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On the supersymmetry group of the classical Bose-Fermi oscillator∗

T. Glimm† and R. Schmid‡

Department of Physics and
Department of Mathematics and Computer Science

Emory University, Atlanta, Georgia 30322
(November 9, 2004)

Applying the concept of a momentum map for supersymplectic supervectorspaces to the one-
dimensional Bose-Fermi oscillator, we show that the largest symmetry group that admits a momen-
tum map is the identity component of the intersection of the orthosymplectic group OSp(2|2) and
the group of supersymplectic transformations. This gives a systematic characterization of a certain
class of odd supersymmetry transformations that were originally introduced in an ad hoc way.

I. INTRODUCTION

Supermechanics is the classical counterpart of Quantum Field Theories involving Bose and Fermi fields. The most
prominent use of supermechanics from a mathematical perspective is the role of the classical free particle Lagrangian
in the supersymmetric proofs of various index theorems7. There has also been some interest in making the geometric
description of supermechanics mathematically rigorous, both from a Lagrangian and Hamiltonian point of view11–13.

In this note, we are concerned with the classical one-dimensional supersymmetric harmonic oscillator, or Bose-Fermi
oscillator. By “classical”, we mean that we treat it as a supermechanical system, defined on a supersymplectic flat
manifold12,2. It is a simple but nontrivial example of a system with supersymmetries, that is, symmetries that mix
the fermionic and the bosonic degrees of freedom. It first appeared as one example of a supersymmetric quantum
mechanical system in Witten’s ground-breaking 1981 paper15 and was further investigated in the 1980’s and 1990’s.

The infinitesimal supersymmetry transformations of the harmonic oscillator were initially introduced in an ad hoc
way1. It was later realized that the stabilizer algebra of the dynamics is the orthosymplectic superalgebra osp(2|2)8.
In this note, we use the concept of a momentum map to investigate the supersymmetries of the harmonic oscillator.

We show how the ad hoc supersymmetry transformations1 can be derived in a systematic way. Namely, we construct
a Lie superalgebra bf(2|2) whose odd part consists of these transformations and show that bf(2|2) is the intersection
of osp(2|2) and the Lie superalgebra of linear supersymplectic transformations. Alternatively, bf(2|2) is the Lie
superalgebra of the largest connected subgroup of OSp(2|2) that admits a momentum map. This is essentially parallel
to the ungraded case, since the group of canonical transformations admits a momentum map in any dimension.

The paper is organized as follows: In the sections II and III, we review some facts about the theory of supermanifolds,
in particular super Lie groups and the super version of Lie’s first theorem. In section IV, we give a short description
of the Bose-Fermi oscillator and write down a class of supersymmetries, taken from DeWitt’s book1. We construct
the supersymmetry Lie algebra of these supersymmetries and name it bf(2|2). The corresponding group is BF (2|2).
We then give a general definition of the concept of a momentum map in supermechanics, and show that it is preserved
under the flow of Hamiltonians that are invariant under the group action. This is a generalization of the variant of
Noether’s theorem in ungraded classical Hamiltonian mechanics4. In the last section, we show that BF (2|2) has the
properties stated above. We also verify that the momentum map is equivariant and read off the conserved quantities.

II. SUPERGEOMETRY OVER A

There are two approaches to the definition of supermanifolds: An algebraic approach which stresses the role of
superfunctions10,9 and an analytic approach which stresses the points1,14,2. The analytic approach, which is implicitly
used in the majority of the physics literature, has sometimes been criticized by mathematicians for its perceived lack
of rigor. However, G. Tuynman has meticulously worked out the mathematical details in a recent textbook2 and his
definition of supergeometry over a graded commutative algebra A now provides a rigorous and solid foundation for
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the analytic approach. In the following, we give a very brief overview; ample detail and careful proofs can be found
in Tuynman’s book2.

