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MODULATION INVARIANT BILINEAR T(1) THEOREM

ARPAD BENYI, CIPRIAN DEMETER, ANDREA R. NAHMOD, CHRISTOPH M. THIELE,
RODOLFO H. TORRES, AND PACO VILLARROYA

ABSTRACT. We prove a T(1) theorem for bilinear singular integral operators (trilinear
forms) with a one-dimensional modulation symmetry.

1. INTRODUCTION

The T'(1) Theorem is a criterion that gives necessary and sufficient conditions for the
L? boundedness of non-convolution singular integral operators. It arose as a culmina-
tion of decade long efforts to understand the Cauchy integral operator on a Lipschitz
graph and the related Calderéon commutators. In the original statement of the theo-
rem, proved by G. David and J.L. Journé [10], the necessary and sufficient conditions
are expressed by the requirement that some properly defined functions 7(1) and 7*(1)
belong to BMO - hence the name of the theorem - together with the so called weak
boundedness property. This latter condition requires the L? bounds when tested weakly
on a restricted class of bump functions

[(T(¢zr), py.r)| S R,

where g, n(t) = p(R-1(t — ).

In [28], E. Stein reformulated the necessary and sufficient conditions into what he
called the restricted boundedness property. This amounts to the existence of L? bounds
when strongly tested on the same class of bump functions, that is

IT(@ar)ll2 S RV

and likewise for T*. Both forms of the T'(1) theorem will be used in this paper and
further developed in a bilinear version to study certain modulation invariant bilinear
singular integrals.

A basic operator in the study of the Cauchy integral on a Lipschitz graph is Calderén’s
first commutator. This operator can be written as a superposition of bilinear singular
integral operators of the form

Talfis o)) :p'V-/Rfl(I—t)fé(a?—at)%
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with parameter o ¢ {0, 1}, called bilinear Hilbert transforms. One of Calderdn’s early
attempts to bound his commutator was to show the boundedness of the bilinear Hilbert
transforms from L% x L™ to L?. However, he gave up on this approach and proved
bounds on the commutator by different means [2], [3].

The bounds for the bilinear Hilbert transform conjectured by Calderén remained an
open problem for more than 30 years. M. Lacey and C. Thiele proved [20],[21], that
the bilinear Hilbert transforms are bounded from LP' x LP? to L? for 1 < p;,py <
oo, p' = p;t+py;' and 2/3 < p < oco. Appropriate control on the growth of the
constants associated with these bounds as a approaches the forbidden values {0, 1}, was
established in [30]. This step was necessary in order to complete Calderén’s program
of estimating the commutator as superposition of bilinear Hilbert transforms. Thiele’s
results were strengthened to uniform bounds in some range of exponents by L. Grafakos
and X. Li [19], [22].

The main feature that distinguishes the bilinear Hilbert Transform from its classical
linear counterpart is the fact that the former has modulation invariance. In other
words it is also invariant under translations in frequency rendering Littlewood-Paley
theory which takes into account spatial translations and dilations but not oscillations,
ineffective. This is also in contrast with those bilinear operators studied by Coifman
and Meyer [9] where there is a preferred point in frequency and thus Littlewood-Paley
theory suffices. A similar property to that of the bilinear Hilbert transform is shared
by Carleson’s maximal operator, which controls convergence of the Fourier series, [4].
The resolution of both problems resides in a suitable frequency decomposition that
allows for the representation of these operators in an adapted wave packet frame that
is itself invariant under the relevant modulations.

The natural question regarding bounds on more general bilinear singular integral
operators than the bilinear Hilbert transform, where the kernel 1/t is replaced by more
general Calderén-Zygmund kernels was first addressed by J. Gilbert and A. Nahmod
[15], [16], [17]. They proved, in particular, bounds for the class of kernels K(¢) which
are z-independent. Uniform bounds in « for these operators were then shown by C.
Muscalu, T. Tao and C. Thiele [25].

The purpose of the current article is to address the case of kernels K (x,t) that have
both t and x dependence; this corresponds to the non-convolution case in the classical
linear theory. The results we obtain, in particular Theorem 2.7, are different in nature
from the bilinear or multilinear 7'(1) theorems of M. Christ and J.L. Journé [5] and
L. Grafakos and R. Torres [18] since, as we shall soon describe, we treat operators
associated with far more singular kernels. The main new feature that distinguishes the
operators we analyze is that they have modulation invariance in a certain direction.
We seek a theory for them analogous to the one involved in the classical T'(1) Theorem.
We will have to incorporate, however, time-frequency techniques that reflect the modu-
lation invariance of the bilinear operators treated. Since the operators we deal with are
no longer invariant under spatial translations the frequency decomposition used in the
bilinear Hilbert transform situation no longer captures the oscillatory character of the
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operator. Instead of a one parameter family of cubes, a new frequency decomposition
is introduced and a two parameter family of boxes with varying eccentricities is needed
(c.f. Section 5 for a detailed explanation). In other words the az-dependence allows
for two degrees of freedom in the oscillations instead of one; which naturally adds new
layers of complexity to the proof.

This paper represents a fundamental step in the understanding of bilinear singular
and pseudo-differential operators lying beyond the Coifman-Meyer’s class. There are
many examples arising from nonlinear partial differential equations of singular mul-
tilinear multipliers that are still beyond reach. A concurrent aim of this paper is
thus to introduce new frequency decompositions and further develop wave packet tech-
niques that might become useful in the study of other multilinear operators outside
the Coifman-Meyer’s framework.

The work is motivated in part by typical examples of certain classes of bilinear
pseudodifferential operators and their symbolic calculus as introduced by A. Bényi, A.
Nahmod and R. Torres in [1]. This and other applications are presented in Sections
2.2 and 3.3.

Acknowledgments: C. Demeter, A.R. Nahmod, C.M. Thiele and R.H. Torres were
supported in part by NSF under grants DMS-0556389, DMS 0503542, DMS 0400879,
and DMS 0400423, respectively. P. Villarroya was supported in part by grant MTM2005-
08350-C03-03 and EX2004-0510.

2. THE MAIN THEOREM, APPLICATIONS, AND THE ROAD MAP OF THE PROOF

2.1. Modulation invariant bilinear 7'(1) Theorem.

We start with a few definitions and examples that will lead us into formulating the clas-
sical (linear) 7'(1) Theorem in its dual version and its bilinear counterpart. Throughout
the whole paper we will restrict our attention to the one dimensional case.

Definition 2.1. A function K : R x (R\ {0}) — R is called a Calderén-Zygmund
kernel if for some 0 < 6 <1 and some constant Cx we have

(2.1) K (2, t)] < Oklt]™!
(2.2) K (2,t) = K(2,1)] < Ckll(w,t) — (', ¢)|]°[t]7'7°
whenever ||(x,t) — (2/, )] < |t|/2, where || - || denotes the euclidian norm.

Definition 2.2. A bilinear form A, defined on the product of Schwartz spaces
A:SR)xSR)—C

s said to be associated with a standard Calderon-Zygmund kernel K if for some 3 =
(B1, B32) and for all Schwartz functions fi, fa € S(R) whose supports are disjoint', we

IThe requirement that the supports are disjoint is sufficient -due to (2.1)- to guarantee the conver-
gence of the integral; it is also necessary in general, as it is easily seen by working with K (z,t) = [¢t| 1.
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have

A(f1, fa) = /}R2 fi(z + pat) fa(x + Got) K (x,t) dx dt.

If the form is continuous on S(R) x S(R) then it will be referred to as a bilinear
Calderon-Zygmund form.

The above representation of A is convenient for the formulation of the trilinear forms
that we will study. Note, however, that the simple change of variables z’ := x+ (ot t’ :=
x + [t gives the more classical representation

(2.3) AMffo) = | L) fa(d)K (2!, 1) dt'da’
R2
where
~ . 1 ﬂlx — ﬁgt t—x
Kla,1) = |51 —ﬁ2|K( Bi— B2 B —52)
satisfies
K (,1)] < Ckle —t]™!
and

K (,1) = K(2',t)] < Cr 2+ 18)° Nl (2, t) — (2, ) |°a — )77

whenever cg||(z,t) — (2, )] < |z —¢| and ¢5 = 2(1 + ||5]|) > 2.

We will use the notation (:|-) to denote the pairing of a distribution with a test
function, which we take to be linear in both entries. We reserve the notation (-, -)
to denote the usual Hilbert space inner product of L2, conjugate linear in the second
entry. With this notation we can associate to A the linear dual operators T" and 1™,
continuous from S(R) to S'(R), given by

A(fr, f2) = (T(f)lf2) = (T (f)l 1)

We see from (2.3) that the Schwartz kernel of T restricted away from the diagonal of R?
agrees with the function K, as usually stated for linear Calderén-Zygmund operators.
When convenient in our computations, and without loss of generality, we will often
assume this more classical representation (2.3) for A.

Definition 2.3. A trilinear form A defined on S(R) x S(R) x S(R), is said to be
associated with a standard Calderon-Zygmund kernel K if for some 3 = (04, B2, F3)
and for all functions fi, fa, f3 € S(R) such that the intersection of the three supports
s empty, we have

3
(2.4) Afr, far f3) = /R I+ 0K @ 1) deat
j=1

If the form is continuous on S(R) x S(R) x S(R) then it will be referred to as a trilinear
Calderon-Zygmund form.
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Now the trilinear form A is associated to the bilinear dual operators given by

A(f1; fa f3) = (Ts(fr, f)lf3) = (Ta(f2, o)l fr) = (Ta(fu, f) | f2),

but unlike the bilinear case, K is no longer the restriction of the Schwartz kernel of
T5. In the sequel, we shall assume that (3, (3o, 3 are pairwise different, as otherwise
the trilinear form reduces to a combination of a pointwise product and bilinear form.
If needed, by a simple change of variables and appropriately modifying the constants
involved in the definition of a Calderén-Zygmund kernel, we can assume  to be of unit
length and perpendicular to a = (1,1, 1). Let y be a unit vector perpendicular to o and
[, the sign of v being of no importance. The condition that no two components of (3
are equal is equivalent to no component of v being zero. The integral representing A for
functions with disjoint supports satisfies the modulation symmetry along the direction

of v:
(2.5) A(f1s fas f3) = M Mg fr, Moe fo, Mg f3)

for all ¢ € R. Here modulation is defined as M, f(z) = e*™* f(x). Note, however,
that the kernel representation does not guarantee the modulation invariance (2.5) for
arbitrary triples of Schwartz functions fi, fo, fs.

Definition 2.4. A trilinear Calderén-Zygmund form A associated with a standard
kernel K for some 3 is said to have modulation symmetry in the direction vy, with 7
of unit length and perpendicular to the plane generated by 3 and o, if (2.5) is satisfied
for all functions fi, fa, f3 € S(R).

Let us look at typical examples of these operators given in pseudodifferential form.
Consider again the bilinear Hilbert transform

T f)(@) =p. [ e = 0ale+ 07,

or equivalently

74 £)(o) = |

| sien(§ = m A fa(met™ = dedn.

More generally, one can consider operators of the form

T(f £)(w) = [ (€ = R Fmen= 0 dga,
R
where m is a multiplier satisfying the classical conditions
|m™ (u)| < Clu|™, n < N.

Undoing the Fourier transforms of f;, fs, one arrives to the kernel representation of T',
namely

T(fr. fo)(2) = p.v. / fi(@ — ) ol + DK () dt,
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where K is a classical CZ kernel of convolution type and K (u) = m(u). These bilinear

operators fall under the scope of the more general boundedness results stated in [15]
and [24].
To introduce z-dependent kernels consider now bilinear operators of the form

7(7 £)0) = |

| o0 E =R Lln)e D dedy,

where o(z,u) is a symbol in the Hérmander class S7 g, so that

0208, 0(2,€ — )| < CalL+1€ —nl)~.

Then, undoing again the Fourier transforms, we arrive to the following integral repre-
sentation of T valid at least for functions with disjoint support:

T (@) = [ (oo =)oz = 20 +0) i)l dudz

- / K. ) fulz — ) fol + 1) dt.

where K(z,z—y) = (F'o)(z,z —y) and the inverse Fourier transform is taken in the
second variable. It is well-known that such a K is a Calder6n-Zygmund kernel (and
with § = 1). These bilinear operators give rise then to trilinear forms of the type (2.4)
with 8 = (-1, 1,0).

In the previous example, the Schwartz kernel of the bilinear operator T is given by
k(x,y,z) = K(z,x — y)d(z — 22 + y) and hence it is too singular to fall under the
scope of other multilinear 7'(1) theorems in [5] and [18], which essentially apply to
pseudodifferential operators of the form

T(f f)(o) = |

| o &mAE©fme P dgdn,

where o(x, £, n) satisfies the classical Coifman-Meyer estimates
(0508 0 (2, &) < Cal(l 4 (€] + |n) 7,
so that the (restricted) Schwartz kernels satisfy
[0°k(2,y, 2)| < Calle =yl + |y — 2| + |2 — )10,
Definition 2.5. An L?- normalized bump function ¢ : R™ — C is said to be C'-adapted
of order N to a box I :== 1 x ... x I, if

0%0(@)| < O T w777 X7 (@),

m/=1

for each 0 < |a] < N.
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2) -1/2

with ¢(7) denoting the center of the interval I. Often times we will simply call a function
LP- adapted to I (or LP- adapted to I of some order Ny), if it is LP- normalized and
Cn- adapted of each order N (or of order Ny), for some Cy whose value will not be
specified. When no L” normalization will be mentioned for a bump, it will be implicitly
understood that the normalization is taken in L2.

The implicit bounds hidden in the notation a < b that we shall use, will be allowed
to depend on the constants of adaptation and on fixed parameters like v, §, o or C.
The notation A ~ B will mean that A < B and B < A.

Before we state our main result we recall the classical T'(1) theorem in a form useful
for our purposes.

We will use the notation

la) = (1 b (R,.. Enm i)

Theorem 2.6 (Linear 7'(1) theorem). Assume A is a Calderdn-Zygmund form on
S(R) x S(R). Then A extends to a bounded bilinear form on L*(R) x L*(R) if and only
if there exists an N such that

(2.6) [A(er, A S N1l

A, oD S 12

for any interval I, any L*- adapted bump function ¢; of order N which is supported
in I and any Schwartz function f. If these equivalent conditions are satisfied, then the
bilinear form estends also to a bounded form on LP(R) x LP (R) for 1 < p < oo and

p+1/p =1.

The condition (2.6) and its symmetric form are called the restricted boundedness
conditions. In Lemma 3.1 we will see a slightly stronger result, namely that it is
sufficient to test the restricted boundedness condition only for those f supported in I.

Remark 2.1. There are a few other equivalent formulations of the T'(1) theorem. We
just recall, as mentioned in the introduction, that the boundedness of T is also equivalent
to the weak boudedness property (that is A(pr, 1) < 1 for all o which are L*- adapted
to 1) together with the fact that some appropriately defined functions A(1,.), A(.,1) are
in BMO.

We now state our new result for trilinear forms.

Theorem 2.7 (Main theorem). Assume A is a trilinear Calderén-Zygmund form on
S(R) x S(R) x S(R) associated with a kernel K with parameter ¢, and with modulation
symmetry (2.5) in the direction of v (with ~; #0).

Then A extends to a bounded form

3
IACf1, fo £3)] S TT Il
7j=1
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for all exponents 2 < pq, pa, p3 < 00 with

1 1 1

—+—+—=1

b1 D2 D3
if and only if there is an® N such that the following three estimates hold for all intervals
I, all L?- adapted functions ¢; and 1y of order N which are also supported in I, and

all Schwartz functions f

(2.7) Aler, o, Ol S T2l

IA(br, £0n)] S V2l
IACE ér,0n)] S TIP3 (1E

Moreover, if these equivalent conditions hold, then for Zj a; = 1 the following holds:
If 0 < oy <min(1/2+9,1) for 1 <i <3, then

3
[ACSL fos ) S H 1 fill 1/ -

If max(—0, —1/2) < aj < 0 for only one index j and 0 < a; < min(1/2+ 9, 1) for the
other two indices, then the dual operator T satisfies

I3 ((faza)llsa-ap S TT 1 fillas
i#]

To summarize, there is an a priori estimate for the form A and a tuple « of reciprocals
of exponents provided that ) _; a; = 1 and max(—d, —1/2) < a; < min(1/2+46,1) for all
j. Interestingly, the range of exponents « for which the theorem guarantees bounded-
ness is the same for each 0 € [%, 1], while the range shrinks for § < %, as 0 approaches 0.
We do not know if this range is optimal. Note also that for § > 1/2 in Theorem 2.7 we
recover the same range in which the bilinear Hilbert transform is known to be bounded.

It is worthwhile noting that the necessity of condition (2.7) and its symmetric coun-
terparts is clear, as such conditions follow from the claimed estimates applied to special
test functions. We call these conditions the (trilinear) restricted boundedness condi-
tions. One can see that it is also enough to test the conditions for C'*° functions
f supported in an interval containing I of length C|I|, where C' > 0 is a universal
constant. See Lemma 3.3 below for more details.

Note also that, formally, if A is a trilinear Calderén-Zygmund form satisfying the
conditions of the main theorem, then

A(f1, f2,1)

2As in the case of the classical T(1) Theorem, the value of N is not important. Once the theo-
rem holds for some N, it also holds for any larger value. This observation will be used repeatedly
throughout the argument.
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is a bilinear Calderén-Zygmund form satisfying the conditions of the classical T'(1)
Theorem. We will make this reduction to bilinear forms rigorous in the next section.
However, not every bounded bilinear Calderén-Zygmund form can be obtained this
way, since for the trilinear form to be bounded more conditions need to be satisfied.
We will see concrete examples in Section 7.

