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COMPACT BILINEAR OPERATORS AND COMMUTATORS

ÁRPÁD BÉNYI AND RODOLFO H. TORRES

ABSTRACT. A notion of compactness in the bilinear setting is explored. Moreover, com-
mutators of bilinear Calderón-Zygmund operators and multiplication by functions in a cer-
tain subspace of the space of functions of bounded mean oscillations are shown to be
compact.

1. INTRODUCTION

What is a compact bilinear operator and what is a good non-trivial example of it? This
article originates from these simple and natural questions. Natural, because we understand
rather completely the notion of continuity (or boundedness) of bilinear operators, and the
notions of continuity and compactness are tightly connected in the linear setting.

Interestingly, the notion of compactness in the multilinear setting can be traced back
to the foundational article of Calderón [3]. The natural definition given in [3, p. 119]
can easily be seen to be equivalent to the one we will present. But, to the best of our
knowledge, the notion of compactness in this setting has only been considered within the
context of interpolation; see also the recent work by Fernandez and da Silva [6] for more
on the relation between interpolation and compact multilinear operators.

Naturally appearing concrete examples of compact bilinear operators seem to be absent
in the literature until now. However, the experience in several different contexts tells that
commutators operators with special symbols tend to be “better” than just bounded. In
fact, a second motivation for this article is to extend to the bilinear setting a theorem of
Uchiyama [18] about linear commutators of Calderón-Zygmund operators and pointwise
multiplication. Uchiyama improved the boundedness result of Coifman, Rochberg and
Weiss [4] to compactness when the symbol is in an appropriate subspace of the John-
Nirenberg space BMO.

In order to draw an analogy between the notions of continuity and compactness in bi-
linear setting, we briefly recall the two basic notions of separate and joint continuity for a
bilinear operator. Let therefore X ,Y,Z be normed spaces, and let ∥ · ∥X ,∥ · ∥Y ,∥ · ∥Z denote
their corresponding norms; we will drop the corresponding indices if the space in question
is clear from the context. A bilinear operator T : X ×Y → Z is defined through its section
operators: Tx = T (x, ·) : Y → Z and Ty = T (·,y) : X → Z are required to be linear for all
(fixed) x ∈ X ,y ∈ Y . The two definitions we have in mind are the following.

(1) (Separate continuity) T is separately continuous if Tx and Ty are continuous for all
x ∈ X ,y ∈ Y .

(2) (Joint continuity) T is (jointly) continuous if it is continuous from X ×Y to Z; the
product space is normed, say, via ∥(x,y)∥= ∥x∥+∥y∥, x ∈ X , y ∈ Y .
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2 ÁRPÁD BÉNYI AND RODOLFO H. TORRES

As usual, the norm of the bilinear operator T is defined to be

∥T∥= inf{M > 0 : ∥T (x,y)∥ ≤ M∥x∥∥y∥, for all (x,y) ∈ X ×Y},
and we say that T is bounded if ∥T∥< ∞. It is a well-known simple exercise to show that
the notions of continuity and boundedness are equivalent. Also trivially, continuity implies
separate continuity. Moreover, somewhat surprisingly, the two notions are equivalent if
either of the spaces X or Y is assumed to be Banach. This known fact is proved in Rudin’s
book [13, Theorem 2.17] under the more general assumption that X is an F-space and
Y is metrizable. The proof relies on the Banach-Steinhaus principle. Under the stronger
hypothesis that both X and Y are Banach, it is stated as an exercise in Schechter’s book
[15, Exercise 24, p. 74]. It is worth pointing out that the completeness of either one of
the spaces X or Y is crucial. For example, it is straightforward to check that if we let
X =Y = Z =C(0,1), the space of continuous functions on [0,1], and we endow it with the
L1 norm (hence, making X incomplete), then T ( f ,g) = f · g is separately continuous but
not continuous.

Taking into consideration the brief discussion above, we are naturally lead to consider
the two notions of (joint) compactness and separate compactness for a bilinear operator.
The next section is devoted to the definitions and basic properties of such operators, many
of which are proved in the Appendix. The extension to the bilinear setting of the result of
Uchiyama mentioned before is presented in Section 3.

2. COMPACT AND SEPARATELY COMPACT BILINEAR OPERATORS

In what follows, we write Br,X = {x ∈ X : ∥x∥ ≤ r} to denote the closed ball of radius
r centered at the origin in the normed space X . Again, when the context is clear, we will
drop the index X and simply write Br.

