Connectivity of Random k-Nearest-Neighbor Graphs

Paul Balister
University of Memphis

Béla Bollobás
University of Memphis
Amites Sarkar
Western Washington University, amites.sarkar@wwu.edu
Mark Walters
Trinity College

Follow this and additional works at: https://cedar.wwu.edu/math_facpubs
Part of the Mathematics Commons

Recommended Citation

Balister, Paul; Bollobás, Béla; Sarkar, Amites; and Walters, Mark, "Connectivity of Random k-Nearest-Neighbor Graphs" (2005).
Mathematics. 83.
https://cedar.wwu.edu/math_facpubs/83

Connectivity of random k-nearest neighbour graphs

Paul Balister** Béla Bollobás ${ }^{\star \ddagger}$
Mark Walters ${ }^{* \delta}$
Amites Sarkar ${ }^{\dagger \dagger}$

October 25, 2006

Abstract

Let \mathcal{P} be a Poisson process of intensity one in a square S_{n} of area n. We construct a random geometric graph $G_{n, k}$ by joining each point of \mathcal{P} to its $k=k(n)$ nearest neighbours. Recently, Xue and Kumar proved that if $k \leq 0.074 \log n$ then the probability that $G_{n, k}$ is connected tends to zero as $n \rightarrow \infty$, while if $k \geq 5.1774 \log n$ then the probability that $G_{n, k}$ is connected tends to one as $n \rightarrow \infty$. They conjectured that the threshold for connectivity is $k=(1+o(1)) \log n$. In this paper we improve these lower and upper bounds to $0.3043 \log n$ and $0.5139 \log n$ respectively, disproving this conjecture. We also establish lower and upper bounds of $0.7209 \log n$ and $0.9967 \log n$ for the directed version of this problem.

A related question concerns coverage. With $G_{n, k}$ as above, surround each vertex by the smallest (closed) disc containing its k nearest neighbours. We prove that if $k \leq 0.7209 \log n$ then the probability that these discs cover S_{n} tends to zero as $n \rightarrow \infty$, while if $k \geq 0.9967 \log n$ then the probability that the discs cover S_{n} tends to one as $n \rightarrow \infty$.

1 Introduction

Suppose n radio transceivers are scattered at random over a desert. Each radio is able to establish a direct two-way connection with the k radios nearest to it. In addition,

[^0]messages can be routed via intermediate radios, so that a message can be sent indirectly from radio S to radio T through a series of radios $S=S_{1}, S_{2}, \ldots, S_{n}=T$, each one having a direct connection to its predecessor. How large does k have to be to ensure that any two radios can communicate (directly or indirectly) with each other?

To make this precise, we define a random geometric graph $G(A, \lambda, k)$ as follows. Let \mathcal{P} be a Poisson process of intensity λ in a region A, and join every point of \mathcal{P} to its k nearest neighbours. We would like to know the values of k for which the resulting graph $G(A, \lambda, k)$ is likely to be connected. Throughout this paper, distance is measured using the Euclidean l_{2} norm, and is denoted by $\|\|$.

There are two equivalent ways of viewing the problem. The first is to fix the area A and let $\lambda \rightarrow \infty$. In the second formulation, we instead fix $\lambda=1$ and grow the region A while keeping its shape fixed, so that the expected number of points in A again increases. As this is the formulation we shall use, we abbreviate $G(A, 1, k)$ to $G(A, k)$. We shall take $A=S_{n}$, the square of area n ($n o t$ side length n), which ensures that the expected number of points in our region is n. (However, as it turns out, the shape is essentially irrelevant.) Thus we are interested in the values of $k=k(n)$ for which $G_{n, k}=G\left(S_{n}, k\right)$ is likely to be connected, as $n \rightarrow \infty$.

Much of the previous work on this problem has been done with the above application (namely, to wireless ad-hoc networks) in mind. In $[6,7,8,12,16,17]$ the network is modeled as a Poisson process in the plane, while in [9] the nodes (or transceivers) are located along a line.

Before we get to our main results, we observe that two essentially trivial arguments give the right order of magnitude for k : specifically, that there exist positive constants c_{1} and c_{2} so that if $k \leq c_{1} \log n$ then the probability that $G_{n, k}$ is connected tends to zero as $n \rightarrow \infty$, and if $k \geq c_{2} \log n$ then the probability that $G_{n, k}$ is connected tends to one as $n \rightarrow \infty$. (All logarithms in this paper are to base e). Throughout this paper, we shall say that an event occurs with high probability ($\mathbf{w h p}$) if it occurs with probability tending to one as $n \rightarrow \infty$. Thus, if $k \leq c_{1} \log n$ then $G_{n, k}$ is disconnected whp, and if $k \geq c_{2} \log n$ then $G_{n, k}$ is connected whp.

Let us tessellate the square S_{n} with small squares Q_{i} of area $\log n-O(1)$, where the (positive) $O(1)$ term is chosen so that the side length of Q_{i} exactly divides that of S_{n}. Then the probability that a small square contains no points of the process is $e^{-\log n+O(1)}=$ $O\left(n^{-1}\right)=o\left(\frac{\log n}{n}\right)$, so that whp every small square contains at least one point. Using the inequality $r!>(r / e)^{r}$, the probability that a disc of radius $\sqrt{5 \log n}$ (area $5 \pi \log n$) contains more than $k=\lfloor 5 \pi e \log n\rfloor<42.7 \log n$ points is at most

$$
e^{-5 \pi \log n}\left(\frac{(5 \pi \log n)^{k+1}}{(k+1)!}\right)\left(1+\frac{5 \pi \log n}{k+2}+\ldots\right)<e^{-5 \pi \log n}\left(1+e^{-1}+e^{-2}+\ldots\right)=o\left(n^{-1}\right)
$$

so that whp every point has at most k points within distance $\sqrt{5 \log n}$. Thus whp every point of $G_{n, k}$ contained in a square Q_{i}, is joined to every point in Q_{i}, and also to every point in every adjacent square. This is enough to make $G_{n, k}$ connected.

Further, if k is much smaller than $\log n$, then whp $G_{n, k}$ will not be connected. For consider a configuration of three concentric discs D_{1}, D_{3} and D_{5}, of radii $r, 3 r$ and $5 r$ respectively, where $\pi r^{2}=k+1$. Call the configuration bad if (I) D_{1} contains at least $k+1$ points, (II) the annulus $D_{3} \backslash D_{1}$ contains no points, and (III) the intersection of $D_{5} \backslash D_{3}$ with any disc of radius $2 r$ centered at a point P on the boundary of D_{3} contains at least $k+1$ points. Now if a bad configuration occurs anywhere in $G_{n, k}$, then $G_{n, k}$ will not be connected, because the k nearest neighbours of a point in D_{1} all lie within D_{1} and the k nearest neighbours of a point outside D_{3} all lie outside D_{3}. Hence there will be no edge of $G_{n, k}$ connecting D_{1} to $S_{n} \backslash D_{3}$. Condition (I) holds with probability approximately $1 / 2$, condition (II) holds with probability $e^{-8(k+1)}$, and condition (III) holds with probability $1-o(1)$ since a disc of radius $2 r$ around a point on the boundary of D_{3} is very likely to contain at least $2(k+1)$ points. Hence for $k \leq(1-\varepsilon)(\log n) / 8$, the probability of a configuration being bad is $p \geq(1 / 2-o(1)) n^{-1+\varepsilon}$. Since we can fit $\frac{C n}{\log n}$ copies of D_{5} in S_{n}, and each is bad independently with probability p, the probability that $G_{n, k}$ is connected is at most

$$
(1-p)^{\frac{C n}{\log n}} \leq \exp \left(-C^{\prime} n^{\varepsilon} / \log n\right) \rightarrow 0
$$

for $k \leq(1-\varepsilon)(\log n) / 8$.
These elementary arguments indicate that we should focus attention on the range $k=\Theta(\log n)$. Indeed, defining c_{l} and c_{u} by

$$
c_{l}=\sup \left\{c: \mathbb{P}\left(G_{n,\lfloor c \log n\rfloor} \text { is connected }\right) \rightarrow 0\right\}
$$

and

$$
c_{u}=\inf \left\{c: \mathbb{P}\left(G_{n,\lfloor c \log n\rfloor} \text { is connected }\right) \rightarrow 1\right\}
$$

we have just shown that

$$
0.125 \leq c_{l} \leq c_{u} \leq 42.7
$$

By making use of a substantial result of Penrose [13], Xue and Kumar [18] improved the upper bound to

$$
c_{u} \leq 5.1774
$$

although a bound of

$$
c_{u} \leq\left\{2 \log \left(\frac{4 \pi / 3+\sqrt{3} / 2}{\pi+3 \sqrt{3} / 4}\right)\right\}^{-1} \approx 3.8597
$$

can be read out of earlier work of Gonzáles-Barrios and Quiroz [5].

It seems likely that $c_{l}=c_{u}=c$, and Xue and Kumar asked whether or not $c=1$. In this paper we improve the above bounds considerably, disproving this conjecture.

The methods used in this paper are new and specific to this problem - however, it is interesting to compare our results with those relating to two similar problems. The first also concerns a Poisson process of intensity 1 in a region A. This time we join each point to all other points within a radius r, obtaining the graph $G_{r}(A)$: we shall refer to this as the disc model. This model originated in a paper of Gilbert [4]. He considered the model in the infinite plane, and was interested in the probability $P_{r}(\infty)$ that an arbitrary vertex of $G_{r}\left(\mathbb{R}^{2}\right)$ belongs to an infinite component. Define $r_{\text {crit }}$ to be the supremum of the r for which $P_{r}(\infty)=0$. Gilbert showed that

$$
1.75 \leq \pi r_{\text {crit }}^{2} \leq 17.4
$$

Simulations $[1,15]$ suggest $\pi r_{\text {crit }}^{2} \approx 4.512$. The study of $G_{r}\left(\mathbb{R}^{2}\right)$ is known as continuum percolation, and is the subject of a monograph by Meester and Roy [11]. Many authors reserve the phrase "random geometric graphs" for the graphs $G_{r}(A)$: however we shall use it in a more general context, so that it includes the graphs $G_{n, k}$ as well.

Regarding connectivity, Penrose [13] showed that if $A=S_{n}$ and $\pi r^{2}=c \log n$, so that each point has on average $c \log n$ neighbours, then there is a critical value of c, in the sense described above, and that it equals one. This is the result used by Xue and Kumar in the work cited above. There is an analogous result for classical random graphs: if in a random graph $G=G(n, p)$ the average degree is $c \log n$, then if $c<1$, whp G is not connected, while if $c>1$, whp G is connected. In both cases, the obstruction for connectivity is the existence of isolated vertices, in the sense that whp the graph becomes connected as soon as it has no isolated vertices.

In our problem we expressly forbid isolated vertices, indeed, each vertex has degree at least k. Thus the obstruction for connectivity must involve more complicated extremal configurations, making it harder to obtain precise results. Another complication is that the average vertex degree is not exactly k, but somewhere between k and $2 k$. (In fact, it is easy to show that for $k \rightarrow \infty$, the average degree is $(1+o(1)) k$.) This motivates the study of the directed case, where, in a Poisson process of intensity 1 in a region A, we place directed edges pointing away from each point towards its k nearest neighbours. This ensures that in the resulting graph $\vec{G}(A, k)$, every vertex has out-degree exactly k. Again, we shall only consider the case $A=S_{n}$: we further let $k=\lfloor c \log n\rfloor$ and write $\vec{G}_{n, k}=\vec{G}\left(S_{n}, k\right)$. In this variant, we wish to know how large c should be to guarantee a directed path between any two vertices whp. Clearly the threshold value of c, if it exists, will be as least as large as in the undirected case. We provide upper and lower bounds for this problem as well.

