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Luminescent waveguides (LWs) occur in a wide range of applications, from solar concentrators to doped
fiber amplifiers. Here we report a comprehensive analysis of escape-cone losses in LWs, which are losses
associated with internal rays making an angle less than the critical angle with a waveguide surface. For
applications such as luminescent solar concentrators, escape-cone losses often dominate all others. A
statistical treatment of escape-cone losses is given accounting for photoselection, photon polarization,
and the Fresnel relations, and the model is used to analyze light absorption and propagation in
waveguides with isotropic and orientationally aligned luminophores. The results are then compared
to experimental measurements performed on a fluorescent dye-doped poly(methyl methacrylate)
waveguide. © 2013 Optical Society of America
OCIS codes: 230.7370, 080.2720, 080.5692, 030.6600.

1. Introduction

Luminescent waveguides (LWs) are used to capture
and guide light in a variety of applications, including
luminescent solar concentrators (LSCs) [1–4], scintil-
lation detectors [5], guest–host liquid crystal dis-
plays [6–8], and doped fiber amplifiers [9]. A typical
LW consists of a fluorescent or phosphorescent
dye-containing medium having refractive index n1
cladded by a second material with refractive index
n0 < n1 (Fig. 1). Externally incident light enters
the waveguide and is absorbed by the luminophore,
which then emits it in a new direction with a new
polarization. The usual intent is to capture as much
incident light as possible within the waveguide, caus-
ing it to travel by total internal reflection (TIR) to
an edge for collection. In practice, however, not all
incident light reaches the edge due to several loss
mechanisms that combine to reduce the overall

efficiency: (1) a fraction of externally incident light
may be reflected or not absorbed by a luminophore;
(2) a fraction of light that is absorbed will not be
emitted, determined by the luminophore’s quantum
yield; and (3) a fraction of emitted light will fail to be
trapped by TIR. The latter process is referred to as
the escape-cone loss; it occurs for rays intersecting
a waveguide surface at angles θph ≤ θesc, where θph
is the polar angle of the ray with respect to the sur-
face normal and the critical angle is given by Snell’s
Law: θesc � sin−1�n0∕n1�. In a large LW, escape-cone
losses are often the single most important mechan-
ism limiting efficiency. Compounding its effect, light
traveling within the waveguide may encounter other
luminophores, to be reabsorbed and reemitted multi-
ple times. With each such occurrence there is a
repeated chance of escape-cone loss.

In the case of LSCs—the LW application we focus
on here—escape-cone losses play a particularly im-
portant role. LSCs are planar LWs used to collect and
concentrate sunlight for conversion into electricity
by photovoltaic cells attached around the waveguide
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edges. By concentrating sunlight with a relatively
inexpensive sheet of luminescent plastic or glass,
the photovoltaic cell area—and hence the cost—is
reduced. Further advantages of LSCs include their
ability to concentrate both diffuse and specular light
without the need for solar tracking, the potential for
achieving very large concentration factors, and deliv-
ery to the photovoltaic cells of wavelength-to-band-
gap matched photons. First proposed over 30 years
ago [1–4], losses from mechanisms (1) and (2) above
can in principle be controlled through a combination
of antireflection coatings and the use of strongly ab-
sorbing, highly luminescent dyes. Yet the efficiency of
LSCs still remains too low for practical applications,
largely as a result of escape-cone losses [10–13].

Despite its importance for LSCs and related tech-
nologies, it appears that a complete treatment of
escape-cone losses in LWs has yet to be given. Instead,
the usual approach, first described by Shurcliff and
Jones [14], and used by almost all workers since, is
to assume the per-emission escape-cone loss rate
simply equals the proportion of the solid angle defined
by the critical cone, C, out of the full solid angle of
the sphere, 4π. That is,

P�esc� � 1 −

����������������������������
1 − �n0∕n1�2

q
: (1)

For a poly(methyl methacrylate) (PMMA) waveguide
cladded by air (n1 � 1.49, n0 � 1), Eq. (1) gives
P�esc� ≈ 25.9%. This result, however, is only correct
in the case of isotropic emission, as would occur, for
example, if the LW contained randomly oriented lumi-
nophores undergoing rapid rotational diffusion on
the time scale of the excited-state lifetime. In most
instances—particularly in solid media—such rotation
is actually relatively slow, and consequently the
probability distribution function for the direction and
polarization of an emitted photon is not independent
of the direction and polarization of the exciting
photon. Stated differently, Eq. (1) neglects the impor-
tant role of photoselection. Additional deviations also
result from consideration of the Fresnel relations,
although in LSCs and related LWs, their effect is quite
small. Finally, there can also be cases in which the
luminophores are not randomly oriented. For exam-
ple, in certain types of LSCs, as well as in related
systems such as dichroic liquid crystal displays and
liquid crystal lasers, the dye molecules are imbedded
in a macroscopically oriented matrix such as a liquid
crystal, reactive mesogen, or stretched polymer. This
aligns the luminophores along a preferred axis, break-
ing the rotational symmetry presumed in Eq. (1).

