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INTERSECTIONS  OF  DILATATES  OF  CONVEX  BODIES 
 

STEFANO CAMPI, RICHARD J. GARDNER, AND PAOLO GRONCHI 
 

Abstract. We initiate a systematic investigation into the nature of the func- 
tion αK (L, ρ) that gives the volume of the intersection of one convex body 
K in Rn and a dilatate ρL of another convex body L in Rn, as well as the 
function ηK (L, ρ) that gives the (n − 1)-dimensional Hausdorff measure of the 
intersection of K and the boundary ∂(ρL) of ρL. The focus is on the concavity 
properties of αK (L, ρ). Of particular interest is the case when K and L are 
symmetric with respect to the origin. In this situation, there is an interesting 
change in the concavity properties of αK (L, ρ) between dimension 2 and di- 
mensions 3 or higher. When L is the unit ball, an important special case with 
connections to E. Lutwak’s dual Brunn-Minkowski theory, we prove that this 
change occurs between dimension 2 and dimensions 4 or higher, and conjec- 
ture that it occurs between dimension 3 and dimension 4. We also establish an 
isoperimetric inequality with equality condition for subsets of equatorial zones 
in the sphere S2 , and apply this and the Brunn-Minkowski inequality in the 
sphere to obtain results related to this conjecture, as well as to the properties 
of a new type of symmetral of a convex body,  which we call the equatorial 
symmetral. 

 
 
 

1. Introduction 

Suppose that K is a convex body and B is the unit ball in Rn, and ρ ≥ 0 is such 
that ∂K ∩ ρSn−1  /= ∅.  Let αK (ρ) = V (K ∩ ρB) be the volume of K ∩ ρB and 
let ηK (ρ) = Hn−1(K ∩ ρSn−1) be the area ((n − 1)-dimensional Hausdorff  
measure) of K ∩ ρSn−1.   (See Section 2 for other definitions and notation.)    
This study 
originates from an observation of Benguria, Levitin, and Parnovski [1, Lemma 5.1 
and Remark 5.2] that when n = 2 and K is o-symmetric, ηK (ρ) is decreasing and 
hence αK (ρ) is concave, while this is not true in general when n ≥ 3. (The result 
for n = 2 also follows from a more general one of Campi [5, Lemma 1].) 

The authors of [1] were motivated by two conjectures concerning the set N (K) of 
zeros of the Fourier transform 1--K of the characteristic function of an o-symmetric 
convex body K in Rn. They conjecture that the distance from N (K) to the origin 
is minimized when K is a ball, and is bounded above by 

/
λ2(K), where λ2(K) is 

the second Dirichlet eigenvalue of K. Their observation mentioned above is applied 
to prove some weaker versions of these conjectures in the plane. 

 
 

Received by the editors February 22, 2010. 
2010 Mathematics Subject Classification. Primary 52A20, 52A40; Secondary 52A38. 
Key  words  and  phrases.  Convex  body,  intersection,  dilatate,  Brunn-Minkowski  inequality, 

isoperimetric inequality, symmetral, ball, sphere. 
The second author was supported in part by the U.S. National Science Foundation Grant 

DMS-0603307. 
 

 
1193 

 

Qc 2011 American Mathematical Society 
Reverts to public domain 28 years from publication 

Licensed to Western Washington Univ. Prepared on Mon Nov 10 10:39:27 EST 2014 for download from IP 140.160.178.72. 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use 
 

http://www.ams.org/journal-terms-of-use


K 

α// 

 
1194 STEFANO CAMPI, RICHARD J. GARDNER, AND PAOLO GRONCHI 

 

Motivated by this observation and its application, as well as by connections to 
E. Lutwak’s dual Brunn-Minkowski theory (see Section 2 for more details), we 
initiate a systematic investigation into the properties of the functions αK (L, ρ) and 
ηK (L, ρ) (always considered as functions of ρ) that give the volume V (K ∩ ρL) and 
area Hn−1(K ∩ ∂(ρL)) for the intersection of K and a dilatate ρL of L.  (When 
L = B, we write αK (ρ) and ηK (ρ) instead of αK (B, ρ) and ηK (B, ρ).) As far as we 
are aware, such a study is new, somewhat surprising in view of the basic nature of 
the operations of intersection and dilatation. 

A simple application (see Theorem 3.1) of the Brunn-Minkowski inequality yields 
that for arbitrary convex bodies K and L in Rn with o ∈ L, the function αK (L, ρ)1/n 

is concave, and in general the exponent cannot be improved, even when L = B ⊂ K. 
However, we show in Theorem 3.2 that if in addition n = 2 and the origin belongs 
to the so-called kernel of K with respect to L, the exponent can be improved and 
in fact αK (L, ρ) is concave. In particular, this holds when K and L are planar o- 
symmetric convex bodies (see Corollary 3.3). Specializing further by taking L = B, 
we see that Theorem 3.2 yields the observation in [1, Lemma 5.1], but is of course 
considerably more general. In this generality, it is not possible to approach this 
result via the function ηK (L, ρ), and in any case, we construct after Corollary 3.3 
planar o-symmetric convex polygons K and L such that ηK (L, ρ) increases rather 
than decreases. The final result in Section 3, Theorem 3.4, shows that the exponent 
1/n in Theorem 3.1 is optimal for n ≥ 3 even when K and L are o-symmetric. 

In Section 4, we focus on the special case when K is o-symmetric and L = B, the 
situation in [1], and consider the possibility that αK (ρ)1/(n−1) is concave. From 
the above we know that this holds when n = 2.   In Theorem 4.5, by making 
computations when K is an o-symmetric slab, we show that in general the exponent 
1/(n − 1) would be optimal, and moreover when n ≥ 4, the exponent 1/n is best 
possible. However, for this slab K, αK (ρ)1/2 is concave when n = 3. The extremal 
nature of the slab led us to make the intriguing Conjecture 4.6 that if K is an 
o-symmetric convex body in R3, then αK (ρ)1/2 is concave. 

Thus we find that for o-symmetric convex bodies, the concavity properties of 
αK (L, ρ) change between 2 and 3 dimensions, and we conjecture that the concavity 
properties of αK (ρ) change between 3 and 4 dimensions. If the latter is true, 
this would be a remarkable and surprising fact. Our attempts to shed light on 
Conjecture 4.6 via the Brunn-Minkowski inequality in the sphere are described 
in Section 5.  The method allows estimates on the derivative η/ (ρ) and hence 

K (ρ), when they exist—see Theorem 5.2—but so far has not led to a proof of 
the conjecture. Instead we obtain in Theorem 5.3 an optimal strengthening of the 
result in [1, Lemma 5.1] and [5, Lemma 1] that when n = 2 and K is o-symmetric, 
ηK (ρ) is decreasing. 

