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ANISOTROPIC CLASSES OF INHOMOGENEOUS
PSEUDODIFFERENTIAL SYMBOLS

ÁRPÁD BÉNYI AND MARCIN BOWNIK

Abstract. We introduce a class of pseudodifferential operators in the anisotropic
setting induced by an expansive dilation A which generalizes the classical isotropic
class Smγ,δ of inhomogeneous symbols. We extend a well-known L2-boundedness

result to the anisotropic class S0
δ,δ(A), 0 ≤ δ < 1. As a consequence, we deduce

that operators with symbols in the anisotropic class S0
1,0(A) are bounded on Lp

spaces, 1 < p <∞.

1. Introduction: definitions and statement of main result

The study of pseudodifferential operators draws lots of its motivation from its ap-
plicability to approximate inverses or regularity of solutions in partial differential
equations. A systematic study of these operators led to the introduction of the clas-
sical (isotropic, inhomogeneous) classes of symbols Smγ,δ and their tightly connected

homogeneous counterparts denoted by Ṡmγ,δ. For example, as it is well known, the
characteristic polynomial of a partial differential operator of order m and with con-
stant coefficients represents a symbol in the class Sm1,0. The adjective isotropic we use
here points out that the spatial and frequency variables of the symbol have the same
homogeneity. However, in several examples (such as the heat operator) there exists
another natural scaling (such as parabolic) and thus we fall in the realm of anisotropic
symbols. In our previous paper [1] we were interested in the study of multiplier, and
more generally, pseudodifferential operators, with anisotropic homogeneous symbols
Ṡmγ,δ(A).

This paper is a natural continuation of the investigations initiated in [1] for the
general anisotropic setting. We will mainly concern ourselves with inhomogeneous
symbols in the classes S0

γ,δ(A), in particular with the extension of a classical bound-

edness result for anisotropic pseudodifferential operators with symbols S0
δ,δ(A), 0 ≤

δ < 1. This result, in turn, implies the Lp-boundedness of the smaller class S0
1,δ(A),

0 ≤ δ < 1. An example of symbol belonging to S0
1,0(A), for an appropriately chosen

matrix A, is presented in detail in Example 3.1.
Let us now briefly recall the notation, the definition, and some of the results about

the anisotropic homogeneous classes of pseudodifferential symbols. We follow the
notation in Bownik’s monograph [2]; see also [3], [4]. Given an expansive matrix A,
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2 Á. BÉNYI AND M. BOWNIK

that is a matrix for which all its eigenvalues λ satisfy |λ| > 1, we can first define
a canonical quasi-norm ρA associated to it. Specifically, if we let P be some non-
degenerate n× n matrix, and | · | the standard norm of Rn, there exists an ellipsoid
∆ = {x ∈ Rn : |Px| < 1} such that |∆| = 1 and for some r > 1, ∆ ⊂ r∆ ⊂ A∆.
Then, we can define a family of balls around the origin Bk = Ak∆, k ∈ Z, that satisfy

Bk ⊂ rBk ⊂ Bk+1 and |Bk| = bk,

where b = | detA|. The step homogeneous quasi-norm induced by A is defined by

ρ(x) = bj, x ∈ Bj+1 \Bj, and ρ(0) = 0.

It is straightforward to verify that ρ satisfies a triangle inequality up to a constant
and the homogeneity condition ρ(Ax) = bρ(x), x ∈ Rn. Since any two homogeneous
quasi-norms associated to a dilation A are equivalent, we can talk about a canon-
ical quasi-norm associated to A, which will be denoted by ρA. Similarly, we shall
also consider a family of dilated balls B∗k, k ∈ Z, and a canonical quasi-norm ρA∗
associated to the adjoint (or transpose) matrix A∗. We are now ready to state the
definition of anisotropic inhomogeneous symbols which is a natural modification of
the homogeneous one, see [1].

Definition 1.1. We say that a symbol σ(x, ξ) belongs to the anisotropic inhomoge-
neous class Smγ,δ(A) if it satisfies the estimates

(1.1) |∂αx∂
β
ξ [σ(A−k1·, (A∗)k2·)](Ak1x, (A∗)−k2ξ)| ≤ Cα,β(1 + ρA∗(ξ))

m,

for all multi-indices α, β and (x, ξ) ∈ Rn × Rn. Here, k1, k2 ∈ N0 are given by

(1.2) k1 = bkδc, k2 = bkγc,
where k ∈ N0 is such that 1 + ρA∗(ξ) ∼ | detA|k, and b·c denotes the floor function.

The derivatives above should be interpreted as

∂αx∂
β
ξ σ̃(Ak1x, (A∗)−k2ξ),

where
σ̃(x, ξ) = σ(A−k1x, (A∗)k2ξ),

and k1, k2 ∈ N0 are as in (1.2). The notation ∼ has the following interpretation:
we pick k to be the unique non-negative integer such that the frequency variable ξ
belongs to the annulus B∗k+1 \ B∗k if k > 0, or the ball B∗1 if k = 0. Consequently,
we require estimates on the derivatives of a symbol σ that hold uniformly after
appropriate rescaling depending on the location of the frequency variable ξ. Recall
from [1] that in the homogeneous variant Ṡmγ,δ(A) of Definition 1.1, k is the unique
integer such that 0 6= ξ ∈ B∗k+1 \B∗k, and hence k can take negative values as well.

As explained in [1], Definition 1.1 recovers not only the well-known isotropic classes
Smγ,δ = Smγ,δ(2In), but also the so-called anisotropic classes Sma;γ,δ previously investi-
gated in the works of Leopold [14] and Garello [9]. Moreover, the generality of
our definition is very useful when dealing with a general, non-diagonal anisotropy.
Furthermore, we proved in the general anisotropic setting that the class Ṡ0

1,1(A)
corresponds to operators with Calderón-Zygmund kernels which are bounded on
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anisotropic Triebel-Lizorkin and Besov spaces. In particular, we recovered the re-
sults of Grafakos-Torres [10] for the homogeneous isotropic class Ṡm1,1; see [1].

We remark right away that Definition 1.1 implies that the anisotropic Calderón-
Vaillancourt class S0

0,0(A) is independent of the matrix A, and, as such, it coincides

with the isotropic version S0
0,0. Therefore, we conclude that S0

0,0(A) is bounded (in

general, only) on L2. This is a well known result of Calderón-Vaillancourt [6]; see
also Stein’s monograph [16, Section VII.2.4]. By contrast, the L2 boundedness of
the class S0

1,1(A) fails. A standard counterexample of a pseudodifferential symbol in

the (isotropic) class S0
1,1 that yields unbounded operator on L2 can be found in [16,

Section VII.1.2]. This example can be extended to the generic anisotropic setting,
see Example 3.2.