In the following we provide the first treatment, to
our knowledge, of escape-cone losses in LWs fully
accounting for these phenomena. We consider both
the effects of photoselection and luminophore align-
ment, finding each to cause significant deviations
from the predictions of Eq. (1). The results are then
compared to experimental measurements of escape-
cone losses performed on an LW consisting of a

PMMA slab doped with low concentrations of a fluor-
escent red dye. We find agreement between the
theory and experiment at the 95% confidence level.

Before proceeding to a discussion of the full theo-
retical treatment and experimental measurements,
we first illustrate the nature of some of the results.
Consider an LW containing randomly oriented dye
molecules having coincident absorption and emission
dipoles. Assume also that the waveguide has a geo-
metry like that shown in Fig. 1 and is illuminated
perpendicular to the plane by unpolarized light,
and that the host medium has an index of refraction
n1 � 1.49 (e.g., PMMA) and is cladded by air. Based
on the theory developed below, we calculate the prob-
ability of a photon being emitted from a molecule
that has absorbed such incident light into the escape
cone; we shall call this the first-emission escape-
cone loss. We then calculate the probability distribu-
tion for the direction and polarization of the light
not lost out the escape cone. Conditional on the fact
that the surviving light is distributed thus, we com-
pute the probability that such light is absorbed and
emitted out the escape cone again, and so on. For
such a case we find the following.

The first-emission escape-cone loss is 29.2%. If we
assume that all emitted light, including rays travel-
ing within the escape cone, has a chance of being
absorbed and then emitted (i.e., that the lumino-
phore concentration is very high), then the second-
emission escape cone loss is 26.7%. Maintaining this
assumption that all emitted photons can be reab-
sorbed, the third- and fourth-emission escape-cone
losses are, respectively, 25.6% and 25.4%. Escape-cone
losses are leveling out at approximately the same as
one would obtain using Eq. (1), namely 25.9%.

Perhaps amore pertinent computation, however, is
to assume that light traveling in a direction that will
cause it to be lost out the escape cone is indeed lost,
as would be the case if the concentration of the lumi-
nescent species were not too high. Again for ran-
domly oriented luminophores, we find the following.

The first-emission escape-cone loss is 29.2%. If we
now compute the probability of photons escaping
from a second emission event, conditional on the fact
that the absorbed photon had a direction outside the

Fig. 1. (Color online) Typical geometry of a LW: incoming light
is absorbed by a lumninophore and when emitted may be emitted
in a direction resulting in TIR (dashed red ray) or in a direction
resulting in loss out the escape cone (solid red ray). When used
as an LSC, photovoltaic cells are placed around the waveguide
edge to convert captured light into electricity.
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escape cone (from the first emission event), then the
second-emission escape-cone loss is 26.1%. Continu-
ing under this assumption, we obtain escape-cone
losses of 24.1%, 24.0%, and 24.0% for the third-
through fifth-emission events.

We also illustrate some results for LWs having
nonrandom luminophore orientation. Recent experi-
mental [15–19] and theoretical [20] findings suggest
that LSCs incorporating orientationally aligned dyes
may improve performance by reducing escape-cone
losses, and our detailed results below support this
conclusion. Oriented LWs are important in other ap-
plications as well, such as liquid crystal lasers [21].
To demonstrate the effect of orientation on escape-
cone losses, consider an LW in which luminophores
are uniaxially distributed about a normal vector k
to the planar interface of a slab waveguide (refer
to Fig. 1). If the angle β between the dye molecule’s
absorption and emission transition moments μabs
and μem is small, then orienting the luminophores
in this way decreases the escape-cone loss rate be-
cause more light tends to be emitted in the plane
of the LSC (see below for details). (The angle β is re-
lated to a luminophore’s fundamental anisotropy, r0
through r0 � �3 cos2 β − 1�∕5. Most organic dyes with
high fluorescent quantum yields have β⪅ 20° [22].)
The degree of orientational order is defined in terms
of an order parameter, taken as the ensemble aver-
age of the second Legendre polynomial of the cosine
of the angle between μabs and k: P2 � h3∕2�μabs · k�2−

1∕2i, where h·i denotes an average over all lumino-
phores. For the cases we will consider, the function
P2 varies between 1 and 0 for perfectly ordered and
perfectly random alignment, respectively. The value
of P2 can also be negative, as would be the case if in-
dividual luminophores tended to orient themselves
orthogonal to k. The analogous computations to the
second case above are then performed for varying P2
statistics, giving, for each successive reabsorption/
reemission event, the results in Table 1.

