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Abstract—Motivated by information-theoretic secrecy, geomet-
ric models for secrecy in wireless networks have begun to receive
increased attention. The general question is how the presence
of eavesdroppers affects the properties and performance ofthe
network. Previously the focus has been mostly on connectivity.
Here we study the impact of eavesdroppers on the coverage of a
network of base stations. The problem we address is the following.
Let base stations and eavesdroppers be distributed as stationary
Poisson point processes in a disk of arean. If the coverage
of each base station is limited by the distance to the nearest
eavesdropper, what is the maximum density of eavesdroppers
that can be accommodated while still achieving full coverage,
asymptotically asn → ∞?

I. I NTRODUCTION

A. Motivation and related work

While coverage problems have been studied for several
decades from a purely mathematical perspective, they have
recently begun to attract significant attention by the engineer-
ing and computer science communities due to the advent of
wireless networks, in particular sensor networks. The standard
problem formulation is the following. Place a numbern of
nodes randomly in a certain setB ⊂ R

d and equip each node
with the capability of covering (sensing) a disk or sphere of
radius r around itself. How large shouldn be to guarantee
coverage ofB with probability1−ǫ? Or, if the area or volume
of B is scaled in proportion ton, which r(n) guarantees
coverage with high probability asn → ∞?

In the mathematical literature, one of the early and now
classical coverage problems is the coverage of a sphere with
circular caps introduced in [1] and solved in [2]. Extensions to
k dimensions were considered by Hall in [3] and Janson in [4].
Hall later provided a detailed account of coverage processes
in his book [5]. Many generalizations have been considered
since, see,e.g., [6], [7] for coverage problems inRd.

Here we focus on a coverage problem that is inspired
by secrecy constraints. We assume an information-theoretic
model for secrecy, in which a communication is secure
from eavesdroppers if the intended receiver is closer to the
transmitter than all eavesdroppers. Based on this model, the
secrecy graph, a random geometric graph that only includes
edges along which secure communication is possible was
introduced and studied in [8]. [9] extended the analysis to more
elaborate physical layer models, while [10] considered the
effects of uncertainty in the eavesdroppers’ locations. This line
of work is based on graph models and focuses on connectivity.

In contrast, there is no prior work on the related coverage
problem, which is the theme of the present paper.

Base stations and eavesdroppers are distributed randomly
on the plane, and the base stations can cover circular areas
with radii determined by the distance to the nearest eaves-
droppers. The question is what density of eavesdroppers can
be accommodated while still guaranteeing that the entire area
or volume of interest is covered securely? This would ensure
that mobile stations could roam around everywhere and be
reached securely by a base station. Hence the downlink is
intrinsically secure, while the uplink (from the mobile to the
base station) has to be secured by transmission of a one-time
pad via the downlink.

B. Problem formulation

To make the problem concrete, we assume that the base
stations and eavesdroppers form independent Poisson point
processes of intensities1 andλ, respectively, inRd. We will
denote the process of base stations byP and call its points
black points, and the process of eavesdroppers byP ′ and call
its pointsred points. Now place an open ballD(p, rp) of radius
rp around each black pointp ∈ P , whererp is maximal so
that D(p, rp) ∩ P ′ = ∅. In other words,rp is the distance
from the black pointp to the nearest red pointp′ ∈ P ′ to p.
We thus obtain a random setAd

λ ⊂ R
d which is the union of

balls centered at the points ofP . Fig. 1 shows a 2-dimensional
example forλ = 0.1. Our aim is to study properties ofAd

λ,
in particular the covered volume fraction (Section 2) and the
asymptotic conditions for complete coverage in one (Section
3) and two (Section 4) dimensions.

In two dimensions, the radiusR of each disk is given by
the nearest-neighbor distance, distributed as

fR(x) = 2πxλ exp(−λπx2) .