Definition 1. A bilinear operator T : X ×Y → Z is called (jointly) compact if T (B1,X ×
B1,Y ) is precompact in Z.

Proposition 1. Let T : X ×Y → Z be a bilinear operator. The following statements are
equivalent:

(c1) T is compact;
(c2) T (B1,X×Y ) is precompact;
(c3) For all r > 0, T (Br,X×Y ) is precompact;
(c4) For all r1,r2 > 0, T (Br1,X ×Br2,Y ) is precompact;
(c5) For all bounded B ⊂ X ×Y , T (B) is precompact;
(c6) For all bounded B1 ⊂ X ,B2 ⊂ Y , T (B1 ×B2) is precompact;
(c7) For all bounded sequences {(xn,yn)} ⊂ X ×Y , the sequence {T (xn,yn)} has a

convergent subsequence.
Furthermore, if Z is Banach, then (c1) is also equivalent to

(c8) For all bounded B ⊂ X ×Y , T (B) is totally bounded.

The collection of all bounded bilinear operators T : X ×Y → Z is denoted by B(X ×
Y,Z). The collection of all compact bilinear operators T : X ×Y → Z is denoted by K (X ×
Y,Z). With this notation, we have the following.

Proposition 2. If T1,T2 ∈ K (X ×Y,Z), and α,β ∈ C, then T = αT1 +βT2 ∈ K (X ×Y,Z).

The proof of Propositions 1 and 2 are straightforward and we include them for the
convenience of the reader in the Appendix. In particular, (c8) is how compact bilinear
operators are defined in [3].

An immediate consequence of Proposition 2 is given next.
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Corollary 1. K (X ×Y,Z) is a linear subspace of B(X ×Y,Z).

Proof. The fact that K (X ×Y,Z) is a vector space follows directly from Proposition 2.
For the inclusion K (X ×Y,Z) ⊂ B(X ×Y,Z), assume that the compact bilinear opera-
tor T is not bounded. Then, for some r > 0, there exists a sequence (xn,yn) ∈ Br,X×Y ,
and ∥T (xn,yn)∥ → ∞. Thus, {T (xn,yn)} could not have a convergent subsequence, so
T (Br,X×Y ) would not be precompact, contradicting (c3). �

The statement of the following result, which will be used in the next section, can be also
found in [3]. For completeness, we provide here a succint proof.

Proposition 3. If Z is Banach, then K (X ×Y,Z) is closed in B(X ×Y,Z).

Proof. Let Tn ∈ K (X ×Y,Z) and T ∈ B(X ×Y,Z) such that Tn → T . We want to show that
T ∈ K (X ×Y,Z). To this end, let {(xn,yn)} be a bounded sequence in X ×Y . Since T1
is compact, there exists a subsequence {(xn1

k
,yn1

k
)} such that {T1(xn1

k
,yn1

k
)} is convergent.

Since T2 is compact, we can extract {(xn2
k
,yn2

k
)} a subsequence of {(xn1

k
,yn1

k
)} such that

{T2(xn2
k
,yn2

k
)} is convergent. If we let x j = xn j

j
,y j = yn j

j
, then {Tn(x j,y j)} j≥1 is convergent

for all n ≥ 1. We have

∥T (xi,yi)−T (x j,y j)∥ ≤ ∥T −Tn∥(∥xi∥∥yi∥+∥x j∥∥y j∥)+∥Tn(xi,yi)−Tn(x j,y j)∥.
Since (x j) and (y j) are bounded sequences, for some M > 0 we have ∥x j∥∥y j∥ ≤ M for
all j ≥ 1. Let ε > 0. Because Tn → T , there exists some N ∈ N such that for all n ≥ N,
∥T −Tn∥< ε/(4M). Since {TN(x j,y j)} j≥1 is Cauchy, there exists a J ∈N such that for all
i, j ≥ J, ∥TN(xi,yi)−TN(x j,y j)∥ < ε/2. Thus, ∥T (xi,yi)−T (x j,y j)∥ < ε for all i, j ≥ J,
which proves that {T (xi,yi)} is Cauchy and, since Z is Banach, also convergent. By (c7),
we get that T must be compact. �

As in the linear case, compact bilinear operators interact nicely with bounded ones via
composition. Since this property plays no role in Section 3, we defer the interested reader
to the Appendix for a brief discussion of this topic. After this introduction to the notion of
compactness, we seek out the notion of separate compactness.

