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Amites Sarkar Martin Haenggi
Department of Mathematics Department of Electrical Engineering
Western Washington University University of Notre Dame
Bellingham, WA 98225, USA Notre Dame, IN 46556, USA

Abstract—Motivated by information-theoretic secrecy, geomet- In contrast, there is no prior work on the related coverage
ric models for secrecy in wireless networks have begun to reere  problem, which is the theme of the present paper.
increased attention. The general question is how the presea Base stations and eavesdroppers are distributed randomly

of eavesdroppers affects the properties and performance dhe . -
network. Previously the focus has been mostly on connecttyi O the plane, and the base stations can cover circular areas

Here we Study the impact of eavesdroppers on the coverage of anth radii determined by the distance to the nearest eaves-
network of base stations. The problem we address is the folling.  droppers. The question is what density of eavesdroppers can
Let base stations and eavesdroppers be distributed as stafiary pe accommodated while still guaranteeing that the entea ar

Poisson point processes in a disk of area. If the coverage o \qlume of interest is covered securely? This would ensure

of each base station is limited by the distance to the nearest h bil . Id d h d b
eavesdropper, what is the maximum density of eavesdropperst at mobile stations could roam around everywhere an e

that can be accommodated while still achieving full coverag, reached securely by a base station. Hence the downlink is

asymptotically asn — oo? intrinsically secure, while the uplink (from the mobile tioet
base station) has to be secured by transmission of a one-time
I. INTRODUCTION pad via the downlink.
A. Motivation and related work B. Problem formulation

While coverage problems have been studied for severatrg make the problem concrete, we assume that the base
decades from a purely mathematical perspective, they haygtions and eavesdroppers form independent Poisson point
recently begun to attract significant attention by the eeelin processes of intensitislsand ), respectively, inR<. We will
ing and computer science communities due to the advent@fhote the process of base stations7byand call its points
wireless networks, in particular sensor networks. Thedsieth a0k points, and the process of eavesdropperstyand call
problem formulation is the following. Place a numberof jig pointsred points. Now place an open balb(p, r,,) of radius
nodes randomly in a certain sBtC R” and equip each node,. around each black poini € P, wherer, is maximal so
with the capability of covering (sensing) a disk or sphere ghat D(p,r,) N'P' = 0. In other words,r, is the distance
radiusr around itself. How large should be to guarantee from the black point to the nearest red poipt € P’ to p.
coverage of3 with probability1 —e? Or, if the area or volume \we thus obtain a random set! ¢ R? which is the union of
of B is scaled in proportion to:, which r(n) guarantees pais centered at the points B Fig. 1 shows a 2-dimensional
coverage with high probability as — co? example forA = 0.1. Our aim is to study properties o4,

In the mathematical literature, one of the early and noy particular the covered volume fraction (Section 2) arel th
classical coverage problems is the coverage of a sphere vi#ymptotic conditions for complete coverage in one (Sactio
circular caps introduced in [1] and solved in [2]. Extensi¢m  3) and two (Section 4) dimensions.

k dimensions were considered by Hall in [3] and Janson in [4]. |n two dimensions, the radiug of each disk is given by
Hall later provided a detailed account of coverage prosessfie nearest-neighbor distance, distributed as

in his book [5]. Many generalizations have been considered

since, seeeg., [6], [7] for coverage problems ifk?. fr(z) = 2mzXexp(—Ara?) .

Here we focus on a coverage problem that is InSp'r?\?ote that this coverage problem is rather different from

by secrecy constraints. We assume an information-th«zoreiHe case where the covering disks havelependent radi

model for secrecy, in which a communication is secur . . . :
. . . . rawn from fr. The difference is that in our case, the disk
from eavesdroppers if the intended receiver is closer to the

transmitter than all eavesdroppers. Based on this model, Eﬁd" of nearby nodes are strongly correlated, which leads t

secrecy graph, a random geometric graph that only included astically different conditions for coverage comparethwie
S S . independent case. Indeed, for the standard model with rando

edges along which secure communication is possible Wi%Sdependent disk radius, a disk of areas covered a.s. if

introduced and studied in [8]. [9] extended the analysis doem ' o

elaborate physical layer models, while [10] considered the 7E(R?) = (1 +¢)logn

effects of uncertainty in the eavesdroppers’ locationss Tihe

of work is based on graph models and focuses on connectivitytThis condition is not the sharpest possible.