2.2. Applications.

Of course, the relevance of Theorem 2.7 is that it applies to operators with x-
dependent kernels. We present one application to the bilinear pseudodifferential oper-
ators mentioned before.

Consider again the trilinear form

A fu for fo) = / Ty(fu. o) (2) o) di

= [ o6 = DA Tl @) s

with o in S?yo. Note that this form has modulation symmetry in the direction v =

(1,1,—2)/4/6 for all triples fi, fa, f3, not just the ones with disjoint supports. To
check the first of the restricted bounded conditions we may assume f is supported in
C'I and compute

(A1, 6, DS NSl Il Fler S Ml el s T2 £ 22
S 21 e
Here, we used that QASI and @EI are L?-normalized and adapted to intervals of length
|I|=*. More precisely, ¢; can be written as ¢;(z) = |I|72¢o((z — x0)/|I|) where ¢y is
adapted to and supported in the unit interval centered at the origin. It follows easily
now that R R
el = 72l oll 2 < Ol

where C' depends only on finitely many derivatives of ¢o. The same estimate applies
to ;. To obtain the other restricted boundedness conditions, write

Aoz, f,1) Z/RTz(CbI,%)(l')f(x) dr

and

A(f, é1,%r) Z/RTl(qbz,wI)(x)f(x) dx.

It was proved by A. Bényi, A. Nahmod and R. Torres [1], that 77 and T, can be
computed from ¢ and they admit pseudodifferential representations of the form?

~

Tf)a) = [ oale T ded

3T (f,9) = T*\(g, f) and To(f, 9) = T**(f, g) in the notation of [1].



10 A. BENYI, C. DEMETER, A.R. NAHMOD, C.M. THIELE, R.H. TORRES, AND P. VILLARROYA

and

T7,9)) = [ onle. & ma(e) e ded

where o9(x,&,n) and o1(z, £, n) satisfy
|00 o2, & )| S (1 + |26 + )71
and
0002 o1 (2, &) S (14 1€+ 2n)) 7.
The computations done with T3 can now be repeated with T, and T;. It follows that
A and the T} have the boundedness properties of Theorem 2.7 with § = 1.

Similar examples of forms can be obtained by starting with a bilinear operator T3
given by a symbol of the form oy(x,&,7) = o(x,n — {tanh) for o in S?; and 6 #
—7/4,,0,7/2 (we make the convention o/2(x,§,n) = o(x,§)). In the three forbidden
cases when 6 = —m /4,0, 7/2 the trilinear forms correspond again to a combination of
a pointwise product and a bilinear form. See [1] for more details.

The above examples of operators appear when studying symbolic calculus properties
of bilinear pseudodifferential operators. They provided some of the original motivation
to look at the boundedness results presented here. We refer again to [1] for more on
the subject.

There are certainly other operators to which our main theorem applies. Because of
the persisting appearance of Calderén’s commutators in problems involving singular
integrals, a very natural operator to consider is, for example, the one associated with
the trilinear form

Alx +1) — A(x)

p.v./f(x+t)g(x —t)h(x) 3

where A is a Lipschitz function. There are at least two ways to study this form. One
possible approach? is to use the main theorem after verifying the restricted boundedness
conditions for appropriately modified bilinear Hilbert transform. There is, however, a
simpler and more general method that applies to antisymmetric kernels and that we
will follow using an alternative formulation of the main theorem combined with the lin-
ear theory. We postpone the application to this general class of antisymmetric kernels
until after we introduce Theorem 3.10 in Section 3.2. Nevertheless, the reader familiar
with other computations involving the Calderén commutators and interested only in
such application may jump directly to Section 3.3, where their study in this bilinear
context is presented.

dtdx,

2.3. Plan of the proof.

The rest of this article is structured as follows. In Section 3, after some basic reduc-
tions, we present some equivalent formulations of the main theorem. In particular, in
analogy to the classical T'(1) theorem, we give a meaning to the functions 7}(1,1) for

4Suggested to some of the authors by C. Muscalu.
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j =1,2,3 (see Lemma 3.7 below) and show that the restricted boundedness conditions
imply that these functions are in BMO. We also observe that the restricted bounded-
ness conditions imply a certain weaker one (3.8), which together with the conditions
T;(1,1) € BMO is all what will be used to prove the main theorem. Hence this set of
conditions is also necessary and sufficient to obtain the bounds on the trilinear form.

In Section 4 we establish some bounds on the action of trilinear Caldeén-Zygmund
forms satisfying the alluded weak continuity (3.8) and some special cancellation condi-
tions on bumps functions. These are almost orthogonality type conditions. The proof
of the Theorem 2.7 then splits into two steps. First, one proves the theorem under the
special cancellation condition that 77;(1,1) = 0 for all j. This step is done in Sections
5 and 6. In the former the problem is reduced to a time-frequency model form, which
is then estimated in the latter.

The second step in the proof of the theorem is to construct for each given BMO
function b, forms A;, j = 1,2, 3, which are associated to Calderén-Zygmund kernels,
have a given modulation symmetry, satisfy the bounds of the theorem, and are such
that the corresponding dual operators satisfy 7(1,1) = b and 7;(1,1) = 0 for i # j By
analogy again with the classical T(1) Theorem, we call these special forms modulation
invariant paraproducts. Then, Theorem 2.7 can be always reduced to the case with
special cancellation by subtracting from the original form A three paraproducts with
the same modulation symmetry. The paraproducts are discussed in Section 7.

3. ALTERNATIVE FORMULATIONS OF THE MAIN THEOREM AND FURTHER
EXAMPLES

3.1. Some technical lemmas and the expected appearance of BMO.

We begin this discussion by a lemma that implies the strengthening of the classical
Theorem 2.6 that was mentioned after the statement of the theorem. This will be used
in the proof of Lemma 3.3.

From now on, for each box I in R"™ and each R > 0, RI will denote the box with the
same center as I and sidelengths R times larger than those of I.

Lemma 3.1. Assume A is a continuous bilinear form on S(R)xS(R) that is associated
with a standard Calderon-Zygmund kernel K. Assume there is an N such that the
restricted boundedness condition

[A(¢r f) < Coll £l

holds for all bump functions ¢; of order N adapted to and supported in I and all
Schwartz functions f supported in I. Then,

|A(@r, )] < Clfl2

(with a possibly larger constant C') also holds for all bump functions ¢y of order N
adapted to and supported in I and all Schwartz functions f (not necessarily supported

inI).
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Proof. Without loss of generality, we may assume that I is centered at the origin.
Also, by the continuity of A on S(R) x S(R), it is enough to prove the conclusion
for all f in & with compact support. Consider first the case when ¢; has mean zero.
Let R be a large constant chosen later depending on 3. Decompose now in a smooth
way f = fi + fo, with f; supported in 2RI and f, supported outside RI. Since
(2R)~(/2+N) ¢ is adapted to and supported in 2RI, the hypotheses of the Lemma give
then

[Ar, f)] < Co2R) 20| f]lo.

To estimate A(¢y, f2) we use the kernel representation with the change of variables
explained in the introduction to get

Mmmszwm@kwwmw

where K satisfies
K (u,0) = K(u',0)] < Gy ol — 0|70 (w,0) = (o, 0)|°
for cg|(u,v) — (v/,v")|| < |u —v| and ¢g > 2. The domain of integration is given by

lu| < |I|/2 and |v| > R|I|/2, which imply that |u —v| > (R — 1)|I]/2 > cglu| if R is
large enough. Thus, using the mean zero of ¢; we can write

Mmmszwﬁ@www—meww
and obtain

(A1, f2)| < Cy s / |or()l| fo(0)l[ul’|u — o]~ dudo

S Cﬁl,ﬁ2|[|6 |¢I(U)||f2(’U)||U—U|_(1+6) du dv

|lu—v|>c|I|

< Cﬁl,ﬁzlf\5!|¢zllzl|f2llz/ [~ da < i,y | ]2

|z[>c|1]
This proves
[A(¢r. ) < Cull fll2

for an appropriate constant C; under the additional assumption that ¢; has mean zero.
To treat the general case, define ¢,/ (2) = 277/2¢;(277x) for j > 0 and observe that
2= /24N (51 — 2712¢y5411) is adapted to and supported in 27711 and has mean zero.
Let now k > 0 be the smallest integer such that the support of f is contained in 2¥+17,
and write
k
Aer, f) = Z 29PN (posr — 27 P poriag, ) + 27 FFVPN(Ggrray, f).

j=0
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In the first £+ 1 terms the bumps have mean zero, while the last term can be controlled
by the hypothesis. Thus,

k
[A(Br, )] < (C122N N " 2792 4 Co2= WD) £l < C| £,

5=0
where C' is independent of k. O

We continue by studying the relationship between bilinear and trilinear forms. By
the Schwartz kernel theorem, the trilinear form A can be represented by a tempered
distribution in R®, which we shall also denote by A, so that

A(¢1, P2, 03) = A1 ® P2 @ P3).

In this way, A(¢) has a meaning for any ¢ € S(R3) not necessarily a tensor product.

Moreover, the modulation invariance of A implies that the distribution is supported
on the orthogonal complement of 7. Even stronger, it is given by a two dimensional
distribution A, applied to the restriction ¢| L v+ — C of the test function ¢ to y=*.
This can be seen as follows. Consider first a function f in C§°(R?) and pick another
function ¢ in C§°(R3) with ¢ = 1 on a neighborhood of the support of f. By the
linearity, continuity, and modulation invariance of A, and writing £ = tvy + £* with &*
in v+, we get

AU) = Aleh) = Al / o)t Fle)ie) = A [ gttt ey v

~

= [ [ Metegmte fon e = [ / APR)E ) Tt + )
— A( / [ et Fe ey = ([ e figyae) = Aer.)

where f.(x) = f(2*). (Note that gp [« is still in C5°(R?)). In particular, if two functions
f1 and fo 1n C’O (R3) agree on v+, then A(f; — f2) = 0. Also, since C§°(R?) is dense
in S(R?), a simple limiting argument shows that A(f) = 0 for all f € S(R?®) with
supp f N~y+ = 0 and so supp A is contained in y+.

Now, let ¢ be in CP(R), ¥ = 1 in a neighborhood of zero, and define ¢ (z) =
Y(ty + 2*) = (). We have already seen that for f € C5°(R?), A(f) depends only on
fl,1 s0

A(f) =A@ S) = AWf)
and a limiting argument gives the same result for f € S(R3). This also allows to define
a distribution in &’(y1) by
Ailg) = Ayg)
for all g € S(y1), where g : R® — C satisfies g(ty + 2*) = g(2*). The definition is
clearly independent of the choice of ¢ and we have

AF) = Au(f],0).
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Clearly, by a density argument, the kernel representation of A continues to hold
when the test function ¢ is no longer a tensor product but still has support disjoint
from the span of (1,1,1).

Moreover,

Ag) = / b(wa+ 18) K (x, ) dudt — / (@ + Btz + Pot, 7+ Bat) K (. 1) dadlt

and the integral is absolutely convergent as long as function ¢ just vanishes on the span
of (1,1,1), but provided that A satisfies a weak boundedness property (3.8) below,
which is implied by the restricted boundedness conditions. To verify this, the reader
may adapt to the case of trilinear forms the arguments used in, for example, [31] for
bilinear ones.

There are three distinct bilinear forms that we can consider now

Ai(d2,93) = A((1® d2 ® ¢3)].,1)

Ao (1, 03) = A((91 © 1@ ¢3)| 1)
A3(d1,92) = A((91 ® 2 @ 1) 1)

Observe that the functions on the right hand side are in S(y*), since none of the
components of v is zero. Moreover in case of disjointly supported functions ¢s, ¢35 we
obtain a kernel representation for A; with the same kernel K. In fact, since ¥(1 ® ¢ ®
$3) € S(R3) and obviously has the same values as 1(1 ® ¢ ® ¢3), on v+,

Ai(¢2,03) = A ((1® 92 @ 93)],1) = AY(1 ® d2 ® §3)) = A(Y(1 ® ¢2 ® ¢3))

_ / D a-+£8) b (2-+Bot) b2+t K (, ) ddlt — / o+ Bat ) oy (-+-Bst) K (, 1) vt

Similarly for Ay and Aj.

In the sequel we will use the following notation.

Definition 3.2. For a > 0,v € R? the LP-normalized dilation operator DP and the
translation operator 7, are defined via

Dbf(z) = a~ " f(a™'a), 7 f(z) = f(x —v),
for all functions f defined on R%. We will also sometimes write
D,f(x) = D f(x) = f(a™").

Lemma 3.3. The restricted boundedness conditions for A are equivalent to the re-
stricted boundedness conditions for the A;’s, if one is willing to have a loss in the order
of the bump functions and the constants involved in defining restricted boundedness.
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Proof. We assume first that A satisfies the restricted boundedness conditions, and prove
restricted boundedness of A; (As and Az can be done analogously). Let & : R — [0, 1]
be smooth with

Olx)=1 |z <1

(3.1) O(z) =0 |z > 2.

It is easy to check that if f is supported in the interval I (Lemma 3.1 allows us to
restrict attention to this case) then

(1©6¢1® f)l,e = (reyDon® @ ¢r @ f)| .,

where C' is a sufficiently large constant depending only on . To obtain restricted
boundedness for A, we simply apply the restricted boundedness of A for the enlarged
interval C'I.

For the converse, we first show, as claimed in the introduction, that it is enough to
show the restricted boundedness estimates for A(¢p; ® ¥y @ f) for every C'* function
f supported in CI, where C' is a universal constant depending on . To see this,
and without loss of generality, we may assume I centered at the origin. The region
|x 4+ pit] < |I]/2 and |z + (ot| < |I|/2 is a parallelogram centered at the origin in the
(x,t) while |z + fst] > C|I]/2 is the complement of a strip along the line z 4 3t = 0.
Recall that the components of 3 are pairwise distinct, so if C' is large enough depending
only on [, then the two regions do not intersect. Decompose now in a smooth way
f = for + (f — fer), where for coincides with f on CI, is zero outside 2CT and
satisfies || for||2 < 2|/ fr]|2 Note that ¢; @ ¢¥; @ (f — for)(za+t3) = 0, so we must have
A(or @U@ (f — fer)) = 0, and the claim follows.

Assume now that all the A; satisfy restricted boundedness conditions of order N. For
simplicity of notation also assume that [ is of length 1/C" and centered at the origin and
that ¢7,1; are bump functions adapted of order N’ > N and supported in I. Let f be
a smooth function supported in CI. Let g be adapted of order N’ and supported on
{Ju| < 1/(2C) < 1/2, |v| < 1/2} and so that g(u, v)yr(u) f(v) = ¥r(u) f(v) on the same
region. Write ¢(u, v) = ¢;(—77 *(Yau+7sv)) and note that ¢g is adapted of order N’ to
[—1/2,1/2] x [~1/2,1/2]. Expanding ¢g in Fourier series on [—1/2,1/2] x [~1/2,1/2]
we get

or(x + Bit) 1 (w + Bat) f (2 + Bst)
= O(x 4 Bot, x + Bst)g(x + Bot, @ + Bst)hr(x + Bot) f(x + Pst)

= 37 Conpmg U+ Bot)PTEE (g ) ePrimaletind)

m2,ms3
with
[Cmams| S (1 max(|mol, lms])) ™",
Now, the function
(1 + [ma|) = e (z)emme
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is a bump function of order N adapted to the interval I. The factor (1 + |ms|)™" is
needed to offset the loss of powers of my when taking derivatives of the exponential
factor. Applying the restricted boundedness of A; proves that

Mr@vr @ f) =D Cmpms (L4 [ma)) VA (1 + [mal) ™ Moy tor, My, £) S |1l

m2,m3

O

Assuming Theorem 2.7 is true, we have thereby seen the following corollary of The-
orems 2.6 and 2.7.

Theorem 3.4. Let A be a trilinear Calderon-Zygmund form with modulation symmetry
in direction vy. Then A extends to bounded trilinear form with exponents as in Theorem
2.7 if and only if A; fori=1,2,3 are bounded in L? x L2.

The lemma below will allow us to state the restricted boundedness property in a
slightly more general way. We need to consider bumps which may no longer be com-
pactly supported but are still concentrated around appropriate intervals.

Lemma 3.5. Assume A is a Calderon-Zygmund trilinear form with modulation sym-
metry in the direction v and that satisfies the restricted boundedness conditions of
Theorem 2.7 for some N. Then for all intervals I, all L?- normalized bump functions

brx1 L*- adapted to I x I of order N' >> N and all functions f € S(R) we have the
estimate

(A (G @ I SISl
and the symmetric inequalities.
Proof. For simplicity of notation we shall assume [ is centered at the origin and of

length 1. We take a lacunary decomposition related to I: let ® be as in (3.1) and
define

b0 = (P @ P)drur
Or = (Pr @ P — Pp_1 @ Pp_1)Prxr
for k > 0, where ®;, = D;®. Note that the functions ¢, add up to ¢rxz, so by using
the continuity of A in S(R?) we obtain

(3.2) AMora® )= Mo ® f).

k>0

Note also that 2%%¢y, is L2-adapted to and supported in 25¥2(I x I). We write
¢k(5€17$2) = E;(xla $2)(I)k($1)q)k($2)

where ;{k means the periodization of ¢ from the square 28+2(I x I). By performing a
windowed Fourier series, we obtain

Ou(21,0) = D Chmy g @i (1) Dy ()22 P (mrmara)

m1,ma€”Z
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where the coefficients ¢, m, are rapidly decaying in the sense that
(3.3) |k ms | S 277 (1 + max(|mal, Jm|)) 7V

Denoting by @ () = 4 (2)e2™2 Mm% we have that the functions |m| N2-%/2d, .
are L?- normalized, adapted of order N and supported in 2*+2], uniformly in m and
k.

