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ACTA ARITHMETICA

133.3 (2008)

Rank generating functions as
weakly holomorphic modular forms

by

Scott Ahlgren (Urbana, IL) and Stephanie Treneer (Hanover, NH)

Dedicated to Professor Wolfgang Schmidt
on the occasion of his seventy-fifth birthday

1. Introduction and statement of results. Recent works have illus-
trated that the Fourier coefficients of harmonic weak Maass forms of weight
1/2 contain a wealth of number-theoretic and combinatorial information.
After these works, it is known that many enigmatic q-series (the “mock
theta functions” of Ramanujan, and certain rank-generating functions from
the theory of partitions, for example) arise naturally as the “holomorphic
parts” of such forms. See, for example, Bringmann and Ono [5, 6], Bring-
mann, Ono, and Rhoades [7], Zwegers [19], Bringmann and Lovejoy [4],
Lovejoy and Osburn [12], or see the survey paper [13] for an overview. As
another striking example, Bruinier and Ono [9] show that the coefficients
of the holomorphic parts of weight 1/2 Maass forms determine the fields of
definition of certain Heegner divisors in the Jacobians of modular curves,
which in turn determine the vanishing or non-vanishing of derivatives of
modular L-functions.

Let p(n) denote the number of partitions of n, i.e. the number of ways to
express n as the sum of a non-increasing sequence of positive integers. The
rank of a partition is its largest part minus the number of its parts. Let 0 ≤
r < t be integers. We denote by N(r, t, n) the number of partitions of n with
rank r mod t. In 1944 Dyson [10] conjectured that the rank functions with
modulus 5 and 7 provided a combinatorial explanation for the Ramanujan
congruences with these moduli. Dyson’s conjectures were proved by Atkin
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and Swinnerton-Dyer [3] in 1954 using the theory of modular functions. In
particular, Atkin and Swinnerton-Dyer showed that for all n and all r we
have

N(r, 5, 5n+ 4)− 1
5
p(5n+ 4) = 0,(1.1)

N(r, 7, 7n+ 5)− 1
7
p(7n+ 5) = 0.(1.2)

Additionally, Atkin and Swinnerton-Dyer produced many identities for
rank generating functions with modulus 5 and 7 (this work was continued
by Atkin and Hussain [2] for modulus 11). These identities express such a
generating function as a function h(q) which is (up to cosmetic changes)
a modular form of weight 1/2 on some congruence subgroup Γ1(N), with
poles supported at the cusps.

Recent work of Bringmann, Ono, and Rhoades (see Theorem 1.1 of [7])
shows that many of the identities of Atkin and Swinnerton-Dyer represent
particular cases of infinite families of identities which express rank generat-
ing functions as weakly holomorphic modular forms. These results depend
on the equality of the non-holomorphic parts of different weak Maass forms.

In this paper we obtain further infinite families of generating functions
involving ranks and partition functions, each member of which is a weakly
holomorphic modular form of weight 1/2 on some congruence subgroup
Γ1(N). When t = 5, 7, and 11, many of the identities of [3] and [2] give
examples of these results (we stress that the present work does not iden-
tify the particular weakly holomorphic modular form involved, but only the
space in which it may be found). To obtain the results, we begin with a
family of weak Maass forms (obtained by Bringmann and Ono) whose holo-
morphic parts are generating functions involving ranks and partitions. We
compute the non-holomorphic parts of these forms explicitly, and the results
follow from linear relations among them.

Before stating the results, we give two typical examples of the identities
of [3]. Define

η(z) := q1/24
∞∏
n=1

(1− qn), q := e2πiz.

Let P (t) := {t}2 − {t}+ 1/6, and for integers r, t with 0 < r < t, define

ηr,t(z) := qt·P (r/t)/2
∏
n>0

n≡±r (mod t)

(1− qn).

The modular transformation properties of the ηr,t(z) are well-understood
(see, for example, Chapter VIII of the book [15] of Schoeneberg or the
paper [14] of Robins). The following identities are equivalent to (6.12) and
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(6.31) of [3], respectively:

(1.3)
∑

n≡4 (mod 5)

(
N

(
0, 5,

n+ 1
24

)
+2N

(
1, 5,

n+ 1
24

)
−3N

(
2, 5,

n+ 1
24

))
qn

=
η(600z)η10,25(24z)

(η5,25(24z))2
,

(1.4)
∑

n≡5 (mod 7)

(
N

(
1, 7,

n+ 1
24

)
+N

(
2, 7,

n+ 1
24

)
−2N

(
3, 7,

n+ 1
24

))
qn

=
η(1176z)η14,49(24z)
η7,49(24z)η21,49(24z)

.

