
Western Washington University
Western CEDAR

Mathematics College of Science and Engineering

1-2010

The Linus Sequence
Paul Balister
University of Memphis

Steven Kalikow
University of Memphis

Amites Sarkar
Western Washington University, amites.sarkar@wwu.edu

Follow this and additional works at: https://cedar.wwu.edu/math_facpubs

Part of the Mathematics Commons

This Article is brought to you for free and open access by the College of Science and Engineering at Western CEDAR. It has been accepted for inclusion
in Mathematics by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.

Recommended Citation
Balister, Paul; Kalikow, Steven; and Sarkar, Amites, "The Linus Sequence" (2010). Mathematics. 4.
https://cedar.wwu.edu/math_facpubs/4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Western Washington University

https://core.ac.uk/display/232702211?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://cedar.wwu.edu?utm_source=cedar.wwu.edu%2Fmath_facpubs%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://cedar.wwu.edu/math_facpubs?utm_source=cedar.wwu.edu%2Fmath_facpubs%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://cedar.wwu.edu/cse?utm_source=cedar.wwu.edu%2Fmath_facpubs%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://cedar.wwu.edu/math_facpubs?utm_source=cedar.wwu.edu%2Fmath_facpubs%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=cedar.wwu.edu%2Fmath_facpubs%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://cedar.wwu.edu/math_facpubs/4?utm_source=cedar.wwu.edu%2Fmath_facpubs%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:westerncedar@wwu.edu


The Linus sequence

Paul Balister∗† Steve Kalikow∗ Amites Sarkar∗†

June 1, 2008

Abstract

Define the Linus sequence Ln for n ≥ 1 as a 0-1 sequence with L1 = 0, and
Ln chosen so as to minimize the length of the longest immediately repeated block
Ln−2r+1 . . . Ln−r = Ln−r+1 . . . Ln. Define the Sally sequence Sn as the length r of the
longest repeated block that was avoided by the choice of Ln. We prove several results
about these sequences, such as exponential decay of the frequency of highly periodic
subwords of the Linus sequence, zero entropy of any stationary process obtained as a
limit of word frequencies in the Linus sequence, and infinite average value of the Sally
sequence. In addition we make a number of conjectures about both sequences.

1 Introduction

This paper is about a specific 0-1 sequence which we now know to have been described as
early as 1968, and is referred to as the Linus sequence [9]. The motivation for the study
of this sequence comes from ergodic theory, although no knowledge of ergodic theory is re-
quired in order to read this paper. Indeed, all the proofs we present are purely combinatorial
in nature. Nevertheless, the study of sequences is central to ergodic theory. There are too
many such studies to list them all but here are a few. Coven and Hedlund [3] looked at se-
quences from the standpoint of how many blocks are used at the nth stage of the sequence to
produce a block at the (n+1)th stage; Christol, Kamae, Mendès France and Rauzy [2] com-
pared sequences produced by automation with sequences produced by substitution; Jacobs
and Keane [6] looked at nearly periodic sequences from the standpoint of spectral theory;
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†The first and third authors thank the Institute for Mathematical Sciences, National University of Sin-
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Keane [7] generalized the Morse sequence; Queffélec [10] analyzed the role that the Rudin-
Shapiro sequence plays in the theory of Fourier series, and in [11] developed statistical tools
for a quantitative analysis of sequences (particularly substitutive sequences); Allouche and
Mendès France [1] did this analysis quantitatively, and Yarlagadda and Hershey [13] looked
at the Thue-Morse sequence from the standpoint of spectral theory.

All these studies are connected to ergodic theory because of the way in which sequences
give rise to stationary processes. The connection is that given a sequence of numbers you
can generally define a stationary process by assigning each finite word a probability given
by a limiting frequency of that word in the infinite sequence. In ergodic theory we are
particularly interested in zero entropy processes. These can be derived from sequences in
which, for sufficiently large n, when you see a string of length n in the sequence, it tends
to determine the next digit. If it actually did determine the next digit, the sequence would
turn out to be periodic, so it is of interest to obtain a sequence which is zero entropy and is
actually chosen to avoid periodicity. Of course many non-periodic zero entropy processes are
known, but the reason we think that this sequence will give rise to a particularly interesting
zero entropy process is that its definition is precisely chosen to avoid periodicity.

The definition of the Linus sequence Ln is that it is a 0-1 sequence which starts with L1 = 0,
and for n > 1, Ln is chosen so as to avoid a long repeated word. More precisely, define
the terminal repeat length of a sequence L1L2 . . . Ln as the largest r ≥ 0 such that the last
r digits Ln−r+1 . . . Ln are the same as the immediately preceding r digits Ln−2r+1 . . . Ln−r.
We define Ln for n > 1 so as to minimize the terminal repeat length of L1 . . . Ln. The Sally
sequence Sn is defined for n > 1 as the terminal repeat length that was avoided, so that
Ln−2Sn+1 . . . Ln−Sn 6= Ln−Sn+1 . . . Ln only because Ln 6= Ln−Sn . The first few terms of the
Linus and Sally sequences are as follows.

L = 0 1 0 0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 0 0 · · ·
S = · 1 1 2 1 3 1 1 3 2 1 6 3 2 1 3 1 1 6 3 2 4 1 1 3 2 1 3 1 6 4 2 1 2 4 3 1 8 3 2 1 6 3 2 1 3 1 1 6 3 · · · (1)

For example, L9 = 0 since a 1 would cause a terminal repeat length of S9 = 3 (repeated
block 011), while a 0 would cause a terminal repeat length of only 2 (repeated block 10).

This sequence is fantastically tantalizing because there are many symmetries in it which
elude proof, and because it appears to be approaching a process which ergodic theorists
have never studied before. Until this paper, essentially nothing was known about the Linus
sequence. Even despite this paper, there are many conjectures that are not only backed
by looking at the data but are quite understandable intuitively, yet elude proof. We feel
confident that the reader will be teased into spending time trying to prove them. For example
it is clear that the frequency of a word, the frequency of the reverse word and the frequency
of the word obtained by interchanging 0s and 1s are all the same. We can’t prove that. We
can’t even prove that the frequency of 1s is 1

2
, or that the frequency of any single word even

exists at all.
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The good news is that we have finally developed some techniques to analyze this sequence
and have several results. In the process we have solved a related combinatorial problem
which is of interest in its own right (see Section 7). The fact that this sequence leads us to
notice other interesting problems is testimony to the naturalness of the Linus sequence.

It should perhaps be noted that none of our results depend on the initial digits of the Linus
sequence. Indeed, one could specify, say, the first 100 digits arbitrarily, and then use the
algorithm described above to continue the sequence. All our results and conjectures apply
equally to these modified versions of the Linus sequence, although for simplicity we shall
only state them for the sequence as originally defined.

Finally, we note that a superficially similar sequence was defined by Ehrenfeucht and My-
cielski ([4] — see also [12] and [8]) in 1992. Their sequence is defined in a similar fashion,
except that they wish to avoid any repeated block, not just a terminating one. Specifically,
the first two digits are set to 0 and 1 respectively. For n ≥ 2, given that X1, X2, . . . , Xn

have been defined, we find the largest k such that the block of k digits Xn−k+1 . . . Xn has
already occurred, as a block, among the first n − 1 digits X1X2 . . . Xn−1. Let the penulti-
mate occurrence of this block be XjXj+1 . . . Xj+k−1, so that j + k − 1 < n. We then define
Xn+1 = 1−Xj+k. This and similar sequences turn out to be somewhat different in character
from the Linus sequence, for instance, they tend to contain many more long runs of zeros
and ones, and they are likely to have entropy one (although this is unknown at the time of
writing).

2 Notation

We record some notation that we will use repeatedly throughout. Given a (finite or infinite)
0-1 sequence X1X2 . . . , we call the individual terms Xn digits of the sequence. For a ≤ b
denote by X[a, b] the finite subsequence (or word) XaXa+1 . . . Xb. If X is a word, |X| will
denote the length of X and |X|0 and |X|1 will denote the number of 0s and 1s respectively

in X, so that |X| = |X|0+ |X|1. We will denote by
←−
X or X← the word obtained by reversing

the order of the digits in X, and by Xc the complement of X, i.e., the word obtained by
replacing each 0 by a 1 and each 1 by a 0. X∧ will denote the word obtained from X by
complementing just the last digit of X (see Figure 1).

The concatenation XY of the words X and Y is simply the word obtained by writing out
the digits of X followed by those of Y . If g ≥ 0 is an integer, we write Xg for the g-fold
concatenation of X with itself. The terminal repeat length

TR(X) = max{|Q| | X = PQQ for some (possibly empty) words P and Q}

is the length of the longest immediately repeated subword that occurs at the end of X. A
finite or infinite sequence X is said to be periodic with period p, or p-periodic if p < |X| and

3



X = 0000100
←−
X = 0010000 Xc = 1111011 X∧ = 0000101

|X| = 7 |X|0 = 6 |X|1 = 1 TR(X) = 1

Periods of X are 5 and 6. Minimal period = 5.

Figure 1: Examples of notation in the case X = 0000100.

Xi+p = Xi for all i such that Xi and Xi+p are both defined. Equivalently, X[1 + p,N ] =
X[1, N − p] where N = |X|. The minimal p for which X is p-periodic will be called the
minimal period of X (if it exists).