Definition 2. A bilinear operator T : X ×Y → Z is called compact in the first variable if
Ty : X → Z is compact for all y∈Y . T is called compact in the second variable if Tx : Y → Z
is compact for all x ∈ Y . T is called separately compact if T is compact both in the first
and second variable.

As expected, the immediate observation now is that the notion of separate compactness
is weaker than that of compactness. Indeed, for a fixed x ∈ X , let r > 0 such that ∥x∥< r,
that is x ∈ Br,X . Then

Tx(B1,Y )⊂ T (B1+r,X×Y ),

and then use the fact that a closed subset of a compact set is necessarily compact; see
Proposition 1. A similar reasoning applies to Ty.

As above, we also see that a separately compact bilinear operator T must be separately
continuous. But recall that this does not necessarily mean T is continuous; in fact, we will
show an example of a separately compact operator which is not bounded. Nevertheless,
the assumption that T is bounded could be added in both Definitions 1 and 2 as long as
at least one of the spaces X or Y is Banach. A few elementary examples illustrating the
two notions of compactness are detailed in the Appendix. However, our main interest in
the notion of compactness stems from some important objects in harmonic analysis: the
bilinear commutators.
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3. BILINEAR COMMUTATORS

Let T to be a bilinear Calderón-Zygmund operator as defined in [7] and assume (for
simplicity) that the kernels K and ∇K satisfy the usual conditions in such theory. Let
b,b1,b2 ∈ BMO(Rn). We are interested in the following three bilinear commutators:

[T,b]1( f ,g)(x) = (T (b f ,g)−bT ( f ,g))(x)

[T,b]2( f ,g)(x) = (T ( f ,bg)−bT ( f ,g))(x)

[[T,b1]1 ,b2]2( f ,g)(x) = ([T,b1]1( f ,b2g)−b2[T,b1]1( f ,g))(x).

Formally, they take the form

[T,b]1( f ,g)(x) =
∫
Rn

∫
Rn

K(x,y,z)(b(y)−b(x)) f (y)g(z)dydz,

[T,b]2( f ,g)(x) =
∫
Rn

∫
Rn

K(x,y,z)(b(z)−b(x)) f (y)g(z)dydz,

[[T,b1]1 ,b2]2( f ,g)(x) =
∫
Rn

∫
Rn

K(x,y,z)(b1(y)−b1(x))(b2(z)−b2(x)) f (y)g(z)dydz.

By the results in [12], [17], [9], and [11], these operators map Lp ×Lq → Lr with 1/p+
1/q = 1/r for all 1 < p,q < ∞, with estimates of the form

(1) ∥[T,b]1( f ,g)∥Lr ,∥[T,b]2( f ,g)∥Lr . ∥b∥BMO∥ f∥Lp∥g∥Lq ,

(2) ∥[[T,b1]1 ,b2]2( f ,g)∥Lr . ∥b1∥BMO∥b2∥BMO∥ f∥Lp∥g∥Lq .

We will show their compactness properties, when the symbols b,b1,b2 are in CMO.
In this article, CMO denotes the closure of C∞

c in the BMO topology. As pointed out by
Bourdaud et al. in [2] this space coincides with V MO (the space of functions of vanishing
mean oscillation) studied by Coifman and Weiss in [5], but differs from other versions of
V MO found in the literature. In particular, the original VMO space of Sarason [14] is the
closure of the uniformly continuous functions in BMO, which coincides with CMO in the
the case of the torus but not in Rn. The notation CMO (also used by Uchiyama) seems to
go back to Neri [10], see the historical comments in Bourdaud [1]. See also Stein’s book
[16, Chapter IV]) for further related properties of BMO. We will only need the fact that,
by definition then, C∞

c is dense in CMO.
The results we shall prove should be viewed as the bilinear counterparts of Theorem 2

of Uchiyama [18]. As in [18] we will rely on the Fréchet-Kolmogorov Theorem character-
izing the pre-compactness of a set in Lr. More precisely, see Yosida’s book [19, p.275], a
set H is pre-compact in Lr, 1 ≤ r < ∞ if and only if,

(3) sup
h∈H

∥h∥Lr < ∞,

(4) lim
A→∞

∥h∥Lr({|x|>A} = 0 uniformly in h ∈ H .

