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Optical Design of Two-reflector Systems, the
Monge-Kantorovich Mass Transfer Problem and

Fermat’s Principle
TILMANN GLIMM & VLADIMIR OLIKER

ABSTRACT. It is shown that the problem of designing a two-
reflector system transforming a plane wave front with given in-
tensity into an output plane front with prescribed output in-
tensity can be formulated and solved as the Monge-Kantorovich
mass transfer problem.

1. INTRODUCTION

Consider a two-reflector system of configuration shown schematically on Fig. 1.
Let (x = (x1, x2, ..., xn), z) be the Cartesian coordinates in Rn+1, n ≥ 2, with
z being the horizontal axis and x1, x2, . . . , xn the coordinates in the hyperplane
α : z = 0. Let B1 denote a beam of parallel light rays propagating in the positive
z-direction and let Ω̄ denote the wavefront which is the cross section of B1 by
hyperplane α. Assume that Ω is a bounded domain on α. An individual ray of
the front is labeled by a point x ∈ Ω̄. The light intensity of the beam B1 is denoted
by I(x), x ∈ Ω, where I is a non-negative integrable function.

The incoming beam B1 is intercepted by the first reflector R1, defined as a
graph of a function z(x), x ∈ Ω̄. The rays in B1 are reflected off R1 forming a
beam of rays B2. The beam B2 is intercepted by reflector R2, which transforms it
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FIGURE 1. Sketch for Problem I

into the output beam B3. The beam B3 also consists of parallel light rays propa-
gating in the same direction as B1. The output wavefront at a distance d > 0 from
the hyperplane α is denoted by T̄d; we denote by T̄ the projection of T̄d on the
hyperplane α. The second reflector R2 is also assumed to be a graph of a function
w(p), p ∈ T̄ . The quantity 1/|J(Pd(x)|, where Pd is the map of Ω̄ on T̄d and
J is the Jacobian, is the expansion ratio and it measures the expansion of a tube of
rays due to the two reflections [9]. It is assumed that both R1 and R2 are perfect
reflectors and no energy is lost in the transformation process. Consequently, the
corresponding relation between the input intensity I on Ω and output intensity L
on Td is given by

(1.1) L(Pd(x))|J(Pd(x)| = I(x).

The “two-reflector” problem that needs to be solved by designers of optical
systems consists in determining the reflectors R1 and R2 so that all of the properties
of the two-reflector system above hold for prescribed in advance domains Ω, T ,
and positive integrable functions I(x), x ∈ Ω, and L(p), p ∈ T ; see Malyak [10]
and other references there. It is usually assumed in applications that Ω and Td are
bounded and convex.

Two fundamental principles of geometrical optics are used to describe the
transformation of the beam B1 into beam B3: the classical reflection law leading
to the ray tracing equations defining the map Pd, and the energy conservation law
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for the energy flux along infinitesimally small tubes of rays; see [10], where the
problem is formulated for rotationally symmetric data and a class of rotationally
symmetric solutions is found.

The problem of recovering reflectors R1 and R2 without assuming rotational
symmetry was formulated rigorously by Oliker and Prussner in [11], and it was
shown that it can be considered as a problem of determining a special map ofΩ̄→ T̄ with a potential satisfying an equation of Monge-Ampère type relating the
input and output intensities. Existence and uniqueness of weak solutions were
established by Oliker at that time but only the numerical results implementing a
constructive scheme for proving existence were presented in [11] for several test
cases. Detailed proofs were given in [13].

In this paper we show that this problem can also be studied in the frame-
work of the Monge-Kantorovich mass transfer problem studied by Brenier [3],
Caffarelli [6], Gangbo and McCann [7], and other authors. In our notation, the
Monge-Kantorovich mass transfer problem is to transfer the intensity I on Ω into
the intensity L on T via a map P : Ω → T for which the total transportation
cost

∫Ω C(x, P(x))I dx is minimal. Here C(x,p) is a given strictly convex cost
function.

The proof of existence and uniqueness of solutions to the Monge-Kantorovich
problem is obtained by solving a minimization problem for the functional

(1.2) (ζ,ω),
∫
Ω ζI dx −

∫
T
ωLdp,

considered on pairs of continuous functions ζ on Ω̄ and ω on T̄ that satisfy

(1.3) ζ(x)−ω(p) ≥ −C(x,p), x ∈ Ω̄, p ∈ T̄ .
Under various conditions it is shown in [3], [6], [7] that this functional is min-
imized by some pair (ζ0,ω0) (referred to as Kantorovich potentials), and that
P(x) = x +∇ζ0 solves the Monge-Kantorovich problem.

Applying these ideas, we show that the geometric optics problem at hand can
be formulated as a Monge-Kantorovich mass transfer problem with a quadratic
cost function; see Section 6. The Kantorovich potentials correspond to the pair of
reflectors that solve the problem. The condition (1.3) has a geometric meaning;
namely, it filters out reflectors that allow only optical paths longer than a certain
prescribed one. The functional (1.2) to be minimized is the mean horizontal
distance between points of the two-reflectors, with the average weighted by the
two intensities.

We prove that there are always two different reflector systems satisfying the
stated requirements. The corresponding ways in which one intensity is transfered
into the other one are exactly the most and the least energy efficient in the sense of
the Monge-Kantorovich cost. This result is thus ultimately a variant of Fermat’s
principle.
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The fact that the solution to the above geometrical optics problem can be
derived from a variational principle gives rise to a numerical treatment of the
problem different from the one used in [11]; see also [12], [13]. In [11] the
Monge-Ampère equation corresponding to (1.1) (see equation (2.6) in Section 2)
was solved directly by a special geometric approximation by equations in measures
with point-concentrated densities approximating its right-hand side. This method
requires an iterative solution of a system of quadratic equations and involves fre-
quent constructions of convex hulls in space. While the method is proved to
converge [12], certain difficulties arize when the number of nodes becomes large.
In the variational approach, when the problem of minimizing (1.2) under con-
straints (1.3) is discretized, we have a linear programming problem. However, in
order to get a good approximation, one also has to deal here with a very large
number of constraints and the issues of convergence and accuracy are open. We
ran some numerical experiments with this approach and intend to return to this
point in a separate publication. In this connection we also point out the work by
Benamou and Brenier [2] in which the problem of finding the optimal solution
to the Monge-Kantorovich problem with quadratic cost is solved numerically by
transforming it into a special time dependent flow.

