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Our universe is a complex system. It is made up 
of many moving parts as a dynamic, multifaceted 
machine that works in perfect harmony to create 
the natural world that allows us life. �e modeling 
of dynamical systems is the key to understanding 
the complex workings of our universe. One such 
complexity is chaos: a condition exhibited by an 
irregular or aperiodic nonlinear deterministic system. 
Data that is generated by a chaotic mechanism will 
appear scattered and random, yet can be de�ned by 
a system of nonlinear equations. �ese mathematical 
equations are characterized by their sensitivity 
to input values (initial conditions), so that small 
di�erences in the starting value will lead to large 
di�erences in the outcome. With deterministic chaos,  
it is nearly impossible to make long-term predictions 
of results.

I. INTRODUCTION
A system must have at least three dimensions, 

and nonlinear characteristics, in order to generate 
deterministic chaos. When nonlinearity is introduced 
as a term in a deterministic model, chaos becomes 
possible. �ese nonlinear dynamical systems are seen 
in many aspects of nature and human physiology. 
�is paper will discuss how the distribution of 
blood throughout the human body, including factors 
a�ecting the heart and blood vessels, demonstrate 
chaotic behavior. 

�e physiological studies presented in this 
paper represent some of the investigations into the 
chaotic systems that can be found in the human 
body. With modern computing technologies, we are 
able to identify patterns that were previously thought 
to be random variations of regular systems, such as 
the heartbeat. By understanding these systems on a 
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mathematical level, scientists can produce mathematical models 
of irregular oscillations within the body. Currently, research is 
being conducted to develop chaos control techniques to treat 
patients with heart rhythm irregularities. �is paper will �rst 
introduce chaos theory in a historical context, and then present 
some of its modern scienti�c applications.

In the 1880s, Henri Poincare was studying the motion of an 
asteroid under gravitational pull from Jupiter and the sun. �e 
most e�ective way to investigate the behavior of such a system 
was to use nonlinear di�erential equations [16]. �ese equations 
were �rst developed by Sir Isaac Newton in the 1600s, but were 
heavily studied throughout the 1700s and 1800s [20]. Poincare 
recognized that in order to model a physical system that evolves 
over time, one must use a su¥cient list of parameters to be 
able to de�ne the state of the system at any given moment. 
�e values of data measured in time can be made into an 
object in space, called the phase space set. In this case, the phase 
space set is the set of all possible positions and velocities of 
the asteroid. Poincare’s model was known as the “return map” 
of the asteroid. �is marked an important moment in the 
timeline of mathematical history by recognizing the sensitivity 
to initial conditions that models, such as those of the solar 
system, necessarily demonstrate [1]. Mathematicians studied 
Poincare’s return map, and found that small di�erences in the 
initial conditions will lead to very large di�erences in �nal 
outcomes. �erefore, predictions of an asteroid’s location based 
on estimations of its initial conditions are impossible [1]. �is 
was the �rst time the existence of chaos in natural phenomena 
was formally recognized by the scienti�c community. 

In the 1920s, Dutch physicist Balthasar Van der Pol mod-
eled an oscillator with nonlinear damping by constructing elec-

trical circuits according to the di�erential 
equation [16]:

In this model, t is time, x is the 
dynamic variable, and ϵ is the parameter 
that can increase or decrease the 
in«uence of the nonlinear term. �is can 
be converted to a �rst order system by 
letting y = dx

        
dt

�e parameter ϵ allows for in-
creased or decreased levels of non-

II. CHAOS THEORY

Dynamical System  
A mathematical model used to determine the 
state of a system as it moves forward in time.

Nonlinear Damping  
The damping term of a differential equation 
is multiplied by the first derivative, causing 
the motion of the system to decay over time. 
Nonlinear damping implies that this term is not 
linear, so the effect of this damping fluctuates 
over time.