The above-described results are summarized in
Fig. 2(a), which shows the proportion of surviving
light lost to the escape cone at the jth event for iso-
tropic dyes and for dyes with varying degrees of
alignment. The solid triangles are for isotropic dyes;
the solid circles are for oriented dyes, with P2 vary-
ing from 0.5 (top) through 1.0 (bottom). Also shown,
as the top dashed line, is the simplistic assumption
embodied in Eq. (1) that 25.9% of light is lost at
every event. Figure 2(b) shows the corresponding
overall proportion of light remaining after j absorp-
tion/emission events.

We draw attention to several features of these
results. First, the escape cone loss probability is al-
ways highest for the first emission event, decreasing
thereafter before leveling out at large j. This beha-
vior results from including the effects of photoselec-
tion and the assumption that β is small; P�esc� is
largest for the first emission because normally inci-
dent light preferentially excites luminophores hav-
ing μabs (and hence μem) closer to the LW plane.
Thereafter, surviving rays (i.e., those not lost out the
escape cone) are more likely to be traveling in direc-
tions making larger angles to k, and hence to photo-
select dye molecules oriented with μabs more parallel
to k. As this process repeats, a steady-state escape
probability is eventually approached.

Further insight into this process can be gained by
considering the orientational statistics of the subpo-
pulations of luminescent species participating in suc-
cessive generations of absorption/emission events.
This we quantify in Fig. 3, which shows P2��j� for an
LWwith randomly oriented luminophores (the aster-
isk denotes that the computation is performed only
on those dye molecules absorbing and emitting a

Table 1. Proportion of Light Lost Out of the Escape Cone at
Successive Absorption/Emission Events for Various Degrees of

Luminophore Alignmenta

P2 1st (%) 2nd (%) 3rd (%) 4th (%) 5th (%)

0.0 29.2 26.1 24.1 24.0 24.0
0.5 23.4 17.3 15.8 15.6 15.6
0.6 21.5 15.5 14.5 14.5 14.5
0.7 19.1 13.8 13.3 13.3 13.3
0.8 16.0 12.2 12.1 12.1 12.1
1.0 9.2 9.2 9.2 9.2 9.2
aComputed using the model described in the text, based on a

PMMA waveguide cladded by air, neglecting self-absorption,
and accounting for Fresnel relations.
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Fig. 2. (Color online) Successive absorption/emission events for LWs containing isotropic (triangles) and oriented (circles) luminophores.
The prediction of Eq. (1) is shown by the dashed lines, based on a PMMA waveguide cladded by air, neglecting self-absorption and
accounting for Fresnel relations. Triangles plus dashed line: simplistic assumption given by Eq. (1); triangles plus solid line: present
model assuming isotropically oriented luminophores; circles plus solid lines: present model assuming oriented luminophores with
P2 � 0.5;0.6;…; 1.0. (a) Proportion of absorbed light lost out the escape cone at successive absorption/emission events. (b) Proportion
of light remaining within the LW at successive absorption/emission events.
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photon in the respective generation). In the first
generation, external normally incident light photo-
selects dyes oriented in the LW plane, and hence
P2��j � 1� < 0. The orientational statistics of the
subpopulation of participating molecules evolves
with successive generations, approaching a steady-
state value somewhat above P2� � 0.

Returning to Figs. 2(a) and 2(b), also noteworthy
is the significant reduction in escape-cone losses
seen to be achievable by orienting the luminophores.
Taking P2 � 0.8 as an example, P�esc� is reduced
by half relative to an LWwith randomly oriented dye
molecules. Note though that escape-cone losses do
not approach zero even for a perfectly ordered system
(P2 � 1). This is because the probability distribution
function for α, the angle between the photon emission
directions and μem, is equal to 3∕�8π�sin2 αdA (where
dA is the area measure on the sphere). Hence a
fraction of light P�esc; P2 � 1� � 3∕�4π� R 2π

0

R θesc
0

sin2 θ sin θdθdφ ≈ 0.092, for n1 � 1.49 and β � 0, lies
within the escape cone even in a system of perfectly
ordered dye molecules.

2. Analytic Derivations

In this article, we are interested in the proportion of
photons emitted from an isotropic dye that will lie in
the escape cone C relative to the normal vector k to
the planar interface with air. We are interested in the
dependence on the velocity vector v of the absorbed
photon (specifically on the angle between v and k)
and on the polarization p of the absorbed photon. For
unpolarized light, we will compute the integral over
all polarizations p (perpendicular to v). The absorbing
dye is assumed to have an interdipole angle β, defined
above as the angle between the absorption and emis-
sion moments of the absorbing luminophore.