By (3.2) we have
|A(¢®f)| < Z Z |Ck7M1,m2||A(<I>k,m1a (I)km"bza f)|

k>0 my,mo€Z

S Z Z |m1|N|m2|N2k|Ck,m1,m2A(|ml|_N2_k/2q)k,m1> |m2|_N2_k/2(I)k,m2a f)|

k>0 m1,mo€Z

Now the estimate of the lemma follows by applying (3.3) and the restricted boundedness
condition to each summand on the right hand side with interval 2¢2]. O

We will now give a rigorous definition of T;(1, 1) as a distribution modulo constants
and prove that the restricted boundedness property implies that they are elements
of BMO. The approach is similar to the linear case and we will follow some of the
arguments in [28]. See also [31] and [18] for similar linear and multilinear definitions.
We start with the following lemma.

Lemma 3.6. Assume that A is a trilinear Calderon-Zygmund form with modulation
symmetry in the direction . Let ® be as in (3.1). For every C§° function f with mean
zero the limit

(3.4) L(f) = Jim A(DF(@ & ®)® f) = lim (T(DF®, D))

k—o0

exists. Moreover, if supp f C (—2%0 2%0) then for sufficiently large k (depending on kg
and vy) we have the error bound

(3.5) IL(f) = AD3E(2® @) @ f)] < 27 ¢ || f]|

where 0 is the parameter in the Calderon-Zygmund property of the kernel K and the
implicit constant is independent of ko, k and f.

Proof. Assume supp f C (=2, 2%0). For all j > k > ko write
D3 (¢ ® ®) - Di(P® ®) ZDW ®®P) — DFyir (P © D)

and let ¢y = D3, (Q ® @) — D3y (P ® <I>). We will estimate |A(y; ® f)] to prove
that the sequence A(D3}(®®®)® f) is Cauchy, as well as to estimate the error bound.
Since the support of ¥; ® f is disjoint from the span of (1,1, 1), we can use the kernel
representation of A

A ® f) = / Ui+ But,z + Bat) (o + Bat) K (i, 8) dvdt
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Similarly to what we did in Section 2.1 for bilinear forms, a simple change of variables
allows us to write the above integral in the form

/wl(u, ) f(w)K (u, w) dudw

where v = —7; (7114 Y3w) and K satisfies the classical Calderén-Zygmund estimates
(3.6) K (u,w)] S Ju—w] ™,
(3.7) K (u,w) = K (o, 0')] S Ju—w]” | (w, w) = (', w)]?

for cg||(u, w) — (v, w')| < Ju —w|.
On the support of 9y,
2R < | () || < 2R

and for w € supp f, |w| < 2F. Note that if [u| < (1 + |y5 'v1])~'257=2 and k > k,
then
1, o) || < ul (14 Jyg ) + g sl 2™ < 257
Thus, in the integral representation of A(¢; ® f) we may assume
2k+l 5 |u| < 2k+l+1.

Using the mean zero property of f we obtain

Ay ® f) = /[wz(u,v)f((u,w) — i (u, =5 ') K (u, 0)] f (w) dwdu.

We now write the term in square brackets as

(¢u(u, v) = i (u, vo) ) K (u, w) + ¢y (u, vo) (K (u, w) — K(u,0))
and estimate each term by its supremum norm on the domain of integration. Clearly,
we have || < 2. As the derivative of ¢; is O(27%7!), we have

[a(u,v) = dulu, vo)| S 27 |w| S 2742,
For K we have from the Calderén-Zygmund estimates
K (u,w)] S [u—w]| ™" < (2 = 270)7t S o+
and
1K (u, 0) — K (u,0)] < Ju| =] < 2k-D0+0) 9k,
Hence we can estimate

A @ f)] S (2720H02k0 4 o= (D0 gk) / / |f(w)| dudw
|| <2k+1+1

S 27 R £
Summing in [ finishes the proof of the lemma. U
Lemma 3.7. Assume that A satisfies the restricted boundedness conditions. Then the

linear functional given by (3.4) can be extended to all the Hardy space H and defines
an element of BMO that we will denote by T5(1,1).
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Proof. We will show first that the functions T3(D3;®, DSR®) are uniformly bounded in
BMO. To simplify the notation, let ¢, = D33 (® ® ®), and let ¢, be a large constant
(depending only on 7) whose value will become clear later. We will show that the mean
oscillation of T3(¢y) on some arbitrary interval [ is O(1).

If I is an interval with ¢, |I| > 2, then by Lemma 3.5

IT3(d) 22y < |1 T5(n) 122 < 272 < 1M,

which implies that the mean oscillation of T5(¢y) on I is O(1).
Assume next that [ is an interval centered at the point ¢(I) and such that ¢, |I| < 2.
Let M be the smallest integer so that [—2%,2%] C ¢,2M T and write

M-1
Gr =Y Ve
1=0

where
Vk,r0 = (Te(n),e() Do 1 (2 © @) &y
and
Ure1p = (Tee(n) (1)) Do 1) (2 ® @) = T(e(1),e(1)) Desor (2 @ @) By

By Lemma 3.5 , for any function in f in L? we can write (with a small abuse of
notation)

M-1 M-1
(Ts(d)If) = Mr® ) =Y Ak ® f) =Y (Ts(We10)|f)
=0 =0

Since ¢, |I] < 2%, |I|71y. 10 is L*- adapted to I x I and we can estimate again using
Lemma 3.5,

1T (nr0)l 220y S V2,
which implies that the mean oscillation of T5(¢x 10) on I is O(1). In the other terms

T5(vg.11) can be represented on I by absolutely convergent integrals which, after the
usual change of coordinates, take the form

T3(Wr,10) (w /wk“uv w) du,

with v = —y5 ' (y1u+ysw). Observing that v—c(I) = —y5 (v (u—c(I))+v3(w—c(1))),
we may proceed as in the previous lemma to verify that the above integral may be
restricted to the region where

e 2| < u—c(I)] < ¢, 2T
for some small constant ¢/ depending only on 7. We take now ¢, large enough so that
lu — c(I)| > max{10 x 2", cg}|1|,

where cg is associated with K as in Lemma 3.6.
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Define vy = —v; " (71w + v3¢(I)) and the constant

Crri= /wk,Ll(uaUO)K(%C(I))du

and write

|15 (Vk10)(w) — Crra] <

/Iwk,f,z(u,v)—wk,z,z(u,vo)l Iff(u’w)|dU+/|¢k,z,z(u,vo)l K (u, w) — K (u, e(T)] du.

Take now some w € I. We can apply (3.7) to obtain that the second integral above
is bounded (up to a multiplicative constant) by

/ [T u — e(I)|~ 0 du < 279,
lu—c(I)|>10x2!|1|

To estimate the first integral note that

OV 14 < 1

o —w| S|, |K < @)
H v H Nmil’l(CA/Ql‘ﬂ,Qk)’ ‘U UO|N| ‘7 | (u7w>|w( |D )

and the region of integration has length O(min(c,2'|],2%)). By putting these things
together, the first integral above is easily seen to be O(27!). This proves that the mean
oscillation of T3(ty ;) over the interval I is O(27%). Finally, by the triangle inequality
we conclude that [|T5(ér)| sro S 1.

To conclude the proof we can now use the H! — BMO duality. In fact, since the
unit ball of the dual of a Banach space is weak*-compact, we can extract a subsequence
of T3(¢x,) so that lim; .(T3(¢x;), f) = (T3(1,1)|f) for some T3(1,1) € BMO and all
f € H'. However, the previous lemma shows that the sequence on the left converges
to L(f) for C* functions f with compact support and mean zero. Since such functions
are dense in H', it follows that the continuous functional induced by T3(1,1) on H'(R)
extends L to all H' and that T3(1,1) is the unique limit (in BMO) of the sequence

T3(¢r)- O

The following result shows that the definition of 75(1, 1) in Lemma 3.6 is independent
of the choice of function ® in a very general sense.

Lemma 3.8. Let f be a Schwartz function supported on I = [—1/2,1/2] and with
mean zero, and k > 0. Then, for every L*°-normalized bump function ¢ adapted to the
square [—2%, 2% x [=2% 2F] with ¢ = 1 in a neighborhood of (0,0) we have the estimate

(Ta(L, DIf) = A, F)] < Cro2™ || fll e,

where we can take &' =6 if 6 <1 and & =1" if § = 1.

Moreover, if A satisfies the restricted boundedness conditions then the estimate above
still holds with || f||1 replaced by || f|l2 (note |I|V? = 1), if the L=-normalized bump
function ¢ adapted to the square [—2F 2F] x [—2F, 2] satisfies only $(0,0) = 1.



MODULATION INVARIANT BILINEAR T(1) THEOREM 21
Proof. Let ® be as before. Considering ¢, = D3 (® ® ®) — ¢, we need to prove

A ® f)] S 27°%.
Let
Dy = D5t (P ® @) — DR (P ® D).
For a large kg and k > kg, write
k—ko

Y = Z Wi + Z Uy + Uy,
1=0 =1

where
Uprr = PV, = (D31 (P @ @) — D3t (P @ D)) (D (P @ @) — ¢)

and
Wiy = Daieg (P @ @)ty
We can apply the reasoning of Lemma 3.6 to W1 to write AV ® f)~as the sum of
two integrals, one involving (VW) K and the other involving W4, (VK), and where
the integration in u takes place for [u| ~ 2¥!. We then need to estimate |V¥}4[ and
|| and combine them with the Calderén-Zygmund estimates on K (which can be
applied if k¢ is chosen large enough depending only on 7).
For Wy, we can use in the first integral that ;. is adapted to a square of side length
2% to get
|V‘I’k+l| < |V<I>k+l||wk| + |(I)k+l||vwk|
ket k 2"y ket
S @ [l oo + |1 Pppall 27 (1 + 7)_ <27+
and in the second integral we simply use that that U, is bounded. Together with the
Calderén-Zygmund estimates this leads to estimates on the integrals of order 2~ (*+9
and 2-*+09  respectively, which sum in [ to the correct bound. On the other hand,
since ¢(0,0) = 1, we can use for WU;_; in the first integral

(VU] < VO] [thr] + [Prit|| Vi
S 2—(k—l)2—k22(k2—l) ‘l’ ||<Dk—l||L°°2_k 5 2—k‘

and
|\Ilk—l‘ 5 2—k2(k—l) 5 2—[
(1-9)

in the second integral, which leads to estimates of the order of 27% and 27+2~! ,
respectively. Noting that there are less than k£ terms in this case, we get to an estimate
of the form 2% with § as in the statement.

Finally, note that the last term, A(Vy, ® f) is zero if ¢ = 1 in a neighborhood of
(0,0) or otherwise it can be controlled by the restricted boundedness property since

U, is adapted to a cube of side length 2% with a constant of the order of 27. O
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Remark 3.1. For any fized y and ® as in (3.1), the function 7(,,) DX (P @ ®) is
an L®-normalized bump function adapted to [—2%,2%] x [—2% 2*] and equal to 1 in a
netghborhood of the origin, for sufficiently large k. Hence we may also write

AL L ) = (Ty(1 1)[) = Jim Al D(P © @), /).

Moreover, an examination of the proof of Lemma 3.6, shows that if the test function f
with mean zero satisfies supp f C I, then

AL 1, f) = A(Te) e D3k (2 © @), 1) S 2791 £l

for large k depending only on ~.

3.2. A T(1)-type formulation of the main theorem.
We now introduce a weaker continuity property on A alluded to before.

Definition 3.9. We say that a trilinear form A satisfies the weak boundedness property
if for any interval I and any ¢ that is L*-normalized and adapted to I x I x I of order
N

(3.8) IA(p)] < ClI|7V2.

The restricted boundedness conditions with order N’ > N imply (3.8) of order N.
This is immediate for ¢ given by a tensor product, while arguments similar to the ones
used in Lemma 3.5 give the general case. We will prove Theorem 2.7 assuming only
the weak boundedness property and that the distributions 77j(1,1) given by (3.4) (and
its symmetric versions) are in BMO for j = 1,2, 3. Since, as we already saw, all these
conditions are implied by the restricted boundedness, it will follow then yet another
formulation of the main theorem.

Theorem 3.10. Let A be a Calderon-Zygmund trilinear form with modulation symme-
try in the direction of vv. Then A is bounded in the range of exponents of Theorem 2.7
if and only if T;(1,1) € BMO for each j = 1,2,3, and A satisfies the weak boundedness
property (3.8).

While the Calderén-Zygmund condition does not distinguish between Calderdn-
Zygmund kernels associated with bilinear or trilinear forms, the BMO conditions con-
stitute a real difference between distributions which are bounded bilinear forms and
those which are bounded trilinear forms. For trilinear forms, there are three BMO
conditions, while for bilinear forms there are only two. In the section on paraproducts
we will see that the three BMO conditions are indeed independent, and we can adjust
the three functions 7}(1, 1) independently for each j. In particular, we can take two of
these functions in BMO and a third one not in BMO and construct a distribution that
provides a bounded bilinear form but not a bounded trilinear one.

We also observe the following.
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Remark 3.2. Let A be a trilinear Calderon-Zygmund form with modulation symmetry
in the direction v and satisfying (3.8). Then, the forms A;, j = 1,2,3, satisfy the
bilinear weak boundedness property of Remark 2.1 and the identities

A1(17 ) = A(17 17 ) = A2(17 ')7
A2('7 1) = A(? 17 1) = A3('7 1)7
A3(17 ) = A(17 "y 1) = Al('7 1)7
hold when the terms are interpreted as tempered distributions modulo constants.
It is trivial to check the bilinear weak boundedness conditions for the A; given the
one for A. The above identities are also clear at a formal level. To verify them in a
rigorous way, let f be a test function with mean zero supported in some interval I

centered at the origin. For C' large enough depending just on v and for k£ large enough
compared to log || we have

Al(ngq), f) == A(DQkDC(I), DQk(I), f),

because 1 ® Doyx® ®@ f = Do De® @ Do ® ® f on v+, As k — oo the left hand side
tends to A1(1, f) while, by Lemma 3.8, the right hand side approaches A(1,1, f) since
De® @ ® = 1 in a neighborhood of (0,0). A symmetric reasoning gives the other
identities.

3.3. The bilinear Calderén commutators and the bilinear Cauchy integral
on Lipschitz curves.

As we mentioned in Section 2.2, Theorem 3.10 has applications to operators with a
particular antisymmetric property. Let K(z,t) be a Calderén-Zygmund kernel with
the property
(3.9) K(z,t) = —K(z +t,—t).

This unconventionally looking antisymmetry comes from the fact that we chose the
kernels to be singular at ¢t = 0 and not at x = ¢, i.e. we assume in this article

07K (2, 1)] < [t~
instead of (the equivalent after a change of variable)
07K (2, )] < [ — ¢| (oD,

If K satisfies (3.9), then one can always define the trilinear form

A, g.1) = pv. /f(:c + gl — Oh(@)K (x, £) didz =

5 [ @+ t)ge — (@) — F@)glo +20h(a + 1) K (2. deda,

since the integral now is absolutely convergent. This form is also clearly modulation
invariant, even for functions without disjoint support, and it is easy to see that such a
form satisfies the weak boundedness property of Definition 3.9.
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A change of variables gives

ALLR) = po. [ F)(@)K e,y ) dody
and if the bilinear form with kernel

(which is antisymmetric in the usual way) is bounded, we immediately get (see Re-
mark 3.2)
A(1,1,-)=—=A(-,1,1) € BMO.

Another change of variables gives
Aungzpu/Q@mwﬂaax—mey

The last condition to be satisfied is A(1,-,1) € BMO. This requires the bilinear form
with kernel

to be bounded too.

Examples of the above are provided by the bilinear Calderon commutators whose
associated trilinear forms are

(3.10) . / o+ Dg(x — Oh(n)AE +ZL+‘1 A@D™ e
with | 4’|l < C.
Since

(Alz +1) — Az))"
tm+1

K(x,t) =

we have that the bilinear form associated to the kernel K (x,y — x) is just the usual

Calderén commutator,
A m
/ fly ) (z)) dydzx;

while the one for K(z,x —
A2z —y) — A(z))"
v. dydzx.
P / f (x —y)m! ’

This last bilinear form is treatable with the linear T1-Theorem in the same way the ones
associated to the linear commutators are. Theorem 3.10 gives now the boundedness of
the forms in (3.10).