and

(5) lim
t→0

∥h(·+ t)−h(·)∥Lr = 0 uniformly in h ∈ H ,

Theorem 1. If b ∈ CMO, 1/p+ 1/q = 1/r, 1 < p,q < ∞ and 1 ≤ r < ∞, then [T,b]1 :
Lp×Lq → Lr is compact. Similarly, if b1,b2 are also in CMO, then [T,b2]2 and [T,b1]1 ,b2]2
are compact for the same range of exponents.
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Proof. By (1) and Proposition 3, it is enough to show the result for b ∈ C∞
c . Moreover,

given the boundedness of the operator and a density argument, to apply (3)–(5) in our
situation, it will be enough to prove that for all f ,g ∈ C∞

c the following two conditions
hold:

a) Given ε > 0, there exists an A > 0 (A = A(ε) but independent of f and g) with the
property that

(6)
(∫

|x|>A

∣∣[T,b]1( f ,g)(x)
∣∣r dx

)1/r

. ε∥ f∥Lp∥g∥Lq .

b) Given ε ∈ (0,1) there exists a sufficiently small t0 (t0 = t0(ε) but independent of f
and g) such that for all 0 < |t|< t0,

(7) ∥[T,b]1( f ,g)(·)− [T,b]1( f ,g)(·+ t)∥Lr . ε∥ f∥Lp∥g∥Lq .

We pick A > 1 sufficiently large so that |x|> A implies x ̸∈ suppb; in particular, we will
pick A > 2max{|y| : y ∈ suppb}. We have the following sequence of inequalities:∣∣[T,b]1( f ,g)(x)

∣∣≤ ∫ ∫
y∈suppb

|K(x,y,z)||b(y)|| f (y)||g(z)|dydz

≤ ∥b∥L∞

∫ ∫
y∈suppb

| f (y)||g(z)|
(|x− y|+ |x− z|)2n dydz

≤
∫

y∈suppb

| f (y)|
|x− y|n

∫ |g(z)|
(|x− y|+ |x− z|)n dzdy

≤ 2n|x|−n
∫

y∈suppb
| f (y)|

(∫
(|x− y|+ |x− z|)−nq′ dz

)1/q′

dy∥g∥Lq

≤ 2n|x|−n|suppb|1/p′ |∥ f∥Lp

(∫
(1/2+ |z|−nq′)dz

)1/q′

∥g∥Lq

. |x|−n|suppb|1/p′∥ f∥Lp∥g∥Lq .

The previous inequality allows us now to integrate
∣∣[T,b]1( f ,g)(x)

∣∣r over the set {x : |x|>
A} and obtain (6).

To prove (7) we first decompose the expression inside the Lr norm on the left hand side
as follows

[T,b]1( f ,g)(x)− [T,b]1( f ,g)(x+ t) = A(x)+B(x)+C(x)+D(x),

where, for a convenient choice of δ > 0 to be specified later,

A(x) =
∫ ∫

|x−y|+|x−z|>δ
K(x,y,z)(b(x+ t)−b(x)) f (y)g(z)dydz,

B(x) =
∫ ∫

|x−y|+|x−z|>δ
(K(x,y,z)−K(x+ t,y,z)(b(y)−b(x+ t)) f (y)g(z)dydz,

C(x) =
∫ ∫

|x−y|+|x−z|<δ
K(x,y,z)(b(y)−b(x)) f (y)g(z)dydz,

D(x) =
∫ ∫

|x−y|+|x−z|<δ
K(x+ t,y,z)(b(x+ t)−b(y)) f (y)g(z)dydz.

If we now let T∗( f ,g) denote the maximal truncated bilinear singular integral operator

T∗( f ,g)(x) = sup
δ>0

∣∣∣∣∫ ∫
|x−y|+|x−z|>δ

K(x,y,z) f (y)g(z)dydz
∣∣∣∣ ,
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then

|A(x)| ≤ |b(x+ t)−b(x)||T∗( f ,g)(x)|.

By a result of Grafakos-Torres [8] (see the arguments in p.1264 therein), we obtain

(8) ∥A∥Lr ≤ |t|∥∇b∥L∞∥ f∥Lp∥g∥Lq .

In order to estimate B(x), we use the smoothness estimate on the kernel K and get

|B(x)|. |t|∥b∥L∞

(∫
|x−y|>δ/2

∫ | f (y)||g(z)|
(|x− y|+ |x− z|)2n+1 dydz

+
∫
|x−z|>δ/2

∫ | f (y)||g(z)|
(|x− y|+ |x− z|)2n+1 dydz

)
,

provided |t| < δ/4. The two terms inside the parentheses are symmetric in y,z, thus we
estimate them the same way. For example, we have∫

|x−z|>δ/2

∫ | f (y)||g(z)|
(|x− y|+ |x− z|)2n+1 dydz =

∫
|x−z|>δ/2

|g(z)|
|x− z|n+1 (ϕ|x−z| ∗ | f |)(x)dz,

where we denoted by ϕs(x) = s−nϕ(s−1x), with ϕ(x) = (|x|+1)−2n−1 an integrable, radial,
decreasing function. We can bound pointwise each of the terms above as follows:

(ϕ|x−z| ∗ | f |)(x)≤ M(| f |)(x) and
∫
|x−z|>δ/2

|g(z)|
|x− z|n+1 . 1

δ
M(|g|)(x),

where M( f )(x) denotes the Hardy-Littlewood maximal function. Therefore, we conclude
that

|B(x)|. |t|
δ
∥b∥L∞ M(| f |)(x)M(|g|)(x).

The Lp boundedness of the maximal operator then gives

(9) ∥B∥Lr . |t|
δ
∥b∥L∞∥ f∥Lp∥g∥Lq .

To estimate the third term, we use the size estimate on the Calderón-Zygmund kernel K.
We have

|C(x)| ≤ ∥∇b∥L∞

∫ ∫
|x−y|+|x−z|<δ

|x− y|
(|x− y|+ |x− z|)2n | f (y)||g(z)|dydz

≤ ∥∇b∥L∞

∫ ∫
|x−y|+|x−z|<δ

| f (y)||g(z)|
(|x− y|+ |x− z|)2n−1 dydz

≤ ∥∇b∥L∞ δ
(

δ−1/2
∫
|x−y|<δ

| f (y)|
|x− y|n−1/2 dy

)(
δ−1/2

∫
|x−z|<δ

|g(z)|
|x− z|n−1/2 dz

)
. δ∥∇b∥L∞ M(| f |)(x)M(|g|)(x).

Hence,

(10) ∥C∥Lr . δ∥∇b∥L∞∥ f∥Lp∥g∥Lq .

Finally, for the last term we proceed in an analogous manner, by replacing x with x+ t and
the region of integration {y : |x− y| < δ} with the larger one {y : |(x+ t)− y| < δ+ |t|}.
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Thus

|D(x)| ≤ ∥∇b∥L∞(δ+ |t|)1/2δ1/2
(
(δ+ |t|)−1/2

∫
|(x+t)−y|<δ+|t|

| f (y)|
|(x+ t)− y|n−1/2 dy

)
×

×
(

δ−1/2
∫
|x−z|<δ

|g(z)|
|x− z|n−1/2 dz

)
≤ (δ+ |t|)1/2δ1/2∥∇b∥L∞ M(| f |)(x+ t)M(|g|)(x).

This leads now to

(11) ∥D∥Lr . δ1/2(δ+ |t|)1/2∥∇b∥L∞∥ f∥Lp∥g∥Lq .

Let us now define t0 = ε2

8(1+∥b∥L∞+∥∇b∥L∞ ) and for each 0< |t|< t0, select δ= |t|/ε. Inequal-
ities (8)-(11) imply (7). Combining this with the inequalities (1) and (6), we conclude that
[T,b]1 is compact. In a completely analogous way, if b2 ∈CMO, then [T,b2]2 is compact.

Moreover, although for general symbols in BMO the second order commutator is harder
to study, for symbols in CMO it turns out to be easy to handle because of the extra cancella-
tion, so we only sketch the arguments needed. As before, we may assume that b1,b2 ∈C∞

c
and we need to check two conditions a) and b) similar to the ones before.

The first condition that we need is in fact easier to check compared to the argument we
gave for (6). Let us select a sufficiently large A such that A > 2max{|x| : x ∈ suppb1 ∪
suppb2}, and so that for |x| > A we have x ̸∈ suppb1 ∩ suppb2. The size estimate on the
kernel K yields the following sequence of inequalities,

∣∣[[T,b1]1 ,b2]2( f ,g)(x)
∣∣≤ ∥b1∥L∞∥b2∥L∞

∫
y∈suppb1

∫
z∈suppb2

| f (y)||g(z)|dydz
(|x− y|+ |x− z|)2n

≤ ∥b1∥L∞∥b2∥L∞

∫
y∈suppb1

| f (y)|
|x− y|n

dy
∫

z∈suppb2

|g(z)|
|x− z|n

dz

. ∥b1∥L∞∥b2∥L∞∥ f∥Lp∥g∥Lq |suppb1|1/p′ |suppb2|1/q′ |x|−2n.