Proof: Let P be a unit intensity Poisson processinThe
distribution of the gap lengths between pointgohas density
e~t, but the distribution of the length of the gap containing
a fixed point, such as the origi@, has densityte=t. (This
is known as thewaiting time paradox.) Consequently, the
density function for the length of the Voronoi cell defined
by P containing the origin istte %, so that by Theorem 1

I =1 [ atetih g — 1A
'\ =1 /O ste o=
[ |
Remark. This corollary can also be proved as follows. Let
be the event that the origi@ is covered by points oP lying
only to the left ofO, and letR be the event thaD is covered
by points of P lying only to the right ofO. ThenL and R
are independent, and

C'(N) =1-(1-P(L))(1~-P(R)
=1-(1-P(R))?
= 2P(R) - P(R)*,

Fig. 1. Example for coverage of #hx 8 square forA = 0.1. The base by symmetry. NowR occurs if and only if the closest black
stations are marked by, the eavesdroppers by, and the covered area is point to the right ofO is at distance:. and there are no red
grey shaded. . . . '

points in the interval0, 2¢], for somet > 0. Thus

1
_ —t _—2Xt _
for anye > 0. SinceE(R?) = (Ar)~1, this translates to P(R) = /O e e dt = A+ 1
A=[(1+e)logn]™*, which gives the desired result.
which indicates thak may decrease rather slowly withwhile [1l. PROBABILITY OF TOTAL COVERAGE IN ONE
still achieving full coverage. In the secrecy case, howe¥er DIMENSION
3 . . .

has to decrease much faster, at a rate of about®, as we | this and the next section, we study the following problem.
will show. With P, P’ and.A¢ as before, letB< c R be a fixed ball of

Il. COVERED VOLUME FRACTION volumen, and setA{ (B;) = A{ N Byl Write B (n) for the

event thatA{(B2) coversBZ (except for the points of’),
and setp{ (n) = P(B{(n)). Our principal goal is to estimate
C4N) =P(O € AD). pd(n) for arbitraryd.
. . . 1 i =1. i _ Rl
By stationarity of the modelC'?()\) can also be interpreted. Let us first consider the case In this case/ = B,

. Lo is simply an interval of lengtn, containing some black and
d d
as the fraction ot _Wh'Ch is covered byAj, known as the red points. We place an interval centered at each black point
covered volume fraction.

of maximal length subject to containing no red points, and

For \ > 0, write

Theorem 1. ask for the probability} (n) — 0 that I is covered by such
J _Va/A o0 e/ intervals.
C'(A) =1-E(e ") =1 —/0 fa(t)e™" " dt, In the one-dimensional case, we have the following sharp
result.

where f4(t) is the probability density function for the volume ) ) o
Vy of a randomly chosen cell in a Voronoi tessellation asso- Theor?m 3. 1f A*n — oo, then py(n) — 0, and if \°n — 0,
ciated with a unit intensity Poisson process in R<. then p;(n) — 1.

Proof: We rescale the model so th® and P’ have Proof: To simplify our analysis, let us suppose tfa&nd
intensitiesl /A and1 respectively. This does not affe€t'(A). P’ are placed on a circlé’ of circumferences rather than an
Now O ¢ A¢ if and only if there are no points oP in the interval of lengthn: there is asymptotically no difference. Our
Voronoi cell C defined byP’ U {O} containingO. If C has Strategy is to place the red poirfs first, partitioning the circle
volumeV, thenP(C NP =) = e V/*, m 7 into M ~ Po(n)) arcsA;. Now place the black point®.