Keeping track of the constants involved and expanding in the usual way in terms
of commutators one can obtain also the boundedness of the bilinear Cauchy integral
operator

(3.11) Ca(f,9)(x) =p.wv. / ; —1—%2(—;2975()%—_2)(1:)) dtdzx,
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at least for ||A'|| < €.
On the other hand, note that the kernel

1
T tri(Alz+t) — A2))

is also antisymmetric in the sense of (3.9), so one can try to study it directly. The
function K(z,y — ) is now

K(x,t)

1
(y — =) +i(Aly) — A(z))
which gives the linear Cauchy integral operator which we know is bounded even with
|A'||« < C. The other bilinear form to consider has kernel

1
(z —y) +i(A2z —y) — A(z))
This should be studied using similar arguments to the ones used for the linear Cauchy
integral operator to yield, invoking again Theorem 3.10, the boundedness of the bilinear

operator in (3.11) for arbitrary Lipschitz function A. We leave the details to the
interested reader.

K(r,y—x) =

K(:L’,x—y):

4. BUMP FUNCTIONS ESTIMATES

In this section we prove some estimates on bump functions under the additional
assumption of 7;(1,1) = 0 (in the BMO sense) for j = 1,2, 3. Recall that T;(1, 1) has
been defined in Lemma 3.7. We will study the action of A on triples of bump functions
and obtain good estimates in terms of the localization in space and frequency of the
bump functions. The estimates will be obtained from a reduction to the bilinear form
case, which we will discuss first. Lemma 4.3 below is a slight generalization of some
almost orthogonality estimates found in the literature.

In what follows, we will write diam(1y, I5) for the diameter diam(/; UIy) of the union
of the two intervals. We will also use the fact that if [I;| > |I5| then

diam([l, ]2) ~ 1 + |C([1) — C(]Q)|
|11 |11 '

Lemma 4.1. Let ¢; and c; be bump functions L*- adapted of order N to the intervals
J and I. We have

1/2
a) [ ol s (mm%, %)) (1 + (max(|1], |J])"diam(7, 7))~

while
(4.2) ' / 6, (2)er () dz| < (%)m (1+ || diam(Z, J))~Y,

as long as |J| > |I| and [ ¢;(x)dz = 0.
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Note that the estimate in (4.1) only needs the size estimates on ¢; and ¢; but
not the ones on their derivatives. Similar estimates are obtained when the bumps ¢,
are replaced by the ones obtained by the action of Calderén-Zygmund operators with
certain cancellation. More precisely one has.

Lemma 4.2. Let ¢; and c; be as in the previous lemma with N > 2. Assume that
A is a bilinear Calderon-Zygmund form associated with a kernel K with regularity
parameter 0. Suppose that A satisfies the restricted boundedness conditions (2.6) (or
equivalently that is bounded on L* x L?) and that the linear dual operator® T has the
special cancellation condition T'(1) = 0. Then for each 0 < ¢’ < 4,

(43)

[l s (mind 2 VD) 4 e, 170 oz, -0

provided that [ ¢;(x)dx =0, while
1]\ **° ,
(4.4> ‘/T(CbJ)(JJ)C[(SL’) dx 5 (m) (1 + \J|_1diam(l, J))—(1+6)

if | > 1], [ ¢s(x)de =0, and [ ¢;(x)dz = 0.

For a proof of Lemma 4.1 and Lemma 4.2 see, e.g., [23] and [14]. We have now the
following generalization.

Lemma 4.3. Assume again that A is a bilinear form associated with a Calderon-
Zygmund kernel K with reqularity parameter 6. Suppose that A is bounded and that
the dual linear operator T' has the special cancellation condition T'(1) = 0.

Let |I1] > |I5| be intervals and let 1 € S(R?) be a bump adapted to I, x Iy of order

at least 4. Assume 1 has mean zero in the second variable, meaning

/lp(l’l, ZL’Q) dZL’Q =0
for all x1. Then for each 0 < §' < 4,

< (2] Vo 14 —(1+6)
(4.5) IA(W)| < 7l (1+ || 'diam(I3, I5)) .

Proof. Let 1 (x1,x5) be adapted to I; x Iy with |[;| > |I3| and having mean zero in
the second variable. Using wavelets, we can expand it in the first variable into a a
family of bumps (wavelets) {¢,} which are L?- adapted to the dyadic intervals J and
have mean zero. Furthermore, using the linearity of A and the fact that A extends to
a continuous functional on L?(IR?) (this being a consequence of the hypothesis and of
Theorem 2.6), we obtain

\<Z\A . T), ) d(a1) |—Z\A¢Jx1 cf (x2) |—Z|T¢>J\c12\

Recall that this is A(f1, f2) = [ T(f1)f
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where the 6{2 has mean zero and is adapted to the interval I, but with implicit bounds
depending on the relative sizes of I, and J that can be estimated using (4.1) and (4.2).
We will use (4.3) and (4.4) to estimate [(T¢,|cf,)|. We proceed as follows.

We split the sum as

D P R ID DD DL DL
JJI<| <L) J: eSS T T2l <[ L <|J]
Using (4.2) and (4.3) we estimate

TN 171\ diam(J, 1), g, diam(J, L), _, g
25 2 () () o = rras St

J:|J|<|I2|<| 1) | 2|

9=\ /2 o\ 32 ILINY?  diam(, L),y
< = = T 1/2 I 1/221/ (_2) 1+ 1,42)\_1—¢ 7
Sy ( ) (|11|) EIPILET2 ) TN

V2=V <| | <|14| |12

where we have used a discrete version of estimate (4.1) to sum on all intervals J of a
fixed scale. That creates the normalization factors in the last line. Simplifying, we get

Z |IQ 1/2 d1am(]1,12 1§ Z 2 v |IQ|3/2(1 diam(]1,12)>_1_5,
~ |11|‘°”/2 |11 ~ LR |11

Y

2—v<|I2]

which gives a better estimate than the desired one.

Similarly for ) 5, we first use (4.1) and (4.3) and then sum at each scale to get the
estimate in (4.5).

To estimate ), we use (4.1) and (4.4) and ¢’ < " < § to compute

LN (RN . diam(J L) g . diam(J, 1) _y_g
2 A\ ) U )
J:|bl<[n<]]

I A diam(fy, ), 5
< oy I+ —= '
S Z (2_V Qv ( + o—v )

v: | L|<|I1|<27¥

AN

%

By further splitting the above summation according to the relative size of 27" with
respect to diam([y, I5), we get again the desired bound. O

Next, we formulate the corresponding estimates for trilinear forms. We will use the
following notation.

Definition 4.4. For an interval w = (a,b) and a constant ¢ > 0, let cw = (ca, cb) (that
is the dilation of w from the origin, not from its center which we denote by cw ).

Lemma 4.5. Let A be a trilinear Calderon-Zygmund form associated with a kernel K
with parameter 0, with modulation symmetry in the direction of v with v; # 0, and
which satisfies the weak boundedness condition (3.8). Assume also that A(1,1,-) =
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A(1,-,1) = A(1,1,-) = 0. Let ky = ko > kg be three integers. For each 1 < i < 3, let
w; be an interval of length 27%, and assume that wy N 2wi =0 and wy N Zwy = 0.
Let I; be an interval of length 2% and assume ¢ € S(R®) is a bump function of

order 2N adapted to Iy X Iy X I3 and with Fourier transform supported in the box
W= w] X wh X wy. Then, for each 0 < §' < 6 we have

(4.6)

! Ry _N
i prove (B (1 S B ) e
- 1| 7] ,

where we have written diam(Iy, Iy, Is) for diam({>_, I,) and |I| = |I,| = |L|.
Similar statements and estimates holds by symmetry for any permutation of the
indices 1,2, 3.

Proof. We assume without loss of generality that diam(/y, I3, I3) is comparable to
diam(/ls, I3). This can be achieved by switching the otherwise symmetric roles of I
and I if necessary. We write

Y(x + Bot, v + B3t) = ¢(x + Bit, x + PBat, x + Bst),

and note that A;(¢) = A(¢). We plan to apply Lemma 4.3 to A; and .

First observe that by hypothesis and Remark 3.2, A; is bounded and satisfies the
requirements of Lemma 4.3. Second, we claim the function ¢ is adapted to I5 x I3 with
constant |I|~Y2M~N where

> el

Clearly, it is enough to see this when |I|™* |3 v;e(I;)]| > 1. We truncate
Y =11+ 1o

5M =1+ |1

where
¢1($1,$2) = 1/1(171,I2)(I)M12 ($1)(I)M13($2)
and the functions ®,,; are the usual L*>*-normalized functions adapted to M.
If (x1,22) := (x+ Pot, x4 Bst) is in the support of ¥y, then |x + Byt —c(L)|/|I| Z M
because

3
Mz + Bit — e(I))| > Yz + it —C(]j))‘ —4AM|I| = — AM|I|.

j=1

Z vie(l;)

By computing derivatives, the claim for v, follows easily. Let us only indicate the
bound for the function itself:

|1 (21, 22)| = |d(x + Bit, @ + Bot, x4 Bst)|Prrr, (02) Porr, (w3)
5 |I|_1/2|]2|_1/2|13|_1/2M_N><
(1+ ] Yo 4 Bt — c(L)]) N1+ 1|7 o + Bt — e(I3)]) 7.
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If (x + fot, x + Pst) is in the support of 1q, then either |z + (ot — ¢(I3)|/|I| is of order
at least M or |z + B3t — c(I3)|/|I] is of order at least M, and the claim for 1), is again
easy to see.

Finally, it remains to show that 1) has mean zero in the second variable. Consider
first the particular case when

5(771, N2, M3) = &51(771)52(772)53(773)

A simple change of coordinates gives then

2 3
Y(u,v) = ¢1(——u— —v)da(u)P3(v).
! !
For each u, the Fourier transform of ¢ in the second variable is supported in w} — z—/’jvwi
Since this interval does not contain the origin, the claim follows.
To obtain the general case expand ¢ as a series of products of the above, via windowed

Fourier series. U

Remark 4.1. Let () be the line spanned by v, and (y?) be the projection of the line
{(v) onto the plane e;-. We observe that the conditions on w' in the previous lemma are

actually equivalent to

(4.7) W x w0 () =0,

(48) wh x w0 (70) = 0,

In all applications of Lemma 4.5, the box w’ will emerge in the following way. We will
initially have a box w := (w1, wa, w3) which satisfies (4.7) and (4.8). We will then choose
some appropriate vector £y € () and define w' := w — &y. Regardless of the choice of
€, (4.7) and (4.8) imply for i € {1,2} that wiN %w; = (), since %w; = %wi — &3 and

wy = w3 — £73.

5. DECOMPOSITION OF A UNDER THE SPECIAL CANCELLATION CONDITIONS.

In this section we will express the form A as a superposition of well localized model
operators. Before achieving this goal we first recall how the decomposition was per-
formed in the particular case of the bilinear Hilbert transform, see [20]. More generally,
assume K (t) is an = independent Calderén-Zygmund kernel with enough decay on the
derivatives of K , and consider a A which for each fi, f2, f3 € S(R) has the representa-
tion

A(fl, fg, f3) =p.v / f1 (.T + ,Blt)fg(ﬂf + ﬂQt)fg(.fC + 63t>K(t)dI dt

One first decomposes K in pieces K}, localized at frequency ~ 27%. Then, the modula-
tion symmetry of A recommends a wave packet decomposition of the three functions,
adapted to the scale of the multiplier. The geometry of the Fourier plane in conjunc-
tion with the decay in the derivatives of K allows then one to reduce the boundedness
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of |A(f1, f2, f3)] to that of model operators of the form
Z ap |]p|_1/2|<f1> ¢p1><f2> ¢p2><f3a ¢P3>|>

peP

where P is the collection of all multi-tiles in phase space p = p1 Xpa Xps, p;i = I, Xwp,
with |1, :== |I,,| = |Ip,| = |1p,| and w,, pairwise disjoint for each fixed p. The ¢,, are
wave packets L?- adapted to the time-frequency tile p; and {a,} € £>(P).

A fundamental feature of P is that it is a one parameter family of multi-tiles, in that
each wy, determines uniquely the other two w, . Another important aspect about P is
the so called ‘quartile property’; namely the fact that if for two multi-tiles p and p’ we
have wy,, Nwy # 0 then we are guaranteed that wy, N Wy, = 0 for each j # i. Both of
these properties follow as a consequence of the fact that the cubes w,, x wp, X wp, are
located at some uniform distance from the line () and they touch the plane (1,1,1)".

In the case K depends on both x and ¢t we proceed differently. Consider again a
Calderon-Zygmund trilinear form A which is modulation invariant in the direction ~.
We saw that we can write

Afr, fo: f3) = (K (2, )| 1 @ fa ® fa(za +15))

where we still denote by K a distribution in S’'(R?), which agrees with the given
kernel when t # 0. Note that the Calderén-Zygmund conditions on the kernel do not
say anything about the distribution K for ¢ = 0. As in the linear case, the weak
boundedness property and the conditions 7j(1,1) € BMO are needed to complete, in
a certain sense, the control on the distribution K.

To study A we will perform a particular Whitney decomposition on the frequency
domain. We want to give a heuristic motivation for it. Based on the experience
with multipliers (both linear and multilinear ones), one expects that a Mihlin-type of
behavior for the frequency representation of A should play an important role. That
is, the form should be given in the frequency side by a distribution whose derivatives
behave like the reciprocal of the distance to a particular singular or bad set. Typically
one then performs a Whitney decomposition with respect to that set.

Applying the Fourier inversion formula to each f; we see that, in the sense of distri-
butions, we can represent A on the frequency domain as

(5.1) A(f1s for f3) = (K(—a- &, =0 - |1 ® f2 ® f3(£)),

where & = (£1,£2,&3). The conditions on the kernel are too weak to conclude any
pointwise kind of behavior for K. This will substantially complicate our analysis but,
intuitively, B+ should be a bad set for A. To further motivate the analysis to be
performed, consider a very particular case of K with compact support, smooth in =z,
and satisfying for ¢ # 0 the stronger conditions

07K (a, t)] < [¢] 701D,
for all |a] > 0. These conditions (together with the weak boundedness property) imply
(5.2) 0 K (u,0)] S o],
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for v #£ 0 and m > 1. The estimates say that the derivatives 8;”?( are only singular
at the origin (though they still do not say anything about K itself). This and the

representation (5.1) suggest that A may have some singularities on 3.

The representation (5.1) is not unique in the sense that it depends on . In fact, for
duality purposes and to exploit the conditions on the operators 7;, we can also write
by simple changes of variables

Afr, fo, f3) = (Ks(z, 1) f1 ® fo @ fa(@wa +t3%)) = (T5(f1, f2)| f3)

A(f1, fo, [3) = (Ka(2, )| f1 ® f2 ® fa(wa +t6%)) = (Ta(f1, f3)| f2)
A(f1, fo. f3) = (Ki(2,8)| /L @ fo @ fa(wa + 1Y) = (T1(fa, f3)| 1),

where the vectors 37 are still perpendicular to v and satisfy that the component ﬁjj of
them is zero. The K are also related to K by a change of variable and still satisfy the
same conditions assumed on K. In other words,

Ts(f1, f2)(z) = /fl(x + B3t) fo + Bot) K3(x,t) dt

and similarly for 77 and T5.
We obtain then the three frequency representations

(53) A(fr, fo fo) = (BKj(—a- &, =0 )| L © fo © fa(€))-
In each of them, away from a plane through v defined by
P; := (87)* = span(e;,7),
the form A is given by a symbol whose derivatives blow up according to (5.2) when
¢ approaches P;. We use a Whitney decomposition that simultaneously resolves all

of the three singular sets P; independently of which 7; we are using. In a way, the
conditions 7}(1,1) € BMO are needed to control the behavior on the bad set

3
S = UP]
i=1

and eliminate the potential singularities of A on it.
We see from (5.3) that, at least formally, 7;(1,1) = 0 translates into

(K5(=&5, 0)[£;(&)) = 0,
and hence K ;(u,0) =0, so A vanishes in some sense on S. We will show rigorously
that we can perform our analysis in R3\ S in Lemma 5.3 below.

In the case of the bilinear Hilbert transform (or a kernel that is z-independent), the
formula in (5.1) takes the simpler form

(5.4) A(fr, for f3) = (8(a- K (=B )| fi @ f2 @ f5(€)),

which clearly vanishes if j?l ® fg ® fg, is supported away from ot (which also contains
(7). We see then that A is supported on ot and hence is possibly singular only on the
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line (v) independently of the representation used. A one-parameter family of boxes, i.e.
cubes, is then used in this case as mentioned above. In the z-dependent case, however,
a two-parameter family of boxes in R? will be used to decompose the complement of
the bad set as we will now describe.

We first produce a Whitney decomposition of the frequency domain R3\ S into tubes
as defined below. This is achieved by combining two-dimensional Whitney decompo-
sitions of each ejL \ (v9)). In a second stage we perform wave packet decompositions
of the three functions adapted to such tubes. Finally, information on the decay of
the coefficients associated with various localized pieces will be provided via the almost
orthogonality estimates of the previous section, combining the kernel representation
with the weak boundedness condition and the cancellations 7;(1,1) = 0.

Definition 5.1. A dyadic box is a parallelepiped wy X wo X w3 such that all intervals
w; -called the sides of the box- are dyadic intervals. A tube is a dyadic box where the
minimal side-length is attained by two of the sides. We also allow the maximal side
to be all of R. The orientation of a dyadic tube is the direction corresponding to its
longest side (cubes have no orientation).

Observe that a nonempty intersection of two dyadic tubes of possibly different ori-
entations is again a dyadic tube.

Let C} > 1 be a sufficiently large constant depending on ~, whose value will not
be specified. Constraints on how large C'; should be will become apparent throughout
the paper. The other important constants® that will appear throughout this work are
Cy = C)* and Cy == C2.