Using the above terminology, the Linus sequence can be defined by

L1 = 0 and for n > 1, Ln is chosen so that TR(L[1, n]) < TR(L[1, n]∧), (2)

while the Sally sequence is defined by

Sn = TR(L[1, n]∧). (3)

The following are easy consequences of these definitions.

Ln 6= Ln−Sn . (4)

Li = Li−Sn for n− Sn < i < n. (5)

If L[n− k + 1, n] = L[n− 2k + 1, n− k] then Sn > k. (6)

2Sn ≤ n. (7)

We sometimes call Sn the look-back time of the digit Ln, or say that Ln looks back to Ln−Sn .

For |X| ≤ |Y | < ∞, define the frequency f(X, Y ) of occurrences of X in Y by

f(X,Y ) = 1
|Y |−|X|+1

|{t | 1 ≤ t ≤ |Y | − |X|+ 1 and Y [t, t + |X| − 1] = X}|. (8)

If Y is infinite then we define the frequency of X in Y to be

f(X, Y ) = lim
M→∞

f(X,Y [1,M ]),

provided this limit exists.
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3 Results and conjectures

Given any infinite 0-1 sequence X, there is always a way (which is not in general unique)
to choose a subsequence of the sequence of words X[1,M ], M = 1, 2, . . . such that, in that
subsequence, the frequency of any finite word of 0s and 1s converges to a limit. If we take
that limiting frequency, for every finite word, and call it the probability of that word, then
we obtain a stationary process. The following theorem shows that no matter how you do
this with the Linus sequence, the limiting stationary process will have zero entropy.

Theorem 1. The Linus sequence “has zero entropy”, i.e., if for any finite word Y

HN(Y ) =
∑

X : |X|=N

−f(X, Y ) log2 f(X, Y )

is the entropy of the distribution on words of length N given by the frequency of times X
occurs as a subword of Y , then

lim sup
M→∞

HN(L[1,M ]) = o(N).

Having looked at 16,000,000 digits of the Linus sequence it is clear that in fact you don’t
have to pass to subsequences because the limiting frequency of every finite word seems to
exist. However we cannot prove that, so we will state it as a conjecture.

Conjecture 1. For any word X, the limiting frequency of occurrences of X in the Linus
sequence

f(X,L) = lim
M→∞

f(X, L[1,M ])

exists and is strictly positive.

We have no proof of the existence of the frequency for any non-empty word. Also, for
example, the word 00000 does not occur in L[1, 16000000], and one has to wait quite a while
even to see the word 0000 — the first occurrence is L[12842, 12845] = 0000. Nonetheless,
we conjecture that all words occur with positive frequency.

For single digits we do know that the lower limiting frequencies of 0s and 1s are both positive.

Theorem 2. The frequencies of 0s and 1s in L[1,M ] are bounded away from zero for all
sufficiently large M , i.e.,

lim inf
M→∞

f(0, L[1,M ]) > 0 and lim inf
M→∞

f(1, L[1,M ]) > 0.

Theorem 2 is in fact an immediate corollary of the following much more powerful result, since
if the frequency of 0s, say, is low then there must be many long stretches of 1s, contradicting
the next theorem with X = 1.
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Theorem 3. There is an absolute constant γ < 1 such that for any finite word X and any
g > 3,

lim sup
M→∞

f(Xg, L[1,M ]) ≤ γ(g−3)|X|.

Of course one would expect that the periodic word Xg is less likely than a typical word
of length g|X| and, since there are 2g|X| possible words of length g|X|, one would therefore
expect that f(Xg, L) ≤ 2−g|X|. However, our best bound on γ is significantly greater than 1

2
.

Regarding Theorem 2, for longer words we know even less, however each of the four 2-digit
combinations 00, 01, 10, 11 does occur infinitely often.

Theorem 4. In the Linus sequence there are infinitely many pairs of consecutive zeros and
infinitely many pairs of consecutive ones.

(That there are infinitely many 01s and 10s follows easily from Theorem 4.) Applying
Theorem 3 with X = 01 it is clear that in L[1, M ] the frequency of 00s and 11s combined is
bounded away from zero as M → ∞, but this does not imply that individually 00s or 11s
have positive frequency, or even that they occur at all.

Assuming Conjecture 1 holds, we make the following additional conjecture.

Conjecture 2. For any word X, the limiting frequencies of X, its reverse
←−
X , and its

complement Xc are all equal.

Here is a heuristic argument supporting Conjecture 2 for Xc. For large numbers N , any N
consecutive digits in the Linus Sequence tend to determine the (N + 1)st digit because long
repeats are rare. In exactly the same way, N consecutive digits of the complement of the
sequence will tend to force the (N + 1)st digit of the complement. Hence it is very common
to have long sequences which are exactly the complement of other long sequences.

Interestingly, many long “four-tuples” of the form (Y Y cY Y c)∧ occur in the Linus sequence.
Indeed, the entire word L[1, 11752] is of this form. So is the word L[37, 1176]. These also
tend to force the frequency of smaller words X and Xc to be the same.

Here is a heuristic argument supporting Conjecture 2 for
←−
X . In a certain sense the sequence

is reversible. This sequence is constructed for the purpose of avoiding big repeats, so after
a long word, the next digit will tend to avoid a big repeat. However for exactly the same
reason, because the word avoids big repeats, if you know a word, the previous digit will tend
to avoid big repeats. Hence the previous digit will be chosen in a similar way to the next
digit. Thus if a given word will tend to give rise to a 1 after it, its reverse will tend to give
rise to a 1 before it.

Interestingly, the data suggest the following conjecture.
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Conjecture 3. The limiting frequency of the word 11 in the Linus sequence is 1
5
.

We do not have any intuitive argument for this and would love to hear any reasonable
explanation as to why it is likely to be true.

We now consider the Sally sequence. Sequences on integers are a little more complicated
than 0-1 sequences because if some of them drift to infinity there may be no way to obtain
a stationary process out of them. Consider for example the sequence 1 2 1 3 1 4 1 5 . . . which
cannot give any limiting distribution on two letter words. However this problem can be
avoided if big numbers occur with small frequency, and in that case, just as in the case of
0-1 sequences, we can always obtain a stationary process by passing to a subsequence. On
looking at the first few terms of the Sally sequence, it appears that Sn tends to be small in
general. Our first result in this direction therefore seems somewhat discouraging.

Theorem 5.
1

n− 1

n∑
i=2

Si →∞ as n →∞.

However, all we need is that the frequency of terms that are greater than N tends to zero
as N →∞, and indeed we were able to prove this.

Theorem 6. There exists an absolute constant C such that for all N ,

lim sup
n→∞

1
n−1

|{i | 2 ≤ i ≤ n and Si ≥ N}| ≤ C
N

.

Hence limiting distributions exist, although by Theorem 5 any term of a limiting process
will have infinite expectation.

As for the Linus sequence, we conjecture that you don’t have to pass to subsequences.

Conjecture 4. For any finite sequence of integers X, the limiting frequency

f(X, S) = lim
M→∞

f(X, S[1,M ])

exists.

Unlike with the Linus sequence, we do not conjecture that the limiting frequency is always
strictly positive. Indeed it cannot be, since, for example, if 0 < |n−m| < Sn then Sm 6= Sn

(see Lemma 9).

Our next observation is that for n = 2, 4, 6, 12, 60, and 11752 we have Sn = n
2
, which means

that we have to examine the entire sequence L[1, n − 1] to determine Ln. We conjecture
that this happens infinitely often.
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Table 1: Large repeats of previous blocks, their reverses and/or complements

Identical Complement
L[31, 59] = L[1, 29] L[8, 15] = L[4, 11]c

L[109, 162] = L[1, 54] L[20, 29] = L[8, 17]c

L[211, 317] = L[103, 209] L[50, 101] = L[8, 59]c

L[589, 1139] = L[37, 587] L[313, 1139] = L[37, 863]c

L[1693, 2747] = L[37, 1091] L[1645, 2519] = L[265, 1139]c

L[5877, 11751] = L[1, 5875] L[2939, 11751] = L[1, 8813]c

Reverse Reverse complement
L[8, 12] = L[1, 5]← L[1, 8] = L[1, 8]c←

L[1, 18] = L[1, 18]← L[50, 60] = L[1, 11]c←

L[26, 48] = L[1, 23]← L[68, 90] = L[1, 23]c←

L[103, 126] = L[1, 24]← L[379, 413] = L[206, 240]c←

L[200, 239] = L[26, 65]← L[476, 515] = L[26, 65]c←

L[5712, 5764] = L[2909, 2961]← L[2909, 2961] = L[2774, 2826]c←

Conjecture 5. There are infinitely many n for which Sn = n
2
.

Finally, we give some numerical results about the first few digits in the Linus sequence.
We note that there are many long subwords that appear in different parts of the sequence,
possibly reversed and/or complemented. Table 1 gives a few examples. Table 2 gives a
compact description of the first 11751 digits of the Linus sequence by recursively defining
stretches of the sequence in terms of previously known subwords. This gives an efficient
method of computing L[1, 11751]. Note that there is some redundancy as certain stretches
are defined in more than one way.

To conclude, what we really want to have is a deep understanding of the limiting stationary
processes given by the Linus and Sally sequences, including ergodic properties of those
processes, but we are not even close to understanding these sequences well enough for that.

The rest of the paper is dedicated to giving the proofs of Theorems 1–6, except for Section 7
which deals with what appears at first sight to be an unrelated problem. We included
this section since the proof techniques used form part of the (rather technical) proof of
Theorem 3, but occur in a much simpler setting.

