Neoabietic acid	2.015	0.99	1.577143	2.02
Run 3	рН	8.372857	7.963333	8.275	8.556667
	Color	581.5714	669	1328.25	1428.333
	Conductivity	1856.571	1115.333	1858	3740
	Turbidity	34.67143	68.5	73.45	21.01667
	TSS	34.11429	86.31667	61.1	27.8
	Polyphenols	30.41714	43.84817	63.26875	44.60083
	Hardness	138.7143	43.53333	147	203.1667
	Salinity	3.142857	2	2	1.983333
	BOD	16.82857	8.725	13.85	10.31667
	DCOD	356.2857	224.1667	519.25	567.3333
	DOC	118.4286	57.5	135.25	182.6667
	Campesterol	3.321429	50.46333	9.5425	3.678333
	Stigmastanol	13.80429	32.44167	50.665	80.83333
	Beta-sitosterol	17.66857	141.0483	38.38	73.7
	Stigmasterol	6.311429	26.92833	17.22	7.34
	Pimaric acid	2.588571	0.92	0.92	3.166667
	Sandracopimaric acid	0.94	0.94	0.94	0.94
	Isopimaric acid	2.6	1.12	5.395	3.2
	Palustric acid	1.771429	0.99	2.895	3.175
	Dehydroabietic acid	8.661429	2.701667	5.66	12.30667
	Abietic acid	10.66429	3.65	11.27	14.38667
	Neoabietic acid	1.577143	0.99	2.02	2.015

(means Run	Chemical Parameter	Cluster 1	Cluster 2	Cluster 3	Cluster 4
Run 4	рН	8.372857	8.275	7.963333	8.556667
	Color	581.5714	1328.25	669	1428.333
	Conductivity	1856.571	1858	1115.333	3740
	Turbidity	34.67143	73.45	68.5	21.01667
	TSS	34.11429	61.1	86.31667	27.8
	Polyphenols	30.41714	63.26875	43.84817	44.60083
	Hardness	138.7143	147	43.53333	203.1667
	Salinity	3.142857	2	2	1.983333
	BOD	16.82857	13.85	8.725	10.31667
	DCOD	356.2857	519.25	224.1667	567.3333
	DOC	118.4286	135.25	57.5	182.6667
	Campesterol	3.321429	9.5425	50.46333	3.678333
	Stigmastanol	13.80429	50.665	32.44167	80.83333
	Beta-sitosterol	17.66857	38.38	141.0483	73.7
	Stigmasterol	6.311429	17.22	26.92833	7.34
	Pimaric acid	2.588571	0.92	0.92	3.166667
	Sandracopimaric acid	0.94	0.94	0.94	0.94
	Isopimaric acid	2.6	5.395	1.12	3.2
	Palustric acid	1.771429	2.895	0.99	3.175
	Dehydroabietic acid	8.661429	5.66	2.701667	12.30667
	Abietic acid	10.66429	11.27	3.65	14.38667
	Neoabietic acid	1.577143	2.02	0.99	2.015
Run 5	рН	8.15	8.306667	8.49	8.623333
	Color	604.5455	1124.667	1197	1659.667
	Conductivity	1410	1935	3641.667	3838.333
	Turbidity	54.31818	58.33333	14.43333	27.6
	TSS	62.90909	51.51667	22.4	33.2
	Polyphenols	35.11082	57.14417	33.05	56.15167
	Hardness	88.01818	142	202.3333	204
	Salinity	2.363636	2.666667	1.933333	2.033333
	BOD	11.71364	16.11667	11.13333	9.5
	DCOD	259.6364	510	510	624.6667
	DOC	85.18182	129.6667	164.6667	200.6667
	Campesterol	29.33636	6.916667	2.41	4.946667
	Stigmastanol	25.35455	35.84	76.83333	84.83333
	Beta-sitosterol	85.84727	29.86167	13.26667	134.1333
	Stigmasterol	18.16636	12.46667	6.64	8.04
	Pimaric acid	1.42	1.95	2.113333	4.22
	Sandracopimaric acid	0.94	0.94	0.94	0.94
	Isopimaric acid	1.917273	4.235	2.166667	4.233333
	Palustric acid	1.299091	2.605	2.523333	3.826667
	Dehydroabietic acid	4.563636	8.213333	8.406667	16.20667
	Abietic acid	5.828182	12.92	10.42667	18.34667
	Neoabietic acid	1.179091	2.015	1.316667	2.713333