In analogy with the isotropic setting, the Schwarz kernel of an operator with symbol
in S0

1,1(A) is Calderón-Zygmund, and thus Lp boundedness fails for all 1 < p <
∞. The computations that verify the anisotropic Calderón-Zygmund estimates are
left to the interested reader. They are essentially the same as the ones detailed in
[1, Theorem 4.3] for the homogeneous class Ṡ0

1,1(A) with the obvious modifications
implied by using the inhomogeneous Littlewood-Paley decomposition (2.2).

The comments above beg a natural question: what happens for the symbols in
S0
δ,δ(A)? Recall that, by Definition 1.1, a symbol σ ∈ S0

δ,δ(A) satisfies the following
inequalities:

(1.3) |∂αx∂
β
ξ [σ(A−k

′ ·, (A∗)k′ ·)](Ak′x, (A∗)−k′ξ)| ≤ Cα,β,

for all multi-indices α, β, (x, ξ) ∈ Rn×Rn, and k ∈ N0 such that 1+ρA∗(ξ) ∼ | detA|k,
where k′ = bkδc. Associated to such a symbol σ(x, ξ), we have a pseudodifferential
operator, a priori defined on S:

Tσf(x) = σ(x,D)f(x) =

∫
Rn
σ(x, ξ)f̂(ξ)eix·ξ dξ.

Our main result is the anisotropic extension of the following well known bounded-
ness result for the isotropic class S0

δ,δ.

Theorem 1.1. Let σ ∈ S0
δ,δ(A) for some 0 ≤ δ < 1. Then, the pseudodifferential

operator Tσ extends to a bounded operator on L2(Rn).

The inhomogeneous classes of symbols are nested: Sm1
γ1,δ1

(A) ⊂ Sm2
γ2,δ2

(A) if m1 ≤
m2, γ2 ≤ γ1, and δ1 ≤ δ2. Thus, Theorem 1.1 also holds for the class S0

γ,δ(A), where
0 ≤ δ ≤ γ ≤ 1 and δ < 1. This condition on the indices defining the classes of
symbols is known to be sharp in the isotropic setting, see the works of Hörmander
[11] and Kumano-go [13].

Section 2 of our paper is devoted to the proof of Theorem 1.1. We divide this proof
into several steps in which we explain our strategy leading to the conclusion we wish
to achieve. Our approach is inspired by Stein’s book [16, Theorem 2 in Section VII.2]
albeit with some necessary changes reflecting a more complicated nature of symbols
in anisotropic classes.

In Section 3 we give a couple of examples of anisotropic symbols. We also give
an alternative proof of the boundedness of the class S0

1,0(A) using a reduction to
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elementary symbols. Our approach is guided by Coifman and Meyer’s work [5] and
the nice exposition in Journé’s monograph [12].

2. Proof of Theorem 1.1 via almost orthogonality

We begin with the following elementary lemma.

Lemma 2.1. Suppose that A is an expansive matrix, and let λ− = minλ∈σ(A) |λ|. Let
ζ− = lnλ−/ ln b, where b = | detA|. Finally, suppose that N > 1/(2ζ−). Then, there
exists some C > 0 such that for all j ∈ Z we have∫

Rn
(1 + |Ajz|2)−Ndz ≤ Cb−j.

Proof. Let 2N > 1/ζ > 1/ζ−. By Lemma [2, Lemma 3.2], there exists a constant
c > 0 such that

1 + |x| ≥ c(1 + ρA(x))ζ− for all x ∈ Rn.

Using the previous inequality and a change of variables, we get∫
Rn

(1 + |Ajz|2)−Ndz ≤ C

∫
Rn

(1 + ρA(Ajz))−2Nζdz

≤ Cb−j
∫
Rn

(1 + ρA(z))−2Nζdz ≤ Cb−j.

The last inequality is a consequence of 2Nζ > 1. �

The proof of Theorem 1.1 is divided into several steps.

Step 1. First, we perform a reduction to symbols σ with compact support in Rn×Rn.
Take φ a fixed smooth function with compact support with φ(0, 0) = 1. For each
j ∈ N define

σj(x, ξ) = σ(x, ξ)φ(A−jx, (A∗)−jξ).

Using support considerations and the chain rule, we can show that the symbols
σj ∈ S0

δ,δ(A) uniformly for j ∈ N. Furthermore, for all f ∈ S,

Tσjf → Tσf as j →∞,
in the topology of S, see [16, Section VI.1.3]. The reduction to symbols with compact
support will allows us to automatically justify all operations appearing below such as
integration by parts. The explicit dependence on j will be suppressed and all of our
estimates will be independent of j. In the rest of the proof we shall simply assume
that σ ∈ S0

δ,δ(A) has compact support.

Step 2. We decompose now the operator Tσ in the frequency domain as

(2.1) Tσ =
∞∑
j=0

Tσj , where σj(x, ξ) =

{
σ(x, ξ)ψ((A∗)−jξ), j ≥ 0,

σ(x, ξ)ϕ(ξ), j = 0.

Here, ϕ, ψ ∈ S satisfy suppϕ ⊂ B∗1 , suppψ ⊂ B∗1 \B∗−1 and

(2.2) ϕ(ξ) +
∞∑
j=1

ψ((A∗)−jξ) = 1 for all ξ ∈ R.
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As in Step 1, one can show that the symbols σj are uniformly in S0
δ,δ(A).

Step 3. We establish that the operators Tσj are very close to being mutually orthog-
onal. Fix a sufficiently large ω ∈ N, which will be determined in the next step. We
break the sum (2.1) into a finite sum of infinite series

Tσ =
ω∑
r=1

( ∞∑
j=0

j≡r mod ω

Tσj

)
.

It suffices to prove the boundedness of each series separately corresponding to some
fixed r = 1, . . . , ω.

Observe that Tσj = Tσ∆j, where ∆j is the multiplier operator given by

(̂∆jf)(ξ) =

{
f̂(ξ)ψ((A∗)−jξ), j ≥ 0,

f̂(ξ)ϕ(ξ), j = 0.

By the support condition on ψ we have that

Tσj(Tσk)
∗ = Tσ∆j(∆k)

∗(Tσ)∗ = 0 for |j − k| ≥ 2.

