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Connectivity of random k-nearest neighbour graphs

Paul Balister*' Béla Bollobas Amites Sarkar'¥
Mark Walters*$Y

October 25, 2006

Abstract

Let P be a Poisson process of intensity one in a square S, of area n. We construct
a random geometric graph G, ; by joining each point of P to its k = k(n) nearest
neighbours. Recently, Xue and Kumar proved that if £ < 0.074logn then the prob-
ability that G, ; is connected tends to zero as n — oo, while if £ > 5.1774logn then
the probability that Gy, j is connected tends to one as n — oo. They conjectured that
the threshold for connectivity is k£ = (14 o0(1)) log n. In this paper we improve these
lower and upper bounds to 0.3043 logn and 0.5139 log n respectively, disproving this
conjecture. We also establish lower and upper bounds of 0.7209 log n and 0.9967 log n
for the directed version of this problem.

A related question concerns coverage. With G, ; as above, surround each vertex
by the smallest (closed) disc containing its k& nearest neighbours. We prove that
if £ < 0.72091logn then the probability that these discs cover S, tends to zero as
n — oo, while if £k > 0.9967 logn then the probability that the discs cover S, tends
to one as n — oo.

1 Introduction

Suppose n radio transceivers are scattered at random over a desert. Each radio is
able to establish a direct two-way connection with the k radios nearest to it. In addition,
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messages can be routed via intermediate radios, so that a message can be sent indirectly
from radio S to radio T" through a series of radios S = 51,55, ...,95, =T, each one having
a direct connection to its predecessor. How large does k£ have to be to ensure that any two
radios can communicate (directly or indirectly) with each other?

To make this precise, we define a random geometric graph G(A, A, k) as follows. Let
P be a Poisson process of intensity A in a region A, and join every point of P to its k
nearest neighbours. We would like to know the values of k for which the resulting graph
G(A, \ k) is likely to be connected. Throughout this paper, distance is measured using
the Euclidean [y norm, and is denoted by || ||.

There are two equivalent ways of viewing the problem. The first is to fix the area A
and let A — oo. In the second formulation, we instead fix A = 1 and grow the region A
while keeping its shape fixed, so that the expected number of points in A again increases.
As this is the formulation we shall use, we abbreviate G(A4, 1, k) to G(A, k). We shall take
A = S, the square of area n (not side length n), which ensures that the expected number
of points in our region is n. (However, as it turns out, the shape is essentially irrelevant.)
Thus we are interested in the values of k = k(n) for which G, = G(S,, k) is likely to be
connected, as n — oo.

Much of the previous work on this problem has been done with the above application
(namely, to wireless ad-hoc networks) in mind. In [6, 7, 8 12, 16, 17] the network is
modeled as a Poisson process in the plane, while in [9] the nodes (or transceivers) are
located along a line.

Before we get to our main results, we observe that two essentially trivial arguments
give the right order of magnitude for k: specifically, that there exist positive constants ¢;
and cy so that if £ < ¢;logn then the probability that G, 5 is connected tends to zero as
n — oo, and if k > cylogn then the probability that G, is connected tends to one as
n — oo. (All logarithms in this paper are to base e). Throughout this paper, we shall say
that an event occurs with high probability (whp) if it occurs with probability tending to
one as n — oo. Thus, if k < ¢;logn then G, is disconnected whp, and if £ > cologn
then G, is connected whp.

Let us tessellate the square S,, with small squares ); of area logn — O(1), where the
(positive) O(1) term is chosen so that the side length of @; exactly divides that of S,.
Then the probability that a small square contains no points of the process is e~ 87+01)
O(n™) = 0(107%"), so that whp every small square contains at least one point. Using the
inequality r! > (r/e)", the probability that a disc of radius v/5log n (area 5mlogn) contains
more than k = |5melogn]| < 42.7logn points is at most

e~ dmlogn (7(5”(1]3?1‘));“1) (1 + 5’;%" +.. ) <emoen(p el et ) =0(nY),



so that whp every point has at most £ points within distance y/5logn. Thus whp every
point of G, contained in a square ();, is joined to every point in @);, and also to every
point in every adjacent square. This is enough to make G, connected.

Further, if & is much smaller than logn, then whp G, will not be connected. For
consider a configuration of three concentric discs Dy, D3 and Ds, of radii r, 3r and 5r
respectively, where mr? = k + 1. Call the configuration bad if (I) D; contains at least k + 1
points, (IT) the annulus D3 \ D; contains no points, and (III) the intersection of Ds \ Dj
with any disc of radius 2r centered at a point P on the boundary of Dj contains at least
k + 1 points. Now if a bad configuration occurs anywhere in G, , then G, ; will not be
connected, because the k£ nearest neighbours of a point in D; all lie within D; and the k
nearest neighbours of a point outside Dj all lie outside D3. Hence there will be no edge of
Gn connecting D to S, \ Ds. Condition (I) holds with probability approximately 1/2,
condition (II) holds with probability e=8*+Y and condition (IIT) holds with probability
1 — o(1) since a disc of radius 2r around a point on the boundary of Dj is very likely
to contain at least 2(k + 1) points. Hence for & < (1 — ¢)(logn)/8, the probability of a
configuration being bad is p > (1/2 — o(1))n~'*¢. Since we can fit linn copies of D5 in S,,,
and each is bad independently with probability p, the probability that G, ; is connected
is at most

(1-— p)bcg_n" < exp(—C'n°/logn) — 0,

for k < (1 —¢)(logn)/8.
These elementary arguments indicate that we should focus attention on the range
k = O(logn). Indeed, defining ¢ and ¢, by

c; = sup{c : P(Gy,|ciogn] is connected) — 0},
and
cu = inf{c : P(Gy,|clogn) is connected) — 1},

we have just shown that
0.125 < ¢ < ¢, < 42.7.

By making use of a substantial result of Penrose [13], Xue and Kumar [18] improved the
upper bound to
Cu < 5.1774,

although a bound of

—1
Cy < {210g (%)} ~ 3.8597

can be read out of earlier work of Gonzales-Barrios and Quiroz [5].



It seems likely that ¢; = ¢, = ¢, and Xue and Kumar asked whether or not ¢ = 1. In
this paper we improve the above bounds considerably, disproving this conjecture.

The methods used in this paper are new and specific to this problem — however, it is
interesting to compare our results with those relating to two similar problems. The first
also concerns a Poisson process of intensity 1 in a region A. This time we join each point
to all other points within a radius r, obtaining the graph G,.(A): we shall refer to this as
the disc model. This model originated in a paper of Gilbert [4]. He considered the model
in the infinite plane, and was interested in the probability P,(co) that an arbitrary vertex
of G,(R?) belongs to an infinite component. Define rqj to be the supremum of the r for
which P,(0c0) = 0. Gilbert showed that

1.75 < 7mr2. < 17.4.

crit

Simulations [1, 15] suggest 772, ~ 4.512. The study of G,(R?) is known as continuum
percolation, and is the subject of a monograph by Meester and Roy [11]. Many authors
reserve the phrase “random geometric graphs” for the graphs G, (A): however we shall use
it in a more general context, so that it includes the graphs G, ;, as well.

Regarding connectivity, Penrose [13] showed that if A = S, and 7r? = clogn, so that
each point has on average clogn neighbours, then there is a critical value of ¢, in the sense
described above, and that it equals one. This is the result used by Xue and Kumar in the
work cited above. There is an analogous result for classical random graphs: if in a random
graph G = G(n,p) the average degree is clogn, then if ¢ < 1, whp G is not connected,
while if ¢ > 1, whp G is connected. In both cases, the obstruction for connectivity is the
existence of isolated vertices, in the sense that whp the graph becomes connected as soon
as it has no isolated vertices.