Kmeans Run	Chemical Parameter	Cluster 1	Cluster 2	Cluster 3
Run 1	рН	8.556667	8.337273	7.963333
	Color	1428.333	853.0909	669
	Conductivity	3740	1857.091	1115.333
	Turbidity	21.01667	48.77273	68.5
	TSS	27.8	43.92727	86.31667
	Polyphenols	44.60083	42.36318	43.84817
	Hardness	203.1667	141.7273	43.53333
	Salinity	1.983333	2.727273	2
	BOD	10.31667	15.74545	8.725
	DCOD	567.3333	415.5455	224.1667
	DOC	182.6667	124.5455	57.5
	Campesterol	3.678333	5.583636	50.46333
	Stigmastanol	80.83333	27.20818	32.44167
	Beta-sitosterol	73.7	25.2	141.0483
	Stigmasterol	7.34	10.27818	26.92833
	Pimaric acid	3.166667	1.981818	0.92
	Sandracopimaric acid	0.94	0.94	0.94
	Isopimaric acid	3.2	3.616364	1.12
	Palustric acid	3.175	2.18	0.99
	Dehydroabietic acid	12.30667	7.57	2.701667
	Abietic acid	14.38667	10.88455	3.65
	Neoabietic acid	2.015	1.738182	0.99
Run 2	рН	7.963333	8.556667	8.337273
	Color	669	1428.333	853.0909
	Conductivity	1115.333	3740	1857.091
	Turbidity	68.5	21.01667	48.77273
	TSS	86.31667	27.8	43.92727
	Polyphenols	43.84817	44.60083	42.36318
	Hardness	43.53333	203.1667	141.7273
	Salinity	2	1.983333	2.727273
	BOD	8.725	10.31667	15.74545
	DCOD	224.1667	567.3333	415.5455
	DOC	57.5	182.6667	124.5455
	Campesterol	50.46333	3.678333	5.583636
	Stigmastanol	32.44167	80.83333	27.20818
	Beta-sitosterol	141.0483	73.7	25.2
	Stigmasterol	26.92833	7.34	10.27818
	Pimaric acid	0.92	3.166667	1.981818
	Sandracopimaric acid	0.92	0.94	0.94
	Isopimaric acid	1.12	3.2	3.616364
	Palustric acid	0.99	3.175	2.18
	Dehydroabietic acid	2.701667	12.30667	7.57
	Abietic acid	3.65	12.30667	10.88455
	Neoabietic acid			
	inecapietic acid	0.99	2.015	1.738182

Table 67. Kmeans cluster means with three clusters. TSS: total suspended solids; BOD: biochemical oxygen demand; DCOD: dissolved chemical oxygen demand; DOC: dissolved organic carbon.