Step 4. This is the key part where we estimate the kernel of (Tσj)
∗Tσk . By a direct

calculation, as in the proof of [16, Theorem 2 in VII.2.5], we have

(Tσj)
∗Tσkf(x) =

∫
Rn
K(x, y)f(y)dy,

where the kernel

(2.3) K(x, y) =

∫
Rn×Rn×Rn

σk(z, η)σj(z, ξ)e
i[ξ·(z−y)−η·(z−x)]dz dη dξ.

We will estimate the kernel K by exploiting the oscillatory nature of the exponential
and the relative smoothness of symbols σk and σj. This will be achieved by integration
by parts in all three variables z, η, ξ. Unlike the isotropic setting, we need to
change variables first. This is necessary since the anisotropic condition (1.3) involves
derivatives of a dilated symbol.

Assume that j < k belong to the same sum as in Step 3, i.e., j ≡ k mod ω. Define
j′ = bjδc, k′ = bkδc. By a change of variables in (2.3) we have

(2.4) K(A−k
′
x,A−k

′
y) = bj

′
∫
Rn×Rn×Rn

σk(A
−k′z, (A∗)k

′
η)σj(A

−k′z, (A∗)j
′
ξ)

ei[(A
∗)j
′−k′ξ·(z−y)−η·(z−x)]dz dη dξ.

Indeed, this is a consequence of the changes of variables z 7→ A−k
′
z, η 7→ (A∗)k

′
η,

ξ 7→ (A∗)j
′
ξ and using the identity

(A∗)j
′
ξ · (A−k′z−A−k′y)− (A∗)k

′
η · (A−k′z−A−k′x) = (A∗)j

′−k′ξ · (z− y)− η · (z−x).

Now set

σ̃k(z, η) = σk(A
−k′z, (A∗)k

′
η), σ̃j(z, ξ) = σj(A

−k′z, (A∗)j
′
ξ).
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By support considerations we have

(2.5)
σ̃k(z, η) 6= 0 =⇒ ρA∗(η) ∼ bk(1−δ),

σ̃j(z, ξ) 6= 0 =⇒ ρA∗(ξ) ∼ bj(1−δ).

Now, since suppσk ⊂ Rn × (B∗k+1 \B∗k−1), the condition (1.3) satisfied by σk reduces
to

|∂αz ∂βη [σk(A
−k′·, (A∗)k′ ·)](Ak′x, (A∗)−k′η)| ≤ Cα,β for all multi-indices α, β,

and for all (z, η) ∈ Rn × Rn. This is due to the fact that only one dilate of σk, that
is σ̃k, can give a non-zero contribution in (1.3). Thus, we have

(2.6) ||∂αz ∂βη σ̃k||∞ ≤ Cα,β for all multi-indices α, β.

In the same way we can deduce that

|∂αz ∂
β
ξ [σj(A

−j′ ·, (A∗)j′ ·)](Aj′z, (A∗)−j′ξ)| ≤ Cα,β for all multi-indices α, β,

and for all (z, ξ) ∈ Rn×Rn. Thus, using the chain rule and recalling that j′ ≤ k′, we
have

|∂αz ∂
β
ξ σ̃j(z, ξ)| ≤ C||Aj′−k′ |||α||∂αz ∂

β
ξ [σj(A

−j′·, (A∗)j′ ·)](Aj′−k′z, ξ)| ≤ Cα,β.

This shows that

(2.7) ||∂αz ∂
β
ξ σ̃j||∞ ≤ Cα,β for all multi-indices α, β.

Since
(I −∆z)

N

(1 + |(A∗)j′−k′ξ − η|2)N
ei((A

∗)j
′−k′ξ−η)·z = ei((A

∗)j
′−k′ξ−η)·z,

integrating by parts in the z variable in (2.4) yields

(2.8) K(A−k
′
x,A−k

′
y) = bj

′
∫
Rn×Rn×Rn

(I −∆z)
N [σ̃k(z, η)σ̃j(z, ξ)]

ei[(A
∗)j
′−k′ξ·(z−y)−η·(z−x)]

(1 + |(A∗)j′−k′ξ − η|2)N
dz dη dξ.

Next, we integrate by parts in (2.8) with respect to the ξ and η variables, respectively.
Similarly to our computation above, we use

(I −∆η)
N

(1 + |x− z|2)N
e−iη·(x−z) = e−iη·(x−z),

and
(I −∆ξ)

N

(1 + |Aj′−k′(z − y)|2)N
ei(A

∗)j
′−k′ξ·(z−y) = ei(A

∗)j
′−k′ξ·(z−y).

The end result of these integrations by parts is the identity

(2.9) K(A−k
′
x,A−k

′
y) = bj

′
∫
Rn×Rn×Rn

[
(I −∆ξ)

N

(1 + |Aj′−k′(z − y)|2)N
(I −∆η)

N

(1 + |x− z|2)N

(I −∆z)
N [σ̃k(z, η)σ̃j(z, ξ)]

(1 + |(A∗)j′−k′ξ − η|2)N

]
ei[(A

∗)j
′−k′ξ·(z−y)−η·(z−x)]dz dη dξ.
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Since j < k and j ≡ k mod ω, we have j + ω ≤ k. Take any η and ξ as in (2.5).
Thus, for some c > 0,

ρA∗(η) ≥ cb(k−j)(1−δ)ρA∗((A
∗)j
′−k′ξ).

By the anisotropic version of the triangle inequality, there exists a constant ω0 ∈ N
such that

ρA∗(η) ≥ bω0ρA∗(ξ) =⇒ bω0ρA∗(η) ≥ ρA∗(ξ − η) ≥ b−ω0ρA∗(η).

Hence, by choosing ω such that cbω(1−δ) > bω0 we have

ρA∗((A
∗)j
′−k′ξ − η) ∼ bk(1−δ)

and

(2.10) |(A∗)j′−k′ξ − η| ≥ ρA∗((A
∗)j
′−k′ξ − η)ζ− ∼ bk(1−δ)ζ− ,

where ζ− = lnλ−/ ln b. Therefore, whenever the expression (1 + |(A∗)j′−k′ξ − η|2)−N
is hit by derivatives in η it will remain bounded by Cbk(1−δ)ζ− . The same is true for
derivatives in ξ with the additional application of the chain rule and the fact that
j′ − k′ < 0.