Let vabs and vem be the velocity vectors of the
incoming (absorbed) and outgoing (emitted) photon.
Because the probability that vem lies in C, P�vem ∈ C�,
is rotationally symmetric about k we may assume,
without loss of generality, that

vabs � vabs�θph� � �sin θph; 0; cos θph�: (2)

Here, θph is the polar angle of the absorbed photon.
Recall that the escape cone C is the cone of vectors

making an angle of less than θesc with k, where
sin θesc � n0∕n1. We are principally interested in
this being air, n0 � 1. An emitted photon with
vem ∈ C can refract out of the substrate, that is,
it will escape. The polarization p of the incoming
photon is perpendicular to vabs and so can be
parameterized by

pabs � pabs�θph; αp�
� cos αp�cos θph; 0;− sin θph� � sin αp�0; 1; 0�:

(3)

We parameterize the set of emission dipoles μem by
spherical coordinates,

μem � μem�θμe ;φμe�
� �sin θμe cos φμe ; sin θμe sin φμe ; cos θμe�: (4)

We seek to determine P�escjpabs; vabs�, the probability
that an emitted photon escapes the LW, given that
it began with incoming direction and polarization
vabs and pabs. If we denote by P�escjμem� the probabil-
ity that a photon escapes conditional on its being
emitted by a luminophore with emission dipole μem,
and by P�μemjpabs; vabs� the probability that the
photon was emitted from a dipole μem conditional
on the incoming photon’s velocity and polarization
vectors, then

P�escjpabs; vabs� �
Z
S2
P�escjμem�

× P�μemjpabs; vabs�dA�μem�: (5)

The measure dA�μem� is the area measure on the
sphere; in our spherical coordinates it is dA�μem� �
sin θμedθμedφμe . In the following, we derive expres-
sions for the two terms in the integrand of Eq. (5).
The first represents the probability of a photon escap-
ing, conditional on the fact that it has been emitted
from a specific emission dipole. This probability de-
pends on the orientation of the dipole, on the emission
profile (assumed to be dipolar here; see below), and on
the Fresnel relations. The second term is the probabil-
ity that emission has occurred from a given dipole,
given the velocity and polarization vectors of the
incident photon. Together, the two terms fully account
for photoselection and the luminescent anisotropy
through the inclusion of β.

We begin with the first term in the integrand of
Eq. (5), which is given by

P�escjμem� �
Z
S2
P�escjvem�P�vemjμem�dA�vem�; (6)

where P�escjvem� is the probability that an emitted
photon with velocity vem escapes and is determined
by the Fresnel relations if vem ∈ C and is zero other-
wise, and where P�vemjμem� is the probability of a
photon emitted from μem having direction vem. Treat-
ing the luminophores as dipolar radiators (far-field

0 1 2 3 4 5
0.20

0.15

0.10

0.05

0.00

0.05

0.10

absorption emission event

P2

Fig. 3. Order parameters of photoselected dye molecules, by
generation, for an LW with randomly oriented luminophores
and n1 � 1.49, n0 � 1, β � 0.
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approximation) [23], the latter is proportional to
the square of the sine of the angle σ between vem
and μem but is uniform in the circle of vectors on
the sphere making this angle. To compute Eq. (6)
we parameterize the vectors vem by the angle σ
and a parameterization in ρ of the circle determined
by σ: for μem ≠ k,

vem�σ; ρ; μem� � sin σ

�
cos ρ

�
μem ×k

‖μem ×k‖

�
×μem

� sin ρ
μem ×k

‖μem ×k‖

�
� cos σμem: (7)

If μem � k, then we may take vem�σ; ρ; k� �
�sin σ cos ρ; sin σ sin ρ; cos σ�. With this parameteri-
zation,

P�vemjμem�dA�vem��
sin2 σR

S2�1− �v ·μem�2�dA�v�
sin σdσdρ

� 3
8π

sin3σdσdρ: (8)

The probability in Eq. (6) can now be expressed as

P�escjμem� �
3
8π

Z
π

0

�Z
π

−π
P�escjvem�σ; ρ; μem��dρ

�

× sin3 σdσ: (9)

We proceed to compute P�escjμem�σ; ρ; μem��. In Eq. (5)
we can express the integral as twice that over
0 ≤ θem ≤ π∕2 and so need only consider such θem.
We can also compute the probability of escape out
the half-cone C� about k and take twice this
quantity because the process is symmetric about
the plane perpendicular to k. We shall determine
an expression for the function R��θem; σ�, which is
such that vem�σ; ρ; μem� ∈ C� for jρj < R��θem; σ�;
we integrate over this range (−ρ < R� < ρ) the prob-
ability of escaping, as determined by the Fresnel
relations.