Kmeans Run	Chemical Parameter	Cluster 1	Cluster 2	Cluster 3	
Run 3	рН	8.15	8.306667	8.556667	
	Color	604.5455	1124.667	1428.333	
	Conductivity	1410	1935	3740	
	Turbidity	54.31818	58.33333	21.01667	
	TSS	62.90909	51.51667	27.8	
	Polyphenols	35.11082	57.14417	44.60083	
	Hardness	88.01818	142	203.1667	
	Salinity	2.363636	2.666667	1.983333	
	BOD	11.71364	16.11667	10.31667	
	DCOD	259.6364	510	567.3333	
	DOC	85.18182	129.6667	182.6667	
	Campesterol	29.33636	6.916667	3.678333	
	Stigmastanol	25.35455	35.84	80.83333	
	Beta-sitosterol	85.84727	29.86167	73.7	
	Stigmasterol	18.16636	12.46667	7.34	
	Pimaric acid	1.42	1.95	3.166667	
	Sandracopimaric acid	0.94	0.94	0.94	
	Isopimaric acid	1.917273	4.235	3.2	
	Palustric acid	1.299091	2.605	3.175	
	Dehydroabietic acid	4.563636	8.213333	12.30667	
	Abietic acid	5.828182	12.92	14.38667	
	Neoabietic acid	1.179091	2.015	2.015	
Run 4	рН	8.556667	8.15	8.306667	
	Color	1428.333	604.5455	1124.667	
	Conductivity	3740	1410	1935	
	Turbidity	21.01667	54.31818	58.33333	
	TSS	27.8	62.90909	51.51667	
	Polyphenols	44.60083	35.11082	57.14417	
	Hardness	203.1667	88.01818	142	
	Salinity	1.983333	2.363636	2.666667	
	BOD	10.31667	11.71364	16.11667	
	DCOD	567.3333	259.6364	510	
	DOC	182.6667	85.18182	129.6667	
	Campesterol	3.678333	29.33636	6.916667	
	Stigmastanol	80.83333	25.35455	35.84	
	Beta-sitosterol	73.7	85.84727	29.86167	
	Stigmasterol	7.34	18.16636	12.46667	
	Pimaric acid	3.166667	1.42	1.95	
	Sandracopimaric acid	0.94	0.94	0.94	
	Isopimaric acid	3.2	1.917273	4.235	
	Palustric acid	3.175	1.299091	2.605	
	Dehydroabietic acid	12.30667	4.563636	8.213333	
	Abietic acid	14.38667	5.828182	12.92	

Kmeans Run	Chemical Parameter	Cluster 1	Cluster 2	Cluster
Run 5	рН	8.49	8.623333	8.20529
	Color	1197	1659.667	788.117
	Conductivity	3641.667	3838.333	1595.29
	Turbidity	14.43333	27.6	55.7352
	TSS	22.4	33.2	58.8882
	Polyphenols	33.05	56.15167	42.8872
	Hardness	202.3333	204	107.070
	Salinity	1.933333	2.033333	2.47058
	BOD	11.13333	9.5	13.2676
	DCOD	510	624.6667	348
	DOC	164.6667	200.6667	100.882
	Campesterol	2.41	4.946667	21.4235
	Stigmastanol	76.83333	84.83333	29.0552
	Beta-sitosterol	13.26667	134.1333	66.0876
	Stigmasterol	6.64	8.04	16.1547
	Pimaric acid	2.113333	4.22	1.60705
	Sandracopimaric acid	0.94	0.94	0.94
	Isopimaric acid	2.166667	4.233333	2.73529
	Palustric acid	2.523333	3.826667	1.76
	Dehydroabietic acid	8.406667	16.20667	5.85176
	Abietic acid	10.42667	18.34667	8.33117
	Neoabietic acid	1.316667	2.713333	1.47411