Inserting the estimates (2.5), (2.6), (2.7), and (2.10) into (2.9) and integrating over
variables ξ and η yields

|K(A−k
′
x,A−k

′
y)| ≤ Cbj

′+(k+j)(1−δ)−k(1−δ)ζ−2N
∫
Rn
Q(Aj

′−k′(z − y))Q(x − z)dz,

where Q(v) = (1 + |v|2)−N . Thus,

(2.11) |K(x, y)| ≤ Cbj
′+(k+j)(1−δ)−k(1−δ)ζ−2N

∫
Rn
Q(Aj

′−k′z − Aj′y)Q(Ak
′
x − z)dz.

Step 5. Estimate (2.11) allows us to control both

(2.12)

∫
Rn
|K(x, y)|dy and

∫
Rn
|K(x, y)|dx.

Indeed, by Lemma 2.1, we first obtain∫
Rn×Rn

Q(Aj
′−k′z − Aj′y)Q(Ak

′
x − z)dy dz ≤ Cb−j

′
∫
Rn
Q(Ak

′
x − z)dz ≤ Cb−j

′

∫
Rn×Rn

Q(Aj
′−k′z − Aj′y)Q(Ak

′
x− z)dx dz ≤ Cb−k

′
∫
Rn
Q(Aj

′−k′x− z)dz

≤ Cb−k
′
bk
′−j′ = Cb−j

′
.

Thus, by (2.11) ∫
Rn
|K(x, y)|dy ≤ Cb(k+j)(1−δ)−k(1−δ)ζ−2N ,

and the same estimate holds for
∫
Rn |K(x, y)|dx. Therefore, Schur’s lemma yields

||(Tσj)∗Tσk || ≤ Cb(k+j)(1−δ)−k(1−δ)ζ−2N ,
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for all j ≤ k + ω. Furthermore, by taking adjoints, we also have

||(Tσj)∗Tσk || ≤ Cb2max(k,j)(1−δ)(1−ζ−N) for |j − k| ≥ ω.

Step 6. In this last step, we apply a “cruder” version of Cotlar’s lemma, see [16, p.
282]. By Step 5, we have

||(Tσj)∗Tσk || ≤ γ(j)γ(k) for |j − k| ≥ ω,

where γ(j) = Cb−εj and ε = (1−δ)(ζ−N−1) > 0. Moreover, by Step 3, Tσj(Tσk)
∗ = 0

for |j − k| ≥ 2. Hence, it suffices to show that the operators Tσk are uniformly
bounded. By (2.6), the symbols σ̃k belong to S0

0,0(A) uniformly in k. Recall that the

anisotropic class S0
0,0(A) coincides with its isotropic counterpart S0

0,0. Therefore, the

L2 boundedness of the class S0
0,0 implies that the pseudodifferential operators Tσ̃k are

bounded uniformly in k. Moreover, by a dilation argument, we have

Tσk = DAkTσ̃kDA−k .

Here, DAf(x) = | detA|1/2f(Ax) denotes the dilation operator, which is an isometry
on L2(Rn). Consequently, the operators Tσk are bounded uniformly in k. By the above
mentioned variant of Cotlar’s lemma, each operator

∑
k≡r mod ω Tσk , r = 1, . . . , ω, is

bounded on L2(Rn). By Step 3, this completes the proof of Theorem 1.1.

Remark 2.1. We remark that the proof of Theorem 1.1 requires the estimates (1.3)
on the derivatives |α|, |β| ≤ N of a symbol in S0

δ,δ(A) up to the order N > 2/ζ−. Note
that, for any dilation A, we always have 0 < ζ− ≤ 1/n. In the isotropic case, we have
the equality ζ− = 1/n. Moreover, by the result of Coifman and Meyer [5], it is known
that N > n/2 is enough to guarantee the L2 boundedness for pseudodifferential
operators in the isotropic class S0

δ,δ, 0 ≤ δ < 1, and this is optimal. Hence, it is
tempting to conjecture that Theorem 1.1 holds with a weaker requirement on the
order of partial derivatives N > 1/(2ζ−).

3. Examples and elementary symbols

In this section we give another proof for the boundedness of symbols in so-called
anisotropic Coifman-Meyer class S0

1,0(A). Because pseudodifferential operators with

symbols σ ∈ S0
1,0(A) have (anisotropic) Calderón-Zygmund kernels, by Theorem 1.1

we also get that σ(x,D) is bounded on all Lp, 1 < p <∞.

Theorem 3.1. Let σ ∈ S0
1,0(A). Then, σ(x,D) extends to a bounded operator on Lp,

1 < p <∞.

By Definition 1.1, a symbol σ ∈ S0
1,0(A) satisfies the following inequalities:

(3.1) |∂αx∂
β
ξ [σ(·, (A∗)k·)](x, (A∗)−kξ)| ≤ Cα,β,

for all multi-indices α, β, (x, ξ) ∈ Rn ×Rn, and k ∈ N such that 1 + ρA∗(ξ) ∼ bk. An
example of symbol satisfying these inequalities can be obtained by an appropriate
modification of [1, Example 2.1].
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Example 3.1. Let ϕ be an infinitely differentiable real valued function such that, for
some constants C1, C2, C3 > 0, C1 ≤ ϕ(x) ≤ C2 and |ϕ(k)(x)| ≤ C3 for all x ∈ R and
all k ≥ 1. For example, ϕ(x) = 2 + sinx satisfies these conditions. We consider the
symbol σ(x, ξ), with x = (x1, x2), ξ = (ξ1, ξ2) ∈ R2, defined by

σ((x1, x2), (ξ1, ξ2)) =
ξ61 + ϕ(x2)ξ

6
2

1 + ξ61 + ξ22 + ϕ(x2)ξ62
.

We claim that σ ∈ S0
1,0(A), where A is a 2× 2 diagonal matrix with diagonal entries√

2, 2
√

2. More precisely, we claim to have estimates of the following form

(3.2) |∂β1x1∂
β2
x2
∂α1
ξ1
∂α2
ξ2
σ((x1, x2), (ξ1, ξ2))| . (1 + ρA∗(ξ1, ξ2))

−‖(α1,α2)‖.

where

ρA∗(ξ1, ξ2) = max
i=1,2

(|ξ1|2, |ξ2|2/3), ‖(α1, α2)‖ =
1

2
α1 +

3

2
α2.

We shall verify directly these estimates only for (1, 0, 0, 0) and its permutations.
We will always break down our analysis depending on the relative size of |ξ1|3 and
|ξ2| (which determine the quasi-norm).