At first sight it might seem that the following random graph problem might shed some light on the situation: in a graph on n vertices, join each vertex to k randomly chosen others. For what values of k is the resulting graph $G_{n, k \text {-out }}$ connected whp? Surprisingly, this question was posed by Ulam [10] in 1935 - see also page 40 of [2]. Here also we have expressly forbidden isolated vertices, however, it is easy to show that even $k=2$ is enough to ensure connectivity whp. In contrast, for the directed version of the problem, where we send a directed edge from each vertex to k randomly chosen others, and ask for a directed path between any two vertices, we need $k \approx \log n$, the main obstruction to connectivity being vertices with zero in-degree.

All our results will apply not only for Poisson processes, but also for n points placed in a square of area n with the uniform distribution. Indeed, one can view our Poisson process as simply the result of placing X points in the square, where $X \sim \operatorname{Po}(n)$. For more details, see [13] and [18].

2 Results

Our main result concerns the undirected random geometric graph $G_{n, k}$.
Theorem 1. If $c \leq 0.3043$ then $\mathbb{P}\left(G_{n,\lfloor c \log n\rfloor}\right.$ is connected $) \rightarrow 0$ as $n \rightarrow \infty$. If $c>$ $1 / \log 7 \approx 0.5139$ then $\mathbb{P}\left(G_{n,\lfloor\operatorname{cog} n\rfloor}\right.$ is connected $) \rightarrow 1$ as $n \rightarrow \infty$. Thus

$$
0.3043 \leq c_{l} \leq c_{u} \leq 0.5139
$$

The lower bound appears as Theorem 5, while the upper bound is Theorem 13. The lower bound argument is essentially a modification of that given in the introduction, while the proof of the upper bound is more involved.

For the directed graph $\vec{G}_{n, k}$, we have the following result. (A directed graph is connected if, given any two vertices x and y, there is a directed path from x to y.)

Theorem 2. If $c \leq 0.7209$ then $\mathbb{P}\left(\vec{G}_{n,\lfloor c \log n\rfloor}\right.$ is connected $) \rightarrow 0$ as $n \rightarrow \infty$. If $c \geq$ 0.9967 then $\mathbb{P}\left(\vec{G}_{n,\lfloor\operatorname{cog} n\rfloor}\right.$ is connected $) \rightarrow 1$ as $n \rightarrow \infty$.

Finally, let \mathcal{P}_{n} be a Poisson process giving rise to the random geometric graph $G_{n, k}$. For a vertex in $x \in V\left(G_{n, k}\right)$, we define the disc $B_{k}(x)$ to be the smallest closed disc containing the k nearest neighbours of x. Thus, in $G_{n, k}, x$ is (almost surely) joined to every vertex in its disc $B_{k}(x)$. We say that \mathcal{P}_{n} is a k-cover if the discs $B_{k}(x)$ cover S_{n}, and we prove the following result in Section 6.

Theorem 3. If $c \leq 0.7209$ then $\mathbb{P}\left(\mathcal{P}_{n}\right.$ is a $\lfloor c \log n\rfloor$-cover $) \rightarrow 0$ as $n \rightarrow \infty$. If $c \geq$ 0.9967 then $\mathbb{P}\left(\mathcal{P}_{n}\right.$ is a $\lfloor c \log n\rfloor$-cover $) \rightarrow 1$ as $n \rightarrow \infty$.

3 Lower bounds

For any region $S \subseteq \mathbb{R}^{2}$, write $|S|$ for the Lebesgue measure of S. We start by proving a useful lemma.

Lemma 4. Let A_{1}, \ldots, A_{r} be disjoint regions of \mathbb{R}^{2} and $\rho_{1}, \ldots, \rho_{r} \geq 0$ real numbers such that $\rho_{i}\left|A_{i}\right| \in \mathbb{Z}$. Then the probability that a Poisson process with intensity 1 has precisely $\rho_{i}\left|A_{i}\right|$ points in each region A_{i} is

$$
\exp \left\{\sum_{i=1}^{r}\left(\rho_{i}-1-\rho_{i} \log \rho_{i}\right)\left|A_{i}\right|+O\left(r \log _{+} \sum \rho_{i}\left|A_{i}\right|\right)\right\}
$$

with the convention that $0 \log 0=0$, and $\log _{+} x=\max (\log x, 1)$.
Proof. Let $n_{i}=\rho_{i}\left|A_{i}\right|$. The probability in question is given exactly by

$$
p=\prod_{i=1}^{r}\left(e^{-\left|A_{i}\right|} \frac{\left|A_{i}\right|^{n_{i}}}{n_{i}!}\right) .
$$

Taking logarithms and using Stirling's formula gives

$$
\begin{aligned}
\log p & =\sum_{i=1}^{r}\left(-\left|A_{i}\right|+n_{i} \log \left|A_{i}\right|-n_{i} \log n_{i}+n_{i}+O\left(\log _{+} n_{i}\right)\right) \\
& =\sum_{i=1}^{r}\left(n_{i}-\left|A_{i}\right|-n_{i} \log \rho_{i}\right)+O\left(r \log _{+} \max n_{i}\right) \\
& =\sum_{i=1}^{r}\left(\rho_{i}-1-\rho_{i} \log \rho_{i}\right)\left|A_{i}\right|+O\left(r \log _{+} \sum \rho_{i}\left|A_{i}\right|\right) .
\end{aligned}
$$

Theorem 5. If $c \leq 0.3043$ then $\mathbb{P}\left(G_{n,\lfloor c \log n\rfloor}\right.$ is connected $) \rightarrow 0$ as $n \rightarrow \infty$.
Proof. We first illustrate the proof with a simpler proof that $c<c_{0}=1 /\left(\log \frac{50}{18}+\right.$ $\left.8 \log \frac{25}{18}\right) \approx 0.2739$ suffices. Let D be a disc with radius $5 r_{0}$. Let A_{1} be a concentric disc with radius r_{0}, A_{2} a concentric annulus with radii r_{0} and $3 r_{0}$, and divide the remaining area A of D into $N-2$ regions $A=\cup_{3 \leq i \leq N} A_{i}$, with each A_{i} of diameter at most εr_{0} (see Figure 1). Define densities ρ_{i} by $\rho_{1}=2 \rho=\frac{50}{18}, \rho_{2}=0$, and $\rho_{i}=\rho=\frac{25}{18}$ for $i \geq 3$. Suppose that $\rho_{i}\left|A_{i}\right| \in \mathbb{Z}$ and exactly $\rho_{i}\left|A_{i}\right|$ points lie in each A_{i}. (Note that $\sum \rho_{i}\left|A_{i}\right|=|D|$, so the

Figure 1: Lower bound, undirected case.
number of points in D is as expected.) Pick a point x at radius $r \geq 3 r_{0}$ from the centre of D. Let D_{x} be the disc about x of radius $r-(1+\varepsilon) r_{0}$. Then x is at least εr_{0} closer to all points in D_{x} than to any point in A_{1}. If $r=3 r_{0}$ and ε is sufficiently small, then $\left|D_{x} \cap A\right| \geq(1 / 2+\delta)\left|D_{x}\right|$ for some $\delta>0$, independent of ε. Hence for sufficiently small $\varepsilon,\left|D_{x} \cap A\right| \geq 2\left|A_{1}\right|$. If you move the point x radially outwards from the centre of D, the discs D_{x} form a nested family. Thus $\left|D_{x} \cap A\right| \geq 2\left|A_{1}\right|$ for all x. If some $A_{i}, i \geq 3$, intersects $D_{x} \cap A$, then all points in A_{i} are closer to x than any point of A_{1}. Hence the $2\left|A_{1}\right| \rho=\rho_{1}\left|A_{i}\right|$ points of the Poisson process closest to x all lie outside A_{1}. Clearly, if $x \in A_{1}$ then any point in A_{1} is closer to x than any point outside A_{1}. Hence if we choose r_{0} so that $\rho_{1}\left|A_{1}\right|=k+1=\lfloor c \log n\rfloor+1$, the points in A_{1} form a component. If S_{n} contains such a configuration then $G_{n, k}$ is disconnected.

Now $\rho_{1}\left|A_{1}\right|=k+1, \rho_{2}\left|A_{2}\right|=0$, and $\sum \rho_{i}\left|A_{i}\right|=9 \rho_{1}\left|A_{1}\right|=9(k+1)$ are all integers. It is easy to see that if n (and hence k and r_{0}) are large enough, one can choose the regions $A_{i}, i \geq 3$, so that (i) $\rho_{i}\left|A_{i}\right| \in \mathbb{Z}$ for all i, (ii) the diameters of the $A_{i}, i \geq 3$, are at most εr_{0}, and (iii) the number of regions N is bounded above by some function of ε, independently of n. By Lemma 4, the probability of each A_{i} containing exactly $\rho_{i}\left|A_{i}\right|$ points is

$$
p=\exp \left\{-\left(\log \frac{50}{18}+8 \log \frac{25}{18}\right) \rho_{1}\left|A_{1}\right|+O(N \log |D|)\right\}=n^{-c / c_{0}+o(1)} .
$$

Since we can place $\Theta(n / \log n)$ disjoint regions D in S_{n}, the probability of at least one such configuration occurring in S_{n} tends to one as $n \rightarrow \infty$ when $c<c_{0}$.

To improve this bound, fix α with $0<\alpha \leq \frac{1}{3}$. Let $\varepsilon \in(0, \alpha)$ and assume the circles in Figure 1 now have radii $(\alpha-\varepsilon) r_{0}, r_{0}$ and $(2-\alpha) r_{0}$ respectively. Let A_{1} be the inner disc of radius $(\alpha-\varepsilon) r_{0}$, let A_{2} be the surrounding annulus with outer radius r_{0}, and divide the remaining area A into regions $A_{i}, i=3, \ldots, N$, each with diameter at most εr_{0}, and area at least 1. (Certainly possible if εr_{0} is sufficiently large.) We shall define a function $\rho(r)$
that gives the approximate density of points in the regions A_{i}. Let B be the disc of radius αr_{0} about O, so B is just a little larger than A_{1}. For $r \leq \alpha r_{0}, \rho(r)$ will be a constant, and we shall require exactly $\rho_{1}\left|A_{1}\right|=\lfloor\rho(r)|B|\rfloor+1$ points of \mathcal{P} in A_{1}. For $\alpha r_{0}<r<r_{0}$, $\rho(r)=0$, and we shall require that A_{2} have no points of the process. For $r \geq r_{0}, \rho(r)$ will be a continuous function, and the number of points in A_{i} will be $\rho_{i}\left|A_{i}\right|=\left\lfloor\int_{A_{i}} \rho(r) d A\right\rfloor+1$, where r is the distance to the centre O of D. The function $\rho(r)$ will be determined later, but will be of the form $\rho(r)=\rho_{0}\left(r / r_{0}\right)$ where ρ_{0} may depend on α, but will be independent of n, r_{0} and ε. We shall also see that $|\log \rho(r)|$ is bounded on $B \cup A$. We now perform a similar calculation to above, requiring at least $k+1$ points in A_{1} and for each point x at distance $r \geq r_{0}$ from O, at least $k+1$ points in A closer to x than any point of A_{1}. As before, the worst case is when x is at distance $r=r_{0}$ from O, and it is enough to ensure that there are at least $k+1$ points in sets A_{i} that intersect the disc $D_{(1-\alpha) r_{0}}(x)$ of radius $(1-\alpha) r_{0}$ about x. Thus it is enough if $\int_{D_{(1-\alpha) r_{0}}(x) \cap A} \rho d A \geq c \log n$. Define

$$
g(r)=\frac{1}{\pi} \cos ^{-1}\left(\frac{r^{2}+r_{0}^{2}-(1-\alpha)^{2} r_{0}^{2}}{2 r_{0} r}\right)
$$

which is the proportion of the circle of radius r, centre O, that lies in $D_{(1-\alpha) r_{0}}(x)$. Hence

$$
\int_{D_{(1-\alpha) r_{0}}(x) \cap A} \rho d A=\int_{r_{0}}^{(2-\alpha) r_{0}} \rho(r) 2 \pi r g(r) d r=\int_{A} \rho g d A .
$$

Thus it is enough to impose the following conditions on $\rho(r)$.

$$
\begin{equation*}
\int_{B} \rho d A=\int_{A} \rho g d A=c \log n \tag{1}
\end{equation*}
$$

Let δ_{ε} bound the variation of $\rho \log \rho$ across any of the sets $A_{i}, i \geq 3$. By the above assumptions, we can choose δ_{ε} independently of r_{0} and n, with $\delta_{\varepsilon} \rightarrow 0$ as $\varepsilon \rightarrow 0$. Now by Lemma 4, the probability p of such a configuration occurring is given by

$$
\begin{equation*}
-\log p=\int_{D}(\rho-1-\rho \log \rho) d A+O\left(N \log |D|+N+\delta_{\varepsilon}|D|+\varepsilon c(\log n) / \alpha\right) \tag{2}
\end{equation*}
$$

where the error terms include the error term of Lemma 4 plus $N-2$ error terms of magnitude $O\left(1+\delta_{\varepsilon}\left|A_{i}\right|\right)$ and one of magnitude $O\left(1+\varepsilon \rho_{1}\left|A_{1}\right| / \alpha\right)$ arising from the differences between $\int_{A_{i}}(\rho-1-\rho \log \rho) d A$ and $\left(\rho_{i}-1-\rho_{i} \log \rho_{i}\right)\left|A_{i}\right|$ for $i=1, \ldots, N$.