Kmeans Run	Chemical Parameter	Cluster 1	Cluster 2
Run 1	рН	8.205294	8.556667
	Color	788.1176	1428.333
	Conductivity	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3740
	Turbidity	55.73529	21.01667
	TSS	58.88824	27.8
	Polyphenols	42.88729	44.60083
	Hardness	107.0706	203.1667
	Salinity	2.470588	1.983333
	BOD	13.26765	10.31667
	DCOD	348	567.3333
	DOC	100.8824	182.6667
	Campesterol	21.42353	3.678333
	Stigmastanol	29.05529	80.83333
	Beta-sitosterol	erol 66.08765 73.	
	Stigmasterol		
	Pimaric acid	1.607059	3.166667
	Sandracopimaric acid	0.94	0.94
	Isopimaric acid	2.735294	3.2
	Palustric acid	1.76	3.175
	Dehydroabietic acid	5.851765	12.30667
	Abietic acid	8.331176	14.38667
	Neoabietic acid	1.474118	2.015
Run 2	рН	8.205294	2.015 8.556667
	Color	788.1176	1428.333
	Conductivity	1595.294	3740
	Turbidity	55.73529	21.01667
	TSS	58.88824	27.8
	Polyphenols		44.60083
	Hardness		203.1667
	Salinity		1.983333
	BOD		10.31667
	DCOD		567.3333
	DOC	100.8824	182.6667
	Campesterol		3.678333
	Stigmastanol		80.83333
	Beta-sitosterol		73.7
	Stigmasterol		7.34
	Pimaric acid		3.166667
	Sandracopimaric acid		0.94
	Isopimaric acid		3.2
	Palustric acid		3.175
	Dehydroabietic acid		12.30667
	Abietic acid	8.331176	14.38667
	Neoabietic acid	1.474118	2.015

Table 68. Kmeans cluster means with two clusters. TSS: total suspended solids; BOD: biochemical oxygen demand; DCOD: dissolved chemical oxygen demand; DOC: dissolved organic carbon.

Kmeans Run	Chemical Parameter	Cluster 1	Cluster 2	
Run 3	рН	8.205294	8.556667	
	Color	788.1176	1428.333	
	Conductivity	1595.294	3740	
	pH Color Conductivity Turbidity TSS Polyphenols Hardness Salinity BOD DCOD DOC Campesterol Stigmastanol Beta-sitosterol Stigmasterol Pimaric acid Sandracopimaric acid Isopimaric acid Sandracopimaric acid Isopimaric acid Dehydroabietic acid Dehydroabietic acid Abietic acid Neoabietic acid Neoabietic acid Meoabietic acid Salinity Turbidity TSS Polyphenols Hardness Salinity BOD DCOD DOC Campesterol Stigmastanol Beta-sitosterol Stigmasterol	55.73529	21.01667	
	TSS	Turbidity 55.73529 TSS 58.88824 Polyphenols 42.88729 Hardness 107.0706 Salinity 2.470588 BOD 13.26765 DCOD 348 DOC 100.8824 Campesterol 21.42353 Stigmastanol 29.05529 Beta-sitosterol 66.08765 Stigmasterol 16.15471 Pimaric acid 0.94 Isopimaric acid 2.735294 Palustric acid 5.851765 Abietic acid 5.851765 Abietic acid 5.851765 Abietic acid 1.474118 pH 8.556667 Color 1428.333 Conductivity 3740 Turbidity 21.01667 TSS 27.8 Polyphenols 44.60083 Hardness 203.1667 Salinity 1.983333	27.8	
	Polyphenols	42.88729	44.60083	
	Hardness	107.0706	203.1667	
	Salinity	2.470588	1.983333	
	BOD	13.26765	10.31667	
	DCOD	348	567.3333	
	DOC	100.8824	182.6667	
	Campesterol			
		29.05529	80.83333	
	-		73.7	
	Stigmasterol	16.15471	7.34	
	Pimaric acid	1.607059	3.166667	
	Sandracopimaric acid	0.94	0.94	
	Isopimaric acid	2.735294	3.2	
	Palustric acid	1.76	3.175	
	Dehydroabietic acid	5.851765	12.30667	
	Abietic acid	8.331176	14.38667	
	Neoabietic acid	1.474118	2.015	
Run 4	рН	8.556667	8.205294	
	Color	1428.333	788.1176	
	Conductivity	3740	1595.294	
	Turbidity	21.01667	55.73529	
	TSS	27.8	58.88824	
	Polyphenols	44.60083	42.88729	
	Hardness	203.1667	107.0706	
	Salinity	1.983333	2.470588	
	BOD	10.31667	13.26765	
	DCOD	567.3333	348	
	DOC	182.6667	100.8824	
	Campesterol	3.678333	21.42353	
	Stigmastanol	80.83333	29.05529	
	Beta-sitosterol	73.7	66.08765	
	Stigmasterol	7.34	16.15471	
	Pimaric acid	3.166667	1.607059	
	Sandracopimaric acid	0.94	0.94	
	Isopimaric acid	3.2	2.735294	
	Palustric acid	3.175	1.76	
	Dehydroabietic acid	12.30667	5.851765	
	Abietic acid	14.38667	8.331176	
	Neoabietic acid	2.015	1.474118	