1. (β, α) = (1, 0, 0, 0). This case is trivial, the derivative being zero.

2. (β, α) = (0, 1, 0, 0). We compute

∂x2σ(x, ξ) =
ϕ′(x2)ξ

6
2(1 + ξ22)

(1 + ξ61 + ξ22 + ϕ(x2)ξ62)2
.

In this case, ‖α‖ = 0 and (1 + ρA∗(ξ1, ξ2))
−‖α‖ = 1. Since |ϕ′(x2)| ≤ C3 and

ϕ(x2) > C1, we immediately see that

|ϕ′(x2)|ξ62(1 + ξ22)

(1 + ξ61 + ξ22 + ϕ(x2)ξ62)2
≤ C3

ξ62
1 + ϕ(x2)ξ62

≤ C3

C1

.

3. (β, α) = (0, 0, 1, 0). We have

|∂ξ1σ(x, ξ)| . |ξ1|5(1 + ξ22)

(1 + ξ61 + ξ22 + ϕ(x2)ξ62)2
.

We expect our estimates to be . (1 + |ξ1|2)−1/2 or . (1 + |ξ2|2/3)−1/2. Indeed, if
|ξ1|3 ≥ |ξ2|, then

|ξ1|5(1 + ξ22)

(1 + ξ61 + ξ22 + ϕ(x2)ξ62)2
.
|ξ1|5

1 + ξ61
. (1 + |ξ1|)−1 . (1 + |ξ1|2)−1/2,

while if |ξ1|3 ≤ |ξ2|, we have

|ξ1|5(1 + ξ22)

(1 + ξ61 + ξ22 + ϕ(x2)ξ62)2
.
|ξ2|5/3

1 + ξ22
. (1 + |ξ2|)−1/3 . (1 + |ξ2|2/3)−1/2.

4. (β, α) = (0, 0, 0, 1). We have

|∂ξ2σ(x, ξ)| . |ξ2|(ξ61 + ξ62 + ξ42)

(1 + ξ61 + ξ22 + ϕ(x2)ξ62)2
.
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Note that ξ42 =
√
ξ22ξ

6
2 . ξ22 + ϕ(x2)ξ

6
2 . Thus,

ξ61 + ξ62 + ξ42
1 + ξ61 + ξ22 + ϕ(x2)ξ62

. 1.

Now, if |ξ1|3 ≥ |ξ2|, then

|ξ2|(ξ61 + ξ62 + ξ42)

(1 + ξ61 + ξ22 + ϕ(x2)ξ62)2
.
|ξ1|3

1 + ξ61
. (1 + |ξ1|3)−1 . (1 + |ξ1|2)−3/2.

Finally, if |ξ1|3 ≤ |ξ2|, we have

|ξ2|(ξ61 + ξ62 + ξ42)

(1 + ξ61 + ξ22 + ϕ(x2)ξ62)2
.
|ξ2|

1 + ξ22
. (1 + |ξ2|)−1 . (1 + |ξ2|2/3)−3/2.

We divide the proof of Theorem 3.1 into several subsections in which we explain
our strategy leading to the conclusion we wish to achieve. We will start by showing
that we can reduce the L2 boundedness of σ(x,D) to the L2 boundedness of pseudo-
differential operators with so called anisotropic elementary symbols. Finally, we will
prove that any elementary symbol yields an L2 bounded pseudodifferential operator.

We will repeatedly use the following elementary lemma, see [2, 3, 4].

Lemma 3.2. Suppose A is an expansive matrix, and λ− and λ+ are any positive real
numbers such that 1 < λ− < minλ∈σ(A) |λ| and maxλ∈σ(A) |λ| < λ+ < b = | detA|.
Then, there exists c > 0 such that

(1/c)(λ−)j|x| ≤ |Ajx| ≤ c(λ+)j|x| for j ≥ 0,(3.3)

(1/c)(λ+)j|x| ≤ |Ajx| ≤ c(λ−)j|x| for j ≤ 0.(3.4)

Furthermore, if A is diagonalizable over C, then we may take λ− = minλ∈σ(A) |λ| and
λ+ = maxλ∈σ(A) |λ|.

3.1. Elementary symbols. We want to reduce our study to that of anisotropic
elementary symbols. Assume that such a reduction is possible. Then, we will only
need to worry (in a subsequent subsection) about the L2 boundedness of σ(x,D) with
anisotropic elementary symbol of the form

(3.5) σ(x, ξ) =
∞∑
j=0

mj(x)φ̂((A∗)−jξ),

where mj are bounded and satisfying appropriate smoothness and decay, and φ̂ ∈ S
is supported away from the origin, that is, there exists R > 0 such that

supp φ̂ ⊂ {ξ ∈ Rn : 1/R < |ξ| < R}.

We begin by stating the following claim.
Claim 1. There exists (a fixed) J ≥ 1 such that

(3.6) supp φ̂((A∗)−j·) ∩ supp φ̂((A∗)−k·) = ∅,

for |j − k| ≥ J .
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This non-overlapping property of the supports will play an important role in our
arguments. The proof of the claim is a consequence of the elementary Lemma 3.2.

Letting φj(x) = | detA|jφ(Ajx), we have φ̂j(ξ) = φ̂((A∗)−jξ). Hence, if j ≥ 0, Lemma
3.2 implies that

supp φ̂j ⊂ {ξ ∈ Rn : 1/R < |(A∗)−jξ| < R}
⊂ {ξ ∈ Rn : (λ−)j/(Rc) < |ξ| < Rc(λ+)j}.

Let J be the smallest positive integer such that (λ−)J > R2c. By the previous
inclusion of supports,

supp φ̂ ∩ supp φ̂j = ∅ for j > J.

Thus, applying supp φ̂k = (A∗)k(supp φ̂) yields

supp φ̂k ∩ supp φ̂j = ∅ for |j − k| > J,

and the claim is proved.

Returning now to our elementary symbols, if we let fj = f ∗ φj, for some f ∈ S,

then f̂j = f̂ φ̂j. Using Plancherel’s theorem (twice) and (3.6) (that guarantees the
sums are finite), we get∑

j≥0

‖fj‖2L2 =
∑
j≥0

‖f̂ φ̂j‖2L2 . ‖φ̂‖2L∞‖f‖2L2 .

Furthermore,

σ(x,D)f(x) =
∑
j≥0

mj(x)fj(x).