The idea of the analytic approach to supergeometry is to do geometry with the real numbers replaced by an algebra
of supernumbers A. More precisely, A = A′⊕A∞ is a Z2-graded commutative real algebra with a natural isomorphism
A ' R⊕N where N denotes the nilpotent elements. The projection onto the real part is called the body map and
denoted by B. One also assumes that A has the property that for any nonzero a in A there exists an odd b such
that a · b 6= 0. The standard case for such an A is the Grassmann algebra

∧
R∞ of an infinite dimensional real vector

space1,14. It is best to think of A as a parameter of this analytic formulation, much like the structure of the sheaf of
superfunctions is a parameter of the algebraic formulation.

A free grade A-module E of dimension m|n (i.e. m even, n odd dimensions) is called an A-vector space provided
that there is a natural equivalence class of “real” bases, i.e. bases whose transition matrices have only real entries. If
their R-span is denoted by RE , this is equivalent of having a natural isomorphism

E = RE ⊕NE ,

where NE = N ⊗ E. This gives an extension of the body map to B : E → RE . The DeWitt topology of E is the
coarsest topology which makes B continuous.

Tuynman2,3 has given a nice rigorous construction of smooth functions that circumvents the problem that limits
are not unique and hence useless in the DeWitt topology. The upshot is as follows:

Let E0 denote the even part of an A-vector space. Then a smooth f : E0 → A function has an expansion

f (x1, . . . , xm, ξ1, . . . , ξn) =
1∑

i1,...,in=0

ξi1
1 . . . ξin

n · (Gfi1...in
) (x1, . . . , xm) , (1)

where fi1...in
εC∞ (BU,R) and G denotes the Taylor-expansion in the nilpotent part, that is if x =Bx + n, with

n ∈ NE , then

(Gfi1...in
) (x) =

n∑
k=0

1
k!

(
Dkfi1...in

)
Bx

(n, . . . ,n) .

In particular, a smooth function must map BE0 to BA = R. So a constant function whose value is a nilpotent
supernumber is not smooth.

The form (1) gives the characterization

C∞ (E0,A) ' C∞ (BE0,R)⊗
∧

Rn.

Using this as the definition for the sheaf of smooth functions is of course the starting point for the algebraic approach
to supermanifolds.

The partial derivatives of f are

∂

∂xj
f =

1∑
i1,...,in=0

ξi1
1 . . . ξin

n ·
(
G
∂fi1...in

∂xj

)
(x1, . . . , xm) ,

∂

∂ξk
f =

1∑
i1,...,in=0

(−1)i1+···+ik−1 δ1,ik
ξi1
1 . . . ξ̂ik

k . . . ξin
n · (Gfi1...in) (x1, . . . , xm) ,

for 1 ≤ j ≤ m and 1 ≤ j ≤ n, where ̂ denotes omission. By definition, the chain rule takes the form

∂

∂yi
f(x(y,η), ξ(y,η) =

∑
j

∂xj

∂yi

∂f

∂xj
+

∑
k

∂ξk
∂yi

∂f

∂ξk
,

and likewise

∂

∂ηl
f(x(y,η), ξ(y,η) =

∑
j

∂xj

∂ηl

∂f

∂xj
+

∑
k

∂ξk
∂ηl

∂f

∂ξk
.

With the concept of smoothness, one can now develop the theory of A-manifolds, vector bundles, Lie groups, etc.
almost exactly as in the ungraded case. We will need the concept of flows of vector fields11. Since in a way only even
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vector fields are really infinitesimal directions, this is usually done for even vector fields only: The flow of a vector
field X ∈ X0 (M) is a smooth map Φ : U →M , where U is an open subset of A0 ×M, such that if ∂t is the pullback
of the canonical vector field on A0 to U . Then

TΦ ◦ ∂t = X ◦ Φ.

With the initial condition Φ (x, 0) = x we have existstence and uniqueness of the flow in the usual sense11. In a way,
the functions t 7→ Φ (t,x0) (for fixed x0) are the integral curves of X, only they need not be smooth in the above
sense.

III. SUPER LINEAR ALGEBRA

In this section, we fix further notations and give our conventions for supervectors and supermatrices. We essentially
follow Lĕıtes10.