In Theorem 6.1, we establish an isoperimetric inequality with equality condition 
for subsets of equatorial zones in the sphere S2. This is combined with the method 
described in the previous paragraph in Theorem 7.1, which states that ηK (ρ)/ρ 
is decreasing when K is an o-symmetric convex body in R3.  As we explain, this 
statement is equivalent to the quasiconvexity of a new type of symmetral of K, 
which we call the equatorial symmetral. 

In Section 8, we study a related pair of functions. For one of these, defined by 
αK (L, ρ) = maxx∈Rn V (K ∩ (ρL + x)), the Brunn-Minkowski inequality is applied 
again to conclude in Theorem 8.1 that αK (L, ρ)1/n is concave. 
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We thank Michael Levitin for drawing our attention to [1], and a referee for a 
suggestion that shortened our original proof of Theorem 6.1. 

 
2. Definitions and preliminaries 

As usual, Sn−1 denotes the unit sphere and o the origin in Euclidean n-space 
Rn. The unit ball in Rn will be denoted by B. The standard orthonormal basis for 
Rn will be {e1,... , en}. We write [x, y] for the line segment with endpoints x and 
y. 

If X is a set, we denote by ∂X, int X, and conv X the boundary, interior, and 
convex hull of X, respectively. 

If X and Y  are subsets of Rn, their vector or Minkowski sum is 
X + Y = {x + y : x ∈ X, y ∈ Y }, 

and if t ∈ R, then  
tX = {tx : x ∈ X}. 

When t > 0, tX is called a dilatate of X. The set −X is the reflection of X in the 
origin. 

We write Hk for k-dimensional Hausdorff measure in Rn, where k = 1 , . . .  , n. 
If K is a k-dimensional convex body in Rn, then V (K) is its volume Hk (K). The 
notation dz will always mean dHk (z) for the appropriate k = 1, . . . , n. 

By Jensen’s inequality for integrals [9, (B.8), p. 414], if p ≤ q and a real-valued 
function f is q-concave (that is, f q is concave) on its support, then f is p-concave 
on its support. 

We follow Schneider [20] by writing κn for the volume V (B) of the unit ball in 
Rn, so that κn = πn/2/ Γ(1 + n/2). 

A set is o-symmetric if it is centrally symmetric, with center at the origin. 
A convex body is a compact convex set with nonempty interior. 
Let K and L be convex bodies in Rn with o ∈ L. We write 

r(K, L) = min{ρ : ∂K ∩ ∂(ρL) /= ∅} 
and  

R(K, L) = max{ρ : ∂K ∩ ∂(ρL) /= ∅}. 

For r(K, L) ≤ ρ ≤ R(K, L), we let 

αK (L, ρ) = V (K ∩ ρL) 

and 
ηK (L, ρ) = Hn−1 (K ∩ ∂(ρL)) . 

Note that the domain of both functions is [r(K, L), R(K, L)]. In the special case 
when L = B, we simplify the notation by writing rK = r(K, B), RK = R(K, B), 
αK (ρ)  = αK (B, ρ), and ηK (ρ)  = ηK (B, ρ). Note that the domain of the latter 
functions is [rK , RK ]. 

It is of course possible to extend these definitions, though we shall only use the 
previous definitions in our results. For example, when L = B, we can define for 
any bounded Borel set C in Rn, 

(1) ηC (ρ) = Hn−1 
(
C ∩ ρSn−1

) 
= 

r 
 

Sn−1 

1C (ρu)ρn−1 du, 

Licensed to Western Washington Univ. Prepared on Mon Nov 10 10:39:27 EST 2014 for download from IP 140.160.178.72. 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use 
 

http://www.ams.org/journal-terms-of-use


l 

l l 

l 

  

n i−n 

r 
l 

+ 

 
1196 STEFANO CAMPI, RICHARD J. GARDNER, AND PAOLO GRONCHI 

 

for all ρ ≥ 0.  Similarly, we can also define αC (ρ) = Hn(C ∩ ρB), for all ρ ≥ 0. 
Then we have 

r 
(2) αC (ρ) =  

ρB 

 
1C (x) dx = 

r ρ r 
 

0 

 

 
Sn−1 

1C (ru)rn−1 du dr = 
r ρ 

ηC (r) dr. 
0 

In 1975, Lutwak [14] initiated the dual Brunn-Minkowski theory (dBMt), in 
which the intersections of star bodies with subspaces replace the projections of 
convex bodies onto subspaces in the classical Brunn-Minkowski theory (BMt) ex- 
pounded in [20].  He discovered that integrals over Sn−1  of products of radial 
functions (giving the distance from the origin to the boundary) behave like the 
mixed volumes in the BMt, and he called them dual mixed volumes. Special cases 
of dual mixed volumes, analogous to the intrinsic volumes in the BMt, are called 
dual volumes. A formula called the dual Kubota integral recursion (see [15] or [9, 
Theorem A.7.2]) allows dual volumes to be represented as averages of volumes of in- 
tersections with subspaces, just as intrinsic volumes can be represented as averages 
of projections onto subspaces. 

For our purposes, it is useful to define the ith dual volume V�i(C) of any bounded 
Borel set C in Rn, for real i > 0, by 

 
(3) i r 

V�i(C) =  
C 

lx i−n 
 
dx, 

where integration is with respect to Hn. When C is a star body, (3) agrees with the 
original definition in [14] via a change to polar coordinates; see [11, Theorem 4.1]. 
Moreover, definition (3) allows dual volumes to be seen as moments of sets, im- 
parting a clear and fundamental geometrical significance to these quantities. For a 
bounded Borel set C in Rn, we have, using (1), 

V�i(C)  = i x i−n 

n  C 

i r 
dx = 

n  Rn 

lx i−n 
 
1C (x) dx 

i r ∞ r 
= lρu i−n 1C (ρu)ρ n−1 du dρ = i r ∞ ηC (ρ)ρ i−n dρ. 

n  0 Sn−1 n  0 

If C is a star-shaped body with respect to the origin and if rC and RC are the min- 
imum and maximum values of the radial function of C, then the previous equation, 
(2), and integration by parts lead to the formula 

i 
/ 

i n R r RC 
\ 

i  n  1 

V�i(C)  = ρ − αC (ρ) 0 
C  − (i − n) 

0 
ρ − − αC (ρ) dρ 

i 
= H (C)R + κn (n − i) ri i(n − i) r RC

 αC (ρ)ρi−n−1 dρ. 
n C n C n r 

Thus the functions ηC and αC are natural components of the dBMt. 
In recent years the dBMt has been the subject of quite intense activity. It is 

now recognized that the dBMt has connections and applications to many areas, 
such as integral geometry, Minkowski geometry, the local theory of Banach spaces, 
stereology, and information theory; see [9] and the references given there. Even 
when restricted to o-symmetric convex bodies, the dBMt can count among its 
successes the solution of the Busemann-Petty problem in [7], [10], [16], [21], and 
[22]. 

n 

n 

C 
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3. Properties of αK (L, ·) and ηK (L, ·) 

Theorem 3.1. If K and L are convex bodies in Rn with o ∈ L, then αK (L, ρ)1/n 

is concave. 

