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Somewhat Stochastic Matrices

Branko Ćurgus and Robert I. Jewett

Abstract. The standard theorem for stochastic matrices with positive entries is generalized
to matrices with no sign restriction on the entries. The condition that column sums be equal
to 1 is kept, but the positivity condition is replaced by a condition on the distances between
columns.

1. INTRODUCTION. The notion of a Markov chain is ubiquitous in linear algebra
and probability books. In linear algebra, a Markov chain is a sequence {xk} of vec-
tors defined recursively by a specified vector x0, a square matrix P , and the recursion
xk = Pxk−1 for k = 1, 2, . . . . That is, xk = Pkx0. Natural probabilistic restrictions are
imposed on x0 and P . It is assumed that x0 is a probability vector, that is, its entries
are nonnegative and add up to 1. It is assumed that P is a stochastic matrix, that is, it
is a square matrix whose columns are probability vectors. The original version of the
main theorem about Markov chains appears in Markov’s paper [2]. In the language of
linear algebra, it reads:

Suppose that P is a stochastic matrix with all positive entries. Then there ex-
ists a unique probability vector q such that Pq = q. If {xk} is a Markov chain
determined by P, then it converges to q.

More generally, the same conclusion holds for a stochastic matrix P for which
Ps has all positive entries for some positive integer s. All elementary linear algebra
textbooks that we examined state this theorem. None give a complete proof. Partial
proofs or intuitive explanations of the theorem’s validity are always based on knowl-
edge about the matrix’s eigenvalues and eigenvectors. This argument becomes sophis-
ticated when the matrix is not diagonalizable.

What these proofs leave obscure is a certain contractive property of a stochastic
matrix already observed by Markov. Of course, this contractive property is explored
in research papers and some advanced books. However, the relative simplicity of the
underlying idea gets lost in the technical details of an advanced setting. We feel that
this contractive property deserves to be popularized. We use it here to provide a direct
proof of a theorem, which is more general than the one stated above.

We consider real square matrices A whose columns add up to 1. Such a matrix
we call a somewhat stochastic matrix. The probabilistic condition that all entries be
nonnegative is dropped. Instead of assuming that all entries of As are positive, we make
an assumption about distances between the columns of As . This assumption leads to a
contractive property of a matrix that yields convergence. This and other definitions are
given next.

2. DEFINITIONS. All numbers in this article are real, except in Example 3. All
matrices are square and will be denoted by uppercase letters. All vectors, except for
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1, are column vectors and will be denoted by bold lowercase letters. All entries of the
row vector 1 are equal to 1,

1 = [1 1 · · · 1].

This row vector helps to express conditions that were already mentioned and will ap-
pear repeatedly. The equation 1A = 1 says that all column sums of A are equal to 1.
And 1x = 1 says that the entries of a column vector x sum to 1, while 1x = 0 says
that the entries of a column vector x sum to 0. We use the standard notation N for the
set of positive integers and R for the set of real numbers.

For a vector x with entries x1, . . . , xn , we set

‖x‖ :=
n∑

j=1

|x j |.

Notice that the distance ‖x − y‖ between vectors x and y associated with this norm is
the n-dimensional version of the Manhattan distance.

Consider an n × n matrix A with columns a1, . . . , an and entries ai j . For the purpose
of the next two definitions, we think of the columns of a matrix as points in R

n . In this
way, the concept of a diameter of a set is applied to a matrix as follows:

diam A = max
1≤i, j≤n

‖ai − a j‖.

Next, we define

var A = 1

2
diam A = max

1≤i, j≤n

1

2

n∑
l=1

|ali − al j |.

We call this quantity the column variation of a matrix A. The idea of using that quantity
is due to Markov [2, Section 5]. In [2], for fixed i, j the quantity 1

2

∑n
l=1 |ali − al j | is

not given explicitly as half the sum of the absolute values of the real numbers ali − al j

but rather as the sum of the positive terms in this list. Since Markov considered only
stochastic matrices, for which the sum of all terms in this list is 0, the quantity he used
coincides with the variation. For more on Markov’s work, see [4]. The column and row
variation appear in research literature under various names; see [1, Section 3.3].