The function $\rho(r)$ is chosen to maximize the above integral subject to (1). Using the method of Lagrange multipliers, we maximize

$$
\begin{equation*}
\int_{D}(\rho-1-\rho \log \rho) d A-\mu \int_{B} \rho d A-\nu \int_{A} \rho g d A \tag{3}
\end{equation*}
$$

By applying the calculus of variations, we obtain

$$
\rho(r)= \begin{cases}\exp (\mu) & \text { if } r \leq \alpha r_{0} \tag{4}\\ 0 & \text { if } r \in\left(\alpha r_{0}, r_{0}\right) \\ \exp (\nu g(r)) & \text { if } r \geq r_{0}\end{cases}
$$

where the constants μ and ν are chosen so that

$$
\int_{B} \rho d A=\int_{A} \rho g d A \quad \text { and } \quad \int_{D}(\rho-1) d A=0
$$

(The second condition comes from varying the scale r_{0}, which implies that the expression (3) should equal zero.) It is easy to check that each value of α gives a unique value of μ and ν, and the conditions assumed for $\rho(r)$ above do indeed hold. Also, $|D|=O(\log n)$ and $N=O\left(\varepsilon^{-2}\right)$, so by taking, say, $\varepsilon \sim(\log n)^{-1 / 3}, \varepsilon r_{0} \rightarrow \infty$ and the error term in (2) is $o(\log n)$. Substituting into (2) we get $-\log p=(c(\mu+\nu)+o(1)) \log n$. Since we can place $\Theta(n / \log n)$ disjoint copies of D inside $S_{n}, G_{n, k}$ is disconnected whp whenever $c<(\mu+\nu)^{-1}$. Finally, optimizing over α gives a value of $(\mu+\nu)^{-1}$ just larger than 0.3043 when $\alpha=0.3302$.

Note that we were lucky that the optimum value of α was less than $\frac{1}{3}$. For $\alpha>\frac{1}{3}$ the distances between points in A_{1} could be larger than the distance from A_{1} to A. Hence we would need more points in A_{1}, and we would need to cut A_{1} into smaller regions with varying densities in a similar manner to that done with A.

Theorem 6. If $c \leq 0.7209$ then $\mathbb{P}\left(\vec{G}_{n,\lfloor c \log n\rfloor}\right.$ is connected $) \rightarrow 0$ as $n \rightarrow \infty$.
Proof. We first illustrate the proof with a simpler proof that $c<c_{1}=1 /\left(6 \log \frac{4}{3}\right) \approx$ 0.5793 suffices. Let D be a disc with radius $2 r_{0}$ and centre O. Set A_{1} to be a disc about O with radius $\varepsilon r_{0}, A_{2}$ an annulus with centre O and radii εr_{0} and r_{0}, and divide the remaining annulus A of D into regions A_{3}, \ldots, A_{N}, each with diameter at most εr_{0} (see Figure 2). Define densities ρ_{i} by $\rho_{2}=0$, and $\rho_{i}=\rho=\frac{4}{3}$ for $i \geq 3$. Suppose that there is one point of the Poisson process in A_{1} and $\rho_{i}\left|A_{i}\right|$ points of the Poisson process lie in each A_{i} for $i \geq 2$. Pick a point x at distance $r \geq r_{0}$ from O and let D_{x} be the disc about x of radius $r-2 \varepsilon r_{0}$. Then x is at least εr_{0} closer to every point in D_{x} than to A_{1}. As r moves radially outwards, $D_{x} \cap A$ increases, so $\left|D_{x} \cap A\right|$ is at least as large as when $r=r_{0}$. In this case $\left|D_{x} \cap A\right|>\pi r_{0}^{2} / 2$ for sufficiently small ε. If some $A_{i}, i \geq 3$, intersects $D_{x} \cap A$ then all points in A_{i} are closer to x than O, so the $\rho \pi r_{0}^{2} / 2$ closest points to x lie outside A_{1}. Choose r_{0} so that $\rho \pi r_{0}^{2} / 2=k+1=\lfloor c \log n\rfloor+1$. Then the unique point in A_{1} has zero in-degree, so if S_{n} contains such a configuration then $\vec{G}_{n, k}$ is disconnected. As before, fixing $\varepsilon>0$

Figure 2: Lower bound, directed case.
and assuming n is sufficiently large, once can choose the A_{i} so that $\rho_{i}\left|A_{i}\right| \in \mathbb{Z}$, and N is bounded by a function of ε, independently of n. Now by Lemma 4 , the probability of such a configuration is

$$
p=\exp \left\{-4 \pi r_{0}^{2} \log \frac{4}{3}+O\left(\left(\log \left|A_{1}\right|\right) /\left|A_{1}\right|\right)+O(N \log |D|)\right\}=n^{-c / c_{1}+o(1)}
$$

Since we can find $\Theta(n / \log n)$ disjoint copies of D in S_{n}, the probability of at least one such configuration occurring tends to 1 as $n \rightarrow \infty$ provided $c<c_{1}$.

To improve this bound, we follow the proof of Theorem 5 and make the assumption that the ρ_{i} are given by a function $\rho(r)$ of the distance r to the centre of D. We shall define the A_{i} exactly as in Theorem 5 with a small $\alpha>0$, but insist now that A_{1} contains precisely one point of \mathcal{P}, and $\rho(r)=0$ for all $r<r_{0}$. We obtain (2) again (with the last term in the error estimate replaced with $\log \left|A_{1}\right|$), which we wish to maximize subject to the conditions $\rho(r)=0$ for $r \leq r_{0}$ and $\int_{A} \rho g d A=c \log n$. To do this we maximize (3) without the $\mu \int_{B} \rho d A$ term. After optimizing we obtain

$$
\rho(r)= \begin{cases}0 & \text { if } r \leq r_{0} \\ \exp (\nu g(r)) & \text { if } r>r_{0}\end{cases}
$$

where $\nu=\nu(\alpha)$ is chosen so that $\int_{D}(\rho-1) d A=0$. On substituting back into (2) and choosing $\varepsilon \sim(\log n)^{-1 / 3}$, this gives $-\log p=(c \nu+o(1)) \log n$. As before, we can find $\Theta(n / \log n)$ disjoint discs D. Hence provided $c<\nu^{-1}, \vec{G}_{n, k}$ is disconnected whp, with an isolated point as an in-component. Finally, for sufficiently small α, ν^{-1} is just larger than 0.7209 .

4 Upper bounds

In this section we shall establish upper bounds for the directed and undirected cases. The basic arguments are simple, but, in both cases, the situation is complicated by points near the boundary. In principle these should be less of a problem than in the disc model: unfortunately, for both problems the most natural arguments run into trouble at the boundary. For the moment we shall ignore boundary effects, and assume that all points are normal: a point P is normal if the smallest circle containing its k nearest neighbours does not intersect the boundary. This excludes $O(\sqrt{n \log n})$ points from consideration, and enables us to give the following "one line" argument.

Theorem 7. Let $c>\frac{1}{\log 2} \approx 1.4427$. Then the probability that $G_{n,\lfloor\log n\rfloor}$ contains a component consisting entirely of normal points tends to zero as $n \rightarrow \infty$.

Proof. Suppose that $G_{n,\lfloor c \log n\rfloor}$ has a component G^{\prime} containing only normal points. Let P be a northernmost point of G^{\prime}. Then P is "extreme" in the sense that its $k=\lfloor c \log n\rfloor$ nearest neighbours all lie below it. The probability that a normal point is extreme is 2^{-k}, and so the expected number of extreme normal points is at most $n 2^{-k}=o(1)$. Thus the probability of such a G^{\prime} arising tends to zero as $n \rightarrow \infty$.

As an aside, we can consider the analogous problem on the torus, rather than the square S_{n}. Unfortunately, the above proof does not show that the corresponding graph on the torus is connected whp for $c>\frac{1}{\log 2}$, since a component on the torus need not have any extreme points.

Next we establish an upper bound. The proof splits into two parts. In the first (Lemma 12) we show that there do not exist two "large" components; indeed we show that even if k is far smaller than $\log n$ then these components do not exist. Secondly we show that there are no small components.

We shall use the following simple lemma that bounds the edge lengths. There are many results in the literature bounding the Poisson distribution; we give a simple bound in a form convenient for our needs.

Lemma 8. Fix $c>0$, and set

$$
c_{-}=c e^{-1-1 / c} \quad \text { and } \quad c_{+}=4 e(1+c) .
$$

If r and R are such that $\pi r^{2}=c_{-} \log n$ and $\pi R^{2}=c_{+} \log n$, then whp every vertex in $G_{n,\lfloor\operatorname{cog} n\rfloor}$ is joined to every vertex within distance r, and no vertex is joined to a vertex at distance more than R. The same is true for the directed model $\vec{G}_{n,\lfloor c \log n\rfloor}$.

Proof. This lemma will follow from simple properties of the Poisson distribution. Write $D_{\rho}(P)$ for the open disc of radius ρ centred at P. Fix $k=\lfloor c \log n\rfloor$, and suppose that a vertex P of $G_{n, k}$ is not joined to every other vertex of $G_{n, k}$ in $D_{r}(P) \cap S_{n}$, where $\pi r^{2}=c_{-} \log n=\lambda$. Then $D_{r}(P) \cap S_{n}$, which has area at most λ, contains at least k additional vertices of $G_{n, k}$. The probability p of this happening can be bounded as follows (by comparison with a geometric series):

$$
p=e^{-\lambda} \sum_{l=k}^{\infty} \frac{\lambda^{l}}{l!}<e^{-\lambda} \frac{k}{k-\lambda} \frac{\lambda^{k}}{k!}<e^{-\lambda} \frac{k}{k-\lambda}\left(\frac{\lambda e}{k}\right)^{k}=\frac{c}{c-c_{-}} n^{c\left(\log \left(c_{-} / c\right)+1\right)-c_{-}}(1+o(1)),
$$

which is $o\left(n^{-1}\right)$ provided

$$
c_{-}<c \quad \text { and } \quad c \log \left(c_{-} / c\right)+c-c_{-}<-1
$$

which is true for c_{-}as in the statement of the theorem.
Since the expected number of vertices in S_{n} is n, the expected number of vertices P such that $D_{r}(P) \cap S_{n}$ contains at least k additional vertices is $o(1)$, and hence the probability that there is any such vertex P in $G_{n, k}$ is $o(1)$ as claimed.