In our problem we expressly forbid isolated vertices, indeed, each vertex has degree at
least k. Thus the obstruction for connectivity must involve more complicated extremal
configurations, making it harder to obtain precise results. Another complication is that
the average vertex degree is not exactly k, but somewhere between k and 2k. (In fact,
it is easy to show that for & — oo, the average degree is (1 + o(1))k.) This motivates
the study of the directed case, where, in a Poisson process of intensity 1 in a region A,
we place directed edges pointing away from each point towards its k& nearest neighbours.
This ensures that in the resulting graph é(A, k), every vertex has out-degree exactly k.
Again, we shall only consider the case A = S,: we further let £k = |clogn| and write
anﬁk = @(Sn, k). In this variant, we wish to know how large ¢ should be to guarantee a
directed path between any two vertices whp. Clearly the threshold value of ¢, if it exists,
will be as least as large as in the undirected case. We provide upper and lower bounds for
this problem as well.



At first sight it might seem that the following random graph problem might shed some
light on the situation: in a graph on n vertices, join each vertex to k& randomly chosen
others. For what values of k is the resulting graph G, jou connected whp? Surprisingly,
this question was posed by Ulam [10] in 1935 — see also page 40 of [2]. Here also we have
expressly forbidden isolated vertices, however, it is easy to show that even k = 2 is enough
to ensure connectivity whp. In contrast, for the directed version of the problem, where we
send a directed edge from each vertex to k randomly chosen others, and ask for a directed
path between any two vertices, we need k ~ logn, the main obstruction to connectivity
being vertices with zero in-degree.

All our results will apply not only for Poisson processes, but also for n points placed in
a square of area n with the uniform distribution. Indeed, one can view our Poisson process
as simply the result of placing X points in the square, where X ~ Po(n). For more details,
see [13] and [18].

2 Results

Our main result concerns the undirected random geometric graph G, .

Theorem 1. If ¢ < 0.3043 then P(Gy, |clogn) @5 connected) — 0 as n — oo. If ¢ >
1/1log7 ~ 0.5139 then P(Gy, |clogn] @5 connected) — 1 asn — oo. Thus

0.3043 < ¢ < ¢, <0.5139.

The lower bound appears as Theorem 5, while the upper bound is Theorem 13. The
lower bound argument is essentially a modification of that given in the introduction, while
the proof of the upper bound is more involved.

For the directed graph C_jn,k, we have the following result. (A directed graph is connected
if, given any two vertices = and y, there is a directed path from z to y.)

—

Theorem 2. If ¢ < 0.7209 then P(G,|clogn| is connected) — 0 as n — oo. If ¢ >
0.9967 then P(éniol%M is connected) — 1 as n — oo.

Finally, let P, be a Poisson process giving rise to the random geometric graph G, ;.. For
a vertex in x € V(Gpx), we define the disc By(x) to be the smallest closed disc containing
the k nearest neighbours of x. Thus, in G, x, x is (almost surely) joined to every vertex in
its disc Bg(z). We say that P, is a k-cover if the discs By(x) cover S, and we prove the
following result in Section 6.

Theorem 3. If ¢ < 0.7209 then P(P, is a |clogn]-cover) — 0 asn — oo. If ¢ >
0.9967 then P(P, is a [clogn]-cover) — 1 as n — oo.



3 Lower bounds

For any region S C R?, write | S| for the Lebesgue measure of S. We start by proving
a useful lemma.

Lemma 4. Let Ay, ..., A, be disjoint regions of R? and py,...,p, > 0 real numbers
such that p;|A;] € Z. Then the probability that a Poisson process with intensity 1 has
precisely p;|A;| points in each region A; is

exp {Z(Pz —1—pilog p;)|As| + O(rlog, ZPZ|AZ|)}
i=1
with the convention that 0log0 = 0, and log, x = max(logz, 1).

Proof. Let n; = p;]A;|. The probability in question is given exactly by

p= H( Aty

Taking logarithms and using Stirling’s formula gives

logp = Z (—]4;] + nilog | 4;] — nilogn; + n; + O(log, n;))

i=1
T

= Z (ni = [Asl = nilog p;) + O(r log, maxn;)

=1
T

= Z (pi — 1 = pilog pi) [Ai] + O(rlog, 3 pil Ai]).

=1

Theorem 5. If ¢ < 0.3043 then P(Gy,|c10gn) @5 connected) — 0 as n — oo.

Proof. We first illustrate the proof with a simpler proof that ¢ < ¢y = 1/ (log% +
8log 22) ~ 0.2739 suffices. Let D be a disc with radius 5rg. Let A; be a concentric disc
with radius g, As a concentric annulus with radii o and 37y, and divide the remaining
area A of D into N — 2 regions A = Us<;< NAZ, with each A; of diameter at most ery (see
Figure 1). Define densities p; by p1 = 2p = 18, pe=0,and p;, = p = for 1 > 3. Suppose
that p;|A;| € Z and exactly p;|A;| points lie in each A;. (Note that ZMMZ" = |D|, so the
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Figure 1: Lower bound, undirected case.

number of points in D is as expected.) Pick a point = at radius r > 3r¢ from the centre
of D. Let D, be the disc about = of radius r — (1 + €)rg. Then x is at least ery closer
to all points in D, than to any point in A;. If r = 3ry and ¢ is sufficiently small, then
|D, N Al > (1/2+ 0)|D,| for some 6 > 0, independent of . Hence for sufficiently small
e, |D, N A|l > 2|A;|. If you move the point x radially outwards from the centre of D,
the discs D, form a nested family. Thus |D, N A| > 2|A,| for all z. If some A;, i > 3,
intersects D, N A, then all points in A; are closer to x than any point of A;. Hence the
2|Ai|p = p1|A;i| points of the Poisson process closest to x all lie outside A;. Clearly, if
x € A; then any point in A; is closer to x than any point outside A;. Hence if we choose
o so that p;|A;| = k+1 = |clogn|+1, the points in A; form a component. If S,, contains
such a configuration then G, ; is disconnected.

Now p1]|A1] =k + 1, pa|As] = 0, and > pi| As] = 9p1|A1| = 9(k + 1) are all integers. It
is easy to see that if n (and hence k and r() are large enough, one can choose the regions
A;, i > 3, so0 that (i) p;|A;| € Z for all i, (ii) the diameters of the A;, i > 3, are at most ery,
and (iii) the number of regions NN is bounded above by some function of €, independently
of n. By Lemma 4, the probability of each A; containing exactly p;|4;| points is

p = exp {— (log ‘;’—g + 8log %) p1|A1] + O(N log |D|)} = p~¢/coto(l)

Since we can place O(n/logn) disjoint regions D in S, the probability of at least one such
configuration occurring in S, tends to one as n — oo when ¢ < ¢.

