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We consider the geometric optics problem of finding a system of two reflectors that transform a spherical wavefront into a beam
of parallel rays with prescribed intensity distribution. Using techniques from optimal transportation theory, it has been shown
previously that this problem is equivalent to an infinite-dimensional linear programming (LP) problem. Here we investigate
techniques for constructing the two reflectors numerically by considering the finite-dimensional LP problems which arise as
approximations to the infinite-dimensional problem. A straightforward discretization has the disadvantage that the number of
constraints increases rapidly with the mesh size, so only very coarse meshes are practical. To address this well-known issue we
propose an iterative solution scheme. In each step, an LP problem is solved, where information from the previous iteration step
is used to reduce the number of necessary constraints. As an illustration, we apply our proposed scheme to solve a problem with
synthetic data, demonstrating that themethod allows formuch finermeshes than a simple discretization.We also give evidence that
the scheme converges. There exists a growing literature for the application of optimal transportation theory to other beam shaping
problems, and our proposed scheme is easy to adapt for these problems as well.

1. Introduction

The following beam shaping problem from geometric optics
was described in [1]; see Figure 1. Suppose a point source
emits a spherical wavefront with a given intensity distri-
bution. The problem we are concerned with consists of
transforming this input beam into an output beam of parallel
light rays with a prescribed intensity distribution.This trans-
formation is to be achieved with a system of two reflectors.
The problem has some practical importance in engineering;
see further literature cited in [1].

The first rigorous mathematical solution to the problem
was provided in [2], using an approach based on the theory
of optimal transportation [3–6]. See also the references [7–11]
which deal with other beam shaping problems using related
techniques.

The result of [2] is summarized in Section 2 below, with
Theorem A.5 stating the main result. The central feature is

that the original reflector design problem is reformulated as
an infinite-dimensional constrained optimization problem,
namely the problem ofminimizing a certain linear functional
on a function space. It is the dual problem for the problem of
finding a map from the input aperture to the output aperture
which minimizes a certain cost functional (see Theorem 3 in
Section 2 for the exact statement).

This reformulation of the problem not only is of the-
oretical value for questions of existence and uniqueness of
solutions, but it also translates into a practical method for
finding the solution. In fact, the discretization of the infinite-
dimensional constrained optimization problem is a standard
linear programming problem and can be solved numerically.
This was already observed for similar beam shaping problems
by Glimm and Oliker [7, 8] and independently by Wang [9].

There has been increased interest in numerical methods
for optimal transportation problems in the last 10 years.
Most work has concentrated on theMonge-Ampère equation,
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Table 1: Results of runs with the “Simple Discretization” Scheme 5 for several edge lengths ℎ. Memory was insufficient for the LP solver to
handle the case ℎ = 0.04, so the maximum number of mesh points that could be handled was about 1,750 on each aperture. The data used
was the data from Section 4.1. Symbols used: ℎ: edge length;𝑁: number of mesh points in𝐷;𝑀: number of mesh points in 𝑇; time (s): time
in seconds; constr.: number of constraints.

ℎ 𝑀 𝑁 Max error 𝑅
1

𝐿
2
error 𝑅

1
Max error 𝑅

2
𝐿
2
error 𝑅

2
Time (s) Constr.

0.09 511 522 3.68393𝐸 − 3 1.25443𝐸 − 3 4.58391𝐸 − 3 1.91131𝐸 − 3 2.97016 266,742
0.08 660 663 2.96216𝐸 − 3 7.30738𝐸 − 4 3.39579𝐸 − 3 1.08343𝐸 − 3 4.67627 437,580
0.07 880 874 2.33561𝐸 − 3 7.43916𝐸 − 4 2.83982𝐸 − 3 1.15916𝐸 − 3 10.1342 769,120
0.06 1,214 1,214 1.3051𝐸 − 3 7.12914𝐸 − 4 2.10579𝐸 − 3 8.28341𝐸 − 4 17.4949 1,473,796
0.05 1,752 1,757 9.11319𝐸 − 4 2.66152𝐸 − 4 1.20934𝐸 − 3 4.61313𝐸 − 4 45.9136 3,078,264

which arises in the special case of optimal transport in R𝑛

with quadratic cost (also called 𝐿
2 optimal transport) [12–

20], although some authors have treated costs proportional
to the distance (𝐿1 optimal transport) [21]. These methods
are based on fluid mechanical approaches [13] or various
finite difference approaches [17].They are generally faster and
allow for much larger mesh sizes than methods based on a
discretization of the linear programming problem, but since
they use the special structure of theMonge-Ampère equation,
they are not directly applicable tomore general cost functions
or more general manifolds.

A linear programming approach similar to the one we
investigate here for more general situations for optimal
approachwas investigated byRüschendorf andUckelmann in
2000 [22] and more recently in two papers by Canavesi et al.
[23, 24] who also propose a new algorithm inspired by, but
distinct from, a linear programming approach for the single
reflector problem treated in [8, 9].

As noted in [22] and other works, an immediate obstacle
for the linear programming approach is that the number
of constraints becomes very large even for relatively coarse
meshes—if there are 𝑀 sample points in the input aperture
(denoted by 𝐷 in Figure 1) and 𝑁 points in the output
aperture (𝑇 in Figure 1), then the number of constraints is
𝑀 ⋅ 𝑁. For instance, Rüschendorf and Uckelmann note in
[22] that the LP solver they used, SOPLEX, was designed to
handle up to 2 million variables. This corresponds to mesh
sizes of approximately 1400 points on the input and output
aperture in our problem if one employs a straightforward
discretization scheme.We found that, in our implementation,
the solver MOSEK (Version 7) could handle about 3 million
constraints, corresponding to approximately 1750 sample
points on the domains 𝑇 and 𝐷 (see Table 1 for details).
Rüschendorf and Uckelmann noted in [22] that, for better
results, one needs carefully designed programs. This is what
we supply here for our problem: we devised a more elaborate
iterative method, where discretized systems are solved on
finer and finer grids, in each step, using information from
the previous solution to choose only a subset of all possible
constraints. This drastically slows the growth of the number
of constraints. Details are described in Section 3. With this
step-wise mesh refinement scheme, as an illustration, we
were able to obtain solutions on meshes with about 10,300
points on each aperture using MATLAB and MOSEK 7, a
commercially available LP solver. The number of constraints
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Figure 1: Sketch of the reflector problem.The point source is located
at the origin 0 of the coordinate system.The coordinate system in the
lower left-hand corner explains our use of coordinates. The output
beam propagates in the direction of the negative 𝑧-axis. Points in the
plane perpendicular to the 𝑧-axis are denoted by the vector x ∈ R2.
Correspondingly, points in three-dimensional space are denoted by
(x, 𝑧). See Section 2 for more. Reprinted from [2].

needed for this was only a fraction of the size of the “full”
system. For instance, the run displayed in Table 2 used only
0.33% of all possible constraints.

We note that our proposed algorithm does not make any
a priori symmetry assumptions on the form the reflectors. It
can also be adapted for the numerical solution of other beam
shaping problems for which a formulation using optimal
transportation theory has been found, for example those in
[7, 8, 25].