The situation differs depending on whether θem
is greater than, or less than, θesc. Suppose first
that θem ≥ θesc. When σ∉ �θem − θesc; θem � θesc�,
R��θem; σ� � 0. Otherwise, Figs. 4(a) and 4(b) below
show the two typical configurations with respect to

C�. Referring to these figures, we need to determine
the angle R��θem; σ� � ∠adb:

Because jadj � sin σ, it suffices to determine jbdj.
We have j0dj � cos σ, j0cj � cos θesc, and the angle
∠c0d � θem. Thus we may consider the quadrilateral
0cbd, which takes one of the two forms shown in
Figs. 5(a) and 5(b).

It is straightforward to derive jbdj � �cos θesc−
cos σ cos θem�∕sin θem. Thus, from the right triangle
adb,

R��θem; σ� � arccos
�
cos θesc − cos σ cos θem

sin θem sin σ

�
: (10)

When θem < θesc, once again R��θem; σ� � 0 for σ >
θem � θesc, and Eq. (10) still holds when θesc−θem<
σ<θesc�θem [see Fig. 6(a)]; for 0< σ< θesc −θem we
simply define R��θem;σ�� π [see Fig. 6(b)].

Having defined R�, we now incorporate the
Fresnel relations. If an emitted photon has vem �
vem�σ; ρ; μem� ∈ C, then the photon’s polarization is
given by

pem�σ; ρ; μem� �
vem × �vem × μem�

‖vem × �vem × μem�‖
: (11)

To compute the probability that such a photon is
reflected at the boundary of the waveguide, we
decompose p into its s-polarized and p-polarized com-
ponents, define s � �k × vem�∕‖k × vem‖, and write

pem � �pem · s�s� �pem · �vem × s���vem × s�: (12)

The probability of reflection is then

Rs�vem��pem · s�2 �Rp�vem��pem · �vem × s��2; (13)

where

Rs�v� �
�
h�v� − n1∕n0

h�v� � n1∕n0

�
2
;

Rp�v� �
�
h�v� − n0∕n1

h�v� � n0∕n1

�
2
; (14)

h�v� � 1
v · k

�������������������������������������������������������
1 − �n1∕n0�2�1 − �v · k�2�

q
: (15)

a

bc

d

0

escape cone

em

k

a

b c

d
0

escape cone

k

em

(a) (b)

Fig. 4. (Color online) Description of the computational geometry when θem ≥ θesc. (a) Case θem − θesc < σ < θem. (b) Case
θem < σ < θem < θesc.
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Recalling that we compute only for vem ∈ C�,
Eq. (9) becomes, with vem � vem�σ; ρ; μem� and pem �
pem�σ; ρ; μem�,

P�escjμem� �
3
4π

Z
π

0

Z
R��θem;σ�

−R��θem;σ�
�1 −Rs�vem��pem · s�2

− Rp�vem��pem · �vem × s��2�dρsin3σdσ:

(16)

The probability in Eq. (16) is independent of φem and
so can be computed (numerically) as a function of
θem. This is shown as the solid curve in Fig. 7 (with
n0 � 1 and n1 � 1.49). The dashed curve shows the
same probability when the Fresnel relations are
not taken into account; in this case, any photon with-
in the escape cone necessarily escapes. This probabil-
ity can be computed analytically as follows: the
integrand of Eq. (16) is replaced by the constant 1
and P�escjμem� is recognized as 3∕4π times the area
integral over the escape cone, weighted by sin2 σ, σ
being the angle between vem and μem. Given this
realization, we can reparameterize the integral by
fixing μem � �cos θem; 0; sin θem� and parameterizing
vem in standard polar coordinates �θ;φ�. Then
sin2 σdA becomes �1 − �vem · μem�2� sin θdφdθ. Com-
puting, we find

P�escjμem� �
�
1 −

33
32

cos θesc �
1
32

cos�3θesc�
�

−
3
32

�cos θesc − cos�3θesc�� cos�2θem�
� 0.217 − 0.125 cos�2θem�

when n0 � 1 and n1 � 1.49: (17)

Returning to Eq. (5), we now turn to finding
P�μemjpabs; vabs�. In order to be emitted by a dipole
μem, the photonmust be absorbed by a dipole μabs that
makes an angle β with μem. If μabs�τ� is a parameter-
ization of this circle of vectors, then

P�μemjpabs; vabs� �
q
2π

Z
S
P�μabs�τ�jpabs; vabs�ds�τ�: (18)

Here, q is the quantum yield of the dye (q ≤ 1), which
is the probability of emission, and P�μabs�τ�jpabs; vabs�
is the probability of absorption by μabs�τ�, conditional
on pabs, vabs. By Bayes’s theorem,