To improve this bound, fix a with 0 < a < % Let € € (0, ) and assume the circles in
Figure 1 now have radii (o — €)rg, 79 and (2 — a)rg respectively. Let A; be the inner disc
of radius (o — €)rg, let Ay be the surrounding annulus with outer radius r¢, and divide the
remaining area A into regions A;, ¢ = 3,..., N, each with diameter at most ery, and area
at least 1. (Certainly possible if er( is sufficiently large.) We shall define a function p(r)

7



that gives the approximate density of points in the regions A;. Let B be the disc of radius
arg about O, so B is just a little larger than A;. For r < arg, p(r) will be a constant,
and we shall require exactly p1|A1| = [p(r)|B|| + 1 points of P in A;. For arg < r < r,
p(r) =0, and we shall require that A, have no points of the process. For r > rg, p(r) will
be a continuous function, and the number of points in A; will be p;|4;| = | [ A, p(r)dA]+1,
where r is the distance to the centre O of D. The function p(r) will be determined later,
but will be of the form p(r) = po(r/r9) where py may depend on «, but will be independent
of n, ro and . We shall also see that |log p(r)| is bounded on B U A. We now perform a
similar calculation to above, requiring at least k + 1 points in A; and for each point = at
distance r > ry from O, at least k + 1 points in A closer to x than any point of A;. As
before, the worst case is when z is at distance r = rg from O, and it is enough to ensure
that there are at least k 4 1 points in sets A; that intersect the disc D_q)r, (2) of radius
(1 — a)ry about z. Thus it is enough if fD(l_a)ro(x)ﬂA pdA > clogn. Define

T 2ror

g(r) = Lcos™? <—T2+T§_(1_a)2r3> ;

which is the proportion of the circle of radius r, centre O, that lies in D _q),, (). Hence

(2—a)ro
/ pdA:/ p(r) 2mrg(r) dr:/pgdA.
D(l—a)ro(r)mA 0 A

Thus it is enough to impose the following conditions on p(r).

/pdA:/pgdA:clogn. (1)
B A

Let 6. bound the variation of plogp across any of the sets A;, ¢ > 3. By the above
assumptions, we can choose J. independently of rq and n, with . — 0 as ¢ — 0. Now by
Lemma 4, the probability p of such a configuration occurring is given by

—logp = / (p—1—plogp)dA+ O(Nlog|D|+ N + 6:|D| + ec(logn)/a), (2)
D

where the error terms include the error term of Lemma 4 plus N — 2 error terms of
magnitude O(1+40.|A;|) and one of magnitude O(1+ep;|A;|/«) arising from the differences
between [, (p—1— plogp)dA and (p; — 1 — p;log p;)|Ai| for i =1,..., N.

The function p(r) is chosen to maximize the above integral subject to (1). Using the
method of Lagrange multipliers, we maximize

/(p—l—plogp)dA—u/pdA—V/pgdA- (3)
D B A

8



By applying the calculus of variations, we obtain

exp(u) if r < arg;
p(r)=<0 if r € (arg,ro); (4)
exp(vg(r)) if r > ro,

where the constants 1 and v are chosen so that

/pdA:/pgdA and /(p—l)dA:().
B A D

(The second condition comes from varying the scale 1o, which implies that the expression
(3) should equal zero.) It is easy to check that each value of a gives a unique value of u
and v, and the conditions assumed for p(r) above do indeed hold. Also, |D| = O(logn)
and N = O(¢7?), so by taking, say, ¢ ~ (logn)~'/3, ery — oo and the error term in
(2) is o(logn). Substituting into (2) we get —logp = (c(p + v) + o(1))logn. Since we
can place ©(n/logn) disjoint copies of D inside S,, Gy, is disconnected whp whenever
¢ < (p+v)~. Finally, optimizing over « gives a value of (u+ v)~! just larger than 0.3043
when o = 0.3302. O

Note that we were lucky that the optimum value of a was less than % For o > % the
distances between points in A; could be larger than the distance from A; to A. Hence
we would need more points in A, and we would need to cut A; into smaller regions with
varying densities in a similar manner to that done with A.

—

Theorem 6. If ¢ < 0.7209 then P(Gy, |ciogn| s connected) — 0 as n — oo.

Proof. We first illustrate the proof with a simpler proof that ¢ < ¢; = 1/(6log3) =~
0.5793 suffices. Let D be a disc with radius 2rg and centre O. Set A; to be a disc about O
with radius erg, As an annulus with centre O and radii erg and 7y, and divide the remaining
annulus A of D into regions As, ..., Ay, each with diameter at most ery (see Figure 2).
Define densities p; by po = 0, and p; = p = % for ¢ > 3. Suppose that there is one point
of the Poisson process in A; and p;|A4;| points of the Poisson process lie in each A; for
1 > 2. Pick a point z at distance r > ry from O and let D, be the disc about x of radius
r —2¢erg. Then x is at least erg closer to every point in D, than to A;. As r moves radially
outwards, D, N A increases, so |D, N A| is at least as large as when r = r¢. In this case
|D, N Al > 7r2/2 for sufficiently small e. If some A;, ¢ > 3, intersects D, N A then all
points in A; are closer to z than O, so the pmr2 /2 closest points to z lie outside A;. Choose
o so that prrd/2 = k+1 = [clogn] + 1. Then the unique point in A; has zero in-degree,
so if S, contains such a configuration then énk is disconnected. As before, fixing ¢ > 0

9
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Figure 2: Lower bound, directed case.

and assuming n is sufficiently large, once can choose the A; so that p;|4;| € Z, and N is
bounded by a function of €, independently of n. Now by Lemma 4, the probability of such
a configuration is

p = exp {—dmrglog § + O((log|As])/|As]) + O(Nlog | D) } = n~/er eV,

Since we can find ©(n/logn) disjoint copies of D in S,, the probability of at least one
such configuration occurring tends to 1 as n — oo provided ¢ < ¢5.

To improve this bound, we follow the proof of Theorem 5 and make the assumption
that the p; are given by a function p(r) of the distance r to the centre of D. We shall
define the A; exactly as in Theorem 5 with a small « > 0, but insist now that A; contains
precisely one point of P, and p(r) = 0 for all » < ry. We obtain (2) again (with the last
term in the error estimate replaced with log|A;|), which we wish to maximize subject to
the conditions p(r) = 0 for r < rg and [, pgdA = clogn. To do this we maximize (3)
without the p [, pdA term. After optimizing we obtain

(r) = 0 if r < r;
P = exp(vg(r)) if r > ro,

where v = v(a) is chosen so that [,(p —1)dA = 0. On substituting back into (2) and
choosing & ~ (logn)~'/3, this gives —logp = (cv + o(1))logn. As before, we can find
©(n/logn) disjoint discs D. Hence provided ¢ < v, én,k is disconnected whp, with an
isolated point as an in-component. Finally, for sufficiently small o, v~ ! is just larger than

0.7209. .

10



4 Upper bounds

In this section we shall establish upper bounds for the directed and undirected cases.
The basic arguments are simple, but, in both cases, the situation is complicated by points
near the boundary. In principle these should be less of a problem than in the disc model:
unfortunately, for both problems the most natural arguments run into trouble at the bound-
ary. For the moment we shall ignore boundary effects, and assume that all points are nor-
mal: a point P is normal if the smallest circle containing its k nearest neighbours does not
intersect the boundary. This excludes O(y/nlogn) points from consideration, and enables
us to give the following “one line” argument.

Theorem 7. Let ¢ > @ ~ 1.4427. Then the probability that G, |c1ogn| contains a

component consisting entirely of normal points tends to zero as n — oo.

Proof. Suppose that Gy, |clogn) has a component G’ containing only normal points. Let
P be a northernmost point of G’. Then P is “extreme” in the sense that its k = [clogn |
nearest neighbours all lie below it. The probability that a normal point is extreme is 2%,
and so the expected number of extreme normal points is at most n27% = o(1). Thus the
probability of such a G’ arising tends to zero as n — oo. O

As an aside, we can consider the analogous problem on the torus, rather than the
square S,,. Unfortunately, the above proof does not show that the corresponding graph on
the torus is connected whp for ¢ > @, since a component on the torus need not have
any extreme points.

Next we establish an upper bound. The proof splits into two parts. In the first
(Lemma 12) we show that there do not exist two “large” components; indeed we show
that even if k£ is far smaller than logn then these components do not exist. Secondly we
show that there are no small components.