The transition to the last inequality used the fact that if |x|> A, then min(|x− y|, |x− z|)≥
|x|/2. In particular, we easily obtain

(12)
(∫

|x|>A

∣∣[[T,b1]1 ,b2]2( f ,g)(x)
∣∣r dx

)1/r

. ε∥ f∥Lp∥g∥Lq .

Our final task is to prove an Lr estimate on

[[T,b1]1,b2]2( f ,g)(x)− [[T,b1]1,b2]2( f ,g)(x+ t).

In analogy to the decomposition done for (7), we break this into a sum of four terms

E(x)+F(x)+G(x)+H(x),



8 ÁRPÁD BÉNYI AND RODOLFO H. TORRES

where

E(x) =
∫ ∫

|x−y|+|x−z|>δ
K(x,y,z)(b1(x+ t)−b1(x))(b2(z)−b2(x)) f (y)g(z)dydz,

F(x) =
∫ ∫

|x−y|+|x−z|>δ
(K(x,y,z)(b2(z)−b2(x))−K(x+ t,y,z)(b2(z)−b2(x+ t)))×

× (b1(y)−b1(x+ t)) f (y)g(z)dydz,

G(x) =
∫ ∫

|x−y|+|x−z|<δ
K(x,y,z)(b1(y)−b1(x))(b2(z)−b2(x)) f (y)g(z)dydz,

H(x) =
∫ ∫

|x−y|+|x−z|<δ
K(x+ t,y,z)(b1(y)−b1(x+ t))(b2(x+ t)−b2(z)) f (y)g(z)dydz.

The terms E,G,H are estimated, with slight changes, using the same tools as in the proof
for [T,b]1. For example, if we consider the E term, then we can write, similarly to the A
term before,

|E(x)| ≤ |b1(x+ t)−b1(x)|(|T∗( f ,b2g)(x)|+ |b2(x)||T∗( f ,g)(x)|).
Thus, we get

∥E∥Lr ≤ |t|∥∇b1∥L∞(∥ f∥Lp∥b2g∥Lq +∥b2∥L∞∥ f∥Lp∥g∥Lq)

≤ 2|t|∥∇b1∥L∞∥b2∥L∞∥ f∥Lp∥g∥Lq .

To deal with the F term, we rearrange a little bit the term inside the integral and write F as
a sum of two terms, F1 +F2, where

F1(x) =
∫ ∫

(K(x,y,z)−K(x+ t,y,z))(b1(y)−b1(x+ t))(b2(z)−b2(x+ t)) f (y)g(z)dydz

F2(x) =
∫ ∫

K(x,y,z)(b1(y)−b1(x+ t))(b1(x+ t)−b1(x)) f (y)g(z)dydz;

the integration is, of course, over the set {(y,z) : |x− y|+ |x− z|> δ}.
Now, the F1 term corresponds to having two B terms like before:∫ ∫

(K(x,y,z)−K(x+ t,y,z))(b1(y)−b1(x+ t)) f (y)(b2g)(z)dydz and

b2(x+ t)
∫ ∫

(K(x,y,z)−K(x+ t,y,z))(b1(y)−b1(x)) f (y)g(z)dydz.

Thus, the only difference in their estimate, compared to what we have done for the B term,
is an extra multiplying ∥b2∥L∞ term; this, of course, has no effect on the outcome.

For the F2 term we do something similar, except that this behaves more like two A terms
like before. First, we factor out the b1(x+ t)− b1(x), which will contribute a multiple
t∥∇b1∥L∞ . The remaining part is∫ ∫

K(x,y,z)(b1 f )(y)g(z)dydz−b1(x+ t)
∫ ∫

K(x,y,z) f (y)g(z)dydz,

which we estimate as the term E above. The b1 is now absorbed in the maximal function
T∗ by the function f , while in E it was absorbed by g.

Combining all the estimates for the terms E,F,G,H, we end up with the desired control

(13) ∥[[T,b1]1,b2]2( f ,g)(x)− [[T,b1]1,b2]2( f ,g)(x+ t)∥Lr . ε∥ f∥Lp∥g∥Lq ,

when |t| is chosen sufficiently small depending on ε. Estimates (2), (12) and (13) guarantee,
via (3)–(5), the compactness of the second order commutator. �
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4. APPENDIX

4.1. Proof of Proposition 1. (c1) ⇒ (c2) Recall that we endowed X ×Y with the norm
∥(x,y)∥= ∥x∥+∥y∥. It is clear that

B1,X×Y ⊂ B1,X ×B1,Y ⊂ B2,X×Y = 2B1,X×Y

and therefore

T (B1,X×Y )⊂ T (B1,X ×B1,Y )⊂ T (B2,X×Y )⊂ 4T (B1,X×Y ).