For each j € {1,2,3}, we decompose the complement of the plane P; into the
collection €2; of minimal dyadic tubes w such that Cjw intersects the plane P;. An
important property that will be used repeatedly is that for each such tube we have
%w N (y) = 0. These tubes partition the complement of P;, they are infinitely long
in direction e; and their projection onto the orthogonal plane to e; defines a standard
Whitney decomposition into squares of e\ (V).

Now let €2 be the collection of all tubes which are nonempty intersections of three
tubes as above, one in each of 21, €2, and 23. Then () partitions the complement of
the bad set. Each of the tubes w in this partition, initially defined as the intersection
of three tubes, is actually determined by the intersection of two of the three tubes, one
defining the two shorter sides of w and the other one defining the long side of w.

For each Whitney tube w € Q we consider the box 3w, which is the box w dilated
about its center by a factor 3. By a standard argument for Whitney decompositions
(e.g. applied to the Whitney decompositions of each of the three planes) these boxes
have bounded overlap and two overlapping boxes have comparable side-length in each
dimension. Therefore we can find a partition of unity of the complement of S

lge = Zggw

weN

6From now all occurrences of C1, Cy and C5 will refer only to this constants



MODULATION INVARIANT BILINEAR T(1) THEOREM 33

where each g/gw is supported in 3w and L*-adapted to w.

Definition 5.2. The width of a tube is the length of each of the shorter sides, its length
is the length of its longest side, and its eccentricity is the ratio between its width and
length.

Lemma 5.3. Assume A is a trilinear Calderdon-Zygmund form with modulation sym-
metry in direction v that satisfies the weak boundedness property (3.8) and the special
cancellation conditions T;(1,1) =0 for 1 <1i < 3.

Let Q®) be the set of all tubes in Q with width at least 27%. Then we have

(5.5) Aw) = lim > A=)

weQk)

for each Schwartz function 1 with compactly supported Fourier transform.

Proof. We will assume without loss of generality that 1Z is supported into the cube
[—1,1]3. For each k € Z we construct a set Q*) of tubes of width 2% such that the
tubes in Q® UQ® form a partition of R3, their dilates by a factor of 3 have bounded
overlap, and which have the property that if 3w N 3w’ £ 0 for some w,w’ € Q® U Q®
then w and w’ have comparable side-length in every dimension. To achieve this, let
Q) x be the subset of ; consisting of all the tubes of width at least 27*. Define also
Qj,k to be the (uniquely determined) collection of tubes infinitely long in the direction
e; with width 27 such that €, U, forms a partition of R,

Define now Q%) as the collection of all tubes that arise by intersecting 3 tubes, one
in each of 2y , U Ql,k, Qo U Qg’k and €3, U Qg’k, with at least one of the three tubes in
some Qlk Note that Q®*) consists of all tubes that arise by intersecting 3 tubes, one
in each of Oy 5, Qo1 and €23 ;. It is now an easy exercise to prove that Q® U O® g a
partition of R? that has all the desired properties.

Using these properties and the standard process of partition of unity, we may define
functions (Ew for w € Q® that are L™-adapted to w and supported in 3w so that

1= Z é;w_l' Z ggw-
weN k) weQ (k)

Recall that the functions ¢,, with w € Q®) have been defined earlier.
It is not hard to observe (see also the rank properties in section 6.1) that

(5.6) Caw N (y) # 0
for each w € Q®) U Q® . There are only finitely many tubes in
O® L ok

which intersect the compact support of ’l//J\, hence clearly

(5.7) AW) = Y AW=ou) = Y AW *6.)

we k) we)(k)
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It then suffices to show that the right hand side tends to 0 as k tends to co. For the
rest of the proof it suffices to restrict attention to tubes that intersect the support of
@ and to sufficiently large values of k. (In particular, we can assume k > 0)

We first estimate the contribution coming from the collection Q* of tubes in Q®*)
whose eccentricity is 1 (the cubes). Due to (5.6) there are O(2%) tubes in Q®1. To
estimate the contribution of a tube in Q®1 to (5.7) we use the modulation symmetry
of A to get that A(¢ * ¢,) = A(Mye(¢¥ * @), where £ € R is chosen in such a way
that the support of the Fourier transform of M. (¢ * ¢,,) lies inside the cube centered
at the origin with side-length 100C327"%. This is possible due to (5.6). It follows now
easily that the Fourier transform of M.¢¢,, is L>- adapted to the cube of sidelength 2%
centered at the origin. Since k > 0, the same can be said about the Fourier transform
of M,¢(¢) * ¢,). This easily implies now that M.,¢(¢ * ¢,,) is L'- adapted to the cube
of sidelength 2% centered at the origin. Applying inequality (3.8) we obtain that

[A(Moe (9 % 60))| S 272,

Thus, the contribution of Q®1 to (5.7) is O(27%).

It remains to consider the set Q*2 of tubes w € Q®) whose eccentricity 27 is smaller
than 1. Without loss of generality we can assume that the sides of w have lengths 27,
27% and 27%** in this order. It follows that w is determined by the intersection of 3
special tubes W' ;== R X wy1 X w12 € Q1 C O, W ' =wa1 X R X wys € oy C €y and
W= ws1 X wsg X R e Q&k.

First observe that if such a tube w produces a nonzero contribution to our sum then
its sides have lengths smaller than 1. This is immediate for the smaller sides whose
length is 27%. Let us now see that the same thing is true for the longer side. We observe
that w must intersect the cube [—1, 1]*, which implies (w1 X wa2) N [—1,1]* # (. But
since w” €C 2y, we know that 0 ¢ 10(ws; X wa2). This proves |was| < 1. As a
consequence, we deduce that the Fourier transform of ¢ x ¢, is L*- adapted to the
tube w.

Choose now ¢ € R such that 0 € Cs(w — &) (this is possible due to (5.6)). Using
again the modulation invariance of A and (5.6), we get as before that

[A( * du)| = [A(Mey (% ¢0))]
where M.¢(¢ * ¢,) is L'- adapted to the box centered at the origin with side-lengths
comparable to (2%, 2% 27%2k). Moreover, the Fourier transform of the function M. (1 *
¢.,) will be supported in the box w —~¢ which is easily seen to satisfy the requirements
of Lemma 4.5, once we prove that w satifies the requirements (4.7) and (4.8) in Remark
4.1. But this is immediate since (wy1 X wyo) N (YP) =0 and (w3 X wso) N (Y®) = 0.
Lemma 4.5 now gives

IA(Mey (1 % ¢,))| < 27020 r(1/248) 9 =3k/24k/2
where the factor 273¢/27%/2 adjusts the L? normalization of ¢ *¢,,. Finally note that for

each k > 0 there are O(2%) tubes w as above. To see this, we can further assume without
loss of generality that w is determined by w” and w”, that is w = (w31, w32, w22). Note
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first that there are O(2%) tubes w"” = w3 1 Xws 2 xR of width 27% which intersect [—1,1]2,
since C (w3 X w32) N {(Y®) # 0. Given wy 1, we know that ws ; is determined uniquely,
and then wy o is determined within finitely many choices by ws 1, since C}(wa1 X wa2) N
(y®) # (. Hence we can estimate

> AW )| S 2R
we(k,2) k>0
which is again an acceptable contribution.

O

As we proceed with the second stage of the decomposition of A, we return to viewing
A as a trilinear form on the triple product of Schwartz spaces, rather than a distribution
on R3. Thus we assume 9 in Lemma 5.5 is an elementary tensor ¢ = f1 ® fo ® f3
of three compactly supported smooth functions. To turn ¢, into a convergent sum of
elementary tensors, we invoke Fourier series.

For each tube w € 2 we choose functions ¢,, for i = 1,2,3, L*°- adapted to wj,
constant equal to 1 on 3w; and supported on 5w;. The dilated tubes 5w are still
disjoint from the bad set S since C; > 1. Then

Applying Fourier series on 5w gives

3
6= Y Comimany [ G (€)M CD,
i=1

ni,n2,nN3EZL

and note that for each M the coefficients decay as
|Cw,n1,n27n3‘ SJM (1 + maX(|n1|, |n2‘7 ‘n3|>>_M

We also note that since QAS%. is L*°- adapted to w; of any order M and supported in

5wi, 80 is the function My, /s).,|¢w,» With a constant that is O(n}’). These observations
imply that

A(d} * (bw) = Z Cw,nl,nz,ngA(fl *Tn1/5|w1\¢w17f2 *Tn2/5|w2\¢w27f3 *Tn3/5|W3|¢W3)-
ni,no,n3EL
Another immediate implication is that it suffices to bound

D IA(fL * Guys fo * b, f3 % by

weN

uniformly over all functions ¢,, such that q/gwi is L>°- adapted of order -say- 2N and
supported in 5w;.



36 A. BENYI, C. DEMETER, A.R. NAHMOD, C.M. THIELE, R.H. TORRES, AND P. VILLARROYA

By Shannon’s sampling theorem, we can write for each such function q/gwi and each f

frbu =Y AL Orw) Pl
I;

where I; runs through all dyadic intervals of length (16]w;|)~*

and M_..,)¢r, 0, 15 an
L% normalized bump function adapted to I; of order 2N such that ¢y, . is supported
in 8&)2

We then estimate A(f1, fa, f3) by

3
(58) Z Z |A(¢I17w1> ¢12,W2a ¢I37w3)| H | <fza ¢Ii7wi> |
1

we I1,12,13 1=

Next, observe that for each w € Q with width 2% and eccentricity 27% and each
0 <9
‘A((bll,wlv (blg,wzv ¢13,u)3)‘

(5.9) < 2727 (1 4 27k diam (1), I, I3)) T (L4 278 Y yie(T)) 7.

This will follow from Lemma 4.5. Indeed, reasoning as before, we can find £ € R
such that the tube w — &7 is contained in some tube centered at the origin with width
100C527" and eccentricity 27*. Since |£v; — c(w;)| = O(|w;|) for each i, it follows that
M_e (D101 @ OLywn @ b1ws) 18 L2~ adapted to the box I; x Iy x I3. The fact that
w satisfies the requirements (4.7) and (4.8) (and actually all the other symmetric 4
identities) in Remark 4.1 is immediate (see the proof of Lemma 5.3).

Using these estimates we shall restructure the sum in (5.8) and extract the main
terms.

First we shall use symmetry to reduce to the case where the sum runs over all tubes

(510) w = (wl,(Ug,w;;) = (w171 X wig X w272)

such that wy, is the longest side and w is determined by intersection of the tubes
W = w11 X Wig X R e Qg, Ww'=R x Wo 1 X Wao € Ql and W = ws,1 X R x w32 € QQ.

At the expense of replacing the exponent § in (5.9) by a slightly smaller ¢’ it suffices
to consider only those tubes w with a fixed eccentricity 27" and those triples of intervals
for which

(5.11) 2m~t < diam(Iy, I, I3) /1| < 2™

(5.12) 2"~% < diam(ly, I3)/|I|

for some fixed m and prove summable bounds in x and m. Here we use again the
notation |I| := |I1| = |I|.

Next, we shall use the rapid decay in the last factor in (5.9) to argue similarly
to above that one only needs to consider those terms for which this factor is large.
For fixed I3 and I, we choose an interval I; satisfying (5.11) and (5.12), for which
>_;vi¢(1;) is minimal. For any other interval I satisfying (5.11) and (5.12), we note
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that the function M_.«.,)¢r, o, is adapted to I, of order N. The constant of adaption
increases like (1+dist(c(I1),c(Iy))/|I])™, which is offset by the last factor in (5.9) since

Z%’C([j)

J

mlle(f) — ()] < + O(I).

Thus it suffices to consider only fl. We shall write again I, for fl and we shall main-
tain from the above discussion that we are summing over a two parameter family of
intervals I, I, I3 such that I, is determined by /5 and I5. Likewise we may assume /I
is determined by I3 and I;. Note that we cannot do the same for I3, as I3 is potentially
much smaller than /; and [ and there may be many intervals I3 (about 2%) which
maximize the last factor in (5.9), for given I; and Is.

To summarize the above reductions, let 2 denote all tubes as in (5.10), which have
eccentricity 27%. Let Z,,(w) denote the set of all triples (I3, Is, I3) associated with w
as above, satisfying (5.11) and such that both I; and I, are uniquely determined by
the other two intervals. Then it suffices to get uniform bounds in m and x over all
functions ¢y, ., such that M_ ., )¢r, ., is L?- adapted I; of order N, for the following
sum

3

(513) S S Ve TT | (£ )

weQy (I1,12,13)€Tm (w) =1

)

where ¢’ < ¢ will be chosen conveniently (see Theorem 5.5).
It will be convenient to associate with w and (I, I5, I3) as above

(1) For each ¢ = 1,2,3 a dyadic interval w,, of length 27|w;| which contains the

support 8w; of the function QT];

(2) For each i = 1,2,3 a dyadic interval wg, of length 27|w;| which contains w,,.
Note that wr, = wp,.

(3) For each i = 1,2,3 a dyadic interval I, of length |w,,|~! which is contained in
I;.

(4) A dyadic interval I of length 27 x 2™|I;| which contains Iy,l,I3.

It is clear that such intervals exist. There is no deep reason we choose to modify I; to
I, in (3), we only do that so that we have |1, ||wp,| = 1.

These intervals in general might not be standard dyadic intervals. However, we can
choose them to be generalized dyadic intervals. We briefly describe this construction
and refer the reader to [11] for more details. Let ¢ be a large prime and define a
generalized dyadic interval to be one of the form [2"k/q,2"(k/q+ 1)) for integers k and
n. If k is restricted to a fixed residue class modulo ¢, the collection above forms a grid,
in the sense that all intervals of fixed scale form a partition of the real line and any
two intervals in the grid are either disjoint or one contains the other one.

For every interval I , there are q generalized dyadic intervals, which we call covers, of
length strictly between ¢|I| and 2¢|/| (thus the length is a uniquely determined power
of two) which contain I. More precisely, each grid except for possibly one of the ¢ grids
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contains such a cover for I. Therefore, for every collection of less than ¢ intervals, there
is one grid which contains a cover for each interval in the collection.

Using this method, for ¢ large enough we can choose for each w and Iy, I5, I3 the
intervals listed above to belong to one of the ¢ grids. We will work with ¢ = 11. Since
there are only 11 grids, it suffices to consider the sum (5.13) over each grid separately.
For simplicity of notation we shall only discuss the standard dyadic grid, which is one
of the 11 grids. Since we only use the grid properties of the dyadic intervals, our proof
will easily transfer to the case of the other grids.

The above intervals determine rectangles in the phase plane: R; = Ir X wg, and
pi = I, X w,,. We will denote by R the 3-tuple of rectangles (R;, Rs, R3) and will call
it a multi-rectangle. Similarly, p will denote the 3-tuple of tiles (p1, p2, p3), which will
be referred to as a multi-tile.

We discuss the important properties of the triples R and p other than the obvious
containment properties visible in the figure below. First, by a further splitting into
finitely many collections it suffices to assume that each of Ry, Ry, R3 determines the
other two. As all three rectangles have the same spatial interval Iy, it suffices to show
this for the frequency intervals. This in turn follows from the fact that the frequency
intervals have equal side-length and from the easy’ observation that

(5.14) Colwn X why X W) O (7) % 0.
R, ps
Ry P2
Ry
P

Similarly, we can assume that w,, determines both w,, and w,,, i # j € {1,2}. The
fact that w,, determines w,, within finitely many choices follows from the fact that

Cl (wpl X sz) M <7(3)> 7£ 07

a consequence of the special representation w = w’Nw". Note also that w,, determines
wg;, which we have proved to determine wg, = w,;. We must point out however that
wp, only determines w,, within O(2") choices.

"For similar results, see the rank properties in Section 6.1.
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On the spatial side, we observe that the intervals I,, and I, determine I, , this
property being reminiscent of the similar property shared by the intervals I;. This
implies that in the triple (p1, p2, p3) we can assume that p;, p3 vary freely and determine
p2 and also that po, p3 vary freely and determine p;. We recall for comparison the fact
that in the case of x independent kernels K, each p;, [ € {1,2,3} determined uniquely
the other two (See the discussion in the beginning of this section).

The area of any rectangle R; is A = O(2""™). If we incorporate the latest reductions,
we denote by p the family of all multi-tiles p as above. We will also denote by R the
family of all multi-rectangles® R (of fixed area A) associated with triples p € p. For
any fixed triple R, we denote by p(R) the set of all multi-tiles p € p that are contained
in R.

Finally we notice that for any given R € R. there are at most A? multi-tiles p € p(R).
On the other hand, any given p € p determines a unique R € R such that p € p(R).
Let us see this latter point. Given p = (p1,p2,p3) we know that ps determines wg,
which determines both wg, and wg,. On the other hand, both the length and the
position of I are determined by I,,, since x and m are known a priori.

With these notations we may rewrite (5.13) as

(5.15) AN N Il 1\Ip3|1/2H| {fis Ppr)

ReR pep(R)

where we can take 0 < §’ < ¢§ as close to 6 as we want. We will prove bounds for this
sum that are then summable in k and m.

For each measurable subset £/ C R with finite measure we define
X(E)={f:fl<1g ae},
Xo(E)={f:|fI <|E|7Y?1p ae}.
A major subset of a set E is a subset Ey C E such that |Ey| > |E|/2.