Proof.  Let H = K × [r(K, L), R(K, L)] ⊂ Rn+1, let 

C = conv {o, {(x1,... , xn+1) : (x1,...  , xn) ∈ R(K, L)L, xn+1 = R(K, L)}} , 
and let M = H ∩ C. Observe that C is a cone and C ∩ {xn+1 = ρ} is a translation 
of ρL along the xn+1-axis. Then, identifying the plane {xn+1 = ρ} with Rn, we 
have 

M ∩ {xn+1 = ρ} = K ∩ ρL, 
for r(K, L) ≤ ρ ≤ R(K, L), so by the Brunn-Minkowski inequality (see [8], [9, 
Section B.2], and [20, Section 6.1]) the function 

αK (L, ρ)1/n = V (M ∩ {xn+1 = ρ})1/n
 

is concave. D 
The exponent in the previous result is the best possible, even when L = B ⊂ K. 

To see this, let M = B ∩ {xn ≥ 0} be a half-ball containing the origin, so that 
rM = 0, RM = 1, and αM (ρ) = κnρn/2, 0 ≤ ρ ≤ 1. Let q > 1/n and note that 
αM (ρ)q  = (κn/2)q ρnq  is not concave.  Let 0 <  s < 1/2 and let Ks  = M − sen. 
Then sB ⊂ Ks and αKs   converges uniformly to αM  as s → 0.  Therefore there is q 
an s0 > 0 such that for s ≤ s0, αKs (ρ) is not concave. Letting K = (1/s0)Ks0 , we 
have B ⊂ K and αK (ρ)q is not concave. 

Despite this example, there are situations in which Theorem 3.1 can be strength- 
ened.  To state one, let K and L be convex bodies in Rn  such that o ∈ L.  The 
relative inradius r(K, L) of K with respect to L is defined by 

r(K, L) = sup{r : rL + x ⊂ K for some x ∈ Rn}. 
The kernel of K with respect to L is denoted by 

KL = {x : r(K, L)L + x ⊂ K}. 
See, for example, [19]. Note that if o ∈ KL, then r(K, L) = r(K, L) and r(K, L)L ⊂ 
K but sL + x /⊂ K for any s > r(K, L) and x ∈ Rn. 

Theorem 3.2. If K and L are convex bodies in R2 such that o ∈ KL, then αK (L, ρ) 
is concave. 

Proof. It suffices to show that 
αK (L, ρ + h) − αK (L, ρ) ≤ αK (L, ρ) − αK (L, ρ − h), 

for every ρ, h > 0 such that [ρ − h, ρ + h] ⊂ [r(K, L), R(K, L)]. If we let 

C = (ρ + h)L \ ρL   and D = ρL \ (ρ − h)L, 

then we want to show that H2(C ∩ K)         2(D ∩ K).  The set int K \ r(K, L)L 
consists of countably many components. Let E be any such component, and let 
C1 = E ∩ int C and D1 = E ∩ int D be the corresponding (possibly empty) com- 
ponents of int (C ∩ K) and int (D ∩ K), respectively. Then it suffices to prove that 

2 2 H (C1) ≤ H (D1). 
The component D1 is bounded by four arcs, each contained in ∂K, or ∂ ((ρ−h)L), 

or ∂(ρL). Let x1, y1, y2, and x2  be the endpoints of these arcs, labeled clockwise 
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and such that x1 and x2 belong to (ρ − h)L. For i = 1, 2, the line through xi and 
yi intersects ∂ ((ρ + h)L) in a point zi, say. 

Let C/ ⊃ C1 be the region bounded by [y1, z1], [y2, z2], the arc in ∂(ρL) between and y , and the arc in ∂ ((ρ + h)L) between z and z . Similarly, let D ⊂ D1 be 
y1 2 1 2 1 

the region bounded by the line segments [x1, y1] and [x2, y2], the arc in ∂ ((ρ − h)L) 
between x1  and x2, and the arc in ∂(ρL) between y1  and y2. 

The lines li containing the segments [xi, yi], i = 1, 2, are either parallel or meet 
at a point w /= o.  Let u ∈ S1  be parallel to l1  and l2  in the first case, and  
let u = −w/lwl in the second case. We claim that in the second case, [o, w] ∩ C/  

/= ∅. 
Indeed, if this is not true, then the ray emanating from the origin in the direction 
u meets C/ . Note that the closed cone T with apex at w bounded by l1 and l2 is 
such that r(K, L)L ⊂ K ∩T . Let mi, i = 1, 2, be the lines parallel to li and tangent 
to r(K, L)L at pi, say, and let mi meet ∂(ρL) at qi. Then for i = 1, 2, we have 
pi, qi ∈ K and the relative interior of the line segment [pi, qi] is contained in int K. 
From this we see that for sufficiently small ε > 0 we have r(K, L)L + εu ⊂ int K 
and hence that there is an r > r(K, L) such that rL + εu ⊂ K, contradicting the 
definition of r(K, L) and proving the claim. 

In either of the two cases under consideration, let S be the closed strip bounded 
by the lines through y1 and y2 parallel to u, and let C// = S ∩ C and D// = S ∩ D. 

C/ // // / 1 1 
2 // 

Now C1 ⊂ 1  ⊂ C1   and D1   ⊂ D1  ⊂ D1, so it suffices to show that H (C1 ) ≤ 2 // 
H (D1 ). 

To this end, choose a Cartesian coordinate system with o as the origin and the 
y-axis parallel to u, with the positive y-axis intersecting C/ . Suppose that 

L = {(x, y) | f (x) ≤ y ≤ g(x)}, 

for suitable functions f and g. Then for any s > 0, we have 
sL = {(x, y) | sf (x/s) ≤ y ≤ sg(x/s)}. 

It follows that if the lines bounding S correspond to x = a and x = b, where 
a < 0 < b, then 

2 // 
r
 

 
 

and 

H (C1 ) =  ((ρ + h)g (x/(ρ + h)) − ρg(x/ρ)) dx 
a 

 
 b 

2 // 
r
 

H (D1 ) =  
a 

(ρg(x/ρ) − (ρ − h)g (x/(ρ − h))) dx. 
Thus the desired inequality H2(C//) 2(D// ) would follow immediately from the 
inequality  

 
2ρg 

 
( 

x 
\ 

 

 

ρ 

1 

 

≥ (ρ − h)g 

1 

( 
x  

\ 

ρ − h 

 
 
+ (ρ + h)g 

 
( 

x  
\ 

. 
ρ + h 

But the latter is a direct consequence of the concavity of g, since with t = (ρ + 
h)/(2ρ), so that 0 < t < 1, we have 

x 

ρ = (1 − t) 
x 

ρ − h 

x 
+ t . D 

ρ + h 

Corollary 3.3. If K and L are o-symmetric convex bodies in R2, then αK (L, ρ) is 
concave. 

b 
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In view of Theorem 3.2 and Corollary 3.3, it is natural to ask whether under the 
same hypotheses, the function ηK (L, ρ) is decreasing. This is false, as the following 
example shows. Let K = [−2, 2]2 and L = conv {(±2, 0), (±1, ±1), (±2, ±1)}, so 
that K and L are o-symmetric polygons in R2. For 1 < ρ < 2, K ∩ ρL is a hexagon 
and K ∩∂(ρL) consists of the line segment [(−2, 2(ρ − 1)/3), (ρ, ρ)], the line segment 
[(ρ, ρ), (2, ρ)], and their reflections in the origin. Therefore / √

10(ρ + 2) 
\

 
ηK (L, ρ) = 2  + 2 ρ  , 

3 
for 1 < ρ < 2, which actually increases with ρ. 