4 Infinite average look-back time (Theorem 5)

Proof of Theorem 5. Fix n and write A = {2, . . . , n}. We say that k ∈ A is a j-point if
2Sk ≥ j +2, and that k ∈ A is a j-covered point if k + j is a j-point, that is, if k + j ∈ A and
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Table 2: Compact description of L[1, 11751]

L[1, 1] = 0
L[2, 3] = L[1, 2]c

L[4, 7] = L[2, 5]c

L[8, 15] = L[4, 11]c

L[16, 19] = L[1, 4]
L[20, 29] = L[8, 17]c

L[30, 34] = L[15, 19]
L[31, 59] = L[1, 29]

L[50, 101] = L[8, 59]c

L[80, 108] = L[50, 78]
L[109, 162] = L[1, 54]
L[157, 210] = L[55, 108]
L[211, 317] = L[103, 209]
L[313, 1139] = L[37, 863]c

L[1093, 1643] = L[13, 563]
L[1640, 1697] = L[326, 383]

L[1693, 2747] = L[37, 1091]
L[2744, 2796] = L[104, 156]
L[2796, 2805] = L[1, 10]
L[2805, 2821] = L[2787, 2803]
L[2816, 2871] = L[157, 212]
L[2866, 2922] = L[433, 489]
L[2914, 2946] = L[2789, 2821]c

L[2939, 11751] = L[1, 8813]c

2Sk+j ≥ j + 2. We write Aj and A′
j for the set of j-points and j-covered points respectively,

and note that |A′
j| = |Aj|, since k ∈ Aj iff k − j ∈ A′

j. (By (7), k ∈ Aj implies k ≥ j + 2,
so k − j ∈ A.) The significance of A′

j is that if k ∈ A′
j then we have to “look back” strictly

further than k to determine Lk+j. We note the inequality

n∑
i=2

2Si =
n∑

i=2

n∑
j=1

1j≤2Si
=

n∑
j=1

n∑
i=2

1j≤2Si
≥

n∑
j=1

n∑
i=2

1j+2≤2Si
=

n∑
j=1

|Aj|. (9)

Now let h ∈ A and let k ≥ 1 be such that h + 2k+2 − 2 ∈ A. Define B = {h, h + 1, . . . , h +
2k+1 − 1}. We say that d ∈ B is good if there is some j such that k ≤ j < 2k+1 and d ∈ A′

j.

Claim: At least half of the points in B are good.

Proof. Suppose not. Then there are at least 2k+1 bad (i.e., not good) points in B. Associate
with each bad d the word L[d, d + k − 1]. There are at most 2k possible distinct values for
these words, so by the pigeonhole principle there exist d1 and d2 with d1 < d2 such that

d1 and d2 are both bad, (10)

d1 and d2 are both in B, (11)

and
L[d1, d1 + k − 1] = L[d2, d2 + k − 1]. (12)

For any j such that k ≤ j < 2k+1, (10) implies that neither d1 nor d2 are in A′
j, thus

2Sd1+j ≤ j + 1 and 2Sd2+j ≤ j + 1. But by (3) this implies that Sd1+j, and hence Ld1+j is
determined by L[d1, d1 + j − 1]. Similarly Ld2+j is determined by L[d2, d2 + j − 1]. Using
(12) and induction on j we obtain

L[d1, d1 + 2k+1 − 1] = L[d2, d2 + 2k+1 − 1]. (13)

9



Also, by (11),
d1 + 2k+1 − 1 ≥ d2. (14)

Now (13) and (14) imply that

L[d1, d2 + 2k+1 − 1] is periodic with period p = d2 − d1, (15)

where 1 ≤ p < 2k+1 (by (14)). Since for any k, 2k+1 ≥ 2k, there is a multiple tp of p with

k < tp ≤ 2k+1. (16)

Indeed, if p > k we can take t = 1, while if 1 ≤ p ≤ k then there exists a t with k < tp ≤ 2k.
Now by (15), L[d1, d2+tp−1] consists of t+1 repetitions of the block L[d1, d2−1]. We observe
that the choice of Ld2+tp−1 causes a repeat of length b t+1

2
cp ≥ tp

2
, so by (6), 2Sd2+tp−1 > tp.

Consequently, d2 ∈ A′
tp−1, which together with (16) contradicts the badness of d2. Thus the

Claim is proved.

Fix a k such that n ≥ 2k+3. Write I = 2k+1 and consider the sets of integers {2, 3, . . . , I +1},
{I +2, I +3, . . . , 2I +1}, . . . , {(a− 2)I +2, (a− 2)I +3, . . . , (a− 1)I +1}, where a = bn/Ic.
These intervals comprise more than half of {2, 3, . . . , n}. Indeed, they contain (a − 1)I =
(bn/Ic−1)I ≥ n−2I points, but n ≥ 4I, so n−2I > n−1

2
. Moreover each interval comprises

a valid choice for the set B, since if h ≤ (a− 2)I + 2 then h + 2k+2 − 2 ≤ aI ≤ n. Thus at
least half of the points in each interval are good. Hence there are at least n−1

4
good points

in A. Now if d ∈ A is good then d ∈ A′
j for some k ≤ j < 2k+1. Thus

2k+1−1∑

i=k

|Ai| =
2k+1−1∑

i=k

|A′
i| ≥ |{d ∈ A | d is good}| ≥ n− 1

4
.

Define g : N → N by g(1) = 1 and g(t + 1) = 2g(t)+1 for all t > 0. Fix an integer s > 0.
Then, for n satisfying n ≥ 4g(s + 1), we have by (9)

1

n− 1

n∑

k=1

Sk ≥ 1

2(n− 1)

n∑
i=1

|Ai| ≥ 1

2(n− 1)

s∑
t=1

g(t+1)−1∑

i=g(t)

|Ai| ≥ 1

2(n− 1)

s∑
t=1

n− 1

4
=

s

8
.

But we can make s arbitrarily large by choosing n sufficiently large. Hence 1
n−1

∑n
k=1 Sk →∞

as n →∞.

5 Double zeros and double ones (Theorem 4)

We shall prove that there are infinitely many ones, and indeed infinitely many pairs of
consecutive ones in the Linus sequence. The proof for zeros is exactly analogous.
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Define a gap to be a (possibly empty) block of zeros between two ones in the Linus sequence.
Let gi be the size of the ith gap, i.e., the number of zeros between the ith and (i + 1)st ones.
(Set gi = ∞ if there is no (i+1)st one.) For completeness, let g0 = 1 be the number of zeros
before the first one. From (1) one can see that the first few values of gi are

g0 = 1, g1 = 2, g2 = 0, g3 = 1, g4 = 2, g5 = 1, g6 = 0, g7 = 2, g8 = 3, . . .

Lemma 7. For all i ≥ 0, gi+1 ≤ 1 + max{g0, g1, . . . , gi}. In particular, there are an infinite
number of ones in the Linus sequence.

Proof. Let g = max{g0, g1, . . . , gi} and suppose for contradiction that gi+1 ≥ g + 2. Let
LT = 1 be the 1 immediately before the (i + 1)st gap. Then L[1, T + g + 2] = · · · 1(0)g+2

has a terminal repeat length of at least one, so the definition of the Linus sequence implies
that L[1, T + g + 2]∧ = · · · (0)g+11 has a terminal repeat length of r, where r ≥ 2. But
then LT+g+2−r = 1, so r ≥ g + 2 and hence (0)g+11 must occur earlier in the sequence,
contradicting the definition of g.

Proof of Theorem 4. Assume there are only finitely many consecutive pairs of ones. Thus
gi = 0 for only a finite number of i. Choose N so that all pairs of consecutive ones occur
before LN .

Case 1. Assume gi is unbounded.
Then there exists an M > N with LM = 1 and the block of g = gi consecutive zeros
occurring immediately after M is larger than any previous such block.

Subcase 1: gi+1 < g.

Then L[1, T ] = · · · 1(0)g1(0)gi+11 where T = M + g + gi+1 + 2. Since there are no pairs
of consecutive ones after time N , we must have both gi+1 > 0 and LT+1 = 0. But setting
LT+1 = 0 causes a repeat of the string (0)gi+1−110. Therefore had we set LT+1 = 1 we would
have had an even longer repeat. Since that repeated word ends in a pair of consecutive
ones, the entire word L[N, T ] is included in the repeated word. But that is impossible unless
the gap of size g immediately following M had also shown up before M , contradicting the
definition of M .

Subcase 2: gi+1 ≥ g.

L[1, M + 2g + 1] = · · · 1(0)g1(0)g has a terminal repeat of length at least g + 1 and hence
L[1, M +2g+1]∧ = · · · 1(0)g1(0)g−11 has an even longer repeat. Just as in Subcase 1, that is
impossible unless the string of size g immediately following M had also shown up before M ,
contradicting the definition of M .

Case 2. Assume gi is bounded.
Let g = lim inf gi. Then 1 ≤ g < ∞. Fix M > N so that all gaps of size strictly less than
g occur before time M . Consider a gap of size gi = g that occurs just before time T where
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T > 2M + g. Then gi+1 ≥ g, so L[1, T + g] = · · · 1(0)g1(0)g has a terminal repeat length
of at least g + 1. Hence L[1, T + g]∧ = · · · 1(0)g1(0)g−11 has a repeat of size r > g + 1.
This means that there is a gap of size g − 1 in the Linus sequence after time T − r. By (7),
r ≤ (T + g)/2, so T − r ≥ (T − g)/2 > M . Thus we have a gap of size less than g after
time M , contradicting the choice of M .