P�μabs�τ�jpabs; vabs�

� P�absorptionjμabs�τ�; pabs; vabs�R
S2 P�absorptionjμ; pabs; vabs�dA�μ�

: (19)

Now P�absorptionjμabs�τ�; pabs; vabs� ∝ �μabs�τ� · pabs�2,
so

P�μabs�τ�jpabs; vabs� �
�μabs�τ� · pabs�2R
S2 �μ · pabs�2dA�μ�

� 3
4π

�μabs�τ� · pabs�2: (20)

Thus Eq. (18) becomes

P�μemjpabs; vabs� �
3q

8π2

Z
S
�μabs�τ� · pabs�2ds�τ�: (21)

The integral in Eq. (21) depends only on the angle
between pabs and μem, so for this computation we
may take, without loss of generality, μem � k and
pabs � �cos ρ; 0; sin ρ�. The circle of absorption
dipoles is thus readily parameterized as

μabs�τ� � �sin β cos τ; sin β sin τ; cos β� (22)

and so �μabs�τ� · pabs�2 � �cos ρ sin β cos τ� sin ρ
cos β�2. ThenZ
S
�μabs�τ� ·pabs�2ds�τ��

Z
2π

0
�cos ρ sin β cos τ

�sin ρ cos β�2dτ
� π�cos2ρsin2 β�2sin2ρcos2β�
� π��1− �μem ·pabs�2�sin2 β

�2�μem ·pabs�2cos2 β�; (23)

and Eq. (21) becomes
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Fig. 5. Geometry involved in the computation of jbdj. (a) Case
σ < θesc. (b) Case σ > θesc.
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Fig. 6. (Color online) Description of the computational geometry when θem < θesc. (a) Case θesc − θem < σ < θem � θesc. (b) Case
θem < θesc; 0 < σ < θesc − θem.
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P�μemjpabs; vabs� �
3q
8π

��1 − �μem · pabs�2�sin2β

� 2�μem · pabs�2cos2β�: (24)

In terms of our chosen parameterizations,

μem · pabs � cos αp�cos θph cos φμe sin θμe

− sin θph cos θμe� � sin αp sin φμe sin θμe :

(25)

As mentioned above, the usual approach for the
computation of escape-cone losses takes the ratio
of the solid angle of the escape cone to the surface
area of the sphere, but this is correct only for unpo-
larized light, averaged over all directions of propa-
gation, and not taking the Fresnel relations into
account. To see that the above derivations are consis-
tent with this number, we compute the probability of
escape using Eq. (17), averaged over polarization
angle α and direction vem:

1
4π

1
2π

Z
2π

0

Z
π

0

Z
2π

0
P�escjvabs�θph;φph�; pabs�θph;φph; α��

× dα sin θph dθphdφph � 0.2587; (26)

in agreement with Eq. (1). (One can make the analo-
gous calculation with the Fresnel relations taken
into account, and we find the proportion reduces
to 0.2334.)

3. Experimental Treatment

To test the model, experiments were performed
measuring escape-cone losses from a 10 mm ×
10 mm× 27 mm rectangular PMMA block
(n1 � 1.49) doped with a low concentration (≈1 ppm)
of the fluorescent red dye Lumogen F Red 570
(BASF, maximum absorption wavelength� 570 nm,
maximum emissionwavelength � 617 nm in 2-pro-
panol, fluorescent quantum yield � 1.0 [24]). The
angle β � 15° between dye absorption and emission
transition moments was separately determined from
measurements of the anisotropy, performed according
to standard methods with a right-angle fluorometer
[22]. Using the setup in Fig. 8, a polarized, collimated

beam of 492 nm monochromatic light was introduced
through one face of the sample and absorbed by dye
molecules, and the resulting fluorescent emission
was collected by a fiber optic positioned on an ortho-
gonal face. The direction of illumination is parallel to
the y axis; this corresponds to vabs � π∕2 in Eq. (5).
The experiment was repeated four times, illuminating
and collecting from all four large faces, with the re-
sults used to compute the 95% confidence interval
in the analysis below. To allow for the capture of rays
escaping the sample from the widest possible range of
angles, the collection fiber was terminated by a
3.2mm diameter cosine corrector located 1.2mm from
the emission face. The cosine corrector uses a scatter-
ing optic to increase the effective numerical aperture
of the fiber so that all rays intersecting it, regardless
of their incident direction, are detected with essen-
tially equal probability. Collected light was passed
through a monochromator to a photomultiplier detec-
tor; the resulting fluorescence spectra were then inte-
grated over the dye’s emission range to give a signal
proportional to the number of photons escaping the
sample.

