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AN  ELECTROMAGNETIC  INVERSE  PROBLEM 
IN CHIRAL MEDIA 

 
STEPHEN R. MCDOWALL 

 

Abstract. We consider the inverse boundary value problem for Maxwell’s 

equations that takes into account the chirality of a body  in R3. More pre- 

cisely, we show that knowledge of a boundary map for the electromagnetic 
fields determines the electromagnetic parameters, namely the conductivity, 
electric permittivity, magnetic permeability and chirality, in the interior. We 

rewrite Maxwell’s equations as a first order perturbation of the Laplacian and 
construct exponentially growing solutions, and obtain the result in the spirit 
of complex geometrical optics. 

 

 

 

1. Introduction 

In [12], Sylvester and Uhlmann proved that the conductivity of a body can be 
uniquely identified from information obtained only from the boundary. If a time de- 
pendence is introduced to the electromagnetic fields, the equations governing these 
fields change from a single second order elliptic partial differential equation to the 
full Maxwell’s equations. In [11] Somersalo et al. presented a boundary map for 
time-harmonic fields at a fixed frequency, and raised the question of whether the 
parameters describing the electromagnetic properties of the body could be deter- 
mined from knowledge of this boundary map. They showed that these parameters 
could be recovered approximately provided they differed only slightly from known 
constants. In [7] this assumption was dropped, and it was shown that the pa- 
rameters are recoverable provided they are known in a small neighborhood of the 
boundary of the body. 

In all these treatments, the constituent equations, which describe the depen- 
dence of the electric displacement and the magnetic induction on the electric and 
magnetic fields, do not take into account the chirality of the body. Instead, they 
depend only on the conductivity, electric permittivity and magnetic permeability 
of the body. Chirality is an asymmetry in the molecular structure; a molecule is 
chiral if it cannot be superimposed onto its mirror image. Presence of chirality 
results in the rotation of electromagnetic fields and is observable, particularly in 
the microwave range. Such experimental observations are used in physical chem- 
istry to characterize molecular structures. For a detailed treatment of chirality and 
time-harmonic electromagnetic fields, see [2]. 

 
 

Received by the editors June 9, 1997. 
1991 Mathematics Subject Classification.  Primary 35R30, 35Q60; Secondary 35S15. 

Key words and phrases. Inverse boundary value problems, Maxwell’s equations, chirality, in- 
terior   determination. 

The author was partially supported by NSF Grant DMS-9705792. 
 

 
 

2993 

Qc 2000 American Mathematical Society 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use  

http://www.ams.org/journal-terms-of-use


 

2994 STEPHEN R. MCDOWALL 
 

In this work we treat the case of a chiral body, and so the constituent equations 
depend on a fourth parameter β which describes this chirality. In [8] Ola and Som- 
ersalo simplified the proof of interior identifiability in [7] by constructing a second 
order system of differential equations, which has as its principal part the Laplacian, 
in such a way that solutions to this system yields solutions to Maxwell’s equations. 
They were able to construct a system with no first order part, that is a Schrödinger 
equation, and then use the results of [12] to construct exponentially growing so- 
lutions. Here we follow this idea and show that in the chiral case we are able to 
construct a system with the Laplacian as its principal part which again yields so- 
lutions to Maxwell’s equations, but which has a first order term. Nakamura and 
Uhlmann [5] have developed a technique to handle such first order perturbations of 
the Laplacian, and it is this technique we employ here to construct exponentially 
growing solutions. The ability to construct these solutions enables us to use com- 
plex geometrical optics to prove identifiability of three of the material parameters 
throughout the body assuming knowledge of the fourth; in particular, assuming 
that the magnetic permeability is known, the chirality is determined uniquely by 
the boundary information. 

In section 2 we state the problem precisely, present the main theorem (theorem 
2.2), and briefly outline the proof, which comprises the later sections. Section 3 sets 
up the second order system; in section 4 we construct the exponentially growing 
solutions. The proof of our result is brought together in section 5. Sections 6 and 
7 are appendices including some more technical proofs. 

 
2. Statement of the Result 

Let Ω be a bounded connected subset of R3 with connected complement and with 
smooth boundary ∂Ω. We restrict our interest to time-harmonic electromagnetic 
fields on Ω, at fixed frequency ω, i.e. if E and H are the electric and magnetic 
fields respectively then 

E = eiωtE(x), H = eiωtH(x). 

For such time-harmonic fields, Maxwell’s equations are 

(2.1) ∇ ∧ E = iωB, ∇ ∧ H = −iωD. 

Using the Born-Fedorov formulation for a chiral body, (see [2]), the magnetic in- 
duction B and the electric displacement D are related to E and H through the 
constituent  equations 

B = µ̃(H + β̃ H), D = ε̃(E + β̃ E). 
∇ ∧ ∇ ∧  

Here ε̃ = σ + (i/ω)γ, where σ is the electric permittivity and γ is the conductivity, 
and µ̃ is the magnetic permeability of the body.  The chirality of the body is 
described by β̃. The parameters σ, γ, µ̃ and β̃ are real-valued, and we assume here 
that ε̃, µ̃ and β̃ are smooth and are constant outside a compact set. We assume 

(2.2) σ ≥ σ0 > 0, γ ≥ 0, µ̃ ≥ µ̃0 > 0 

for constants σ0 and µ̃0. We shall be using an equivalent formulation but with 
  ε̃   ε = 
1 − ω2ε̃µ̃β̃2 

 
, µ = 

  µ̃   

1 − ω2ε̃µ̃β̃2 

 
, β = −iωε̃µ̃β̃   

. 
1 − ω2ε̃µ̃β̃2 
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We are assuming that 1 − ω2ε̃µ̃β̃2 /= 0; this means we assume that the electric and 
magnetic fields never become parallel. Given the bounds (2.2), there is ω0 > 0 such 
that this assumption is satisfied for ω ∈ (−ω0, ω0); if ω ∈ (0, ω0), then ε and µ are 
bounded away from zero, like ε̃ and µ̃. With this change of parameters, we have 
the constituent equations 

(2.3) B = µH − βE, D = εE + βH. 

We are assuming further that there are no magnetic poles or electric sinks or 
sources in Ω; that is to say, we assume the induction and displacement to be 
divergence free: 

(2.4) ∇ · B = ∇ · (µH − βE) = 0, ∇ · D = ∇ · (εE + βH) = 0. 

We remark that 1 − ω2ε̃µ̃β̃2 /= 0 is equivalent to εµ + β2 /= 0. 
If F is a function space, we denote by Fk the space of k-vectors whose compo- 

nents are in F , and by Fk×k the space of k × k matrices whose components are in 
F . We shall need the following function spaces: Hs(Ω)k consists of k-dimensional 
vector fields whose components are in the usual L2-based Sobolev space Hs. Let 
Div denote the surface divergence on the boundary of Ω, let ν(x) be the outward 
unit normal vector at x ∈ ∂Ω, and define the following space of tangential fields: 

1 TH 2 (∂Ω) = 
f

 ( Ω)3 = 0  and Div 1 
  ( Ω)  . 

 

Div F ∈ H 2   ∂ | ν · F , F ∈ H 2   ∂ 
 

1 

Theorem 2.1. Let F  ∈ TH 2 

 
(∂Ω).   There is a discrete set D  containing no 

limit points in (0, ω0) such that for all ω ∈ (0, ω0)\D there exist unique (E, H) ∈ 
Dt(Ω)3 × Dt(Ω)3 solving the following boundary value problem: 

∇ ∧ E = iω(µH − βE), 
(2.5) ∇ ∧ H = −iω(εE + βH), 

ν ∧ E|∂Ω = F. 

We leave the proof of this to an appendix. We may thus define the boundary 
1 

admittance map Π : TH 2 

1 

(∂Ω) → TH 2 

1 

(∂Ω) as follows. Given F ∈ TH 2 (∂Ω), 
let (E, H) solve (2.5) and define 

ΠF = Π(ν ∧ E|∂Ω) = ν ∧ H|∂Ω. 