6 Zero Entropy (Theorem 1)

We shall use the following simple observations.

Lemma 8. Suppose X[a, b] = Y [a, b] is a subword of length n of a periodic sequence X of
minimal period p, and is also a subword of a periodic sequence Y of period p′. If n ≥ 2p
then p′ ≥ p.

Proof. Suppose p′ < p. Fix a t > 0 such that t + p′ ≤ |X|. Write t = kp + r where
a ≤ r < a+p and hence r+p′ < a+2p−1 ≤ b. Then Xt = Xr = Yr = Yr+p′ = Xr+p′ = Xt+p′ ,
so that X has period p′ < p, a contradiction.

We remark that this is not quite best possible — the Fine-Wilf Theorem [5] states that if
a word X has periods p and q and length |X| ≥ p + q − gcd(p, q), then it also has period
gcd(p, q), where gcd(p, q) denotes the greatest common factor of p and q.

Lemma 9. Suppose there is an m > n with m− Sm < n. Then Sn 6= Sm.

Proof. By (5), Ln = Ln−Sm , which contradicts (4) if Sn = Sm.

Lemma 10. Fix distinct integers m, n with m′ ≤ n′, where m′ = m−Sm and n′ = n−Sn.
Let p = |Sn − Sm| and suppose p < m− n′ − 1. Then L[n′ + 1,m− 1] is p-periodic.

Proof. Note that 0 < p < |L[n′ + 1,m − 1]|. Indeed, by assumption p < m − n′ − 1 =
|L[n′ + 1,m − 1]|, while if p = 0 then Sn = Sm, m ≤ n (so m < n), and 0 < m − n′ − 1
(so n′ < m). But then Sn = Sm and n − Sn = n′ < m < n, contradicting Lemma 9. Fix
x with n′ < x < m − p. Suppose first that Sm > Sn. Then n′ < x < m − Sm + Sn =
m′ + Sn ≤ n′ + Sn = n and m′ ≤ n′ < x + p < m. Thus Lx = Lx−Sn = Lx+p−Sm = Lx+p, so
L[n′ + 1, m− 1] is p-periodic. Now suppose Sm < Sn. Then n−m = (n′ −m′) + p > 0, so
n > m. Hence m′ < x < m and n′ < x + p < m < n, so Lx = Lx−Sm = Lx+p−Sn = Lx+p.
Since Lx = Lx+p for all x with n′ < x < m− p, L[n′ + 1,m− 1] is p-periodic.

Proof of Theorem 1. Fix constants N and P with N À P À 1. Declare each digit Ln to be
one of the following types.
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Figure 2: Proof of Theorem 1

(A) Ln has short look-back time: Sn < 3P .

(B) Ln is not of Type (A) and follows a periodic segment with short period: the word
L[n− 3P + 1, n− 1] is periodic with period strictly less than P .

(C) Ln is not of Type (A) or (B) and the word L[n − Sn + 1, n] is periodic with period
strictly less than 1

5
Sn.

(D) Ln is not of Type (A), (B), or (C).

Note that for Type (B), Ln is not part of the periodic word, whereas for Type (C) it is.

We will begin by bounding the number of Type (C) and (D) digits. Then we will show that
if most of the digits are of Type (A) or (B), we can predict most of a word of length N À P
on the basis of its first 6P digits. This will imply that L has zero entropy.

Claim 1: If there exists m > n with Sm < 6
5
Sn and m′ ≤ n′ where n′ = n − Sn and

m′ = m− Sm, then Ln is not of Type (D).

Proof. Suppose that there is such a pair (m,n). Set p = Sm−Sn. Note that 0 < p < 1
5
Sn <

n−n′ ≤ m−n′−1 (see Figure 2), so by Lemma 10, L[n′+1,m−1] is periodic with period p.
Thus, if Ln is not of Type (A) or (B), then it is of Type (C) with minimal period at most p.
This proves Claim 1.

Claim 2: It is impossible to exhibit distinct s and t with s, t > n, max{Sn, Ss, St} <
6
5
min{Sn, Ss, St}, and s′, t′ ∈ (n′, n′ + 1

2
Sn], where s′ = s− Ss, t′ = t− St and n′ = n− Sn.

Proof. Suppose that (s, t, n) were such a triple. If Ss = St then |s−t| = |s′−t′| < 1
2
Sn ≤ 3

5
Ss,

contradicting Lemma 9, so we may assume without loss of generality that p = St − Ss > 0.
Note that p < 1

5
Ss < 1

3
Sn so that n− p > n− 1

3
Sn > n′ + 1

2
Sn and hence both n and n− p

lie strictly between s′ and s and strictly between t′ and t. Thus by (5),

Ln = Ln−St = Ln−St+Ss = Ln−p. (17)

Also, if we set s′′ = s′−Ss and t′′ = t′−St, then s′′, t′′ < n′+ 1
2
Sn− 5

6
Sn = n′− 1

3
Sn < n′−p.

But n′ < s′, t′, so both n′ and n′ − p lie before s′ and t′ but after s′′ and t′′. Hence

Ln′ = Ln′+Ss = Ln′+Ss−St = Ln′−p, (18)
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But by (5), Ln−p = Ln′−p, so by (17) and (18),

Ln = Ln−p = Ln′−p = Ln′ , (19)

which is a contradiction since we know by (4) that Ln 6= Ln′ . Hence no such triple (s, t, n)
exists, proving Claim 2.

Now fix K ∈ R, K ≥ 3P , and consider the number of Type (D) digits Ln with K ≤ Sn < 6
5
K.

By Claim 2, if three of these look-back within 1
2
K of each other, say Ln, Ls, and Lt with

n < s < t, then either s′ ≤ n′ or t′ ≤ n′. But then by Claim 1, Ln would not be of
Type (D), a contradiction. Thus in any initial sequence L[1,M ], there can be at most two
such Type (D) digits that look back to any fixed (real) interval of length 1

2
K, and hence at

most 2d(M−K)/1
2
Ke ≤ 4M/K such digits in total. (The (M−K) is because the look-back

points n′ cannot be within K of the beginning of the sequence.)

Now let Ki = (6
5
)i3P . Applying this argument with each Ki in turn gives that the total

number D(M, P ) of Type (D) digits in L[1,M ] is bounded above by

D(M,P ) ≤
∞∑
i=0

4M

Ki

=
4M

3P

∞∑
i=0

(
5

6

)i

=
8M

P
, (20)

since all such digits look-back at least 3P , and so satisfy Ki ≤ Sn < 6
5
Ki for some i.

Now we bound the number of Type (C) digits. Assume Ln is of Type (C). In the following,
the period of Ln will mean the minimal period of L[n− Sn + 1, n].

Claim 3: For any p and t, there are at most two Type (C) digits in L[t, t + p − 1] whose
periods pi satisfy p ≤ pi < 2p.

Proof: Suppose Ln is of Type (C). Since Ln is not of Type (A), Sn ≥ 3P . Since Ln

is not of Type (B), the period p of Ln satisfies P ≤ p < 1
5
Sn. Suppose some digit Lm in

L[n−p+1, n−1] is also of Type (C). Now m−4p > n−5p > n−Sn = n′, so L[m−4p+1,m]
is a repetition of a word of size 2p. (Indeed, it is a four-fold repetition of a word of length p.)
Hence by (6), Sm > 2p. But then Lemma 8 implies that the period p̃ of Lm must be at
least p, since L[m−Sm +1,m] contains a subword L[m− 2p+1,m] of length 2p that is also
a subword of a word X = L[n− Sn + 1, n] that has minimal period p.

Case 1. Suppose p̃ = p. Recall that m ∈ (n− p, n) and Sn, Sm > 5p. Firstly, by Lemma 9,
Sm 6= Sn. Now m′ = m − Sm cannot lie in [n′ − p, n′) since by Lemma 10 this would
result in L[n′ + 1,m− 1] being periodic with period |Sm − Sn| < p, contradicting Lemma 8.
Also, m′ cannot be less than n′ − p since this would imply that Ln = Ln−p = Ln′−p = Ln′ ,
contradicting (4). Finally, m′ cannot be more than n′+p as this would imply Lm = Lm−p =
Lm′−p = Lm′ , again contradicting (4). Thus m′ ∈ [n′, n′ + p] and so Sm ∈ (Sn − 2p, Sn).
Suppose now that we have another Ls of Type (C) and periodicity p with s ∈ (n − p, n).
Then Sn, Sm, Ss ∈ (Sn − 2p, Sn], so at least one of |Sn − Sm|, |Sn − Ss| and |Sm − Ss| (all of
which are non-zero by Lemma 9) is less than p. However, by Lemma 10, this would imply a
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periodicity of less than p in (n′ + p, n− p], contradicting Lemma 8. Thus there are at most
two Type (C) digits of period p in L[n− p + 1, n].

Case 2. Suppose p̃ > p. In this case L[m− Sm + 1,m] is not a subword of L[n− Sn + 1, n],
and hence Lm looks back before Ln′ . Applying Lemma 8 to X = L[m − Sm + 1, m] and
Y = L[n− Sn + 1, n] we deduce that 2p̃ > m− n′ > Sn − p > 4p, and so p̃ > 2p.

Now suppose that for some p and t, there are three Type (C) digits at locations n1 < n2 < n3

in L[t, t + p− 1] whose periods pi satisfy p ≤ pi < 2p. Applying the above argument to Ln3 ,
we get an immediate contradiction, completing the proof of Claim 3.