Therefore, the proof of the L2 boundedness of σ(x,D) with elementary symbol (3.5)
reduces to showing the following inequality:

(3.7)

∥∥∥∥∑
j≥0

mjfj

∥∥∥∥
L2

≤ C(
∑
j≥0

‖fj‖2L2)1/2.

We will come back to (3.7) in Subsection 3.3. For now, we simply note that the
constant C > 0 is determined by the reduction of a generic symbol to an elementary
one, and, in particular, from the control on mj, control that will be obtained from
the symbol belonging to S0

1,0(A).

3.2. Reduction to elementary symbols. We indicate how the reduction to ele-
mentary symbols is performed. For a given u ∈ S, such that v = û is compactly
supported away from the origin,

supp v ⊂ {ξ : 1/R < |ξ| < R},
we write uj(x) = | detA|ju(Ajx), and we have

ûj(ξ) = û((A∗)−jξ) = v((A∗)−jξ) := vj(ξ).

Assume that

(3.8)
∑
j∈Z

vj(ξ) = 1, ξ 6= 0.
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Given an arbitrary symbol σ ∈ S0
1,0(A), if we further assume that σ(x, 0) = 0, then

we can write

(3.9) σ =
∞∑
j=0

σj + τ,

where

(3.10) σj(x, ξ) = vj(ξ)σ(x, ξ), j ≥ 0,

and

(3.11) τ(x, ξ) =
−1∑

j=−∞

vj(ξ)σ(x, ξ).

Note that the assumption σ(x, 0) = 0 does not imply a further restriction on the
Lp boundedness properties of σ(x,D). Indeed, if σ(x, 0) 6= 0, then we let

σ̃(x, ξ) = σ(x, ξ)− σ(x, 0).

Now, we simply notice that σ̃(x, 0) = 0 and σ(x, 0) is a smooth and bounded mul-
tiplier; indeed, the pseudodifferential operator T associated to σ(x, 0) is given by
Tf = σ(·, 0) · f , and, by condition (3.1) with k = 0, we can bound ‖Tf‖Lp ≤
‖σ(·, 0)‖L∞x ‖f‖Lp . Therefore, the Lp boundedness properties of σ(x,D) and σ̃(x,D)
are equivalent.

3.2.1. The “negative” part of the multiplier. We wish to show next that the multiplier
operator τ(x,D) is bounded on Lebesgue spaces. We start by noting that τ(x, ξ)
vanishes on |ξ| ≥ cR, where R > 0 is determined by the support of v and c > 0 is
the constant in Lemma 3.2. Indeed, for j ≤ −1 and |ξ| ≥ cR,

|(A∗)−jξ| ≥ 1

c
(λ−)−j|ξ| > R,

that is ξ 6∈ supp vj. Recall also that the functions vj have non-overlapping supports
(see Claim 1 in Subsection 3.1):

supp vj ∩ supp vk = ∅, |j − k| > J,

where J is the smallest positive integer such that (λ−)J > cR2. Therefore, we can sim-
ply concentrate on the properties of τ(x, ξ) at the frequency scale 1/R ≤ |(A∗)−jξ| ≤
R, for a fixed j ≤ −1. With the exception of (possibly) a finite number of terms at a
proportional scale k determined by |k− j| ≤ J , all the other terms in the expression
of τ will vanish.

The pseudodifferential operator τ(x,D) can also be represented in its kernel form
by

τ(x,D)f(x) =

∫
K(x, y)f(y)dy,

where

K(x, y) =

∫
τ(x, ξ)eiξ·(x−y) dξ.
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The integration in ξ is over the compact set {ξ : |ξ| ≤ cR}. Using integration by
parts, we can write

K(x, y) = (1 + |x− y|2)−MLM(x, y),

where LM is a bounded smooth function and M is arbitrarily large. From here,
we immediately get that τ(x,D) is bounded on Lp. We briefly indicate why the
statement about LM is true.

It is sufficient to prove that

‖∂βξ τ(x, ξ)‖L∞ . 1,

for |ξ| ≤ cR, which is equivalent to prove that, for j ≤ −1 and 1/R ≤ |(A∗)−jξ| ≤ R,

‖∂βξ [vj(ξ)σ(x, ξ)]‖L∞ . cj.

We show why this is true only for the first order derivative. Note that

vj(ξ)σ(x, ξ) = vj(ξ)σx(ξ) = wx((A
∗)−jξ),

where
wx(·) = v(·)σx((A∗)j·).

Since σ ∈ S0
1,0(A), from the inequalities (3.1), we have

|∂βξ σx[(A
∗)j·]((A∗)−jξ)| ≤ Cβ.

Therefore,

|∂ξ[vj(ξ)σx(ξ)]| = |∂ξ[wx((A∗)−jξ)]|
≤ ‖(A∗)−j‖(‖∂ξv‖L∞|σx(ξ)|+ ‖v‖L∞|∂ξσx[(A∗)j·]((A∗)−jξ)|)
. ‖(A∗)−j‖ . 1.

3.2.2. The “positive” part of the multiplier. The previous discussion indicates that we
can safely concentrate on the “positive” part of the given symbol, namely λ(x, ξ) =∑
j≥0

σj(x, ξ). We will show that, through a periodization argument, we can decompose

the positive part of σ into a convergent sum of elementary symbols.
For j ≥ 0, let

Λj(x, ξ) =
∑
k∈Zn

σj(x, (A
∗)j(ξ − 2πRk)),

where R is the positive real that determines the support of v (see previous subsection).
Recall that

σj(x, ξ) = vj(ξ)σ(x, ξ) = v((A∗)−jξ)σ(x, ξ).

Due to the support condition on v, it is easy to see that σj((x,A
∗)jξ) vanishes on

|ξ| ≥ R. Note also that Λj is a 2πRZn periodic function (as a function of ξ, for a
fixed x).

Let now ψ ∈ C∞ be compactly supported,

suppψ ⊂ {ξ : R−1 − ε < |ξ| < R + ε},
where 0 < ε < 1/(12R), and such that ψv = v on supp v. Then clearly,

σj(x, ξ) = ψ((A∗)−jξ)σj(x, ξ) = ψj(ξ)σj(x, ξ).
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Furthermore, we have

(3.12) σj(x, ξ) = ψj(ξ)Λj(x, (A
∗)−jξ).

Indeed, we can write

Λj(x, (A
∗)−jξ) = σj(x, ξ) +

∑
|k|6=0

σj(x, ξ − 2πR(A∗)jk),

and we distinguish two cases.
Case 1: |(A∗)−jξ| > R + ε

Then vj(ξ) = v((A∗)−jξ) = 0, therefore σj(x, ξ) = 0, and ψj(ξ) = 0. Consequently,
(3.12) holds.