We shall use the following simple lemma that bounds the edge lengths. There are many
results in the literature bounding the Poisson distribution; we give a simple bound in a

form convenient for our needs.

Lemma 8. Fix ¢ > 0, and set

—-1-1/c

c_=ce and  c; =4e(l+c).

If r and R are such that 7r?> = c_logn and wR? = c,logn, then whp every vertex in
G |clogn) 15 joined to every vertex within distance r, and no vertex is joined to a vertex at

distance more than R. The same is true for the directed model G_’n,LclognJ-

11



Proof. This lemma will follow from simple properties of the Poisson distribution. Write
D,(P) for the open disc of radius p centred at P. Fix k = |clogn]|, and suppose that
a vertex P of G, is not joined to every other vertex of G, in D,(P) N S,, where
7mr? = c_logn = A. Then D,(P) N S,, which has area at most A, contains at least k
additional vertices of G, ;. The probability p of this happening can be bounded as follows
(by comparison with a geometric series):

Al ko Ak k xe )" c
- - - c(log(c—/c)+1)—c—
p= E ket <t — [ =) = — 1+ o(1

‘ NS r—am k—A(k) c—c_ (1+0(1),

which is o(n™!) provided
c_<c and clog(c_/c) +c—c_ < —1,

which is true for c_ as in the statement of the theorem.

Since the expected number of vertices in .S, is n, the expected number of vertices P such
that D, (P) NS, contains at least & additional vertices is o(1), and hence the probability
that there is any such vertex P in G, is o(1) as claimed.

The proof of the upper bound is almost the same. Let R satisfy 7R? = c,logn. If a
vertex is joined to another at distance at least R then the circle of radius R about one of
the two, P say, contains at most k additional vertices of G, . The area of Dg(P) NS,
is at least TR?/4 = (c; /4)logn = ), so the probability p that this occurs for a particular
vertex can be bounded by

A\ DL A e\F c
— —-A i - i -\ i — + c(log(c4/4c)+1)—cy /4 1 1
p=el ) e T < A—k(k) o —dc" (1+o(1),

which is o(n™!) provided
cp >4c  and  clog(ey /4e)+c—cy /4 < —1,

which is true for ¢, as in the statement of the theorem (using the inequality log((c+1)/c) <
1/c). Hence, the probability we have any such vertex P is o(1). O

Remark. Although we only claim that the above result holds whp, much more is true:
indeed, for any fixed constant K, we can find ¢_ and ¢, such that it holds with probability
1—0(n*F).

The next two lemmas state simple facts about the components of G, .

Lemma 9. No two edges belonging to different components of G, may cross.
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Proof. Let G1, G, ...,Gx be the components of G, . Suppose that ijis = e; € E(G;)
and ji1jo = e; € E(Gj), for i # j, and that e; and e; cross. Then, considering e;, if i5 is one
of the kth nearest neighbours of 4y, then |[j; — 41| > [|iy — 42|, while if i, is one of the kth
nearest neighbours of iy, then ||j; —ds|| > ||iy —42||. Therefore, in either case, e; is not the
longest edge of the triangle 414271, and so the angle 7714 is less than 7. But this applies
to all four angles of the quadrilateral i,7,7272, which gives a contradiction. O

Lemma 10. With r as in Lemma 8, whp the distance between any two edges belonging
to different components of G\ is at least r/2.

Proof. As before, let G1,Gs,...,Gn be the components of G, x, and let i1iy = ¢; €
E(G;) and j1j2 = e; € E(Gj), for i # j. Since e; and e; do not cross, the distance between
them is attained at a vertex of one of them, say j;, and thus, we need only show that 7 is
not within distance /2 of e;.

Suppose otherwise. Let z be the foot of the perpendicular from j; onto the line through
i1i9, so that ||j; — z|]| < r/2. If z does not lie between i; and iy then the minimum
distance between e; and 7; is attained at one of the endpoints of the edge, say 71, and thus
lliv — j1|| < r/2, so that the edge i;j; is in Gy, by Lemma 8. Now suppose z does lie
between i; and iy, and assume that the edge e; is present because 5 is one of the k nearest
neighbours of i;. Suppose that z lies within distance r/2 of i5. Then

lia =il < lli2 =zl + |z =l < 5+ 5=,
and thus, by Lemma 8, the edge 797, is contained in G. Otherwise,
Iz —dall > 5 = Iz = sl
and so
liv = gull < Mo = 2ll + lz = gall = (e = 22ll = lliz = 2[) + [Iz = Jall < [lia — 22l
so that, since i175 is an edge, so is 71j;. In each case j; is in the same component as e;. [

Next we need a geometric lemma.

Lemma 11. Let A; be the graph of the I x| square integer grid {1,...,1}* C R? with all
the unit length edges. Suppose that A C V(A;) with both A and A° =V (A;)\ A connected
i Ay, Let OA denote the set of vertices of A€ that are adjacent to vertices of A. Then the
set OA is diagonally connected, i.e, connected if we include all edges of length < /2.
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Proof. Let B be the set of edges from an element of A to an element of A¢ and let
B’ be the corresponding edges in the dual lattice. If we consider B’ as a subgraph of the
dual lattice then every vertex has even degree except those vertices corresponding to the
boundary of A;. Thus we can decompose B’ into edge disjoint subgraphs each of which is
either a cycle, or a path starting and ending at the boundary. Any such cycle or path splits
A; into two components. Since all of any connected set must lie in the same component,
we see that all of A lies in the same component and all of A€ lies in the same component.
This implies that the cycle or path partitions A; into exactly A and A°, and hence is all
of B’. Thus 0A is diagonally connected and the result follows. O

The following lemma asserts that there are no two large components.

Lemma 12. Fiz ¢ > 0. Then, there exists a constant ¢’ such that the probability that
G |clogn| contains two components each of (Euclidean) diameter at least ¢/\/logn tends to
Zero as m — 00.

Proof. Fix ¢ to be chosen later, and let D = ¢/\/logn. Let c_ be as in Lemma 8 and
r satisfy 7r? = c_logn. By Lemma 8 whp every vertex is joined to every other vertex
within distance r. Thus, we may ignore all configurations for which this does not hold.
Also by assumption and the definition of D there exist two components, GG; and G5 of
G = Gy |clogn), each of diameter at least D. Let G5 be the rest of the vertices.

We tessellate the square S, with squares of side /+/20; letting I = v/20n/r, we identify
the squares with the square grid A; = Z?. (Here, and in the proof of Lemma 14, we assume
for convenience that r/1/20 divides y/n.) We colour the squares as follows. Colour red any
square containing a vertex of (G; or intersecting an edge of (G;. Colour blue any square
containing a vertex of G5 or intersecting an edge of G5. Colour black the remaining squares
containing a vertex. All other squares we call empty and colour white. This colouring is
well defined by Lemma 10. The same lemma also shows that a red square can only be
adjacent to another red square or an empty square, since any two points in adjacent squares
must be within distance v/5(r/v/20) = r/2. In addition, the set of red squares and the set
of blue squares each forms a connected component in A;.

Since G, and G5 have diameter at least D, the squares have diameter v/2r/v/20 < r,
and the set of red squares and the set of blue squares are each connected there must be at
least D/r red squares and D /r blue squares.

Let U be the set of red squares and let V' = U* be the complement of U. V splits into
components Vi, V5, ...,V for some s > 1. Since the blue squares are connected, at most
one of these components, say Vi, can contain blue squares.

Let U; = V(% ie., U and all the components of U¢ that do not contain any blue squares.
Note that both U; and Uf are connected, and each contains at least D/r squares, since all
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the red squares lie in U; and all the blue squares lie in V; = UT.