Oscillator  
A generator of periodic motion or electrical 
currents

d2x - ϵ (1-x2) dx + x = 0                                  dt
                  

dt

dx = y
                              

dt       

dy = -x + ϵ( 1 - x2 )y                  dt
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linearity, dependent on the system being 
modeled. Leonhard Euler �rst proposed 
this method of solving second order 
equations by reducing them to �rst order 
in the 1700s, when he developed the 
technique of using an integrating factor 
to solve di�erential equations [20]. Van 
der Pol also examined the response of the 
oscillator to periodic forcing, modeled as:

where ϵ determines the frequency of self-
oscillations, while the F cos             term
introduces a frequency of periodic 
forcing [15]. Tin is the term for an 
induced electrical current. With this 
system, Van der Pol found irregularities 
in the electrical impulses that he could 
hear by inserting telephone receivers into 
the circuits [15]. When periodic forcing 
is added to a system, its solutions behave 
seemingly unpredictably [16]. �is 
had been seen already with Poincare’s 
return map of the asteroid, where the 
periodically varying gravitational forces 
on the asteroid demonstrated a similar 
e�ect. Although Van der Pol did not 
identify the underlying structure of a 
chaotic system, the irregularities in his 

circuit were an example of deterministic chaos, demonstrated in 
this system when nonlinearity is su¥ciently strong [15]. 

In the 1960s, Edward Lorenz was studying meteorology 
at the Massachusetts Institute of Technology (MIT). Somewhat 
accidentally, Lorenz came across the phenomenon of sensitivity 
to initial conditions; he noted that the same calculation, when 
rounded to three-digit rather than six-digit �gures, came to 
di�erent solutions that were ampli�ed exponentially with 
iterative multiplications [1]. 

In his study of the initial conditions and subsequent 
modeling of weather patterns, Lorenz saw the same results with 
these climate models that he had seen in the dynamics of his own 
calculations. Lorenz presented his models of chaotic systems in 
1972, when he introduced the concept of the butter«y e�ect. 
�is concept is one of sensitivity to initial conditions: the mere 
«ap of a butter«y’s wings may drastically a�ect global climate 
systems. �e computer graphic of his chaotic system was the 
�rst representation of an “attractor” [1], which is a speci�c set 
of values toward which a system evolves. It was here, thanks 
to Lorenz, that chaos theory was born. A Lorenz attractor is a 
common model now used to represent chaotic systems similar 
to those of climate dynamics. 

Since the 1960s and the advancement of computing 
technology, we have been able to create models for many 
systems in a similar way to Edward Lorenz’s foundation of 
the chaotic attractor. �ough much climate and biological data  
appear to have been generated randomly by the universe, it can  
actually be modeled with nonlinear dynamical systems, and often  
generates chaos. 

�ough random data sets and those that are generated 
by chaotic mechanisms may look very similar, there are ways to 
tell whether or not a system demonstrates deterministic chaos. 
In order to di�erentiate between random and chaotic data sets, 
one must �rst look at the phase space set of each system. Let 
each point in a phase space have coordinates x = z (n)  and y = z ( 
n+1 ). If the phase space set �lls the two-dimensional space with 
scattered points, this would indicate that the set of data was 

d2x - ϵ (1-x2) dx + x = F cos 2πt

                 dt2                  dt                       Tin 

2πt
Tin
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generated by a random mechanism. Its fractal dimension will be 
very high, meaning that the number of independent variables 
needed to determine a relationship for the data is in�nite. If the 
set does not �ll up the two-dimensional space, it will form some 
object (an attractor) in space with a low fractal dimension [8]. 
�is would demonstrate a deterministic relationship between n 
and n+1. �e fractal dimension of a phase space set is usually a 
non-integer value. �e smallest integer that is greater than or 
equal to this value is the number of independent variables in the 
deterministic relationship [8]. 

To summarize, in a randomly generated data set there will 
be an in�nite number of factors that determine the results, and 
therefore the dimension of the phase space set is in�nite. In a 
data set that shows deterministic chaos, the fractal dimension 
will approach a non-integer constant [8]. �is is the essence 
of chaos theory. As we will see, this theory is applicable to 
irregularities in the cardiovascular system, and can help us 
mathematically understand abnormalities of the human heart.

�e human heart has approximately two billion muscle cells [6]. 
�e sinoatrial node is a group of cells in the right atrium that 
sends out regular electrical impulses every time the heart beats. 
�ese impulses cause the right atrium to contract, and they set a 
person’s heart rhythm, referred to as their regular sinus rhythm. 
�e atrioventricular node is located between the right atrium 
and right ventricle. �is group of cells sends out a secondary 
set of electrical impulses, causing the ventricles to contract, 
but leaving enough time (about one tenth of a second) after 
each beat for the ventricles to �ll with blood. �ese impulses 
initiate the necessary pulsing of blood throughout the body. It is 
a delicate system; if the electrical impulses are even slightly o�, 
the systole and diastole (contraction and relaxation) of the heart 
muscle will be seriously a�ected. Our bodies must maintain a 
certain blood pressure to push essential nutrients throughout 
the bloodstream. Similarly, the hemoglobin in our blood, which 

carries oxygen to our cells, provides 
for the vital functioning of our organs. 
Maintaining healthy blood pressure and 
heart rate is the essence of our well-
being, which is why it is so important 
for scientists and medical profession-
als to recognize and resolve errors in  
the system. 