It follows from Claim 3 that there are at most 2d(M − 5p)/pe ≤ 2M/p digits whose periods
pi satisfy p ≤ pi < 2p in any initial segment L[1, M ] of the Linus sequence. (The (M − 5p)
is because no such digit can occur in the first 5p digits of L[1,M ].) Any Type (C) digit has
period at least P since otherwise it would be of Type (B). We classify the Type (C) digits by
placing those whose period lies in [2jP, 2j+1P ) into class Cj, j = 0, 1, 2, . . . . For each j there
are at most 2M/(2jP ) digits of L[1,M ] in class Cj. Therefore the total number C(M, P ) of
Type (C) digits in L[1,M ] is bounded above by

C(M, P ) ≤
∞∑

j=0

2M

2jP
=

4M

P
. (21)

Now fix N À P . We wish to estimate the number of words of length N with a limited
number of Type (C) or (D) digits. If one specifies the first 6P digits, then one can predict
the word by assuming all digits have short look-back times, or are highly periodic. To
be more precise, if L[n − 3P + 1, n − 1] is periodic with any period strictly less than P ,
then assume Ln is given by extending this periodic subsequence. Note that this is well-
defined by Lemma 8. Otherwise predict Ln on the basis of the previous 6P digits, assuming
Sn < 3P . To determine a word uniquely it is enough to fix the points where this rule
gives an incorrect digit. This can occur at digits of Type (C) or (D), or at digits where
extrapolating a periodic sequence gives the incorrect digit, since if the periodic rule is not
applied then the digit cannot be of Type (B) and will be correctly predicted if of Type (A).
However, if extrapolating a periodic sequence gives an incorrect digit then this rule will not
be applied for the next P digits. This is because for the next P steps, the previous 3P digits
will contain a block of length 2P which is periodic with period strictly less than P except
for the last digit. But by Lemma 8 it cannot then be fully periodic with any period strictly
less than P . Indeed, if X has period p and X∧ has period p̃ with p, p̃ ≤ 1

2
(|X| − 1) then by

Lemma 8, p̃ = p, contradicting the fact that the last digits of X and X∧ are distinct. Thus
the number t of errors in any block of length N is at most the number of Type (C) and (D)
digits in that block plus dN−6P

P
e ≤ N

P
− 2. (We keep the −2 to absorb some nuisance terms

below.)

Now assume M À N . There are M −N + 1 subwords of length N in L[1,M ] which we can
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group into N sets

Si = {L[i + Nj + 1, i + Nj + N ] | j = 0, 1, . . . , bM−N−i
N

c},
for i = 0, . . . , N − 1, each Si consisting of disjoint subwords. The total number of errors in
all the words in each Si is then bounded by the number of Type (C) and Type (D) digits
in L[1,M ], plus N

P
− 2 for each word. Thus by (20) and (21) the total number of errors in

all the subwords of L[1,M ] is at most N(8M
P

+ 4M
P

) = 12NM
P

plus N
P
− 2 for each word. The

average number of errors per word is then at most

1
M−N+1

12NM
P

+
(

N
P
− 2

)
= 13N

P
− 2 + 12N(N−1)

P (M−N+1)

which is at most 13N
P
−1 for sufficiently large M . The number Nt of possible words of length

N with t errors is at most Nt ≤ 26P
(

N−6P
t

) ≤ 26P N t since one need only specify the first 6P
digits and the locations of the t errors. Let pt be the proportion of words in L[1,M ] with
t errors. By concavity of the function −x log x, the entropy is maximized by assuming all
possible words X with t errors are equally likely, so

HN(L[1,M ]) ≤
∑

t

−Nt
pt

Nt
log2

pt

Nt

=
∑

t

pt(log2 Nt − log2 pt)

≤
∑

t

pt(6P + t log2 N − log2 pt). (22)

But there are at most N possible values for t, so once again by concavity of −x log x,
∑

t

−pt log2 pt ≤ N(− 1
N

log2
1
N

) = log2 N.

Finally,
∑

t pt = 1 and
∑

t tpt ≤ 13N
P
− 1. Thus for all sufficiently large M , (22) gives

HN(L[1,M ]) ≤ 6P +
(

13N
P
− 1

)
log2 N + log2 N = 6P + 13N

P
log2 N.

Setting P = d√N log2 Ne, we obtain

lim sup
M→∞

HN(L[1,M ]) ≤ 19d
√

N log2 Ne

which is o(N) as required.

7 Justified sequences

The following problem is interesting in its own right. The proof however is a substantially
simplified version of the proof we have of Theorem 3, which is required in the proofs of
Theorems 2 and 6.
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Figure 3: A justified sequence and its graph.

Let N ≥ 1 and let X = X[1, N ] be a word of length N consisting of the letters + and −. (For
this section only we shall use + and − rather than 0 and 1 to distinguish our words from the
subwords of the Linus sequence.) We say that X is justified , if |X| > 0 and for every t with
Xt = −, there exists an r ≥ 1 such that Xt−2r = + and X[t− 2r, t− r− 1] = X[t− r, t− 1],
i.e., each − is immediately preceded by a repeated block beginning with a +. For instance,
the sequence ++−++−+−− is justified but ++−− is not (see Figure 3). Given a justified
sequence X, write X+ = {t | Xt = +} and X− = {t | Xt = −}.
Theorem 11. If X is justified then

|X+| ≥ |X−|+ 1.

In other words, any justified sequence must contain strictly more +s than −s.

Proof. Given X as above, we construct a graph G on vertex set V (G) = X+ as follows. For
every t ∈ X−, we select an r = rt such that Xt−2r = + and X[t−2r, t−r−1] = X[t−r, t−1].
There may of course be more than one such r, in which case we fix one particular choice
arbitrarily. For any such t ∈ X−, write t′′ = t − 2r and t′ = t − r so that t′′, t′ ∈ X+

and (t′′, t′, t) forms an arithmetic progression. Now join t′′ and t′ by an edge in G, so
that E(G) = {t′′t′ | t ∈ X−}. In this way, G has exactly |X+| vertices (some of which
may be isolated) and exactly |X−| edges (see Figure 3). Suppose for a contradiction that
|X−| ≥ |X+|. Since any acyclic graph must have strictly more vertices than edges, it follows
that G must contain a cycle, C say. Let

t0 = max{t ∈ X− | t′′t′ ∈ E(C)}.

If we remove the edge t′′0t
′
0 from C then the remaining edges constitute a path from t′′0 to t′0.

The intervals [t′′, t′] corresponding to the edges t′′t′ 6= t′′0t
′
0 of C cover the interval [t′′0, t

′
0], since

if z ∈ (t′′0, t
′
0) then the path from t′′0 to t′0 must jump over z at some point, and so there must

be an edge t′′t′ 6= t′′0t
′
0 of C such that z ∈ [t′′, t′]. Let Em ⊆ E(C) \ {t′′0t′0} be a set of edges

whose corresponding intervals form a minimal cover of [t′′0, t
′
0]. Write Em = {e1, e2, . . . , es},

where the ei = t′′i t
′
i are ordered so that t′′1 < t′′2 < · · · < t′′s (these inequalities are all strict by

minimality of Em). Note that it is possible that t′i = t′′i+1 for any 1 ≤ i ≤ s − 1; indeed all
we know is that

t′′1 ≤ t′′0 < t′′2 ≤ t′1 < t′′3 ≤ t′2 < · · · ≤ t′s−2 < t′′s ≤ t′s−1 < t′0 ≤ t′s < t0
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Figure 4: Cover of t′′0t
′
0 and function T .

(see Figure 4). Let I = [t′′1, t0 − 1] and define a map T : I → I by

T (z) =





z + (t′1 − t′′1), if t′′1 ≤ z < t′1;

z + (t′i − t′′i ), if t′i−1 ≤ z < t′i, i = 2, . . . , s;

z − (t0 − t′0), if t′s ≤ z < t0.

Note that the image of T lies in the interval [t′′0, max{t1, t2, . . . , ts}− 1] ⊆ [t′′1, t0− 2] and for
all z ∈ I,

XT (z) = Xz. (23)

Since I is finite, we must have T p(z) = z for some z ∈ I. Moreover, as t0 − 1 does not lie
in the image of T , we must have z < t0 − 1. From these observations it follows that there
is a pair of consecutive integers z, z + 1 ∈ I such that T p(z) = z but T p(z + 1) 6= z + 1.
Thus there must be an i ≥ 0 such that T i(z + 1) = T i(z) + 1 but T i+1(z + 1) 6= T i+1(z) + 1.
Replacing z with T i(z) we may assume without loss of generality that T (z + 1) 6= T (z) + 1.
From the definition of T it is clear then that z + 1 = t′j for some j, 1 ≤ j ≤ s, and hence
that

Xz+1 = Xt′j = + (24)

while
XT (z)+1 = Xtj = −. (25)

Writing z′ = T (z) we see that T i(z′ + 1) = T i(z′) + 1 for all i. Otherwise there would
be an i ≥ 0 such that T i(z′ + 1) = T i(z′) + 1 but T i+1(z′ + 1) 6= T i+1(z′) + 1. But then
by the above argument, XT i(z′+1) = +, so that by (23), Xz′+1 = +, contradicting (25).
Now letting i = p − 1 we have T i(z′ + 1) = T i(z′) + 1 = T p(z) + 1 = z + 1 and so (23)
and (25) imply Xz+1 = Xz′+1 = −, contradicting (24). Thus G contains no cycles and so
|X+| ≥ |X−|+ 1.