For n ≥ 3, Theorem 3.1 implies that under the hypotheses of Theorem 3.2 or 
Corollary 3.3, αK (L, ρ)1/n is concave. Our next result shows that in contrast to 
the case n = 2, the exponent is optimal. 

Theorem 3.4. If n ≥ 3 and q > 1/n, there are o-symmetric convex bodies K and 
L in Rn such that αK (L, ρ)q is not concave. 
Proof. Let D be an o-symmetric (n − 1)-dimensional ball of radius 1 contained in 
the plane {xn = 0} in Rn, and let L = conv {D, en, −en}, so that L is a double 
cone. Let 0 < r < R and let K = {−r ≤ xn ≤ r} ∩ RL. Then r(K, L) = r and 
R(K, L) = R. We claim that for n ≥ 3 and q  > 1/n, αK (L, ρ)q is not concave. 
Indeed, for ρ ≥ r we have 

αK (L, ρ) =  
2κn−1 

r
 

n 0 

(ρ − t) n−1 dt = 2κn−1  (ρn 
n 

− (ρ − r)n) . 

Let g(ρ) = αK (L, ρ)q . Then g//(ρ) = qαK (L, ρ)q−2I(ρ), where 

I(ρ) = (q − 1)α/ (L, ρ)2 + αK (L, ρ)α// (L, ρ). 
Let r = 1. A direct calculation with q = 1/n + c and c > 0 shows that 

lim I(ρ) = 4κ2
 

( 
n − 1 

\
 

c − + 4κ2
 

n − 1 = 4cκ2
 > 0, 

ρ→1+ n−1 n n−1 n n−1 

for all n ≥ 3. It follows that g//(ρ) > 0 for ρ close to 1, proving the claim. D 

4. Properties of αK and ηK 

The next result is just the special case L = B of Theorem 3.1. 
Corollary 4.1. If K is a convex body in Rn, then αK (ρ)1/n is concave. 

We now establish differentiability properties, some of which we require later. 
Note firstly that while αK is clearly continuous (meaning, as always, on its domain 
[rK , RK ]), ηK  may not be.  For example, let K      R2  be the convex hull of S1, √ 
the arc {(r, θ) : r = 2, π/4 ≤ θ ≤ π/2} in 2S1, and the point (2 2, 0).  Then ηK 

has jump discontinuities at ρ = 1 and ρ = 2. Observe that this example is easily 
modified to produce convex bodies with arbitrarily smooth boundaries for which 
ηK is not even continuous. 

Theorem 4.2. Let K be a convex body in Rn. 
(i) The left and right one-sided derivatives (α  )/ 

− and  (αK )/ of αK exist and 
(αK )/ ≤ (αK )/ .   We  have  (αK )/ = ηK  and ηK  is continuous on the left and 

+ − − 
its  one-sided  limits  exist.   There  is  a  countable  subset  M  of  [rK , RK ] such  that 
αK (ρ) is differentiable and α/ (ρ)  = ηK (ρ) for ρ ∈ [rK , RK ] \ M.  Consequently, 

r 
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the only discontinuities of ηK  are jump discontinuities at points in M, and at such 
a discontinuity we have 

lim 
s→ρ+ 

Hence ηK  is upper semicontinuous. 

ηK (s) < ηK (ρ). 

(ii) There is a set N of measure zero such that αK (ρ) is twice differentiable, and 
hence ηK (ρ) is differentiable for ρ ∈ [rK , RK ] \ (M ∪ N ). 

Proof. For (i), we use Corollary 4.1 and a standard result on concave or convex func- 
tions of one variable (see, for example, the statement and proof of [12, Theorem 1.4]) 
to conclude that if gK = α1/n, then (gK )/ and (gK )/ exist and are continuous on 

K − + 

the left and right, respectively, that (gK )/ ≤ (gK )/ , and that there is a countable 
set M of [rK , RK ] such that gK (ρ) is differentiable for ρ ∈ [rK , RK ] \ M . Since αK 
is increasing, the same is true when gK is replaced by αK . Now using the convexity 
of K, we see that 

 
 

This proves (i). 

ηK (ρ) =  lim 
s→ρ− 

αK (ρ) − αK (s) 
ρ − s 

= (α  )/ (ρ). 
− 

To prove (ii), we similarly apply Corollary 4.1 and another result on concave or 
convex functions of one variable (see [12, Theorem 1.7]; this is the one-dimensional 
case of Aleksandrov’s theorem on the almost-everywhere twice-differentiability of 
concave or convex functions, which according to Schneider [20, p. 32] was first 
observed by Jessen). D 

As is explained in [12, p. 10], the previous result means that η/ (ρ) exists almost 
everywhere in [rK , RK ] in the sense that 

ηK (ρ) − ηK (s) 
lim 
s→ρ ρ − s 

exists for ρ ∈ [rK , RK ] \ (M ∪ N ), where in the limit s ∈ [rK , RK ] \ M . 
Theorem 4.3. Let K be a convex body in Rn and let ε > 0. There is a convex 
body L in Rn such that rL = rK , RL = RK , the Hausdorff distance between K and 
L is less than ε, and ηL is continuous. Moreover, if K is o-symmetric, there is an 
o-symmetric L with these properties. 

 
Proof. If ηK is not continuous, then by Theorem 4.2(i), it has a jump discontinuity, 
which can only occur if for some rK ≤ ρ < RK , we have Hn−1(∂K ∩ ρSn−1) > 0. 
Without loss of generality, we may suppose that K ⊂ {−s ≤ xn ≤ rK }, where 
s ≥ rK and s = rK if K is o-symmetric. 

Let E be a nonspherical o-symmetric ellipsoid and choose a > 0 sufficiently 
small so that if L/ = K + aE, the Hausdorff distance between K and L/ is less 
than ε. Using the fact that the support functions of K, L/, and E are related by 
hL! = hK + ahE , it is easy to see that Hn−1(∂L/ ∩ ρSn−1) = 0 for each ρ and hence 
that ηL! is continuous. Let L = L/ ∩ {−s ≤ xn ≤ rK } ∩ RK B. Then L retains all 
the desired properties and is o-symmetric if K is. D 

The following result is  proved  by  a  straightforward  direct  argument  in 
[1, Lemma 5.1]. 