Instances of chaos have been 
found in many cardiovascular system 
irregularities, including premature ven-
tricular contractions, atrial �brillation, 
bradycardia, tachycardia, and cardiac 
arrhythmia [11]. Premature ventricular 
contractions are heartbeats that begin in 
ventricles and disrupt normal rhythm, 
causing irregular or skipped beats. Atrial 
�brillation is caused by the presence of 
too many electrical impulses in di�erent 
locations within the cardiac tissue 
[12].  �e spontaneous contraction of 
cardiac muscle �bers results in a lack of 
synchronism between the heartbeat and 
the pulse, so that there is not enough 
blood being pumped to the body’s 
cells [12]. Ventricular tachycardia is an 

III. CHAOS IN THE   
CARDIOVASCULAR SYSTEM

Iterative Multiplications 
Calculations that multiply repeatedly, using 
the previous output as the input for the next 
multiplication.

Periodic Forcing 
A term that represents an external influence 
on the system that repeats after a defined 
time interval.

Isotropic Upon Rescaling 
The shape of the figure remains the same 
despite zooming in to a small piece or zooming 
out to the whole object.
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abnormally rapid heartbeat originating 
in the ventricles, while bradycardia is an 
abnormally slow heartbeat. Arrhythmia 
is a generally abnormal heart rhythm 
[12]. In this paper, these factors of 
irregularity are generally referred to as 
heart rate variability. 

It is incredible to consider how the 
minor imperfections and complexities in 
all living things can in fact be de�ned by 
mathematical principles. Most objects we 
observe in our daily lives have continuous 
curves, but these curves are typically not 
di�erentiable. Self-similarity, the notion 
of the small patterns re«ecting the larger 
patterns of a system, is demonstrated in 
abundance in the natural world. A perfect 
example of this is the snow«ake: upon 
magni�cation, it contains a seemingly 
in�nite number of crystalline patterns 
that re«ect the image of the «ake as 
a whole, so that it is isotropic upon 
rescaling [7]. �ough we are familiar with 
Euclidean geometric �gures, we often 
fail to recognize the inherent complexity 
of the natural structures that surround us. 

Polish mathematician Benoit Mandelbrot �rst introduced the 
term “fractal” in 1975 to characterize these forms [7]. 

Like chaos, a fractal pattern cannot be e�ectively 
conveyed with estimation [7]. For example, if maps had curves 
that estimated the fractal dimension of a shoreline, we would 
not be able to accurately measure its distance or determine the 
shape when trying to land a ship. If the inherent complexity of 
the shoreline is not displayed, the necessary information is lost. 
Many aspects of our physiology demonstrate fractal patterns. 
As in the crystals of a snow«ake or branches of a willow, these 
patterns make up our very cells. Self-similarity can be witnessed 
in the dendrites of nerve pathways, the blood vessels in the retina, 
and the bronchioles in the lungs. �ese self-similar patterns 
throughout the human body may be determined by some very 
basic rules in our genes. Perhaps this is how our bodies can 
display millions of such seemingly intricate structures with only 
100,000 genes to guide their production [8]. �ere is evidence 
that the fractal branching design generates the most e¥cient 
way for blood to travel throughout the body by minimizing the 
work of transport between cells [5]. While the organization of 
the passage of «uid and electrical signals through the body can 
be revealed by fractal analysis, the underlying dynamics of the 
system can be understood by chaos theory.

In his article “Deterministic Chaos and Fractal Com-
plexity in the Dynamics of Cardiovascular Behavior,” Vijay 
Sharma writes, “Deterministic chaos describes a system which 
is no longer con�ned to repeating a particular rhythm, and is 
free to respond and adapt” [5]. Our heart is a perfect example 
of this phenomenon. According to Sharma, the interaction of 
calcium oscillators in the cytoplasm initiate rhythmic changes 
in the diameter of blood vessels, which exhibit chaotic behavior. 
Decreasing the local pressure within vessels by increasing 
their diameter will induce regular periodic dynamics (i.e. non-
chaotic behavior). When resistance vessels are activated, chaotic 