This article is organized as follows: in Section 2, we recall
the reformulation of the reflector construction problem as a
linear programming problem as given in [2] and fix some
notation. We then describe a basic discretization scheme
for the numerical solution and propose an improved “mesh
refinement” scheme in Section 3. The following Section 4 is
devoted to numerical illustrations and tests of this scheme.
We first derive an explicit analytical solution to be used as
synthetic data for our numerical work. Then we compute the
solution numerically and analyze the error of approximation.
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Table 2: Results of an iterative run with the “Iterative Refinement” Scheme 6. Memory was insufficient to handle the sixth iteration due to
matrix size limitations in MATLAB. Note the run times (last two rows). The bulk of the algorithm run times is taken in setting up the linear
programming problem, that is, deciding which constraints to include. Solving the LP once it is set up is fairly fast (last column).The data used
was that of Section 4.1, the number of nearest neighbors searched over 𝜅nn = 6, and the quasi-activity threshold was 𝜀 = 0.01ℎ

2. 𝑘: iteration
number;𝑀: number of mesh points in𝐷;𝑁: number of mesh points in 𝑇; constr.: number of constraints; con. dens.: constraint density, that
is, used constraints as a percentage of all possible constraints𝑀⋅𝑁; time: computation time for iterative step in seconds, including generating
meshes, building, and solving the LP problem; LP time: time in seconds to solve the LP problem.

𝑘 ℎ 𝑀 𝑁 Max error 𝑅
1

𝐿
2
error 𝑅

1
Max error 𝑅

2
𝐿
2
error 𝑅

2
Constr. Con. dens. Time (s) LP time (s)

0 0.064 1,059 1,059 1.2884𝐸 − 3 3.77819𝐸 − 4 1.88783𝐸 − 3 4.09084𝐸 − 4 1,121,481 100% 15.962 12.3146
1 0.0512 1,675 1,678 9.40425𝐸 − 4 3.36918𝐸 − 4 1.26944𝐸 − 3 3.63526𝐸 − 4 56,080 2.00% 208.533 0.938877
2 0.04096 2,647 2,647 7.56437𝐸 − 4 1.67174𝐸 − 4 7.53459𝐸 − 4 1.85922𝐸 − 4 89,724 1.28% 392.982 1.59831
3 0.032768 4,171 4,175 3.64902𝐸 − 4 9.63559𝐸 − 5 5.25941𝐸 − 4 1.21839𝐸 − 4 141,550 0.81% 969.239 2.54405
4 0.0262144 6,582 6,567 3.03932𝐸 − 4 8.8103𝐸 − 5 5.30343𝐸 − 4 1.41908𝐸 − 4 224,327 0.52% 2363.79 4.32524
5 0.02097152 10,313 10,318 2.49854𝐸 − 4 9.9045𝐸 − 5 3.9372𝐸 − 4 1.51851𝐸 − 4 351,514 0.33% 5909.25 9.21891

We conclude with a brief summary of the advantages and
drawbacks of the method and propose future work.

2. Formulation as Linear
Programming Problem

We now briefly review the notation for the problem posed
in [1], as well as the result of [2], which reformulates the
reflector design problem as a linear programming problem.
More details are contained in Appendix A.

Consider the configuration shown in Figure 1. A point
source at the origin 𝑂 = (0, 0, 0) generates a spherical
wavefront over a given input aperture 𝐷 contained in the
unit sphere 𝑆2. We use the bar in the notation for 𝐷 to stress
that 𝐷 is a closed set. The input beam has a given intensity
distribution. By means of two reflectors, this wavefront is to
be transformed into a beamof parallel rays propagating in the
direction of the negative 𝑧-axis. This output beam is required
to have a prescribed intensity distribution. The cross section
of the output beam in a plane perpendicular to the direction
of propagation is called the output aperture and is denoted
by 𝑇. Again, we use the notation 𝑇 to stress that 𝑇 is closed.
Certain regularity conditions apply to𝐷 and𝑇; see [2] for the
technical details.

Denote points in space R3 by pairs (x, 𝑧), where x ∈

R2 is the position vector in a plane perpendicular to the
direction of propagation and 𝑧 ∈ R is the coordinate in
the (negative) direction of propagation. See again Figure 1
for our convention on the direction of the 𝑧-axis. Points on
the unit sphere 𝑆

2 will typically be denoted by m ∈ 𝑆
2;

their components are also written as m = (m
𝑥
, 𝑚
𝑧
) with

|m
𝑥
|
2
+ 𝑚
2

𝑧
= 1.

We fix the output aperture in the plane 𝑧 = −𝑑. We will
seek to represent the first reflector as the graph of its polar
radius 𝜌(m) (form ∈ 𝐷) and the second reflector as the graph
of a function 𝑧(x) (for 𝑧 ∈ 𝑇). See Figure 1. That is

Reflector 1: 𝑅
1
= {𝜌 (m) ⋅m | m ∈ 𝐷} ,

Reflector 2: 𝑅
2
= {(x, 𝑧 (x)) | x ∈ 𝑇} .

(1)

The geometrical optics approximation is assumed. It
follows from general principles of geometric optics that all
rays will have equal length from (0, 0, 0) to the plane 𝑧 =

−𝑑; this length is called the optical path length and will be
denoted by 𝐿. We define the reduced optical path length as
ℓ = 𝐿 − 𝑑.

Oliker [1] showed that local energy conservation trans-
lates into a complicated partial differential equation of
Monge-Ampère type for 𝜌(m). As noted in [1], the resulting
equation is quite involved, and a rigorous analysis of this
equation seems very difficult. See equation (59) in [1].

To amend this, the problem was reformulated in [2]
as an infinite dimensional linear programming problem,
which makes a complete analysis possible, both concerning
theoretical results on existence and uniqueness, and gives a
method for practical computations.

For this, the following function 𝐾(m, x), called the cost
function in analogy with the theory of optimal transporta-
tion, plays an important role:

𝐾 (m, x) =
ℓ − ⟨m

𝑥
, x⟩

2ℓ (ℓ2 − |x|2) (1 + 𝑚
𝑧
)
−

1

4ℓ2

for m = (m
𝑥
, 𝑚
𝑧
) ∈ 𝐷, x ∈ 𝑇.

(2)

In further preparation, the following two transformations
are needed.

Definition 1. Let 𝑧 = 𝑧(x) be a continuous function defined
on 𝑇 ⊆ R2. Then define the function

𝑧̃ (x) = 1

2ℓ
−

𝑧 (x)
ℓ2 − |x|2

for x ∈ 𝑇. (3)

Definition 2. Let 𝜌 = 𝜌(m) be a continuous function defined
on𝐷 ⊆ 𝑆

2 with 𝜌 > 0. Then define the function

𝜌 (m) = −
1

2ℓ
+

1

2𝜌 (m) ⋅ (𝑚
𝑧
+ 1)

for m ∈ 𝐷. (4)

The following characterization of the solution (𝜌, 𝑧) of the
reflector problem described above was given in [2].
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Theorem 3. If the pair (𝜌, 𝑧) is a solution of the above reflector
design problem, then the transformed pair (log 𝜌, log 𝑧̃) mini-
mizes the functional

F (𝑟, 𝜁) = ∫
𝐷

𝑟 (m) 𝐼 (m) 𝑑𝜎 + ∫
𝑇

𝜁 (x) 𝐿 (x) 𝑑𝑥 (5)

on the function space Adm(𝐷, 𝑇) = {(𝑟, 𝜁) ∈ 𝐶(𝐷) × 𝐶(𝑇) |

𝑟(m) + 𝜁(x) ≥ log𝐾(m, x) for all m ∈ 𝐷, x ∈ 𝑇}.