This paper is organized as follows. In Section 2, we recall some results from
[13] concerning the ray tracing map, assuming smoothness of the reflectors, and
formulate the main “two-reflector” problem. In Section 3, we give a geometric
characterization of reflectors as envelopes of certain families of paraboloids. Such
a characterization is of independent interest. In Section 4 we use this geometric
characterization to define weak solutions of type A and type B of the two-reflector
problem. To prove existence and uniqueness of solutions for each type we utilize
the ideas of the Monge-Kantorovich theory and introduce the functional (1.2)
on a certain class of “quasi-reflector” systems. This is done in Section 5. In the
same section it is shown that the problem of finding weak solutions of type A is
equivalent to finding minimizers of (1.2). Weak solutions of type B correspond
to maximizers of (1.2). On the other hand, existence of minimizers (maximizers)
to this functional is not difficult and has been established before in [3], [6], [7].
This implies existence of solutions. Uniqueness in each of the respective classes
is established in Section 6 by proving that the ray tracing map P̃ associated with
a weak solution minimizes or maximizes the quadratic Monge-Kantorovich cost
for which the functional (1.2) is the dual. The main theorem on existence and
uniqueness of weak solutions to the two-reflector problem is stated and proved in
Section 7.

Finally, we note that similar methods can be used to formulate and solve other
geometrical optics problems involving systems with single and multiple reflectors1.

1Added in proof (January 27, 2004). Variational treatments of the problem of designing an optical
system with a single reflector transforming the energy of a point source into a prespecified energy
distribution on the far-sphere were given by Glimm-Oliker in [8] and by Wang in [16].
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2. STATEMENT OF THE PROBLEM

We begin by reviewing briefly the analytic formulation of the problem for smooth
reflectors; see [13] for more details.

Let R1 be given by the position vector r1(x) = (x, z(x)), x ∈ Ω̄, with
z ∈ C2(Ω̄). The unit normal u on R1 is given by

u = (−∇z,1)√
1+ |∇z|2 .

Consider a ray labeled by x ∈ Ω̄ and propagating in the positive direction k of
the z-axis. According to the reflection law the direction of the ray y(x) reflected
off R1 is given by

y = k− 2〈k,u〉u = k− 2
(−∇z,1)
1+ |∇z|2 ,

where 〈, 〉 is the inner product in Rn+1. Denote by t(x) the distance from reflector
R1 to reflector R2 along the ray reflected in the direction y(x) and let s(x) be the
distance from R2 to the wavefront T̄d along the corresponding ray reflected off R2.
Assume for now that t ∈ C1(Ω̄) and R2 is a C1 hypersurface. The total optical
path length (OPL) corresponding to the ray associated with the point x ∈ Ω̄ is
`(x) = z(x) + t(x) + s(x). A calculation shows that `(x) = const ≡ ` on Ω̄.
Since

(2.1) R2 : r2(x) = r1(x)+ t(x)y(x), x ∈ Ω̄,
the image of x on the reflected wavefront T̄d is given by

(2.2) Pd(x) = r1(x)+ t(x)y(x)+ s(x)k, x ∈ Ω̄.
The equation (2.2) is the ray tracing equation for this two-reflector system.

Introduce the map P(x) = Pd(x) − dk : Ω̄ → T̄ . A calculation [13] shows
that

(2.3) p = P(x) = x + β∇z(x), x ∈ Ω̄,
where β = ` − d is the “reduced” optical path length.

To simplify the notation we will write L(P(x)) instead of L(Pd(x))
(≡ L(P(x) + dk)). For the input intensity I(x), x ∈ Ω, and the output in-
tensity L(P(x)) on Td we have, in accordance with the differential form of the
energy conservation law (1.1),

(2.4) L(P(x))|J(P(x))| = I(x), x ∈ Ω,
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where we also take into account that J(Pd) = J(P). It follows from (2.4) that Ω,
T , I, and L must satisfy the necessary condition

(2.5)
∫
T
L(p)dp =

∫
Ω I(x)dx.

It follows from (2.3) that J(P) = det[Id+βHess(z)], where Id is the identity
matrix and Hess is the Hessian. Hence, by (2.4),

(2.6) L(x + β∇z)∣∣det[Id+βHess(z)]
∣∣ = I, in Ω.

Thus, the problem of determining the reflectors R1 and R2 with properties de-
scribed in the introduction requires solving the following problem.

Problem I. Given bounded domains Ω and T on the hyperplane α and two
nonnegative, integrable functions I on Ω and L on T satisfying (2.5), it is required to
find a function z ∈ C2(Ω̄) such that the map

(2.7) Pα = x + β∇z : Ω̄→ T̄

is a diffeomorphism satisfying equation (2.6).

It is shown in [11] that once such a function z is found, the function w
describing the second reflector is determined by z and β as

(2.8) w(P(x)) = d− s(x) = z(x)+ β
2
(|∇z|2 − 1).

Following [13] we introduce the function

(2.9) V(x) = x2

2
+ βz(x)− β

2

2
.