For m,n ∈ N, we consider the A-vector space Am⊕n = Am ×An, with the following grading: An element (x, ξ) ∈
Am⊕n is even iff x ∈ Am

0 and ξ ∈ Am
1 and it is odd iff x ∈ Am

1 and ξ ∈ Am
0 . There are two natural superscalar

multiplications: The right one and the left one. Since it will be more convenient when dealing with matrices, we fix
the action of A on Am⊕n to be the right multiplication, i.e.

(x1, . . . , xm, ξ1, . . . , ξn)T · a = (x1a, . . . , xma, ξ1a, . . . , ξna)
T

The generalization of Euclidean space is the superspace Am|n := (Am⊕n)0 = Am
0 ×An

1 .
Matrices with entries from A will be called supermatrices, and denoted by X = (xij)ij .We can identify the set of

(m+ n)× (m+ n) supermatrices, M(m|n), with EndR (Am⊕n), the space of right linear A endomorphisms:

EndR

(
Am⊕n

) ∼= M(m|n) (2)

φ↔ (xij) =
(
[φ (ei)]j

)
i=1,...,m+n
j=1,....,m+n

Then φ (x) = Xx, where the right hand side is the usual matrix multiplication. Likewise, if φ ↔ X and ψ ↔ Y ,
then φ ◦ ψ ↔ XY .

The following grading on M(m|n) is natural: Call a supermatrix X even if it preserves (Am⊕n)0, and odd if it
maps (Am⊕n)0 to (Am⊕n)1. Equivalently, if

X =
(
A B
C D

)
, (3)

where A is an m ×m, B an m × n, C an n ×m, and D an n × n matrix with entries from A, then X is even iff all
entries of A and D are even, and all entries of B and C are odd, and X is odd iff all entries of A and D are odd, and
all entries of B and C are even. Now, the pull back of the A graded bimodule structure on EndR (Am⊕n) to M(m|n)
via (2) yields the following rules for multiplications by a superscalar:

a ·
(
A B
C D

)
=

(
aA aB

(−1)p(a)
aC (−1)p(a)

aD

)
for a homogenous element a ∈ A with parity p(a), where the multiplications on the right hand side are just the
entry-wise multiplications in A.

For an even supermatrix, the supertranspose is defined to be(
A B
C D

)ST

=
(

AT CT

−BT DT

)
,

where T denotes the usual transposition. This way, we have that (Xx)ST = xSTXST , for X ∈ M(m|n)0 and
x ∈ Am|n, so that the matrix B of a bilinear form on Am|n transforms under a linear coordinate change with matrix
X as B → XSTBX.

If we define the body B (X) of a supermatrix to be the real matrix whose entries are the bodies of the entries
of X, it holds that an even supermatrix X of the form (3) is invertible iff B (A) and B (D) are invertible as real
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square matrices10. The group of even invertible (m+ n) × (m+ n) supermatrices is super Lie group of dimension(
m2 + n2|2mn

)
. It is denoted by GL(m|n). Its Lie superalgebra is M(m|n), and the super Lie bracket is the usual

supercommutator

[X,Y ] = XY − (−1)p(X)·p(Y )
Y X.

The concept of the exponential of matrices carries over to the super case, namely

exp (X) =
∞∑

n=0

1
n!
Xn

is smooth and maps M(m|n)0 to GL(m|n). It is locally invertible.
Finally, let us mention that we have the usual relation between connected sub Lie supergroups and sub Lie superal-

gebras; that is, to any sub Lie superalgebra of M(m|n) corresponds one and only one connected super Lie subgroup of
GL(m|n)2. This correspondance is given by exponentiation and taking the tangent space at the identity, respectively.
It allows us to move freely from Lie supermatrix algebras to Lie supermatrix groups. We will make frequent use of
it. A detailed exposition and proofs may be found in Tuynman’s book2.