Using the criteria of [14] we see that the right sides of (1.3) and (1.4)
are weakly holomorphic modular forms of weight 1/2 on Γ1(14400) and
Γ1(28224), respectively. The results below show that a similar phenomenon
holds for any odd t ≥ 3.

To state the results requires some notation. Suppose throughout that t
is an odd positive integer, and set

(1.5) t′ := gcd(t, 3).

Define

(1.6) `t :=
24t2

t′
, ˜̀

t :=
`t
24
, ft :=

2t
t′
.

By a weakly holomorphic modular form of weight k/2 ∈ 1
2Z on the congru-

ence subgroup Γ1(N) we mean a holomorphic function f : H → C which
transforms with the usual automorphy factor in weight k/2 (in the sense of
Shimura [16]) under Γ1(N). The poles (if any) of such a modular form are
supported at the cusps.

In the cases when t is a prime with
(

1−24n
t

)
= −1, the first result can be

found in [7].

Theorem 1.1.

(1) Let t ≥ 3 be odd and suppose that 0 ≤ r < t. Then∑
n6≡−(1±2r)2 (mod t)

(
N

(
r, t,

n+ 1
24

)
− 1
t
p

(
n+ 1

24

))
qn

is a weakly holomorphic modular form on Γ1(6f2
t `tt).

(2) If r = (t− 1)/2 or r = (t+ 1)/2 then∑
n6≡−4 (mod t)

(
N

(
r, t,

n+ 1
24

)
− 1
t
p

(
n+ 1

24

))
qn

is a weakly holomorphic modular form on Γ1(6f2
t `tt).
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As an immediate corollary to the first part of this theorem, we obtain
the following, which is essentially equivalent to Theorem 1.1 of [7] when t is
prime (via twisting, one can extract any particular arithmetic progression of
exponents from this sum while preserving modularity). This result explains
many of the identities of [3] and [2]; in particular, the identities 13–16, 23,
26–29, 32–37, and 42 from Section 6 of the first paper, and the identities
2–7, 9–11, 13–18, 20, 21, 23–29, 31, 34–37, 39–42, 45–48, 50, 52, 53, and 55
from Section 10 of the second.

Corollary 1.2. Let t ≥ 3 be odd and suppose that 0 ≤ r1, r2 < t. Then∑
n6≡−(1±2r1)2 (mod t)
n6≡−(1±2r2)2 (mod t)

(
N

(
r1, t,

n+ 1
24

)
−N

(
r2, t,

n+ 1
24

))
qn

is a weakly holomorphic modular form on Γ1(6f2
t `tt).

A similar statement can be made for the progressions r ≡ (t± 1)/2
(mod t). The next two results give other infinite families. Together with
Theorem 1.1, they can be used to explain (6.12), (6.18), (6.25), (6.31), and
(6.43) of [3] (and so in particular examples (1.3) and (1.4) above). Recall
that for all n, r, and t we have N(t− r, t, n) = N(r, t, n).

Theorem 1.3. Let t ≥ 5 be odd.

(a) If 0 < r < (t− 3)/2 then∑
n6≡−(1−2r)2 (mod t)
n6≡−(3+2r)2 (mod t)

(
N

(
r, t,

n+1
24

)
+N

(
r+1, t,

n+1
24

)
−2
t
p

(
n+1

24

))
qn

is a weakly holomorphic modular form on Γ1(6f2
t `tt).

(b) The generating function∑
n6≡−16 (mod t)

(
N

(
t−3

2
, t,

n+1
24

)
+N

(
t−1

2
, t,

n+1
24

)
− 2
t
p

(
n+1

24

))
qn

is a weakly holomorphic modular form on Γ1(6f2
t `tt).

Theorem 1.4. Let t ≥ 3 be odd. Then∑
n6≡−9 (mod t)

(
N

(
0, t,

n+ 1
24

)
+ 2N

(
1, t,

n+ 1
24

)
− 3
t
p

(
n+ 1

24

))
qn

is a weakly holomorphic modular form on Γ1(6f2
t `tt).