Note that this coverage problem is rather different from
the case where the covering disks haveindependent radii
drawn fromfR. The difference is that in our case, the disk
radii of nearby nodes are strongly correlated, which leads to
drastically different conditions for coverage compared with the
independent case. Indeed, for the standard model with random
independent disk radius, a disk of arean is covered a.s. if1

πE(R2) = (1 + ε) logn

1This condition is not the sharpest possible.
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Fig. 1. Example for coverage of an8 × 8 square forλ = 0.1. The base
stations are marked by+, the eavesdroppers by×, and the covered area is
grey shaded.

for any ε > 0. SinceE(R2) = (λπ)−1, this translates to

λ = [(1 + ε) log n]−1 ,

which indicates thatλ may decrease rather slowly withn while
still achieving full coverage. In the secrecy case, however, λ
has to decrease much faster, at a rate of aboutn−1/3, as we
will show.

II. COVERED VOLUME FRACTION

For λ > 0, write

Cd(λ) = P(O ∈ Ad
λ).

By stationarity of the model,Cd(λ) can also be interpreted
as the fraction ofRd which is covered byAd

λ, known as the
covered volume fraction.

Theorem 1.

Cd(λ) = 1 − E(e−Vd/λ) = 1 −
∫

∞

0

fd(t)e
−t/λ dt,

where fd(t) is the probability density function for the volume
Vd of a randomly chosen cell in a Voronoi tessellation asso-
ciated with a unit intensity Poisson process in R

d.

Proof: We rescale the model so thatP and P ′ have
intensities1/λ and1 respectively. This does not affectCd(λ).
Now O 6∈ Ad

λ if and only if there are no points ofP in the
Voronoi cell C defined byP ′ ∪ {O} containingO. If C has
volumeV , thenP(C ∩ P = ∅) = e−V/λ.

Corollary 2. In one dimension, we have

C1(λ) =
1 + 4λ

(1 + 2λ)2
.

Proof: Let P be a unit intensity Poisson process inR. The
distribution of the gap lengths between points ofP has density
e−t, but the distribution of the length of the gap containing
a fixed point, such as the originO, has densityte−t. (This
is known as thewaiting time paradox.) Consequently, the
density function for the length of the Voronoi cell defined
by P containing the origin is4te−2t, so that by Theorem 1

C1(λ) = 1 −
∫

∞

0

4te−2t−t/λ dt =
1 + 4λ

(1 + 2λ)2
.

Remark. This corollary can also be proved as follows. LetL
be the event that the originO is covered by points ofP lying
only to the left ofO, and letR be the event thatO is covered
by points ofP lying only to the right ofO. ThenL and R
are independent, and

C1(λ) = 1 − (1 − P(L))(1 − P(R))

= 1 − (1 − P(R))2

= 2P(R)− P(R)2,

by symmetry. NowR occurs if and only if the closest black
point to the right ofO is at distancet, and there are no red
points in the interval[0, 2t], for somet > 0. Thus

P(R) =

∫

∞

0

e−te−2λt dt =
1

2λ + 1
,

which gives the desired result.

III. PROBABILITY OF TOTAL COVERAGE IN ONE

DIMENSION

In this and the next section, we study the following problem.
With P ,P ′ andAd

λ as before, letBd
n ⊂ R

d be a fixed ball of
volumen, and setAd

λ(Bd
n) = Ad

λ ∩ Bd
n. Write Bd

λ(n) for the
event thatAd

λ(Bd
n) coversBd

n (except for the points ofP ′),
and setpd

λ(n) = P(Bd
λ(n)). Our principal goal is to estimate

pd
λ(n) for arbitraryd.
Let us first consider the cased = 1. In this case,I = B1

n

is simply an interval of lengthn, containing some black and
red points. We place an interval centered at each black point
of maximal length subject to containing no red points, and
ask for the probabilityp1

λ(n) → 0 that I is covered by such
intervals.

In the one-dimensional case, we have the following sharp
result.

Theorem 3. If λ2n → ∞, then p1
λ(n) → 0, and if λ2n → 0,

then p1
λ(n) → 1.

Proof: To simplify our analysis, let us suppose thatP and
P ′ are placed on a circleT of circumferencen rather than an
interval of lengthn: there is asymptotically no difference. Our
strategy is to place the red pointsP ′ first, partitioning the circle
T into M ∼ Po(nλ) arcsAi. Now place the black pointsP .
For each arcAi, let Ci be the event thatAi is covered by
the smaller arcs associated with the black points inAi. The
eventsCi are independent, and this will enable us to estimate
p1

λ(n).