Kmeans Run	Chemical Parameter	Cluster 1	Cluster 2
Run 5	рН	8.556667	8.205294
	Color	1428.333	788.1176
	Conductivity	3740	1595.294
	Turbidity	21.01667	55.73529
	TSS	27.8	58.88824
	Polyphenols	44.60083	42.88729
	Hardness	203.1667	107.0706
	Salinity	1.983333	2.470588
	BOD	10.31667	13.26765
	DCOD	DCOD 567.3333 DOC 182.6667 Campesterol 3.678333 Stigmastanol 80.83333	
	DOC		
	Campesterol		
	Stigmastanol		
	Beta-sitosterol	73.7	66.08765
	Stigmasterol	7.34	16.15471
	Pimaric acid	3.166667	1.607059
	Sandracopimaric acid	0.94	0.94
	Isopimaric acid	3.2	2.735294
	Palustric acid	3.175	1.76
	Dehydroabietic acid	12.30667	5.851765
	Abietic acid	14.38667	8.331176
	Neoabietic acid	2.015	1.474118

APPENDIX P

Riffle Clustering Proportional Reduction in Error Scores

Table 69. Proportional reduction in error scores for Riffle runs with four clusters. TSS: total suspended solids; BOD: biochemical oxygen demand; DCOD: dissolved chemical oxygen demand; DOC: dissolved organic carbon.

Chemical Parameter	Run 1	Run 2	Run 3	Run 4	Run 5
рН	0.651261	0.764706	0.764706	0.716387	0.588235
Color	0.218487	0.323529	0.323529	0.254202	0.294118
Conductivity	0.810924	0.705882	0.705882	0.810924	0.882353
Turbidity	0.355042	0.470588	0.470588	0.289916	0.323529
TSS	0.535714	0.514706	0.514706	0.46875	0.454044
Polyphenols	0.159664	0.235294	0.235294	0.159664	0.117647
Hardness	0.810924	0.823529	0.823529	0.781513	0.882353
Salinity	0.198413	0.343137	0.343137	0.234127	0.372549
BOD	0.355042	0.588235	0.588235	0.355042	0.588235
DCOD	0.420168	0.411765	0.411765	0.420168	0.382353
DOC	0.485294	0.470588	0.470588	0.55042	0.470588
Campesterol	0.420168	0.529412	0.529412	0.485294	0.588235
Stigmastanol	0.319328	0.441177	0.441177	0.384454	0.5
Beta-sitosterol	0.420168	0.470588	0.470588	0.384454	0.411765
Stigmasterol	0.485294	0.647059	0.647059	0.485294	0.588235
Pimaric acid	0.36039	0.387701	0.387701	0.314935	0.342246
Sandracopimaric acid	NaN	NaN	NaN	NaN	NaN
Isopimaric acid	0.414286	0.498039	0.498039	0.380952	0.560784
Palustric acid	0.5	0.44958	0.44958	0.464286	0.413866
Dehydroabietic acid	0.745798	0.823529	0.823529	0.710084	0.764706
Abietic acid	0.55042	0.705882	0.705882	0.586135	0.588235
Neoabietic acid	0.464286	0.579832	0.579832	0.5	0.478992