It is possible to combine the generating functions given by Theorems 1.1,
1.3, and 1.4 in various ways to obtain expressions (like those found in [3])
which do not involve p(n). We give one such example here.
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Corollary 1.5. Suppose that t ≥ 3 is odd and that 0 < r < t. Then∑
n 6≡−(1±2r)2 (mod t)

n6≡−9 (mod t)

(
N

(
0, t,

n+ 1
24

)
+2N

(
1, t,

n+ 1
24

)
−3N

(
r, t,

n+ 1
24

))
qn

is a weakly holomorphic modular form on Γ1(6f2
t `tt).

Note that the case t = 5, r = 2, n ≡ 4 (mod 5) gives the left side of (1.3)
above. The next result (whose proof in this context is quite simple) explains
the identities (1.1), (1.2) (in these cases, the weakly holomorphic modular
form in question is identically zero). It also explains identities (10.7), (10.18),
(10.29), (10.40), and (10.51) of [2].

Theorem 1.6. Suppose that t ≥ 5 is prime and that 0 ≤ r < t. Then
∞∑
n=1

(
N

(
r, t,

tn+ 1
24

)
− 1
t
p

(
tn+ 1

24

))
qn

is a weakly holomorphic modular form on Γ1(6f2
t `t).

We have one further result.

Theorem 1.7. Suppose that t ≥ 3 is odd , that m ≥ 5 is prime, and
that 0 ≤ r < t. Then∑

m-n

(
N

(
r, t,

mn+ 1
24

)
− 1
t
p

(
mn+ 1

24

))
qn

is a weakly holomorphic modular form on Γ1(6f2
t `tm

2).

Remark 1. We recall that the “mock theta conjectures” (see [1], [11],
for example) involve identities for rank generating functions similar to those
studied here. In the case of these conjectures, the non-holomorphic part of
the functions involved is non-trivial.

Remark 2. For any particular choice of parameters in these results, it
would be possible after some work to give an explicit bound on the pole
order of the corresponding weight 1/2 weakly holomorphic modular form.
Given this bound, one could provide a proof for any of the explicit identities
described here by checking that enough terms of the relevant q-expansions
agree (unless one is careful with the levels involved, the number of terms
which one is required to check to verify these identities can quickly become
impractical). One could also construct further explicit identities, although
the weakly holomorphic modular forms involved would become more and
more complicated to describe.

Remark 3. These results imply that the rank functions in question
satisfy many arithmetic properties. For example, the results of the second



272 S. Ahlgren and S. Treneer

author [17, 18] guarantee the existence of infinitely many linear congruences
for the coefficients of these functions.

2. Preliminaries. We recall the definition of a harmonic weak Maass
form of half-integral weight k (see Section 3 of [8] for details). If we write
z = x+ iy, the hyperbolic Laplacian of weight k is defined by

∆k := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
.

Following Shimura [16] we denote by G the group of pairs ξ = (γ, ϕ(z)),
where γ =

(
a
c
b
d

)
∈ GL+

2 (Q) and ϕ(z)2 = ±det(γ)−1/2(cz + d). For ξ ∈ G
and k ∈ Z, we define

f [ξ]k/2(z) := f(ξz)ϕ(z)−k.

Define εd by

εd :=
{

1 if d ≡ 1 (mod 4),
i if d ≡ 3 (mod 4).

For γ =
(
a
c
b
d

)
∈ Γ0(4), define j(γ, z) ∈ G by

j(γ, z) := ε−1
d

(
c

d

)
(cz + d)1/2,

and set γ̃ := (γ, j(γ, z)) ∈ G.
Suppose that Γ ⊆ Γ0(4) is a congruence subgroup and that k ∈ Z.

A harmonic weak Maass form of weight k/2 on Γ is a smooth function
f : H→ C with the following properties:

(1) f [γ̃]k/2(z) = f(z) for all γ ∈ Γ .
(2) ∆k/2f = 0.
(3) f(z) has at most linear exponential growth at the cusps.

For convenience, we will assume that the “shadow” of f (i.e. the modular
form yk/2 ∂f∂z ) vanishes at infinity (for us, the shadow will always be a cusp
form). Such f have a Fourier expansion of the form

(2.1) f(z) =
∞∑

n=n0

a(n)qn +
∞∑
n=1

b(n)Γ (−k + 1, 4πny)q−n,

where the a(n) and b(n) are complex numbers, and the incomplete Gamma
function is defined by

Γ (α, x) :=
∞�

x

e−ttα−1 dt.

We refer to the two sums in (2.1) as the holomorphic and non-holomorphic
parts of f , respectively. If N is a positive integer with N ≡ 0 (mod 4), then



Rank generating functions 273

we denote by M̃k/2(N) the C-vector space of such harmonic weak Maass
forms of weight k/2 on Γ1(N).