Then by (2.3) and (2.8)

P = ∇V,(2.10)

w = 1
β

[
V − 〈x,∇V〉 + 1

2
|∇V |2

]
,(2.11)

where V −〈x,∇V〉 is the negative of the usual Legendre transform of V . Thus, V
is a potential for the map P : Ω̄→ T̄ . If P is a diffeomorphism, then the inverse of
the transformation (x, z(x)) → (p,w(p)), where p = P(x), is given by

x(p) = P−1(p) = p − β∇pw(p),(2.12)

z(p) = w(p)−
(
β
2
|∇pw(p)|2 + β2

)
, p ∈ T̄ .(2.13)
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In terms of the potential V the equation (2.6) becomes

(2.14) L(∇V)|det Hess(V)| = I in Ω,
which is an equation of Monge-Ampère type.

In order to clarify the relations between the parameters `, d and β, note first
that it is the reduced optical path length β that is intrinsic to the problem. The
choice of cross sections of the fronts (that is, the selection of a particular value for
d) is extraneous. In fact, it is easy to see that, if (z,w) are two-reflectors as above
and we change d to d′, then `′ − d′ = ` − d = β and (z,w) are not affected by
such change.

Finally, we note that the two-reflector system described above has the follow-
ing two symmetries. For λ ∈ R+ put z′(x) = λz(x) and β′ = (1/λ)β. Then

P ′(x) = P(x),

w′(p) = λw(p)+ β
2

(
λ− 1

λ

)
,

where P ′(x) = x + β′∇z′(x). In other words, the system is invariant under
some combination of flattening (stretching) the first and translating and flattening
(stretching) the second reflector.

Note also that a horizontal translation of both reflectors, that is, adding the
same constant to z and w, does not change β and the map P .

3. GEOMETRIC CHARACTERIZATION OF REFLECTORS

We examine first more closely the relationship between the functions z, V and w
for smooth reflectors. For the rest of the paper we assume that Ω and T are bounded
domains on the hyperplane α. We continue to assume that the map P : Ω̄ → T̄ is a
diffeomorphism. Let x ∈ Ω̄, p ∈ T̄ , and

Q(x,p) = 〈x,p〉 + βw(p)− p
2

2
.

If p = P(x), then by (2.9)–(2.11) we have V(x) = Q(x, P(x)). Denote by SV
the graph of V over Ω̄. Let x0 ∈ Ω̄ and p0 = P(x0). The tangent hyperplane to
SV at (x0, V(x0)) is given by the equation

Z = 〈x,p0〉 − 〈x0, p0〉 + V(x0),

where (x,Z) denotes an arbitrary point on that hyperplane. Taking into account
(2.11), we obtain

(3.1) 〈x,p0〉 − 〈x0, p0〉 + V(x0) = 〈x,p0〉 + βw(p0)− p
2
0

2
= Q(x,p0).
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Since V(x0) = Q(x0, p0), we conclude that Z = Q(x,p0) is the tangent hyper-
plane to SV at (x0, V(x0)). Consequently, if V is convex, then Z = Q(x,p0) is a
supporting hyperplane to SV from below, and if V is concave, then Z = Q(x,p0)
is supporting to SV from above (relative to positive direction of the z-axis). Be-
cause T̄ is bounded, there are no vertical tangent hyperplanes to the graph of V
and we have

V(x) ≥ Q(x,p0) for all x ∈ Ω̄, if V is convex,

V(x) ≤ Q(x,p0) for all x ∈ Ω̄, if V is concave.

Since for every p ∈ T̄ the hyperplane Q(x′, p) is supporting to SV at some
(x′, V(x′)), we get

V(x) ≥ Q(x,p) for all x ∈ Ω̄, p ∈ T̄ , if V is convex,(3.2)

V(x) ≤ Q(x,p) for all x ∈ Ω̄, p ∈ T̄ , if V is concave,(3.3)

and in both cases we have equalities if p = P(x).
Let

U(p) = p2

2
− βw(p)− β

2

2
, R(x,p) = 〈x,p〉 − βz(x)− x

2

2
.

It follows from (3.2) and (3.3) that

U(p) ≥ R(x,p) for all x ∈ Ω̄, p ∈ T̄ , if V is convex,(3.4)

U(p) ≤ R(x,p) for all x ∈ Ω̄, p ∈ T̄ , if V is concave,(3.5)

and in both cases equalities are achieved if p = P(x). Also, for any fixed x0 ∈ Ω̄
the hyperplane R(x0, p) is supporting to the graph SU ofU at (p0 = P(x0),U(p0)).

Using the usual characterization of convex functions [15] we obtain from
(3.2), (3.4) and (3.3), (3.5)

V(x) = sup
p∈T̄

Q(x,p), U(p)= sup
x∈Ω̄R(x,p) when V is convex,

V(x) = inf
p∈T̄

Q(x,p), U(p)= inf
x∈Ω̄R(x,p) when V is concave.

For convex V this implies

z(x) = sup
p∈T̄

[
β2 − |x − p|2

2β
+w(p)

]
, x ∈ Ω̄,(3.6)

w(p) = inf
x∈Ω̄

[
|x − p|2 − β2

2β
+ z(x)

]
, p ∈ T̄ .(3.7)
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Similarly, when V is concave we have

z(x) = inf
p∈T̄

[
β2 − |x − p|2

2β
+w(p)

]
, x ∈ Ω̄,(3.8)

w(p) = sup
x∈Ω̄

[
|x − p|2 − β2

2β
+ z(x)

]
, p ∈ T̄ .(3.9)

The characterizations (3.6), (3.7) and (3.8), (3.9) have a simple geometric
meaning. To describe it, consider first the case when V is convex. Recall that the
total optical path length ` = z(x)+ t(x)+ d−w(P(x)) = const (see Figure 1).
Also, t2(x) = |x − P(x)|2 + |z(x) −w(P(x)|2 and β = ` − d. It follows from
(3.6) that (x, z(x)) is a point on the graph of the paraboloid

(3.10) kp,w(x) = β2 − |x − p|2
2β

+w, x ∈ α,

with the focus at (p = P(x),w(P(x))) and focal parameter β.
Similarly, it follows from (3.7) that a point (p = P(x),w(P(x))) on the

second reflector lies on a paraboloid

(3.11) hx,z(p) = |x − p|2 − β2

2β
+ z, p ∈ α,

with the focus at (x, z(x)) and focal parameter β.
Let Kp,w(p) be the convex body bounded by the graph of paraboloid kp,w(x),

and Hx,z(x) the convex body bounded by the graph of paraboloid hx,z(p). Then
(3.6) and (3.7) mean that the graphs Sz of z(x) and Sw of w(p) are given by

Sz = ∂
( ⋃
p∈T̄

Kp,w(p)
)
,(3.12)

Sw = ∂
( ⋃
x∈Ω̄

Hx,z(x)
)
.(3.13)

When the potential V is concave we have similar characterizations of Sz and
Sw , with

⋃
in (3.12), (3.13) replaced by

⋂
.