For each arcA;, let C; be the event thatd; is covered by
the smaller arcs associated with the black pointsijn The
1+4X eventsC; are independent, and this will enable us to estimate

(1+2)0)2° pi(n).

Corollary 2. In one dimension, we have

CtN) =



SupposeA; has length?, and letm; be the midpoint of be the (random) number of triangles @ which lie entirely
A;. Let z be the distance of the closest black pointrtg  within B2. Then, for some absolute constafit,
lying on the left ofm;, and lety be the distance of the closest CR? 99
black point tom; lying on the right ofm;. Whether or not E(T) ~ Cre (ATR%)"An
C; occurs, i.e., whether or not; is covered by small arcs, is = (C17T2R4 + o(l)) A°n — oo.

determined solely by andy. In fact, it is easy to see that ) )
Consequently, ifl; denotes the (random) number of triangles

in G which lie entirely insideB2 and have all angles between
7/6 and /2, then alsoE(T;) — oco. Finally, putting in the
rplack pointsP, and writing 7> for the number of triangles
counted inT; which are not within distanc€000R of a black
o2 point, we have thaE(73) — oo. A simple application of the
_ second moment method shows ti&tl, > 1) — 1 (this
P(Ci | Ai has length £) :/O te™" dt is intuitively obvious fromE(T5) ano due)to the long-
—1_ 6—5/2(1 12). Q) range independence of the model). However, any red triangle
counted inT, will have points in its interior which are not
Further, since the black and red points are independenthandcovered by black discs. Since with high probability > 1,

e C; occurs if and only ifx +y < £/2.

Now z + y has the gamma distribution with density functio
te~t, and consequently

length/ has an exponential distribution with density functionve have thap?(n) — 0. ]
Ae~ M, we have The other direction seems to require a more elaborate
o0 argument (and a stronger hypothesis):
P(Cy) :/ e M1 — e 2(1 4 0/2)) dt
0 Theorem 5. If g(n) = An(logn)® — 0, then p3 (n) — 1.
1
= m Proof: (Sketch.) Suppose that — oo and also that

g(n) = Xn(logn)®> — 0. Once again, we construct the
Conditioning on the number of arc/ changes the dis- Gilbert disc modelG = Gz (P’) on the red pointsP’, but
tribution of the lengths of thed;, but the difference is this time R = R(n) will be a function ofn. As long asR(n)
asymptotically negligible. Consequently, as — oo with s not too large, there will be (up to a constant) vertices,
A — 0 butAn — oo, R?)\?n edges andR*\*n triangles inG inside B2. We will
o0 show thatR(n) can be chosen so that:
pi(n) ~ Y P(M =m)@2x+ 1)
m=0
e—4nA?(A+1)/(2A+1)?

() The maximum degree df is one.

() The region of B2 close to points ofP’ is covered (by
e—4n>\2 ) Ai)

~

So, ifnA2 — 0, pk(n) — 1, and ifnA2 — oo, pl(n) — 0, as () The rest of B2, far from points of P/, is covered (by

postulated. [ ] AR
Condition(l) simply states thadz consists of isolated vertices
. and isolated edges. It i@l) and (lll) which necessitate the
A. Analysis stronger hypothesis. We will define a settafl events, which
A natural step is to generalize these results to arbitrawill depend onP and P/, and show that coverage (b¥3)
d. Simple heuristics would suggest thatXf*'n — 0 then occurs in the absence of bad events. We will then show that
pi(n) — 1, and if X*n — oo thenpl(n) — 0. Un- the probability of at least one bad event occurring tends to
fortunately, attempts to generalize the above one-direasi zero.
arguments run into difficulties, mainly due to the lack of an First, we overlay a grid of squares of side length \/Iogn
order structure iR¢ for d > 2. onto B2. The probability that any small square of the grid
For the rest of the paper, we restrict attention to the dase contains no point of? is e~ °8™ = n =1, Since there are-
2. It turns out to be useful to consider ti®&lbert disc model n/logn such squares, the expected number of them containing
on the red point®’, with an appropriately chosen radius. Thisio black points is asymptoticallly/ logn — 0. Consequently,
model is constructed by simply joining two points®Bf if the with high probability, every small square contains a black
distance between them is less than some specified threshgidint. Now fix a small squaré. If no point of S is within
9 distance/2logn of a red point, and ifS contains a black
Theorem 4. If f(n) = A°n — co, then p3(n) — 0. point, then all of S will be covered by.A43. Consequently,
Proof: Suppose that — oo and also tha#3n — oco. Let with high probability, any point of32 at distance more than
R > 0 be a large constant. Construct the Gilbert disc modg8logn from all red points will be covered byl3. Our first
G = Ggr(P') on the red pointsP’, with radiusR (i.e., we type of bad event will be that some squafeof the grid
join two points of P’ if they are within distanceR). Let T contains no black points: if no such event occurs then we may