Proposition 4.4. If K is an o-symmetric convex body in R2, then ηK (ρ) is de- 
creasing and hence αK (ρ) is concave. 
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The first statement in Proposition 4.4 is also implied by [5, Lemma 1], which, 
when K is o-symmetric, states that ρ sin(ηK (ρ)/(4ρ)) is decreasing. Indeed, if 
ρ1  < ρ2, then 

ρ2 sin 
( 
ηK (ρ2)

\
 

4ρ2 

≤ ρ1 sin 
( 
ηK (ρ1)

\
 

4ρ1 

≤ ρ2 sin 
( 
ηK (ρ1)

\
 
, 

4ρ2 

and ηK (ρ2) ≤ ηK (ρ1) follows directly. A still stronger result is given in Theorem 5.3 
below. 

That the second statement in Proposition 4.4 follows from the first is a conse- 
quence of (2). It also follows immediately from Corollary 3.3. However, as we have 
seen, the fact that ηK (L, ρ) is not always decreasing means that the first statement 
cannot be obtained from a more general result. 

Theorem 4.5. If n = 2 or 3 and q > 1/(n − 1), or if n ≥ 4 and q > 1/n, there is 
an o-symmetric convex body K in Rn such that αK (ρ)q is not concave. 

Proof. Let n ≥ 2, let R > 1, and let K = {−1 ≤ xn ≤ 1} ∩ RB.  Then rK = 1, 
RK = R, and 

r 1   
2

 
 

2  (n 
 

1)/2 

(4) αK (ρ) = 2κn−1 (ρ  − t )  − 
0 

dt, 

for 1 ≤ ρ ≤ R.  As in the proof of Theorem 3.4, we let g(ρ)  = αK (ρ)q , so that 
g//(ρ) = qαK (ρ)q−2I(ρ), where 

I(ρ) = (q − 1)α/ (ρ)2 + αK (ρ)α// (ρ). 

It suffices in each case to show that I(ρ) may be positive. 
Suppose that n = 2. Then      

 
 

Therefore 

αK (ρ) = 2  ρ2 arcsin(1/ρ) + 
/
ρ2 − 1  . 

 
/ \ 

I(ρ) = 8  (2q − 1)ρ2 arcsin2(1/ρ) − arcsin(1/ρ) − 1    . /
ρ2 − 1 

Since I(ρ) → 16(q − 1) as ρ → ∞, we have I(ρ) > 0 when q > 1 and ρ (and hence 
R) is sufficiently large. 

If n = 3, then αK (ρ) = 2π(ρ2 − 1/3). Therefore 

(5) I(ρ) = 8π2 
(
(2q − 1)ρ2 − 1/3

) 
, 

so again, we have I(ρ) > 0 when q > 1/2 and ρ (and hence R) is sufficiently large. 
Now suppose that n ≥ 4. In view of (4), we have 

1/2   
( n+1 

) 
  2   

(6) 

(7) 

lim 
ρ→1+ 

αK (ρ) = κn = κn−1 

 
r 1 

Γ 
 
n−3 

( n+2 
) , 

2 
 

 
   

π1/2Γ 
( n−1 

lim 
ρ→1+ 

/  (ρ) =  lim 
ρ→1+ 2κn−1(n − 1)ρ (ρ2

 
0 — t ) 2   dt = κn−1(n − 1) 

  2   

Γ 
( n ) 

2 

, 
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and, using the relation xΓ(x) = Γ(x + 1),  
2 

r 1   
2 

 

 

2  (n 

 
 
 

5)/2 lim α// (ρ) = lim 2κn−1(n − 1)(n − 3)ρ (ρ  − t )   − dt 
ρ→1+   

K ρ→1+ 

r 1   
2

 

0 
 

2  (n 

 
 

3)/2 

+ 2κn−1(n − 1) (ρ  − t )   − dt 
0 

= κn−1(n − 1)(n − 3) π1/2Γ 
( n−3 

) 
( n−2 

) + κn−1(n − 1) 
2 

1/2   
( n−1 

) 
  2   

( n ) 
2 

(8) = π1/2κn
 1(n − 1)2

 Γ 
( n−1 

) (  ) . 
— n 

2 

Therefore (6), (7), and (8) yield 

Γ 
( n−1 

) / Γ 
( n−1 

) Γ 
( n+1 

)\ 
lim 
ρ→1+ 

I(ρ)   =   π(n − 1)2κ2
 

2 

( n ) 
2 

(q − 1) ( n )  + 
2 

2 ( n+2 
) 

2 
/ 

=   π   (n − 1)κn−1 

( n−1 
)\2

 
  2   

( n ) 
2 

(q − 1/n). 

It follows that if q  > 1/n, then I(ρ) > 0 when ρ is sufficiently close to 1.  This 
completes the proof. D 

Our results so far leave open the following possibility. 

Conjecture 4.6. If K is an o-symmetric convex body in R3, then αK (ρ)1/2 is 
concave. 

Note that when n = 3, it follows from (5) with q = 1/2 that αK (ρ)1/2 is indeed 
concave for the convex body K in Theorem 4.5. 

5. Consequences of the Brunn-Minkowski inequality in the sphere 

For any set D in Sn−1, let Dε  = {x ∈ Sn−1  : d(x, D) ≤ ε}, where d denotes 
the angular metric in Sn−1 (i.e., the induced metric in Sn−1; see [4, p. 10]). The 
following result is sometimes called the Brunn-Minkowski inequality in the sphere; 
see [8, p. 380] and the references given there, particularly [4, p. 77]. 
Proposition 5.1. Let A be an Hn−1-measurable subset of Sn−1 and let ε > 0. Let 

C be a spherical cap in Sn−1 such that Hn−1(C) = Hn−1(A). Then 

Hn−1 (Aε) n−1 (Cε). 
Henceforth we denote by m(s) the Hn−1-measure of a cap in Sn−1 with angular 

radius s. 

Theorem 5.2. If K is a convex body containing the origin in Rn, then 

Fn,K (ρ) = m−1(ηK (ρ)/ρn−1) + arccos(rK /ρ) 

is decreasing. 

Proof. For ρ > 0, let 

(9) fK (ρ) = Hn−1((1/ρ)K ∩ Sn−1) = ηK (ρ)/ρn−1 

be the normalized version of ηK . 