All faces of the block were blackened with the
exception of two openings that were centered in
adjacent facets: one 4.4 mm× 4.9 mm rectangular
opening for illumination and a second 5.5 mm
diameter circular opening for emission. The back-
ground-corrected extinction of the sample at the
peak absorbance wavelength over a 1 cm path length
was 0.016, meaning only ∼4% of the incident light
was absorbed by the dye throughout the full thick-
ness of the sample. The extinction at the peak
emission wavelength was 20-fold smaller still; conse-
quently to a very good approximation, we neglect re-
peated absorption/emission and treat every absorbed
photon as interacting with a single luminophore.

The polarization of incident light was fixed by a
rotatable polarizer, and emission spectra were re-
corded in 10° increments from α � 0° to α � 180°,
where 0° corresponds to the electric field plane or-
iented parallel to the z axis in Fig. 8. A least-squares
fit of the resulting data to a curve of the form
−a cos�2�α − b�� � c yields a � −8536.2, b � −3.7°,
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Fig. 7. (Color online) Probability of escape conditional on emis-
sion from μem. Solid curve: including Fresnel relations; dashed
curve: neglecting Fresnel relations.

Fig. 8. (Color online) Experimental setup: collimated monochro-
matic light is polarized at angle α and illuminates a rectangular
window on the fluorescent PMMA block. Emitted light escaping
out the circular window is collected by a fiber optic terminated
by a cosine corrector.
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and c � 39206. The nonzero value for b indicates
that the calibration of α � 0 was slightly off, and
so we shift the experimental data accordingly. The
resulting least-squares fit is then, of course, I�α� �
−8536.2 cos�2α� � 39206.

If we denote the linearization Î�x� � −8356.2x�
39206, (x � cos�2α�), then analysis of the residuals
for the linearized problem shows them to be distrib-
uted normally, and the R2 statistic for the fit is 0.92.
Given the normality of the residuals, we compute
95% confidence intervals for the coefficients a and
c to be

a ∈ �7995; 9187� and c ∈ �38746; 39610�:

At confidence 95%, we calculate the resulting
envelope for the linear regression line to be

−8591x� 39178� 3755
����������������������������������������������������������
0.013� 0.025�x − 0.052�2

q
:

The linearized data and regression line, together
with the envelope of 95% confidence, are shown
in Fig. 9.

4. Comparison of Experimental Data to Theoretical
Calculations

Because the experimental data has not been normal-
ized with respect to any given reference intensity,
any multiple of I�α� equally well represents the
dependence of escape-cone intensity on angle α. A
characteristic quantity is thus the ratio I�0�∕I�90� �
0.642 of the minimum to the maximum intensities.
When we compute [Eq. (5)] the corresponding theo-
retical ratio, we find

P�escjα � 0°�
P�escjα � 90°� � 0.692: (27)

(We include the Fresnel relations because the face
of the sample opposite the integrating sphere is
blackened.) This number, however, cannot be used
in comparison with the experimental result. The rea-
son for this is the theoretical computation in Eq. (5)
assumes that all light that escapes the sample is
measured by the fiber optic. This is clearly not the

case in the experimental setup. For example, emis-
sion from close to the bottom (z � −0.50 cm) of the
sample which reaches the collection window is con-
strained to a cone with angle arctan�0.275∕1.0� �
15.4° due to the finite size of the circular emission
opening, while the full escape cone has an angle of
42°. Similarly, approximately half of the emission
from close to the edge of the collection window will
not be in the direction of the aperture. To obtain a
correct theoretical comparison we must integrate,
over the full illuminated volume, the probability that
an emitted photon would escape [according to Eq. (5)]
and be in such a direction that, after refracting at
the face z � 0.50 cm and propagating to z � 0.62 cm,
the photon intersects the cosine corrector.

Implementing the described integration, we obtain

P�escjα� � −0.0104 cos�2α� � 0.051;

for which
P�escjα � 0°�
P�escjα � 90°� � 0.658: (28)

To understand this with respect to the confidence
intervals derived above, we must scale P�escjα�
judiciously. We calculate the scalar γ so that
γ�−0.0104x� 0.051� minimizes the sum of the
squares of the residuals; that is

γ � argmin
XN
i�1

�γ�−0.0104xi � 0.051� − Îi�2

� 775864; (29)

where N � 76 is the total number of measurements
and Îi is the unscaled data. The resulting scaled
theoretical model is then −8081 cos�2α� � 39207.
This is shown in Fig. 10 (the solid purple curve) to-
gether with the nonlinear least-squares fit I�α� to the
experimental data (the blue dashed curve) and the
translation of the 95% confidence region of Fig. 9
to this setting (the shaded region). We thus find that
the theoretical model is in good agreement with the
observed experimental results.