One can solve the reflector construction problem by
solving the infinite-dimensional LP problem in the above
theorem and then applying the inverse transformations of (3)
and (4) to recover 𝜌(m) and 𝑧(x). In the remainder of this
paper, we will concentrate on numerical solutions for this
problem.

It is also possible to characterize the ray-tracing map
analytically.

Definition 4. Let (𝜌, 𝑧) ∈ 𝐶(𝐷) × 𝐶(𝑇) be a solution of the
reflector problem. Define its ray-tracing map as a set-valued
map 𝛾 : 𝐷 → {subsets of 𝑇} via

𝛾 (m) = {x ∈ 𝑇 | 𝜌 (m) 𝑧̃ (x) = 𝐾 (m, x)} for m ∈ 𝐷.

(6)

In [2], it is shown that 𝛾(m) is in fact single-valued
for almost all m ∈ 𝐷. Therefore, 𝛾 may be regarded as a
transformation 𝛾 : 𝐷 → 𝑇. Indeed, one can show that
a ray emitted from the origin in the direction m ∈ 𝐷 will
be reflected to a ray in the negative 𝑧-direction labeled by
x = 𝛾(m) ∈ 𝑇; see [2].

More details and rigorous statements are found in
Appendix A.

3. Numerical Schemes

In the following, we describe two schemes for solving the
minimization problem in Theorem 3 numerically. First, we
list the given data on which the solution depends.

(i) Domains 𝐷 ⊆ 𝑆
2, 𝑇 ⊆ R2 (The rigorous result

in [2] required the additional technical assumption
(0, 0, −1), (0, 0, 1) ∉ 𝐷. For practical purposes, these
assumptions can often be dropped.)

(ii) Nonnegative integrable functions 𝐼(m), m ∈ 𝐷, and
𝐿(x), x ∈ 𝑇, with ∫

𝐷
𝐼𝑑𝜎 = ∫

𝑇
𝐿𝑑𝑥.

(iii) A reduced optical length ℓ.
(iv) The value 𝜌(m

1
) = 𝜌
1
for some fixed m

1
∈ 𝐷, where

𝜌 is the radial function of the first reflector. (Note that
without this constraint, the reflectors are not uniquely
determined.This can be seen in the expression for the
functional in Theorem 3. Indeed, any transformation
of the form 𝑟 󳨃→ 𝑟 + 𝑐, 𝜁 󳨃→ 𝑧 − 𝑐 for constant 𝑐 will
leave the objective functional unchanged.)

The first numerical scheme, Scheme 5 is a straightforward
discretization of the minimization problem inTheorem 3 via
meshes on the domains𝐷 and 𝑇.

As described in the introduction, this scheme ismemory-
intensive because every pair of points from 𝐷 and 𝑇 gives
rise to a constraint. To address this issue, we propose a
more sophisticated scheme, Scheme 6, which is an iterative
scheme using finer and finermeshes, where, in each iteration,
information from the previous solution is utilized to reduce
the number of constraints.

3.1. “Simple Discretization” Scheme. The characterization of
solutions to the reflector problem by means of the minimiza-
tion of a linear functional inTheorem 3 immediately suggests
a solution algorithm by means of a discretization. Essentially,
the same algorithm was used for different problems in [22–
24].

Scheme 5 (simple discretization). (i) Create a mesh in the
input domain 𝐷 by choosing sets 𝑑

(0)

1
, 𝑑
(0)

2
, . . . , 𝑑

(0)

𝑀
(0) ⊆ 𝐷,

where the interiors of any 𝑑(0)
𝑖

and 𝑑
(0)

𝑗
are disjoint (for 𝑖 ̸= 𝑗)

and𝐷 = ⋃
𝑀
(0)

𝑖=1
𝑑
(0)

𝑖
. For instance, 𝑑(0)

1
, 𝑑
(0)

2
, . . . , 𝑑

𝑀
(0) may be a

triangulation of𝐷.
(ii) Similarly, create a mesh in the output domain 𝑇 by

choosing sets 𝑡(0)
1
, 𝑡
(0)

2
, . . . , 𝑡

(0)

𝑁
(0) ⊆ 𝐷, where the interiors of

any 𝑡(0)
𝑖

and 𝑡
(0)

𝑗
are disjoint (for 𝑖 ̸= 𝑗) and 𝑇 = ⋃

𝑁
(0)

𝑗=1
𝑡
(0)

𝑗
.

(iii) Choose sample pointsm(0)
𝑖

∈ 𝑑
(0)

𝑖
(for 𝑖 = 1, . . . ,𝑀

(0))
and x(0)
𝑗

∈ 𝑡
(0)

𝑗
(for 𝑗 = 1, . . . , 𝑁

(0)). Here, we may assume that
m(0)
1

= m
1
is the same point as given in the data in (iv) above.

(iv) Find the solution ({𝑟(0)
𝑖
}
𝑀
(0)

𝑖=1
, {𝜁
(0)

𝑗
}
𝑁
(0)

𝑗=1
) of the following

LP problem:

Minimize
𝑀
(0)

∑

𝑖=1

𝑟
(0)

𝑖
𝐼 (m(0)
𝑖
) area (𝑑(0)

𝑖
)

+

𝑁
(0)

∑

𝑗=1

𝜁
(0)

𝑗
𝐿 (x(0)
𝑗
) area (𝑡(0)

𝑗
)

(7)

subject to 𝑟
(0)

1
= log 𝜌

1
,

where 𝜌
1
is as given in the data in (iv) above and

(8)

𝑟
(0)

𝑖
+ 𝜁
(0)

𝑗
≥ log𝐾(m(0)

𝑖
, x(0)
𝑗
)

for 𝑖 = 1, . . . ,𝑀
(0)
, 𝑗 = 1, . . . , 𝑁

(0)
.

(9)

(v) Find the numbers 𝜌(0)
𝑖

, 𝑖 = 1, . . . ,𝑀
(0) and 𝑧

(0)

𝑗
, 𝑗 =

1, . . . , 𝑁
(0) such that 𝑟(0)

𝑖
= log 𝜌(0)

𝑖
and 𝜁
(0)

𝑗
= log 𝑧̃(0)

𝑗
.

This is straightforward by taking the inverse of the
transformations given in Definition 1 and Scheme 5.

Then 𝜌
(0)

𝑖
is an approximation for the true value 𝜌(m(0)

𝑖
)

of the radial function of the first reflector, evaluated at the
sample point m(0)

𝑖
for 𝑖 = 1, . . . ,𝑀

(0). Similarly, 𝑧(0)
𝑗

is
an approximation for the true value 𝑧(x(0)

𝑗
) of the function

describing the second reflector, evaluated at the sample point
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x(0)
𝑗

for 𝑗 = 1, . . . , 𝑁
(0). We are using the superscript “(0)”

here to distinguish this solution from additional iterative
approximations we will obtain with the iterative scheme
described below.

Note that (7) is a discretization of the sum of integrals in
the functionalF(𝑟, 𝜁) = ∫

𝐷
𝑟(m)𝐼(m)𝑑𝜎+∫

𝑇
𝜁(x)𝐿(x)𝑑𝑥. We

have chosen the simplest discretization here. Depending on
the geometry of the problem, other discretization schemes
[26] may yield better results. In practice, we have chosen
partitions 𝑑

𝑖
and 𝑡
𝑗
of approximately uniform size and diam-

eter, but depending on the form of the intensity distributions,
other partitions may be more appropriate.