The problem considered herein can now be stated. 
If it is assumed a priori that µ1 = µ2 = µ (not necessarily constant) in Ω, then 

we have the following: 

Theorem 2.2. Let (Ω; ε1, µ, β1) and (Ω; ε2, µ, β2) be two electromagnetic bodies 
with the same smooth boundary ∂Ω.  Suppose that Π1  = Π2; that is, if F 

1 
2 
Div (∂Ω) and (Ej, Hj ) solve (2.5) with parameters (εj, µ, βj ) for j = 1, 2, then 

Π1F = ν ∧ H1|∂Ω = ν ∧ H2|∂Ω = Π2F. 

If ε1 = ε2  and β1 = β2  on ∂Ω, and the same is true of all normal derivatives at 
∂Ω, then 

 
 

throughout Ω. 

(ε1, µ, β1) = (ε2, µ, β2) 
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Remarks. (1) We can, in fact, show that if any of the three parameters are known a 
priori to agree in the body, then equality of the boundary maps implies agreement 
of the other parameters throughout the body. 

(2) It was shown in [4] that Π determines the material parameters and their 
first normal derivatives at the boundary. It is expected that the technique of [4] 
would show that Π also determines all the higher order derivatives at the boundary; 
however, the computations become unmanageable. 

(3) The assumption that the parameters agree to all order at the boundary is 
necessary only in the construction of the intertwining operators (see section 4). 
These operators belong to the Shubin class, which requires smooth symbols. In [13] 
Tolmasky showed that such intertwining operators may be constructed for equations 
with non-smooth parameters. This technique should remove the necessity of the 
assumption at the boundary, and also should lower the regularity assumptions on 
the parameters throughout Ω. 

(4) In the case that β1 = β2 = 0, the result of [7] follows without any assumption 
on ε or µ at ∂Ω. The reason for this is that exponentially growing solutions are 
constructed without the need for intertwining operators, and so the parameters 
may be extended outside Ω in a non-smooth way. 

We shall not impose the condition that µ1 = µ2 until necessary at the end of 
the proof. Under the assumption of the theorem we may extend the parameters 
smoothly to all of R3 so that ε1 = ε2, µ1 = µ2 and β1 = β2, outside Ω, and so that 
εj = ε0, µj = µ0,  βj  = 0,  j = 1, 2, outside a compact set containing Ω.  Here, 
ε0 and µ0 are constants. Fundamental to the proof of theorem 2.2 is the following 
identity. 

Proposition 2.3. Let (Ej , Hj ) solve (2.1) for parameters (εj, µj , βj ), j = 1, 2. If 
Π1 = Π2, then 

(2.6) r (
(β 

β )(H E  + H E ) + (ε o )E E  + (µ µ )H H = 0  1 −  2 
Ω 

1 ·  2 2 ·  1 1 − 2 1 ·  2 2 −  1 1 · 2
)
 

Proof. Integrating by parts, and using the definition of Π, we get 
r r 

iω(ε1E1 + β1H1) · E2 =   − 
Ω Ω r 

=  − 

∇ ∧ H1 · E2 
r 

ν ∧ H1 · E2 − 

 
H1 · ∇ ∧ E2 

∂Ω r r 
=   − Π1E1 · E2 − 

Ω 

H1  · iω(µ2H2  − β2E2) 
 

and similarly 
r 

iω(ε2E2 + β2H2) · E1 = − 

∂Ω 
 
 

r 
Π2E2 · E1 − 

Ω 
 
 

r 
H2  · iω(µ1H1  − β1E1). 

Ω 

Thus 
r 

∂Ω Ω 

iω 
(
(β1 − β2)(H1 · E2 + H2 · E1) + (ε1 − ε2)E1 · E2 + (µ2 − µ1)H1 · H2

)
 

Ω r 
= (Π2E2 · E1 − Π1E1 · E2). 

∂Ω 
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The proposition follows if we show that 

r 
Π2E2 · E1 = 

∂Ω 

 
r 

E2  · Π2E1. 
∂Ω 

Let (E0, H0) be the solution to (2.5) with parameters (ε2, µ2, β2) and with F = 
ν ∧ E1|∂Ω. Then 

r r 
(Π2E2  · E1  − E2  · Π2E1) =  

∂Ω ∂Ω 
r 

(ν ∧ H2 · E1 − E2 · ν ∧ H0) 

= (−H2 · ν ∧ E0 − E2 · ν ∧ H0) 
∂Ω 

r 
= (∇ ∧ H2 · E0 − H2 · ∇ ∧ E0 − E2 · ∇ ∧ H0 + ∇ ∧ E2 · H0) 

Ω r 
= −iω(ε2E2 + β2H2) · E0 − H2 · iω(µ2H0 − β2E0) 

Ω 

+ E2 · iω(ε2E0 + β2H0) + iω(µ2H2 − β2E2) · H0
)
 

= 0. 
 

 
 

The remainder of the paper is devoted to constructing sufficiently many suitable 
solutions to Maxwell’s equations to conclude from (2.6) the claim of theorem 2.2. 
We present now an outline of the proof. 

The aim is to use complex geometrical optics in the manner of [12] and many 
subsequent papers; that is, we wish to construct exponentially growing solutions 
depending on a complex parameter ρ and to examine the asymptotics as the size 
of ρ gets large. Rather than construct solutions to (2.1) directly, we follow the idea 
of Ola and Somersalo in [8] and introduce a new 8 × 8 system 

(P (∇) + V )(P (∇) + V t)Y = (∆ + N + Q)Y = 0, 
where P (∇) and N are first order differential operators, and V , V t and Q are matrix 
multipliers. We shall do this in such a way that if Y is a solution to this system, 
and 

X = (P (∇) + V t)Y 
is such that the first and last components of X are zero, then the vector fields 
((X2, X3, X4)t, (X5, X6, X7)t) will solve Maxwell’s equations. 

We then construct exponentially growing solutions to (∆ + N + Q)Yρ = 0 of the 
form 

Yρ = ex·ρ(y0,ρ + ψρ) 
with ρ ∈ C3 satisfying ρ · ρ = ω2ε0µ0, with y0,ρ an 8-vector which is constant 
in x and chosen to depend on ρ in a convenient way, and ψρ constructed so that 
ψρ → 0 in some sense as |ρ| → ∞. In [8], where chirality was not taken into account 
(β = 0), the above system included no first order term N , and so the authors were 
able to use the methods of [12] to construct exponentially growing solutions to a 
Schrödinger equation. When β /= 0, such a reduction does not seem possible, and 
so 
here we must construct solutions to a first order perturbation of the Laplacian. The 
techniques employed are those of [5], where Nakamura and Uhlmann constructed 
solutions to a system of a similar form arising from elasticity. 
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The final ingredient is to set Xρ = (P (∇) + V t)ex·ρ(y0,ρ + ψρ) and to show that 
we can choose y0,ρ in such a way that Xρ yields solutions to Maxwell’s equations, 
and to use these solutions in (2.6) to prove the claim of theorem 2.2. 

 
3. A Reformulation of Maxwell’s Equations 

In this section we introduce a new system of differential equations, the solutions 
of which, under certain restrictions, yield solutions to Maxwell’s equations. We first 
introduce the following 8 × 8 operator: 

  

P (∇) = 
 

 
  

 
The domain of P (∇) is Dt(R3) × Dt(R3)3 × Dt(R3)3 × Dt(R3). We point out that 

P (∇)P (∇) = ∆. 

Our aim is to find 8 × 8 matrices V and V t and write 

(P (∇) + V )(P (∇) + V t) = ∆ + N + Q 
with N a first order differential operator, and Q a zero order matrix multiplier. 
Then if Y solves 
(3.1) 
and we put 

(∆ + N + Q)Y = 0  
 

X = (P (∇) + V t)Y, 

we would like (3.1) to imply that in some sense X solves Maxwell’s equations. The 
advantage of this reformulation is that we are in the position of seeking solutions 
to (3.1), for which a method is known. 