If l is a positive integer, then we define the operator U(l) as follows: if
f(z) is as given in (2.1), then

f(z) |U(l) :=
∑

a(ln)qn +
∞∑
n=1

b(ln)Γ (−k + 1, 4πny)q−n.

Lemma 2.1. Suppose that N is a positive integer with 4 |N and that l is
a positive integer. Define l0 :=

∏
p|l p (where the product is over primes p)

and let l1 be the conductor of Q(
√
l). Set N ′ := lcm(N, l0, l1). Then the

operator U(l) maps M̃k/2(N) to M̃k/2(N ′).

Proof. This follows in the same manner as Proposition 1.5 of [16], with
suitable modifications.

We next consider the effect of twisting by a Dirichlet character. If χ is a
Dirichlet character and f(z) is as given in (2.1), then we define the twist of
f by χ via the formula

f(z)⊗ χ :=
∞∑

n=n0

χ(n)a(n)qn +
∞∑
n=1

χ(−n)b(n)Γ (−k + 1, 4πny)q−n.

Lemma 2.2. Suppose that N is a positive integer with 4 |N , and that
f(z) ∈ M̃k/2(N). Suppose that χ is a Dirichlet character modulo r. Set
N ′ := lcm(Nr, r2). Then f ⊗ χ ∈ M̃k/2(N ′).

Proof. This follows by a standard argument.

3. Rank generating functions as Maass forms. The results rely on
linear relations among the non-holomorphic parts of certain Maass forms,
which are developed in this section. We begin with the following theorem of
Bringmann and Ono (recall the definitions from (1.6)).

Theorem 3.1 ([6, Theorem 1.3]). If 0 ≤ r < t are integers with t odd ,
then

∞∑
n=0

(
N(r, t, n)− 1

t
p(n)

)
q`tn−

è
t

is the holomorphic part of a weight 1/2 harmonic weak Maass form on
Γ1(6f2

t `t). Moreover , the non-holomorphic part of this weak Maass form is
given by

(3.1)
i`

1/2
t

t
√

3

∑
m (mod ft)

n≡6m+1 (mod 6ft)

A(r, t,m) · γ(t, y;n)q−è
tn2
,
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where

(3.2) A(r, t,m) := (−1)m
t−1∑
j=1

ζ−rjt sin
(
πj

t

)
sin
(
πj(6m+ 1)

t

)
and

γ(t, y;n) :=
|n|
n
· i√

2π ˜̀t · Γ
(

1
2
, 4π ˜̀tn2y

)
.

Define

(3.3) α :=
{

1/
√

3 if 3 | t,
1 if 3 - t.

Recalling (1.5), we see from Theorem 3.1 that

(3.4)
∞∑
n=0

(
N(r, t, n)− 1

t
p(n)

)
q(24t2n−t2)/t′

+ iα
√

8
∑

m (mod 2t/t′)
n≡6m+1 (mod 12t/t′)

A(r, t,m) · γ(t, y;n)q−t
2n2/t′

is a weight 1/2 harmonic weak Maass form on Γ1(6f2
t `t). Applying U(t2/t′)

to (3.4), we see that:

R(r, t; z) :=
∞∑
n=0

(
N

(
r, t,

n+ 1
24

)
− 1
t
p

(
n+ 1

24

))
qn(3.5)

+
∑
n∈Z

Ã(r, t, n) · γ(t, yt′/t2;n)q−n
2

is a weight 1/2 harmonic weak Maass form on Γ1(6f2
t `t), where

(3.6) Ã(r, t, n) = iα
√

8
∑

m (mod 2t/t′)
n≡6m+1 (mod 12t/t′)

A(r, t,m).

Proposition 3.2. Suppose that t ≥ 3 is odd , let Ã(r, t, n) be defined as
in (3.6), and let α be defined as in (3.3). Then the following are true:

(a) Ã(0, t, n) =
{
iα
√

2 (−1)(n−1)/6εt if n≡ ε (mod t) with ε∈ {±1},
0 otherwise.

(b) Ã
(
t− 1

2
, t, n

)
= Ã

(
t+ 1

2
, t, n

)

=


iα√

2
(−1)(n−1)/6εt

if n ≡ 2ε (mod t) with ε ∈ {±1},
0 otherwise.
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(c) If 0 ≤ r < t and r 6∈ {0, (t− 1)/2, (t+ 1)/2}, then

Ã(r, t, n) =


iα√

2
(−1)(n−1)/6εt

if n ≡ ε± 2r (mod t) with ε ∈ {±1},
0 otherwise.