Let OU; be the set of squares not in Uy, but adjacent to at least one square in U;. Each
square in QU; is empty, and the set QU is a diagonally connected component of squares,
since both U; and Uy = V) are connected.

By the vertex isoperimetric inequality in the grid [3],

00| > min{\/2|U; [, v/2|Uf[} = (D/r)"2.

Hence, if we have G1, G5 both with diameter at least D we can find a set connected in A,
of size K = (D/r)"/? = {/mc2/c_ consisting entirely of empty squares. To complete the
proof we just need to show that such a set is unlikely to exist.

We use the following graph theoretic lemma. For any graph GG with maximum degree A,
the number of connected subsets of size n containing a particular vertex vy is at most (eA)”.

Define A} as the graph with vertex set A; and edges joining diagonally connected
vertices. The graph A has maximum degree 8, so the number of connected sets of K
squares in Aj containing a particular square is at most (8¢)X. There are [> < n squares
in A; so the total number of connected sets of size K is at most n(8e)X. Therefore the
probability p that any connected set K consists entirely of empty squares satisfies

p< n(SG)KefKrz/ZO

< nexp (K (log(8¢) — r?/20))
< nlch_/QOTrJro(l)

which tends to zero provided we chose ¢’ and thus K large enough. Hence the probability
that there are two components with diameter at least D tends to zero as n tends to
infinity. O

Theorem 13. If ¢ > @ ~ 0.5139, then P(Gy,|ciogn| s connected) — 1 as n — oo.

Proof. Let k = |clogn|. We shall show that for any fixed ¢ > 0 there is no component
G’ of G = G, with diameter less than ¢’\/logn whp. This, together with Lemma 12, will
prove the result. By Lemma 8 we may assume that the & nearest neighbours of any point
all lie within distance R, where 7R? = c logn.

Firstly let us assume such a small component G’ exists and that G’ contains only normal
points. Consider the six tangents to the convex hull of G’ which are inclined at angles 0,
%, and %’r to the horizontal. These tangents form a hexagon H containing G’, as shown
in Figure 3, and each tangent t; intersects G’ in a point P; € V(G’) (some of the P, may
coincide). The exterior angle bisectors of H divide the exterior of H into six regions H;,
each of which is bounded by two bisectors and ¢;. Consider the smallest disc D; centered
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Figure 3: The hexagon H

at P; and containing its k nearest neighbours. By assumption, all the D; are contained
in S,,. Write A; = H; N D;. Without loss of generality, |A;| < |A;| for all 4, so that, writing
A = H N Dy and noting that |A| < |A;| (since A; does not meet the boundary of S,,), we
obtain |[A| < $|AU (U;4;)|. Now we require that there are exactly k points in the region
AU (U;4;), and that they all lie within A. The probability of this happening is at most
7-*. However, the number of choices for the regions A, A;, can be estimated as follows.
There are O(n) choices for the point P, (whp), and, fixing Py, there are whp O(logn)
choices for each P, ..., Ps (since they lie within ¢//Togn of P;), and O((logn)®) choices
for the six radii of the D;, since they are determined by a point within distance R of P;.
Thus the number of choices for the A and A; is O(n(logn)'!) which is n'+°()). Thus, the
probability that we have a G’ of diameter at most ¢ logn is at most n'+t°M7=* which is
o(1) for ¢ > @.

The above argument applies if G’ is not too close to the boundary of S,. Suppose now
that G’ is within distance R of the boundary, but further than R from a corner of S,. In
this case we ignore the two tangents ¢; whose normal vectors point out of S,,, and define
H and the relevant H; and A; as the intersections of the previously defined H, H; and A;
with S, (see Figure 4). (For the horizontal boundaries, rotate the tangents by 90 degrees.)
Now, supposing that again |A;| < |4;| for all 4, and writing A = H N D; as before, we
obtain |[A| < £|A U (U;A;)|. Therefore the probability that all k& points in A U (U;A;) are
in fact contained in A is at most 57*. Thus the probability of obtaining such a small

component lying near the boundary is n2 W5k which is o(1) for ¢ > $ > @. (Note
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Figure 4: G’ lies near an edge or corner

that there are now only O(y/nlogn) choices for P;.)

Finally, if some point of G’ is within R of a corner of S,,, we now have |A| < $|AU(U;A;)|
(see Figure 4), and thus the probability of all £ points in AU(U;A;) lying in A is at most 37
Here, the shape of the region H is not critical — we only need to ensure that the reflections
of H in the tangents t; are disjoint and lie within .S,,. Hence the probability of obtaining a
small component lying at a corner is n°"3~* = o(1), there now being only O(logn) choices
for P;. O

4.1 The directed case

As in the undirected case we first show that whp there do not exist two large com-
ponents. The proof is very similar to that of the undirected case, so we sketch the parts
that are the same and concentrate on the differences. The first key difference is that in a
directed graph there is no clear idea of component. We define two such notions which will
satisfy our needs. A set C'is a out-component if, for some xq, it is of the form {y : there
exists a directed path from xy to y }. It is an in-component if it is of the form {y : there
exists a directed path from y to xq }. If the graph is undirected then both of these reduce
to the normal definition of component. The following lemma is analogous to Lemma 12.

Lemma 14. Fiz ¢ > 0 and let k = |clogn|. Then there exists ¢ such that the
probability that G, contains an in-component and an out-component that are disjoint
and both of diameter at least ¢'\/logn tends to zero as n — oc.

Proof. As before fix ¢ to be chosen later and let D = ¢’y/logn. This time, since we
shall also need an upper bound on the edge length, let ¢ and c; be as in Lemma 8 and
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let r and R satisfy 772 = c_logn and 7R? = c, logn. We may ignore all configurations
which have two points at distance at most r that are not joined, or have two points at
distance at least R that are joined.

Let GG; be an out-component and G5 an in-component, both of diameter at least D.
Let G3 be the rest of the vertices. This time edges of GG; and G; may cross for ¢ # j.
However, it is still true that no vertex not in G; may lie within distance /2 of an edge
of G1. Indeed the proof of Lemma 10 shows that (with notation as in that proof) in this
case either le or ipj is an edge. Thus, since G is an out-component, j € G;. (Note that
it is important that GGy is an out-component: it would not be true for an in-component.)

Again, we tessellate the square with squares of side 7/v/20; letting [ = /20n/r, we
identify the squares with the square grid A;. We colour the squares almost exactly as
before: colour the squares containing a vertex of GGy or intersecting an edge of Gy red,
colour the squares containing a vertex of Gy blue (note we do not colour the squares
intersecting an edge of G5 as that might conflict with the squares already coloured), colour
the remaining squares containing a vertex black, and finally colour the empty squares
white. As before, the colouring is well defined and also we see that a red square can only
be adjacent to another red square or an empty square. In addition, the set of red squares
forms a connected component of squares.

This time, since no point is joined to another at distance greater than R, there must
be at least D/R red squares, and at least D/R blue squares.

Let U be the set of red squares and let V' = U¢ be the complement of U. V splits
into components Vi, V5, ..., V, for some s > 1. This time the blue squares need not be
connected and so need not all be in the same set V;. Suppose that the components that
contain blue squares are Vq, V5, ..., V,.

Let Uy =UU Uj:t+1 V;; i.e., U and all the components of U¢ that do not contain any
blue squares. U; and Uf each contain at least D /R squares, since all the red squares lie in
U, and all the blue squares lie in U7.