We introduce some notation: for X ∈ Dt(R3) × Dt(R3)3 × Dt(R3)3 × Dt(R3) we 
shall write 

X = (a, A, B, b)t. 
In order to have X a solution to Maxwell’s equations, we will find Y in such a way 
that a = b = 0; for the moment assume that this is the case. We must choose V 
so that (3.1) implies (2.1) and (2.4); in particular, the central 6 rows of (3.1) must 
imply (2.1) and the first and last rows must imply (2.4). Let I 

V22 V23 
l I 

εI3 βI3  
l
 

and L = iω , Vm = V32 V33 −βI3 µI3 

where Vjk are the 3 × 3 blocks in the center of V and I3 is the 3 × 3 identity matrix. 
If in fact (A, B) are taken to be (E, H) (that is, we don’t rescale the fields in any 
way), then (3.1) is equivalent to 

( 
H

 0 =  
−∇ ∧ E 

\ ( 
E 

\ 
= −Vm H , 

and so, taking Vm = L, we obtain (2.1). Now set I 
−βI3 µI3  

l 
, M 

I 
−∇β · ∇µ · 

l
 

I 
v12 v13  

l
 

M εI3 βI3 
∇ · ∇ε · ∇β · , V0 =  v42  v43 

, 

0 ∇ ·  0 0 
∇ 0 ∇∧ 0 
0 −∇∧ 0 ∇ 
0 0 ∇ ·  0 
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 where v12  is the 3-vector (v12, v13, v14), v13  = (v15, v16, v17), v42  = (v82, v83, v84), and v43 = (v85, v86, v87) in V . Notice that under the condition that εµ + β2 /= 

0, 
M is invertible. Conditions (2.4) are equivalent to 

M 
( 

∇ · E 
∇ · H 

\ ( 
E

 

+ ∇M · H 

\ 
= 0, or 

( 
∇ · E 
∇ · H 

\ ( 
E 

\ 
= −M−1 ∇M · , 

and (P (∇) + V )X = 0 implies 
( 

∇ · E 
∇ · H 

 
\ ( 

E
 

+ V0 H 

 
\ 

= 0, 

so putting 

V0 = M−1∇M · =   1  
I  

(µ∇ε + β∇β) · (µ∇β − β∇µ) ·  
l
 

εµ + β2 (β∇ε − ε∇β) · (ε∇µ + β∇β) · 
we have (2.4). At this point, assuming the first and last components a and b of 
X are zero, we have determined the central 6 columns of V ; so (3.1) implies that 
the fields (A, B) satisfy (2.1). We now remove the assumption that a = b = 0 and 
choose the rest of V and all of V t in such a way that the equation 

(P (∇) + V )(P (∇) + V t) = ∆ + N + Q 
has as simple a first order term N as possible. This term is determined by P (∇)V t + 
V P (∇); analyzing this row by row and making choices to eliminate first order terms, 
we find that we may choose 

 
iωµ v12 v13 iωβ 


 

 
−iωε 0 0 −iωβ 


 

V = 


 0 iωε iωβ 0 
 

, V t = 


 0 −iωµ   −iωβ 0   
0 −iωβ iωµ 0 


 

−iωβ v42 v43 iωε 

 
0 iωβ −iωε 0 


 

iωβ 0 0 −iωµ 
and obtain the first order term 

 
v12 · ∇ − v13 · ∇∧ v12 · ∇∧ v13 · ∇ 


 

N = 


 
 

0 0 0 0  
0 0 0 0 


 

 v42 · ∇  − v43 · ∇∧ v42 · ∇∧ v43 · ∇  
We remark that N has compact support since its components consist of derivatives 
of the parameters, which are constant outside of a compact set. The zero order 
term Q can be calculated easily, but as it will not be needed here we shall not 
present it explicitly. We shall use the fact that Q − ω2ε0µ0I has compact support. 
Remark. A natural question to ask is, by rescaling the fields (E, H) can a system 
be found that has no first order term, in which case we would have a Schrödinger 
equation? Such a system was achieved in [8] for a non-chiral body by rescaling the 
fields. For a chiral body, however, the answer to this appears to be no; suppose 
that we write (A, B) = R(E, H) for some invertible matrix R of the form I 

r11I3 r12I3  
l 
, R = r  I r  I 

 
and we set  I 

−V32 −V33 

21  3 
 

l and 

22  3 
 

I 
βI µI 

l
 

L = iω . V�m = V22 V23 
�  

−εI3 −βI3 

. 
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Then we find that to satisfy (2.1) we must set 
V�m =  −∇R ∧ R−1 − RL� R−1, 

V0 =  −∇R · R−1 + RM−1∇M · R−1 

(the notation should be interpreted in the way that makes sense), and this results 
in a first order term whose non-zero components are given by the components of 

−2∇R · R−1 + RM−1∇M · R−1; 

we conjecture that there is no choice of matrix R which makes this zero. In [8] the 
rescaling matrix is 

I 
ε 

1 l 
R = 

0 µ 2 

and an easy calculation shows that the first order term vanishes when β = 0. 
An interesting observation is that no matter what choice of R is made, the sys- 
tem obtained by following this construction always leads to solutions to Maxwell’s 
equations. The proof of this is more involved than what is presented here, but the 
same program carries through. 

 
4. Construction of Solutions - Intertwining Operators 

 
Recall that we wish to construct solutions to (∆ + N + Q)Y = 0 with Y of the 

form Y = ex·ρ(y0,ρ + ψρ). For ρ ∈ C3 with ρ · ρ = ω2ε0µ0 we define the operators 
∆ρ = e−x·ρ∆(ex·ρ · ) and N + = e−x·ρ(N + Q − ω2ε0µ0)(ex·ρ · ), 

and so we wish to solve 
(4.1) 

 
(∆ρ + N +)(y0,ρ + ψρ) = 0. 

We specify ψρ later by prescribing its asymptotic behavior. Generally speaking, 
our approach is to construct pseudodifferential operators Aρ, Bρ and Cρ of order 
zero and depending on the parameter ρ so that 

(∆ρ + N +)Aρ(y0,ρ + ψρ) = Bρ(∆ρ + Cρ)(y0,ρ + ψρ). 
For sufficiently large ρ, Aρ is invertible, and we shall always take our operators to 
be properly supported, so that there is no problem defining compositions. This 
reduction to a zero order perturbation of the Laplacian enables us to use the ex- 
tensive literature on constructing exponentially growing solutions. Such solutions 
have been used extensively in identifiability results, starting with the conductivity 
result of [12]. 

We introduce the class these “intertwining operators” belong to.  Let Z = 
{
ρ ∈ C3  | |ρ| ≥ 1, ρ · ρ = ω2ε0µ0

r
, and denote by L0(R3, Z) the Shubin class of 

order zero (see [10], section 9). We refer the reader to [5] for a discussion of the 
Shubin class of operators, and repeat some important properties here. Most im- 
portantly we define the symbol class of L0(R3, Z). 
Definition 4.1. Let ρ ∈ Z; then aρ(x, ξ) ∈ S0(R3, Z) if and only if 

1. aρ ∈ C∞(R3 × R3) for each fixed ρ ∈ Z, and 
2. for any multi-indices α, δ and compact set K ⊂ R3, there exists a constant 

Cα,δ,K > 0 such that 
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sup |∂α∂δaρ(x, ξ)| ≤ Cα,δ,K (1 + |ξ| + |ρ|)−|α| 
ξ   x 

x∈K 

for any ξ ∈ R3, ρ ∈ Z. 
We say that aρ is the full symbol of Aρ in the same way as for usual pseudo- 

differential operators. We say Aρ ∈ L0(R3, Z) is properly supported if there exists 
a closed set H ⊂ R3 × R3 such that the support of the Schwartz kernel of Aρ is 
contained in H for all ρ ∈ Z and the projection of H onto each factor R3 is proper. 
We note that if Aρ ∈ L0(R3, Z) is properly supported, then we may expand the 
symbol � (Aρ)(x, ξ) of Aρ asymptotically as 

σ(Aρ)(x, ξ) ∼ 
) 