The proof of the upper bound is almost the same. Let R satisfy $\pi R^{2}=c_{+} \log n$. If a vertex is joined to another at distance at least R then the circle of radius R about one of the two, P say, contains at most k additional vertices of $G_{n, k}$. The area of $D_{R}(P) \cap S_{n}$ is at least $\pi R^{2} / 4=\left(c_{+} / 4\right) \log n=\lambda$, so the probability p that this occurs for a particular vertex can be bounded by

$$
p=e^{-\lambda} \sum_{l=0}^{k} \frac{\lambda^{l}}{l!}<e^{-\lambda} \frac{\lambda}{\lambda-k} \frac{\lambda^{k}}{k!}<e^{-\lambda} \frac{\lambda}{\lambda-k}\left(\frac{\lambda e}{k}\right)^{k}=\frac{c_{+}}{c_{+}-4 c} n^{c\left(\log \left(c_{+} / 4 c\right)+1\right)-c_{+} / 4}(1+o(1)),
$$

which is $o\left(n^{-1}\right)$ provided

$$
c_{+}>4 c \quad \text { and } \quad c \log \left(c_{+} / 4 c\right)+c-c_{+} / 4<-1,
$$

which is true for c_{+}as in the statement of the theorem (using the inequality $\log ((c+1) / c) \leq$ $1 / c)$. Hence, the probability we have any such vertex P is $o(1)$.

Remark. Although we only claim that the above result holds whp, much more is true: indeed, for any fixed constant K, we can find c_{-}and c_{+}such that it holds with probability $1-O\left(n^{-K}\right)$.

The next two lemmas state simple facts about the components of $G_{n, k}$.
Lemma 9. No two edges belonging to different components of $G_{n, k}$ may cross.

Proof. Let $G_{1}, G_{2}, \ldots, G_{N}$ be the components of $G_{n, k}$. Suppose that $i_{1} i_{2}=e_{i} \in E\left(G_{i}\right)$ and $j_{1} j_{2}=e_{j} \in E\left(G_{j}\right)$, for $i \neq j$, and that e_{i} and e_{j} cross. Then, considering e_{i}, if i_{2} is one of the k th nearest neighbours of i_{1}, then $\left\|j_{1}-i_{1}\right\|>\left\|i_{1}-i_{2}\right\|$, while if i_{1} is one of the k th nearest neighbours of i_{2}, then $\left\|j_{1}-i_{2}\right\|>\left\|i_{1}-i_{2}\right\|$. Therefore, in either case, e_{i} is not the longest edge of the triangle $i_{1} i_{2} j_{1}$, and so the angle $i_{1} j_{1} i_{2}$ is less than $\frac{\pi}{2}$. But this applies to all four angles of the quadrilateral $i_{1} j_{1} i_{2} j_{2}$, which gives a contradiction.

Lemma 10. With r as in Lemma 8, whp the distance between any two edges belonging to different components of $G_{n, k}$ is at least $r / 2$.

Proof. As before, let $G_{1}, G_{2}, \ldots, G_{N}$ be the components of $G_{n, k}$, and let $i_{1} i_{2}=e_{i} \in$ $E\left(G_{i}\right)$ and $j_{1} j_{2}=e_{j} \in E\left(G_{j}\right)$, for $i \neq j$. Since e_{i} and e_{j} do not cross, the distance between them is attained at a vertex of one of them, say j_{1}, and thus, we need only show that j_{1} is not within distance $r / 2$ of e_{i}.

Suppose otherwise. Let z be the foot of the perpendicular from j_{1} onto the line through $i_{1} i_{2}$, so that $\left\|j_{1}-z\right\| \leq r / 2$. If z does not lie between i_{1} and i_{2} then the minimum distance between e_{i} and j_{1} is attained at one of the endpoints of the edge, say i_{1}, and thus $\left\|i_{1}-j_{1}\right\| \leq r / 2$, so that the edge $i_{1} j_{1}$ is in $G_{n, k}$, by Lemma 8 . Now suppose z does lie between i_{1} and i_{2}, and assume that the edge e_{i} is present because i_{2} is one of the k nearest neighbours of i_{1}. Suppose that z lies within distance $r / 2$ of i_{2}. Then

$$
\left\|i_{2}-j_{1}\right\| \leq\left\|i_{2}-z\right\|+\left\|z-j_{1}\right\| \leq \frac{r}{2}+\frac{r}{2}=r
$$

and thus, by Lemma 8 , the edge $i_{2} j_{1}$ is contained in G. Otherwise,

$$
\left\|z-i_{2}\right\|>\frac{r}{2} \geq\left\|z-j_{1}\right\|
$$

and so

$$
\left\|i_{1}-j_{1}\right\| \leq\left\|i_{1}-z\right\|+\left\|z-j_{1}\right\|=\left(\left\|i_{1}-i_{2}\right\|-\left\|i_{2}-z\right\|\right)+\left\|z-j_{1}\right\|<\left\|i_{1}-i_{2}\right\|
$$

so that, since $i_{1} i_{2}$ is an edge, so is $i_{1} j_{1}$. In each case j_{1} is in the same component as e_{i}.
Next we need a geometric lemma.
Lemma 11. Let Λ_{l} be the graph of the $l \times l$ square integer grid $\{1, \ldots, l\}^{2} \subset \mathbb{R}^{2}$ with all the unit length edges. Suppose that $A \subset V\left(\Lambda_{l}\right)$ with both A and $A^{c}=V\left(\Lambda_{l}\right) \backslash A$ connected in Λ_{l}. Let ∂A denote the set of vertices of A^{c} that are adjacent to vertices of A. Then the set ∂A is diagonally connected, i.e, connected if we include all edges of length $\leq \sqrt{2}$.

Proof. Let B be the set of edges from an element of A to an element of A^{c} and let B^{\prime} be the corresponding edges in the dual lattice. If we consider B^{\prime} as a subgraph of the dual lattice then every vertex has even degree except those vertices corresponding to the boundary of Λ_{l}. Thus we can decompose B^{\prime} into edge disjoint subgraphs each of which is either a cycle, or a path starting and ending at the boundary. Any such cycle or path splits Λ_{l} into two components. Since all of any connected set must lie in the same component, we see that all of A lies in the same component and all of A^{c} lies in the same component. This implies that the cycle or path partitions Λ_{l} into exactly A and A^{c}, and hence is all of B^{\prime}. Thus ∂A is diagonally connected and the result follows.

The following lemma asserts that there are no two large components.
Lemma 12. Fix $c>0$. Then, there exists a constant c^{\prime} such that the probability that $G_{n,\lfloor\log n\rfloor}$ contains two components each of (Euclidean) diameter at least $c^{\prime} \sqrt{\log n}$ tends to zero as $n \rightarrow \infty$.

Proof. Fix c^{\prime} to be chosen later, and let $D=c^{\prime} \sqrt{\log n}$. Let c_{-}be as in Lemma 8 and r satisfy $\pi r^{2}=c_{-} \log n$. By Lemma $8 \mathbf{w h p}$ every vertex is joined to every other vertex within distance r. Thus, we may ignore all configurations for which this does not hold. Also by assumption and the definition of D there exist two components, G_{1} and G_{2} of $G=G_{n,\lfloor c \log n\rfloor}$, each of diameter at least D. Let G_{3} be the rest of the vertices.

We tessellate the square S_{n} with squares of side $r / \sqrt{20}$; letting $l=\sqrt{20 n} / r$, we identify the squares with the square grid $\Lambda_{l}=\mathbb{Z}_{l}^{2}$. (Here, and in the proof of Lemma 14, we assume for convenience that $r / \sqrt{20}$ divides \sqrt{n}.) We colour the squares as follows. Colour red any square containing a vertex of G_{1} or intersecting an edge of G_{1}. Colour blue any square containing a vertex of G_{2} or intersecting an edge of G_{2}. Colour black the remaining squares containing a vertex. All other squares we call empty and colour white. This colouring is well defined by Lemma 10. The same lemma also shows that a red square can only be adjacent to another red square or an empty square, since any two points in adjacent squares must be within distance $\sqrt{5}(r / \sqrt{20})=r / 2$. In addition, the set of red squares and the set of blue squares each forms a connected component in Λ_{l}.

Since G_{1} and G_{2} have diameter at least D, the squares have diameter $\sqrt{2} r / \sqrt{20}<r$, and the set of red squares and the set of blue squares are each connected there must be at least D / r red squares and D / r blue squares.

Let U be the set of red squares and let $V=U^{c}$ be the complement of U. V splits into components $V_{1}, V_{2}, \ldots, V_{s}$ for some $s \geq 1$. Since the blue squares are connected, at most one of these components, say V_{1}, can contain blue squares.

Let $U_{1}=V_{1}^{c}$; i.e., U and all the components of U^{c} that do not contain any blue squares. Note that both U_{1} and U_{1}^{c} are connected, and each contains at least D / r squares, since all
the red squares lie in U_{1} and all the blue squares lie in $V_{1}=U_{1}^{c}$.
Let ∂U_{1} be the set of squares not in U_{1}, but adjacent to at least one square in U_{1}. Each square in ∂U_{1} is empty, and the set ∂U_{1} is a diagonally connected component of squares, since both U_{1} and $U_{1}^{c}=V_{1}$ are connected.

By the vertex isoperimetric inequality in the grid [3],

$$
\left|\partial U_{1}\right| \geq \min \left\{\sqrt{2\left|U_{1}\right|}, \sqrt{2\left|U_{1}^{c}\right|}\right\} \geq(D / r)^{1 / 2}
$$

Hence, if we have G_{1}, G_{2} both with diameter at least D we can find a set connected in Λ_{l} of size $K=(D / r)^{1 / 2}=\sqrt[4]{\pi c^{\prime 2} / c_{-}}$consisting entirely of empty squares. To complete the proof we just need to show that such a set is unlikely to exist.

We use the following graph theoretic lemma. For any graph G with maximum degree Δ, the number of connected subsets of size n containing a particular vertex v_{0} is at most $(e \Delta)^{n}$.

Define Λ_{l}^{*} as the graph with vertex set Λ_{l} and edges joining diagonally connected vertices. The graph Λ_{l}^{*} has maximum degree 8 , so the number of connected sets of K squares in Λ_{l}^{*} containing a particular square is at most $(8 e)^{K}$. There are $l^{2} \leq n$ squares in Λ_{l} so the total number of connected sets of size K is at most $n(8 e)^{K}$. Therefore the probability p that any connected set K consists entirely of empty squares satisfies

$$
\begin{aligned}
p & \leq n(8 e)^{K} e^{-K r^{2} / 20} \\
& \leq n \exp \left(K\left(\log (8 e)-r^{2} / 20\right)\right) \\
& \leq n^{1-K c_{-} / 20 \pi+o(1)}
\end{aligned}
$$

which tends to zero provided we chose c^{\prime} and thus K large enough. Hence the probability that there are two components with diameter at least D tends to zero as n tends to infinity.

Theorem 13. If $c>\frac{1}{\log 7} \approx 0.5139$, then $\mathbb{P}\left(G_{n,\lfloor c \log n\rfloor}\right.$ is connected $) \rightarrow 1$ as $n \rightarrow \infty$.
Proof. Let $k=\lfloor c \log n\rfloor$. We shall show that for any fixed $c^{\prime}>0$ there is no component G^{\prime} of $G=G_{n, k}$ with diameter less than $c^{\prime} \sqrt{\log n} \mathbf{w h p}$. This, together with Lemma 12, will prove the result. By Lemma 8 we may assume that the k nearest neighbours of any point all lie within distance R, where $\pi R^{2}=c_{+} \log n$.