IV. PROBABILITY OF COVERAGE IN TWO DIMENSIONS



assume that points at distan¢g&logn from P’ are covered.

This deals with(lll) . 7
Take R(n) = 1000+/logn. Our second bad event will be
that G contains vertices of degree at least 2. Wiitefor the 6
number of such vertices i (within B2). Then -
S5
1 5
E(W) ~ 5e*“Rz (ATR?)?A\n g,
= (5-10"7*(logn)* + o(1)) A’n — 0, 3
23
so thatP(W = 0) — 1. This deals with(l). 3
It remains to deal witl{ll) . From now on, we may assume 5 2
that G has only isolated vertices and isolated edges (inside
B2). Recall that we need only worry about the coverage of 1
points within distance/8logn from a red point. We will

colour all such points yellow. 0
First we deal with the isolated vertices. Consider the egcl

of radii 10/logn and 11y/logn around each isolated red

point, and divide the annulus between these circles into 10

equal “sectors”. With high probability, there is a black mioi

inside each sector. But then the yellow region surroundieg t

red point is covered.

(@) Uncovered fraction foa3 = n—09

. . . -5 )\3=n_1log(n)_3

For the edges, a lengthier argument is needed. We provic gX 10 ‘
a summary. Lef, C R? be the line segment between the two
nodes connected by the red edge. The critical event here 7 :
coverage of the yellow “sausages™® D(0, v/8logn) around
the red edges. By focusing on certain black points at a deitab & 6 |
carefully chosen, distance from the red edge, it can be show '§ 5 |
that such yellow sausages are indeed covered with protyabili =
1 — n—*—if the hypothesis holds. B D4 8

[

B. Smulation results § 3r .

Here we provide two simulation results, see Fig. 2, which 5 ol i
give an indication of the fraction of the area that remains
uncovered if the condition in Theorem 4 holds, and how 1 ]
quickly this fraction goes to zero if the condition in Theare ‘ ‘ ‘ d
5 holds. 0 2000 4000 6000 8000 10000

n

V. CONCLUSIONS (b) Uncovered fraction foa2 = n~=1(logn)—3

We have introduced a novel class of coverage problems,

: : : ; : . 2. Simulation results for Theorems 4 and 5. In (a), peedrém 4,
where the size of the covering disks is determined by trgglerage is not achieved asymptotically. In (b), the fuorcti(n) in Theorem

distance to the nearest point in a second point processeln 8hs a constant, and it appears that coverage is achieveé. that the scale
Poisson-Poisson case, where black and red points are imdeethe axes are different in (a) and (b).

dent Poisson point processes, we have provided expredsions
the covered volume fraction and the probability of complete

coverage in the one- and two-dimensional cases. The results have applications in secure wireless netwgrkin
The main result is the asymptotic threshold for coverage ifithe red points are eavesdroppers and the black point base
two dimensions. For stations, then full coverage in our model implies that frdin a

3 3 points of the plane, messages can be received from at least
X n(logn)” =0, n— oo, one base station securely, without any eavesdropping.
full coverage is achieved with probability tendingtoOn the
other hand, if
3 ACKNOWLEDGMENT
A’n— 00, n— o0,
then the probability of full coverage tends @o The work of the second author was partially supported by
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