Let 0U; be the set of squares not in U;, but adjacent to at least one square in Uj.
Each square in QU; lies in QU, so is empty. The set OU; is not necessarily a connected
component of squares in A;, however, we show that, for some d, it is connected in A, 4, the
dth power of the lattice A;, where we join vertices if their distance in the lattice (i.e., their
[, distance) is at most d.

Let d = 2[v/20R/r]. Then the blue squares are joined in Ay 4. Suppose that OU; is
not connected in A;4; i.e., we can partition OU; into two non-empty sets A and B with
no square in A within d of any square in B. For ¢ < t write 0V; for oU; N'V;. Since V;
and V® are both connected in A;, 0V, is connected in A; 9, and hence A and B are both
the union of such 0V;. Every V; with ¢ < ¢ contains a blue square so there must be a pair
i,7 <t with 0V; C A, 0V; C B and blue squares b;,b; with b; € V;, b; € V; and [; distance
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d(b;,b;) < d. The shortest path from b; to b; in A; passes through 0V; and 0V and has
length at most d, so d(0V;, dV;) < d, contradicting the assumption that 0V; and 0V were
in different components in A; 4.

As before, by the vertex isoperimetric inequality in the grid [3],

00| = min{/2|U1[, /2|Uf[} = (D/R)"*.

Hence, if we have GG1, GG both with diameter at least D, we can find a set connected in
Ayq of size K = (D/R)? = {/nc2/c, consisting entirely of empty squares. Once again
we show that it is unlikely that such a set exists.

A4 has maximum degree 2d* + 2d. Thus, applying the lemma stated in the undirected
case, the number of connected sets of K squares in A;4 containing a particular square is
at most (e(2d? + 2d))* < (4ed?)k. Since there are I> < n squares in A;, the probability p
that there exists a set connected in A; 4 of empty squares satisfies

p< n(4€d2>K€—Kr2/20

< nexp (K (log(4ed®) — r*/20))
< nl—Kc,/207r+o(1)

which, again, tends to zero provided we chose ¢ and thus K large enough. Hence the
probability that we have an in-component and an out-component each of size at least D
tends to zero. O

Theorem 15. If ¢ > 0.9967 then P(énchlognJ is connected) — 1 as n — oo.

Proof. Suppose that k = |clogn| and G = G, is not connected. Then there will be

—

two points z,y € V(G) such that there is no directed path from = to y. We consider two

—

subsets of V(G), C, and Cy, defined as follows:
C, ={z}U{2’: there is a directed path from z to z’},

and
C,={y}U{y : there is a directed path from y' to y }.

C, and C), are disjoint, since if we had z € C, N C,, there would be a directed path from
x to z and another directed path from z to y, giving us a directed path from x to y.
Lemma 14 shows that there exists a ¢ > 0 such that the probability that both ) and
C, have diameter more than ¢’y/logn tends to zero. The proof of Theorem 13 shows that
the probability that an out-component C, exists with diameter less than ¢’y/logn tends to
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zero since ¢ > @. We complete the proof by showing that for all ¢ > 0, the probability

that an in-component C,, exists with diameter less than ¢’/logn also tends to zero.
We first illustrate the proof with a simpler proof that ¢ > 1.0293 > @ is sufficient,

where v = (4 + @)/(% + @)

Suppose first that no point of C,, lies within a distance R of the boundary of \S,,, where
R is as in Lemma 8. Let z ¢ C,, be the closest point of V(G)\ C, to C,, and y. its nearest
neighbour in C,. Write p = ||z — y.|| for the distance between them, and, for an arbitrary
point P, write D,(P) for the open disc of radius p, centered at P. Consider the leftmost
point y; and the rightmost point g, of C,. There can be no points in B = D, (y;) U D} (y,),
the left half of D,(y;) or the right half of D,(y,). By the proof of Lemma 8, we may
assume Db (y;) contains at least k points. Hence p < R, B is contained within S,,, and
|B| = |D,(x)] = mp?. On the other hand, there are at least k points in A = D,(2)\ D,(y.),
since otherwise z would send a directed edge to either y,, or to a point ¥ € D,(2)ND,(y.).
The first possibility contradicts the hypothesis z ¢ C,, and for the second possibility,
we must have y' ¢ C, to ensure z ¢ Cy, but then y ¢ C, is closer to C, than is z,
contradicting the choice of z. Therefore, as shown in Figure 5, there must be at least k
points in AU B, which must all lie in A\ B. The probability of this happening is at most

a8\ AL\ ok . - 5
wp) < \@mE) =1 The number of choices for z, y., y;, and y, is O(n(logn)?),

so the probability such a configuration occurs anywhere is at most n't°M~~* which is
o(1)

If some point of (), is close to an edge or corner of S,, we use a single half disc or quarter
disc for B, and a similar argument to the one used to complete the proof of Theorem 13
shows that the probability of obtaining a small C,, near the boundary is also o(1).

With a little more work, we can obtain a slight improvement by showing there is a
region C' C A containing no points in its interior.

Suppose that w € D,(z). Write p/ = |jw — y.|| and set

Ap = (A\ Dy(w))\ B,

Ay = (ANDy(w))\ B,

Az = (Dy(w) \ (Dy(2) U Dy(y:2))) \ B,
A4 = B

as illustrated in Figure 5 (for simplicity, the set B is not shown). Writing n; for the number
of points (other than y,, z, or w) in regions A;, we see that the following must hold:

ni+ng > k—1, ng+mne > k—1, ng = 0. (5)
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D P O

Figure 5: Upper bound, directed case (B not shown)

We need to show that for some w, the probability p of such an arrangement is small. By
Lemma 4, we have

logp =Y (s — |4l — nilog ) + Ollog o) (6)
We now maximize the right hand side of (6). Since (5) becomes more likely if |A;],
|As|, or |As] is increased, we may assume B is disjoint from AU D, (w). Also, as we shall
only be interested in ratios of areas, we first maximize (6) under uniform scaling of areas,
giving
ni+ne +nz = [Ai] + [As| + |As] + [Ad].
Now vary the n; subject to ny + ny and n3 + ns being fixed. This gives

na ny ns

(A JA [As]

’)7:

Also, by varying just ni, we see that either ny +mns =k — 1 or n; = |A;|. Similarly, either
ns +ng =k — 1 or ng = |As|. Hence

logp = Z —n; log ﬁ + O(log > n;)
= —nilog 7z — nglog 73 — ng log( IZIH% 1)+ O(log >_n;)
— (1 + ng) log 73 — (3 + n2) log 3% + O(log o)
= —(k = 1)log(zra;) + Olog 3 oms).

Therefore,
p = Do),
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Define v by (logv)™' = 0.9967 and let C be the set of points w € A such that

Zz|Al| > ’7/|A2| —+ \ 4’7/|A1||A3| and |A3| < 2|A1|
We shall show that with the above constraints

_ n2 __ m1n3 /
= Tay] = TaiiAs] — 7

If ng +ny >k —1 = ny + ng, then ng = |A3| and so 2|A;| > |A3| = ng > ny = n|A].
But then n < 2 and |Ay] 4+ |As| + |A4] = n1 + na < 2(JAs] + |As|), contradicting the
fact that |A;| + |Aa] < |A4]. On the other hand, if ny +ny > k — 1 = ng + ny then
|A1] = ny > ng = n|Asz|. But |As] > |A1], son < 1. But then ny+no+ns < |Aq|+|Az|+|As]
and so |A4] < 0, a contradiction. Similarly, if ny + ns > k — 1 and n3 + ny > k — 1 then
n =1 and |A4] <0 again. Hence we may assume ny + ny = ns + ng = k — 1, n; = ng and
50 Y. |Ail = no+ (n1 + ng) = ne + VAning = n|As| + \/4n|A1||As|. But this then implies
n > v as required.
Computer calculations show that

|B[+]A\C]|
|A\C|

> .