Firstly let us assume such a small component G^{\prime} exists and that G^{\prime} contains only normal points. Consider the six tangents to the convex hull of G^{\prime} which are inclined at angles 0 , $\frac{\pi}{3}$, and $\frac{2 \pi}{3}$ to the horizontal. These tangents form a hexagon H containing G^{\prime}, as shown in Figure 3, and each tangent t_{i} intersects G^{\prime} in a point $P_{i} \in V\left(G^{\prime}\right)$ (some of the P_{i} may coincide). The exterior angle bisectors of H divide the exterior of H into six regions H_{i}, each of which is bounded by two bisectors and t_{i}. Consider the smallest disc D_{i} centered

Figure 3: The hexagon H
at P_{i} and containing its k nearest neighbours. By assumption, all the D_{i} are contained in S_{n}. Write $A_{i}=H_{i} \cap D_{i}$. Without loss of generality, $\left|A_{1}\right| \leq\left|A_{i}\right|$ for all i, so that, writing $A=H \cap D_{1}$ and noting that $|A| \leq\left|A_{1}\right|$ (since A_{1} does not meet the boundary of S_{n}), we obtain $|A| \leq \frac{1}{7}\left|A \cup\left(\cup_{i} A_{i}\right)\right|$. Now we require that there are exactly k points in the region $A \cup\left(\cup_{i} A_{i}\right)$, and that they all lie within A. The probability of this happening is at most 7^{-k}. However, the number of choices for the regions A, A_{i}, can be estimated as follows. There are $O(n)$ choices for the point $P_{1}(\mathbf{w h p})$, and, fixing P_{1}, there are whp $O(\log n)$ choices for each P_{2}, \ldots, P_{6} (since they lie within $c^{\prime} \sqrt{\log n}$ of P_{1}), and $O\left((\log n)^{6}\right)$ choices for the six radii of the D_{i}, since they are determined by a point within distance R of P_{i}. Thus the number of choices for the A and A_{i} is $O\left(n(\log n)^{11}\right)$ which is $n^{1+o(1)}$. Thus, the probability that we have a G^{\prime} of diameter at most $c^{\prime} \log n$ is at most $n^{1+o(1)} 7^{-k}$, which is $o(1)$ for $c>\frac{1}{\log 7}$.

The above argument applies if G^{\prime} is not too close to the boundary of S_{n}. Suppose now that G^{\prime} is within distance R of the boundary, but further than R from a corner of S_{n}. In this case we ignore the two tangents t_{i} whose normal vectors point out of S_{n}, and define H and the relevant H_{i} and A_{i} as the intersections of the previously defined H, H_{i} and A_{i} with S_{n} (see Figure 4). (For the horizontal boundaries, rotate the tangents by 90 degrees.) Now, supposing that again $\left|A_{1}\right| \leq\left|A_{i}\right|$ for all i, and writing $A=H \cap D_{1}$ as before, we obtain $|A| \leq \frac{1}{5}\left|A \cup\left(\cup_{i} A_{i}\right)\right|$. Therefore the probability that all k points in $A \cup\left(\cup_{i} A_{i}\right)$ are in fact contained in A is at most 5^{-k}. Thus the probability of obtaining such a small component lying near the boundary is $n^{\frac{1}{2}+o(1)} 5^{-k}$, which is $o(1)$ for $c>\frac{1}{\log 7}>\frac{1}{2 \log 5}$. (Note

Figure 4: G^{\prime} lies near an edge or corner
that there are now only $O(\sqrt{n \log n})$ choices for P_{1}.)
Finally, if some point of G^{\prime} is within R of a corner of S_{n}, we now have $|A| \leq \frac{1}{3}\left|A \cup\left(\cup_{i} A_{i}\right)\right|$ (see Figure 4), and thus the probability of all k points in $A \cup\left(\cup_{i} A_{i}\right)$ lying in A is at most 3^{-k}. Here, the shape of the region H is not critical - we only need to ensure that the reflections of H in the tangents t_{i} are disjoint and lie within S_{n}. Hence the probability of obtaining a small component lying at a corner is $n^{o(1)} 3^{-k}=o(1)$, there now being only $O(\log n)$ choices for P_{1}.

4.1 The directed case

As in the undirected case we first show that whp there do not exist two large components. The proof is very similar to that of the undirected case, so we sketch the parts that are the same and concentrate on the differences. The first key difference is that in a directed graph there is no clear idea of component. We define two such notions which will satisfy our needs. A set C is a out-component if, for some x_{0}, it is of the form $\{y$: there exists a directed path from x_{0} to $\left.y\right\}$. It is an in-component if it is of the form $\{y$: there exists a directed path from y to $\left.x_{0}\right\}$. If the graph is undirected then both of these reduce to the normal definition of component. The following lemma is analogous to Lemma 12.

Lemma 14. Fix $c>0$ and let $k=\lfloor c \log n\rfloor$. Then there exists c^{\prime} such that the probability that $\vec{G}_{n, k}$ contains an in-component and an out-component that are disjoint and both of diameter at least $c^{\prime} \sqrt{\log n}$ tends to zero as $n \rightarrow \infty$.

Proof. As before fix c^{\prime} to be chosen later and let $D=c^{\prime} \sqrt{\log n}$. This time, since we shall also need an upper bound on the edge length, let c_{-}and c_{+}be as in Lemma 8 and
let r and R satisfy $\pi r^{2}=c_{-} \log n$ and $\pi R^{2}=c_{+} \log n$. We may ignore all configurations which have two points at distance at most r that are not joined, or have two points at distance at least R that are joined.

Let G_{1} be an out-component and G_{2} an in-component, both of diameter at least D. Let G_{3} be the rest of the vertices. This time edges of G_{i} and G_{j} may cross for $i \neq j$. However, it is still true that no vertex not in G_{1} may lie within distance $r / 2$ of an edge of G_{1}. Indeed the proof of Lemma 10 shows that (with notation as in that proof) in this case either $\overrightarrow{i_{1} j}$ or $\overrightarrow{i_{2} j}$ is an edge. Thus, since G_{1} is an out-component, $j \in G_{1}$. (Note that it is important that G_{1} is an out-component: it would not be true for an in-component.)

Again, we tessellate the square with squares of side $r / \sqrt{20}$; letting $l=\sqrt{20 n} / r$, we identify the squares with the square grid Λ_{l}. We colour the squares almost exactly as before: colour the squares containing a vertex of G_{1} or intersecting an edge of G_{1} red, colour the squares containing a vertex of G_{2} blue (note we do not colour the squares intersecting an edge of G_{2} as that might conflict with the squares already coloured), colour the remaining squares containing a vertex black, and finally colour the empty squares white. As before, the colouring is well defined and also we see that a red square can only be adjacent to another red square or an empty square. In addition, the set of red squares forms a connected component of squares.

This time, since no point is joined to another at distance greater than R, there must be at least D / R red squares, and at least D / R blue squares.

Let U be the set of red squares and let $V=U^{c}$ be the complement of $U . V$ splits into components $V_{1}, V_{2}, \ldots, V_{s}$ for some $s \geq 1$. This time the blue squares need not be connected and so need not all be in the same set V_{i}. Suppose that the components that contain blue squares are $V_{1}, V_{2}, \ldots, V_{t}$.

Let $U_{1}=U \cup \bigcup_{i=t+1}^{s} V_{i}$; i.e., U and all the components of U^{c} that do not contain any blue squares. U_{1} and U_{1}^{c} each contain at least D / R squares, since all the red squares lie in U_{1} and all the blue squares lie in U_{1}^{c}.

Let ∂U_{1} be the set of squares not in U_{1}, but adjacent to at least one square in U_{1}. Each square in ∂U_{1} lies in ∂U, so is empty. The set ∂U_{1} is not necessarily a connected component of squares in Λ_{l}, however, we show that, for some d, it is connected in $\Lambda_{l, d}$, the d th power of the lattice Λ_{l}, where we join vertices if their distance in the lattice (i.e., their l_{1} distance) is at most d.

Let $d=2\lceil\sqrt{20} R / r\rceil$. Then the blue squares are joined in $\Lambda_{l, d}$. Suppose that ∂U_{1} is not connected in $\Lambda_{l, d}$; i.e., we can partition ∂U_{1} into two non-empty sets A and B with no square in A within d of any square in B. For $i \leq t$ write ∂V_{i} for $\partial U_{1} \cap V_{i}$. Since V_{i} and V_{i}^{c} are both connected in $\Lambda_{l}, \partial V_{i}$ is connected in $\Lambda_{l, 2}$, and hence A and B are both the union of such ∂V_{i}. Every V_{i} with $i \leq t$ contains a blue square so there must be a pair $i, j \leq t$ with $\partial V_{i} \subseteq A, \partial V_{j} \subseteq B$ and blue squares b_{i}, b_{j} with $b_{i} \in V_{i}, b_{j} \in V_{j}$ and l_{1} distance
$d\left(b_{i}, b_{j}\right) \leq d$. The shortest path from b_{i} to b_{j} in Λ_{l} passes through ∂V_{i} and ∂V_{j} and has length at most d, so $d\left(\partial V_{i}, \partial V_{j}\right)<d$, contradicting the assumption that ∂V_{i} and ∂V_{j} were in different components in $\Lambda_{l, d}$.

As before, by the vertex isoperimetric inequality in the grid [3],

$$
\left|\partial U_{1}\right| \geq \min \left\{\sqrt{2\left|U_{1}\right|}, \sqrt{2\left|U_{1}^{c}\right|}\right\} \geq(D / R)^{1 / 2}
$$

Hence, if we have G_{1}, G_{2} both with diameter at least D, we can find a set connected in $\Lambda_{l, d}$ of size $K=(D / R)^{1 / 2}=\sqrt[4]{\pi c^{\prime 2} / c_{+}}$consisting entirely of empty squares. Once again we show that it is unlikely that such a set exists.
$\Lambda_{l, d}$ has maximum degree $2 d^{2}+2 d$. Thus, applying the lemma stated in the undirected case, the number of connected sets of K squares in $\Lambda_{l, d}$ containing a particular square is at most $\left(e\left(2 d^{2}+2 d\right)\right)^{k} \leq\left(4 e d^{2}\right)^{k}$. Since there are $l^{2} \leq n$ squares in Λ_{l}, the probability p that there exists a set connected in $\Lambda_{l, d}$ of empty squares satisfies

$$
\begin{aligned}
p & \leq n\left(4 e d^{2}\right)^{K} e^{-K r^{2} / 20} \\
& \leq n \exp \left(K\left(\log \left(4 e d^{2}\right)-r^{2} / 20\right)\right) \\
& \leq n^{1-K c_{-} / 20 \pi+o(1)}
\end{aligned}
$$

which, again, tends to zero provided we chose c^{\prime} and thus K large enough. Hence the probability that we have an in-component and an out-component each of size at least D tends to zero.

Theorem 15. If $c \geq 0.9967$ then $\mathbb{P}\left(\vec{G}_{n,\lfloor c \log n\rfloor}\right.$ is connected $) \rightarrow 1$ as $n \rightarrow \infty$.
Proof. Suppose that $k=\lfloor c \log n\rfloor$ and $\vec{G}=\vec{G}_{n, k}$ is not connected. Then there will be two points $x, y \in V(\vec{G})$ such that there is no directed path from x to y. We consider two subsets of $V(\vec{G}), C_{x}$ and C_{y}, defined as follows:

$$
C_{x}=\{x\} \cup\left\{x^{\prime}: \text { there is a directed path from } x \text { to } x^{\prime}\right\},
$$

and

$$
C_{y}=\{y\} \cup\left\{y^{\prime}: \text { there is a directed path from } y^{\prime} \text { to } y\right\} .
$$

C_{x} and C_{y} are disjoint, since if we had $z \in C_{x} \cap C_{y}$, there would be a directed path from x to z and another directed path from z to y, giving us a directed path from x to y.