8 Periodic Subwords (Theorem 3)

Recall that a word X = X[1, N ] is said to be p-periodic if p < N and X[1, N − p] =
X[1 + p, N ]. We call X completely periodic if it is p-periodic for some p | N , p < N .
Equivalently, X = P g for some word P and integer g ≥ 2.
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Overlapping
01001

0 1 0 0 1
0 1 0 0 1

01001
0 1 0 0 1

Non-Overlapping
00101

0 0 1 0 1
0 0 1 0 1

0 0 1 0 1
0 0 1 0 1

Non-Overlapping
00101

0 0 1 1
0 0 1 1

0 0 1 1

Figure 5: The word X = 01001 overlaps itself, but the cyclic rearrangement Y = 00101
does not. Moreover, Y [1, 4]∧ = 0011 does not overlap Y (and neither does Y [1, 1]∧ = 1 or
Y [1, 2]∧ = 01), so Y is admissible.

Let X = X[1, N ] and Y = Y [1, M ] be finite words. We say that X overlaps Y if there is
a non-empty word Z such that X = PZ and Y = ZQ for some (possibly empty) words P
and Q. In other words X[N − r + 1, N ] = Y [1, r] for some r with 0 < r ≤ min{N, M}. The
order here is important — it is possible that X overlaps Y without Y overlapping X. Note
that X overlaps X iff X is p-periodic for some p < |X|.
The kth (left) cyclic rearrangement of X = X[1, N ] is the word X(k) = X[1 + k,N ]X[1, k].
A word Y is a cyclic rearrangement of X if it is the kth cyclic rearrangement for some k,
0 ≤ k < N . It is clear that any cyclic rearrangement of a completely periodic word is still
completely periodic.

Call a word X = X[1, N ] admissible if X does not overlap X and X[1, r]∧ does not overlap X
for all r with 1 ≤ r ≤ N and Xr = 0. As an example, 00101 is admissible (see Figure 5).

Lemma 12. Any word X that is not completely periodic has an admissible cyclic rearrange-
ment.

Proof. Define the lexicographic ordering on 0-1 words of length N by declaring P < Q iff
there exists an r, 1 ≤ r ≤ N such that P [1, r − 1] = Q[1, r − 1] and Pr = 0, Qr = 1.
Equivalently, we can interpret P and Q as binary numbers, NP =

∑N
i=1 Pi2

N−i and NQ =∑N
i=1 Qi2

N−i, so that P < Q iff NP < NQ. In particular, < is a total order on the set of all
0-1 words of length N .

Let Y be a lexicographically minimal cyclic rearrangement of X, and suppose Y overlaps
itself, so that Y is periodic. Let p < |Y | be the minimal period of Y . Since X, and
hence Y , is not completely periodic, there exist non-empty words P and Q with Y =
(PQ)kP = PQ . . . PQP for some k ≥ 1 and |P | + |Q| = p. Comparing Y with the cyclic
rearrangement Y (N−p) = QP (PQ)k−1P we see that QP ≥ PQ. Comparing Y with the
cyclic rearrangement Y (p) = (PQ)k−1PPQ we see that PQ ≥ QP . Thus PQ = QP . But
then Y = PQPQP . . . QP = PPQPQ . . . PQ is |P |-periodic, contradicting the minimality
of p. Thus Y does not overlap itself.

Now suppose Y [1, r]∧ overlaps Y and Yr = 0. Then Y [1 + k, r]∧ = Y [1, r − k] for some k
with 0 ≤ k < r. But then the cyclic rearrangement Y (k) = Y [1 + k, N ]Y [1, k] is strictly less
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Q1 P1 Q2 P2 Q3

Sequence | 1 1 1 | 0 0 0 1 1 0 0 0 1 1 | 0 | 0 0 0 1 1 0 0 0 1 1 | 0 1 0 |
Order of zero – – – – – – – – 3 4 5 – – 6 7 8 – – – 3 4 5 – – 6 – –
Extended blocks |←− Λ1=13, `1=9 |←−−→| Λ2=11, `2=7 −→|

Figure 6: The order of a block or zero digit. In this example P = 00011, Λ = |P | = 5, ` = 3.

than Y , since Y [1, r − k − 1] = Y (k)[1, r − k − 1] and Yr−k = 1 while Y
(k)
r−k = 0. But this

contradicts the choice of Y .

Fix an admissible word P , |P | = N > 0. Assume P contains at least as many zeros as
ones, so |P |0 ≥ |P |1. Since P does not overlap itself, one can decompose L[1,M ] uniquely
in the form Q0P0Q1P1 . . . Qn where Pi = P gi for some gi > 0 and no Qi contains a copy
of P as a subword. Indeed, all copies of P in L[1,M ] are disjoint from one another, and
each lies entirely in some Pi. Define the extended length Λi of Pi to be the maximum t such
that L[x, x + t − 1] is N -periodic, where Lx is the first digit of Pi. In other words, Λi is
the maximum t such that (PiQi+1Pi+1 . . . )[1, t] = P gi+1[1, t]. Note that L[x, x + Λi− 1] may
extend not only into Qi+1, but also into Pi+1, however we always have |Pi| ≤ Λi < |Pi|+ |P |
since the extension cannot include a complete copy of P .

Now fix a length limit Λ ≥ |P | and absorb any Pi with Λi < Λ into the surrounding blocks
Qi and Qi+1. We have proved the following.

Lemma 13. Given an admissible word P and Λ ≥ |P |, L[1,M ] can be decomposed uniquely
as X = Q0P0Q1P1 . . . Qn where each Pi = P gi has extended length Λi ≥ Λ, gi = b Λi

|P |c > 0,

none of the Qi contain P dΛ/|P |e[1, Λ] as a subword, or P as an initial subword, and |Qi| > 0
for all i with 0 < i < n.

Note that Q0 or Qn may be empty.

Define xi and yi so that Qi = L[xi, yi − 1] and Pi = L[yi, xi+1 − 1]. Define a potentially
good zero associated to Pi to be any zero digit Lm with yi + Λ ≤ m < yi + Λi, i.e., any zero
digit that lies in the extended block associated with Pi, but does not lie within the first Λ
digits of this extended block. Since Λi < |Pi| + |P | and Λ ≥ |P |, any potentially good zero
is associated with a unique Pi, although it may actually lie in Qi+1 or even Pi+1.

Define the order `i of Pi to be the number of zeros in the extended block L[yi, yi + Λi − 1],
the order limit ` to be the number of zeros in P dΛ/|P |e[1, Λ], and the order of each of the
potentially good zeros associated to Pi to be the number of preceding zeros in L[yi, yi+Λi−1]
(see Figure 6). Note that, given P , ` and `i are simply functions of Λ and Λi respectively.
Also, the order of any potentially good zero associated to Pi lies in the interval [`, `i), and
the number of potentially good zeros associated with Pi is `i − `.
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P1 Q2 P2 Q3 P3 Q4 P4

· · · 00101 111 00101 00101 0011 00101 111 00101 00101 00101 · · ·
`1 ≥ `3 `2 = 8 `3 =3 `4 > `2

Figure 7: Good zero (underlined) associated to P4 looks back to a one (underlined) in Q3.
Here P = 00101, Λ = |P | = 5, t = 4, t′ = 2, and r = 2.

We call a potentially good zero associated to Pi a good zero if it looks back before Qi. In
other words a potentially good zero Lm is a good zero iff m− Sm < xi.

Lemma 14. Any good zero of order k associated to Pt looks back to a digit of some Qt′+1,
t′ = t− r, r ≥ 2. Also `t′−r+1 ≥ `t′+1, `t′−r+j = `t′+j for all j, 1 < j < r, and `t′ = k < `t.
Moreover, no two good zeros associated to the same Pt can look back to the same Qt′+1.

Proof. If Lx is a good zero associated to Pt and x looks back to x′ = x − Sx, then x′ < yt,
so L[y′t, x

′] = L[yt, x]∧ where y′t = yt − Sx. But L[y′t, x
′] must then look like P qR where

R = P [1, s]∧, 1 ≤ s ≤ N , and |P qR| > Λ. Hence L[y′t, x
′ − 1] must be part of an extended

block of some Pt′ . But P is admissible, so R does not overlap P . Thus the copy of R
in L[y′y, x

′] cannot extend into Pt′+1 and must therefore end inside of Qt′+1. Since Lx is
good, t′ + 1 < t. Also, the copy of P q in L[y′t, x

′] must be a terminal segment of Pt′ .
Thus x′ = xt′+1 + s − 1, |Qt′+1| ≥ s, and Qt′+1[1, s] = P [1, s]∧. Moreover, since the block
L[yt′+1, yt − 1] = Pt′+1 . . . Qt is repeated immediately before y′t, the sequence must look like

· · · (Pt′+1 · · ·Qt)P
qQt′+1(Pt′+1 · · ·Qt)Pt · · · .

Thus Pt′+1 is a terminal subword of Pt′−r+1; Qt′−r+j = Qt′+j and Pt′−r+j = Pt′+j for all j,
1 < j < r; and Qt′ = Qt, Pt′ = P q. Thus `t′−r+1 ≥ `t′+1, `t′−r+j = `t′+j for all j, 1 < j < r,
and `t′ = k < `t.

The order k = `t′ of the good zero Lx is determined by the extended block of Pt′ . Thus if
two good zeros look back to the same block then they have the same order. But the orders of
the good zeros associated to Pt are unique, so at most one such zero looks back to Qt′+1.