Definition 5.4. Let o be an 3-tuple of real numbers and assume o; < 1 for all j €
{1,2,3}. A 3-sublinear form is called of type « if there is a constant C' such that for
each finite measure tuple E = (E1, By, E3), there is an index jo and a major subset

Ej, of Ej, such that for all tuples f = (f1, fo, f3) with f; € X(Ej) for all j # jo and
Jio € X(EJO) we have

3
‘ f17f27f3 | H|Ej‘a]
7j=1

We will work with A(fi, for f5) = S ner Syepr) Tl ol /2 TT1 | (s @) |- Tn the
next section we will prove the following theorem.

8From now, we will stop indexing the dependence of various collections like p and R on s and m.
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Theorem 5.5. Let jo € {1,2,3}. For each « in the triangular region defined by
a1+ g + a3 = 1
1/2 < Ay, Ay < 1, fO?”jl,jQ - {1,2,3} \jo
max(—6, —1/2) < o, <0,
we have that A(f1, f2, f3) is of type a with bound C = O(A®), for some & < §

depending only on .

By choosing then in (5.15) ¢’ > §” we obtain that the original form A is also of
type « in the same regions. Since the convex hull of the three triangular regions in the
above theorem is the region characterized by the restrictions

a1+ g + a3 = 1
max(—d, —1/2) < o;j <min(d +1/2,1), for all 7,
Theorem 2.7 follows then by invoking multilinear interpolation as in [24], [29].

We remark that the case A = 1 in Theorem 5.5 corresponds to the situation when
the form A is associated with an z independent kernel K () (see also the discussion at
the beginning of this section).

Finally, to prove Theorem 5.5 we will assume that
(5.16) R, R € R and |Ig| < |Ir/| implies C3A|Ig| < |Ig|,

at the expense of considering log(C3A) families in scales.

6. THE BOUNDEDNESS OF THE MODEL SUMS

6.1. Rank, trees and sizes. We will prove that if C; is sufficiently large we have the
following:

Rank properties of p
Let p € p(R) be a multi-tile that is associated with a tube w as in (5.10), according to
the procedure described earlier. Let (£1,£2€3) € (7).
(1) (3-ovelapping implies j-lacunary; tile version) If ¢3 € 2w,, then for each j €
{1,2} we have & ¢ Chw,, and & € C5Aw, .

Proof. We will consider? the case j = 2. Recall that w C w” = R x wy; X
waa. If €2 € Chwy,, then this together with & € 2w,, would force & (wa; x
wa o) N {y W) # (), contradicting the construction of w”. On the other hand, by
construction it follows that there is some (£2,€3) € (V)N (way X wa2). Note
that |2 — &3 < C1|wy,|. This implies |£2 — ¢?| < 3503 w,,|. This together with
the fact that 52 € Chwq, implies £ c Cswq . Finally, this together with the
fact that wy; C Aw,, implies €2 € C3Aw,,. O

9For j = 1 one has to use the fact that w C w"” := (w31, R, w32).
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(2) (j-ovelapping implies 3-lacunary) If &7 € 2w, for some j € {1,2} then we have
&3 ¢ Cowy, and &3 € Caw,,.

Proof. A similar argument as for (1) applies here. OJ

(3) (j-ovelapping implies i-lacunary) If £/ € 2w, for some j € {1,2} then for
i =3—j we have ' ¢ Cow,, and &' € Ciwy,.

Proof. If £ € Chw,, then this together with &/ € 2w, forces (¢!, £?) € () N
Cy(wp, X wp, ), contradicting the construction of w’. On the other hand, from the
construction of w’ we know that there is some (£!,€2) € (y®) N Cy(wp, X wWp,).
Since |&7 — &7] < C'|wy,| and & € Cywy,, it follows that & € Chuw,,. O

(4) (3-ovelapping implies j-lacunary; rectangle version) If €3 € 2wg, then for each
J € {1,2} we have {7 ¢ Cowg, and & € Cawp,.

Proof. Similar arguments apply here and for the rest of the properties. O

(5) (j-overlapping implies 3-lacunary; rectangle version) If j € {1,2} and & € 2wp,,
then £ ¢ Cowp, and £ € Cawg,.

(6) (j-overlapping implies i-C'3 overlapping; rectangle version) If 7, j € {1,2,3} and
&7 € 2wp, then &' € Cawg,.

Definition 6.1. Let i € {1,2,3}. An i-tree (T,pr) with top (It,&%), where It is
a dyadic interval, is a collection T C R of multi-rectangles R such that Ir C Iy,
together with a collection pr = Ugper P(R, T) of multi-tiles satisfying p(R, T) C p(R)
and & € 2w, for each R € T and each p € p(R,T).

A O-tree (T,pr) with top (I, &%), where It is a dyadic interval, is a collection
T C R of multi-rectangles R such that Ir C I, together with a collection pt =
Urer P(R, T) of multi-tiles satisfying p(R,T) C p(R) and either

(1) &% € 2wg, for each R € T and £ ¢ 2w,,, &% & 2w, for each p € p(R,T), where
(€%, €2) € (vO®) (this will be referred to as 0'-tree)

or

(2) &% € 2wp, for each R € T and &4 ¢ 2wy, % ¢ 2w, for each p € p(R,T), where
(€4, E8) € (v®) (this will be referred to as 0>-tree).

Given a dyadic interval I and a point & = (€1,€2,£3) € (v), define the saturation

— —

S(1,¢) of the pair (I, &) to the set of all multi-tiles which lie in the union of the maximal
1-tree with top (I, &1), the maximal 2-tree with top (7, £?), the maximal 3-tree with top
(I,&3%), the maximal 0'-tree with top (I,£') and the maximal 0*-tree with top (I, £?).
Note that actually

(6.1) sH=1J U »w.

i=1 Rigle2wp,
IRCI

We state three easy lemmas for future reference.
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Lemma 6.2. If &' € 2wg, for some | € {1,2,3} and Iy C I then p(R) € S(I,€).
Lemma 6.3. If ¢ € 2wg,, I C I and wr, & wr, for some i,j € {1,2,3} then
p(R') C S(1,€).

Proof. We know from rank property (6) that £/ € Cswg,, and from (5.16) we deduce
that &7 € 2w R} The conclusion now follows from the previous lemma. O

The following is an immediate consequence of the rank properties.

Lemma 6.4. Ifi € {0,1,2,3}\ {j}, (T,pr) is an i-tree with top (I, &%) and p € pr
then' & & 2w, and & € C3Aw,,.

Remark 6.1. Lemma 6.4 and (5.16) imply that for each i € {0,1,2,3} \ {j}, each
i-tree (T, pt), each R, R' € T with |Ig| < |Ig/| and each p € p(R,T), p' € p(R',T)
we have wy, Nwy, = 0

For each subcollection p*(R) C p(R) and each | € {1, 2,3} we will denote p;(R) :=
{p1: p € p*(R)}. For the simplicity of notation we will sometimes write T instead of

(T,pT>.

Definition 6.5. Forl € {1,2,3}, the tile size size;; of a collection p* C p of multi-tiles
with respect to a function f; is defined as

<Zpl€pf(R) ‘ <fl7 ¢Pl> |2) 2

sizey (p*) := sup

ReR | Ig|

where p*(R) := p(R) N p*."

Definition 6.6. Fori # j € {1,2,3} and for j € {1,2} and i = 0, the tree size size;;
of a collection p* C p of multi-tiles with respect to a function'® f; is defined as

1/2
. % ZRGT ijepj(R,T) | <f]’ ¢Pj> ‘2
size; ;(p*) 1= sup )
T /|

where the supremum is taken over all i-trees (T, pt) with pr C p*.

10Here 5;}. is the j*" coordinate of the vector 5T € (7y) which is uniquely determined by the coordinate
&h. Tf i # 0, then &4 is the i'" coordinate of this vector, while if i = 0, it is either the first or the
second, depending on whether (T, pr) is a 0'-tree or a 0%-tree.

HWhile a given tile p; may correspond to more multi-tiles p in p(R) or in p*, it will be counted
only once in each summation.

12The size will not be indexed by f;j, the function with respect to which the size is measured will
always be clear from the context.
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We will estimate the model operator associated with each tree (T, pr) by first sum-
ming in the third variable and then applying the Cauchy-Schwartz inequality in the
first two variables. In doing so we recall that p; and ps determine p; uniquely

3
f17f27f3 Z|IR| ! Z |Ip3‘1/2H‘<fi7¢Pi>
i=1

ReT pep(R,T)
SO CHRTC YD o) Y20 D0 ) Y2 D 112 {fs ) |
ReT p1€p1(R,T) p2€p2(R,T) p3€p3(R,T)
<Y HRTEC DD 1) D0 DD ) VR0 D [ (fsetp) )2
ReT p1€P1(R,T) p2€p2(R,T) p3€p3(R,T)

This estimate is refined as follows, depending on the type of tree we are dealing with.
For a 3-tree (T, pr) we write

ZRET Zplepl(RI) | <f1’ ¢P1> |2> 2 <ZRET szepz(&T) | <f2> ¢p2> |2> i

| I | I

% ( Zngpg R,T) |<f37¢p3>| )

Ax(fi, fo, f3) < |1 (

sup
RET | IR|

< |It|size; 3(pr)sizes s(pr)sizes 3(pr).
An identical estimate shows that if (T, pr) is a 0-tree then

Ax(f1, fa, f3) < |Ir|sizero(pr)sizes o(Pr)sizes s(Pr).

For an i-tree with ¢ € {1,2} we write

1/2
ZRGT ijEPj(R7T) | <fj7 ¢pj> |2 ZpZEpZ R,T) ‘ <fw ¢pz>
sup
|[T| ReT |IR|

ZRET ZpaEpa(RT |<f3>¢p3> |2 i
||

Ax(fi, fo, f3) < |7 (

S \IT\sizej7i(pT)81zei7i(pT)size37i(pT).
We thus see that if a collection p* of multi-tiles is organized as a disjoint union F
of trees, p* = U(T pryer P then

(6.2) [Ap+(f1, fo f3)] < ZHSIZGJZ P ).

i=0 j=1 TeF

where for the purpose of keeping the notation symmetric we denote sizes := sizes 3.

This inequality sets up the strategy for the following sections, where we will split p*
into collections which can be organized into trees, with good control over both their
sizes and over the L! norm of the counting function of the tops of the trees.
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6.2. Bessel type inequalities. For each j € {1,2,3}, each R € R and each p*(R) C
p(R) we will use the notation'®

T}é,p*(R)(f) = Z <f7 ¢pj>¢pj

pj€p;(R)
St (F) = D 1{f.dn) )2
p;€EP;(R)

If R belongs to a tree (T, pr) and p*(R) = p(R, T), then the notation Tfé’T(f), Sﬁ%,T(f)
will be preferred.
An immediate consequence of Lemma 4.1 is the fact that

(63) 175y (Dl = Sy (F) S 11
for each f € L?, each R and each p*(R) C p(R). Similarly, due to Remark 6.1, for
each i € {0,1,2,3}, each j € {1,2,3} \ {i} and each i-tree (T, pt)
(6.4) D NTheDlla~ D Sk(f) SNl
RET RET

Definition 6.7. (M-separated rectangles) We say that a family R* of rectangles R =
Ir X wg is M-separated if for any R, R € R*, R # R', we have that (MIr X wr) N
(M[R/ X wR/) =0.

Lemma 6.8. Let R* be a finite family of pairwise disjoint rectangles. Then, for each
M > 1 we can find a subfamily R C R* that is M-separated and satisfies

Z [Ir| < 3MZ [ IR|.
ReR~ ReR

Proof. Fix M > 1 and define Ry; = MIr X wr. We select recursively rectangles
R € R* with maximal |Ig| and with the property that Ry, N R}, = () for all previously
selected rectangles R'. When this procedure ends, we get a family of rectangles R =
{R'...,R"} C R*. We now define

R'={ReR":RyNRy #0, RunRy =0 for k <i}.
Then it is clear that R is M-separated and that

R" = O R’
i=1
thus

2 el =2 > |l
ReR* i=1 ReR?
Moreover, |Ir| < |Igi| for any R € R'. Otherwise, if |Ig| > |Igi|, by the maximality
condition of length and the fact that Ry, N R%, = () for all k < i, R should have been

13When no confusion can arise, we will suppress the dependence on p*(R) of TIJ%( f) and Sf%( f).
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chosen instead R’. This together with the observation that MIr N MIg: # () for each
R € R' implies that Igr C 3MIg:. Thus,
(6.5) U Ir c3MIg.

ReR?

On the other hand for each R, R' € R! we know that wg C wr Nwgr # 0, which
together with R N R’ = () implies that Iz N Ix = (). This together with (6.5) implies

that .
> IRl <3MY Ip| =3M > |Ix].

ReR* =1 Reﬁ

Definition 6.9. Let j € {1,2,3}.
(1) We say that two trees (T, pr) and (T, px) are disjoint if T NT' = ().
(2) We say that two trees (T, prt) and (T, p1) with tops (It,&r) and (I, &) are
j-strongly disjoint if they are disjoint and satisfy the following:
pr € p(R7 T); p/ S p(R/7 T,)i R € T7 R' € Tl; Wp; - Wp;_, then IR’ N ]T = @

=

A family of trees is said to consist of j-strongly disjoint trees if any two trees in the
family are j-strongly disjoint.

The following lemma will be the main tool in dealing with the tile sizes.

Lemma 6.10. Let j € {1,2,3}, f € L? and A > 0. Let R* C R be a family of multi-
rectangles, each of which is associated with a collection of multi-tiles p*(R) C p(R).
Assume that the rectangles (R;)rer~ are pairwise disjoint.

Assume also that for each R € R* we have

(6.6) St ooy () = A IR|'?.
Then ,
> Ikl S AV £l5.

ReR*

Proof. To simplify notation we will drop the j dependence of the various operators and
will index them only by R. Since the rectangles R; are pairwise disjoint, by Lemma
6.8 it suffices to assume that they are A°-separated with e = —2=, and to prove that

N2’
Z [Tr] S A2 £115-

ReR*
We assume that || f||2 = 1. We may also assume that for each R € R*

(6.7) MIR[V? < Sr(f) < 2\|Ig|"2.

To see this latter assumption, one can split R* into subcollections R* = | J,~, R}, such

that for each R € R} we have 28A[Ig|'/? < Sgr(f) < 2FF1\|Ig|*/2. In other words, each
subcollection satisfies (6.7) with X replaced by 2%\, and applying the estimate to each
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subcollection and summing a geometric series will prove the general form of the lemma.
The proof that follows is a classical instance of the TT™* argument.
We have

D ITRNIE= D (TR() Ta()

ReR* ReR*
=Y (TRTH(). F)
ReR*
<[ 5= nair)],
ReR*

which due to (6.3) implies

(3 8alh?) 5 Y TwThlh). TaTilh)

ReR~ R,R'€R*

= S (T (). TR TTS(F))

R,R'cR*
< > TR (DNTE TRl -2 Tr(f)l2-

R,R'€R*
Using this, hypothesis (6.7) and again (6.3) we get
2
(30 Wal) £ X Ual Pl T5 Tl o
ReR~ R,R'€R*

By symmetry and the fact that Tk Tr = 0 if wg, N WR, = () we have

( > ‘]R‘>2 S

ReR*
©68)  A(D HallTiTele-z+ >0 Y a2 In Y T Thll>2)
ReR* RER* R'€Fireq(R)

where .’Ffrcq<R) = {R/ e R*: 7A R, |IR/| < ‘[R
now that the term in (6.8) is O(A™2 Yz g
the operator norms || 17 Tr||2—2-

The diagonal term is immediately seen to be O(A\™2 3" o r. |Ig|), due to (6.3), since
| T%Trll2—2 < || Tr|l3_2 S 1. To estimate the off diagonal, we first note that

(ThTr(f), 9)| = (Tr(f), Tr(9))|
< YD Kb )y D)

p;€P; (R) pjep; (R)

(6.9) < A* max (b, &) [1f]2llg]l2-
pj Gpj )
P € pj(R)

W, Nwr, # 0}. Tt suffices to prove

Ir|). To achieve this, we will first estimate
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From Lemma 4.1 we know the bound

|[p}|
(6.10) (6n,001)1 5 (77

If R € Fieq(R), it follows that A°Tp N A°Ip = () since R, R’ are A separated. This
implies that

)Wt 18, e, — eh )

J

(6:11) 1 [T, M eldy,) = el = max{1+ |Te| e(Ir) — c(Ip)], A/2}.
We use this and (6.10) to argue that
[T |\ 12 _ 2 peto
[0 o)l S (1) (U Ul ell) = el AN
7 1R
Thus
T\ 1/2
©12)  [ZpTrlana $ 40D (N e et - et

We use this inequality to bound the sum corresponding to the off diagonal term in
(6.8) by

(6.13) CA =N N |Ip| (1 + | Inl M e(Tr) — c(Ir)) 2.
ReR* R,Effrcq(R)

Now we fix R € R*. We note that if R # R"” and R', R" € Fpyeq(R) then IpNIgy = .
With these observations we may write

Y Uel+ el ellr) —cIp)) 2SS ) /IXIR(CE)le“

'€ Fireq(R) R'€ Fireq(R)

Finally, we get

(30 17al) S A2( 3 Ml + 4 S 1pl) 472 Y |l

ReR* ReR* ReR* ReR*

O

Definition 6.11. (M-separated tiles in a tree) We say that a tree (T,pt) with top
(It,&1) is M-separated if M1z C It for each R € T.