∂αDαaρ(x, y, ξ)|y=x. 
�  α!  ξ y 

α 

Proposition 4.2. Let ϕ ∈ C∞(R3) be such that ϕ is identically one on Ω. Then 
there exist operators Aρ, Bρ  and Cρ  in L0(R3, Z)8×8  such that 

(4.2) (∆ρ + N +)Aρ = Bρ(∆ρ + ϕCρ ϕ) 

We leave the proof of this to a later section. Let 
L2 2 3 2 

r
 2 δ 2 r 

δ = 
{
f ∈ Lloc(R ) :   f δ = (1 + |x| ) |f (x)| dx < ∞ , 

and for s ∈ R let Hs be the associated weighted Sobolev space. Assuming (4.2), 
we have the following proposition: 
Proposition 4.3. Let −1 < δ < 0, and let y0,ρ  be an 8-vector constant in x and 
bounded in ρ.  Then for sufficiently large |ρ| there exist a ψρ  ∈ H2(R3)8  and a 
constant C, depending only on δ, ϕ and Cρ, such that 

(∆ρ + ϕCρϕ)(y0,ρ + ψρ) = 0 
and 

(4.3) 

 
 ψρ  H2  ≤ 

 
C . 
|ρ| 

Proof. We have ∆ρψρ = −ϕCρϕy0,ρ − ϕCρϕψρ; by [10], Cρ : H2(R3)8 → H2(R3)8 

continuously with operator norm independent of ρ, and since ϕ is compactly sup- 
ported,  ϕCρϕy0,ρ   ∈ H2 (R3)8.  Let r0  > 0; by [12], if |ρ| > r0  > 0, we may 
solve 

ρ   = −ϕCρϕy0,ρ 

for ψ(0) ∈ H2(R3)8, and, from the estimates for ∆−1 in [12], 
ρ δ 

 (0) 

ρ     H2  ≤ 

 

 C(r0 ,δ) 
|ρ| 

ρ 
 
 ϕCρϕy0,ρ  H2     . 

In general, for any j, ϕCρϕψ(j−1)  ∈ H2 (R3)8, and so for |ρ| > r0 we solve 
ρ 

 ∆ρψ(j) 
δ+1  

(j−1) 

 
with 

 
 
 
 

(j) 
ρ     H2  ≤ 

ρ   = −ϕCρϕψρ 

 

 C(r0 ,δ) 
( 

Ct(ϕ, Cρ)
\j

 

 
 
 ϕCρϕy0,ρ  H2     ; 

δ |ρ| |ρ| δ+1 
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choosing |ρ| large enough and putting ψρ = 
),∞ ψ(j), we have ψ ∈ H2(R3)8  for 

sufficiently large |ρ|, and  
 ψρ  H2  ≤ 

j=0    ρ ρ δ 

 
C 

. 
δ 

 

Furthermore, (∆ρ + ϕCρϕ)(y0,ρ + ψρ) = 0. 
|ρ| 

Thus we have a means to construct solutions to (3.1). We have 
(∆ρ  + N +)Aρ(y0,ρ  + ψρ) = 0,  

and introducing a cut-off to gain compact support, we put 
(4.4) Yρ = ex·ρϕAρ(y0,ρ + ψρ); 
then in Ω we have (∆ + N + Q)Yρ = 0. In order to construct solutions Yρ so that 
Xρ = (P (∇)+ V t)Yρ are solutions to Maxwell’s equations, we must ensure that the 
first and last components of Xρ, namely (a, b), are zero. We introduce the notation 
P (ρ) to be the 8 × 8 matrix where ρ replaces ∇ in P (∇). 
Proposition 4.4. If y0,ρ  is chosen  so that the first and last components of 
P (ρ)Aρy0,ρ   are  zero,   then  the  first  and  last  components  (a, b)t   of  Xρ    = 
(P (∇) + V t)Yρ  are zero. 

Proof. Since (P (∇) + V )Xρ = 0, computing 
 
 

we obtain 

−iωε  ∇· 0 −iωβ
\
 

iωβ 0 ∇· −iωµ 
(P (∇) + V )Xρ 

 
= 0, 

(
a
\ 

(
εµ − β2 2εβ \ (

a
\ 

= 0 
 

 

Now 
∆   b + ω −2µβ εµ − β2 b . 

 
 
 
 
 
 

Writing 

Xρ = (P (∇) + V t)Yρ = (P (∇) + V t)ex·ρϕAρ(y0,ρ + ψρ) 
= ex·ρ{

P (ρ)ϕAρy0,ρ + P (ρ)ϕAρψρ + P (∇)ϕAρ(y0,ρ + ψρ) 
+V tϕAρ(y0,ρ + ψρ)

r
 

= ex·ρ{
P (ρ)ϕAρy0,ρ + Xs

r
, say. 

( 
a 
\ 

= ex·ρ 
(( 

a0 \ ( 
a  

\1 + , 
 

we have 
 
 

with 

b b0 
 
 

(∆ + ω2ε0µ0 + q) 

 
(
a
\ 

b 

bs 
 
 
= 0, 

q = ω2 

(
εµ − β2 2εβ  

\
 

−2µβ εµ − β2 
− ω2ε0µ0 

having compact support. Thus we have 

∆ 
(
as

\ 
ρ bs

 + q 
(
as

\ 
bs 

= −q (a0
\ 

.
 

b0 

2 
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Now Xs ∈ L2 (R3)8 and has compact support, so in particular (as, bs)t ∈ L2(R3)2. 
By [12], (as, bs)t is the unique solution in L2(R3)2, and since (a0, b0)t = (0, 0)t, the 
proposition follows. 

We will show later, in the proof of proposition 4.2, that the symbol aρ(x, ξ) of 
Aρ is of the form 

 
a11 a12 · · · a17 a18 


 

  
0 . 0  


    ... I   

 

.  , 
. . . 0  


 

a81 a82 · · · a87 a88 

where I6 is the 6 × 6 identity matrix, and that aρ(x, ξ) is homogeneous of degree 
zero in ξ and ρ. Thus 

 

P (ρ)ϕAρy0,ρ  = ϕ 


 
ρ · (y2, y3, y4) 


 

( a1· · y0,ρ)ρ + ρ ∧ (y5, y6, y7)   
,  

( a8· · y0,ρ)ρ − ρ ∧ (y2, y3, y4) 


 
ρ · (y5, y6, y7) 

where yj are the components of y0,ρ and a1· and a8· are the first and last rows of 
aρ. To satisfy the conditions of proposition 4.4 we must therefore choose y0,ρ so 
that ρ · (y2, y3, y4) = ρ · (y5, y6, y7) = 0. 

 
5. Proof of Theorem 2.2 

We first investigate the asymptotics in ρ of Aρ. 
Proposition 5.1. If f ∈ L2(Ω)8, then, for all x ∈ Ω, 

Aρf (x) = aρ(x, 0)f (x) + Rρf (x) 
modulo smoothing, and   

C 
 Rρf L2(Ω) ≤ 1 + ρ  f L2(Ω) 

| | 
for a constant C > 0 independent of ρ and f. Recall that aρ(x, ξ) is the symbol of 
Aρ. 