Lemma 14 shows that there exists a $c^{\prime}>0$ such that the probability that both C_{x} and C_{y} have diameter more than $c^{\prime} \sqrt{\log n}$ tends to zero. The proof of Theorem 13 shows that the probability that an out-component C_{x} exists with diameter less than $c^{\prime} \sqrt{\log n}$ tends to
zero since $c>\frac{1}{\log 7}$. We complete the proof by showing that for all $c^{\prime}>0$, the probability that an in-component C_{y} exists with diameter less than $c^{\prime} \sqrt{\log n}$ also tends to zero.

We first illustrate the proof with a simpler proof that $c \geq 1.0293>\frac{1}{\log \gamma}$ is sufficient, where $\gamma=\left(\frac{4 \pi}{3}+\frac{\sqrt{3}}{2}\right) /\left(\frac{\pi}{3}+\frac{\sqrt{3}}{2}\right)$.

Suppose first that no point of C_{y} lies within a distance R of the boundary of S_{n}, where R is as in Lemma 8. Let $z \notin C_{y}$ be the closest point of $V(\vec{G}) \backslash C_{y}$ to C_{y} and y_{z} its nearest neighbour in C_{y}. Write $\rho=\left\|z-y_{z}\right\|$ for the distance between them, and, for an arbitrary point P, write $D_{\rho}(P)$ for the open disc of radius ρ, centered at P. Consider the leftmost point y_{l} and the rightmost point y_{r} of C_{y}. There can be no points in $B=D_{\rho}^{l}\left(y_{l}\right) \cup D_{\rho}^{r}\left(y_{r}\right)$, the left half of $D_{\rho}\left(y_{l}\right)$ or the right half of $D_{\rho}\left(y_{r}\right)$. By the proof of Lemma 8, we may assume $D_{R}^{l}\left(y_{l}\right)$ contains at least k points. Hence $\rho<R, B$ is contained within S_{n}, and $|B|=\left|D_{\rho}(x)\right|=\pi \rho^{2}$. On the other hand, there are at least k points in $A=D_{\rho}(z) \backslash D_{\rho}\left(y_{z}\right)$, since otherwise z would send a directed edge to either y_{z}, or to a point $y^{\prime} \in D_{\rho}(z) \cap D_{\rho}\left(y_{z}\right)$. The first possibility contradicts the hypothesis $z \notin C_{y}$, and for the second possibility, we must have $y^{\prime} \notin C_{y}$ to ensure $z \notin C_{y}$, but then $y^{\prime} \notin C_{y}$ is closer to C_{y} than is z, contradicting the choice of z. Therefore, as shown in Figure 5, there must be at least k points in $A \cup B$, which must all lie in $A \backslash B$. The probability of this happening is at most $\left(\frac{|A \backslash B|}{|A \cup B|}\right)^{k} \leq\left(\frac{|A|}{|A|+|B|}\right)^{k}=\gamma^{-k}$. The number of choices for z, y_{z}, y_{l}, and y_{r} is $O\left(n(\log n)^{3}\right)$, so the probability such a configuration occurs anywhere is at most $n^{1+o(1)} \gamma^{-k}$, which is $o(1)$ for $c>\frac{1}{\log \gamma}$.

If some point of C_{y} is close to an edge or corner of S_{n} we use a single half disc or quarter disc for B, and a similar argument to the one used to complete the proof of Theorem 13 shows that the probability of obtaining a small C_{y} near the boundary is also $o(1)$.

With a little more work, we can obtain a slight improvement by showing there is a region $C \subseteq A$ containing no points in its interior.

Suppose that $w \in D_{\rho}(z)$. Write $\rho^{\prime}=\left\|w-y_{z}\right\|$ and set

$$
\begin{aligned}
& A_{1}=\left(A \backslash D_{\rho^{\prime}}(w)\right) \backslash B \\
& A_{2}=\left(A \cap D_{\rho^{\prime}}(w)\right) \backslash B \\
& A_{3}=\left(D_{\rho^{\prime}}(w) \backslash\left(D_{\rho}(z) \cup D_{\rho}\left(y_{z}\right)\right)\right) \backslash B \\
& A_{4}=B
\end{aligned}
$$

as illustrated in Figure 5 (for simplicity, the set B is not shown). Writing n_{i} for the number of points (other than y_{z}, z, or w) in regions A_{i}, we see that the following must hold:

$$
\begin{equation*}
n_{1}+n_{2} \geq k-1, \quad n_{3}+n_{2} \geq k-1, \quad n_{4}=0 \tag{5}
\end{equation*}
$$

Figure 5: Upper bound, directed case (B not shown)

We need to show that for some w, the probability p of such an arrangement is small. By Lemma 4, we have

$$
\begin{equation*}
\log p=\sum_{i}\left(n_{i}-\left|A_{i}\right|-n_{i} \log \frac{n_{i}}{\left|A_{i}\right|}\right)+O\left(\log \sum n_{i}\right) \tag{6}
\end{equation*}
$$

We now maximize the right hand side of (6). Since (5) becomes more likely if $\left|A_{1}\right|$, $\left|A_{2}\right|$, or $\left|A_{3}\right|$ is increased, we may assume B is disjoint from $A \cup D_{\rho^{\prime}}(w)$. Also, as we shall only be interested in ratios of areas, we first maximize (6) under uniform scaling of areas, giving

$$
n_{1}+n_{2}+n_{3}=\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|+\left|A_{4}\right| .
$$

Now vary the n_{i} subject to $n_{1}+n_{2}$ and $n_{3}+n_{2}$ being fixed. This gives

$$
\eta=\frac{n_{2}}{\left|A_{2}\right|}=\frac{n_{1}}{\left|A_{1}\right|} \frac{n_{3}}{\left|A_{3}\right|} .
$$

Also, by varying just n_{1}, we see that either $n_{1}+n_{2}=k-1$ or $n_{1}=\left|A_{1}\right|$. Similarly, either $n_{3}+n_{2}=k-1$ or $n_{3}=\left|A_{3}\right|$. Hence

$$
\begin{aligned}
\log p & =\sum-n_{i} \log \frac{n_{i}}{\left|A_{i}\right|}+O\left(\log \sum n_{i}\right) \\
& =-n_{1} \log \frac{n_{1}}{\left|A_{1}\right|}-n_{3} \log \frac{n_{3}}{\left|A_{3}\right|}-n_{2} \log \left(\frac{n_{1} n_{3}}{\left|A_{1}\right|\left|A_{3}\right|}\right)+O\left(\log \sum n_{i}\right) \\
& =-\left(n_{1}+n_{2}\right) \log \frac{n_{1}}{\left|A_{1}\right|}-\left(n_{3}+n_{2}\right) \log \frac{n_{3}}{\left|A_{3}\right|}+O\left(\log \sum n_{i}\right) \\
& =-(k-1) \log \left(\frac{n_{1} n_{3}}{\left|A_{1}\right|\left|A_{3}\right|}\right)+O\left(\log \sum n_{i}\right) .
\end{aligned}
$$

Therefore,

$$
p=\eta^{-(k-1)} n^{o(1)} .
$$

Define γ^{\prime} by $\left(\log \gamma^{\prime}\right)^{-1}=0.9967$ and let C be the set of points $w \in A$ such that

$$
\sum_{i}\left|A_{i}\right|>\gamma^{\prime}\left|A_{2}\right|+\sqrt{4 \gamma^{\prime}\left|A_{1}\right|\left|A_{3}\right|} \quad \text { and } \quad\left|A_{3}\right|<2\left|A_{1}\right| .
$$

We shall show that with the above constraints

$$
\eta=\frac{n_{2}}{\left|A_{2}\right|}=\frac{n_{1} n_{3}}{\left|A_{1}\right|\left|A_{3}\right|}>\gamma^{\prime} .
$$

If $n_{3}+n_{2}>k-1=n_{1}+n_{2}$, then $n_{3}=\left|A_{3}\right|$ and so $2\left|A_{1}\right|>\left|A_{3}\right|=n_{3}>n_{1}=\eta\left|A_{1}\right|$. But then $\eta<2$ and $\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{4}\right|=n_{1}+n_{2}<2\left(\left|A_{1}\right|+\left|A_{2}\right|\right)$, contradicting the fact that $\left|A_{1}\right|+\left|A_{2}\right|<\left|A_{4}\right|$. On the other hand, if $n_{1}+n_{2}>k-1=n_{3}+n_{2}$ then $\left|A_{1}\right|=n_{1}>n_{3}=\eta\left|A_{3}\right|$. But $\left|A_{3}\right| \geq\left|A_{1}\right|$, so $\eta \leq 1$. But then $n_{1}+n_{2}+n_{3} \leq\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|$ and so $\left|A_{4}\right| \leq 0$, a contradiction. Similarly, if $n_{1}+n_{2}>k-1$ and $n_{3}+n_{2}>k-1$ then $\eta=1$ and $\left|A_{4}\right| \leq 0$ again. Hence we may assume $n_{1}+n_{2}=n_{2}+n_{3}=k-1, n_{1}=n_{3}$ and so $\sum_{i}\left|A_{i}\right|=n_{2}+\left(n_{1}+n_{3}\right)=n_{2}+\sqrt{4 n_{1} n_{3}}=\eta\left|A_{2}\right|+\sqrt{4 \eta\left|A_{1}\right|\left|A_{3}\right|}$. But this then implies $\eta>\gamma^{\prime}$ as required.

Computer calculations show that

$$
\frac{|B|+|A \backslash C|}{|A \backslash C|}>\gamma^{\prime}
$$

Now suppose that the region C contains no points in its interior. Then we have at least k points in the region $(A \backslash C) \cup B$, all of which are constrained to lie in $A^{\prime}=A \backslash(C \cup B)$ (see Figure 5). This event has probability at most $\gamma^{\prime-k} n^{o(1)}=o\left(n^{-1}\right)$. On the other hand, the probability that a configuration exists with a point $w \in C$ is also at most $\gamma^{\prime-k} n^{o(1)}=o\left(n^{-1}\right)$. Therefore, whp \vec{G} is connected.

5 Sharp threshold

Theorems 5 and 13 show that if $n=n(k) \leq e^{k / 0.5139}$ then $\lim _{k \rightarrow \infty} \mathbb{P}\left(G_{n, k}\right.$ is connected $)=$ 1 and if $n=n(k) \geq e^{k / 0.3043}$ then $\lim _{k \rightarrow \infty} \mathbb{P}\left(G_{n, k}\right.$ is connected $)=0$. There is no doubt that there is a constant $c, 1 / 0.5139<c<1 / 0.3043$, such that if $\varepsilon>0$ then for $n=$ $n(k) \leq e^{(c-\varepsilon) k}$ we have $\lim _{k \rightarrow \infty} \mathbb{P}\left(G_{n, k}\right.$ is connected) $=1$ and for $n=n(k) \geq e^{(c+\varepsilon) k}$ we have $\lim _{k \rightarrow \infty} \mathbb{P}\left(G_{n, k}\right.$ is connected $)=0$. Although we cannot show the existence of this constant c, let alone determine it, in this brief section we shall show that the transition from connectedness to disconnectedness is considerably sharper than these relations indicate: the length of the window is $O(n)$ rather than $n^{1+o(1)}$. To formulate this result, for $k \geq 1$ and $0<p<1$, set

$$
n_{k}(p)=\max \left\{n: \mathbb{P}\left(G_{n, k} \text { is connected }\right) \geq p\right\}
$$

Theorem 16. Let $0<\varepsilon<1$ be fixed. Then, for sufficiently large k,

$$
n_{k}(\varepsilon)<C(\varepsilon)\left(n_{k}(1-\varepsilon)+1\right)
$$

where

$$
C(\varepsilon)=\left\lceil\frac{6}{\varepsilon} \log \left(\frac{1}{\varepsilon}\right)+1\right\rceil^{2}
$$

Proof. Write $M=\left\lceil\frac{6}{\varepsilon} \log \left(\frac{1}{\varepsilon}\right)+1\right\rceil$ and $N=n_{k}(1-\varepsilon)+1$, so that the probability that we have at least two components in $G_{N, k}$ is at least ε. By Theorems 5 and 13, we may assume, by taking k sufficiently large, that $0.3043 \log N<k<0.5139 \log N$. Therefore, by Lemma 8, we see that whp no edge in $G_{N, k}$ has length greater than $R=\sqrt{c_{+}(\log N) / \pi}$.