Since any closed subset of a compact set is compact, our assertion follows.
(c2) ⇒ (c3) We simply need to notice that

T (Br,X×Y ) = r2T (B1,X×Y ).

(c3) ⇒ (c4) Assuming 0 < r1 ≤ r2,

T (Br1,X×Y )⊂ T (Br1,X ×Br2,Y )⊂ T (Br1+r2,X×Y ).

Again, since any closed subset of a compact set is compact, the assertion follows.
(c4), c(6) ⇒ (c1) and (c5) ⇒ (c2) are trivially true.
(c2) ⇒ (c5) and (c3) ⇒ (c6) follow from the definition of boundedness.
(c1) ⇔ (c7) follows from the fact that in any metric space, precompactness is equivalent

to sequential compactness.
(c1) ⇔ (c8) is similar. Under the additional assumption that Z is Banach, we know that

T (B) is precompact if and only if T (B) is totally bounded, which is the same as having
T (B) totally bounded.

4.2. Proof of Proposition 2. Let U ⊂ X ×Y be bounded and {T (xn,yn)} be a sequence in
T (U). Let zn = T (xn,yn), z′n = T1(xn,yn), and z′′n = T2(xn,yn), so that zn = αz′n+βz′′n . Since
T1 and T2 are compact, there exist subsequences {z′nk

} and {znk j
} that are convergent in

Z. Let znk j
= αz′nk j

+βz′′nk j
. Then {znk j

} is convergent, so T (U) is precompact. The result
follows from (c5).

4.3. Composition with compact bilinear operators. Assume that T ∈ B(X ×Y,Z) and
S1 : X → X ,S2 : Y → Y,S3 : Z → Z are three linear operators. We define the concept of
composition between linear and bilinear operators as follows.

Definition 3. Left composition:

S3T : X ×Y → Z,S3T (x,y) = S3(T (x,y)).

Right composition:

T (S1,S2) : X ×Y → Z,T (S1,S2)(x,y) = T (S1(x),S2(y).

We have the following straightforward result.

Proposition 4. If T ∈ K (X ×Y,Z), and S1,S2,S3 are bounded, then S3T ∈ K (X ×Y,Z)
and T (S1,S2) ∈ K (X ×Y,Z).
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4.4. Some elementary examples. Here are a few more illustrations of the concepts of
compactness in bilinear setting. Some of the examples below are modifications of classical
ones used in other topics in functional analysis.
Example 1. Let X = Y = Z =C(0,1) the space of continuous functions on [0,1] endowed
now with the supremum norm. Define again T : X ×Y → Z by T ( f ,g) = f · g. If we fix
f = 1 (the constant function 1), we get that Tf = IdX (the identity operator). Since X is
infinitely dimensional, by Riesz’s theorem we get that Tf is not compact. So T is neither
compact in the first nor the second variable.
Example 2. To wit, with the notation in the previous example, if S : X →X is compact, then
T1( f ,g) = S( f )g is compact in the first variable, but not in the second, while T2( f ,g) =
f S(g) is compact in the first variable but not the first. Clearly then, neither of the Ti’s are
separately compact, and thus these Ti’s are not compact either.
Example 3. We let again X = Y = Z = C(0,1) endowed with the supremum norm, but
now

T ( f ,g)(x) =
∫ x

0
f (t)g(t)dt.

Clearly, T is a well defined bilinear operator. Let

K = T (B1 ×B1).

Note that if h = T ( f ,g) ∈ K, then

∥h∥∞ ≤ ∥ f∥∞∥g∥∞ < 1,

that is, K is a bounded set in the supremum norm of Z.
Furthermore, if x,y ∈ [0,1] and h = T ( f ,g) ∈ K, we have

|h(x)−h(y)|= |
∫ y

x
f (t)g(t)dt| ≤ |x− y|,

which proves that K is a uniformly equicontinuous subset of Z.
Therefore, using the Arzelà-Ascoli theorem, we conclude that K is precompact in Z,

and hence T is a bilinear compact operator.
Example 4. Consider yet again X = Y = Z =C(0,1), but now X and Y are endowed with
the L1 norm while Z is endowed with the supremum norm. The bilinear operator T is the
one defined in Example 3.