Now suppose that the region C' contains no points in its interior. Then we have at least k
points in the region (A \ C') U B, all of which are constrained to lie in A" = A\ (C' U B)
(see Figure 5). This event has probability at most 7' ~*n°) = o(n=!). On the other
hand, the probability that a configuration exists with a point w € C' is also at most

7' ~*no) = o(n~1). Therefore, whp G is connected. O

5 Sharp threshold

Theorems 5 and 13 show that if n = n(k) < e*/%°139 then limy,_,, P(G,,  is connected) =
1 and if n = n(k) > /0393 then limy .., P(G, is connected) = 0. There is no doubt
that there is a constant ¢, 1/0.5139 < ¢ < 1/0.3043, such that if ¢ > 0 then for n =
n(k) < 9% we have limy o P(G, 4 is connected) = 1 and for n = n(k) > elctok
we have limg_,o, P(G)x is connected) = 0. Although we cannot show the existence of this
constant ¢, let alone determine it, in this brief section we shall show that the transition from
connectedness to disconnectedness is considerably sharper than these relations indicate:
the length of the window is O(n) rather than n'+°(). To formulate this result, for k& > 1
and 0 < p < 1, set

nk(p) = max{n : P(Gpx is connected) > p }.
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Theorem 16. Let 0 < e < 1 be fized. Then, for sufficiently large k,
ni(e) < Cle)(ng(l —e) + 1)

where
Cle) = [Clog (1) + 1}2 :

Proof. Write M = (g log (é) + 1} and N = ng(1 —¢) + 1, so that the probability that
we have at least two components in Gy, is at least e. By Theorems 5 and 13, we may
assume, by taking k sufficiently large, that 0.3043log N < k < 0.51391og N. Therefore, by
Lemma 8, we see that whp no edge in G, has length greater than R = \/ci(log N)/.

We say that a point x € V(Gyy) is close to a side s of Sy if x is less than distance
2R from s, and call a component G’ of G'n, close to s if it contains points which are close
to s. Further, we say that x € V(Gny) is central if it is not close to any side s of Sy,
and call a component G’ of G, central if it consists entirely of central points. Finally,
we call a component G’ of Gy small if it has diameter at most ¢/v/log N, where ¢’ is as
in Lemma 12.

By Lemma 12, with probability more than 5, Gy contains a small component, which
can be close to at most two sides of Sy. Write « for the probability that we have a small
central component of Gy . Write 3 for the probability that we have a small component
of Gn which is close to exactly one side of Sy, and v for the probability that we have a
component of Gy, close to two sides of Sy (so that it lies at a corner of Sy). We have
a+ B+ > 5, and the proof of Theorem 13 shows that

v = n°M3=k _

as k — oo. Therefore we may assume that at least one of o and (3 is greater than & (we
do not know which one). If we specify one side s of Sy, the probability that we obtain a
small component G’ which may only be close to s is thus at least ;.

Now we consider the larger square Sy2y, and tessellate it with copies of Sy. We
only consider the small squares of the tessellation incident with the boundary of Sy .
Considering sides of these copies of Sy lying on the boundary of Sz, we see that we have
4(M — 1) independent opportunities to obtain a small component G’ in one of the small
squares S, in such a way that G’ can only intersect the boundary of S on the boundary
of Syr2y. Such a component will also be isolated in G p2n , since whp no edge of G2y
has length greater than +/c; (log M2N)/m < 2R for sufficiently large k (and thus N).

Therefore, if p is the probability that G2y is connected, we have

)4(M—1)

p<(1-5 <e s < ¢

completing the proof. O
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6 Coverage

Let P, be a Poisson process of intensity one in the square S,,. For any x € P, let
r(x, k) be the distance from z to its kth nearest neighbour (infinite if this does not exist),
and let By () = Dy(zr) (2) N Sy. Let Co(Prn) = U,ep Br(x). We say that Py, is a k-cover if

First we prove a quick lemma bounding the Poisson distribution.

Lemma 17. Suppose that P is a Poisson process of intensity one in the square .S, and
fix ¢ and € > 0. Then there exists o > 0 such that, whp, there does not exist a point x of

the process with
r(z, [clogn]) —r(z,|(c —¢e)logn|) < d+/logn. (7)

Proof. Let k = |clogn] and k' = | (¢ —¢)logn]. By Lemma 8 we may assume that no
edge in G, is longer than R = ¢,,+/log n, where ¢,,, = y/cy /7 in the notation of Lemma 8.
For a fixed point z, condition (7) only holds if the annulus of width d/logn and outer
diameter r(x, k) contains at least |elogn| — 1 points. This annulus, A, say, has area at
most 2w Rd+/logn = 2wdc,, logn.

The number of points in A is stochastically dominated by a Poisson distribution with
mean 27dc,, logn. Thus the probability p that there are more than |elogn| — 1 points in
A satisfies

logp < —2mdc,, logn — elognlog c + O(loglogn)
e2mdc,,
which is less than —logn provide we choose ¢ small enough. Hence the probability that
any point fails (7) is o(1). O

Theorem 18. Fiz ¢ > ¢ > 0.

If whp én,Lc’ logn| does not have a vertex of in-degree zero. Then whp Py, is a |clogn]-
cover.

Conversely, suppose that whp P, is a | logn|-cover. Then whp én,[clogn] does not
have a vertex of in-degree zero.

Consequently, if ¢ < 0.7209 then whp P,, is not a |clogn|-cover, while if ¢ > 0.9967,

whp P, is a |clogn]-cover.

Proof. Let k = |clogn| and k' = | logn]|. Suppose that it is not true that, whp, P,
is a k-cover. Then there exists € > 0, such that, for infinitely many n, the probability that
P, is not a k-cover is at least . Let n’ = n(1+ 1/logn). We show that

P(G,y 1 has a vertex of in-degree zero) > &’
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for some &’ > 0.
By Lemma 17, there exists § > 0 such that, whp, r(z, k) —r(z, k") > dy/logn for every
x € P,. Thus,

P(S,, \ Ci(P,) contains a ball of radius d1/logn) > (1 — o(1))P(P, is not a k-cover)

(1—o(1))e.

AVARLY,

We identify P, with P, U P, /10gn Where all squares are scaled to be the same size

as S,. Let R = \/cy(logn)/m = c¢uv/logn be as in Lemma 8. Fix P, such that énW
has no edge of length more than R, and that Cy/(P,)¢ contains a disc of radius d+/logn,
and let y be the centre of such a disc. The probability that the disc D; /1557 (y) contains
exactly one point of P, 105, is a constant independent of n, as is the probability that the
disc D(CMH)\/@(y} contains no other point of P,/1o5,. Hence there exists e, > 0 such
that
P(én/k/ has a vertex of in-degree zero | P,,) > €1,
since this event occurs provided both the previous events occur. Combining these, we see
that
P(énzyk/) has a vertex of in-degree zero) > (1 — o(1))ee;.

as claimed.

Conversely, suppose that it is not true that, whp, C_jnyk does not have a vertex of in-
degree zero. As before, this implies that there exists € > 0 such that, for infinitely many
n, the probability énk has a vertex of in-degree zero is at least €.