Γ Γ 

Γ 

Γ Γ Γ 
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Fix ρ > rK and let 0 < ε < ρ−rK . Let x ∈ K ∩ρSn−1, let Dx = conv {rK B, x}, 
and note that by convexity, 
(10) (1/(ρ − ε))K ∩ Sn−1 ⊃ (1/(ρ − ε))Dx ∩ Sn−1, 
a closed cap in Sn−1. By elementary geometry, we find that the angular radius of 
this cap is 
(11) φ = arccos(rK /ρ) − arccos(rK /(ρ − ε)). 
Let A = (1/ρ)K ∩ Sn−1. Since (10) holds for any x ∈ K ∩ ρSn−1, we obtain 

Aφ = ((1/ρ)K ∩ Sn−1)φ ⊂ (1/(ρ − ε))K ∩ Sn−1. 
This and Proposition 5.1 yield 

(12) fK (ρ − ε) = Hn−1 
(
(1/(ρ − ε)) K ∩ Sn−1

) 
≥ H  (Aφ) ≥ H  (Cφ), 

where C is a cap in Sn−1 such that Hn−1(C) = Hn−1(A) = fK (ρ). Choose ψ such 
that m(ψ) = fK (ρ), i.e. ψ = m−1(fK (ρ)). Then the angular radius of C is ψ, so 
the angular radius of Cφ is ψ + φ. Therefore (12) implies that 
(13) fK (ρ − ε) ≥ m(ψ + φ) = m(m−1(fK (ρ)) + φ). 

Using (11), we obtain 

m−1(fK (ρ − ε)) + arccos(rK /(ρ − ε)) ≥ m−1(fK (ρ)) + arccos(rK /ρ), 
and the theorem follows immediately. D 

The previous result cannot be improved, in the sense that there are convex 
bodies K containing the origin in Rn for which the function Fn,K is constant. This 
is the case whenever K = conv {A, rB}, where r = rK > 0 and A is a (possibly 
degenerate) spherical cap in RSn−1 = RK Sn−1 with angular radius in the interval 
[0, arcsin(r/R)]. 

We can use the argument of Theorem 5.2 to obtain a stronger result than Propo- 
sition 4.4. Indeed, it is not difficult to prove that it is also stronger than the result 
for planar o-symmetric convex bodies from [5, Lemma 1] that was mentioned after 
Proposition 4.4. 
Theorem 5.3. If K is an o-symmetric convex body in R2, then 

G2,K = ηK (ρ)/(4ρ) + arccos(rK /ρ) 
is decreasing, and this implies that ηK (ρ) is decreasing. 

Proof. When K is o-symmetric in R2, we can use the symmetry and the fact that 
if rK  <  ρ  < RK  and E is a component of K ∩ ρS1, then −E is another such 
component disjoint from E to obtain 

(14) fK (ρ − ε) ≥ 2m(m−1(fK (ρ)/2) + φ) 
instead of (13) in the proof of Theorem 5.2. With this and the fact that m(s) = 2s 
when n = 2, it follows as in the proof of Theorem 5.2 that G2,K is decreasing. 

Suppose that ηK is not decreasing, so that there exist ρ1 < ρ2 such that ηK (ρ1) < 
ηK (ρ2). Let M = sup{ηK (ρ) : ρ1 ≤ ρ ≤ ρ2}. By Theorem 4.2(i), ηK  is continuous 
on the left and upper semicontinuous, so M is a maximum and the set {s ∈ [ρ1, ρ2] : 
ηK (s)  = M} is closed.   Let ρ0  be the minimum number in this set.   Then for 
0 < ε ≤ ε0 = ρ0 − ρ1, we have 

(15) ηK (ρ0 − ε) < ηK (ρ0). 
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Next, we observe that the function g(ρ) = arccos(rK /ρ) is strictly increasing and 
concave in ρ, so for 0 < ε ≤ ε0, 

rK 
(16) arccos — arccos   rK   = g(ρ0) − g(ρ0 − ε) > εg/(ρ0) =    εrK     . / ρ0 ρ0 − ε ρ0 ρ2 2 

Using the fact that G2,K is decreasing, (16), and (15), we obtain 
0 − rK 

ηK (ρ0 − ε) 
+ arccos   

rK
 ηK (ρ0) rK 

> + arccos 
4(ρ0 − ε) ρ0 − ε 4ρ0 

> ηK (ρ0 − ε) 
ρ0 

+ arccos   rK       +   εrK   / , 4ρ0 ρ0 − ε ρ0 ρ2 2 

and hence 4(ρ0 − ε)rK 

0 − rK 

ηK (ρ0 − ε) > /
ρ2 2   

. 
0 − rK 

Using (15), letting ε → 0, and letting θ0 = arcsin(rK /ρ0), we have 0 < θ0 < π/2 
and 

ηK (ρ0) ≥ 4ρ0 tan θ0 > 4ρ0θ0. 
However, since K is o-symmetric, it is contained in a closed o-symmetric strip S of 
width 2rK . Therefore 

ηK (ρ0) ≤ V1(S ∩ ρ0S1) = 4 arcsin(rK /ρ0) = 4ρ0θ0. 

This contradiction proves that ηK is decreasing. D 
The previous theorem cannot be improved, since when K = {−rK ≤ x2  ≤ 

rK } ∩ RB where R > rK , the function G2,K is constant. 

6. An isoperimetric inequality for equatorial zones in S2
 

By a sector of S2 we mean the closed region between two lines of longitude, i.e. 
{(1, θ, φ) : θ1 ≤ θ ≤ θ2}, where θ is the horizontal angle and φ the vertical angle in 
spherical polar coordinates. If θ2 − θ1 = γ, we denote such a sector by S(γ); i.e., 
this is any sector of S2 subtending a horizontal angle of γ at the origin. 

An equatorial zone in S2 is the intersection of S2 with a closed slab of the form 
{(x1, x2, x3) ∈ R3  : −a ≤ x3  ≤ a, 0 < a ≤ 1}.  We denote this equatorial zone by 
E(a). 

If A is an H2-measurable set in S2, we denote by P (A) its perimeter. We follow 
Burago and Zalgaller [4, p. 106] in defining 

P (A) = inf{lim inf H1(∂Mi)}, 
i→∞ 

where the infimum is taken over all sequences of spherical polygons Mi in S2 with 
boundaries ∂Mi such that Mi → A as i → ∞ in the symmetric difference metric. 
(Note that  the latter condition  implies  in  particular  that  H2(Mi)  → H2(A)  as 
i → ∞.) We also follow Burago and Zalgaller [4, p. 69] in defining 

2(Aε) 2(A) 
μ+(A) = lim inf H . 

ε→0+ ε 
However, we shall refer to μ+(A) as the Minkowski perimeter of A instead of the 
outer Minkowski content of ∂A. 
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Theorem 6.1. If 0 < a < 1 and A is an H2-measurable subset of E(a), then 

(17) H2(A) ≤ √ a P (A), 

with equality if and only if A = E(a). 
1 − a2 

Proof. Since A ⊂ E(a) we may, by replacing the spherical polygons Mi in the 
definition of P (A) by Mi ∩ E(a), if necessary, take these spherical polygons to be 
subsets of E(a).  From the definition of P (A) it then follows that if (17) is false 
for A, there is a spherical polygon Mi in E(a) such that (17) is also false for Mi. 
Thus we may assume that A itself is a spherical polygon with H2(A) > 0.  We 
may further assume that int A is connected, since if (17) is false, there must be a 
component of int A such that (17) is also false when A is replaced by the closure of 
this component. 