Proof. Let χ ∈ C∞(R3) be such that χ(x) = 1 on {|x| ≤ 1}, χ(x) = 0 on {|x| ≥ 2}, 
and let   (y) ∈ C∞(R3) be such that 

 
For x ∈ Ω, 

σ(y) = 1 on {y | ∃ x ∈ Ω with χ(x − y) /= 0}. 

 
r 

Aρf (x)  = 
 
 
 

= 

ei(x−y)·ξχ(x − y)aρ(x, ξ)f (y)dy dξ 
r 

+ ei(x−y)·ξ (1 − χ)(x − y)aρ(x, ξ)f (y)dy dξ 
r 

ei(x−y)·ξχ(x − y)aρ(x, ξ)(σf )(y)dy dξ + g1(x), 

0 
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where g1 ∈ C∞(R3)8, since the second integral is smoothing. Here we have used 
σ = 1, where χ(x − y) /= 0. Expanding χ in a Taylor series about y = x, we have, 
modulo smoothing, 

 
Aρf (x) = 

 
= 

r 
ei(x−y)·ξaρ(x, ξ)(σf )(y)dy dξ 

r 
eix·ξ aρ(x, ξ)(---σf )(ξ)dξ, 

 

where �  denotes the Fourier transform of g. We now expand aρ(x, ξ) in a Taylor 
series about ξ = 0 to obtain 

r 
Aρf (x)  = eix·ξ aρ(x, 0)(---σf )(ξ)dξ 

r 3 

+ eix·ξ 
) 

ξj
 

j=1 

r 1 

(∂ξj aρ)(x, tξ)dt(---σf )(ξ)dξ 
0 

= aρ(x, 0)f (x) + R(1)(σf )(x) 
modulo smoothing. Let σ̃(R(1)) denote the symbol of R(1); on the one hand, since ρ 

aρ ∈ S0(R3, Z)8×8, we have 
   3 r 1 

|σ̃(R(1))| = 
) 

ξj 

ρ 
 
 
(∂  a )(x, tξ)dt

 C|ξ|  ξ    ρ ≤ 
ρ 

 
j   

0
  j=1 1 + |ρ| 

 

for some constant C > 0; but on the other hand, since σ̃(R(1)) = a (x, ξ) −a (x, 0), 
ρ ρ ρ 

it is homogeneous of degree 0 in ξ and ρ, and so 

|σ̃(R(1))| ≤ C 
. 

 

Therefore, 
 
 

 R(1) 

ρ 1 + |ρ| 
 

C C 
ρ  (σf ) L2 (Ω) ≤ 1 + ρ  σf L2(R3 ) ≤  f L2(Ω) . 

| | 

We have denoted Rρ(f ) = R(1)(σf ). 

1 + |ρ| 

 

We will need to know the asymptotics of derivatives of Xρ, and so will use the 
following corollaries. 

Corollary 5.2. If f ∈ H2(Ω)8, then there exists a constant C > 0, independent of 
f and ρ, such that 

P (∇)Aρf (x) = 
(
P (∇)aρ(x, 0))f (x) + aρ(x, 0)(P (∇)f 

)
(x) 

+Rρ(P (∇)f )(x) + Rt f (x) 

modulo smoothing, and with 
 Rρ  L2(Ω),L2 (Ω) +  Rt

 

 

 
L (Ω),L (Ω) 

 
 

C 
 

 

1 + ρ 

ρ    2 2 ≤ . 
| | 

Here  · L2(Ω),L2 (Ω) denotes the operator norm. 
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Corollary 5.3. If Xρ = (P (∇) + V t)Yρ and Yρ is as in (4.4), then in Ω, 

Xρ = ex·ρ {P (ρ)aρ(x, 0)y0,ρ + P (ρ)Rρy0,ρ + P (ρ)aρ(x, 0)ψρ 

+(P (∇)aρ(x, 0))y0,ρ + V taρ(x, 0)y0,ρ + Wρ} 
and there is a constant C > 0 such that 

 Wρ  L2 (Ω) ≤ 
C . 
|ρ| 

Let F1  and F2  be the projections so that F1X = E = (X2, X3, X4) and F2X = 0 
H = (X5, X6, X7).  We compute the terms of order |ρ| and |ρ| 
aρ(x, 0) = a(0)(x, 0) + O(|ρ|−1), we may write 

in Xρ.  Since 

P (ρ)aρ(x, 0)y0,ρ +P (ρ)Rρy0,ρ +P (ρ)aρ(x, 0)ψρ +(P (∇)aρ(x, 0))y0,ρ +V taρ(x, 0)y0,ρ 

= P (ρ)a(0)(x, 0)y0,ρ + P (ρ)(w1 , w 2, w 3, w4)t + P (ρ)(u1, u2, u3, u4)t 
+ P (ρ)a(0)(x, 0)(ψ1, ψ 2, ψ 3, ψ4)t + (P (∇)a(0) (x, 0))y0,ρ 

ρ ρ 

ρ  (x, 0)y0,ρ + O(|ρ|−1), 
where all of wj , uj, ψj are O(|ρ|−1). Computing the F1 and F2 projections of this, 
we find that the fields are of the form 
(5.1)   E = ex·ρ 

I 
a1  · y )ρ + ρ ∧ y  + (w  + u  + ( a · ψ ))ρ 
(  · 0,ρ 567 1 1 1· ρ 

1 
l 

 

and 

+ρ ∧ (w  3 + u3 + ψ  3) + ∇ a1· · y0,ρ − iωµy234 − iωβy567 + O(|ρ|− ) 

(5.2)   H = ex·ρ 
I 

a8  · y )ρ − ρ ∧ y  + (w  + u  + ( a · ψ ))ρ 
(  · 0,ρ 234 4 4 8· ρ 

1 
l 

−ρ ∧ (w  2 + u2 + ψ  2) + ∇ a8· · y0,ρ + iωβy234 − iωεy567 + O(|ρ|− )  . 

We have used y234   = (y2, y3, y4)t  and y567   = (y5, y6, y7)t.   We now make some 
choices for ρj . Fix k ∈ R3, and for s ∈ R, s > 0, let η, ξ ∈ R3 be such that 

(η, k) = (η, ξ) = (k, ξ) = 0, 
2 

|η|2 = |k| + s2 + ω2ε µ , 
 
 

Set 

4 0   0 

|ξ|2 = 1. 

 ρ1 = η + i     + sξ
 

 

2 , k 
 
 

so that 
(5.3) 

ρ2 = −η + i     − sξ  , 

 
ρ1 + ρ2 = ik, 

ρj · ρj = ω2ε0µ0, j = 1, 2. 
Define τj = lims→∞ ρj/s and observe that τ1 = −τ2. The parameter s controls the 
growth of |ρ|; that is, |ρ| → ∞ as s → ∞. 
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We must compute the highest order terms in the dot products of the fields to use 
in the identity (2.6). Each field is of order one, and so we might expect order two 
terms in the products; this fails to be the case for the following reason. If y0,ρ1 and 
y0,ρ2 are chosen to satisfy the condition of proposition 4.4 and y1 = (y0,ρ1 )234, y2 = 
(y0,ρ2 )234 for example, then yj · ρj = 0 and we find that 

ρ1 · ρ2 = O(|ρ 0), 
ρ1 · (y2 ∧ ρ2)   = O(|ρ 0), 

(ρ1 ∧ y1) · (ρ2 ∧ y2)    = (ρ1  · ρ2)(y1  · y2) − (ρ1  · y2)(ρ2  · y1) 
= (ρ1 · ρ2)(y1 · y2) − ((ik − ρ2) · y2)((ik − ρ1) · y1) 
= O(|ρ|0). 

Thus the terms which appear to be of order two are in fact of order zero. 
We must therefore compute the order one terms in the products of the fields. We 

shall choose y0,ρj of the form y0,ρj = (δ1, 0, 0, δ2)t with δj ∈ {0, 1}. This simplifies 
the expressions (5.1) and (5.2) for E and H. Choose first y0,ρ1  = y0,ρ2  = (1, 0, 0, 0)t. 
Then 

 
lim 1 

E1 · H2 =  eix·k [a1  τ1 · ∇a2 + a2  τ2 · ∇a1  ], 
s→∞ s 

1 
11 81 81 11 

lim E2 · H1 =  eix·k [a2  τ1 · ∇a1 + a1  τ2 · ∇a2  ], 
s→∞ s 

1 
11 81 81 11 

lim E1 · E2 =  eix·k [a1  τ1 · ∇a2 + a2  τ2 · ∇a1  ], 
s→∞ s 

1 
11 11 11 11 

lim H1 · H2 =  eix·k [a1  τ1 · ∇a2 + a2  τ2 · ∇a1  ], 
s→∞ s 81 81 81 81 

where al is the ij component of a(0)(x, 0). Now τ1 = −τ2 and, by (7.2) from the 
proof of proposition 4.2, 