Remark 3.1. It follows from (3.6), (3.7) that when V(x) is convex, then for
any x ∈ Ω the path taken by the light ray through the reflector system is the
shortest among all possible paths (not necessarily satisfying the reflection law) that
go from (x,0) to (x, z(x)), then to some (p,w(p)) and then to (p,d). Of
course, the shortest path satisfies the reflection law and p = P(x). For concave V
the corresponding light path is the longest as it follows from (3.8), (3.9). Thus the
characterizations (3.6), (3.7) and (3.8), (3.9) are variants of the Fermat principle.
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4. WEAK SOLUTIONS OF PROBLEM I

We use the geometric characterizations of reflectors in Section 3 to define weak
solutions to Problem I. Let Ω and T be two bounded domains on the hyperplane
α, and β a fixed positive number.

Definition 4.1. A pair (z,w) ∈ C(Ω̄)× C(T̄ ) is called a two-reflector of type
A if

z(x) = sup
p∈T̄

kp,w(p)(x), x ∈ Ω̄,(4.1)

w(p) = inf
x∈Ω̄hx,z(x)(p), p ∈ T̄ ,(4.2)

where kp,w(p)(x) and hx,z(x)(p) are defined by (3.10) and (3.11). Similarly, a
pair (z,w) ∈ C(Ω̄)× C(T̄ ) is called a two-reflector of type B if

z(x) = inf
p∈T̄

kp,w(p)(x), x ∈ Ω̄,(4.3)

w(p) = sup
x∈Ω̄hx,z(x)(p), p ∈ T̄ .(4.4)

To avoid repetitions, we consider below only two-reflectors of type A. The
changes that need to be made to deal with two-reflectors of type B are straightfor-
ward and are omitted.

It will be convenient to construct the following extensions z∗ of the function
z, and w∗ of w to the entire α. For a pair (z,w) as in definition 4.1 let

(4.5) V(x) = x2

2
+ βz(x)− β

2

2
and Q(x,p) = 〈x,p〉 + βw(p)− p

2

2
.

It follows from (4.1) that

V(x) = sup
p∈T̄

Q(x,p), x ∈ Ω̄.
That is, V is convex and continuous over Ω̄. Furthermore, since T̄ is bounded,
the graph SV has no vertical supporting hyperplanes. For any fixed p ∈ T̄ define
the half-space Q+(p) = {(x,Z) ∈ α×R1 | Z ≥ Q(x,p)}. Then

SV∗ = ∂
( ⋂
p∈T̄

Q+(p)
)

is a graph of a convex function V∗ defined for all x ∈ α. Note that V∗(x) = V(x)
when x ∈ Ω̄. We now define an extension of z by putting

z∗(x) = 1
β

[
−x

2

2
+ V∗(x)+ β

2

2

]
.
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Similarly, for any fixed x ∈ Ω̄ we let R+(x) = {(p,Z) ∈ α × R1 | Z ≥
R(x,p)}, where

R(x,p) = 〈x,p〉 − βz(x)− x
2

2
, p ∈ α.

Then the function
U∗(p) = sup

x∈Ω̄R(x,p), p ∈ α,

is defined. It is also convex. It follows from (4.2) that for p ∈ T̄

U∗(p) = p2

2
− βw(p)− β

2

2
(≡ U(p)).

The corresponding extension of w we define as

w∗(p) = 1
β

[
p2

2
− U∗(p)− β

2

2

]
, p ∈ α.

Lemma 4.2. The function V∗ is uniformly Lipschitz on α with Lipschitz con-
stant maxT̄ |p|. Also, U∗(p), p ∈ α, is uniformly Lipschitz on α with Lipschitz
constant maxΩ̄ |x|. In addition, z ∈ Lip(Ω̄) and w ∈ Lip(T̄ ), with the Lipschitz
constant ≤ sup(x,p)∈Ω̄×T̄ |x − p|/β.

Proof. By our convention the normal vector to a plane Q(x,p) (when p is
fixed) is given by (−p,1). It follows from definition of V∗ that SV∗ has no sup-
porting hyperplanes with normal (−p,1) such that p 6∈ T̄ . Since T is bounded,
this implies the first statement of the lemma. The statements regarding U∗ are
established by similar arguments. From these properties of V∗ it follows that the
function z∗ is continuous on α and Lipschitz on any compact subset of α. Similar
properties hold also for w∗.

Now we estimate the Lipschitz constant for z on Ω̄. Let (z,w) be a two-
reflector of type A. Let x, x′ ∈ Ω̄ and let z(x′) ≥ z(x). (If the opposite inequality
holds we relabel x and x′.) Fix some small ε > 0. It follows from (4.1), (4.2) that
there exists a p′ ∈ T̄ such that z(x′) ≤ kp′,w(p′)(x′)+ ε. Then

|z(x′)− z(x)| ≤ kp′,w(p′)(x′)− z(x)+ ε ≤ kp′,w(p′)(x′)− kp′,w(p′)(x)+ ε
≤ sup
x∈Ω̄ |∇kp′,w(p′)(x)| |x

′ − x| + ε = 1
β

sup
s∈Ω̄ |s − p

′| |x′ − x| + ε

≤ 1
β

sup
s∈Ω̄,p∈T̄ |s − p| |x

′ − x| + ε.