Let R be as in Lemma 8. Fix a configuration P,, with a point y of zero in-degree, no edge
length longer than R, and no vertex with more than ¢; log n points within distance 2R. The
first condition occurs with probability at least e, the second condition fails with probability
tending to zero, as does the final condition provided that ¢; is large enough. (For the last
assertion, set ¢g = 4cy /c_ and apply Lemma 8 with n replaced with n®. Then no vertex
of Speo NP D S, NP has more than |[clogn®| < ccglogn points within a disc of area
c_logn® = m(2R)%.) Fix 6 > 0 and let n’ = (1 — §)n. Similarly to before we identify P,
with P, U Py, (both scaled to the same size S,,) by independently assigning each vertex
of P, to Ps, with probability . Then

P(P, is not a k" cover | P,) > ¢’

since this event occurs if the point y is in Pg,, and no disc of radius R containing y contains
more than k — k' > (¢ — ¢)logn — 1 points of Ps,. The number of points in Dyg(y) is
at most ¢y logn, so the number of points in Do (y) N Py, is stochastically dominated by
the distribution Bin(|c;logn],d). Thus, with probability at least 1/2, Dogr(y) contains
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at most ¢1d logn points of Pgs,. Hence, provided that ¢ — ¢ > ¢, the latter condition is
satisfied with probability at least one half for large enough n. The former condition, is
independent of the latter, and occurs with probability 6. Combining these, we see that

P(P,, is not a k' cover) > (1 — o(1))de’/2.

7 Numerical results

Computer simulations suggest that for k& > 3 there exists a giant component in G, j
which contains almost all of the vertices (over 98.5% for k = 3) with a few isolated small
components. On the other hand, for £ < 2 all components are small. As we are interested
mainly in large £ we have confined our numerical results to k& > 3, since these are more
likely to reflect the situation when £ is large.

For k > 3 the small components are relatively few and far between (more so for larger k).
As a result one would expect that for a large rectangular region A, the small components
would be roughly Poisson distributed with constant density throughout the area A, with
perhaps a somewhat different density near the sides and corners of A. Hence we would
expect the average number of small components in A to be approximately Poisson dis-
tributed with mean ay|A| + Gx|0A| + 4k, where oy represents the density of components
far from the boundary of A, [, gives a correction for “edge effects”, and =, gives a cor-
rection for “corner effects”. By considering rectangles with various sizes and aspect ratios,
one can investigate numerically the constants ay, (x and ;. Computer simulations were
performed on large rectangular regions for 3 < k < 8 and the number and sizes of the small
components were recorded. The numbers of components found were fitted by the linear
formula a|A| + Bk|0A| + 4y, and for all k considered this did indeed fit the data extremely
well. In total an area of over 10'? was simulated for each k from 3 to 8. Estimates of oy,
0B, and v are given in Table 1.

The values of 3, and 7, were positive, indicating that small components are more
common near the boundary and corners of A. Figure 6 plots the probability that G, j is
connected and the average number of components against n for 3 < k < 8. The predictions
based on the number of components being distributed as 1 + Po(axn + 40,/n + 4v;,) are
also given and are in excellent agreement for large n. We know from Theorem 13 that
v — 0, however it also appears that 8, << \/aj;. Hence, if A is the square .S,,, when n
is large enough so that the k nearest neighbour model has a reasonable chance of being
disconnected, the expected number of components is dominated by the term azn. One
would therefore expect that the probability that the model is connected to be approximated
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k| —log oy — log f — log 7 E[C]

31 6.2259 [1] | 4.9876 3] | 2.8685 [13] | 7.1031 2]

4| 91828 [1] | 7.871[6] | 4.6905[22] | 6.7519 [3]
51120017 [4] | 9.3145[13] | 6.2918 [33] | 7.3551 [9]
6 15.0052 [17] | 11.4542 [31] | 7.8476 [53] | 8.1728 [30]
7117.9340 [71] | 13.6015 [79] 9.4211 [93] 9.0659 [116]
8 | 20.8979 [310] | 15.7770 [221] | 11.0057 [179] | 10.0022 [425]

Table 1: Best fit data for as, Ok, 7k, and the average size of small components. Numbers
in [ ] indicate 1 standard deviation error in last digit.

101
k=8 |
11
k=7 |
2
3
: k=5 k=6 |
10 100 108 100 105 106 107 108

Figure 6: Probability that G, is connected (solid line, left scale), average number of
components (dotted line, right scale), and theoretical predictions based on number of
components being given by 1 + Po(agn + 406k/n + 49;) (dashed line, either scale). Note
that lines are indistinguishable for £ > 5. The left hand scale is exponentially related to
the right hand scale.
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Figure 7: Proportion of small components that are of size k + z. The dotted line is the
theoretical prediction for large k£ based on the lower bound argument. Error bars represent
1 standard deviation.

very well by exp{—asn}, and to be fairly insensitive to the shape of the region S,,, provided
the boundary is reasonably smooth and not excessively long. One would also expect that
for fixed n the critical value of k occurs when a; ~ 1/n. The data suggests that this
critical £k is between about 0.3logn and 0.4logn, consistent with the theoretical bounds,
and closer to the lower bound.

If one believes that the lower bound construction of Theorem 5 is in fact asymptotically
correct, then the sizes of the components in the interior should be geometrically distributed
with minimum value k£ + 1 and ratio about e ™ & 0.3016, where p is the constant found
in the proof of Theorem 5. Of course, this assumes that k is very large. For more modest
values of k, the lower bound construction suggests that the density of components of size
t > k+1 should be about exp{—n;+/t} for some constant 7. To see this, consider a disc of
area t with ¢ points in it and insist that a vertex-free annulus of constant width surrounds
it. If this width is large enough, the ¢ points inside the disc should form a component,
and the vertex-free region is of area O(v/t), so this configuration has probability about
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Figure 8: Proportion of small components that are of size ¢ versus V't for 3 < k < 6. Error
bars represent 1 standard deviation.
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k=3 k=4 k=5 k=6 k=7 k=38
ne | 2,174,360,691 113,019,084 6,163,109 334,633 17,923 924
max|C| 547 106 65 37 27 20

Table 2: Number and maximum size of small components in simulation results in area of
size 240 ~ 102

exp{—mVt}. The component size distribution for components near the edge of A is
different than for components near the centre of A, so we only considered components
far from the boundary of A. (Numerical evidence suggests that the components near the
boundary are on average slightly larger than components far from the boundary.) Table 2
gives the total number of components found in our simulations and the maximum size of a
small component. Figures 6 and 7 plot the proportion of small components found against
their size, first using a linear scale in component size and second versus v/t. For k > 4, the
plot against v/t does indeed appear to be close to linear, however for k = 3 there does seem
to be some deviation from linearity. The average small component sizes for components
far from the boundary are given in Table 1.

8 Conjectures

We end with three extremely natural conjectures we would very much like to see solved.
The first was mentioned briefly in the introduction.

Conjecture 1. Is there a critical value of ¢ such that, for ¢ < c, Gy |c10gn) 15 discon-
nected whp, and, for ¢' > c, Gy |¢r10gn) 15 connected whp ? In the terminology introduced

in the introduction, is it true that ¢; = ¢, ? Is it true for the directed graphs C_jnk?
Conjecture 2. For the directed graphs ijk, write
¢ = sup{c: P(én,tclognj is connected) — 0}, and
Ciso = sup{c: P(ém[cbgnj contains a vertex with zero in-degree) — 1}.
Trivially, we have ¢, > Ciso. Is it in fact true that ¢ = Cigo?
Conjecture 3. Is the threshold for connectivity of Gy sharp in k? In other words,

setling
kn(p) = min{ k : P(Gp is connected) > p '},
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is it true that, for any 0 < e < 1, there exists C'(g) such that, for all sufficiently large n,

kn(1—¢) < C(e) + kn(e)?

“Sharpness in n” was proved in Section 5, but perhaps this is more natural.
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