It is important to point out that this discretization also
yields a discretized version of the ray-tracing map 𝛾 (see
Definition 4). Namely, for each index 𝑖 = 1, . . . ,𝑀

(0), there
is at least one corresponding index 𝑗

∗, 1 ≤ 𝑗
∗
≤ 𝑁
(0) where

the constraint corresponding to the pair (𝑖, 𝑗∗) is active; that
is, where we have

𝑟
(0)

𝑖
+ 𝜁
(0)

𝑗
∗ = log𝐾(m(0)

𝑖
, x(0)
𝑗
∗ ) . (10)

This means that the pointm(0)
𝑗
∗ is approximately the image of

the point x(0)
𝑖

under the ray-tracing map 𝛾.

3.2. “Iterative Refinement” Scheme. As noted in the introduc-
tion, one of the drawbacks of Scheme 5 is that the constraint
set in the linear programming problem in the penultimate
step becomes large very fast with finer meshes, and the
corresponding problem becomes too large to handle for
standard LP solvers. We were not able to solve problems with
more than about 1750 mesh points on each aperture on a
standard PC with 4GB RAM (𝑀(0) ≈ 1750, 𝑁

(0)
≈ 1750).

We addressed this problem by developing an iterative
scheme. First, the problem is solved for a mesh with relatively
few sample points (say 𝑀

(0)
= 𝑁
(0)

= 1000). Then, a finer
mesh is chosen, and the previous solution is used to reduce
the number of constraints.

Specifically, we have the following scheme, depending
on a number 𝜀

(1)
> 0, which we call the “quasi-activity

threshold,” and an integer 𝜅nn, the nearest neighbor search
depth, to be explained in detail below.

Scheme 6 (iterative refinement). Use Scheme 5 to find an
initial solution ({𝑟

(0)

𝑖
}
𝑀
(0)

𝑖=1
, {𝜁
(0)

𝑗
}
𝑁
(0)

𝑗=1
) for𝑀(0) sample points on

𝐷 and𝑁
(0) sample points on 𝑇, respectively.

Definition 7. Call a pair (𝑖, 𝑗) with 𝑖 ∈ {1, . . . ,𝑀
(0)
} and 𝑗 ∈

{1, . . . , 𝑁
(0)
} “quasi-active” if

𝑟 (m(0)
𝑗
) + 𝜁 (x(0)

𝑗
) − log𝐾(m(0)

𝑖
, x(0)
𝑗
) ≤ 𝜀
(0)
. (11)

Note that the pair is “active” in the standard sense of linear
programming theory if the above term is equal to zero.

(i) Create a second, finer mesh on 𝐷 by choosing sets
𝑑
(1)

1
, 𝑑
(1)

2
, . . . , 𝑑

(1)

𝑀
(1) ⊆ 𝐷, where the interiors of any

𝑑
(1)

𝑖
and 𝑑

(1)

𝑗
are disjoint (for 𝑖 ̸= 𝑗) and𝐷 = ⋃

𝑀
(1)

𝑖=1
𝑑
(1)

𝑖
.

Here, 𝑀(1) is chosen larger than 𝑀
(0), meaning that

we have a finer mesh.
(ii) Similarly, create a second mesh on 𝑇 by choosing sets

𝑡
(1)

1
, 𝑡
(1)

2
, . . . , 𝑡

(1)

𝑁
(1) ⊆ 𝐷, where the interiors of any 𝑡

(1)

𝑖

and 𝑡
(1)

𝑗
are disjoint (for 𝑖 ̸= 𝑗) and 𝑇 = ⋃

𝑁
(1)

𝑗=1
𝑡
𝑗

(1)
.

(iii) Choose sample pointsm(1)
𝑖

∈ 𝑑
(1)

𝑖
(for 𝑖 = 1, . . . ,𝑀

(1))
and x(1)

𝑖
∈ 𝑡
(1)

𝑗
(for 𝑗 = 1, . . . , 𝑁

(1)). Here, we may
assume that m(1)

1
= m
1
is the same point as given in

the data in (iv) above.
(iv) For each pair (𝑖, 𝑗) with 𝑖 = 1, . . . ,𝑀

(1), and 𝑗 =

1, . . . ,𝑀
(1), find the 𝜅nn nearest neighbors of m(1)

𝑖

from the previous mesh on 𝐷 and the 𝜅nn nearest
neighbors of x(1)

𝑗
from the previous mesh on 𝑇.

Definition 8. Say that the pair (𝑖, 𝑗) is potentially active if at
least one of the 𝜅2nn pairs consisting of a nearest neighbor of
m(1)
𝑖

and a nearest neighbor of x(1)
𝑗

is quasi-active in the above
sense.

(i) Find the solution ({𝑟
𝑖
}
𝑀
(1)

𝑖=1
, {𝜁
(1)

𝑗
}
𝑁
(1)

𝑗=1
) of the following

LP problem:

Minimize
𝑀
(1)

∑

𝑖=1

𝑟
(1)

𝑖
𝐼 (m(1)
𝑖
) area (𝑑(1)

𝑖
)

+

𝑁
(1)

∑

𝑗=1

𝜁
(1)

𝑖
𝐿 (x(1)
𝑗
) area (𝑡(1)

𝑗
)

subject to 𝑟
(1)

1
= log 𝜌

1
,

𝑟
(1)

𝑖
+ 𝜁
(1)

𝑗
≥ log𝐾(m(1)

𝑖
, x(1)
𝑗
)

for any potentially active pair

(in the above sense).

(12)

(ii) Find the numbers 𝜌(1)
𝑖

, 𝑖 = 1, . . . ,𝑀
(1) and 𝑧

(1)

𝑗
, 𝑗 =

1, . . . , 𝑁
(1) such that 𝑟(1)

𝑖
= log 𝜌(1)

𝑖
and 𝜁
(1)

𝑗
= log 𝑧̃(1)

𝑗
.

The idea of Scheme 6 is to solve the discretized LP on a
coarse mesh first and then use this information to reduce the
number of constraints needed for the LP on a finer mesh.
A key difference between Schemes 5 and 6 is that in the
discretized LP problem, in Scheme 6, not all pairs of sample
points from 𝐷 and 𝑇, represented by pairs of indices (𝑖, 𝑗),
are included in the list of constraints. In fact, we would in
principle only need to include those where the constraint is
active, that is, where the corresponding inequality holds with
equality. Of course, this information is not available a priori.
Instead, we use the following heuristic. A constraint should
only be included in the LP problem if the corresponding
point on the second reflector is close to the image of the
corresponding point on the first reflector under the ray-
tracing map. In terms of the LP problem formulation, the
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corresponding pair of points is located close to an active
pair from the previous iteration. We call such a constraint
“potentially active.” Our heuristic is that a constraint should
be considered potentially active if there is a pair of its
respective 𝜅nn nearest neighbors which corresponds to a
quasi-active constraint form the previous iteration. Here,
“quasi-active” constraints include active constraints (where
the constraint is attained, i.e., the term 𝑟(m(0)

𝑗
) + 𝜁(x(0)

𝑗
) −

log𝐾(m(0)
𝑖
, x(0)
𝑗
) is zero) and those which are “almost active”

in the sense that the term 𝑟(m(0)
𝑗
) + 𝜁(x(0)

𝑗
) − log𝐾(m(0)

𝑖
, x(0)
𝑗
)

is positive, but small. “Smallness” is encoded in the quasi-
activity threshold 𝜀

(1). Clearly, increasing 𝜀
(1) means more

constraints are included, but also potentially the solution of
the LP represents a better approximation of the exact reflector
pair.