SupposeAi has lengthℓ, and letmi be the midpoint of
Ai. Let x be the distance of the closest black point tomi

lying on the left ofmi, and lety be the distance of the closest
black point tomi lying on the right ofmi. Whether or not
Ci occurs, i.e., whether or notAi is covered by small arcs, is
determined solely byx andy. In fact, it is easy to see that

• Ci occurs if and only ifx + y ≤ ℓ/2.

Now x + y has the gamma distribution with density function
te−t, and consequently

P(Ci | Ai has length ℓ) =

∫ ℓ/2

0

te−t dt

= 1 − e−ℓ/2(1 + ℓ/2). (1)

Further, since the black and red points are independent, andthe
lengthℓ has an exponential distribution with density function
λe−λt, we have

P(Ci) =

∫

∞

0

λe−λℓ(1 − e−ℓ/2(1 + ℓ/2)) dℓ

=
1

(1 + 2λ)2
.

Conditioning on the number of arcsM changes the dis-
tribution of the lengths of theAi, but the difference is
asymptotically negligible. Consequently, asn → ∞ with
λ → 0 but λn → ∞,

p1
λ(n) ∼

∞
∑

m=0

P(M = m)(2λ + 1)−2m

= e−4nλ2(λ+1)/(2λ+1)2

∼ e−4nλ2

.

So, if nλ2 → 0, p1
λ(n) → 1, and if nλ2 → ∞, p1

λ(n) → 0, as
postulated.

IV. PROBABILITY OF COVERAGE IN TWO DIMENSIONS

A. Analysis

A natural step is to generalize these results to arbitrary
d. Simple heuristics would suggest that ifλd+1n → 0 then
pd

λ(n) → 1, and if λd+1n → ∞ then pd
λ(n) → 0. Un-

fortunately, attempts to generalize the above one-dimensional
arguments run into difficulties, mainly due to the lack of an
order structure inRd for d ≥ 2.

For the rest of the paper, we restrict attention to the cased =
2. It turns out to be useful to consider theGilbert disc model
on the red pointsP ′, with an appropriately chosen radius. This
model is constructed by simply joining two points ofP ′ if the
distance between them is less than some specified threshold.

Theorem 4. If f(n) = λ3n → ∞, then p2
λ(n) → 0.

Proof: Suppose thatn → ∞ and also thatλ3n → ∞. Let
R > 0 be a large constant. Construct the Gilbert disc model
G = GR(P ′) on the red pointsP ′, with radiusR (i.e., we
join two points ofP ′ if they are within distanceR). Let T

be the (random) number of triangles inG which lie entirely
within B2

n. Then, for some absolute constantC1,

E(T ) ∼ C1e
−λπR2

(λπR2)2λn

=
(

C1π
2R4 + o(1)

)

λ3n → ∞.

Consequently, ifT1 denotes the (random) number of triangles
in G which lie entirely insideB2

n and have all angles between
π/6 and π/2, then alsoE(T1) → ∞. Finally, putting in the
black pointsP , and writing T2 for the number of triangles
counted inT1 which are not within distance1000R of a black
point, we have thatE(T2) → ∞. A simple application of the
second moment method shows thatP(T2 ≥ 1) → 1 (this
is intuitively obvious fromE(T2) → ∞ due to the long-
range independence of the model). However, any red triangle
counted inT2 will have points in its interior which are not
covered by black discs. Since with high probabilityT2 ≥ 1,
we have thatp2

λ(n) → 0.
The other direction seems to require a more elaborate

argument (and a stronger hypothesis):

Theorem 5. If g(n) = λ3n(log n)3 → 0, then p2
λ(n) → 1.

Proof: (Sketch.) Suppose thatn → ∞ and also that
g(n) = λ3n(log n)3 → 0. Once again, we construct the
Gilbert disc modelG = GR(P ′) on the red pointsP ′, but
this timeR = R(n) will be a function ofn. As long asR(n)
is not too large, there will be (up to a constant)λn vertices,
R2λ2n edges andR4λ3n triangles inG inside B2

n. We will
show thatR(n) can be chosen so that:

(I) The maximum degree ofG is one.