τ2 · ∇a(0)(x, 0) = −nτ a(0)(x, 0), 
ρ2 

where nτ2 = lims→∞ nρ2 /2s. Thus 
2   ρ2 

τ1 · ∇a2 = (nτ  a(0)(x, 0))ij   and  τ2 · ∇a1 = (nτ  a(0)(x, 0))ij . 
ij 2   ρ2 ij 1   ρ1 

If v l denotes the ij component of V0 for parameters εl, µl, βl (see section 3), and 
τ = τ1 = −τ2, then 

1 r 
lim 

s→∞ s 
(
(β1 − β2)(H1 · E2 + H2 · E1) + (ε1 − ε2)E1 · E2 + (µ2 − µ1)H1 · H2

)
dx 

Ω 
r 

= eix·k{(β1 − β2)[a2  (a1  v 1 + a1  v 1 ) − a1  (a2  v 2  + a2  v 2 ) 
81    11  12 

R3 
81  13 11    11  42 81  43 

+ a2  (a1  v 1 + a1  v 1 ) − a1  (a2  v 2 + a2  v 2 )] · τ 
11    11  42 81  43 81    11  12 81  13 

+ (ε1 − ε2)[a2  (a1  v 1  + a1  v 1 ) − a1  (a2  v 2  + a2  v 2 )] · τ 
11    11  12 81  13 11    11  12 81  13 

+ (µ2 − µ1)[a2  (a1  v 1 + a1 v 1 ) − a1 (a2 v 2  + a2 v 2 )] · τ 
r
dx = 0. 

81    11  42 81  43 81    11  42 81  43 

The integration extends to all of R3 since the parameters have been extended to 
agree outside Ω. This identity holds for any k ∈ R3, and so the Fourier transform of 
the integrand, and hence the integrand itself, is zero. Repeating these calculations 
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for the choices  
y0,ρ1  = (1, 0, 0, 0),   y0,ρ2  = (0, 0, 0, 1); 
y0,ρ1  = (0, 0, 0, 1),   y0,ρ2  = (1, 0, 0, 0); 
y0,ρ1  = (0, 0, 0, 1),   y0,ρ2  = (0, 0, 0, 1) 

and rearranging, we obtain the identity 
(
a1 1 \ (( v 1

 2 1 2 \ 
81 a11 22 − v11 v12 − v12 

a1 1  v 1 2 1 2 · τ (β1 − β2) 
88 a18 21 − v21 v11 − v22 ( 

v 1 0  
\

 
+ 12  v 1  − v 2 − v 2 · τ (ε1 − ε2) 

11 11 ( 2 
12 

1 2 \ 1( 2 2 \ 
+  − v12 v22 − v22 a11 a18 0 v 2 · τ (µ2 − µ1) a2 2 = 0. 

21 81 a88 

The two matrices involving the al are invertible by construction, and may be 
removed from the identity. If any one of the pairs of parameters is equal, then this 
system implies that the other two are equal throughout Ω. We illustrate this in the 
practically most applicable case, when µ1 = µ2. Assume now that µ1 = µ2 = µ; 
we obtain the following four equations. Let Dj = εjµ + β2, and for simplicity of 
exposition, let us use ∇τ for ∇ · τ . Then 
(5.4) 

 

(5.5) 
(5.6) 

 

(5.7) 

(D1(µ∇τ ε2 + β2∇τ β2) − D2(ε1∇τ µ + β1∇τ β1))(β1 − β2) 
− D2(µ∇τ β1 − β1∇τ µ)(ε1 − ε2) = 0, 

(D1(µ∇τ β2 − β2∇τ µ) − D2(µ∇τ β1 − β1∇τ µ))(β1 − β2) = 0, 

(D1(β2∇τ ε2 − ε2∇τ β2) − D2(β1∇τ ε1 − ε1∇τ β1))(β1 − β2) 
+(D1(µ∇τ ε2 + β2∇τ β2) − D2(µ∇τ ε1 + β1∇τ β1))(ε1 − ε2) = 0, 
(D1(ε2∇τ µ + β2∇τ β2) − D2(µ∇τ ε1 + β1∇τ β1))(β1 − β2) 

+ D1(µ∇τ β2 − β2∇τ µ)(ε1 − ε2) = 0. 

Lemma 5.4. For all x ∈ R3, ∇τ log(D1/D2) = 0. 

Proof. Case I. Assume that β1(x) − β2(x) = 0 (we shall suppress the explicit 
evaluation at x). If also ε1 − ε2 = 0 then we are done; otherwise, (5.4) and (5.7) 
imply µ∇τ β = β∇τ µ. Now since ∇τ Dj = εj ∇τ µ + µ∇τ εj + 2βj ∇τ βj , (5.6) gives 

D1(∇τ D2  − ε2∇τ µ − β∇τ β) − D2(∇τ D1 − ε1∇τ µ − β∇τ β) = 0, 

and expanding the D1 and D2 in this we obtain 

D1∇τ D2 − D2∇τ D1 = (ε1 − ε2)β(β∇τ µ − µ∇τ β) 
= 0. 

Thus ∇τ log(D1/D2) = D1∇τ D2 − D2∇τ D1 = 0. 
Case II. If β1 − β2 /= 0, then (5.4)+(5.7) gives 

(D1∇τ D2 − D2∇τ D1)(β1 − β2) 
= (D2(µ∇τ β1 − β1∇τ µ) − D1(µ∇τ β2 − β2∇τ µ))(ε1 − ε2) = 0 

by (5.5). Thus again ∇τ log(D1/D2) = D1∇τ D2 − D2∇τ D1 = 0. 
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Finally, we must show that lemma 5.4 finishes the proof of theorem 2.2. Since 
∇τ log(D1/D2) = 0 in R3, D1/D2 is constant, and hence D1 = D2 since this is true 
outside Ω. Now (5.4)+(5.7) together with D1 = D2 implies 
(5.8) (µ∇τ β1 − β1∇τ µ − µ∇τ β2 + β2∇τ µ)(ε1 − ε2) = 0; 
if µ∇τ β1 − β1∇τ µ = µ∇τ β2 − β2∇τ µ, then 

β1 β2 

µ2∇τ = µ2∇τ , 

and so (β1 − β2)/µ is constant.  This constant is zero since β1  = β2  outside Ω, 
and hence β1  = β2  everywhere.  Then (5.6) implies that µ∇τ (ε1 − ε2) = 0, and 
so, similarly, ε1  = ε2.  On the other hand, if in (5.8) ε1   = ε2, then by (5.6) 
ε∇τ β1 − β1∇τ ε = ε∇τ β2 − β2∇τ ε and, in the same manner as above, (β1 − β2)/ε is 
constant and again β1 = β2. 

 

6. Appendix A 

Proof of Theorem 2.1. We define the function spaces 
H(∇∧) =   {E ∈ L2(Ω)3  | ∇ ∧ E ∈ L2(Ω)3}, 

H (∇∧) = 
( 

E ∈ H(∇∧) | 
r 

∇ ∧ E · F = 
Ω 

r 1 
E · ∇ ∧ F for all F ∈ H(∇∧)  . 

Ω 

We shall use the equivalent Born-Fedorov formulation 
∇ ∧ E = iωµ̃H  + iωµ̃β̃ H, ∇ ∧  
∇ ∧ H = −iωε̃E − iωε̃β̃ E, 

∇ ∧  
which, following the presentation of [11], we may write as 

where 

( 
E

 

(L − ω − B) H 

\ 
= 0, 

I 
−i∇∧ 0 l : (L) L2 3 2 3 

L    = 0 −i∇∧ D → (Ω) × L (Ω) , 
  ω 

I 
1 µ̃ 

l
 B = . 

ω2ε̃µ̃β̃2 − 1 ε̃ 1 
◦ 

The domain of L is D(L) =H (∇∧) × H(∇∧); on D(L), L is self-adjoint. In order 
to solve Maxwell’s equations with 

1 

ν ∧ E|∂Ω = F ∈ TH 2 (∂Ω) 

we write Ẽ = E − RF , where R is the right inverse of the tangential trace mapping 
1 

tr : H1(Ω)3 → TH 2 (∂Ω), tr : E 1→ ν ∧ E|∂Ω. 
Then the boundary value problem may be written 

where 

( 
Ẽ (L − ω − B) H \ 

= 
( 

J  
\ 

,
 

K 

ω3ε̃µ̃β̃2 
J = i∇ ∧ RF + 

ω2ε̃µ̃β̃2
 RF, K = ωε̃ 

ω2ε̃µ̃β̃2  − 1 RF. 