We will need the next lemma in the proof of Theorem 16.

Lemma 15. Let I1, . . . , I2n ⊆ [0, n] be a sequence of 2n (non-trivial) distinct real intervals
with integer endpoints. Then there exists an i such that the interval Ii is strictly contained
in an interval I which itself is contained in the union of the intervals I1, . . . , Ii−1.

Proof. Since [0, 1] is the only interval possible when n = 1, the assertion is vacuously true
for n = 1; we proceed by induction on n. At least one of I2n and I2n−1 is not the entire
interval [0, n]. Without loss of generality, suppose that I2n−1 6= [0, n]. Write

J =
⋃

1≤j≤2n−2

Ij,

21



so that if J = [0, n] we are done — simply take i = 2n − 1. Next suppose that J 6= [0, n],
so that there is some x ∈ [0, n] with x /∈ J . We may clearly assume that x /∈ N. Write
A = [0, a] and B = [a + 1, n], where a = bxc. If A = {0}, the 2n− 2 intervals I1, . . . , I2n−2

all lie in the interval B of length n − 1, so we are done by induction; a similar argument
deals with the case B = {n}. If both A and B are non-trivial intervals, we consider two
cases. If at least 2a of the intervals I1, . . . , I2n−2 lie in A, we are done by induction, and if
at least 2(n− a− 1) of these intervals lie in B, we are also done by induction. However, one
of these cases must arise since we have 2n − 2 = 2a + 2(n − a − 1) intervals in total, and
each is contained in either A or B.

We remark that the lemma is best possible, in that 2n − 1 intervals are not enough. This
can be seen by considering the first 2n − 1 intervals of the sequence (Ii)

∞
i=1, defined by

I2m−1 = [0,m] and I2m = [1,m + 1].

Theorem 16. Fix an admissible P and Λ ≥ |P |. Decompose L[1, M ] = Q0P0 . . . Qn as in
Lemma 13. Then the total number of good zeros is less than 2n.

Proof. We follow the proof of Theorem 11, although there are a number of additional com-
plications. Assume we have 2n good zeros, Lz1 , . . . , Lz2n . By Lemma 14, each good zero is
associated to a block Pt and looks back to a digit in some Qt′+1, t′ = t− r, r ≥ 2. Define for
each good zero an interval [t′′, t′] of length r − 1 > 0, where t′′ = t′ − r + 1. By Lemma 14
these are distinct, so by Lemma 15, one of these intervals is strictly contained in an interval
that is covered by intervals corresponding to earlier good zeros. Take a minimal such cover
and relabel the good zeros as z1, . . . , zs < z0, with zj associated to the block Ptj and interval
[t′′j , t

′
j] where

[t′′0, t
′
0] (

s⋃
i=1

[t′′i , t
′
i],

t′′1 ≤ t′′0 < t′′2 ≤ t′1 < t′′3 ≤ t′2 < · · · ≤ t′s−2 < t′′s ≤ t′s−1 < t′0 ≤ t′s < t0,

and either t′′1 < t′′0 or t′0 < t′s (see Figure 8). Set I = [t′′1, t0] and define a map T : I → I by

T (z) =





z + (t′1 − t′′1 + 1), if t′′1 ≤ z < t′1;

z + (t′i − t′′i + 1), if t′i−1 ≤ z < t′i, i = 2, . . . , s;

z − (t′0 − t′′0 + 1), if t′s ≤ z ≤ t0.

Since either t′′1 < t′′0 or t′0 < t′s, the image of T lies in I. Indeed it lies in [t′′1, t0 − 1]. To see
this, note that if z < t′i and T (z) = z + (t′i − t′′i + 1) then T (z) < ti ≤ t0, and if z > t′0 and
T (z) = z−(t′0−t′′0 +1) then T (z) ≥ t′′0 ≥ t′′1. Thus the only problematic case is T (t′s) = t′′0−1
when t′s = t′0, but in this case t′′1 < t′′0, so once again T (z) ≥ t′′1.

In general `T (z) 6= `z, but by Lemma 14, `T (z)+1 = `z+1 for all z ∈ [t′′0, t0 − 1] except when
z = t′i − 1, 1 ≤ i ≤ s; z = t′s = t′0; or z = t0 − 1. For z = t′i − 1 we have a strict
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Figure 8: Cover of t′′0t
′
0 and function T .

inequality `T (z)+1 > `z+1, and these are precisely the cases when T (z + 1) 6= T (z) + 1. For
z = t′s = t′0 we have at least `T (z)+1 ≥ `z+1, while T (z + 1) = T (z) + 1. For z = t0 − 1 we
have `T (z)+1 < `z+1, but if z = T (z′) then z′ + 1 = t′i for some i > 0 and T 2(z′) + 1 = t′0.
But by Lemma 14, `t′i is the order of the good zero zi, and since ti = t0, both zi and z0 are
associated with the same block Pt0 . But zi < z0, so `t′i < `t′0 . Thus `T 2(z′)+1 > `z′+1 in this
case. To summarize, `T i(z)+1 is an increasing function, provided we skip `t0 when it occurs,
and it is strictly increasing whenever T (T i(z) + 1) 6= T i+1(z) + 1.

Since I is finite, we must have T p(z) = z for some z ∈ I. Thus there is a pair of consecutive
integers z, z + 1 such that T p(z) = z but T p(z + 1) 6= z + 1. Therefore there must be one
or more values of i ≥ 0 such that T i+1(z) + 1 6= T (T i(z) + 1). But the sequence `T i(z)+1 is
increasing in i (skipping any `t0), and for at least one value of i it strictly increases. This
contradicts the fact that it is also periodic in i. Thus there are fewer than 2n good zeros.

It remains to limit the number of ‘bad’ zeros. For this we need to split the problem up into
several cases depending on P .

Lemma 17. If P is the single digit 0, then the number of good zeros is at least

1

2

n−1∑
i=0

(`i − `− 1).

Proof. Clearly P = 0 is admissible, and `i = Λi = |Pi|, since each Qi must start and end
with a one. Let ai = `i − ` denote the number of potentially good zeros associated with Pi,
and let bi ≤ ai denote the number of good zeros. Assume we are given ai−2, ai−1 and ai,
and write

δi =





max{ai−1 − ai−2 − `− 1, 0}, if Qi−1 = 1 = Qi;

max{ai−1 − 1, 0}, if Qi−1 6= 1 = Qi;

0 if Qi 6= 1.

We shall show that
bi ≥ max{ai − 1− δi, 0} ≥ δi+1. (26)

Suppose first that the preceding word Qi is not a single 1. If a potentially good zero of order
k in Pi looks back to a digit Lx of Qi, then the preceding k ≥ ` digits L[x− k, x− 1] must
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all be 0, and hence must form the end of the block Pi−1. But then Lx must be the first
digit of Qi. Since |Qi| > 1, then the last digit of Qi must also be repeated, so Lx−k−1 = 1.
In particular Pi−1 has order (i.e., length) exactly k. Since different potentially good zeros
associated to Pi have different orders, only one potentially good but bad zero can exist.
Thus bi ≥ ai− 1. But bi ≥ 0 and δi = 0, so bi ≥ max{ai− 1− δi, 0} = max{ai− 1, 0} ≥ δi+1.

Now suppose Qi = 1. The first δi potentially good zeros may be bad, but the next ai−1− δi

potentially good zeros are all good. To see this, suppose Lx is such a zero with order k,
` + δi ≤ k < `i−1. Then δi ≥ ai−1 − ai−2 − `− 1, so

0 ≤ `i−1 − k − 1 ≤ ai−1 − δi − 1 ≤ ai−2 + ` = `i−2.

Therefore if Qi−1 = 1 then

L[1, x] = · · · (0)`i−1−k−11(0)k+1(0)`i−1−k−11(0)k+1

has a terminal repeat length of at least `i−1 +1 ≥ k +2. Thus Sx > k +2 and Lx looks back
strictly before Qi. If Qi−1 6= 1 then k ≥ ` + δi = `i−1 − 1 and k < `i−1, so k = `i−1 − 1 and
the same argument applies.

Now consider the final ai− ai−1− 1 zeros in Pi. These are also all good, since if any of these
looked back to Qi, then Pi−1 would have to contain more than `i−1 zeros in order to produce
a repeat of the desired length. Thus in total we have at least (ai−1 − δi) + (ai − ai−1 − 1) =
ai − 1− δi good zeros in Pi. Since the number of good zeros cannot be negative, we obtain
the first inequality in (26). The second inequality is trivial if δi+1 = 0, so we may assume
Qi+1 = 1. Then δi+1 = max{ai − ai−1 − ` − 1, 0} ≤ max{ai − 1 − δi, 0} since in all cases
δi ≤ ai−1.

Using (26), our aim is to prove that in fact

2
n−1∑
i=0

bi ≥
n−1∑
i=0

(ai − 1) + δn,

which immediately implies the lemma. We argue by induction on n. By Lemma 7, b0 =
a0 = 0 and b1 ≤ a1 ≤ 1. Thus the inequality holds for n = 1 and 2 (taking δ1 = 0). For the
induction step, assume the assertion is true for n. Now δn ≤ an−1, and bn ≥ δn+1. Thus

2
n∑

i=0

bi = 2
n−1∑
i=0

bi + 2bn

≥
n−1∑
i=0

(ai − 1) + δn + (an − 1− δn) + δn+1

=
n∑

i=0

(ai − 1) + δn+1.
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Lemma 18. If P is admissible with |P |0 ≥ 2 and Λ ≥ 2|P |, then the number of good zeros
is at least

n−1∑
i=0

⌊
`i−`

2

⌋
.