Case 2: |(A∗)−jξ| ≤ R + ε
Then, for |k| 6= 0, we have

|(A∗)−j(ξ − 2πR((A∗)jk)| ≥ 2πR|k| − |(A∗)−jξ| ≥ 2πR|k| −R− ε > R.

This, in turn, implies that

σj(x, ξ − 2πR((A∗)jk)) = 0,

and again we have the equality (3.12).
If we now expand Λj into its Fourier series, we have

Λj(x, ξ) =
∑
k∈Zn

cjk(x)e−ik·ξ/R,

where

cjk(x) = (2πR)−n
∫
[−πR,πR]n

σj(x, (A
∗)jξ)e−ik·ξ/R dξ.

Using (3.12), we can further write

σj(x, ξ) =
∑
k∈Zn

(1 + |k|2)−(n+1)/2κjk(x)e−ik·(A
∗)−jξ/Rψ((A∗)−jξ),

where

κjk(x) = (1 + |k|2)(n+1)/2cjk(x).

Therefore, we see that

λ(x, ξ) =
∑
j≥0

σj(x, ξ) =
∑
k∈Zn

(1 + |k|2)−(n+1)/2σk(x, ξ),

where

σk(x, ξ) =
∞∑
j=0

κjk(x)e−ik·(A
∗)−jξ/Rψ((A∗)−jξ) =

∞∑
j=0

κjk(x)φ̂k(A∗)−jξ).

It is clear then that it is sufficient to prove the uniform boundedness (with respect
to the index k) of the multiplier operators Tσk , since

‖T‖L2→L2 ≤
∑
k∈Zn

(1 + |k|2)−(n+1)/2‖Tσk‖L2→L2 .
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The multipliers σk are our typical elementary symbols (compare to (3.5)). The only
thing left is to obtain the correct control on the coefficients κjk that would allow us
to conclude with an inequality like (3.7). This control is determined by the estimates
on the symbol σ ∈ S0

1,0(A). Recall that

cjk(x) = (2πR)−n
∫
e−ik·ξ/Rσj(x, (A

∗)jξ) dξ.

If we integrate by parts, we can gain |k|−N (for N as large as we please) as long
as we can bound ∂Nξ σj(x, (A

∗)jξ). This in turn, will imply that the coefficients κjk
are bounded (again, compare with (3.5) where we required that the mj coefficients
are bounded). We prove that we have indeed the right control on the coefficients as
follows.

Lemma 3.3. Suppose that the symbol σ is in the class S0
1,0(A). Let v be a C∞

function such that supp v ⊂ {ξ : 1/R < |ξ| < R}. For each j ∈ Z, define

σj(x, ξ) = σ(x, (A∗)jξ).

Then, for all β and some constants Cβ > 0,

||∂β(vσj)||L∞ξ ≤ Cβ.

Proof. By the condition on the support of v and by the product rule we have

||∂βξ (vσj)||L∞ξ = sup
1/R<|ξ|<R

|∂β(vσjx)(ξ)| ≤ C sup
|α|≤|β|

sup
1/R<|ξ|<R

|∂ασjx(ξ)|.

Given any ξ in the annulus 1/R < |ξ| < R, define η = (A∗)jξ. Note that ρA∗(η) ∼
| detA|j. Hence, by (3.1)

|∂ασjx((A∗)−jη)| = |∂ασjx(ξ)| ≤ Cα.

This completes the proof of the lemma. �

Corollary 3.4. For any N > 0 and for all x, we have

cjk(x) = (2πR)−n
∫
e−ik·ξ/Rv(ξ)σj(x, ξ)dξ = O(|k|−N) as |k| → ∞

and cjk(x) = O(1) as |j| → ∞.

Remark 3.1. The previous corollary translates into saying that the coefficients of an
elementary symbols, which we denoted by mj, are smooth and bounded. In fact, a
completely analogous argument to the one employed in Lemma 3.3 shows that we
can control the L∞ norm of the derivatives of the coefficients and get that

‖∂αmj‖L∞ ≤ Cα,

for all multi-indices α and some constants Cα > 0.
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3.3. Boundedness of elementary pseudodifferential operators. We come back
now to inequality (3.7). We wish to show that for a family (mj) of appropriately

smooth and bounded functions, and (fj) ∈ L2 such that supp f̂k∩ supp f̂j = ∅ for |j−
k| > J , we have

(3.13) ‖
∑
j≥0

mjfj‖L2 ≤ C(
∑
j≥0

‖fj‖2L2)1/2.

Our argument is based on the following decomposition of the coefficients mj, j ≥ 0
into their “good” and “bad” parts; our decompositions is a slight modification of the
one that appears in [12].

Claim 2. We can write mj = gj + bj, where ‖gj‖L∞ . 1, ‖bj‖L∞ . (λ−)−j, and

supp f̂jgj ⊂ {ξ : (2R)−1 < |(A∗)−jξ| < R + (2R)−1}.
The proof of the claim is as follows. Consider K ∈ C∞c such that K̂(0) = 1 and

K̂(ξ) = 0 on |ξ| > (2R)−1. Define as usual

Kj(x) = | detA|jK(Ajx) = bjK(Ajx),

and let

gj = Kj ∗mj, and bj = mj − gj.
By construction, mj = gj + bj. The estimate of the good part is easy, since clearly

(3.14) ‖gj‖L∞ ≤ ‖K‖L1‖mj‖L∞ .
To control the bad part, we use the Mean Value Theorem and the fact that

∫
Kj(u) =∫

K(u) = K̂(0) = 1 to get

|bj(x)| ≤
∫
|mj(x)−mj(x− u)||Kj(u)| du .

∫
|u|bj|K(Aju)| du

.
∫
|A−ju||K(u)| du ≤ c(λ−)−j

∫
|u||K(u)| du . (λ−)−j.

(3.15)

Finally, we show the inclusion of supports. Let us assume first that mj ∈ L2. Then
gj ∈ L2 and

supp f̂jgj ⊆ supp f̂j + supp ĝj ⊆ supp f̂j + supp K̂j.

Since

supp f̂j ⊂ {ξ : R−1 < |(A∗)−jξ| < R} and supp K̂j ⊂ {ξ : |(A∗)−jξ| < (2R)−1},
we conclude that

supp f̂jgj ⊂ {ξ : (2R)−1 < |(A∗)−jξ| < R + (2R)−1}.
If mj 6∈ L2, we approximate it with the cutoffs mjχ{|ξ|<N} and then let N → ∞ to
arrive to the same conclusion.