Lemma 6.12. Let i € {0,1,2,3}\ {j}, M > 1, f € L?> and A\ > 0. Let F be a
collection of j-strongly disjoint'* i-trees (T,pr) satisfying for each T € F and each

1The lemma can be formulated without involving strongly disjointness in either the hypothesis or
the conclusion; we choose this formulation since this is how the lemma will be applied.
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ReT
(6.14) Str(f) S 1072M 2N 1|12
(6.15) NIzl /A <) Sha(f)? < N|Ixl.
ReET
Assume also that for each subtree T' C T € F with top (I, &r) we have
(6.16) > Shp(f)? < NI

ReT'

Then for each T € F we can find a collection T C T such that the trees {(T,pg :=
Uret P(R, T)) : T € F} (understood as having the same tops as the original trees)
with p(R, T) = p(R, T) for each R € T, are M-separated, j-strongly disjoint and they
satisfy
Sl < 3 Sha9)? < Xl
ReT

Proof. To get the new trees we proceed by removing those tiles in a tree that are either
too close to the edges of the tree top-tile or too close in scale to it. More precisely, for
any i-tree T € F we let I(T) = It and we define the subcollections

Ty ={ReT: Iz <I(T)}
T,={ReT:Iz>I(T)}
Ty ={ReT:|Ig| > (100M) Iy|}
where Ir < I(T) means sup{z : z € I} <inf{z : 2 € I(T)}. Then, we define
T=T)\(T;UT,UTs).
With these definitions we have by (6.16)
S Sh()? < Wl < g Wi

ReTy
and the same for T, while by (6.14)

. 1
E SE(f)? <107 M TN E [Ir| < —N?|Ir].
10
ReT3 ReTs

It easily follows that each tree T is M-separated. The fact that the new collection of
trees is j-strongly disjoint is inherited from the initial collection. Finally,

DOSRUP =Y SR = Y0 D SR’

RGT ReT 1=1,2,3 ReT;

1 2 1
> N2 Ip| — — N2 Ip| > —N?|Ip).
> | It 10 |T|_20 ||
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Definition 6.13. (Rectangles M-separated in scales) We say that a collection R* of
multi-rectangles is M-separated in scales if R # R' € R* and |Ig| = |Ir/| imply that
diSt(C(IR), C(IR/)) > M‘IR|

We are now ready to prove the analog of Lemma 6.10 for the case when the trees
may consist of more than just one multi-rectangle. This lemma will be the main tool
in dealing with the tree sizes.

Lemma 6.14. Let i € {0,1,2,3}\ {j}, M > 1, f € L? and A\ > 0. Let R* be a
collection of multi-rectangles which is M-separated in scales. Assume we also have a
collection F of j-strongly disjoint i-trees (T, pr) with Upcz T = R* satisfying for each
T € F and each R € T

(6.17) Shr(f) S1072M 2N 15|12
(6.18) NlInl /A< ) Sha(f) < Xl
RET
Assume also that for each subtree T' C T € F with top (I, &r) we have
(6.19) D Shrll)? < Mol
RET/

Then we have
> x| S (1 4+ A2MNA? £3
TeF

Proof. We will drop the j and T dependence of various operators. By normalizing we
can assume that ||f]ls = 1.

Moreover, by Lemma 6.12 we can assume the trees in F are M-separated, with some
loss in the constants from (6.18) and (6.19). Indeed, the new trees fabricated by the
procedure in Lemma 6.12 have the same tops as the old ones so that the quantity
> rer [IT| does not change.

The proof is another TT™* argument, that follows along the lines of the one in Lemma
6.10. Due to (6.18) we get as before

2
(6.20) ()‘2Z|[T|> S 0 TNl T Talla—2l T2
TeF R,R'eR*
Ly 1= gl
(6.21) + > T Dl TaTrlla—2 I Tr(f)]2:
R,R'eR*
Ly |<I1]

We estimate each term separately. By Cauchy-Schwartz, the first sum can be
bounded by

(6.22) S Y (UTaDIE + ITw (DIDITAT s

R,R'eR*
I |=1TR)
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By using (6.9) and the fact that whenever p € p(R), p’ € p(R’) we have
|1y, |~ e(Ty,) — e)| = |Ir| ™ e(Ir) — c(Ir)].

we can derive similar to (6.12)
T Trlla—a S A*(1+ [Ir] ™ |e(Ir) — c(Ir)]) ™",

whenever |Ir/| = |Ig|. By using this inequality in the case R’ # R and the fact that
| T3 TR]2—2 S 1, the term in (6.22) can further be bounded by

(6.23) > NTrHIBA+ D A1+ el e(r) — c(Ia))) ™).
ReR* R'€R*\R
[ prl=I1R]
WR=Wp!

Finally, using the M- separatedness in scales, the term in (6.23) (and thus the term
n (6.20)) is bounded by

S O ITR(HIZA+ A2MN) S N1+ A2MN) D I
ReR* TeF
We will next concentrate on proving similar bounds for the term in (6.21). We start
with a few observations. Fix R and T such that R € T and denote

R*(R) = {R € R": |In| < |In|, T}, Tr % O}.

The first point we make is that if R € R*(R) then R’ ¢ T. This is an immediate
consequence of Remark 6.1. Using this and the j-strongly disjointness we see that
R’ € R*(R) implies Ir N It = 0.

Secondly, we observe that R’ # R” € R*(R) implies that Iz N Ir: = (). To prove
this, we first note that the definition of R*(R) guarantees the existence of T/, T” € F,
pM p® ¢ p(R,T) and p® € p(R,T), pY € p(R",T") such that wo & we

J J

and w ) Cw - Due to (5.16) and due to the grid structure it follows that wg,
Wy ﬂw 0 In partlcular Wy Nw 0 # (). We distinguish two cases. If |w @ = |w (4)\
then clearly InNIgn =10, since otherw1se we would get R’ = R". If [w_ (3)| <|w, (4)| then

we first argue as above using Remark 6.1 that T/ # T”, and then usmg the j- strongly
disjointness that Ir» N It = (). We conclude again that Ip N gy = (.

We next estimate ||77Tr||2—2 for R € R*(R). Note that due to the first observation
above and the M-separatedness of the trees we have MIr N I = (). By estimating
like in (6.9) and (6.11) we then get

[T |

T Tall A2(
H R RH2 2~ |[|

)" (0 Ual el ) — el

< a2 (RN ) — et
S T ) (L el lelln) = ellm)l ™

We use (6.17) to estimate
T (F)lle S 1Sm(f)lle S MV2A LR M2
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and similarly for R. If we take into account all these observations, we can bound the
term in (6.21) by

AMPNNN N el (U | Tk| M elTR) = e(Tr))

TeF RET R'eR*(R)

<Y S Y / (1 + [Tn|" |e(In) — 2])~*da

TeF RET R'eR*(R)

< AP WZZ/ (U4 1 Txl eI — )" de
TeF ReT

SAMPTNNEY N Lg|(1+ [ dist(e(1g), I7)) 72
TeF ReT

SAMENNY I,
TeF

U

6.3. The Peeling Lemma. The following lemma will provide a decomposition of the
multi-tiles in collections with good control over various sizes.

Lemma 6.15. Let 1 € {0,1,2,3}, j € {1,2,3} and f € L?. Let p* C p be a finite
collection of multi-tiles and let R* C R be a finite collection of multi-rectangles such
that each p € p* belongs to some R € R*. We assume that the collection R* of
multi-rectangles is M -separated into scales with M = ANz We also assume that
size;;(p*) < X. Then there is a collection F of trees (T, pr) with pt C p* such that

> x| S AV 13

TeF

size; ; (p* - U pT> < \/2.

TeF

Proof. We first describe the proof in the case we deal with tree sizes (i # j), which
practically also contains the proof for the much simpler case of tile sizes. This will be
briefly mentioned in the end of the proof.

First we eliminate all the multi-rectangles which have big size;;,. We do that in
order to set the stage for an application of Lemma 6.14. Consider the collection Fy of
all singleton i-trees (R, p*(R,&)) with top (Ig,&), for some R € R*, £ € R and some
p*(R, &) C p*(R), such that

St pe ey (f) > 1072 M 2N I |2,

Note that a given R may appear in more than just one pair (R, p *(R, €)). Define Fy
to be the collection of all R that contribute to Fy, that is (R, p*(R,{y)) € Fo for some

3
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Start with F; := () and perform the following algorithm. Select some R € Fyg, with
the additional property that Iz is maximal with respect to inclusion, among all such
R. Tt does not matter which one is selected, if there is more than one R that qualifies
to be selected. Set Fy := F; U{R}.

Define the vector 5 r € (7) as the one uniquely determined by the coordinate £%: if
i # 0, then & is the i coordinate of this vector, while if i = 0, it is either the first or
the second coordinate, depending on whether (R, p*(R,&)) is a 0'-tree or a 0*-tree.

Define Fp := {R' € Foo : Ry N R; # 0}. Set Foo := Foo \ Fr and restart the
algorithm.

Due to the maximality of Iy it follows that Ir C I for each R € Fg. Let us observe
next that B

U p*(R') C S(Ig, &r)-
R'€Fr
This follows from Lemma 6.2 if " = R, and from Lemma 6.3 if R’ # R. From (6.1)
we deduce that (g, P*(R') can be split into the union of five trees, each of which
with top interval Ig.
It suffices to prove that

_2 _
> Hrl S AT M| f3.

ReFoo

But this follows immediately from Lemma 6.10, since the rectangles (R;)ger, are
pairwise disjoint. This ends the first stage of the construction.

In the second stage of the construction we perform the following algorithm
Step 0: Initialize po := p* \ Uper, S(Ig, €r), fi(l) =0, S\ =0, .7:2-(2) =0, 8% =0.
Step 1: Select an i-tree (T, pr) with top (I, &%), T € R* and pr C po such that the
following requirements are satisfied

(i) (T, pr) is the maximal tree with the given top (I1,&%k) that can be constructed
out of the multi-tiles that are available.

(i) ¥ per Sho(f)? > LX) L]

(iii) & < wy, for each' p € pr

(iv) & is maximal over all the trees that satisfy (i), (i) and (iii) above.
If no such tree can be found then go to Step 5.
Step 2: Put the tree (T, pr) in the collection fi(l) and the multi-tiles S(I'r, £1) in S
Step 3: Upgrade pg := po \ S(Ut,&T)
Step 4: Go to Step 1
Step 5: Select an i-tree (T, pr) with top (I, &%), T € R* and pr C pg such that the
following requirements are satisfied

(i) (T, pr) is the maximal tree with the given top (I,&k) that can be constructed
out of the multi-tiles that are available.

(il) Yger Sha(f)? = gX|x|

15Recall that &r € () is the vector uniquely determined by the coordinate &4, as in Stage 1.
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(iii) & > wy, for each p € pr

(iv) &, is minimal over all the trees that satisfy (i), (ii) and (iii) above.
If no such tree can be found then go to Step 9.
Step 6: Put the tree (T, pr) in the collection ﬂ(z) and the multi-tiles S(Ir, &) in S&
Step 7: Upgrade pg := po \Sﬁ(
Step 8: Go to Step 5
Step 9: Stop. The algorithm is over.

The first part of Lemma 6.4 easily implies that if py denotes the value after the
algorithm above ends, then size;;(pg) < A/2. It suffices now to prove that

> x| S AMEVA £
TerMur?

This will follow from Lemma 6.14 once we prove that both ]—"i(l) and ]—"Z-(Z) consist of

j-strongly disjoint trees. It suffices to prove this for ‘7_-1'(1).

We verify the second requirement of j-strongly disjointness. Assume for contradiction
that there are two distinct trees (T, prt), (T, pr) € fi(l) and Re T, R e T pe€
p(R,T), p' € p(R,T) with w,, C wy, and Ig, € Ir. By using Lemma 6.4, (5.16) and

(iii) in Step 1 of the construction of both (T, pr) and (T', pr/), we get that & > &
Thus, by (iv) in Step 1 we know (T, pr) was selected before (T, p1).
On the other hand, by the grid properties we know that wgr, C WRY - We can then

invoke Lemma 6.3 with I := It to conclude that p’ € S(IT,gT). But then it is clear
that p’ was eliminated before the selection of the tree T’, giving rise to a contradiction.

We now verify the first requirement in the definition of j-strongly disjointness. As-
sume by contradiction that R € TNT’ for some T, T’ € ]-"Z-(l), and assume without loss
of generality that T was selected before T'. But then, by Lemma 6.2 with I = It it
follows that p(R) € S(Ir,&r). This means the whole p(R) was eliminated before the
selection of the tree T', giving rise to a contradiction.

Note that the first stage of this proof is essentially what needs to be done when
dealing with tile sizes (i = j). Precisely, at each step of the selection algorithm we
search for singleton j-trees (R, p*(R, %)) with top (Ig, &%) such that

j 1/2

Sg%,p*(R,gg) > M\ Ig|Y2,
and such that Iy is maximal with respect to inclusion. We eliminate the multi-tiles
S(I R,S}) from p*. Let Fyy be the collection of the selected multi-rectangles R. The

fact that
> el S AL
ReFoo

is an immediate consequence of Lemma 6.10 and of the fact that the rectangles R; with
R € Fyo are pairwise disjoint.

As a final observation, we note that -due to (6.1)- at each stage in the Peeling Lemma
we eliminate with each multi-tile p € p(R) all the multi-tiles in p(R). O
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6.4. Size estimates. In this section we will see how to estimate various sizes. Before
we do so, we recall two lemmata that will be used in the sequel with the words ‘quar-
tiles” or ‘tri-tiles’ replaced by ‘multi-tiles’.

Lemma A (Lemma 4.2 in [26] pg. 410)
Let P be a finite collection of quartiles, j = 1,2,3 and let {ap,}pcp be a sequence of
complex numbers. Then

1
> lap? ~ SUprep [T Z| P|2 y )2 [l 1)

PeT PeT

sup(
TeP | T|

where T ranges over all trees in P which are i-trees for some i # j.
Lemma B (Lemma 6.8 in [27] pg. 443)

Let j =1,2,3, E; be a set of finite measure, f; be a function in X (E;), and let P be
a finite collection of tri-tiles. Then we have

g X!
Z| f]7¢P ~ SupPEPM

sup (
PeT [T |

TeP \IT\

for all M with implicit constant depending on M.

We can now state our lemmas.

Lemma 6.16. Let f € X(E) and 1 <p < oo. For each R € R, £ € R and | we have

1/2

- 1
|IR‘ ! Z ‘<f7¢pl>|2 5 |[ |1/pH E'XIR 1“117

pIEP(R)
EEwpl

For each i € {0,1,2,3}\ {j} and each i-tree (T, pr) with top (It,&L) we have

ZRGT ijepj(R,T) | <f7 ¢Pj> |2
| I7]

1
(624) ) < CA SU.p u—|1/ ||1EXI 1||p7

where
It = {I dyadic: Ir C I C It for some R € T},

Cy=O(AYV?) ifi € {0,3} and j € {1,2}, and C4 = O(1) ifi € {1,2}.

Proof. This is a version of Lemma B above. Here we prove only the cases that are a bit
different from the case in Lemma B. Namely we will only prove the second part of our
lemma, and only in the case when i = 3 and (i = 0,j € {1,2}). These are the “worst
case scenarios” because of the presence of A in the corresponding type of lacunarity.
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Define ag, = (ijepj(R,T) | (f, &p,) |*)!/2. We first focus on the case i = 3. We note
that

af{jSA sup | (f, &, ) |

peP(R,T)

=A sup |<f*j—ij7¢pj>|2

pEP(R,T)

S A|lg| inf ME(f* 1., )(z).
z€elR J

By Lemma A above, it suffices'® to show that for each subtree T’ of T

1/2
X1 _
(6.25) | ( a?zju—ﬁ’) Iy S AV 113
ReT' 7|

To simplify notation, we will continue to write T rather than T’. and by writing
f = fi+ fo with f; = flof,, it further suffices to prove (6.25) for both f, and fo.
In the case of f, we use the decay of ¢, to write

e\ 72
ag; < AY? |[T|_1/2/ XD
|I] E

which by summation and Hélder’s inequality proves (6.25).
To deal with f; we apply the Fefferman-Stein inequality first and then invoke the
Littlewood-Paley theory and the rank property (4) to get

1/2
XI 5
| af |y SAYIO D MI(fy Lo ) (@)l
RET | 7] !

ReT

SAN D (e Lo @)
ReT

< AV2|[1g],,

where M;(f) denotes the Hardy-Littlewood maximal function of f.

Let us now briefly see the case i = 0. The argument is very similar to above. Denote
by 5% the j* component of the vector ET associated with &4 as before. By modulation
symmetry it suffices to assume that éff = 0. For each R € T and each p € p(R,T) let
w(p) be an interval of the form [e2¥, €25+3] (e € {—1,1}, k € Z) such that w,, C w(p).
This is possible due to Lemma 6.4. We will estimate as before the term corresponding
to fa, and then write for f;

ap, S A sup |Ig| inf MP(fi 1) (2).
pep(R) 2€lr

16This reduction is made possible by and explains the presence of the collection Zr in (6.24).
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By Lemma 6.4 and (5.16) we know that for each interval w := [e2¥ €2*3] there is at
most one scale |Ig| such that w(p) = w. The proof follows as in the previous case, by
applying the Fefferman-Stein inequality and the Littlewood-Paley theory. O
Lemma 6.17. For each R € R, £ € R and | we have
1/2
_ 1 _
[1g|™! Z | (f, dp) P S WHJCX?; [l
PLEin(R)
Pl

For each i-tree (T, pr) with i € {0,1,2,3}\ {j} we have
1/2
<ZR€T ijEPj(R,T) ‘ <f7 ¢pj> ‘2> < 1

| I ~ | Ix|l/?