Chemical Parameter	Run 1	Run 2	Run 3	Run 4	Run 5
рН	0.447619	0.6	0.266667	0.8	0.6
Color	0.654762	0.4	0.333333	0.333333	0.4
Conductivity	0.345238	0.533333	0.333333	0.6	0.533333
Turbidity	0	0.066667	0.4	0.266667	0.066667
TSS	0.240476	0.266667	0.533333	0.333333	0.266667
Polyphenols	0.207143	0.2	0.2	0.066667	0.2
Hardness	0.483333	0.466667	0.266667	0.533333	0.466667
Salinity	0.035714	0.066667	0.566667	0.066667	0.066667
BOD	0.135714	0.266667	0.466667	0.266667	0.266667
DCOD	0.654762	0.8	0.266667	0.6	0.8
DOC	0.72381	0.866667	0.466667	0.6	0.866667
Campesterol	0.447619	0.4	0.8	0.4	0.4
Stigmastanol	0.380952	0.4	0.266667	0.4	0.4
Beta-sitosterol	0.240476	0.2	0.733333	0.4	0.2
Stigmasterol	0.171429	0.133333	0.8	0.233333	0.133333
Pimaric acid	0.152597	0.348485	0.336364	0.393939	0.348485
Sandracopimaric acid	NaN	NaN	NaN	NaN	NaN
Isopimaric acid	0.478022	0.497436	0.353846	0.784615	0.497436
Palustric acid	0.777473	0.497436	0.248718	0.497436	0.497436
Dehydroabietic acid	0.45	0.533333	0.6	0.733333	0.533333
Abietic acid	0.72381	0.733333	0.266667	0.666667	0.733333
Neoabietic acid	0.478022	0.425641	0.248718	0.497436	0.425641

Table 70. Proportional reduction in error scores for Riffle runs with three clusters. TSS: total suspended solids; BOD: biochemical oxygen demand; DCOD: dissolved chemical oxygen demand; DOC: dissolved organic carbon.

Chemical Parameter	Run 1	Run 2	Run 3	Run 4	Run 5
рН	0.454546	0.181818	0.454546	0.181818	0.727273
Color	0.454546	0.545455	0.454546	0.545455	0
Conductivity	1	0.363636	1	0.545455	0.545455
Turbidity	0.545455	0	0.545455	0.090909	1
TSS	0.727273	0.090909	0.727273	0.272727	0.818182
Polyphenols	0.090909	0.363636	0.090909	0.181818	0.272727
Hardness	0.363636	0.818182	0.363636	0.818182	0
Salinity	0.045455	0.045455	0.045455	0.045455	0.181818
BOD	0.090909	0.181818	0.090909	0.181818	0
DCOD	0.818182	0.545455	0.818182	0.727273	0.363636
DOC	0.636364	0.727273	0.636364	0.909091	0.181818
Campesterol	0.545455	0.090909	0.545455	0.272727	0.636364
Stigmastanol	0.272727	0.363636	0.272727	0.363636	0
Beta-sitosterol	0.363636	0.090909	0.363636	0.272727	0.454546
Stigmasterol	0.545455	0	0.545455	0.090909	1
Pimaric acid	0.59596	0.090909	0.59596	0.090909	0.69697
Sandracopimaric acid	NaN	NaN	NaN	NaN	NaN
Isopimaric acid	0.140909	0.809091	0.140909	0.618182	0.140909
Palustric acid	0.522727	0.809091	0.522727	0.618182	0.045455
Dehydroabietic acid	0.818182	0.181818	0.818182	0.363636	0.727273
Abietic acid	0.454546	0.909091	0.454546	0.909091	0
Neoabietic acid	0.191919	0.69697	0.191919	0.49495	0.045455

Table 71. Proportional reduction in error scores for Riffle runs with two clusters. TSS: total suspended solids; BOD: biochemical oxygen demand; DCOD: dissolved chemical oxygen demand; DOC: dissolved organic carbon.

APPENDIX Q

Principal Component Analysis Variable Loadings

Table 72. Principal component analysis variable loadings for first 10 principal components for nonrandom data file. TSS: total suspended solids; BOD: biochemical oxygen demand; DCOD: dissolved chemical oxygen demand; DOC: dissolved organic carbon.

