
Western Washington University
Western CEDAR

Mathematics College of Science and Engineering

9-1997

Preservation of the Range Under Perturbations of
an Operator
Branko Ćurgus
Western Washington University, branko.curgus@wwu.edu

Branko Najman

Follow this and additional works at: https://cedar.wwu.edu/math_facpubs

Part of the Mathematics Commons

This Article is brought to you for free and open access by the College of Science and Engineering at Western CEDAR. It has been accepted for inclusion
in Mathematics by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.

Recommended Citation
Ćurgus, Branko and Najman, Branko, "Preservation of the Range Under Perturbations of an Operator" (1997). Mathematics. 11.
https://cedar.wwu.edu/math_facpubs/11

https://cedar.wwu.edu?utm_source=cedar.wwu.edu%2Fmath_facpubs%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://cedar.wwu.edu/math_facpubs?utm_source=cedar.wwu.edu%2Fmath_facpubs%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://cedar.wwu.edu/cse?utm_source=cedar.wwu.edu%2Fmath_facpubs%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://cedar.wwu.edu/math_facpubs?utm_source=cedar.wwu.edu%2Fmath_facpubs%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=cedar.wwu.edu%2Fmath_facpubs%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://cedar.wwu.edu/math_facpubs/11?utm_source=cedar.wwu.edu%2Fmath_facpubs%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:westerncedar@wwu.edu


Preservation of the Range Under Perturbations of an Operator
Author(s): Branko Ćurgus and Branko Najman
Source: Proceedings of the American Mathematical Society, Vol. 125, No. 9 (Sep., 1997), pp.
2627-2631
Published by: American Mathematical Society
Stable URL: http://www.jstor.org/stable/2162031 .

Accessed: 21/05/2014 19:49

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

 .
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

 .

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to
Proceedings of the American Mathematical Society.

http://www.jstor.org 

This content downloaded from 140.160.178.168 on Wed, 21 May 2014 19:49:51 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/action/showPublisher?publisherCode=ams
http://www.jstor.org/stable/2162031?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp


PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 125, Number 9, September 1997, Pages 2627-2631 
S 0002-9939(97)03840-9 

PRESERVATION OF THE RANGE 
UNDER PERTURBATIONS OF AN OPERATOR 

BRANKO CURGUS AND BRANKO NAJMAN 

(Communicated by Palle E. T. Jorgensen) 

ABSTRACT. A sufficient condition for the stability of the range of a positive 
operator in a Hilbert space is given. As a consequence, we get a class of 
additive perturbations which preserve regularity of the critical point 0 of a 
positive operator in a Krein space. 

1. INTRODUCTION 

In this note we answer the following question: 
Let P and P1 be positive selfadjoint operators in a Hilbert space. Find sufficient 

conditions for the relation 

JR(P ) = 1R( P). 

Aside from its independent interest, our result implies the preservation of some 
spectral properties of positive definitizable operators in a Krein space under addi- 
tive perturbations. The principal feature that distinguishes spectral properties of 
definitizable operators from spectral properties of selfadjoint operators in Hilbert 
spaces is the existence of finitely many critical points of the spectral function. The 
spectral properties of a definitizable operator outside of an open neighborhood of 
its critical points are similar to spectral properties of a selfadjoint operator in a 
Hilbert space. This similarity extends even to a critical point, provided that the 
spectral function is bounded in a neighborhood of that critical point. Critical points 
with this property are said to be regular. Significantly different behavior occurs at 
critical points that are not regular. Such critical points are called singular. 

For the definitions and basic spectral properties of definitizable operators see [7]; 
for further analysis of critical points relevant to this note see [1, 2, 4, 5]. In [1, 2, 4, 
5, 8] the reader can find sufficient conditions for the preservation of the regularity 
of the critical point oo under additive perturbations. In [4] the preservation of 
the regularity of the critical point 0 has also been studied. The basic assumption 
in [4] is that the unperturbed operator is similar to a selfadjoint operator in a 
Hilbert space. In the main result of this note (see Theorem 3 (b)) we give a class 
of additive perturbations which preserve regularity of the critical point 0. Here the 
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2628 BRANKO CURGUS AND BRANKO NAJMAN 

unperturbed operator is any positive operator with nonempty resolvent set and a 
regular critical point 0. 