A PERFECT EXAMPLE OF 
THIS IS THE SNOWFLAKE...
IT CONTAINS A SEEMINGLY 

INFINITE NUMBER OF 
CRYSTALINE PATTERNS
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behavior will initiate. Since the sympathetic nervous system 
regulates the level of the resistance vessels, its activity is one 
of the contributing factors to chaotic behavior in vasomotion 
[5]. Using techniques that control initiation of the sympathetic 
nervous system, this chaotic behavior can be arti�cially induced 
in a lab. It has also been shown that chaotic behavior increases 
with increased activity in the parasympathetic nervous system. 
�is may be due to the fact that short-term variation in heart 
rate is predominantly in«uenced by the parasympathetic nervous 
system. �erefore, both sympathetic and parasympathetic 
nerve pathways a�ect long-term heart rate variability, and the 
variability can be modeled using deterministic systems [11]. 

With perfusion pressure control mechanisms, the chaotic 
behavior can be physically increased or decreased. Various drugs 
that a�ect blood vessels can change the heart rate’s sensitivity 
to initial conditions. Studies of mammalian blood pressure 
variability show that nitric oxide inhibitors, for example, decrease 
the chaotic behavior of the system. In 2012, Siroos Nazari and 
his colleagues at Payame Noor University in Tehran modeled 
the intrinsic pacemakers in the heart muscle: the sinoatrial 
(SA) node, atrioventricular (AV) node, and the His-Purkinje 
bundles. �e SA node is recognized as the primary natural 
pacemaker of the heart; it is located in the right atrium and 
generates an electrical current of 60-100 beats per minute. �e  
AV node and His-Purkinje bundle function as a secondary  
system between the right atrium and right ventricle and beat  
at a slower rate [12]. 

Nazari claims that the dynamic behavior of the heart is 
similar to the Van der Pol oscillator. �e model they present uses 
the Van der Pol equations as a starting point, including a term 
for periodic forcing that accounts for electrical stimulation of 
the heart. For the purpose of this paper, I will present the models 

for the SA and AV nodes as follows and 
exclude the �fth and sixth equations for 
the His-Purkinje bundle [10]. 

Sinoatrial Node:

Atrioventricular Node:

dy1 = -d1(x 2-1)y1- c1x1+a1coswt + R1(x1-x3 )—-               1dt

dy2 = -d2(x 2-1)y2 - c2x3 +a2coswt R2(y1-y2 )—-                3dt

Sensitivity to Initial Conditions 
A characteristic of a system that causes minor 
changes in the input values to yield drastically 
different results. This can be tricky, since 
a small error in numerical approximation to 
initial conditions can demonstrate drastically 
different long-term system behavior.

Periodic Forcing 
A term that represents an external influence 
on the system that repeats after a defined 
time interval.

Vasomotion: 
The oscillating changes in the diameter of 
blood vessels. Vasomotion affects blood 
pressure independently from the hearbeat.

       dx3 =
 
y2—-dt

           dx1 =
 
y2   —-

  

dt

6
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�e parameter w represents exter-
nal electrical stimulation and gives the 
term for oscillator frequency. �e coe¥-
cients d1 and d2 a�ect the nonlinearity of 
the system and cause stability of the limit 
cycle. A more stable limit cycle results in 
values that return quickly to the attractor. 
c1  and c2  represent the frequencies of 
the SA node and AV node, respectively. 
R1  and R2  are the coupling coe¥cients 
between nodes. An example of this 
relationship would be if R1 = 0 and R2 > 0, 
then the SA node has an e�ect on the AV 
node, but not vice versa. In another case, 
if R1 > R2, then the AV node has a greater 
e�ect on the SA node [10]. 

Numerical simulations were car- 
ried out in a computer program to 
demonstrate that the model they de-
veloped does capture the dynamics of 
regular sinus rhythm. Various heart 
conditions were taken into account by 
manipulating the coupling coe¥cients 
to represent di�erent interactions of the 
SA and AV nodes. Nazari and his fellow 
scientists concluded that their heart 
model could be chaotic or non-chaotic, 
depending on the size of the nonlinearity 
parameters, d1  and d2 [10]. 