In our numerical tests, we found it advantageous to scale
the functions 𝐼(m) and 𝐿(x) so that the approximations for
the integrals ∫

𝐷
𝐼𝑑𝜎 and ∫

𝑇
𝐿𝑑𝑥 yield exactly the same result.

Note that the algorithm in Scheme 6 can be iterated again.
We can use the first iterative solution 𝜌

(1)

𝑖
, 𝑖 = 1, . . . ,𝑀

(1) and
𝑧
(1)

𝑗
, 𝑗 = 1, . . . , 𝑁

(1), in Scheme 6, to obtain a second iterative
solution 𝜌

(2)

𝑖
, 𝑖 = 1, . . . ,𝑀

(2) and 𝑧
(2)

𝑗
, 𝑗 = 1, . . . , 𝑁

(2), and so
on.

Note that (7) is a discretization of the sum of integrals
in the functionalF(𝑟, 𝜁) = ∫

𝐷
𝑟(m)𝐼(m)𝑑𝜎 + ∫

𝑇
𝜁(x)𝐿(x)𝑑𝑥.

We note that we have chosen again the simplest discretization
here for the sum of integrals ∫

𝐷
𝑟(m)𝐼(m)𝑑𝜎+∫

𝑇
𝜁(x)𝐿(x)𝑑𝑥.

As in Scheme 6, depending on the geometry of the problem,
other discretization schemes [26] may yield better results.

3.3. Choice of Thresholds for Iterative Refinement Scheme 6.
For the iteration of Scheme 6 described above, we have
to choose a corresponding sequence of mesh sizes
{(𝑀
(0)
, 𝑁
(0)
), (𝑀
(1)
, 𝑁
(1)
), (𝑀
(2)
, 𝑁
(2)
), . . .}. We also need

to choose a corresponding sequence of thresholds 𝜀
(1),

𝜀
(2)
, 𝜀
(3)
, . . ..

This last question is of a certain practical importance.
Indeed, if the thresholds {𝜀

(𝑘)
}
𝑘
are “high” (e.g., if they

decreases slowly), then “many” constraints are included in
each iteration, meaning that the size of the LP problems
increases quickly. If the sequence {𝜀(𝑘)}

𝑘
is “low”, then “few”

constraints are included in each iteration. This is of course in
principle desirable, but if the thresholds are too low, this could
cause that some index 𝑖 (with 1 ≤ 𝑖 ≤ 𝑀

(𝑘)) may not even
be included in any of the constraints with any of the indices
𝑗 (with 1 ≤ 𝑗 ≤ 𝑁

(𝑘)
) or vice versa. This would cause the

LP problem to be unbounded, and hence, there would be no
solution.

We can make a very rough estimate for a good choice
of the sequence {𝜀

(𝑘)
}
𝑘
, assuming for simplicity that 𝑀(𝑘) ≈

𝑁
(𝑘). Let us assume that each sample point 𝑚(𝑘)

𝑖
in the input

aperture 𝐷 is paired via the ray-tracing map 𝛾 with a unique
point x(𝑘)

𝑗(𝑖)
≈ 𝛾(𝑚

(𝑘)

𝑖
) and vice versa. Thus, there are 𝑀

(𝑘)

such pairs. Let 𝑟(m),m ∈ 𝐷 and 𝜁(x), x ∈ 𝑇 denote the

solutions of the reflector problem. Then the set of all points
in (m, x)-space close to a given pair (m(𝑘)

𝑖
, x(𝑘)
𝑗(𝑖)

) that satisfy
𝑟(x) − 𝑧(x) − log𝐾(m, x) < 𝜀

(𝑘) is approximately an ellipsoid
for small 𝜀(𝑘). This can be seen by using the Taylor expansion
around the pair (m(𝑘)

𝑖
, x(𝑘)
𝑗(𝑖)

) in (m, x)-space. The volume of

this ellipsoid is proportional to (𝜀
(𝑘)
)
2

. So the proportion
of pairs of points that satisfy the above constraint among
all constraints is roughly proportional to (𝜀

(𝑘)
)
2

. Since each
pair (m(𝑘)

𝑖
, x(𝑘)
𝑗
) that satisfies this inequality corresponds to a

constraint included in the LP of the 𝑘th iteration, the total
number of constraints should be roughly proportional to
(𝑀
(𝑘)
)
3
⋅ (𝜀
(𝑘)
)
2. So to keep the number of constraints growing

linearly throughout the iterations, based on these heuristics,
one may choose

𝜀
(𝑘)

=
𝐶

𝑀(𝑘)
, (13)

where 𝐶 is a constant. These heuristics are very rough. In
practice, we have found that when using the formula 𝜀

(𝑘)
=

𝐶(𝑀
(𝑘)
)
𝛼, there is a range of values of 𝛼 which all produce

similar results. See Section 4.2.

4. Numerical Tests

To test the validity of the numerical scheme described above,
we used it on a case where the solution is known in analytic
form. In the next subsection, we first describe this special
analytic solution and then discuss our results.

4.1. A Data Set. We have constructed a particular data set
using an explicit analytical solution described in more detail
in Appendix B. The data set of this section is obtained from
themore general solution of Appendix B by choosing 𝑎 = 𝑏 =

0 and 𝑐 = −0.4, 𝛼 = 1, and 𝑅 = 1.3. We consider the input
aperture

Ω = {(𝑚
𝑥
, 𝑚
𝑦
, 𝑚
𝑧
) ⊆ 𝑆
2
| √𝑚2
𝑥
+ 𝑚2
𝑦
≤ 0.8,𝑚

𝑧
< 0} , (14)

which is a spherical cap centered at the point (0, 0, −1). The
data do not represent a physically possible set of reflectors
since there would be blockage. However, the example is
useful as an illustration, and the numerical scheme itself
is completely independent of the shape of the apertures or
any a priori symmetries of the problem. Using the results
from Appendix B, we can now find the output aperture in a
straightforward manner as follows:

𝑇 = {(𝑥, 𝑦) ∈ R
2
| √𝑥2 + 𝑦2 ≤

17

9
} . (15)

We choose a constant output intensity

𝐿 (x) = 1 for x ∈ 𝑇. (16)

Using the relation (B.7), this gives the input intensity

𝐼 (m) =
14.2716049383

(1 − 𝑚
𝑧
)
2

for m = (𝑚
𝑥
, 𝑚
𝑦
, 𝑚
𝑧
) ∈ Ω. (17)
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Figure 2: Plots of the reflectors given by (18) (a) and (19) (b) in the
explicit data set given in Section 4.1.

The two reflectors are given as follows:

radial radius 𝜌 for 𝑅
1
: 𝜌 (m) =

0.765

1.3 + 0.4 𝑚
𝑧

, (18)

equation for 𝑅
2
: 𝑧 = −0.25 (𝑥

2
+ 𝑦
2
) + 0.6. (19)

The corresponding reduced optical path length is

ℓ = 𝑅 + 2𝛼 = 2.9. (20)

The two reflectors are shown in Figure 2. 𝑅
1
is part of a

spheroid, and 𝑅
2
is part of a paraboloid; see Appendix B for

details.