Proof. Use (6.3) and (6.4) with f := fxﬁ_Q and ¢, = gbijI_TN”, and note that
(M_C(ij)¢pj) XI_TN *2 is L? adapted of order 2 to I,; and has the same frequency support
as M—C(ij)gbpj' u

1 x7 2l2-

By interpolating between the previous two lemmas we get

Corollary 6.18. Let f € X(E) and1 <p <2 and e > 0. For each R € R, £ € R we

have
1/2

— 1 —
IRI™H Y (o) P S Wﬂlmﬁ, Il

prEP(R)
EEwpl

N-4
< (supxz,(2)) 7 (inf My(1g)(z))".
zcE IEGIR

For each i-tree (T, pr) with i € {0,1,2,3}\ {j} we have

ZRGT ijepj(R,T) ‘ <f7 ¢pj> |2 V2
| Ir|

N-2
1l

1
< Csup ——||1
~ IEII?r \IW”H X

N—4
< C(sup xs(x)) 7 (sup inf Ml(lE)(x))l/p,
IEIET Ielr xzel
xE

where C = A2 if i € {0,3} and j € {1,2}, and C =1 ifi € {1,2}.

6.5. Proof of Theorem 5.5. We may assume R is finite, and get bounds independent
of R. At the expense of losing a factor of A9() in the bounds, it suffices to assume
that the collection R of multi-rectangles is M-separated into scales with M = A=z,
Since N can be taken arbitrarily large, all the factors of the form A0 contributing
to various bounds may and will be tolerated.
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By scaling invariance we may assume that |E; | = 1. Define

3
Q= J{z: Mi(1g,)(z) > 100|E;}
j=1
and Ej, := Ej, \ , and note that |Ej; | > S| Ejl-
Let f; € Xo(E;), j # jo and fj, € Xo(E),). All sizes size;; are understood with
respect to f;. We need to show that for some 6” < 0

(6.26) [ACfrs fo, fa)| S A” | B0 [ Ea| 2| B3],
where v; == a; — % We note that due to our restrictions, we have that 0 < v;,,7v;, < %
and 7vj, + 75, = —aj, < 3. Thus we can find 0 < 8, 8> < 5 sufficiently close to 3 such

that a;, :zl—}?—f >0, aj, ::1—’2—'22 >0 and aj, :=2 —a;, —aj, € (0,1).
We shall make the assumption that either
(1) IrN (R\ Q) # 0 for all'” R € R, or

(2) Ig = I for all R € R, for some (fixed) dyadic I C Q with
dist(I,R\ Q)
1|

and prove (6.26) for both case (1) and (2), with an additional multiplicative factor of
27!|I] in the bound, in case (2). If we can prove these special cases with the indicated
gain, the general case follows by summation in [ and I, since || < 1. We present the
argument for case (1), and then will indicate how to modify it for case (2).

Define pj,, pj, € (1,2) such that ; = ﬁ — %, [ = ﬁ — % and define p;, = 2. Note
1 2

(6.27) 2b <1+ < 21 for some (fixed) [ > 0,

that by Corollary 6.18 it easily follows that for each € > 0
(6.28) max size;, ;(p) < | B, | AT
(6.29) max sizes, ;(p) < [Bj|™ AT
(6.30) max sizej, ;(p) < 1.

Fix 7 € {1,2,3}. We successively use the Pealing Lemma 6.15, simultaneously for each
i €{0,1,2,3}, to decompose p = |, sizey.i (P) p,(f ) such that p,(f ) consists of the union

k=—o00

of a family f,gj) of trees (T, pr), p,(j) = UTef(j) pr, satisfying
k

(6.31) max sizej,i(p,ij)) < 9k
(6.32) 7 |Ip| S A2
Ter

1"The collection of multi-tiles is also appropriately restricted.
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We get

3
ACf fa ) <) Z IIR\_IUPSII/QH|<fja¢pj>\

where we implicitly assume that

2k < maxsize;;(p).
(2

By symmetry we may restrict ourselves to the case k;, = max; k;, for some j, €
{1,2,3}. We can further estimate the sum above by

(6.33) Z Z Z [ r|” I‘IP3|1/2H| iy &)1,

kik2.ks (T pp )e]—'(“) PEPT

where pr := pt N p(]) p,gj/), J,j e {1,2 3} \ j«. Note that T gets partitioned by

the intersection with various trees from Fk and F, (J ~ where {j1, 52} = {1,2,3}\ J..
By the final observation in the proof of the Peehng Lemma two different such trees in
some JF (J * 1 € {1,2}, will not share any multi-rectangle. It follows that we have the

=y T

reR(T)

Pr = U pT,

reR(T)

followmg natural partition

where (T, pr,) is a subtree of (T, pr) which arises by an intersection, as described
above. Due to the elimination of the saturations S(I1/, &) in Step 2 and Step 6 of
the algorithm in the Peeling Lemma (here T' is a generic tree in Fj (] “ole{1,2}), it

easily follows that the trees (T, pr,) can be assigned tops It, C I Wthh are pairwise
disjoint for r € R(T). In particular,

> | < |-

reR(T)

We also note that each subtree (T,,pr,) satisfies max; size;;(pr,) < 2% for each
j €{1,2,3}. Using these observations and then invoking (6.2) and (6.32) with j = 7j,,
we may estimate (6.33) by

Z Z Z Z |[R| 1|[p3|1/2H| f]aﬁbpj < Z Z 2kl+l€2+kg|[T|

k1kz2.k3 (p, PT)E}'(J*) reR(T) pEpPT, kiko.ks (7 ppye )
J*
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Z Z 2k‘1+k‘2+k‘32—2k‘j* < Z 2k1(1—a1)2k2(1—a2)2k3(1—a3)

kl,kg,kg (T7PT)€}—£J:*) klyk27k3
WES

where a; have been defined in the beginning of the argument. Finally, by invoking
(6.28) - (6.30) we can further estimate the above by

Z 2k1(1—a1)2k2(1—a2)2k3(1—a3)(|Ej1|61A51+e)1—a1(|Ej2|62Aﬁz+e)l—a2
k1,k2,k3<0
SB[ B A0 S By [ | By |72 A0 ™ %0,

This ends the proof in case (1), since a;, > —0. To deal with case (2) we make the
following modifications. Redefine f; := f;x% and Gp; = Py, X2, and note that the new
functions f; have the same properties as the old ones. Moreover (M_C(ij)qﬁpj)xff is
L? adapted of order N — 2 to I,; and has the same frequency support as M_C(ij)qbpj.

Then run the same argument as in case (1). As we said earlier, we expect the presence
of |I| and 27! in the bound for (6.26). The presence of |I| is explained by the localized
estimate

I1£513 S 111t | B~ My (1, ) ()

which becomes effective in the application of the Pealing Lemma in (6.32). The decay
in [ is due to the classical estimates

inf My(1p,)(x) S 2 inf, Mi(1g,)() £ 2,
S

e2l+1y

sup xf(x) <27
:BEE]‘O

which become effective in the application of Corollary 6.18 in estimating sizes.
7. THE GENERAL CASE: MODULATION INVARIANT PARAPRODUCTS

Given any function f in BMO, we shall construct a trilinear form A satisfying the
bounds in the conclusion of Theorem 2.7 (and thus also its assumptions) and also

A1) =f
AL, 1) =0
AL L1) =0

Such form and its symmetric counterparts under permutation of the three arguments
will be called modulation invariant paraproducts. By subtracting three paraproducts
we can reduce every trilinear Calderén-Zygmund form as in Theorem 2.7 to another
one satisfying the special cancellation conditions A(1,1,.) = A(1,.,1) = A(,,1,1) = 0.
Thus the construction of the paraproduct will ﬁnlsh the proof of Theorem 2.7.

Define ¢1, ¢, ¢3 such that gbl = gbg = & and qbg = T10® + 7_10®, where ® was
introduced in (3.1). Consider

_ /qsl(;g + (81 — B3)t)da(x + (B2 — B3)t)d3(x) dt
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By using Fourier transforms it follows immediately that v is a non zero Schwartz
function. The function

(7.1) P1(x + (Br — Bs)t)pa(x + (B2 — B3)t)ps(x)

is easily seen to have zero integral in = for each ¢t. Hence v itself has mean zero.
By Calderén’s reproducing formula, we have (with some constant c)

+oo

d
fee|  prosud

0

This well-know formula in L? also extends to distributions modulo polynomials pro-

vided @ vanishes in a neighborhood of the origin. In particular, for f in BMO the
formula holds in the sense

1/e
fotime [ fevirn ]

at least in the distributional sense when tested against bump functions with mean zero.
Defining

Yin(z) =272 (27 e — n),

a simple change of coordinates gives (with a new constant c)

(7.2) f= lim c/k< / (fy Vo) Vpn die dn

K——+00

with the equality holding in the sense of distributions when tested again functions with
mean zero.
If we define ¢; 1, by translation and dilation in the analogous manner, then we have

Y /¢1kn$+(51 B3)t) P2 km (7 + (B2 — B3)t) D3 kn() di

Set
Ckn = C <f7 z/}k,n>
Then for each x € R and each f; € S(R) we define

3
A,i(fl, f2, fg) = /|;£SH /Rl /R /Rl Ck,n L];Jl: fz(l’ + ﬁit)ﬂsak,n(l' + ﬁzt) dx dt dn dk

(7.3) _ /R /R [ 7+ Bt o ),

3
KH(ZL', t) = / / Ck,n H ¢i7k,n($ + ﬁzt) dn dk‘
|k[<k JR i=1
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Since f is in BMO, we have that |c;,,| < 2%/2 (this is a particular instance of (7.5)).
By discretizing the integral representing K, we can write it as an average over [0, 1]
of sums of the form

3
Koz, t)= > e[ dule+6t),
2—R<|I|<2R i=1
I dyadic
with ¢; r being L?-adapted to I and |c;| < |1 |'/2. Tt is now an easy exercise to conclude
that each K, satisfies (2.1) and (2.2) with 6 = 1 and with uniform constants Cj; =

O(1). Moreover, K, is locally integrable since in particular |K,(z, )| < min{2", |t|~ 1}
These facts will easily prove that the integral in (7.3) is indeed convergent for arbitrary
Schwartz functions.

Let now fi, fa, f3 be three bump functions L?- adapted of order 2 to some interval
J. We next prove an inequality that will justify some of our claims. Note first that for
each z, fo(x + (B2 — B1)t) fs(x + (B3 — B1)t) is L?- adapted of order 2 (as a function of
t) to some interval of size similar to |.J| with implicit constant O(|.J|~!/2). Similarly,
Go.1(x+ (B — P1)t)ds.1(x + (B3 — B1)t) is L?- adapted of order 2 to some interval of size
similar to |/| with implicit constant O(|I|~'/2). Moreover, this latter function also has
mean zero with respect to t. By applying (4.2) to these functions and (4.1) to f; and
¢1,1 we conclude that

> el [ filz + Bit)bir(x + Bit) | dadt
I dyadic ' // H '
= |CI| /fl Jor1(z /[Hfz z+( ))¢z’,1(1'+(5z’—ﬁ1)t)] dtdz| <
I dyadic
e 1N (1Y <
3l s ) sty min (Y (Y 5 e
I dyadic

Define now for each f; € S(R)
Alfisfo fo) = lm A(frs foo fo).

Since each Schwartz function is adapted to the unit interval centered at the origin,
the above computations show that the above limit exists. Moreover, due to the earlier
estimates for K, the form A is associated with a kernel K satisfying (2.1) and (2.2)
with 6 = 1.

Since the function

G1(w)p2(x + (B2 — B1)t)d3(x + (B3 — B1)t)
has mean zero in t for every fixed x, it is easy to verify using the kernel representation
and the definition of A.(.,1,1) that A.(.,1,1) = 0. Then, by invoking (3.4) and (3.5)
we conclude that A(.,1,1) = 0. Likewise we see A(1,.,1) = 0.
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To see that A(1,1,.) = f, we replace the integration variable x by y = = + (3t, then
execute the integration in ¢ to obtain for each compactly supported f3 € S(R) with

mean zero
AL 1, fy) = /R [ /|k /R ck,m,n(y)dndk}fg(y)dy.

By (7.2), the limit on the right hand side is [ f(y)f3(y)dy, and so we conclude that
A(1,1,.) is f as tempered distributions modulo constants.
It remains to prove that A is bounded as in the conclusion of Theorem 2.7. Using

that
/f|7l dyt = /ﬂ<w>d<7>,

where dy* and d(7) are, respectively, the normalized Lebesgue measures on v and (7),
we note that for each f; € S(R), A(f1, fa, f3) coincides up to some universal constant

with
3
lim / / a2 ] / Fi(@) by gon (2)e2™2 5 g | dn di dk.
k=100 Jikl<k JR2 iy

Hence A is up to a universal constant an average of forms of the type

3

(7.4) Z k27" H (fir Pijkna) >

knleZ i=1
where for some kg, ng, lo € [0,1]

Gi k() = me—%iwf(“km(lﬂo)x
The form (7.4) is our basic model form that we wish to estimate. The function ¢; k.,
is an L?- normalized bump function adapted to the interval

[25FR0 (n + ng)), 28T (0 + ng + 1))

By changing the bump function constants mildly, we can assume that the function is
adapted to the dyadic interval I, = [2Fn, 2¥(n + 1)).

The function QASZ,M[ is supported in an interval w;y,; of length 2 and we may
assume the following properties (in case i = 3 we split the generating function ¢3 into
a sum of two generating functions, one with Fourier support contained in [—12, —§|
and the other with Fourier support contained in [8,12]. Without loss of generality we
may replace ¢3 by one of the two):

—k+2

W1kl = W2kl
for all k£, 1, and if
Wikt Nwigry # 0

for some k, k', 1,1’, then for some universal constants 1 < ¢y < ¢

Cowiky N Cowjprv = 0
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and
wjrrNawjpy # 0

whenever ¢ # j and at least one of i and j is equal to 3. By pigeonholing into finitely
many summands if necessary, we also may assume that

Wikt Nwigy =0

if n # n’. We adopt the usual geometric picture that the parameter tuple (k,n,1) is
identified with a triple p = (p1, p2, p3) of tiles

Di = Ip X Wpi = Ik,n X Wi k.1

Compared to the theory of the bilinear Hilbert transform, the new element here is that
two tiles in this triple are equal. This lack of separation is offset by better estimates for
the coefficients ¢, than in the model forms for the bilinear Hilbert transform. Since
f is in BMO, the coefficients ¢y, satisfy a Carleson sequence condition

(7.5) > Jerml* < CrlJI.

Ik,nCJ

This is what we need to know about the basic model operator (7.4) we have to
estimate. The proof runs parallel to the proof of boundedness of the bilinear Hilbert
transform, e.g. in [29]. The only difference concerns the estimate on an individual
tree for which both p; and p, are overlapping and only ps are disjoint. These trees are
estimated by using (7.5) as follows:

3
Z 1L ey, H | (f bp,) |

peT
1/2 /2 4 ,
< (Zw) <Z|<f3,¢p3> |2) 11 (SUP W)
el peT j=1 peT ‘ ;n|
1/2
1 |<fj>¢pj>|
< |It| (m; | (f3, Dps) |2> ]1:[1 (ig}r’ W) :

The factors in the last expression are as in [29] estimated by the tree sizes defined
there. The rest of the proof is identical to the one in [29] and one obtains the same
bounds as for the bilinear Hilbert transform.

We close this section by mentioning an interesting application of the constructions
we have performed above. For each dyadic interval I with length at least 1, let ¢; be
a coefficient selected in such a way that |c;| < |I|'/? and such that

1
7.6 sup — crl? = .
(7.6 pr Y ol



64 A. BENYI, C. DEMETER, A.R. NAHMOD, C.M. THIELE, R.H. TORRES, AND P. VILLARROYA

It can be easily seen by using (4.2) that

(7.7) i [ 57 crvr(o) o)y

K—00
[I|<k

exists for each Schwartz function f3 with mean 0. Define

3
A(fi, fo, f3) = Z CI// Hfz(l' + Bit) i r(x + Bit) | dxdt.
I dyadic RJR | ;=1

By reasoning as before, it is easy to check that the bilinear form A(.,., 1) satisfies the
weak boundedness condition, and moreover that A(.,1,1) = A(1,.,1) = 0. Remark 2.1
shows that these imply that A(.,.,1) is a bilinear form bounded on L? x L?. Also, by
(7.7) it easily follows that the action on H'(R) atoms of A(1,1,.) coincides with that
of >, erpr. Due to (7.6), A(1,1,.) can not be identified with a BMO function. By
invoking Remark 2.1 again, it follows that the bilinear form A(1,.,.) is not bounded,
in spite of being completely represented by the same kernel as A(.,.,1). Moreover, the
trilinear form is itself unbounded, since otherwise A(1,1,.) would necessarily have to
be a BMO function. Hence A(.,.,1) is a bounded bilinear Calderén-Zygmund form
associated with a Calderén-Zygmund kernel that is not the restriction of a bounded
trilinear form with the given parameter 3 and associated with the same K.
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