Proof. Recall (3.6), and consider the case when 3 - t. Since n is fixed,
the double sum in (3.1) contains only one term A(r, t,m), where m ∈
{0, . . . , 2t − 1} is the unique integer satisfying m ≡ (n− 1)/6 (mod 2t).
For this m we have

(3.7) sin
(
πj(6m+ 1)

t

)
= sin

(
nπj

t

)
.

If 3 | t then (3.7) also holds. In either case m and (n− 1)/6 have the same
parity; it follows from (3.2) that

(3.8) Ã(r, t, n) = iα
√

8 (−1)(n−1)/6
t−1∑
j=1

ζ−rjt sin
(
πj

t

)
sin
(
nπj

t

)
.

Using sinx = (2i)−1(eix − e−ix) and setting ζt := e2πi/t, we conclude
from (3.8) that

Ã(r, t, n) = iα
√

8 (−1)(n−1)/6
t−1∑
j=1

ζ−rjt sin
(
πj

t

)
sin
(
nπj

t

)

= − iα√
2

(−1)(n−1)/6
t−1∑
j=1

ζ−rjt (eiπj/t − e−iπj/t)(eiπnj/t − e−iπnj/t)

= − iα√
2

(−1)(n−1)/6
( t−1∑
j=1

ζ
j
(

n+1−2r
2

)
t −

t−1∑
j=1

ζ
j
(

n−1−2r
2

)
t

−
t−1∑
j=1

ζ
j
(
−n+1−2r

2

)
t +

t−1∑
j=1

ζ
j
(
−n−1−2r

2

)
t

)
(note that each of ±n± 1− 2r is even). Using the fact that

t−1∑
j=1

ζ
j
(
±n±1−2r

2

)
t =

{
t− 1 if t | (±n± 1− 2r)/2,

−1 otherwise,

the result follows by considering the various possibilities for r and n mod t.

Proposition 3.3. Let t ≥ 5 be odd.

(a) Suppose that 0 < r < (t− 3)/2 and that n 6≡ ±(1 − 2r),±(3 + 2r)
(mod t). Then

Ã(r, t, n) = −Ã(r + 1, t, n).
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(b) Suppose that n 6≡ ±4 (mod t). Then

Ã

(
t− 3

2
, t, n

)
= −Ã

(
t− 1

2
, t, n

)
.

Proof. For part (a), suppose that 0 < r < (t− 3)/2 and that

(3.9) n 6≡ ±(1− 2r),±(3 + 2r) (mod t).

If n 6≡ ±1 ± 2r (mod t) and n 6≡ ±1 ± 2(r + 1) (mod t), then by Proposi-
tion 3.2(c) we have

Ã(r, t, n) = Ã(r + 1, t, n) = 0,

so the result holds.
Suppose then that one of n ≡ ±1 ± 2r (mod t) or n ≡ ±1 ± 2(r + 1)

(mod t) holds. By (3.9) we conclude that there exists ε ∈ {±1} such that
n ≡ ε(1 + 2r) (mod t); it follows that n ≡ −ε+ 2ε(r+ 1) (mod t). Therefore
Ã(r, t, n) = −Ã(r + 1, t, n) by Proposition 3.2(c).

For part (b), we assume that n 6≡ ±4 (mod t). If n 6≡ ±2 (mod t), then
by Proposition 3.2 we have

Ã

(
t− 3

2
, t, n

)
= Ã

(
t− 1

2
, t, n

)
= 0.

If n ≡ 2ε (mod t) with ε ∈ {±1}, then n ≡ −ε − 2ε((t− 3)/2) (mod t), so
the result follows from Proposition 3.2.

Proposition 3.4. Suppose that t ≥ 3 is odd and that n 6≡ ±3 (mod t).
Then

Ã(0, t, n) = −2Ã(1, t, n).

Proof. Assume that n 6≡ ±3 (mod t). If n 6≡ ±1 (mod t), then by parts
(a) and (c) of Proposition 3.2 we have

Ã(0, t, n) = Ã(1, t, n) = 0,

so the result holds. If n ≡ ε (mod t) with ε ∈ {±1} then the result also
follows from Proposition 3.2.