Letting ε -→ 0, we obtain the statement regarding the Lipschitz constant
for z. The same statement regarding w and two-reflectors of type B are proved
similarly. ❐
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Next, we define the analogue of the ray tracing map P for a two-reflector. For
that we need to recall the notion of the normal map [1], p. 114. Let u : G → R1

be an arbitrary convex function defined on a domain G ⊂ α, and Su its graph.
For x0 ∈ G let Z − u(x0) = 〈p,x − x0〉 be a hyperplane with normal (−p,1)
supporting to Su at (x0, u(x0)). The normal map νu : G → α at x0 is defined as

νu(x0) =
⋃
{p},

where the union is taken over all hyperplanes supporting to Su at (x0, u(x0)).

Definition 4.3. Let (z,w) be a two-reflector of type A. For x ∈ α we put

P̃ (x) = νV∗(x).

For reflectors of type B the ray tracing map is defined similarly, using the
function −U∗. In general, P̃ may be multivalued.

Lemma 4.4. Let (z,w) be a two-reflector of type A and z∗ and w∗ their re-
spective extensions, as above. Then P̃ (x) ∈ T̄ for all x ∈ α. In addition, for any
p ∈ T̄ the set {x ∈ Ω̄ | P̃ (x) = p} 6= ∅. Furthermore, for any x ∈ Ω̄
(4.6) P̃ (x) = {all p ∈ T̄ | w(p) = hx,z(x)(p)}.

Proof. Let x ∈ α andQ(x,p) a supporting hyperplane to V∗ at (x, V∗(x)).
Then the normal p is in νV∗(x). On the other hand, by definition of V∗, SV∗
has only supporting hyperplanes with normals in T̄ . Hence, P̃ (x) ⊂ T̄ .

Let p ∈ T̄ , and Q(x,p) a supporting hyperplane to SV∗ . We need to show
that there is an x ∈ Ω̄ such that p ∈ P̃(x). By (4.5) and (4.2) we have for any
x ∈ Ω̄

V(x)−Q(x,p) = β(hx,z(x)(p)−w(p)) ≥ 0.

By (4.2) there exists an x ∈ Ω̄ such that V(x) −Q(x,p) = 0. This implies the
remaining two statements of the lemma. ❐

Remark 4.5. It follows from definition that P̃ is multivalued at points x
where SV∗ has more than one supporting hyperplane. At such x the function z∗
is not differentiable. Let (x0, z∗(x0)) be one such point. Then

P̃ (x0) = {p ∈ α | Q(x,p) is supporting to SV∗ at (x0, V∗(x0))}.

In other words, a light ray labeled by x0 ∈ Ω that hits a point where the first
reflector has a singular point will split into a cone of light rays. These rays will
generate a subset on the paraboloid hx0,z(x0)(p) whose projection on α is P̃ (x0).
This is consistent with the physical interpretation of diffraction at singularities of
this type [9].
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Remark 4.6. Since V∗ is convex, by Rademacher’s theorem, the Lebesgue
measure of the set of singular points on SV∗ is zero. Thus, P̃(x) is single-valued
almost everywhere in α. Furthermore, the function z (z∗) is a difference of two
convex functions, and therefore, it is differentiable almost everywhere in Ω (α).
The same is true for w and w∗. It follows then from the definitions of P̃ and V
that for almost all x ∈ Ω
(4.7) P̃ (x) = ∇V = x + β∇z(x).

A similar property holds also for the function w.

Lemma 4.7. If (z,w) is a two-reflector of type A, then for all x ∈ Ω̄, p ∈ T̄

(4.8) z(x)−w(p) ≥ 1
2β
(β2 − |x − p|2).

In addition, for almost all x ∈ Ω there exists a unique p ∈ T̄ such that p = P̃ (x),
and (4.8) in this case is an equality.

Proof. The lemma follows from (4.1), (4.2), Remark 4.6, and Lemma 4.4. ❐

Define the inverse of P̃ for p ∈ T̄ as

P̃−1(p) = {x ∈ α | p ∈ P̃ (x)}.

Theorem 4.8. Let B be the σ -algebra of Borel subsets of T . Let (z,w) be a
two-refllector of type A. For any set τ ∈ B the set P̃−1(τ) is measurable relative to the
standard Lebesgue measure on α. In addition, for any non-negative locally integrable
function I on α the function

L(τ) =
∫
P̃−1(τ)

I(x)dx

is a non-negative completely additive measure on B.

Proof. The proof of this theorem is completely analogous to the proofs of
Theorems 9 and 16 in [14]. ❐

Lemma 4.9. Let Ω and T be two bounded domains on α and I a non-negative
integrable function on Ω extended to entire α by setting I(x) ≡ 0 for x ∈ α \Ω. Let
(z,w) be a two-reflector of type A or B. Then for any continuous function h on T̄ we
have the following change of variable formula

(4.9)
∫
T
h(p)L(dp) =

∫
Ω h(P̃(x))I(x)dx.
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Proof. In the integral on the right h(P̃(x)) is discontinuous only where P̃ is
not single valued, that is, on the set of measure zero. Thus, the integral on the
right is well defined.

We may assume that
∫
Ω I(x)dx > 0; otherwise, the statement is trivial. Fix

some small ε > 0 and a positive integer N. Partition the interval [minh(p),
maxh(p)] into sub-intervals S1, . . . , SN of length < ε/

∫Ω I(x)dx and let hi ∈
Si. Put τi = {p ∈ T | h(p) ∈ Si}. Then for sufficiently large N

∣∣∣∣∫
T
h(p)L(dp)−

∑
hiL(τi)

∣∣∣∣ < ε.
For any i, j = 1, . . . , N, i ≠ j, meas(P̃−1(τi)∩ P̃−1(τj)) = 0 (see Remark 4.6).
Hence, ∣∣∣∣∫Ω h(P̃(x))I(x)dx −

∑
hi
∫
P̃−1(τi)

I(x)dx
∣∣∣∣ < ε.