Chemical Parameter	Comp.1	Comp.2	Comp.3	Comp.4	Comp.5	Comp.6	Comp.7	Comp.8	Comp.9	Comp.10
рН	-0.268	-0.154	-0.136			-0.189	0.228	-0.165	0.169	0.635
Color	-0.207	0.318			-0.204	0.243				0.132
Conductivity	-0.27		-0.287		-0.177			0.316		
Turbidity	0.153	0.312	0.301	-0.169		-0.215		0.198		0.234
TSS	0.206	0.289	0.183					0.448	-0.263	0.228
Polyphenols		0.374	0.237	0.144	-0.232	0.298	-0.207	-0.323	-0.151	0.112
Hardness	-0.287		-0.13	-0.155	-0.199	-0.174		0.178	0.251	-0.251
Salinity		-0.305	0.337	0.277		-0.249	-0.653		0.231	
BOD		-0.154	0.449		-0.644	-0.277	0.405			
DCOD	-0.276	0.17			-0.252	0.13	-0.264	-0.132		
DOC	-0.279			-0.183		-0.176	-0.199	0.367	-0.376	
Campesterol	0.233	0.223		0.325			0.104	0.216	0.218	-0.123
Stigmastanol	-0.124	0.278	-0.395		-0.19	-0.37				
Beta-sitosterol	0.113	0.247	-0.239	0.436		-0.464		-0.302	-0.172	0.143
Stigmasterol	0.213	0.302		0.124			0.143		0.536	-0.164
Pimaric acid	-0.237			0.427	0.292			0.272		
Isopimaric acid	-0.174	0.227	0.21	-0.39	0.203	-0.321		-0.182	0.157	-0.281
Palustric acid	-0.265	0.17			0.225	0.244			0.394	0.301
Dehydroabietic acid	-0.277			0.333	0.103	0.1		0.107	-0.167	-0.226
Abietic acid	-0.275		0.214	0.166	0.116		0.137			
Neoabietic acid	-0.249	0.145	0.239		0.281		0.346	-0.235	-0.189	-0.316

Data file	Variable	Comp.1	Comp.2	Comp.3	Comp.4	Comp.5	Comp.6	Comp.7	Comp.8	Comp.9	Comp.10
Nonrandom	Standard deviation	3.186489	2.191155	1.484539	1.238598	0.815213	0.704011	0.540579	0.539932	0.405287	0.375475
	Proportion of Variance	0.48351	0.228627	0.104946	0.073054	0.031646	0.023602	0.013915	0.013882	0.007822	0.006713
	Cumulative proportion	0.48351	0.712137	0.817082	0.890136	0.921782	0.945384	0.959299	0.973181	0.981003	0.987716
Random 1	Standard deviation	1.825376	1.685571	1.432647	1.367597	1.299224	1.178038	1.117576	1.076661	0.982413	0.963359
	Proportion of Variance	0.158667	0.135293	0.097737	0.089063	0.08038	0.066084	0.059475	0.0552	0.045959	0.044193
	Cumulative proportion	0.158667	0.293959	0.391696	0.480759	0.561139	0.627224	0.686699	0.741899	0.787858	0.832051
Random 2	Standard deviation	1.761795	1.694014	1.517425	1.505572	1.396044	1.251766	1.2082	1.127558	0.982293	0.841374
	Proportion of Variance	0.147806	0.136652	0.109647	0.10794	0.092807	0.074615	0.069512	0.060542	0.045948	0.03371
	Cumulative proportion	0.147806	0.284457	0.394104	0.502044	0.594851	0.669466	0.738978	0.79952	0.845468	0.879178
Random 3	Standard deviation	1.766231	1.706286	1.560464	1.490701	1.442962	1.233601	1.143874	1.035995	0.947091	0.845782
	Proportion of Variance	0.148551	0.138639	0.115955	0.105819	0.09915	0.072465	0.062307	0.051109	0.042713	0.034064
	Cumulative proportion	0.148551	0.28719	0.403144	0.508963	0.608113	0.680578	0.742885	0.793994	0.836707	0.870771

Table 73. Proportional and cumulative variance for first 10 principal components using simulated effluent chemistry data for nonrandom and random data files.