4. Cancellation of the non-holomorphic parts. We prove the re-
sults stated in Section 1.

Proof of Theorem 1.1. By (3.5) and Proposition 3.2 the non-holomorphic
part of R(r, t; z) is supported on terms with exponent −n2, where n ≡ ε±2r
(mod t) with ε ∈ {±1}. It follows from Lemma 2.2 that
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∑
n 6≡−(1±2r)2 (mod t)

(
N

(
r, t,

n+ 1
24

)
− 1
t
p

(
n+ 1

24

))
qn

= R(r, t; z)− 1
φ(t)

∑
χ (mod t)

χ(−(1 + 2r)2)R(r, t; z)⊗ χ

− 1
φ(t)

∑
χ (mod t)

χ(−(1− 2r)2)R(r, t; z)⊗ χ

is a weakly holomorphic modular form on Γ1(6f2
t `tt). The second assertion

follows in a similar way from Proposition 3.2 by removing the progression
n ≡ −4 (mod t).

Proof of Theorem 1.3. If 0 < r ≤ (t− 3)/2 then by (3.5) we have

(4.1) R(r, t; z) +R(r + 1, t; z)

=
∑
n≥0

(
N

(
r, t,

n+ 1
24

)
+N

(
r + 1, t,

n+ 1
24

)
− 2
t
p

(
n+ 1

24

))
qn

+
∑
n∈Z

(Ã(r, t, n) + Ã(r + 1, t, n)) · γ(t, yt′/t2;n)q−n
2
.

Suppose that r < (t− 3)/2. Via twisting, we remove the progressions n ≡
−(1−2r)2 (mod t) and n ≡ −(3+2r)2 (mod t) from (4.1). By Proposition 3.3,
the remaining non-holomorphic part in (4.1) vanishes, and we are left with
the weakly holomorphic modular form∑
n 6≡−(1−2r)2 (mod t)
n 6≡−(3+2r)2 (mod t)

(
N

(
r, t,

n+ 1
24

)
+N

(
r+ 1, t,

n+ 1
24

)
− 2
t
p

(
n+ 1

24

))
qn.

If r = (t− 3)/2 then we remove the progression n ≡ −16 (mod t). By part
(b) of Proposition 3.3, the remaining sum∑
n6≡−16 (mod t)

(
N

(
t− 3

2
, t,

n+ 1
24

)
+N

(
t− 1

2
, t,

n+ 1
24

)
− 2
t
p

(
n+ 1

24

))
qn

is a weakly holomorphic modular form.

Proof of Theorem 1.4. From (3.5) we see that

R(0, t; z) + 2R(1, t; z)

=
∑
n≥0

(
N

(
0, t,

n+ 1
24

)
+ 2N

(
1, t,

n+ 1
24

)
− 3
t
p

(
n+ 1

24

))
qn

+
∑
n∈Z

(Ã(0, t, n) + 2Ã(1, t, n)) · γ(t, yt′/t2;n)q−n
2
.
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Via twisting, we remove the progression n ≡ −9 (mod t) from this sum; by
Proposition 3.4, the remaining non-holomorphic part vanishes. Therefore∑

n6≡−9 (mod t)

(
N

(
0, t,

n+ 1
24

)
+ 2N

(
1, t,

n+ 1
24

)
− 3
t
p

(
n+ 1

24

))
qn

is a weakly holomorphic modular form.

Proof of Theorem 1.6. Suppose that t ≥ 5 is prime. Applying U(t) to
R(r, t; z), we obtain

R(r, t; z) |U(t) =
∞∑
n=0

(
N

(
r, t,

tn+ 1
24

)
− 1
t
p

(
tn+ 1

24

))
qn

+
∑
n∈Z

Ã(r, t, tn) · γ(t, yt′/t3; tn)q−tn
2
.

If 6m + 1 ≡ tn (mod 12t), then sin(πj(6m+ 1)/t) = 0. Using (3.2), we
conclude that A(r, t,m) = 0 for all such m; the result follows from (3.6).

Proof of Theorem 1.7. Suppose that m ≥ 5 is prime. Applying U(m) to
R(r, t; z), we obtain

R(r, t; z) |U(m) =
∞∑
n=0

(
N

(
r, t,

mn+ 1
24

)
− 1
t
p

(
mn+ 1

24

))
qn(4.2)

+
∑
n∈Z

Ã(r, t,mn) · γ(t, yt′/t2m;mn)q−mn
2
.

We have R(r, t; z) |U(m) ∈ M̃1/2(6f2
t `ttm). Theorem 1.7 follows by twisting

this form with the trivial character modulo m.
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