This, together with the previous inequality, imply

∣∣∣∣∫Ω h(P̃(x))I(x)dx −
∑
hiL(τi)

∣∣∣∣ < 2ε. ❐

Definition 4.10. A two-reflector (z,w) of type A (B) is called a weak solution
of type A (B) of the two-reflector Problem I if the map P̃ : Ω̄→ T̄ is onto, and for
any Borel set τ ⊆ T

L(τ) =
∫
τ
L(p)dp.

Using Lemma 4.9 and this definition we obtain the following result.

Lemma 4.11. Let (z,w) be a weak solution of type A (B) of the two-reflector
problem I. Then for any continuous function h on T̄

(4.10)
∫
T
h(p)L(p)dp =

∫
Ω h(P̃(x))I(x)dx.

5. A VARIATIONAL PROBLEM AND WEAK SOLUTIONS OF
THE TWO-REFLECTOR PROBLEM

As before, we consider here only the case of two-reflectors of type A. We comment
on the case of two-reflectors of type B in Section 7. Let, as before, ` and d be the
given parameters of the system, and β = ` − d. Let ζ ∈ C(Ω̄) and ω ∈ C(T̄ ).
With any such pair (ζ,ω) we associate a “quasi-reflector” system in which the
light path is defined as follows. Let (x,p) ∈ Ω̄× T̄ and let (x, ζ(x)) be the point
where the horizontal ray emanating from (x,0) hits the graph of ζ. Let P2 be the
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FIGURE 2. Definition of `(ζ,ω,x,p).

point where the horizontal ray begins in order to terminate in (p,d). The “light”
path is the polygon (x,0)P1P2(p,d); see Figure 2. The length of this path is

`(ζ,ω,x,p) = ζ(x)+
√
(ζ(x)−ω(p))2 + |x − p|2 + d−ω(p).

The class of admissible pairs is defined as

Adm(Ω, T) = {(ζ,ω) ∈ C(Ω̄)× C(T̄ )(5.1)

| `(ζ,ω,x,p) ≥ `, ∀(x,p) ∈ Ω̄× T̄}.
By construction, a pair (ζ,ω) ∈ C(Ω̄)×C(T̄ ) lies in Adm(Ω, T) if and only

if for all x ∈ Ω̄, p ∈ T̄

(5.2) ζ(x) ≥ kp,ω(p)(x), ω(p) ≤ hx,ζ(x)(p),

or, equivalently, if and only if

(5.3) ζ(x)−ω(p) ≥ 1
2β
(β2 − |x − p|2),

for all x ∈ Ω̄, p ∈ T̄ . It follows from (4.1), (4.2) that a two-reflector of type A is
an admissible pair.
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The following functional is central to our investigation. Let I and L be two non-
negative integrable functions on Ω and T , respectively, satisfying the energy con-
servation law (2.5). For (ζ,ω) ∈ Adm(Ω, T) put

F(ζ,ω) =
∫
Ω ζ(x)I dx −

∫
T
ω(p)Ldp.

Clearly, F is linear and bounded on C(Ω̄) × C(T̄ ) with respect to the norm
max{‖ζ‖∞,‖ω‖∞}. Geometrically, F(ζ,ω) is proportional to the mean hori-
zontal distance between the points of the two graphs, the average being weighted
by the intensities.

We consider now the following problem.

Problem II. Minimize F on Adm(Ω, T).
Proposition 5.1 ([3, 6, 7]). There exist (z,w) ∈ Adm(Ω, T) such that

F(z,w) = inf
(ζ,ω)∈Adm(Ω,T)F(ζ,ω).

We may further assume that the pair (z,w) satisfies the conditions (4.1), (4.2) for a
type A reflector system.

Proof. It follows from (5.2) that one can restrict the search for minimizers to
two-reflectors (ζ,ω) of type A. Also, because of (2.5) F(ζ,ω) is invariant under
translations ζ , ζ + ρ, ω , ω+ ρ for a constant ρ ∈ R. Hence, it is sufficient
to consider only two-reflectors (ζ,ω) for which ζ(x0) = 0 for some x0 ∈ Ω̄.

By Lemma 4.2, ζ and ω are uniformly Lipschitz, with the Lipschitz constant
K = supx∈Ω,p∈T |x − p|/β. It follows that for all x ∈ Ω,

|ζ(x)| = |ζ(x)− ζ(x0)| ≤ K diamΩ.
For all p ∈ T̄ we have

ω(p) ≤ hx0,ζ(x0)(p) =
1

2β
(|x0 − p|2 − β2) ≤ max

q∈T̄
1

2β
(|x0 − q|2 − β2).

Finally, since hx,ζ(x)(p) = (|x − p|2 − β2)/2β + ζ(x) ≥ −β/2 − K diamΩ for
all x ∈ Ω̄, we also get the lower bound

ω(p) = inf
x∈Ωhx,ζ(x)(p) ≥ −

β
2
− K diamΩ.

Therefore, the maps ζ and ω are also uniformly bounded. By the Arzelà-Ascoli
theorem, and because F is continuous, the infimum of F is achieved at some
two-reflector pair (z,w). ❐
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We now show that weak solutions of Problem I and solutions of Problem II are
the same. This establishes the existence of weak solutions to Problem I.

Theorem 5.2. Let z ∈ C(Ω̄), w ∈ C(T̄ ) be a two-reflector of type A. Then the
following statements are equivalent.

(i) (z,w) minimizes F in Adm(Ω, T).
(ii) (z,w) is a weak solution of type A of the two-reflector Problem I.

Proof. The proof below is similar to the proofs of Theorem 1 in [7] and of the
change of variable formula in [6]. In order to make our presentation reasonably
self-contained we present it here.