IV. THE BOSE-FERMI OSCILLATOR

In the Lagrangian formulation, the configuration space of the Bose-Fermi oscillator is A1|2 equipped with the
Lagrangian

L(q, ξ1, ξ2, q̇, ξ̇1, ξ̇2) =
1
2
q̇2 +

1
2
(ξ̇1ξ1 + ξ̇2ξ2)−

1
2
ω2q2 + ωξ1ξ2,

where q is an even, ξ1 and ξ2 two odd variables, and ω is a positive parameter. The Lagrangian consists of kinetic
and potential energies in the bosonic and fermionic sectors, respectively.

We use the following Hamiltonain description of this system: The phase space is A2|2 with Hamiltonian

H (q, p, ξ1, ξ2) =
1
2

(
p2 + ω2q2

)
− ωξ1ξ2.

If we write M =
(

0 1
−1 0

)
, Iω =

(
ω2 0
0 1

)
and Q =(q, p, ξ1, ξ2)

T , we can write H as the graded quadratic form

H =
1
2
QST

(
Iω 0
0 −ωM

)
Q =

1
2
QST HQ.

Here we wrote H for the matrix of the Hamiltonian H.
We equip A2|2 with the standard supersymplectic form

Ω = dpdq +
1
2

(
dξ21 + dξ22

)
,

i.e. in matrix form Ω =
(
−M 0
0 I2

)
. Then Hamilton’s equations Q̇ = Ω−1∇H (Q) yield

q̇ = p

ṗ = −ω2q

ξ̇ = −ωMξ.

(Here, q, p and ξ denote the components of the flow of the Hamiltonian, rather than components of a supercurve,
see section II.) One checks (formally) that these are the dynamic equations of the Lagrangian L.

The Hamiltonian is preserved under the following infinitesimal supersymmetry transformations, taken from
DeWitt1:

δq = ξT δα (4)

δp = ωξT Mδα (5)
δξ = (pI2 − ωqM) δα, (6)
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where δα ∈ A2
1 is a vector of odd supernumbers. That is

δq · ∂H
∂q

+ δp · ∂H
∂p

+ δξT ∂H

∂ξ
= 0.

Note that these transformations mix the odd and even components, that is, the bosonic and the fermionic variables.
This is really what makes it supersymmetric. In matrix notation (4)− (6) read δq

δp
δξ

 =

 0 0 − (δα)T

0 0 ω (δα)T M
−ωMδα δα 0

  q
p
ξ

 . (7)

We now construct a sub Lie algebra of M(2|2) that contains as a subspace the transformation of the form (4)-(4).
For this, let us define the 2|2 square supermatrices

Ai =

 0 0 −eT
i

0 0 ω · eT
i .M

ωMei −ei 0

 for i = 1, 2

C1 =

 0 −1
ω2 0 0

0 0 0
0 0

 , C2 =

 0 0
0 0 0

0 −ω ·M

 ,

where ei denotes the canonical basis of R2. Then Ai ∈ M(2|2)1 and Ci ∈ M(2|2)0, and these matrices have the
following supercommutators:

[Ai, Aj ] = 2δij (−C1 + C2) (8)
[A1, Ci] = −ω ·A2 (9)
[A2, Ci] = ω ·A1 (10)
[Ci, Cj ] = 0. (11)

Thus, their A-span defines a sub Lie superalgebra in M(2|2). We call it the Lie superalgebra of Bose-Fermi super-
symmetry and denote it by bf(2|2) = spanA (A1,A2, C1, C2). The corresponding connected sub Lie supergroup of
GL(2|2), BF (2|2) = 〈exp (bf (2|2)0)〉 will be referred to as the Lie supergroup of Bose-Fermi supersymmetry.

We note that bf (2|2)0 = (A0⊗R spanR (Ci))⊕ (A1⊗R spanR (Ai)), and that the matrix in (7) is δα1 ·A1 + δα2 ·A2.
Also, one sees nicely that the matrices Ai represent transformations that mix odd and even variables whereas the
matrices Ci represents transformations among the bosonic and the fermionic parts themselves.