5. Derivation of Introductory Example

We assume here that the absorption and emission
dipoles coincide. The emission dipoles are assumed
to be distributed according to

μabs � μem ∼ hμ�θ� sin θdθdφ

� ec2P2�cos θ� sin θ

2π
R
π
0 ec2P2�cos θ0� sin θ0dθ0

dθdφ; (30)

where P2 is the second Legendre polynomial. We first
compute the probability that a dipole μ�θ;φ� absorbs
(and therefore emits) a photon, conditional on the
fact that the incoming light has direction v0 �
�0; 0;−1� and has polarization perpendicular to this;
using the parameterization of Eq. (3) for the
polarization p�π; α�,
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Fig. 9. (Color online) Linearized experimental data. The straight
dashed blue line is the linear regression line to this data, and the
shaded region is the 95% confidence interval.
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P�μ�θ;φ�jv0; p�π; α��

� �μ�θ;φ� · p�π; α��2hμ�θ� sin θdθdφR
2π
0

R
π
0 �μ�θ0;φ0� · p�π; α��2hμ�θ0� sin θ0dθ0dφ0 ; (31)

and then

P�μ�θ;φ�jv0;randomp�� 1
2π

Z
2π

0
P�μ�θ;φ�jv0;p�π;α��dα:

(32)

A photon emitted from a dipole μ is emitted in a
direction that makes an angle θ̂ with μ according
to the distribution 3∕�8π�sin2 θ̂ sin θ̂dθ̂dφ̂ [where
�θ̂; φ̂� are spherical coordinates with θ̂ � 0 corre-
sponding to μ]. Thus, the probability of being emitted
with direction v, given that it was emitted from a
dipole distributed according to Eq. (32), is

P�vjμ� � 3
8π

�1 − �μ · v�2�; (33)

and the probability that it has emission direction v
given that it was emitted at the first absorption/
emission event is

P�vj1�≔ P�vjfirst emission event�

�
Z
S2

P�vjμ�P�μjv0; random p�dA�μ�: (34)

Finally, to be in the escape cone,

P�escjfirst emission event�

� 2
Z

2π

0

Z
θesc

0
P�v�θ;φ�j1� sin θdθdφ: (35)

Further absorption/emission events are handled si-
milarly. We describe the computation inductively.
Let P�μ�θμ;φμ�jn� be the probability that μ is the ab-
sorbing and emitting dipole at the nth absorption/
emission event [P�μ�θμ;φμ�j1� is given by Eq. (32)]. We
first compute the probability density function for the
direction v�θ� and polarization p�θ; α� conditional to

the fact that it has been emitted at the nth event. This
is given by

P�v; pjn� � f �θ; α�dαdθdφR
2π
0

R π−θesc
θesc

R
2π
0 f �θ0; α0�dα0dθ0dφ0 ; (36)

where

f �θ; α� �
Z
possible μ

P�v; pjμ�P�μjn�ds�μ�; (37)

here the integral is over the circle of possible μ that
can give rise to the velocity–polarization pair. This
can be parameterized as

μposs�τ; θ; α� � cos�τ�v�θ� � sin�τ�p�θ; α�: (38)

The first term in the above integral (37) is

P�v�θ�; p�θ; α�jμ�τ�� � 1

2π2
�1 − �v�θ� · μ�τ; θ; α��2�:

(39)

The second term in Eq. (37) is assumed to be known
from the previous step. Having determined the distri-
bution of the polarizations of the photons emitted at
the nth event, we can compute the distribution of the
�n� 1�st absorbing and emitting dipoles, P�μjn� 1�.
This is found by

P�μjn� 1� �
Z

2π

0

Z
π−θesc

θesc

Z
2π

0
P�μjv�θ�; p�θ; α��

× P�v; pjn� sin θdαdθdφ; (40)

where

P�μ�θμ;φμ�jv�θ�; p�θ; α��

� �μ�θμ;φμ� · p�θ; α��2hμ�θμ� sin�θμ�dθμdφμR
2π
0

R
π
0 �μ�θ0;φ0� · p�θ; α��2hμ�θ0� sin�θ0�dθ0dφ0 : (41)

Finally, as in Eqs. (34) and (35),

P�vjn�1�≔P�vj�n�1�st emission event�

�
Z
S2
P�vjμ�P�μjn�1�dA�μ�;

P�vjμ�� 3
8π

�1− �μ ·v�2�;
P�escj�n�1�st emission event�

� 2
Z

2π

0

Z
θesc

0
P�v�θ;φ�jn�1�sin θdθdφ: (42)
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Fig. 10. (Color online) Experimental data points, least squares fit
I�α� (dashed blue curve), scaled theoretical model (solid purple
curve), and 95% confidence region (shaded).
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