We say that a point $x \in V\left(G_{N, k}\right)$ is close to a side s of S_{N} if x is less than distance $2 R$ from s, and call a component G^{\prime} of $G_{N, k}$ close to s if it contains points which are close to s. Further, we say that $x \in V\left(G_{N, k}\right)$ is central if it is not close to any side s of S_{N}, and call a component G^{\prime} of $G_{N, k}$ central if it consists entirely of central points. Finally, we call a component G^{\prime} of $G_{N, k}$ small if it has diameter at most $c^{\prime} \sqrt{\log N}$, where c^{\prime} is as in Lemma 12.

By Lemma 12, with probability more than $\frac{\varepsilon}{2}, G_{N, k}$ contains a small component, which can be close to at most two sides of S_{N}. Write α for the probability that we have a small central component of $G_{N, k}$. Write β for the probability that we have a small component of $G_{N, k}$ which is close to exactly one side of S_{N}, and γ for the probability that we have a component of $G_{N, k}$ close to two sides of S_{N} (so that it lies at a corner of S_{N}). We have $\alpha+\beta+\gamma>\frac{\varepsilon}{2}$, and the proof of Theorem 13 shows that

$$
\gamma=n^{o(1)} 3^{-k} \rightarrow 0
$$

as $k \rightarrow \infty$. Therefore we may assume that at least one of α and β is greater than $\frac{\varepsilon}{6}$ (we do not know which one). If we specify one side s of S_{N}, the probability that we obtain a small component G^{\prime} which may only be close to s is thus at least $\frac{\varepsilon}{24}$.

Now we consider the larger square $S_{M^{2} N}$, and tessellate it with copies of S_{N}. We only consider the small squares of the tessellation incident with the boundary of $S_{M^{2} N}$. Considering sides of these copies of S_{N} lying on the boundary of $S_{M^{2} N}$, we see that we have $4(M-1)$ independent opportunities to obtain a small component G^{\prime} in one of the small squares S, in such a way that G^{\prime} can only intersect the boundary of S on the boundary of $S_{M^{2} N}$. Such a component will also be isolated in $G_{M^{2} N, k}$, since whp no edge of $G_{M^{2} N, k}$ has length greater than $\sqrt{c_{+}\left(\log M^{2} N\right) / \pi}<2 R$ for sufficiently large k (and thus N). Therefore, if p is the probability that $G_{M^{2} N, k}$ is connected, we have

$$
p<\left(1-\frac{\varepsilon}{24}\right)^{4(M-1)}<e^{-\frac{\varepsilon}{6}(M-1)}<\varepsilon
$$

completing the proof.

6 Coverage

Let \mathcal{P}_{n} be a Poisson process of intensity one in the square S_{n}. For any $x \in \mathcal{P}_{n}$, let $r(x, k)$ be the distance from x to its k th nearest neighbour (infinite if this does not exist), and let $B_{k}(x)=D_{r(x, k)}(x) \cap S_{n}$. Let $\mathcal{C}_{k}\left(\mathcal{P}_{n}\right)=\bigcup_{x \in \mathcal{P}} B_{k}(x)$. We say that \mathcal{P}_{n} is a k-cover if $\mathcal{C}_{k}\left(\mathcal{P}_{n}\right)=S_{n}$.

First we prove a quick lemma bounding the Poisson distribution.
Lemma 17. Suppose that \mathcal{P} is a Poisson process of intensity one in the square S_{n} and fix c and $\varepsilon>0$. Then there exists $\delta>0$ such that, whp, there does not exist a point x of the process with

$$
\begin{equation*}
r(x,\lfloor c \log n\rfloor)-r(x,\lfloor(c-\varepsilon) \log n\rfloor)<\delta \sqrt{\log n} \tag{7}
\end{equation*}
$$

Proof. Let $k=\lfloor c \log n\rfloor$ and $k^{\prime}=\lfloor(c-\varepsilon) \log n\rfloor$. By Lemma 8 we may assume that no edge in $G_{n, k}$ is longer than $R=c_{m} \sqrt{\log n}$, where $c_{m}=\sqrt{c_{+} / \pi}$ in the notation of Lemma 8. For a fixed point x, condition (7) only holds if the annulus of width $\delta \sqrt{\log n}$ and outer diameter $r(x, k)$ contains at least $\lfloor\varepsilon \log n\rfloor-1$ points. This annulus, A, say, has area at most $2 \pi R \delta \sqrt{\log n}=2 \pi \delta c_{m} \log n$.

The number of points in A is stochastically dominated by a Poisson distribution with mean $2 \pi \delta c_{m} \log n$. Thus the probability p that there are more than $\lfloor\varepsilon \log n\rfloor-1$ points in A satisfies

$$
\log p \leq-2 \pi \delta c_{m} \log n-\varepsilon \log n \log \left(\frac{\varepsilon}{e 2 \pi \delta c_{m}}\right)+O(\log \log n)
$$

which is less than $-\log n$ provide we choose δ small enough. Hence the probability that any point fails (7) is $o(1)$.

Theorem 18. Fix $c>c^{\prime}>0$.
If $\mathbf{w h p} \vec{G}_{n,\left\lfloor c^{\prime} \log n\right\rfloor}$ does not have a vertex of in-degree zero. Then $\mathbf{w h p} \mathcal{P}_{n}$ is a $\lfloor c \log n\rfloor$ cover.

Conversely, suppose that $\mathbf{w h p} \mathcal{P}_{n}$ is a $\left\lfloor c^{\prime} \log n\right\rfloor$-cover. Then whp $\vec{G}_{n,\lfloor\log n\rfloor}$ does not have a vertex of in-degree zero.

Consequently, if $c \leq 0.7209$ then whp \mathcal{P}_{n} is not $a\lfloor c \log n\rfloor$-cover, while if $c \geq 0.9967$, $\mathbf{w h p} \mathcal{P}_{n}$ is a $\lfloor c \log n\rfloor$-cover.

Proof. Let $k=\lfloor c \log n\rfloor$ and $k^{\prime}=\left\lfloor c^{\prime} \log n\right\rfloor$. Suppose that it is not true that, whp, \mathcal{P}_{n} is a k-cover. Then there exists $\varepsilon>0$, such that, for infinitely many n, the probability that \mathcal{P}_{n} is not a k-cover is at least ε. Let $n^{\prime}=n(1+1 / \log n)$. We show that

$$
\mathbb{P}\left(\vec{G}_{n^{\prime}, k^{\prime}} \text { has a vertex of in-degree zero }\right)>\varepsilon^{\prime}
$$

for some $\varepsilon^{\prime}>0$.
By Lemma 17, there exists $\delta>0$ such that, whp, $r(x, k)-r\left(x, k^{\prime}\right) \geq \delta \sqrt{\log n}$ for every $x \in \mathcal{P}_{n}$. Thus,

$$
\begin{aligned}
\mathbb{P}\left(S_{n} \backslash \mathcal{C}_{k^{\prime}}\left(\mathcal{P}_{n}\right) \text { contains a ball of radius } \delta \sqrt{\log n}\right) & \geq(1-o(1)) \mathbb{P}\left(\mathcal{P}_{n} \text { is not a } k \text {-cover }\right) \\
& \geq(1-o(1)) \varepsilon .
\end{aligned}
$$

We identify $\mathcal{P}_{n^{\prime}}$ with $\mathcal{P}_{n} \cup \mathcal{P}_{n / \log n}$ where all squares are scaled to be the same size as S_{n}. Let $R=\sqrt{c_{+}(\log n) / \pi}=c_{m} \sqrt{\log n}$ be as in Lemma 8. Fix \mathcal{P}_{n} such that $\vec{G}_{n, k^{\prime}}$ has no edge of length more than R, and that $\mathcal{C}_{k^{\prime}}\left(\mathcal{P}_{n}\right)^{c}$ contains a disc of radius $\delta \sqrt{\log n}$, and let y be the centre of such a disc. The probability that the disc $D_{\delta \sqrt{\log n}}(y)$ contains exactly one point of $\mathcal{P}_{n / \log n}$ is a constant independent of n, as is the probability that the $\operatorname{disc} D_{\left(c_{m}+\delta\right) \sqrt{\log n}}(y)$ contains no other point of $\mathcal{P}_{n / \log n}$. Hence there exists $\varepsilon_{1}>0$ such that

$$
\mathbb{P}\left(\vec{G}_{n^{\prime}, k^{\prime}} \text { has a vertex of in-degree zero } \mid \mathcal{P}_{n}\right) \geq \varepsilon_{1},
$$

since this event occurs provided both the previous events occur. Combining these, we see that

$$
\left.\mathbb{P}\left(\vec{G}_{n^{\prime}, k^{\prime}}\right) \text { has a vertex of in-degree zero }\right) \geq(1-o(1)) \varepsilon \varepsilon_{1} \text {. }
$$

as claimed.
Conversely, suppose that it is not true that, whp, $\vec{G}_{n, k}$ does not have a vertex of indegree zero. As before, this implies that there exists $\varepsilon>0$ such that, for infinitely many n, the probability $\vec{G}_{n, k}$ has a vertex of in-degree zero is at least ε.

Let R be as in Lemma 8. Fix a configuration \mathcal{P}_{n} with a point y of zero in-degree, no edge length longer than R, and no vertex with more than $c_{1} \log n$ points within distance $2 R$. The first condition occurs with probability at least ε, the second condition fails with probability tending to zero, as does the final condition provided that c_{1} is large enough. (For the last assertion, set $c_{0}=4 c_{+} / c_{-}$and apply Lemma 8 with n replaced with $n^{c_{0}}$. Then no vertex of $S_{n} c_{0} \cap \mathcal{P} \supset S_{n} \cap \mathcal{P}$ has more than $\left\lfloor c \log n^{c_{0}}\right\rfloor \leq c c_{0} \log n$ points within a disc of area $c_{-} \log n^{c_{0}}=\pi(2 R)^{2}$.) Fix $\delta>0$ and let $n^{\prime}=(1-\delta) n$. Similarly to before we identify \mathcal{P}_{n} with $\mathcal{P}_{n^{\prime}} \cup \mathcal{P}_{\delta n}$ (both scaled to the same size S_{n}) by independently assigning each vertex of \mathcal{P}_{n} to $\mathcal{P}_{\delta n}$ with probability δ. Then

$$
\mathbb{P}\left(\mathcal{P}_{n^{\prime}} \text { is not a } k^{\prime} \text { cover } \mid \mathcal{P}_{n}\right) \geq \varepsilon^{\prime}
$$

since this event occurs if the point y is in $\mathcal{P}_{\delta n}$ and no disc of radius R containing y contains more than $k-k^{\prime} \geq\left(c-c^{\prime}\right) \log n-1$ points of $\mathcal{P}_{\delta n}$. The number of points in $D_{2 R}(y)$ is at most $c_{1} \log n$, so the number of points in $D_{2 R}(y) \cap \mathcal{P}_{\delta n}$ is stochastically dominated by the distribution $\operatorname{Bin}\left(\left\lfloor c_{1} \log n\right\rfloor, \delta\right)$. Thus, with probability at least $1 / 2, D_{2 R}(y)$ contains
at most $c_{1} \delta \log n$ points of $\mathcal{P}_{\delta n}$. Hence, provided that $c-c^{\prime}>c_{1} \delta$, the latter condition is satisfied with probability at least one half for large enough n. The former condition, is independent of the latter, and occurs with probability δ. Combining these, we see that

$$
\mathbb{P}\left(\mathcal{P}_{n^{\prime}} \text { is not a } k^{\prime} \text { cover }\right) \geq(1-o(1)) \delta \varepsilon^{\prime} / 2 .
$$

7 Numerical results

Computer simulations suggest that for $k \geq 3$ there exists a giant component in $G_{n, k}$ which contains almost all of the vertices (over 98.5% for $k=3$) with a few isolated small components. On the other hand, for $k \leq 2$ all components are small. As we are interested mainly in large k we have confined our numerical results to $k \geq 3$, since these are more likely to reflect the situation when k is large.