4.2. Results. Using the data set from Section 4.1, we con-
ducted a series of numerical tests to establish the validity of
the numerical Scheme 6. Since there are explicit analytical
expressions for the two solutions 𝜌(𝑚) and 𝑧(𝑥) describing
the two reflectors as given in (18) and (19), respectively, we
were able to compute the error of approximation directly. See
also Figure 2 for plots of these reflectors.

The Schemes 5 and 6 were implemented in MATLAB
with the package distmesh [27] for mesh generation in
each iteration step and the commercial linear programming

solver MOSEK (version 7) [28] for solving the resulting LP
problems. Computations were performed on an Intel Core i7-
2620M/2.70 GHz with 4GB RAM, running Windows 7 (64
bit).

The mesh generation algorithm is based on a relaxation
scheme of forces in a truss structure [27]. For this, the input
is the desired edge length ℎ, not the number of mesh points
𝑀 (for the domain Ω) or𝑁 (for the domain 𝑇), respectively.
However, it can be seen from geometric considerations that
the relation between the average edge length ℎ and the
number of mesh points𝑀 on𝐷 obeys

ℎ ∼
1

√𝑀
. (21)

In the tables below, we show both the number of mesh
points 𝑀,𝑁 and the edge length ℎ, as we believe both are
informative.

Our primary aim is to demonstrate the practicability
of the proposed Scheme 6. For comparison, we first tested
the performance of the “Simple Discretization” Scheme 5.
The results are summarized in Table 1. The maximum mesh
sizes attainable are about 1750 points, corresponding to
approximately 3 million constraints. We found that this was
the maximum size for the LP solver.

To test Scheme 6, we chose a sequence of desired edge
lengths ℎ(0), ℎ(1), . . . by reducing ℎ by 20% in each step; that is,
ℎ
(𝑘)

= 0.8
𝑘
ℎ
(0). Then, based on the heuristics given above and

in Section 3.3, we determined the corresponding constraint
thresholds with the following formula:

𝜀
(𝑘)

= 𝐶 ⋅ (ℎ
(𝑘)
)
𝜇

, (𝑘 = 1, 2, 3, . . .) , (22)

where 𝐶 and 𝜇 are constants. The heuristic arguments in
Section 3.3 yield 𝜇 = 2, but we also tested other values.
As indicated in Section 3.3, “large” values for 𝐶 mean that
“many” constraints are included in the LP in each step,
which potentially means good approximations, but also high
memory usage. In contrast, “small” values for 𝐶 improve
memory usage but may mean that the LP problem may
become unbounded.This is the case if constraints that would
be active in the LP problem comprising of all constraints are
left out in an iterated LP problem. In our tests, the only time
this happened was when we chose 𝐶 = 0, that is, if the quasi-
activity threshold is set to zero and only active constraints
are considered “quasi-active.” We conclude that our results
are very robust with respect to 𝐶 and 𝜇, meaning for a broad
range of values, we reached the terminal iteration with ℎ =

0.02097152; see Table 2. This is because the memory limiting
issue in our tests was not the LP solver but the maximum size
of arrays in MATLAB when computing the cost matrix; see
paragraph below. We also conducted some informal tests of
the algorithm dependence on the output and input intensities
𝐼(m) and 𝐿(x), specifically to know whether the algorithm is
stable under small perturbations of 𝐼(m) and 𝐿(x). For this,
we added small perturbation 𝛿 cos(𝑚

𝑦
) to 𝐼(m) and 𝛿 cos(𝑥)

to 𝐿(𝑥), then renormalized 𝐿(x) so that the two integrals were
the same. We found that the algorithm was indeed stable
in the sense that the same maximum number of points was
reached for different values of 𝛿.
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Table 3: Results of the final iteration of the “Iterative Refinement” Scheme 6 with different values of the nearest neighbor search depth 𝜅nn.
All other data used was the same as in Table 2. Note that the nearest neighbor search depth 𝜅nn has a large influence on the size of the LP
problem but relatively little influence on the errors or run times. Column labels are identical to Table 2 except for the first column.

𝜅nn ℎ 𝑀 𝑁 Max error 𝑅
1

𝐿
2
error 𝑅

1
Max error 𝑅

2
𝐿
2
error 𝑅

2
Constr. Con. dens. Time (s) LP time (s)

2 0.02097152 10,313 10,318 2.71973𝐸 − 4 9.04017𝐸 − 5 4.38374𝐸 − 4 1.37601𝐸 − 4 96256 0.090% 5947.76 2.82425
4 0.02097152 10,313 10,318 2.48492𝐸 − 4 9.77635𝐸 − 5 3.92226𝐸 − 4 1.50005𝐸 − 4 226006 0.212% 5752.17 6.09849
6 0.02097152 10,313 10,318 2.49854𝐸 − 4 9.9045𝐸 − 5 3.9372𝐸 − 4 1.51851𝐸 − 4 351514 0.330% 5909.25 9.21891
8 0.02097152 10,313 10,318 2.49816𝐸 − 4 9.90729𝐸 − 5 3.94393𝐸 − 4 1.5188𝐸 − 4 482058 0.453% 6322.4 12.9115

Results of a typical run are summarized in Table 2. Our
results show that the proposed scheme is easy to implement
and makes it possible to use much finer meshes than a
simple discretization scheme. The largest number of points
were about 10,000 on each aperture. It is notable that what
prevented our tests to include more plot points was not the
LP solver but memory problems related to the maximum size
of matrices in MATLAB during the set-up phase of the LP
problem when computing the matrix of cost coefficients 𝐾

𝑖𝑗
,

which is of size 𝑀(𝑘) × 𝑁
(𝑘). For the configuration we used,

the maximum size of arrays inMATLAB is about 280 million
variables, see [29].

These results give indication that the scheme converges
and that the maximum error for the first reflector decreases
proportional to 𝑀

𝜎, or equivalently proportional to ℎ
2𝜎,

where 𝜎 = −0.773, data from Table 2. The same formulation
for scheme 5 yields an exponent of 𝜎 = −1.181, unsurpris-
ingly a slightly more rapid decrease, data from Table 1. The
geometric distribution of errors is indicated in Figure 3.

To investigate the role of the nearest neighbor search
depth 𝜅nn, we performed several tests with different values.
The results are summarized in Table 3. The value of 𝜅nn
has very little influence on the error of approximation. This
makes intuitive sense as the crucial issue in each iteration
is that those constraints which are active in the “full” LP
problem (i.e., the one that includes all possible constraints)
are included. As long as all active constraints are included,
one expects to get the same solution. Note, however, that
the number of constraints changes quite drastically with 𝜅nn,
ranging from 96,256 (0.09% of all possible constraints) for
𝜅nn = 2 to 48,2058 (0.45% of all possible constraints) for
𝜅nn = 8 in this example. The time to solve the LP problems,
thus, also varies from 2.82 seconds for 𝜅nn = 2 to 12.91

seconds for 𝜅nn = 8, although those gains are dwarfed by the
overall run times of the algorithm which include assembling
the LP problem.