Let us fix f ̸= 0 ∈ X and write K f = Tf (B1). Then, if h = Tf (g) ∈ K f ,g ∈ Y (with the
modified topology induced by L1), we have

∥h∥∞ ≤ ∥ f∥∞∥g∥1 < ∥ f∥∞,

that is, K f is a bounded set in the supremum norm of Z.
Furthermore, similarly as above, we get that

|h(x)−h(y)| ≤ ∥ f∥∞|x− y|,
which shows that K f is a uniformly equicontinuous subset of Z. Consequently, Arzelà-
Ascoli’s theorem shows that K f is precompact in Z. If f = 0 (the constant function 0), then
Tf (B1) = {0} which is obviously precompact. Analogously, Tg(B1) is precompact for all
g ∈ Y , hence T is separately compact.

However, consider the sequence ( fn) of continuous functions defined as follows:

fn(t) =


4n3t if 0 ≤ t < 1/(4n2)

n if 1/(4n2)≤ t < 3/(4n2)
−4n3t +4n if 3/(4n2)≤ t < 1/n2

0 if 1/n2 ≤ t ≤ 1.
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Then fn → 0 in X (and Y ). Now, for any x ∈ (0,1], let N ∈ N be such that x > 1/N2. For
all n > N, we can write

T ( fn, fn)(x) =
∫ x

0
f 2
n (t)dt =

∫ 1

0
f 2
n (t)dt =

2
3
,

which proves that
∥T ( fn, fn)∥∞ ̸→ 0,

or T is not bounded. Consequently, T is not compact.

Example 5. Let (αi jk)
∞
i, j,k=1 ∈ l1, that is,

∞

∑
i, j,k=1

|αi jk|< ∞.

Define T : l2 × l2 → l1 as follows: for x = (xn),y = (yn),z = (zn),

T (x,y) = z ⇔ zi =
∞

∑
j,k=1

αi jkx jyk.

Note that the operator is well defined, since by the Cauchy-Schwarz inequality we have

∑
i
|zi| ≤

(
∑
i, j,k

|αi jk|
)
∥x∥l2∥y∥l2 .

Obviously, T is bilinear. Furthermore, if we let z = (zn) be as before, we can define

Tn : l2 × l2 → l1,Tn(x,y) = (z1,z2, . . . ,zn,0,0, . . .).

Since Tn(l2 × l2) is contained in an n-dimensional subspace of l1, and since clearly for any
bounded subset U of l2 × l2 we have that Tn(U) is a bounded subset of an n-dimensional
subspace of l1, we conclude that necessarily Tn(U) is precompact. Thus, Tn is a compact
bilinear operator. Now, for all x,y ∈ B1,l2 , we have

∥Tn(x,y)−T (x,y)∥= ∥(0, . . . ,0,zn+1, . . .)∥l1 ≤
∞

∑
i=n+1

∞

∑
j,k=1

|αi jk|,

which in turn implies that ∥Tn −T∥ → 0 as n → ∞. By Proposition 3 we conclude that T
is a compact bilinear operator.

Example 6. Consider a kernel K ∈C([0,1]3), and define T : L2(0,1)×L2(0,1)→C(0,1)
by

T ( f ,g)(s) =
∫ 1

0

∫ 1

0
K(s, t,u) f (t)g(u)dtdu.

Then, clearly, T is well defined and bilinear. Moreover, the family {T ( f ,g) : f ,g ∈ B1,L2}
is equicontinuos, since

|T ( f ,g)(s1)−T ( f ,g)(s2)| ≤ max
t,u∈[0,1]

|K(s1, t,u)−K(s2, t,u)|.

Moreover, for all s ∈ [0,1], and for all f ,g ∈ B1, we have

|T ( f ,g)(s)| ≤ M = max
s,t,v∈[0,1]

|K(s, t,u)|.

In other words, T (B1 ×B1) is equibounded and equicontinuous, that is precompact. This
proves that T is compact.
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Example 7. Finally, let now K ∈ L2((0,1)3) and define T : L2(0,1)×L2(0,1)→ L1(0,1)
by

T ( f ,g)(s) =
∫ 1

0

∫ 1

0
K(s, t,u) f (t)g(u)dtdu.

Let Kn ∈ C([0,1]3) be such that Kn → K in the L2 norm and define the operator Tn as in
Example 6, with K replaced by the kernel Kn. By Cauchy-Schwarz we immediately get
that, for all f ,g ∈ B1,L2 ,

∥Tn( f ,g)−T ( f ,g)∥L1 ≤ ∥Kn −K∥L2 → 0,

as n → ∞. We appeal again to Proposition 3 and conclude that, since Tn are compact (see
Example 6), T must be compact as well.
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