Recalling the original theorem about a Markov chain stated in our first paragraph,
we will show that the inequality

‖Pkx0 − q‖ ≤ (var P)k‖x0 − q‖ (1)

holds for all k. Furthermore, for a stochastic matrix P with all positive entries, it turns
out that var P < 1. This strict contractive property of a stochastic matrix with all pos-
itive entries implies convergence of the Markov chain {Pkx0}.

3. THE COLUMN VARIATION OF A MATRIX. The first step toward a proof
of inequality (1) is the proposition that follows. To repeat, our results do not require
entries to be nonnegative. Not only that, but in this proposition A could be a rectangular
matrix with complex entries. However, the assumption that the entries of the vector y
are real is essential, as is shown in Example 3.
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Proposition. Let A be an n × n real matrix and let y be an n × 1 vector with real
entries such that 1y = 0. Then

‖Ay‖ ≤ (var A)‖y‖. (2)

Proof. We will use the common notation for the positive and negative part of a real
number t : t+ = max{t, 0} and t− = max{−t, 0}. Clearly, t+, t− ≥ 0, and t = t+ − t−

and |t | = t+ + t−.
Let A be an n × n matrix with columns a1, . . . , an and let y ∈ R

n be such that
1y = 0.

The inequality (2) is obvious if y = 0. Assume that y �= 0. Set z = (
2/‖y‖)y. Then

(2) is equivalent to

‖Az‖ ≤ (var A)‖z‖ with ‖z‖ = 2. (3)

Clearly 1z = 0. Let z1, . . . , zn be the entries of z. Then we have

2 = ‖z‖ =
n∑

j=1

|z j | =
n∑

j=1

(
z+

j + z−
j

) =
n∑

j=1

z+
j +

n∑
j=1

z−
j

and

0 =
n∑

j=1

z j =
n∑

j=1

(
z+

j − z−
j

) =
n∑

j=1

z+
j −

n∑
j=1

z−
j .

From the last two displayed relations, we deduce that

n∑
j=1

z+
k =

n∑
j=1

z−
k = 1. (4)

Using again the notation introduced at the beginning of the proof, we get

Az =
n∑

j=1

z j a j =
n∑

j=1

z+
j a j −

n∑
i=1

z−
i ai . (5)

Since Az is represented in (5) as a difference of two convex combinations of the
columns of A, the inequality ‖Az‖ ≤ diam A follows from the geometrically clear
fact that a set has the same diameter as its convex hull. However, we use (4) and (5) to
continue with an algebraic argument:

Az =
n∑

j=1

(
n∑

i=1

z−
i

)
z+

j a j −
n∑

i=1

⎛
⎝ n∑

j=1

z+
j

⎞
⎠ z−

i ai

=
n∑

j=1

n∑
i=1

z+
j z−

i (a j − ai ).
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Consequently,

‖Az‖ ≤
n∑

j=1

n∑
i=1

z+
j z−

i

∥∥a j − ai

∥∥ (by the triangle inequality and z+
j , z−

j ≥ 0)

≤ (diam A)

n∑
k=1

z+
k

n∑
j=1

z−
j (by definition of diam A)

= 2(var A) (by (4) and definition of var A)

= (var A)‖z‖ (since ‖z‖ = 2).

This completes the proof of (3) and the theorem is proved.

4. POWERS OF SOMEWHAT STOCHASTIC MATRICES. Let A be a some-
what stochastic matrix, that is, A is square and real and 1A = 1. The equalities

1Ak = (1A)Ak−1 = 1Ak−1 = · · · = (1A)A = 1A = 1

show that any power Ak of A is somewhat stochastic. Furthermore, if 1y = 0, then
1Aky = 1y = 0 for all positive integers k. This property of a somewhat stochastic
matrix A allows us to repeatedly apply the proposition to powers of A. Assuming that
1y = 0 and, for the sake of simplicity, setting c = var A, we have

‖Aky‖ = ‖A(Ak−1y)‖ ≤ c‖Ak−1y‖ ≤ · · · ≤ ck−1‖Ay‖ ≤ ck‖y‖. (6)

Now we are ready to state and prove the main result.