5. Conclusion and Future Work

We investigated two numerical schemes for solving an
infinite-dimensional optimal transportation problem arising
in reflector design, a straightforward discretization and a
novel iterative scheme, which uses knowledge of the previous
solution in each step to reduce the number of constraints.
The latter scheme is easily adapted to similar transportation
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Figure 3: Error surface plots for reflector 1 (a) and reflector 2 (b)
for the data of Table 3 with 𝜅nn = 2. For better visibility, the plots
were obtained by interpolating the error at each mesh point to a
continuous function. Note that the error distribution is relatively
uniform, although slight spikes of the error tend to occur near the
boundary.

problems arising in beam shaping problems, for example see
[7–9].

As a proof of concept, we implemented both schemes
using MATLAB and the commercial LP solver MOSEK and
showed that the new scheme is easy to implement and makes
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it possible to solve the problem on much finer meshes. In
particular, we demonstrated that the number of constraints
are greatly reduced by the new scheme, to as little as 0.09%
of the full number of constraints. Our aim was to show the
validity of the scheme, and we contend that performance
could be further improved, for instance, by using a compiled
computer language or a more specialized LP solver for
transportation problems.

One drawback of the scheme is that it is quite slow.
See Table 2. The most time-consuming part of the algorithm
was not the solution of the LP problem but assembling the
problem, that is, deciding which constraints to be included.
We believe that this step, in particular, could be improved by
using a compiled computer language instead of MATLAB.

There are a number of possible directions for future
research. We did not rigorously prove that the scheme
converges, although we strongly expect that it does. In
fact, the decreasing error shown in Table 2 gives evidence
for this. It would be valuable to have a rigorous proof of
convergence. We also expect that PDE-based schemes for
solving the transportation cost with quadratic costs [13, 17–
19] could be adapted to the problem at hand, leading to faster
algorithms.

Appendices

A. Details on Theorem 3

Wegive here somemore details onTheorem 3 fromSection 2.
We use the same notation as in this section.This is a summary
of definitions and results from [2].

In [2], the following notion of a reflector pair and its
associated ray-tracing map is used.

Definition A.1. Let 𝐶
>0
(𝐷) denote the set of all continuous

functions on 𝐷 whose range is contained in the interval
(0,∞). A pair (𝜌, 𝑧) ∈ 𝐶

>0
(𝐷) × 𝐶(𝑇) is called a reflector

pair if 𝜌, 𝑧̃ > 0 and

𝜌 (m) = sup
x∈𝑇

(
1

𝑧̃ (x)
𝐾 (m, x)) ∀m ∈ 𝐷,

𝑧̃ (x) = sup
m∈𝐷

(
1

𝜌 (m)
𝐾 (m, x)) ∀ x ∈ 𝑇.

(A.1)

Here, notations (4) and (3) were used.

Definition A.2. Let (𝜌, 𝑧) ∈ 𝐶
>0
(𝐷) ×𝐶(𝑇) be a reflector pair.

Define its reflector map, or ray-tracing map, as a set-valued
map 𝛾 : 𝐷 → {subsets of 𝑇} via

𝛾 (m) = {x ∈ 𝑇 | 𝜌 (m) =
1

𝑧̃ (x)
𝐾 (m, x)} form ∈ 𝐷.

(A.2)

In [2], it is shown that 𝛾(m) is, in fact, single-valued for almost
allm ∈ 𝐷. Therefore, 𝛾may be regarded as a transformation
𝛾 : 𝐷 → 𝑇.

If (𝜌, 𝑧) is a “reflector pair” in the above sense, the follow-
ing can be shown [2], justifying the choice of nomenclature.
If physical copies of the corresponding surfaces (1) are made
from a reflective material, then a ray emitted from the origin
in the directionm ∈ 𝐷will be reflected to a ray in the negative
𝑧-direction labeled by x = 𝛾(m) ∈ 𝑇.

With this, the reflector problem can be formulated rigor-
ously.

Problem A.3 (reflector problem). For given input and output
intensities 𝐼(m),m ∈ 𝐷, and 𝐿(x), x ∈ 𝑇, respectively, sat-
isfying global energy conservation ∫

𝐷
𝐼(m)𝑑𝜎 = ∫

𝑇
𝐿(x)𝑑𝑥,

find a pair (𝜌, 𝑧) ∈ 𝐶
>0
(𝐷) × 𝐶(𝑇) that satisfies the following

conditions:

(i) (𝜌, 𝑧) is a reflector pair in the sense of Definition A.1;

(ii) the ray-tracing map 𝛾 : 𝐷 → 𝑇 satisfies

∫
𝛾
−1
(𝜏)

𝐼 (m) 𝑑𝜎 = ∫
𝜏

𝐿 (x) 𝑑𝑥 (A.3)

for any Borel set 𝜏 ⊆ 𝑇.

Here, 𝑑𝜎 denotes the standard area element on the sphere
𝑆
2. The second condition is local energy conservation.

As we indicate below, the reflector problem can be
reformulated in the following form.

Problem A.4 (minimize the functional).

F (𝑟, 𝜁) = ∫
𝐷

𝑟 (m) 𝐼 (m) 𝑑𝜎 + ∫
𝑇

𝜁 (x) 𝐿 (x) 𝑑𝑥 (A.4)

on the set Adm(𝐷, 𝑇) = {(𝑟, 𝜁) ∈ 𝐶(𝐷) × 𝐶(𝑇)𝑟(m) + 𝜁(x) ≥
log𝐾(m, x) for all m ∈ 𝐷, x ∈ 𝑇}.

Problem A.4 is the dual problem to the problem of
finding a measure-preserving map from 𝐷 ⊆ 𝑆

2 to 𝑇 ⊆

R2 which minimizes the transportation functional 𝑃 󳨃→

∫
𝐷
𝐾(m, 𝑃(m))𝐼(x)𝑑𝜎. Problems A.3 and A.4 are equivalent,

as expressed in the following theorem.

Theorem A.5 (see [2]). Let (𝜌, 𝑧) ∈ 𝐶
>0
(𝐷) × 𝐶(𝑇) be a

reflector pair. Then (log 𝜌, log 𝑧̃) ∈ Adm(𝐷, 𝑇). The following
statements are equivalent:

(i) (𝜌, 𝑧) solves the reflector Problem A.3.
(ii) (log 𝜌, log 𝑧̃) solves Problem A.4.

Thus, solving the reflector construction problem in Prob-
lem A.3 is equivalent to solving the infinite-dimensional LP
problem in Problem A.4. Indeed, it can be shown that a
solution as inTheorem A.5 exists. See Corollary 6.5 in [2].
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B. An Explicit Analytic Solution to the
Reflector Problem

In order to obtain a data set where an explicit analytic
solution is known, we consider a special given configura-
tion of reflectors and then solve the “forward” problem of
determining the output intensity this system produces for
a given input intensity. This general family of solutions we
obtainedwas used to generate the explicit synthetic data set in
Section 4.1.

B.1. Construction of a Pair of Reflectors 𝑅
1
, 𝑅
2
. Consider the

following set of two reflectors𝑅
1
and𝑅

2
, sketched in Figure 4.