(ii)⇒(i). Let (ζ,ω) ∈ Adm(Ω, T). Then by (5.3) and Lemma 4.7, for almost
all x ∈ Ω,

ζ(x)−ω(P̃(x)) ≥ 1
2β
(β2 − |x − P̃ (x)|2) = z(x)−w(P̃(x)).

Integrating this inequality we get

∫
Ω ζ(x)I dx −

∫
Ωω(P̃(x))I dx ≥

∫
Ω z(x)I dx −

∫
Ωw(P̃(x))I dx.

Using Lemma 4.11, we get

F(ζ,ω) =
∫
Ω ζ(x)I dx −

∫
T
ω(p)Ldp

≥
∫
Ω z(x)I dx −

∫
T
w(p)Ldx = F(z,w).

Since (ζ,ω) was arbitrary, we are done.

(i)⇒(ii). Let P̃ denote the ray tracing map for the pair (z,w). It must be
shown that

∫
P̃−1(τ) I(x)dx =

∫
τ L(p)dp for all Borel sets τ ⊆ T . We will prove

that this is the Euler-Lagrange equation for the functional F .
It is sufficient to establish this for the case when τ is an open ball with center

p0 ∈ T and radius r > 0, contained in T . For i = 1, 2, . . . , define for p ∈ α

χi(p) =


1, if |p − p0| < r − 1/i,
i(r − |p − p0|), if r − 1/i ≤ |p − p0| < r,
0, if |p − p0| ≥ r .

Then χi is continuous on α, 0 ≤ χi ≤ 1, and the sequence {χi(p) | p ∈ α}∞i=1
converges on α pointwise to the characteristic function of τ, χτ(p) .
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Fix some i and for ε ∈ (−1,1) put

wε(p) = w(p)+ ε · χi(p).

zε(x) = sup
p∈T̄

kp,wε(p)(x) = sup
p∈T̄

{
1

2β
(β2 − |x − p|2)+wε(p)

}
.

By construction, the pair (zε,wε) satisfies the condition (5.3), with ζ replaced by
zε andω repaced bywε. We show now that zε belongs to Lip(Ω̄). Let x, x′ ∈ Ω̄
and let z(x′) ≥ z(x). (If the opposite inequality holds, we relabel x and x′.) Let
p′ ∈ T̄ be such that zε(x′) = kp′,wε(p′)(x′). Then

|zε(x′)− zε(x)| = kp′,wε(p′)(x′)− zε(x) ≤ kp′,wε(p′)(x′)− kp′,wε(p′)(x)
≤ sup
s∈Ω̄ |∇kp′,wε(p′)(s)| |x

′ − x| = 1
β

sup
s∈Ω̄ |s − p

′| |x′ − x|

≤ 1
β

sup
s∈Ω̄, p∈T̄ |s − p| |x

′ − x|.

Hence, zε is continuous and (zε,wε) ∈ Adm(Ω, T).
Now let x ∈ Ω̄. For each ε let pε be a point in T̄ such that zε(x) =

kpε,wε(pε)(x). (This choice, of course, may not be unique.) Then

zε(x)− z(x) = kpε,wε(pε)(x)− z(x)
≤ kpε,wε(pε)(x)− kpε,w(pε)(x)
= wε(pε)−w(pε) = εχi(pε).

Similarly, if p ∈ P̃ (x), then

zε(x)− z(x) = zε(x)− kp,w(p)(x) ≥ kp,wε(p)(x)− kp,w(p)(x) = εχi(p).

Therefore,

(5.4) −|ε| ≤ εχi(p) ≤ zε(x)− z(x) ≤ εχi(pε) ≤ |ε|,

for all x ∈ Ω̄. In particular, zε converges uniformly to z on Ω̄, as ε → 0.
Now consider those x ∈ Ω for which the ray tracing map P̃ is single-valued.

This is the case for almost all x ∈ Ω. We claim that pε = P̃ε(x), where P̃ε denotes
the ray tracing map for (zε,wε), converges to p as ε → 0.

Suppose this is not true. Then there is a sequence {pεj}, j = 1, 2, . . . , with
εj → 0 as j →∞ and a constant η > 0 such that

|p − pεj | > η, for all j.
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Let z′(x) = maxp′∈T̄ ,|p′−p|≥η kp′,w(p′)(x). Note that the maximum in the def-
inition of z′ is attained. Since p is the unique point in T̄ such that z(x) =
kp,w(p)(x), it follows that z′ < z(x). Therefore, for all j,

z(x)− zεj (x) = z(x)− kpεj ,wεj (pεj )(x)
= z(x)− kpεj ,w(pεj )(x)+w(pεj )−wεj(pεj )
= z(x)− kpεj ,w(pεj )(x)− εjχi(pεj ) ≥ z(x)− z′ − |εj|.

This contradicts the fact that zεj (x) converges to z(x) as j →∞. Hence, pε → p
if ε → 0.

It follows from (5.4) that∣∣∣∣zε(x)− z(x)ε
− χi(p)

∣∣∣∣ ≤ |χi(pε)− χi(p)|.
Letting ε → 0 and using the continuity of χi, we conclude that for almost all
x ∈ Ω

d
dε

∣∣∣∣
ε=0
zε(x) = χi(p) = χi(P̃(x)).

Then
d
dε

∣∣∣∣
ε=0

∫
Ω zε(x)I(x)dx =

∫
Ω χi(P̃(x))I(x)dx.

Since F has a minimum at (z,w), we obtain

0 = d
dε

∣∣∣∣
ε=0
F(zε,wε) =

∫
Ω χi(P̃(x))I(x)dx −

∫
T
χi(p)L(p)dp.