Choose 0 <  b ≤ a and 0 <  γ ≤ 2π to be minimal such that int A ⊂ C = 
E(b) ∩ S(γ) for some sector S(γ). Clearly, H2(A)  2(C) = 2bγ. We claim that 

(18) P (A) ≥ 2γ
/
1 − b2, 

with equality if and only if A = E(b). This will suffice to prove the theorem, since 
it then follows that 

2  b    a  H (A) ≤ 2bγ ≤ √  
1 − b2 

with equality if and only if A = E(a). 

P (A) ≤ √  
1 − a2 

P (A), 

To prove the claim, assume first that γ  < 2π.  The set C ∩ ∂S(γ) consists of 
two arcs, A1 and A2 say, and A, being closed, must contain a point in each arc. 
Therefore ∂A contains two polygonal arcs, that is, spherical polygonal arcs, disjoint 
except at their endpoints, each joining A1 and A2. The shortest polygonal arcs in C joining A1 and A2 are the two arcs that comprise 
C ∩ ∂E(b), each of which has length γ

√
1 − b2. To see this, consider an arbitrary 

polygonal arc Q in C joining A1  and A2.  Let Q = {(x(t), y(t), z(t)) ∈ S2  :  0 ≤ 
t ≤ 1}, where x(t) = cos θ(t) sin φ(t), y(t) = sin θ(t) sin φ(t), and z(t) = cos φ(t), in 
spherical polar coordinates. Here θ(t) and φ(t) are continuous functions on [0, 1] 
and there exists a finite partition 0 = t0 < t1 < · · · < tN −1 < tN = 1 such that 
both functions are continuously differentiable in [ti, ti+1], for i = 0, 1 , . . .  ,N − 1. 
Since Q ⊂ E(b), we have | cos φ(t)| ≤ b for 0 ≤ t ≤ 1. Therefore the length of Q is 
N −1 r ti+1    N −1 r ti+1      

 
i=0   ti 

/
x/(t)2 + y/(t)2 + z/(t)2 dt = 

  
 

i=0   ti 

/
φ/(t)2 + sin φ(t)2 θ/(t)2 dt 

N −1 r ti+1 

≥ | sin φ(t)| |θ/(t)| dt 
i=0   ti    

≥  
/
1 − b2 |θ(1) − θ(0)| . 

If equality holds in the first of the previous two inequalities, then φ/(t)  =  0 and 
hence φ(t) is constant for 0 ≤ t ≤ 1. If equality also holds in the second of these 
inequalities, then | cos φ(t)| = b and θ(t) is monotonic for 0 ≤ t ≤ 1. It follows that 
Q is one of the two arcs that comprise C ∩ ∂E(b). This proves (18) when γ < 2π. 

The above argument shows that the shortest polygonal arc in E(b) joining two 
meridians is contained in ∂E(b). With this in hand, (18) and its equality conditions 
follow easily in the remaining case when γ = 2π. D 
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Corollary 6.2. If 0 < a < 1 and A is an H2-measurable subset of E(a), then 

(19) H2(A) ≤ √ a μ+(A), 
 

with equality if and only if A = E(a). 
1 − a2 

Proof. The inequality and equality condition both follow from Theorem 6.1 and 
the general inequality P (A) ≤ μ+(A) (see [4, Theorem 14.2.1]). D 

7. Equatorial symmetrization 

We begin by applying the isoperimetric inequality obtained in the previous sec- 
tion to prove a property of ηK in R3. 

Theorem 7.1.  If K is an o-symmetric convex body in R3, then ηK (ρ)/ρ is de- 
creasing. 
Proof. Let F (ρ) = ηK (ρ)/ρ and assume to the contrary that there exist ρ1  < ρ2 

such that F (ρ1) < F (ρ2). Let M = sup{F (ρ) : ρ1 ≤ ρ ≤ ρ2}. Clearly F inherits the 
properties of ηK established in Theorem 4.2(i) and in particular F is continuous 
on the left and upper semicontinuous.  Therefore M is a maximum and the set 
I = {s ∈ [ρ1, ρ2] : F (s) = M} is closed. Let ρ0 be the minimum number in this set. 
Then for 0 < ε ≤ ε0 = ρ0 − ρ1, we have 
(20) F (ρ0 − ε) < F (ρ0). 

Now let A = (1/ρ0)K ∩ S2, so that H2(A) = F (ρ0)/ρ0. Since K is o-symmetric, 
rK > 0 and K is contained in a closed slab of width 2rK , bounded by two common 
supporting hyperplanes to K and rK B. It follows that if we let a = rK /ρ0, then 
A ⊂ E(a). 

If A = E(a), then (20) cannot hold. Indeed, in that case, we would have F (ρ) ≥ 
4πrK for all ρ ∈ [rK , ρ0] with equality for ρ = ρ0. Therefore A /= E(a). 

Suppose that the Minkowski perimeter μ+(A) of A is finite. By (19), there is a 
c > 0 such that 
(21) H2(A) = √ a (μ+ (A) − c). 

1 − a2 

By the definition of μ+(A), there is an ε1 > 0 such that 
(22) H2(Aε) 2(A) + ε(μ+(A) − c/2), 

for all ε ∈ (0, ε1). 
Choose ε > 0 so that ε < ε0, 

(23) ε <  

and 

  cρ0  , 
2μ+(A) − c 

rK 
(24) φ = arccos 

ρ0 
— arccos 

  rK   
ρ0 − ε < ε1. 

Using (20), (12), (22), and (24), we obtain 
   ρ0   F (ρ0) F (ρ0 − ε) 2 2 

(25) ρ0 − ε H (A) =  > 
ρ0 − ε ρ0 − ε ≥ H (Aφ) ≥ H (A) + φ(μ+(A) − c/2), 

which gives 
ε 2(A) > arccos 

rK
 rK — arccos 

\ 
(μ+ (A) − c/2). 

ρ0 − ε 
H ρ0 ρ0 − ε 
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By (16), we have 
rK 

arccos 

 

— arccos 

 
  rK    > 

 
 
  εrK      = / 

 
 
  εa  

√ . ρ0 ρ0 − ε ρ0 ρ2 2 

Consequently 
0 − rK ρ0    1 − a2 

(26) H2(A) >  
(ρ0 − ε)a 

(μ 
1 − a2 

(A) − c/2). 