We show that BF (2|2) leaves the Hamiltonian H invariant, as expected. H is preserved under the action by
the orthosymplectic group OSp (2|2), that is, the group of all supermatrices R that satisfy RSTHR = H. It is an
embedded super Lie subgroup of GL(2|2) of dimension 4|4. The even part of its Lie superalgebra osp (2|2)0 consists
of all matrices X that satisfy the infinitesimal version of the preservation of H,

XST H + HX = 0.

With X =
(
A B
C D

)
this reads

AT Iω = −IωA, D
T M = −MD, and ωC = MBT Iω. (12)

One can check that bf (2|2)0 ⊆ osp (2|2)0 by verifying that the matrices Ci and a · Ai (for an odd supernumber a
satisfy (12). So the Bose-Fermi supersymmetry group BF (2|2) is a super Lie subgroup of OSp (2|2) of dimension 2|2.
Thus the Bose-Fermi supersymmery group is not the whole stabilizer of the Hamiltonian. In section VI, we give two
reasons why this makes sense.

We close this section with the following useful alternative characterization of bf(2|2), which is not hard to check:

An element X =
(
A B
C D

)
∈ osp(2|2)0 lies in bf(2|2)0 if and only if

MB = CT , (MA)T = MA, and DT = −D. (13)
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V. MOMENTUM MAP

Before we come to the characterization of BF (2|2) indicated in the introduction, we have to introduce the concept
of a momentum map. Since this is a general concept, we formulate it for an A-vector space of arbitrary dimension
equipped with an even supersymplectic form.

Recall that in ungraded symplectic geometry, a momentum map for the action of a Lie group G on a symplectic
manifold (M,ω) is a linear map Ĵ : g → C∞ (M) such that the Hamiltonian vector field generated by Ĵ (ξ) is the
vector field associated to ξ ∈ g via the differential of the action Equivalently, we can consider J : M → g∗ by setting
(J (x) , ξ) = Ĵ (ξ) (x).

This definition can essentially be carried over to the graded case: Let E be an A-vector space, and let Ω be an even
supersymplectic form on E.

Definition. A momentum map for the action of a supermatrix group G with Lie superalgebra g on E is a smooth
map

Ĵ : g0 × E0 → A

such that

Ω−1∇xĴ (X,x) = Xx (14)

for all X ∈ g0, x ∈ E0, where ∇x denotes the spatial gradient.
Note that there is a technical problem though. For fixed X, the function x 7→ Ĵ (X,x) is in general not smooth.

Namely, if X is not real, there is nothing that guarantees that the images of real vectors will be real. We solve this
technical problem by considering Ĵ to be defined on g0×E0. Then ∇xĴ is defined for any X and the above condition
makes sense.

We have the following result analogous to the variant of Noether’s theorem in ungraded mechanics4:
Proposition. Suppose H ∈ C∞ (E0,A) is a Hamiltonian that is invariant under the action of G and that G admits

a momentum map Ĵ on E0.
Then Ĵ is preserved under the Hamiltonian flow. That is, if Φ(t, x) denotes the flow of the Hamiltonain vector

field, then

∂

∂t
Ĵ(X,Φ(t, x)) ≡ 0

for any X ∈ g.
The verification of this fact works almost like in the ungraded case. There is one complication, and we therefore

indicate the computation. Let us say that E0 has dimension m|n. We introduce the matrix Pm|n =
(

+Im 0
0 −In

)
.

Then (xST )ST = Pm|nx for any supervector in E0. Also, the matrix of the supersymplectic form Ω satisfies ΩST =
−ΩPm|n. With this, we have:

∂

∂t
Ĵ(X,Φ(t, x)) = (∂tΦ)ST∇xĴ(X,Φ) = (Ω−1∇H)ST ΩXΦ

= (∇H)ST (Ω−1)ST ΩXΦ = −(∇H)ST Pm|nXΦ

= −(Pm|nXΦ)ST ((∇H)ST )ST = (XΦ)ST P2
m|n∇H

= (XΦ)ST∇H

where we used (Ω−1)ST Ω = −Pm|n and the dynamical equations ẋ = Ω−1∇H (x).
But this last expression is zero, as it is the derivative of H along X, which preserves H.