For $k \geq 3$ the small components are relatively few and far between (more so for larger k). As a result one would expect that for a large rectangular region A, the small components would be roughly Poisson distributed with constant density throughout the area A, with perhaps a somewhat different density near the sides and corners of A. Hence we would expect the average number of small components in A to be approximately Poisson distributed with mean $\alpha_{k}|A|+\beta_{k}|\partial A|+4 \gamma_{k}$, where α_{k} represents the density of components far from the boundary of A, β_{k} gives a correction for "edge effects", and γ_{k} gives a correction for "corner effects". By considering rectangles with various sizes and aspect ratios, one can investigate numerically the constants α_{k}, β_{k} and γ_{k}. Computer simulations were performed on large rectangular regions for $3 \leq k \leq 8$ and the number and sizes of the small components were recorded. The numbers of components found were fitted by the linear formula $\alpha_{k}|A|+\beta_{k}|\partial A|+4 \gamma_{k}$ and for all k considered this did indeed fit the data extremely well. In total an area of over 10^{12} was simulated for each k from 3 to 8 . Estimates of α_{k}, β_{k} and γ_{k} are given in Table 1.

The values of β_{k} and γ_{k} were positive, indicating that small components are more common near the boundary and corners of A. Figure 6 plots the probability that $G_{n, k}$ is connected and the average number of components against n for $3 \leq k \leq 8$. The predictions based on the number of components being distributed as $1+\operatorname{Po}\left(\alpha_{k} n+4 \beta_{k} \sqrt{n}+4 \gamma_{k}\right)$ are also given and are in excellent agreement for large n. We know from Theorem 13 that $\gamma_{k} \rightarrow 0$, however it also appears that $\beta_{k} \ll \sqrt{\alpha_{k}}$. Hence, if A is the square S_{n}, when n is large enough so that the k nearest neighbour model has a reasonable chance of being disconnected, the expected number of components is dominated by the term $\alpha_{k} n$. One would therefore expect that the probability that the model is connected to be approximated

k	$-\log \alpha_{k}$	$-\log \beta_{k}$	$-\log \gamma_{k}$	$\mathbb{E}\|C\|$
3	$6.2259[1]$	$4.9876[3]$	$2.8685[13]$	$7.1031[2]$
4	$9.1828[1]$	$7.1871[6]$	$4.6905[22]$	$6.7519[3]$
5	$12.0917[4]$	$9.3145[13]$	$6.2918[33]$	$7.3551[9]$
6	$15.0052[17]$	$11.4542[31]$	$7.8476[53]$	$8.1728[30]$
7	$17.9340[71]$	$13.6015[79]$	$9.4211[93]$	$9.0659[116]$
8	$20.8979[310]$	$15.7770[221]$	$11.0057[179]$	$10.0022[425]$

Table 1: Best fit data for $\alpha_{k}, \beta_{k}, \gamma_{k}$, and the average size of small components. Numbers in [] indicate 1 standard deviation error in last digit.

Figure 6: Probability that $G_{n, k}$ is connected (solid line, left scale), average number of components (dotted line, right scale), and theoretical predictions based on number of components being given by $1+\operatorname{Po}\left(\alpha_{k} n+4 \beta_{k} \sqrt{n}+4 \gamma_{k}\right)$ (dashed line, either scale). Note that lines are indistinguishable for $k>5$. The left hand scale is exponentially related to the right hand scale.

Figure 7: Proportion of small components that are of size $k+x$. The dotted line is the theoretical prediction for large k based on the lower bound argument. Error bars represent 1 standard deviation.
very well by $\exp \left\{-\alpha_{k} n\right\}$, and to be fairly insensitive to the shape of the region S_{n}, provided the boundary is reasonably smooth and not excessively long. One would also expect that for fixed n the critical value of k occurs when $\alpha_{k} \sim 1 / n$. The data suggests that this critical k is between about $0.3 \log n$ and $0.4 \log n$, consistent with the theoretical bounds, and closer to the lower bound.

If one believes that the lower bound construction of Theorem 5 is in fact asymptotically correct, then the sizes of the components in the interior should be geometrically distributed with minimum value $k+1$ and ratio about $e^{-\mu} \approx 0.3016$, where μ is the constant found in the proof of Theorem 5 . Of course, this assumes that k is very large. For more modest values of k, the lower bound construction suggests that the density of components of size $t \geq k+1$ should be about $\exp \left\{-\eta_{k} \sqrt{t}\right\}$ for some constant η_{k}. To see this, consider a disc of area t with t points in it and insist that a vertex-free annulus of constant width surrounds it. If this width is large enough, the t points inside the disc should form a component, and the vertex-free region is of area $O(\sqrt{t})$, so this configuration has probability about

Figure 8: Proportion of small components that are of size t versus \sqrt{t} for $3 \leq k \leq 6$. Error bars represent 1 standard deviation.

	$k=3$	$k=4$	$k=5$	$k=6$	$k=7$	$k=8$
n_{C}	$2,174,360,691$	$113,019,084$	$6,163,109$	334,633	17,923	924
$\max \|C\|$	547	106	65	37	27	20

Table 2: Number and maximum size of small components in simulation results in area of size $2^{40} \approx 10^{12}$.
$\exp \left\{-\eta_{k} \sqrt{t}\right\}$. The component size distribution for components near the edge of A is different than for components near the centre of A, so we only considered components far from the boundary of A. (Numerical evidence suggests that the components near the boundary are on average slightly larger than components far from the boundary.) Table 2 gives the total number of components found in our simulations and the maximum size of a small component. Figures 6 and 7 plot the proportion of small components found against their size, first using a linear scale in component size and second versus \sqrt{t}. For $k \geq 4$, the plot against \sqrt{t} does indeed appear to be close to linear, however for $k=3$ there does seem to be some deviation from linearity. The average small component sizes for components far from the boundary are given in Table 1.

8 Conjectures

We end with three extremely natural conjectures we would very much like to see solved. The first was mentioned briefly in the introduction.

Conjecture 1. Is there a critical value of c such that, for $c^{\prime}<c, G_{n,\left\lfloor c^{\prime} \log n\right\rfloor}$ is disconnected $\mathbf{w h p}$, and, for $c^{\prime \prime}>c, G_{n,\left\lfloor c^{\prime \prime} \log n\right\rfloor}$ is connected whp? In the terminology introduced in the introduction, is it true that $c_{l}=c_{u}$? Is it true for the directed graphs $\vec{G}_{n, k}$?

Conjecture 2. For the directed graphs $\vec{G}_{n, k}$, write

$$
\begin{aligned}
\vec{c}_{l} & =\sup \left\{c: \mathbb{P}\left(\vec{G}_{n,\lfloor\log n\rfloor} \text { is connected }\right) \rightarrow 0\right\}, \text { and } \\
\vec{c}_{\text {iso }} & =\sup \left\{c: \mathbb{P}\left(\vec{G}_{n,\lfloor\operatorname{cog} n\rfloor} \text { contains a vertex with zero in-degree }\right) \rightarrow 1\right\} .
\end{aligned}
$$

Trivially, we have $\vec{c}_{l} \geq \vec{c}_{\text {iso }}$. Is it in fact true that $\vec{c}_{l}=\vec{c}_{\text {iso }}$?

Conjecture 3. Is the threshold for connectivity of $G_{n, k}$ sharp in k ? In other words, setting

$$
k_{n}(p)=\min \left\{k: \mathbb{P}\left(G_{n, k} \text { is connected }\right) \geq p\right\},
$$

is it true that, for any $0<\varepsilon<1$, there exists $C(\varepsilon)$ such that, for all sufficiently large n,

$$
k_{n}(1-\varepsilon)<C(\varepsilon)+k_{n}(\varepsilon) ?
$$

"Sharpness in n " was proved in Section 5, but perhaps this is more natural.

9 Acknowledgements

We would like to thank Michael Lemmon and Martin Haenggi for drawing this problem to our attention.

References

[1] P. Balister, B. Bollobás and M. Walters, Continuum percolation with steps in the square or the disc, to appear in Random Structures and Algorithms.
[2] B. Bollobás, Random Graphs, second edition, Cambridge University Press, 2001.
[3] B. Bollobás and I. Leader, Edge-isoperimetric inequalities in the grid, Combinatorica 11 (1991), 299-314.
[4] E.N. Gilbert, Random plane networks, Journal of the Society for Industrial Applied Mathematics 9 (1961), 533-543.
[5] J.M. Gonzáles-Barrios and A.J. Quiroz, A clustering procedure based on the comparison between the k nearest neighbors graph and the minimal spanning tree, Statistics and Probability Letters 62 (2003), 23-34.
[6] B. Hajek, Adaptive transmission strategies and routing in mobile radio networks, Proceedings of the Conference on Information Sciences and Systems (1983), 373-378.
[7] T. Hou and V. Li, Transmission range control in multihop packet radio networks, IEEE Transactions on Communications COM-34 (1986), 38-44.
[8] L. Kleinrock and J.A. Silvester, Optimum transmission radii for packet radio networks or why six is a magic number, IEEE Nat. Telecommun. Conf., December 1978, 4.3.14.3.5.
[9] R. Mathar and J. Mattfeldt, Analyzing routing strategy NFP in multihop packet radio network on a line, IEEE Transactions on Communications 43 (1995), 977-988.
[10] R.D. Maudlin (Ed.), The Scottish Book, Birkhäuser Verlag, Boston, Basel, Stuttgart, 1979.
[11] R. Meester and R. Roy, Continuum Percolation, Cambridge University Press, 1996.
[12] J. Ni and S. Chandler, Connectivity properties of a random radio network, Proceedings of the IEE - Communications 141 (1994), 289-296.
[13] M.D. Penrose, The longest edge of the random minimal spanning tree, Annals of Applied Probability 7 (1997), 340-361.
[14] M.D. Penrose, Random Geometric Graphs, Oxford University Press, 2003.
[15] J. Quintanilla, S. Torquato and R.M. Ziff, Efficient measurement of the percolation threshold for fully penetrable discs, J. Phys. A 33 (42): L399-L407 (2000).
[16] J.A. Silvester, On the spatial capacity of packet radio networks, Department of Computer Science, UCLA, Engineering Report UCLA-ENG-8021, May 71980.
[17] H. Takagi and L. Kleinrock, Optimal transmission ranges for randomly distributed packet radio terminals, IEEE Transactions on Communications COM-32 (1984), 246257.
[18] F. Xue and P.R. Kumar, The number of neighbors needed for connectivity of wireless networks, Wireless Networks 10 (2004), 169-181.

[^0]: *Research supported by NSF grant EIA-0130352
 ${ }^{\dagger}$ University of Memphis, Department of Mathematics, Dunn Hall, 3725 Norriswood, Memphis, TN 38152, USA
 ${ }^{\ddagger}$ Research supported by NSF grants DMS-9970404 and EIA-0130352 and DARPA grant F33615-01C1900
 §Trinity College, Cambridge CB2 1TQ, UK
 ${ }^{4}$ Research supported by NSF grant ITR-0225610