Proof. Suppose Lx is a potentially good but bad zero associated to Pi with order k ≥ `
and x looks back to x′ = x − Sx. Since Λ ≥ 2|P |, the previous |P | digits are repeated, so
Sx > |P |. Thus L[1, x′] ends with P [1, s]∧ for some s ≥ 1 and Ps = 0. But since P [1, s]∧

does not overlap P and Sx > |P |, Lx must look back beyond the previous full copy of P .
Thus L[1, x′] ends with P (P [1, s]∧). Since P does not overlap itself, Lx′ cannot lie in Pi, and
so it must lie in Qi. But then L[1, x′] ends with P dΛ/|P |e[1, λ]∧ where λ > Λ. Thus Qi starts
with P [1, s]∧, and so Qi determines s. Since s is given by the location of Lx mod |P |, there
can be at most one bad (but potentially good) zero per copy of P . Hence the number of
good zeros is at least

∑
i((`i − `)− d `i−`

|P |0 e) which is at least
∑

i

⌊
`i−`

2

⌋
since |P |0 ≥ 2.

Lemma 19. If P = 01 and Λ ≥ 2|P | = 4, then

1

2

∑
i

(`i − `− 3) < 2n.

Proof. Although 01 is admissible, there is no adequate lower bound on the number of good
zeros. For example, consider

· · · 01|1|01 01|11|01 01|1|01 01 01|11|01 01 01|1|01 01 01 01|11|01 01 01 01|1| · · · .

It is not clear that any of the zeros in this sequence are good even for ` = 1. (It is important
here that the Qi alternate between 1 and 11 since otherwise many of the zeros would create
long repetitions, ensuring that they must look back far enough to be good.) However, the
following argument will show that this example is essentially unique. Indeed, if more than
one potentially good zero associated with Pi is bad, then the preceding Qi must be either 1
or 11. To see this, suppose Lx is a potentially good zero with order k ≥ ` associated to Pi.
Then as in the proof of Lemma 18, Lx must look back to Qi, which must then start with
P [1, s]∧. Since P = 01 and Ps = 0, we must have s = 1, so Lx looks back to the first digit
of Qi. Then Qi = 1R and L[1, x] = · · ·RP k1RP k0. If R is not a terminal subword of P n

for some n, then the order of Pi−1 is k, and so determines the location of the bad zero. But
the only terminal subwords of P n that don’t end in P are the empty word and R = 1. Thus
either Qi = 1 or 11 or there is at most one bad zero associated to Pi.

Let S be the set of i such that Qi 6= 1, 11. Then we have at least
∑

i∈S(`i − ` − 1) good
zeros and so by Theorem 16 ∑

i∈S
(`i − `− 1) < 2n. (27)
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To complete the proof, we interchange 0s and 1s in our argument and count the number
of good ones. Instead of P = 01 we use P c = 10 as our periodic block since 01 is not now
admissible. Unfortunately, the decomposition into Pi and Qi changes, as do the `i. However,
the number of repetitions of 10 in any part of the sequence is between t− 1 and t+1, where
t is the number of repetitions of 01. Thus if we replace ` by `c = ` + 1 (Λc = Λ + 2) then
the number n of blocks Pi does not increase, and the new `i (for the surviving blocks) is at
least `i − 1. Let Sc be the set of the new Qi that are not of the form 0 or 00. Then

∑
i∈Sc

(`c
i − `c − 1) < 2nc ≤ 2n. (28)

Since `c
i ≥ `i − 1, (28) gives

∑
i∈Sc

(`i − `− 3) ≤
∑
i∈Sc

(`c
i − `c − 1) < 2n (29)

and so, adding (27) and (29), we get

∑
i∈S∪Sc

(`i − `− 3) < 4n.

Now Sc ∪ S covers all the surviving blocks, so in particular covers all the blocks where
`i − `− 3 is positive. The result follows.

Proof of Theorem 3. Applying either Lemma 17, Lemma 19, or Lemma 18, together with
Theorem 16, we have in all cases

n−1∑
i=0

(`i − `− 3) < 4n

for any admissible P with at least as many 0s as 1s, and Λ ≥ 2|P |. Rewriting this we obtain

n−1∑
i=0

(`i − `− 7) < 0.

If we decompose L[1,M ] into the form Q0P0 . . . Qn without employing a length limit Λ, then
the number of i such that `i ≥ ` does not change. Hence if we include short Pi blocks we
have ∑

i : `i≥`

(`i − `− 7) < 0.

Let A` =
∑

`i≥`(`i − `). Then A`−1 − A` counts the number of Pi with `i ≥ `. Hence

A` − 7(A`−1 − A`) < 0,
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or more simply
A` < 7

8
A`−1 for all ` ≥ 2|P |0.

But A` counts the number of potentially good zeros, so A` ≤ M for all ` ≥ |P |0. Thus by
induction A` < (7

8
)`−2|P |0+1M . But any X with |X|0 ≥ |X|1 that is not completely periodic

has an admissible cyclic rearrangement P , and the number of copies of Xg in L[1,M ] is then
at most A(g−1)|P |0−1 (since Xg must contain P g−1 as a subword). Thus for g > 3,

lim sup
M→∞

f(Xg, L[1,M ]) ≤ (7
8
)(g−3)|X|0 ≤ γ(g−3)|X|,

where γ =
√

7
8
. By considering complements, this also applies to X with |X|1 ≥ |X|0.

Finally, if X = Y k is completely periodic, then we apply the result to Y to get

lim sup
M→∞

f(Xg, L[1,M ]) = lim sup
M→∞

f(Y kg, L[1,M ]) ≤ γ(kg−3)|Y | ≤ γ(g−3)|X|.

Note that if we want to bound the frequency of g repetitions of any word of size N , then we
need to multiply the estimate in Theorem 3 by 2N . Now γ11 < 0.5, so 2Nγ(g−3)N < γ(g−14)N

is such a bound.

9 Proofs of Theorems 2 and 6

Proof of Theorem 2. One can use Theorem 3, but it is simpler to use Lemma 17 and Theo-
rem 16 directly. Let X = L[1, M ] and apply Lemma 17 with ` = 1. Then the number of good
zeros is at least 1

2

∑n−1
i=0 (`i−2) = 1

2
(|X|0−2n). Thus by Theorem 16, 1

2
(|X|0−2n) < 2n, and

so |X|0 < 6n. But there are n− 1 gaps between the blocks of zeros. These must correspond
to blocks of 1s, each consisting of at least one 1. Hence |X|1 ≥ n− 1. Thus

f(1, X) = |X|1
|X| ≥ n−1

(n−1)+(6n−1)
= n−1

7n−2
.

Since there are infinitely many blocks of zeros in the Linus sequence,

lim inf
M→∞

f(1, L[1,M ]) ≥ 1
7
.

Interchanging 0s and 1s throughout gives the result for 0s.

Proof of Theorem 6. We use arguments similar to those in the proof of Theorem 1. Fix
T > 0 and k > 0 and classify digits Ln into one of three types.

(A) Ln has short look-back time: Sn < T .
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(B) Ln is not of Type (A) and the word L[n− 1
2
Sn, n− 1] is periodic with period < 1

2k
Sn.

(C) Ln is not of Type (A) or (B).

Our aim is simply to show that the limiting frequency of Type (A) digits is at least 1− C
T
,

or equivalently that the limiting frequency of Types (B) and (C) combined is at most C
T
,

for some constant C. The idea is to bound the number of digits of Type (C), since those of
Type (B) are bounded by Theorem 3.

To this end, fix K ≥ T and count the number of digits Ln in L[1,M ] of Type (C) which
have look-back times Sn with

K ≤ Sn <

(
1 +

1

2k

)
K. (30)

If two of these digits, say Ln and Lm, look back to points n′ = n−Sn and m′ = m−Sm with
0 ≤ n′−m′ < K

2
then by Lemma 10, L[n′ + 1,m− 1] is p-periodic with p = |Sn − Sm| < K

2k
.

But then Lm is of Type (B) (or (A)). Thus the total number of Type (C) digits with Sn

in this range is at most d(M − K)/(K/2)e ≤ 2M/K. Applying this argument to each
Ki = (1 + 1

2k
)iT in turn, we get that the total number of Type (C) digits is at most

C(k,M, T ) =
2M

T

(
1 +

(
1 +

1

2k

)−1

+

(
1 +

1

2k

)−2

+ . . .

)
= (4k + 2)

M

T
. (31)

For each period p the frequency of Type (B) digits with period p is at most γ(g−14)p where
g ≥ max{bT/(2p)c, k}. Set k = 29. Then (g − 14)p ≥ max{T

2
− 15p, 15p} ≥ T

4
. Thus the

total number of Type (B) digits in L[1,M ] is at most M(T − 1)γT/4 (for p = 1, . . . , T − 1)
plus MγT/4 ≥ M

∑
p≥T γ15p (for p ≥ T ), so is bounded by

B(M, T ) = MTγT/4. (32)

Thus, adding (31) and (32) and dividing by M , we see that the frequency of Types (B) and
(C) combined is at most

4k + 2

T
+ TγT/4 =

118

T
+ TγT/4 ≤ C

T
,

for some constant C. The result now follows.
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