This and (21) yield 

μ+(A) − c >  
ρ0 − ε 

ρ0 

(μ+(A) − c/2), 

which is a contradiction to (23). 
It remains to consider the case when μ+(A) = ∞.  Using (20) but not the 

assumption that μ+(A) is finite, the argument above leading to (25) yields instead 
the conclusion that for each M ∈ N, there is an 0 < ε < ε0 such that 

ρ0 2(A) = F (ρ0) > F (ρ0 − ε) 2(A ) ≥ H (A) + φM. 
ρ0 − ε 

H ρ0 − ε (ρ0 − ε)   
≥ H φ

 

Now the argument above leading to (26) gives 
2 (ρ0 − ε)a 

H (A) > 
ρ 

√ M, 
0    1 − a2 

a contradiction to H2(A) < H2(E(a)) if M is sufficiently large. D 
Theorem 7.1 has the following nice interpretation.  Let K be a convex body 

containing the origin in Rn. For each ρ ∈ [rK , RK ], choose h(ρ) such that 
 

and let 

n−1 
( n 

H { ∈ : −h(ρ) ≤ xn ≤ h(ρ)} ∩ ρS n−1
) = ηK (ρ), 

EK = rK B ∪ 
I

 x ∈ Rn : −h(ρ) ≤ xn ≤ h(ρ)} ∩ ρSn−1 : rK ≤ ρ ≤ RK }. 
{{ 

We call EK the equatorial symmetral of K. Clearly EK is a body of revolution 
about the xn-axis. If K is o-symmetric, it is not even obvious a priori that EK is 
a star body, but when n = 3, Theorem 7.1 yields much more, namely, that EK is 
“quasiconvex” in the sense that the function h is decreasing. Indeed, when n = 3 
we have 

H {x ∈ R3 : −h(ρ) ≤ x3 ≤ h(ρ)} ∩ ρS2
)
 = 4πρh(ρ), 

and hence h(ρ) = ηK (ρ)/(4πρ) is decreasing. 
When n = 2, the equatorial symmetral of K coincides with the semicircular 

symmetral introduced by Bonnesen [2, p. 67]. This process is called annular sym- 
metrization by Bonnesen and Fenchel [3, p. 77]. Bonnesen proved that if the center 
of the minimal annulus containing ∂K is at the origin, then the perimeter of EK 
does not exceed that of K. The semicircular symmetral is used by Campi [5] to 
obtain stability estimates connected to the isoperimetric inequality. 

Another form of symmetral, the spherical symmetral, is the natural generaliza- 
tion of the circular symmetral introduced by Pólya [17] and discussed at length by 
Pólya and Szegö [18, p. 193]. The spherical symmetral of K is the body produced 
by replacing K ∩ ρSn−1 by a cap in ρSn−1 of the same Hn−1-measure, centered at 
the point on the positive x1-axis a distance ρ from the origin. The spherical sym- 
metral of an o-symmetric convex body does not generally enjoy the corresponding 

+ 
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quasiconvexity property, however; this is shown by straightforward computation 
when K = {−rK ≤ xn ≤ rK } ∩ RB where R > rK . 

There seems to be no obvious direct relationship between Conjecture 4.6 and 
Theorem 7.1. Indeed, when η/ (ρ) exists, Theorem 7.1 states that 

ηK (ρ) 
(27) η/ (ρ) ≤ ρ . 
Therefore when ηK is differentiable, Conjecture 4.6 implies Theorem 7.1 if αK ≥ 
ρηK /2 and Theorem 7.1 implies Conjecture 4.6 if αK ≤ ρηK /2, while we only know 
in general that αK  ≥ ρηK /3. 

 

8. Related functions 

There is another pair of functions that are related to those considered above and 
seem worthy of study. Let K and L be convex bodies in Rn. Let 

m(K, L) = max V (K ∩ (L + x)) 
x∈Rn 

and let 
s(K, L) = max n−1 (K (∂L + x)) . 

x∈Rn 

We shall restrict our attention to the former function and define its kernel by 
KL = {x ∈ Rn : V (K ∩ (L + x)) = m(K, L)}. 

Note that when ρ > 0 is such that ρB + x ⊂ K for some x ∈ Rn, KρB is just an 
inner parallel body of K (see [20, p. 134]). 

For r(K, L) ≤ ρ ≤ R(K, L), let 
αK (L, ρ) = m(K, ρL). 

Note that when K and L are o-symmetric, αK (L, ρ) = αK (L, ρ). 
It is worth remarking that the function m(K, L) appears in a fascinating conjec- 

ture of Dar [6], that if K and L are convex bodies in Rn, then ( 
V (K)V (L)

\1/n
 

(28) V (K + L)1/n ≥ m(K, L)1/n + . 
m(K, L) 

Dar shows that (28) implies the Brunn-Minkowski inequality for convex bodies. He 
proves (28) when K and L are ellipsoids and for some other special cases, but his 
conjecture seems to be open even for planar o-symmetric bodies. 

Theorem 8.1. If K and L are convex bodies in Rn, then αK (L, ρ)1/n is concave. 

Proof.  This is similar to the proof of Theorem 3.1.   Let 0  < ρ1   < ρ2  and let 
n+1 

zi ∈ Kρi L, i = 1, 2. Let H = K × [ρ1, ρ2] ⊂ R , for i = 1, 2 let 
Di = {(x1,... , xn+1) : (x1, . . . ,  xn) ∈ ρiL + zi, xn+1 = ρi} 

and let C = conv {D1, D2}. Finally, let M = H ∩ C. 
Let ρ1  <  ρ < ρ2  and choose 0 <  t  < 1 such that ρ = (1 − t)ρ1 + tρ2.  Let 

z = (1 − t)z1 + tz2. Note that 
C ∩ {xn+1 = ρ} = {(x1,... , xn+1) : (x1, .. . , xn) ∈ ρL + z, xn+1 = ρ}, 

so identifying the plane {xn+1 = ρ} with Rn, we have 

M ∩ {xn+1 = ρ} = K ∩ (ρL + z). 
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Similarly, identifying the plane {xn+1 = ρi} with Rn, we have 

M ∩ {xn+1 = ρi} = H ∩ Di = K ∩ (ρiL + zi), 

for i = 1, 2. By the Brunn-Minkowski inequality, we obtain 
αK (L, ρ)1/n ≥  V (K ∩ (ρL + z))1/n

 

≥  (1 − t)V (K ∩ (ρ1L + z1)) + tV (K ∩ (ρ2L + z2))1/n
 

=  (1 − t)αK (L, ρ1)1/n + tαK (L, ρ2)1/n, 

as required. D 

In view of the fact that αK (L, ρ) = αK (L, ρ) and ηK (L, ρ) = ηK (L, ρ) when K 
and L are o-symmetric, several of our earlier results apply to the new functions 
under this restriction. Natural questions arise when K or L is not o-symmetric, 
but we leave these for a future study. 
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Roma 56, 53100 Siena, Italy 

E-mail address:  campi@dii.unisi.it 

Department of Mathematics, Western Washington University, Bellingham, Washing- 

ton 98225-9063 

E-mail address: Richard.Gardner@wwu.edu 

Dipartimento di Matematica e Applicazioni per l’Architettura,  Università 
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