In order to prove (3.13), it therefore suffices to estimate∥∥∥∥∑
j≥0

bjfj

∥∥∥∥
L2

and

∥∥∥∥∑
j≥0

gjfj

∥∥∥∥
L2

.



ANISOTROPIC INNHOMOGENEOUS PSEUDODIFFERENTIAL SYMBOLS 17

We utilize the estimates shown in Claim 2 and the Cauchy-Schwarz inequality.∥∥∥∥∑
j≥0

bjfj

∥∥∥∥
L2

≤
∑
j≥0

‖bj‖L∞‖fj‖L2 ≤
(∑

j≥0

‖bj‖2L∞
)1/2(∑

j≥0

‖fj‖2L2

)1/2

.

(∑
j≥0

(λ−)−2j
)1/2(∑

j≥0

‖fj‖2L2

)1/2

= λ−((λ−)2 − 1)−1/2
(∑

j≥0

‖fj‖2L2

)1/2

.

(3.16)

With the notation in Lemma 3.2, let I be the smallest positive integer such that
(λ−)I ≥ c(2R2 + 1). Then, for all i > I, we have

{ξ : (2R)−1 < |ξ| < R + (2R)−1} ∩ {ξ : (2R)−1 < |(A∗)−iξ| < R + (2R)−1} = ∅.

By applying A∗k, we conclude that

supp f̂kgk ∩ supp f̂igi = ∅, for all |i− k| > I.

Therefore, ∥∥∥∥∑
j≥0

gjfj

∥∥∥∥
L2

≤
I−1∑
i=0

∥∥∥∥∑
k≥0

gi+Ikfi+Ik

∥∥∥∥
L2

≤ I

(∑
j≥0

‖gjfj‖2L2

)1/2

. I‖K‖L1

(∑
j≥0

‖fj‖2L2

)1/2

.

(3.17)

Estimates (3.16) and (3.17) yield estimate (3.13), thus finishing the proof of Theorem
3.1.

It is worth noting that the same proof works with minor modifications if we assume
that σ ∈ S0

1,δ(A), 0 ≤ δ < 1. We end the paper by exhibiting an example of an

anisotropic symbol in S0
1,1(A) which is unbounded on L2.

Example 3.2. Let 0 6= v ∈ Rn be fixed. Let ϕ be a smooth bump such that

suppϕ ⊂ B(v, δ), and ϕ(ξ) = 1 on B(v, δ/2)

for some δ > 0, where B(v, δ) = {ξ ∈ Rn : |ξ−v| < δ}. Since the matrix A∗ is expan-
sive we can choose δ > 0 sufficiently small such that the dilated balls (A∗)j(B(v, δ))
are disjoint for j ∈ Z. Define the symbol

(3.18) σ(x, ξ) =
∞∑
j=1

e−ix·(A
∗)jvϕ((A∗)−jξ).

Due to our choice of δ > 0, we notice that for every ξ ∈ Rn, this summation contains
at most one non-zero term. Recall that σ ∈ S0

1,1(A) if

(3.19) |∂αx∂
β
ξ [σ(A−k·, A∗k·)](Akx, (A∗)−kξ)| ≤ Cα,β,

for all (x, ξ) ∈ Rn × Rn \ {0} and k ∈ Z is such that 1 + ρA∗(ξ) ∼ bk. Observe that
ϕ((A∗)−jξ) 6= 0 implies that ξ ∈ (A∗)j(B(v, δ)) and thus ρA∗(ξ) ∼ bj. Thus, the
dilates in (3.19) undo those present in (3.18), which shows that σ ∈ S0

1,1(A).
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Next, we shall show that for the symbol considered, σ(x,D) : L2 6→ L2. Fix f ∈ S
such that supp f̂ ⊂ B(0, r) for some r > 0. For N ∈ N, define

(3.20) FN(x) =
N∑
j=1

1

j
eix·(A

∗)jvf(x).

Letting fj(x) = eix·(A
∗)jvf(x), we see that f̂j(ξ) = f̂(ξ − (A∗)jv), and supp f̂j ⊂

B((A∗)jv, r). Since A∗ is expansive we can choose r > 0 sufficiently small such that
B((A∗)jv, r) ⊂ (A∗)j(B(v, δ/2)) for all j ∈ N. This automatically yields that

supp f̂j ∩ supp f̂k = ∅ for j 6= k,

and that for all j ∈ N,

ξ ∈ supp f̂j =⇒ ϕj(ξ) = 1.

Hence, by the orthogonality of fj’s

‖FN‖L2 =

( N∑
j=1

1

j2
‖fj‖2L2

)1/2

≤ π√
6
‖f‖L2 .

Finally, since σ(x, ξ) = e−ix·(A
∗)jv for ξ ∈ suppϕj, by the Fourier inversion formula

we have

σ(x,D)(FN)(x) =

∫
Rn
σ(x, ξ)eix·ξ

N∑
j=1

1

j
f̂(ξ − (A∗)jv) dξ

=
N∑
j=1

1

j

∫
Rn
eix·(ξ−(A

∗)jv)f̂(ξ − (A∗)jv) dξ =
1

(2π)n

( N∑
j=1

1

j

)
f.

Thus, there exists constant C > 0, such that for any N ∈ N,

‖σ(x,D)FN‖L2 ≥ C logN‖f‖L2 ≥ C
√

6

π
‖FN‖L2 .

This proves that σ(x,D) is not bounded on L2.

Remark 3.2. We have demonstrated that the anisotropic class of inhomogeneous
symbols S0

δ,δ(A), 0 ≤ δ < 1, shares similar L2 boundedness results with its isotropic
counterpart. This comment also applies to the Lp boundedness, 1 < p < ∞, of
the smaller anisotropic class S0

1,δ(A), 0 ≤ δ < 1. The next natural step would be a
systematic study of the Lp boundedness properties of more exotic anisotropic classes
of symbols Smγ,δ(A), as carried out in the isotropic setting by Fefferman [8] or Miyachi
[15]. However, this goes beyond the scope of this paper which merely aimed at
showing plausibility of a larger theory of anisotropic pseudo-differential operators.
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[11] L. Hörmander, On the L2 continuity of pseudo-differential operators, Comm. Pure Appl. Math.

24 (1971), 529–535.
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