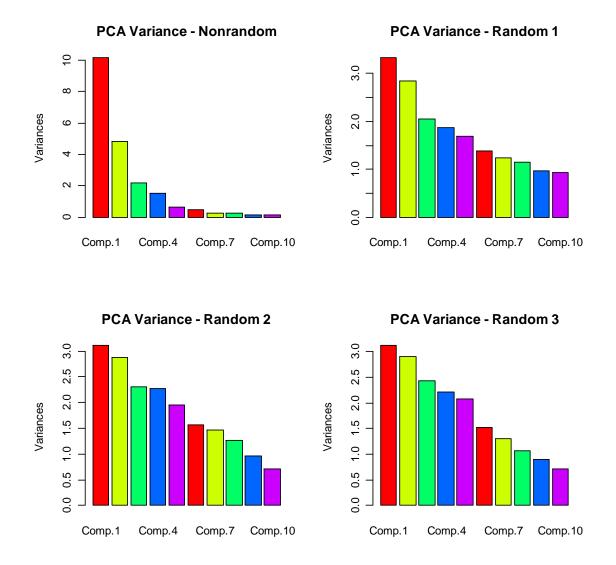
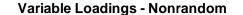
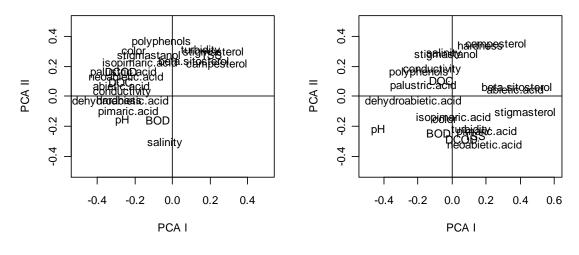




Figure 121. Principal component analysis (PCA) variance of simulated effluent samples with respect to principal component for nonrandom and random data files.

Variable Loadings - Random 1

Variable Loadings - Random 2

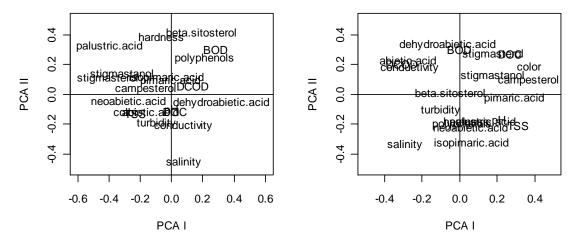


Figure 122. Principal component analysis (PCA) variable loading of simulated effluent samples for first two principal components for nonrandom and random data files.

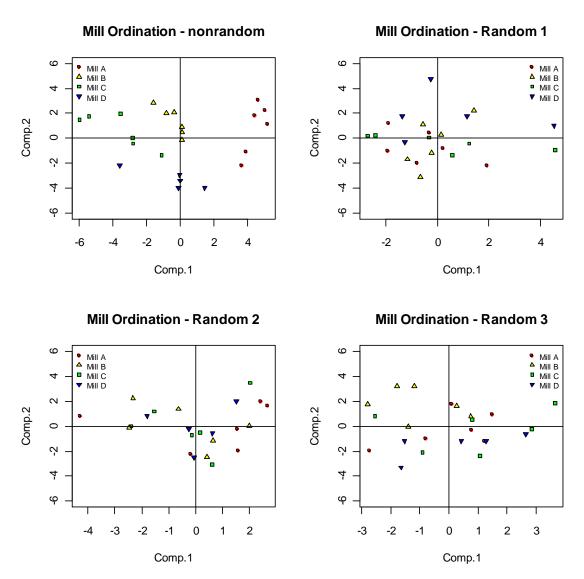


Figure 123. Principal component analysis (PCA) ordination of simulated effluent samples for nonrandom and random data files. Samples coded to denote mill.