Let a = (𝑎, 𝑏, 𝑐) be a given point in R3, and let 𝑅 > 0 and
𝛼 > 0 be two positive numbers with 𝑅 > |a| = √𝑎2 + 𝑏2 + 𝑐2.
Now, let the first reflector 𝑅

1
be the boundary of a prolate

spheroid (ellipsoid of revolution) with foci at the origin O
and at a and with major diameter 𝑅. Thus, for each point
P on 𝑅

1
, the sum of the distances from each of the two

foci PO + Pa equals 𝑅. Let the second reflector 𝑅
2
be the

boundary of a paraboloid whose main axis is the negative
𝑧-axis and whose focus is at a with focal parameter 2𝛼. Thus,
for each point p = (𝑥, 𝑦, 𝑧) on 𝑅

2
, the sum of the distance

to the focus and the shifted 𝑧-component Pa + (𝑧 − 𝑐) equals
2𝛼.

Note that by definition of the two reflectors, any cone
of light rays emitted from the origin 𝑂 will be transformed
into a beam of parallel rays traveling in the direction of the
negative 𝑧-axis. Indeed, a ray emitted from𝑂will be reflected
off 𝑅
1
toward the focus a. This ray will then be reflected

in the direction of the negative 𝑧-axis by 𝑅
2
. See again

Figure 4.
It is not hard to find explicit expressions for the two

reflectors. If we write 𝑅
1
= {𝜌(m) ⋅ m | m ∈ 𝑆

2
} and 𝑅

2
=

{(x, 𝑧(x)) | x = (𝑥, 𝑦) ∈ R2}, then we have the following
expressions:

radial function 𝜌 for 𝑅
1
: 𝜌 (m) =

𝑅
2
− |a|2

2 (𝑅 −m ⋅ a)
, (B.1)

equation for 𝑅
2
: − 4𝛼𝑞 = |p|2 − 4𝛼

2
, (B.2)

where we used the shifted coordinates (p, 𝑞) = (𝑥, 𝑦, 𝑧) −

(𝑎, 𝑏, 𝑐) = (x, 𝑧) − a.

B.2. Ray-Tracing Map 𝛾. One can now determine the ray-
tracing map 𝛾 corresponding to the reflector pair 𝑅

1
, 𝑅
2
. See

again Figure 4.
Letm ∈ 𝑆

2 be a given direction.Thus,m = (mx, 𝑚𝑧) with
mx ∈ R2 and |mx|

2
+ 𝑚
2

𝑧
= 1. To determine the image 𝛾(m),

consider the ray emitted from the origin in the direction m.
The ray will encounter the first reflector at the point 𝜌(m) ⋅m
and will then be reflected towards the second focus a. Thus,
the reflected ray can be parameterized by a+𝜆⋅(a−𝜌(m) ⋅m),
where 𝜆 is a parameter. With (B.2), this yields that the point

z

x

x = 𝛾(m)

(x , z(x))

𝜌(m) ·m

Reflector R2

(paraboloid)

Reflector R1

(spheroid)

a = (a, b, c)
O

Figure 4: Sketch of the reflectors 𝑅
1
and 𝑅

2
. 𝑅
1
is the boundary of

an ellipsoid whose foci are the points𝑂 and a. 𝑅
2
is the boundary of

a paraboloid whose focus is a. The sketch shows a two-dimensional
cross section. A ray given by the direction m ∈ 𝑆

2 will be reflected
by 𝑅
1
and then by 𝑅

2
to a ray in the direction of the negative 𝑧-axis.

where the reflected ray hits the second reflector is a+𝜆
∗
⋅ (a−

𝜌 ⋅m), where

𝜆
∗
=

2𝛼

(𝑅 − 𝜌)
2

− (𝑐 − 𝜌𝑚
𝑧
)
2
((𝑅 − 𝜌) − (𝑐 − 𝜌𝑚

𝑧
))

=
2𝛼

𝑅 + 𝑐 − 𝜌 (1 + 𝑚
𝑧
)
.

(B.3)

The projection of this point to the 𝑥𝑦-plane is the value of the
ray-tracingmap.Thus, we have the following explicit formula
for the ray-tracing map:

𝛾 (m) = (
𝑎

𝑏
) +

2𝛼

𝑅 + 𝑐 − 𝜌 (m) (1 + 𝑚
𝑧
)

× ((
𝑎

𝑏
) − 𝜌 (m)mx) , m = (mx, 𝑚𝑧) ∈ 𝑆

2
.

(B.4)

B.3. Solution of the Forward Problem. We can now solve the
forward problem. Given the reflector pair 𝑅

1
, 𝑅
2
as defined

above, an input apertureΩ ⊆ 𝑆
2 and an intensity distribution

𝐼(m),m ∈ Ω, find the output aperture 𝑇 ⊆ R2 and the output
intensity 𝐿(x), x ∈ 𝑇.

The output aperture is simply the image of Ω under the
ray-tracing map 𝛾: 𝑇 = 𝛾(Ω). To find the induced intensity
𝐿(x), use the defining property

∫
𝜔

𝐼 (m) 𝑑𝜎 = ∫
𝛾(𝜔)

𝐿 (x) 𝑑x (B.5)

for all Borel sets 𝜔 ⊆ Ω. This is an energy balance equation.
The above integral equation allows us to find an explicit

expression for 𝐿(x) given 𝐼(m) or vice versa. We consider, for
simplicity, the case thatΩ is contained in the left hemisphere
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𝑆
2

−
= 𝑆
2
∩ {(𝑥, 𝑦, 𝑧) ∈ R3 | 𝑧 < 0}. We can then use

coordinates:

𝜏 : {(𝑚
𝑥
, 𝑚
𝑦
) ∈ R

2
| 𝑚
2

𝑥
+ 𝑚
2

𝑦
< 1} 󳨀→ 𝑆

2

−
,

(𝑥, 𝑦) 󳨃󳨀→ (𝑚
𝑥
, 𝑚
𝑦
, −√1 − 𝑚2

𝑥
− 𝑚2
𝑦
) .

(B.6)

In these coordinates, the standard measure on 𝑆
2 is given by

𝑑𝜎 = 𝑑𝑚
𝑥
𝑑𝑚
𝑦
/|𝑚
𝑧
|, where 𝑚

𝑧
= −√1 − 𝑚2

𝑥
− 𝑚2
𝑦
. Using

this, (B.5) is then equivalent to the equation

𝐼 (mx, 𝑚𝑧)
1

󵄨󵄨󵄨󵄨𝑚𝑧
󵄨󵄨󵄨󵄨

= 𝐿 (𝛾 (𝜏 (mx))) 𝐽 (𝛾 ∘ 𝜏) . (B.7)

Here, 𝐽(𝛾 ∘ 𝜏) = | det (𝜕(𝛾 ∘ 𝜏)/𝜕𝑚
𝑥

𝜕(𝛾 ∘ 𝜏)/𝜕𝑚
𝑦) | denotes

the Jacobian of the map 𝛾 ∘ 𝜏. With the help of a computer
algebra system like Mathematica, this can be evaluated
explicitly as

𝐽 (𝛾 ∘ 𝜏) = 4𝛼
2
(|a|2 − 𝑅

2
)
2

× ( − 𝑚
𝑧
(2 (𝑐 + 𝑅) mx ⋅ (

𝑎

𝑏
)

− (1 + 𝑚
𝑧
) |(𝑎, 𝑏)|

2

−(𝑐 + 𝑅)
2
(1 − 𝑚

𝑧
) )

2

)

−1

,

(B.8)

where again𝑚
𝑧
= −√1 − 𝑚2

𝑥
− 𝑚2
𝑦
.
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