µ 
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Lemma 6.1. The range of L, R(L), is closed, the mapping L−1 : R(L) → R(L) ∩ 
D(L) exists, and L−1 is continuous and compact. 

This is proven in [3]. From this we have 

L2(Ω)3 × L2(Ω)3 = Ker(L) ⊕ R(L), 
and there is a discrete set S ⊂ R containing no limit points such that (L − ω)−1 

exists and is compact for all ω ∈ C\S. The compactness follows from 
(L − w)−1 = L−1 + ωL−1(L − w)−1 

and the compactness of L−1. For ω /∈ S, we want to solve 
( ˜ (

I − (L − ω)−1B
)
 

\ ( 
J 
\ 

= (L ω)−1 . 
K 

Recall that ω2ε̃µ̃β̃2 − 1 /= 0 for ω ∈ A = C\{ω | ω ∈ R, |ω| ≥ ω0}; so on A\S, B 
is analytic and (L−ω)−1 exists; at ω = 0 we have B = 0, so by the analytic 
Fredholm theorem (for example [9]), 

(
I − (L − ω)−1B

)−1 exists for all ω ∈ A\(S 
∪ St) for some discrete set St containing no limit points in A\S. The theorem 
follows with D = S ∪ St. 

 
7. Appendix B 

2 2 
Proof of Proposition 4.2. Let Sρ = Char(∆ρ) = {ξ ∈ R3 | −|ξ| +2iρ·ξ−ω ε0µ0 = 
0}. In a neighborhood of Sρ, we will construct Aρ = Bρ, and so in such a neigh- 
borhood, (4.2) is equivalent to 

(7.1) [∆ρ, Aρ] + N +Aρ − AρϕCρϕ = 0. 

We define Aρ by defining its symbol aρ(x, ξ) ∈ S0(R3 × R3 × Z)8×8, an 8 × 8 matrix. 
Write 

ρ = η + ik, with η, k ∈ R3. 

Computing terms of homogeneity of order 1 in ξ and ρ in (7.1), we have 
1 

(7.2) (L1 + iL2)a(0) + 2|ρ| nρa(0) = 0, 

where a(0) is the principal symbol of A , 
ρ 

 
 

L1 = 

 
3 

) 
ηj

 

ρ 
 
∂ 

, L2 = 

 
3 )
(kj + ξj ) , 

|ρ| j=1 ∂xj |ρ| j=1 ∂xj 

and nρ  is the principal symbol of N +.  Observe that so long as L1  and L2  are 
linearly independent, there is a change of variables mapping L1 + iL2 to ∂̄  where 

∂̄  = 1 ( ∂
 + i  ∂  

\ 
; 

2 ∂x1 ∂x2 

in some of the proofs that follow we shall assume that L1 + iL2 = ∂̄  to simplify 
the exposition. It is easy to see that L1 and L2 are linearly independent on and 
hence near Sρ, which for fixed ρ = η + ik is the circle orthogonal to η of radius 
|k| − ω2ε0µ0 and center −k (we take |ρ| sufficiently large so that |k| − ω2ε0µ0 > 0). 

H 

1 1 
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We now describe a partition of unity of R3-space which depends smoothly on ρ, 
and which divides the space into a tubular neighborhood of Sρ and the complement. 
Let 

( 2 1 ( 1 1 
U1,ρ = ξ ∈ R3 | |ξ − Sρ| < 

3
√

2 
|ρ| 1,ρ = ξ ∈ R3 | |ξ − Sρ| < 

3
√

2 
|ρ|  , 

( 1 1 ( 2 1 
U2,ρ = ξ ∈ R3 | |ξ − Sρ| > 

3
√

2 
|ρ| 2,ρ = ξ ∈ R3 | |ξ − Sρ| > 

3
√

2 
|ρ|  . 

For |ρ| = 1 let {ϕ̃1,ρ, ϕ̃2,ρ} be a partition of unity subordinate to the open cover 
{U1,ρ, U2,ρ} of R3, depending smoothly on ρ, and such that 

ϕ̃1,ρ = 1 on U 0 and ϕ̃2,ρ = 0 on U 0  . 
Then { ξ | ϕ̃1,ρ(ξ) = 1 and ϕ̃2,ρ(ξ) = 0} is a tubular neighborhood of Sρ of radius 
|ρ|/3

√
2. On this neighborhood, L1 and L2 are linearly independent. Now extend 

ϕ̃j,ρ to all of R3 × Z to be homogeneous of degree zero in (ξ, ρ) for |ρ| > 1 say, and 
arbitrarily for | | < 1; that is, define 

ϕ̃j,ρ(ξ) = ϕ̃j, ρ  ( 
|ρ| 

so 

ξ ), 
|ρ| 

ϕ̃j,λρ(λξ) = ϕ̃j, λρ ( 
λ|ρ| 

λξ 
λ|ρ| ) = ϕ̃j, ρ  ( 

|ρ| 

ξ 
|ρ| 

) = ϕ̃j,ρ(ξ). 

Proposition 7.1.  Let −1 <  δ  <  0.   There is a unique a(0)(x, ξ)  ∈ S0(R3, Z) 
solving (7.2) with a(0) − I ∈ L2(R3 ); furthermore, a(0) is invertible for large ρ. 

ρ δ x ρ 

Proof. We shall only need the solution on the support of ϕ̃1,ρ where L1 and L2 are 
linearly independent, and so we shall prove the result for ∂̄: 

∂̄a(0) 1  n a(0) 
(7.3) ρ   + 2 ρ ρ  ρ    = 0. 

Write a(0) = d + I, and d̃ = ∂̄d ; thus we must solve 
ρ ρ ρ ρ 

( 1 1
\ 1 

(7.4) I + 2 ρ nρ∂̄− dρ = − nρ. 
| | 2|ρ| 

We shall need the following lemmas. 
Lemma 7.2. If −1 < δ < 0, then 

1 
nρ∂̄−1 : L2 (R3 ) → L2 (R3 ) 

 
is compact. 

2|ρ| δ+1 x δ+1 x 

Proof. From [6], Theorem 2.1 (with n = 3, p = pt = 2, ρ = δ, m = 1, r = 0), for 
v ∈ C∞(R3) we have 

 v H1  ≤ C ∂̄v L2      , 
δ δ+1 

and since H1 is the completion of C∞(R3) in this norm, the same estimate holds 
δ 0 

for all v ∈ H1(R3) such that ∂̄v ∈ L2 . Thus 
δ δ+1 

∂̄−1 : L2 1 
δ+1 → Hδ 

,   U 

,   U 

| 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use  

http://www.ams.org/journal-terms-of-use


˜ 

δ+1 x 

− 

ρ 

ρ 

ρ 

6 

ρ 
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 
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continuously. Since nρ is compactly supported (in x), we have 
∂̄−1 

L 
1   nρ 1 incl 2 incl 2 

δ+1 −c
−
t
→
s   

Hδ −c
−
t
→
s  

H (supp(nρ)) −
c
−
o
−
m
−
p
−
ac
→
t  

L (supp(nρ)) −
c
−
t
→
s  

Lδ+1 

Lemma 7.3. The equation 
( 1 1

\ 
I + 2 ρ nρ ∂̄− dρ = 0  

| | 
has only the trivial solution in L2 (R3 ). 
Proof. With dρ = ∂̄−1d̃ , we show that d = 0 is the unique solution in L2 to 

ρ 

∂̄dρ + 
ρ δ 

1 
nρdρ = 0. 