(II) The region ofB2
n close to points ofP ′ is covered (by

A2
λ).

(III) The rest ofB2
n, far from points ofP ′, is covered (by

A2
λ).

Condition(I) simply states thatG consists of isolated vertices
and isolated edges. It is(II) and (III) which necessitate the
stronger hypothesis. We will define a set ofbad events, which
will depend onP andP ′, and show that coverage (byA2

λ)
occurs in the absence of bad events. We will then show that
the probability of at least one bad event occurring tends to
zero.

First, we overlay a grid of squares of side lengthr =
√

log n
onto B2

n. The probability that any small square of the grid
contains no point ofP is e− log n = n−1. Since there are∼
n/ logn such squares, the expected number of them containing
no black points is asymptotically1/ logn → 0. Consequently,
with high probability, every small square contains a black
point. Now fix a small squareS. If no point of S is within
distance

√
2 logn of a red point, and ifS contains a black

point, then all ofS will be covered byA2
λ. Consequently,

with high probability, any point ofB2
n at distance more than√

8 logn from all red points will be covered byA2
λ. Our first

type of bad event will be that some squareS of the grid
contains no black points: if no such event occurs then we may



assume that points at distance
√

8 log n from P ′ are covered.
This deals with(III) .

Take R(n) = 1000
√

log n. Our second bad event will be
that G contains vertices of degree at least 2. WriteW for the
number of such vertices inG (within B2

n). Then

E(W ) ∼ 1

2
e−λπR2

(λπR2)2λn

=
(

5 · 1011π2(log n)2 + o(1)
)

λ3n → 0,

so thatP(W = 0) → 1. This deals with(I) .
It remains to deal with(II) . From now on, we may assume

that G has only isolated vertices and isolated edges (inside
B2

n). Recall that we need only worry about the coverage of
points within distance

√
8 logn from a red point. We will

colour all such points yellow.
First we deal with the isolated vertices. Consider the circles

of radii 10
√

log n and 11
√

log n around each isolated red
point, and divide the annulus between these circles into 10
equal “sectors”. With high probability, there is a black point
inside each sector. But then the yellow region surrounding the
red point is covered.

For the edges, a lengthier argument is needed. We provide
a summary. LetL ⊂ R

2 be the line segment between the two
nodes connected by the red edge. The critical event here is
coverage of the yellow “sausages”L⊕D(0,

√
8 logn) around

the red edges. By focusing on certain black points at a suitable,
carefully chosen, distance from the red edge, it can be shown
that such yellow sausages are indeed covered with probability
1 − n−4—if the hypothesis holds.

B. Simulation results

Here we provide two simulation results, see Fig. 2, which
give an indication of the fraction of the area that remains
uncovered if the condition in Theorem 4 holds, and how
quickly this fraction goes to zero if the condition in Theorem
5 holds.

V. CONCLUSIONS

We have introduced a novel class of coverage problems,
where the size of the covering disks is determined by the
distance to the nearest point in a second point process. In the
Poisson-Poisson case, where black and red points are indepen-
dent Poisson point processes, we have provided expressionsfor
the covered volume fraction and the probability of complete
coverage in the one- and two-dimensional cases.

The main result is the asymptotic threshold for coverage in
two dimensions. For

λ3n(log n)3 → 0 , n → ∞ ,

full coverage is achieved with probability tending to1. On the
other hand, if

λ3n → ∞ , n → ∞ ,

then the probability of full coverage tends to0.
The model can be viewed as a germ-grain model with germs

of random andcorrelated size.
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Fig. 2. Simulation results for Theorems 4 and 5. In (a), per Theorem 4,
coverage is not achieved asymptotically. In (b), the function g(n) in Theorem
5 is a constant, and it appears that coverage is achieved. Note that the scale
in the axes are different in (a) and (b).

The results have applications in secure wireless networking.
If the red points are eavesdroppers and the black point base
stations, then full coverage in our model implies that from all
points of the plane, messages can be received from at least
one base station securely, without any eavesdropping.
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