2. NOTATION AND GENERAL ASSUMPTIONS 

Let (IC, [ l]) be a Krein space and let J be a fundamental symmetry in IC. Let 

( ) be the corresponding Hilbert space scalar product, (x, y) = [Jx, y], x, y IC . 
Let a and v be two symmetric forms in KI with domains D(a) and D(v), respectively. 
In addition assume that the form a is closed and positive. (By positive we mean 
a(x) > 0 for all x C D(a), x #& 0.) Further assume that D(a) C D(v) and that there 
exist real numbers a > - 2 and ,3 such that 1 

(1) ak < (x) < for all xe D(a) \ {}. 

Define 

al = a+v. 

The form a1 is a closed symmetric form defined on D(al) = D(a) (see [6, Theorem 
VI. 3.4]). Clearly, a1 is also positive. Let P and P1 be the positive selfadjoint 
operators associated in the Hilbert space (IC, ( l)) with the forms a and a1, re- 
spectively. (See [6, Theorem VI. 2.1].) Let A = JP and Al = JP1. We say that 
the operators A and Al are associated with the forms a and a1 in the Krein space 
(K:, [ l]). Note that both A and Al are infective. 

3. RESULTS 

In this section we use the notation introduced in Section 2. We also assume that 
all the assumptions stated in Section 2 are satisfied. 

Theorem 1. (a) D(P2) = D(P). 

(b) -R(P 1) = -R(p2 

Proof. (a) follows from [6, Theorem VI. 2.1]. 
(b) From [6, Lemma VI.3.1] it follows that there exists a bounded selfadjoint 

operator C such that 

(2) v(x,y) = (CP1/2xjP1/2y) for all x, y C D(a) 

Moreover (1) yields that a(C) C [a, /]. It follows from [6, Theorem VI.2.1] that the 
operator Pi is given by 

(3) Pi - pl/2(i + C)p112 

The operator I + C is boundedly invertible and P is invective, hence P1 is invective. 
Define the forms a and v on D(a) = 1Z(pl/2) by 

&(Xy) (p-1/2xlp-12y), xy C D1(a), 

i9(xy) = -(C(I+ C)-1P-112Xp-12y) XI yC D(-) 
The operator -C(I + C)-1 = (I + C)-1 - I is a bounded selfadjoint operator. By 
the spectral mapping theorem its spectrum is contained in 

Note added in proof: P. Jonas has extended the results of this note to a > -1. 
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Therefore there exists 'y < 1 such that 

(4) i(x)I < -yd(x), x C D(a) 

Define 

ai =i+z3. 

By [6, Theorem VI.1.33] the form a, is a closed symmetric form on D(ci1) = D(a). 
Since a is positive, it follows from (4) that a- is also positive. Let P1 be the 
associated positive selfadjoint operator. From the definition of al we have 

(5) ai (x, y) = ((I + C)-1p-12Xp-1/2y), x, y C D(-) 

It follows from [6, Theorem VI.2.1] and (5) that the operator P1 is given by 

(6) A = P-1/2(I + C)-1p-1/2 

From (3) and (6) it follows that P1 = P7-1. Therefore 

PZ(P1 2) (P12) = D(P11/)=- D(d1) = D(d) = D(pl/ -Z(P ) 

Lemma 2. Let A = JP and B = JQ be positive operators with nonempty resolvent 
sets in the Krein space IC. Assume that there exists v > 0 such that 1Z(P`V) = 1z(QV). 
Then the following statements are equivalent. 

(a) 0 is not a singular critical point of A. 
(b) 0 is not a singular critical point of B. 