2|ρ| 
Since supp(nρ) ⊂ {z | |z| ≤ R} for some R, dρ is analytic for |z| > R. From 

    1 r 
dρ(z) =      1     nρ(w)dρ (w) dw ∧ dw̄ 

2πi |z|≤R z − w 2|ρ| 
it follows easily that dρ(z) decays to all orders at infinity; since dρ is also analytic 
in a neighborhood of infinity, it follows that dρ(z) = 0 in a neighborhood of infinity. 
Now by (Cor. 5.3.8, [14]) unique continuation implies dρ(z) is identically zero. 

From the above lemmas and the Fredholm alternative, there is a unique d̃ ∈ Lδ+1 soving (7.4); or, if we write aρ   = I + ∂̄−1d̃ , then a (0) — I ∈ L2(R3 ) and a (0) 
2 

solves (7.3). 
(0) 

ρ ρ δ x ρ 

To prove that a(0) is invertible we exploit the structure of nρ (see section 3): 
 

v12 · (ρ + iξ)   − v13 ∧ (ρ + iξ) v12 ∧ (ρ + iξ) v13 · (ρ + iξ) 


 

n  = 
 0 0 0 0  

.  
0 0 0 0 


 

 v42 · (ρ + iξ)   − v43 ∧ (ρ + iξ) v42 ∧ (ρ + iξ) v43 · (ρ + iξ) 

This implies that a(0) is of the form  
a(0) (0) (0)     
ρ,11 aρ,12 . . . . . . . . . . aρ,18 

 . . . 
 

 0  ... I    
 

0  

... 
  . . . 0 


 
 

a(0) (0) (0) 
ρ,81 aρ,82 . . . . . . . . . . aρ,88 

where I6 is the 6 × 6 identity matrix. It follows that I 
a(0) (0)   

l 
det(a(0) ) = det ρ,11 aρ,18 = det(ã(0) ), say, ρ a(0) (0) ρ 

 
and ã(0) satisfies 

 
 

∂̄ ã(0) 

ρ,81 aρ,88 

 
1  

I 
nρ,11 nρ,18 

 
 

l 
ã(0) 

ρ   + 2 ρ nρ,81 nρ,88 ρ    = 0, 

ρ 

, 

2 

0 

| 
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and so det(ã(0) ) satisfies 

 
(7.5) ∂̄  det(ã(0)) + tr 

I 
nρ,11 nρ,18 
nρ,81 nρ,88 

l 
det(ã 

 
(0) 
ρ 

 
) = 0. 

Furthermore, a(0) ∈ L2(R3 ) implies | det a(0) − 1| → 0 as |x| → ∞. By this and the 
ρ δ x ρ compact support of nρ, (7.5) has a unique solution with det(ã(0) ) − 1 ∈ L2(R) given 

ρ δ by det(ã(0)) = e−τ , where ∂̄τ = (1/2|ρ|)(n +n ). Thus det a(0) = det ã(0) /= 0, 
ρ (0) ρ,11 (0) ρ,88 ρ ρ 

and aρ is invertible. The smoothness of aρ follows from differentiating equation 
(7.3) and from the fact that the change of coordinates transforming L1 + iL2 to ∂̄  
is smooth. 

We define a(j) for j  < 0 iteratively to be homoegeneous of order j in ξ, and ρ 
by considering terms of homogeneity j + 1 in (7.1), and write aρ as an asymptotic 
sum of the a(j). This completes the proof of proposition 7.1. 

Recall that we have been restricting ourselves to a neighborhood of Sρ where we 
may consider L1 + iL2  to be ∂̄; now define aρ  on all of R3 × R3 × Zρ by taking 
˜ a + ϕ̃  x I. Abusing notation, we shall call this a . Since ϕ̃ ξ are homogeneous 
ϕ1,ρ  ρ 2,ρ ρ j,ρ of degree 0 in ξ and ρ, it follows that aρ ∈ S0(R3 × R3 × Zρ). x ξ 

To achieve (4.2) we now define Cρ ∈ L0(R3, Z) by 
(7.6) AρϕCρ ϕ = [∆ρ, Aρ] + N +Aρ 

for large |ρ|, so that Aρ is invertible. Next we define Bρ ∈ L0(R3, Z) by 
(7.7) Bρ = ϕ̃1,ρAρ + ϕ̃2,ρ(∆ρ + N +)Aρ (∆ρ + ϕCρϕ)−1, 
observing that ∆ρ + ϕCρ ϕ is invertible on suppϕ̃2,ρ, which is disjoint from Sρ. To 
summarize, where ϕ̃1,ρ = 1, Aρ = Bρ and we have (4.2) via (7.1); where ϕ̃2,ρ = 1, 
(7.7) gives (4.2), and in between, 

Bρ(∆ρ + ϕCρϕ) = ϕ̃1,ρAρ(∆ρ + ϕCρϕ) + ϕ̃2,ρ(∆ρ + N +)Aρ 

=   (ϕ̃1,ρ + ϕ̃2,ρ)(∆ρ + N +)Aρ 

by (7.6). This completes the proof of proposition 4.2. 
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[7]  Ola P., Päivärinta L. and Somersalo E., 1993, An Inverse Boundary Problem in Electrody- 

namics Duke Math. J. 70 617-653 MR 94i:35196 
[8]  Ola P. and Somersalo E., 1996, Electromagnetic Inverse Problems and Generalized Sommer- 

feld Potentials SIAM J. Appl. Math. 56 1129-1145 MR 97b:35194 
[9] Reed M. and Simon B., 1972, Methods of Modern Mathematical Physics, Vol. I (New York: 

Academic Press) MR 58:12429a 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use  

http://www.ams.org/journal-terms-of-use
http://www.ams.org/mathscinet-getitem?mr=91a%3A35166
http://www.ams.org/mathscinet-getitem?mr=90e%3A78001
http://www.ams.org/mathscinet-getitem?mr=87h%3A35083
http://www.ams.org/mathscinet-getitem?mr=98c%3A78010
http://www.ams.org/mathscinet-getitem?mr=95i%3A35313
http://www.ams.org/mathscinet-getitem?mr=47%3A9354
http://www.ams.org/mathscinet-getitem?mr=94i%3A35196
http://www.ams.org/mathscinet-getitem?mr=97b%3A35194
http://www.ams.org/mathscinet-getitem?mr=58%3A12429a


 

AN ELECTROMAGNETIC INVERSE PROBLEM IN CHIRAL MEDIA 3013 
 
 

[10] Shubin M. A., 1987, Pseudodifferential Operators and Spectral Theory (Berlin Heidelberg 
New York: Springer Series in Soviet Mathematics) MR 88c:47105 

[11]  Somersalo E., Isaacson D. and Cheney M., 1992, A Linearized Inverse Boundary Value Prob- 
lem for Maxwell’s Equations J. Comput. Appl. Math. 42 123-136 MR 93f:35242 

[12]  Sylvester J. and Uhlmann G., 1987, A global uniqueness theorem for an inverse boundary 

problem Annals of Math. 125 153-169 MR 88b:35205 
[13]  Tolmasky C., 1998, Exponentially growing solutions for non-smooth first-order perturbations 

of the Laplacian SIAM J. Math. Anal. 29 116-133 
[14] Wendland W. L., 1979, Elliptic Systems in the Plane (London: Pitman) MR 80h:35053 

 

Department of Mathematics, Universtiy of Washington, Box 354350, Seattle, Wash- 
ington 98195-4350 

Current address:  Department of Mathematics, University of Rochester, Rochester, New York 

14627 
E-mail address: mcdowall@math.rochester.edu 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use  

http://www.ams.org/journal-terms-of-use
http://www.ams.org/mathscinet-getitem?mr=88c%3A47105
http://www.ams.org/mathscinet-getitem?mr=93f%3A35242
http://www.ams.org/mathscinet-getitem?mr=88b%3A35205
http://www.ams.org/mathscinet-getitem?mr=80h%3A35053
mailto:mcdowall@math.rochester.edu

	Western Washington University
	Western CEDAR
	2000

	An Electromagnetic Inverse Problem in Chiral Media
	Stephen R. McDowall
	Recommended Citation


	tmp.1418422103.pdf.F6RYt