Theorem. Let A be an n × n somewhat stochastic matrix. Assume that there exists
s ∈ N such that var(As) < 1. Then

(a) there exists a unique q ∈ R
n such that Aq = q and 1q = 1,

(b) if x is such that 1x = 1, then the sequence {Akx} converges to q as k tends to
+∞.

Proof. The assumption that 1A = 1 means that 1 is an eigenvalue of A	, the transpose
of A. Since A	 and A have the same eigenvalues, there exists a real nonzero vector v
such that Av = v.

Let s be a positive integer such that var(As) < 1 and set c = var(As). Clearly,
Asv = v. If 1v = 0, then the proposition yields

‖v‖ = ‖Asv‖ ≤ c‖v‖ < ‖v‖.

This is a contradiction. Therefore, 1v �= 0. Setting q = (
1v
)−1

v provides a vector
whose existence is claimed in (a). To verify uniqueness, let p be another such vector.
Then 1(p − q) = 0, As(p − q) = p − q, and, by the proposition,

‖p − q‖ = ‖As(p − q)‖ ≤ c‖p − q‖.

Consequently, p − q = 0 since 0 ≤ c < 1.
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Let k ∈ N be such that k > s and assume that 1y = 0. By the division algorithm,
there exist unique integers j and r such that k = s j + r and r ∈ {0, . . . , s − 1}. Here
j > (k/s) − 1 > 0. Now we apply (6) to the matrix As and vector Ar y. We obtain

‖Aky‖ = ‖(As) j Ar y‖ ≤ c j‖Ar y‖.

Consequently, for all k > s, we have

‖Aky‖ ≤ c(k/s)−1 max
0≤r<s

‖Ar y‖. (7)

Let x ∈ R
n be such that 1x = 1. Then 1(x − q) = 0. Substituting y = x − q in (7)

yields

∥∥Akx − q
∥∥ = ∥∥Ak(x − q)

∥∥ ≤ c(k/s)−1 max
1≤r<s

‖Ar (x − q)‖.

Now, since 0 ≤ c < 1, we get Akx → q as k → +∞. This proves (b) and completes
the proof.

The standard theorem about Markov chains is obtained as a corollary to our
theorem.

Corollary. Let P be an n × n stochastic matrix. Assume that there exists s ∈ N such
that all entries of Ps are positive. Then

(a) there exists a unique probability vector q ∈ R
n such that Pq = q,

(b) if x is a probability vector, then the sequence {Pkx} converges to q as k tends
to +∞.

Proof. To apply the theorem, we will prove that var(Ps) < 1. For i, j ∈ {1, . . . , n},
denote by bi j the entries of Ps which, by assumption, are positive. Next, notice that
for positive numbers a and b we have |a − b| < a + b. Therefore, for arbitrary i, j we
have

n∑
l=1

|bli − bl j | <

n∑
l=1

(bli + bl j ) = 2.

This proves that the distance between arbitrary columns of Ps is less then 2. Con-
sequently, diam(Ps) < 2, and hence, var(Ps) < 1. Now we apply the theorem for
convergence. The proofs of the remaining claims are standard.

The theorem can be restated in terms of the powers of A. This follows from the
following equivalency.

Let A be an arbitrary square matrix and let q be a vector such that 1q = 1. Denote
by Q the square matrix, each of whose columns is equal to q, that is, Q = q1. Then
the following two statements are equivalent:

(i) If x is such that 1x = 1, then the sequence {Akx} converges to q as k tends to
+∞;

(ii) the powers Ak tend to Q as k tends to +∞.
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Assume (i) and let e1, . . . , en be the vectors of the standard basis of Rn . Then the j th
column of Ak is Ake j . By (i), Ake j converges to q as k tends to +∞. This proves (ii).