Proof. We use a "regularization" Pr = P(I + P)-1 of a positive operator P in a 
Hilbert space. The operator Pr is a bounded everywhere defined positive selfadjoint 
operator with 1Z(Pr) = 1Z(P). The operators J(Pr)V and J(Qr)V are bounded 
positive operators with the same range. By [3, Lemma 1.2], 0 is not a singular 
critical point of J(Pr)V if and only if 0 is not a singular critical point of J(Qr)V. 
By [3, Lemma 1.1], 0 is not a singular critical point of J(Pr)V if and only if 0 is 
not a singular critical point of JPr. Therefore 0 is not a singular critical point of 
JPr if and only if 0 is not a singular critical point of JQr. Since the definitizable 
operators A = JP and JPr have the same range, [3, Lemma 1.2] implies that 0 is 
not a singular critical point of A if and only if 0 is not a singular critical point of 
JPr. This sequence of equivalences proves the lemma. - 

Theorem 3. Assume that the positive operators A and Al have nonempty resolvent 
sets. 

(a) The following statements are equivalent. 
(i) ox is a singular critical point of A. 

(ii) oX is a singular critical point of Al. 
(b) The following statements are equivalent. 

(i) 0 is a singular critical point of A. 
(ii) 0 is a singular critical point of Al. 

(c) The following statements are equivalent. 
(i) A is similar to a selfadjoint operator in (IC, (. . 

(ii) Al is similar to a selfadjoint operator in (K, ( ) 
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2630 BRANKO CURGUS AND BRANKO NAJMAN 

Proof. (a) Let P and P1 be the positive selfadjoint operators associated in the 
Hilbert space (IC, ( )) with a and a,, respectively. It follows from Theorem 1 

that D(P1/2) = D(P11/2). Clearly, P = JA and P1 = JA1. The equivalence follows 
from [1, Corollary 3.6]. 

(b) It follows from Theorem 1 that PZ(Pi/2) - 1Z(P11/2). The equivalence follows 
from Lemma 2. 

(c) follows from (a) and (b). E 

Assume that a and /3 satisfy (1) and a < 3. Define 

-2a if ce < 0, 
l +x if ce > 0, 

f-xo if 3 < ?0 
1 if />0. 

Note that r,- < 0 < a+. A simple calculation yields the following lemma. 

Lemma 4. (a) Let r, C (2r,-, 2r,+). Then a, is also a closed positive symmetric 
form on D(a,) = D(a). 

(b) Let i, C (Na, ,+). Then the forms cv and a satisfy (1) with some ce', O' such 
that -2 < ce' </. 

Let P, be the positive selfadjoint operator associated in (IC, ( *)) with aK. 

Corollary 5. Let K C (Q I +). Then 

D(P ) = D(P11) =D(a), )= 7(P2). 

We need the following result, which is due to P. Jonas (personal communication). 

Proposition 6. Assume that the operator A has nonempty resolvent set and that 
00 is not a singular critical point of A. Assume that the form v is a-relatively form 
bounded with the relative bound less than 1. Then the resolvent set of the selfadjoint 
operator Al is nonempty. 

Note that v is a-relatively form bounded with the relative bound less than 1 if 
(1) holds with a > -1, /3 < 1. Another sufficient condition is v(x) = (Vxlx) with 
a bounded selfadjoint operator V. It is also sufficient that the operator C in (2) is 
compact in N or if it is bounded in N with the norm smaller than 1. 

Let AK = JPK be the positive selfadjoint operator associated with aK in (IC, [. 

Corollary 7. Assume that the operator A has nonempty resolvent set and that 
00 is not a singular critical point of A. There exist real numbers r,? such that 
s <#? < 0 < ri+ < <,s and that AK has nonempty resolvent set for '? < , < + 

If AK has nonempty resolvent set, then ox is not a singular critical point of AK and 
the following statements are equivalent. 

(i) 0 is not a singular critical point of A. 
(ii) 0 is not a singular critical point of AK. 

(iii) A is similar to a selfadjoint operator in (IC, ( ) 
(iv) AK, is similar to a selfadjoint operator in (IC, ( ) 

Proof. The first statement follows from Proposition 6 and Corollary 5, and the 
equivalences follow from Theorem 3 (b), (c). E 
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PRESERVATION OF RANGE 2631 

Remark 8. An explicit formula for ,j in terms of a and f3 is easily deduced. We 
omit it, since P. Jonas has proved a more precise version of Proposition 6 which 
gives better estimates for ?1 . 
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