VI. TWO CHARACTERIZATIONS OF BF (2|2)

We now come to the main result:
Theorem.

1. BF (2|2) is the identity component of the intersection of OSp(2|2) and the group of linear supersymplectic
transformations.
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2. BF (2|2) is the largest connected subgroup of OSp(2|2) whose action on A2|2 admits a momentum map.

To see 1, note that the infinitesimal version of preserving the supersymplectic form is XST Ω+ΩX = 0. One checks
that this is equivalent to the conditions in (13).

We now prove 2. The differential equation (14) for the momentum map Ĵ reads:[
∇(q,ξ)Ĵ

]
(X, q, ξ) = ΩX

(
q
ξ

)
.

(We use the abbrevation q = (q, p)T .) So with X =
(
A B
C D

)
:

∇qĴ = −MAq−MBξ (15)

∇ξĴ = Cq +Dξ. (16)

We determine for which X this has a solution for all (q, ξ). Assume first that there exists a solution. Then

∂ξi∂qj Ĵ = −∂ξi

(
eT

j MBξ
)

= eT
j MBei

∂qj∂ξi Ĵ = ∂qj

(
eT

i Cq
)
=eT

i Cej = eT
j C

T ei,

so that necessarily MB = CT .
Therefore

∇q

(
Ĵ − ξTCq

)
= −MAq

∇ξ

(
Ĵ − ξTCq

)
= Dξ.

Hence Ĵ − ξTCq must be of the form

Ĵ − ξTCq = qTA′q + ξTD′ξ

with some 2× 2 matrices A′ and D′ with entries from A0. Then

∇q

(
Ĵ − ξTCq

)
=

(
A′ +A′T )

q

∇ξ

(
Ĵ − ξTCq

)
=

(
D′ −D′T )

ξ,

so that −MA = A′ + A′T and D = D′ − D′T . Thus MA is symmetric and D antisymmetic: (MA)T = MA and
DT = −D.

Hence a necessary condition for the existence of a solution is that X satisfies the conditions (13).
On the other hand, if these conditions are satisfied, then

Ĵ (X) =
1
2
QST ΩXQ =

1
2
(−qT MAq + ξTDξ) + ξTCq (17)

solves (15)− (16), so that they are also sufficient. This completes the proof of the theorem.
With the explicit formula (17), one can now verify that Ĵ is BF (2|2) equivariant, i.e. that

Ĵ (X,GQ) = Ĵ
(
G−1XG,Q

)
for X ∈ bf (2|2)0 , G ∈ BF (2|2) , Q ∈A2|2.
Indeed, this follows from the fact that BF (2|2) preserves the supersymplectic form Ω.
We can read off conserved quantities from (17), given the result about the preservation of the momentum map from

section V. Explicitly, if we have X =
∑

i=1,2 (ci · Ci + ai ·Ai) ∈ bf (2|2)0 with ci ∈ A0 and ai ∈ A1, then

Ĵ (X) =
1
2

(
−qT MAq + ξTDξ

)
+ ξTCq

=
1
2

(
c1 ·

(
ω2q2 + p2

)
+ c2 · ωξT Mξ

)
+ p (ξ1 · a1 + ξ2 · a2)− ωq (ξ1 · a2 − ξ2 · a1)

=
(

1
2

(
ω2q2 + p2

)
1
2ωξT Mξ

)T (
c1
c2

)
+ [(pI2 + ωqM) ξ]T

(
a1

a2

)

7



This recovers the first integrals of motion 1
2

(
ω2q2 + p2

)
and 1

2ωξT Mξ, the Bose- and Fermi-energies, as well as two
new supersymmetric conserved quantity, (pI2 + ωqM) ξ. One checks that this last quantity is in fact the preserved
super Noether charge that one obtains by a formal use of Noether’s theorem from the transformations (4)−(6) applied
to the Lagrangian L.
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