Now let i→∞ in this equality. This is possible as χi(p)→ χτ(p) pointwise on α
and therefore χi(P̃(x)) → χτ(P̃(x)) pointwise almost everywhere on Ω. Then,
noting that χτ(P̃(x)) = χP̃−1(τ)(x) for almost all x ∈ Ω, we obtain∫

τ
L(p)dp =

∫
T
χτ(p)L(p)dp =

∫
Ω χτ(P̃(x))I(x)dx

=
∫
Ω χP̃−1(τ)(x)I(x)dx =

∫
P̃−1(τ)

I(x)dx.

This completes the proof of the theorem. ❐

6. CONNECTION BETWEEN THE TWO-REFLECTOR AND
MONGE-KANTOROVICH PROBLEMS

In our notation, the Monge-Kantorovich mass transfer problem [3] can be for-
mulated as follows. Consider the class of maps P : Ω → T which are measure-
preserving, that is, they satisfy the substitution rule∫

Ω h(P(x))I dx =
∫
T
h(p)Ldp,
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for all continuous functions h on T̄ . Each such map is called a plan.

Problem III. Minimize the quadratic transportation cost

(6.1) P ,
1
2

∫
Ω |x − P(x)|2I dx.

among all planes P .

Note that, for weak solutions to the two-reflector Problem I, the ray tracing
map P̃ is a plan by Lemma 4.11. In fact, we have the following result.

Theorem 6.1. Let (z,w) be a weak solution of type A of the two-reflector Prob-
lem I. Let P̃ be the corresponding ray tracing map. Then P̃ minimizes the quadratic
transportation cost (6.1) among all planes P : Ω → T , and any other minimizer is
equal to P̃ almost everywhere on supp(I) \ {x ∈ Ω̄ | I(x) = 0}.

Proof. Let P : Ω→ T be any plan. Then by (4.8),

(6.2) z(x)−w(P(x)) ≥ 1
2β
(β2 − |x − P(x)|2),

for all x ∈ Ω and equality holds if and only if P(x) = P̃ (x) for almost all x ∈ Ω.
Integrating against I dx and applying Lemma 4.11, we get

1
2β

∫
Ω[β2 − |x − P(x)|2]I dx

≤
∫
Ω[z(x)−w(P(x))]I dx =

∫
Ω z(x)I dx −

∫
T
w(p)Ldp

=
∫
Ω[z(x)−w(P̃(x))]I dx =

1
2β

∫
Ω[β2 − |x − P̃ (x)|2]I dx.

This shows that P̃ is a minimizer of the transportation cost.
To show uniqueness, note that if equality holds in the integral inequality, then

equality must hold in (6.2) for almost all x ∈ supp (I)\{I = 0}. Therefore, P ≡ P̃
a.e. on supp(I) \ {I = 0}. ❐

Remark 6.2. The functional F is the dual of the quadratic cost functional
(6.1) [3].

7. EXISTENCE AND UNIQUENESS OF WEAK SOLUTIONS TO THE
TWO-REFLECTOR PROBLEM

Theorem 7.1. There exist weak solutions of type A and of type B to the two-
reflector Problem I. If (z,w) is any such solution pair then z ∈ Lip(Ω̄) and w ∈
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Lip(T̄ ). The corresponding ray-tracing map is single-valued almost everywhere and
for almost all x ∈ Ω it is given by

P̃ = x + β∇z(x).

Furthermore, if (z,w) and (z′,w′) are two solutions of the same type with ray tracing
maps P̃ and P̃ ′, respectively, then

P̃ (x) ≡ P̃ ′(x),

for almost all x ∈ supp(I) \ {x ∈ Ω | I(x) = 0}.
Proof. By Proposition 5.1 and Theorem 5.2 we know that Problem I has a

solution. The property that z ∈ Lip(Ω̄), w ∈ Lip(T̄ ) follows from Lemma 4.2
and Remark 4.6. The same remark implies the statement regarding the ray-tracing
map. The only property that remains to be checked is that for that solution,
P̃ : Ω̄→ T̄ is onto. But this follows from Lemma 4.4.

In order to prove uniqueness, let (z,w) and (z′,w′) be two solutions of type
A, with ray tracing maps P̃ and P̃ ′, respectively. Then by Proposition 6.1, both are
minimizers of the quadratic Monge-Kantorovich cost functional, so that P̃ = P̃ ′
a.e. on supp(I) \ {I = 0}.

Remark 7.2. Further regularity of weak solutions to (2.6) under additional
assumptions on domains Ω and T and the density functions I and L follows from
the regularity theory of Caffarelli [5], [4].

So far, existence and uniqueness of weak solutions to the two-reflector Prob-
lem I has been shown for weak solutions of type A. However, it is clear that a
similar result holds for weak solutions of type B as well. Namely, we can define
Adm+(Ω, T) as the space of all pairs of reflectors such that `(ξ,ω,x,p) is less
than `, and then that F admits a maximizing pair on Adm+(Ω, T), which is a
weak solution of the two-reflector Problem I. This shows, in particular, that for
such a solution the ray tracing map maximizes the quadratic transportation cost
among all planes. ❐

Corollary 7.3. Suppose that, in addition to the assumptions in Theorem 7.1, the
function I > 0 in Ω. Then there is a constant ρ ∈ R such that

z′(x) = z(x)+ ρ,
w′(p) = w(p)+ ρ,

for all x ∈ Ω̄ and all p ∈ T̄ . In other words, weak solutions of type A are unique onΩ̄ and T̄ up to a translation of the reflector system, and the same result holds for type
B solutions.
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Proof. We show this for weak solutions of type A. By the theorem, P̃ (x) ≡
P̃ ′(x) for all x ∈ Ω. Note that by (4.7), ∇z(x) = ∇z′(x) for almost all x ∈ Ω.
It follows that there is a constant ρ such that z′(x) = z(x) + ρ for all x ∈ Ω̄.
Now, by definition of w′(p),

w′(p) = inf
x∈Ω̄hx,z′(x)(p) = inf

x∈Ω̄hx,z(x)(p)+ ρ = w(p)+ ρ,

for all p ∈ T̄ . ❐
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