Now assume (ii) and let x be a vector with 1x = 1. Then Akx converges to Qx =
(q1)x = q(1x) = q. This proves (i).

In fact, Q is a projection onto the span of q. To see this, calculate Q2 = (q1)(q1) =
q(1q)1 = q11 = q1 = Q and Qx = q(1x) = (1x)q for any x ∈ R

n .

5. EXAMPLES. We conclude the article with three examples.

Example 1. The matrix

A = 1

5

⎡
⎣ 0 2 −4

−1 −1 0
6 4 9

⎤
⎦

is somewhat stochastic. The largest distance between two columns is between the sec-
ond and the third, and it equals 12/5. Therefore, var A = 6/5 > 1. But

A2 = 1

25

⎡
⎣−26 −18 −36

1 −1 4
50 44 57

⎤
⎦

and var(A2) = 18/25 < 1. Hence, the theorem applies, and q = 1
3

[−2 1 8
]	

.

Example 2. Consider the following three kinds of stochastic matrices:

A =
⎡
⎣1 + +

0 + +
0 0 +

⎤
⎦ , B =

⎡
⎣+ + 0

+ 0 +
0 + +

⎤
⎦ , and C =

⎡
⎣0 + 0

0 0 1
1 + 0

⎤
⎦ .

Here we use + for positive numbers.
Since A is upper triangular, all its powers are upper triangular, so no power of A has

all positive entries. Thus, the standard theorem does not apply. However, directly from
the definition it follows that var A < 1, so the theorem applies. Also, q = [

1 0 0
]	

.
The matrix B is not positive but var B < 1, so our theorem applies. Also, the stan-

dard theorem applies here as well since B2 is positive.
The first five powers of C are

⎡
⎣0 + 0

0 0 1
1 + 0

⎤
⎦ ,

⎡
⎣0 0 +

1 + 0
0 + +

⎤
⎦ ,

⎡
⎣+ + 0

0 + +
+ + +

⎤
⎦ ,

⎡
⎣0 + +

+ + +
+ + +

⎤
⎦ , and

⎡
⎣+ + +

+ + +
+ + +

⎤
⎦ .

The variation of the first two matrices is 1, while var(C3) < 1. The first positive power
of C is C5.

Example 3. In this example, we consider matrices with complex entries. Let ω =
(−1 + i

√
3)/2. Then 1, ω, and ω are the cube roots of unity. So, 1 + ω + ω =

0, ωω = 1, ω2 = ω, and ω2 = ω.
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Consider one vector and two matrices:

v =
⎡
⎣1

ω

ω

⎤
⎦ , A = 1

3

⎡
⎣1 1 1

1 1 1
1 1 1

⎤
⎦ , and B = 1

3

⎡
⎣1 ω ω

ω 1 ω

ω ω 1

⎤
⎦ .

We calculate Av = 0, Bv = v, and var B = √
3/2. Since ‖Bv‖ >

√
3/2‖v‖, the ma-

trix B and the vector v provide an example showing that the conclusion of the propo-
sition may not hold with complex entries.

A linear combination of A and B shows that the restriction to real numbers cannot
be dropped in the theorem. Let γ be a complex number and set C = A + γ B. Since
A2 = A, AB = BA = 0 and B2 = B, we have Ck = A + γ k B.

The matrix A is stochastic with variation 0, while 1B = 0 and var B = √
3/2.

Hence, 1C = 1, that is, C is somewhat stochastic with complex entries. Also,

var C = var(γ B) = |γ |
√

3/2.

Therefore, if 1 < |γ | < 2/
√

3, then var C < 1, but the sequence {Ck} diverges, as we
can see from the formula for Ck .

Finally, we mention that the vector v together with the vectors u = [
1 1 1

]	
and

w = [
1 ω ω

]	
form an orthogonal basis for the complex inner product space C

3,
that A is the orthogonal projection onto the span of u, and that B is the orthogonal
projection onto the span of v.
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