Twenty years prior to Nazari’s 
work, research concerning heart rate 
variability had sparked the interest of 
the mathematical community in North 
America. In 1990, Leon Glass and his 
colleagues at McGill University studied 
heart cell aggregates in chicks and the 
overdrive suppression evident after 

periodic electrical stimulation of the heartbeat. Overdrive 
suppression occurs when the heart rate is overstimulated to the 
point that the intrinsic frequency of spontaneous heart rhythm 
actually slows. �is occurs naturally in the heart, where the 
spontaneous electrical activity of the SA node is of a higher 
frequency than the activity in other nodal �ring sites, such 
as the AV node. �e rapid �ring of the SA node creates an 
increased level of sodium ions, resulting in a chain of chemical 
events that prevent the spontaneous generation of beats in the 
other pacemaker sites [18]. Various other ionic mechanisms 
play a role in overdrive suppression, including extracellular 
and intracellular calcium and potassium imbalance [13]. �is 
study investigated the e�ects of arti�cial stimulation frequency, 
amplitude, and variation. �e scientists measured the number 
of beats between electrical stimulations, and found that the 
spontaneous beats varied with the frequency of arti�cial 
stimulations. Both arti�cial impulses and spontaneous beats 
were found to be coupled in the integer ratios of 1:1, 2:1, and 
2:3, depending on the frequency of arti�cial stimulations, 
demonstrating a nonlinear response [8].

�e mathematicians involved in this research came up 
with a system of nonlinear di�erential equations to model their 
results. �ey began with a piecewise linear approximation to 
the Van der Pol equations to represent the cardiac cycle. Other 
biological oscillators have been modeled in this way since Van 
der Pol’s work with simple sets of ordinary di�erential equations 
[13]. �is model is written as 

where V(t) is the experimentally observed transmembrane 
voltage. �is is the measurement of electrical activity in the heart. 
Essentially, V(t) is the calculation of movement of positive ions 
from intracellular to extracellular space. �is change in voltage 

dV = 1 [y - f (V)]
                                    

dt      ϵ

dy = a(V)
                                          dt  
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is referred to as an action potential. f(V) and a(V) are piecewise 
linear functions of V. ϵ is a positive constant parameter. When 
ϵ is small (0 < ϵ << 1), the oscillations will quickly return to the 
attractor [13].

Since the main assumption of this study is that overdrive 
suppression is a consequence of the outward electrical current, 
the researchers had to include a term for a history-dependent 
hyperpolarizing current (Z). After initiation of an action 
potential, the heart muscle undergoes a refractory period so 
that the ventricles can re�ll completely with blood. �is is the 
depolarization of the heart cell membranes; they close and ionic 
movement becomes inactive. However, if a cell is hyperpolarized, 
the membrane threshold potential will become more negative 
and it will take a stronger than normal stimulus for the cell 
membrane to open and for an action potential to occur.  
Increasing the electrical stimulus that induces a heartbeat will 
increase the number of hyperpolarizing currents generated [18]. 
�e Z term takes into account any previous hyperpolarization 
of the heart cells. So, with each induced stimulus, spontaneous 
generation of action potential is inhibited and the cardiac 
refractory period will be lengthened. 

A term is now added to the second ordinary di�erential 
equation (the term β                ) that a�ects y in the second equa-
tion, and results in a longer duration of the depolarizing phase 
of the cardiac cycle. �is is where overdrive suppression is intro-
duced into the model. In addition, the parameters β and y are 
introduced as positive constants, and  ∆Z is an instantaneous 
positive increment that comes from the onset of action poten-
tial (at time tAP) during ionic movement. δ is the Dirac delta 
function [21].

Z
Z + k

dV = 1 [y - f (V )]                                                  dt      
ϵ

dy = ɑ(V ) - β    Z                                                 dt                      
———  

                                                                           
Z + k

             dZ = -y    Z     + δZδ (t-tAP) 
                                                

dt
           

——
    

                                                                   

     Z+k

Euclidean Geometry 
First introduced in Euclid's famous book The 
Elements (~300 B.C). We are familiar with 
the constructing of lines, circles, and regular 
polygons, but these figures are uncommon in 
the natural world. Non-Euclidean geometry 
includes the fractal patterns discussed in this 
paper.

Piecewise Function 
A function made up of smaller functions on 
sequential intervals that make up the domain 
of the function as a whole.

�e �nal model presented in this study is 
as follows [13]:

�e experiment resulted in the under-
standing that oscillators within the 
cardiovascular system demonstrate mi-
nor variability that is very sensitive to 
initial stimulus. �e time of stimulus 
has a similar e�ect on these oscillators, 
as does periodic forcing on the Van der 
Pol oscillator. �ere is evidence that this 

8
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complex evolution of the rhythmic pattern 
may apply to other oscillating biological 
systems under periodic stimulation [19]. 

�roughout our world, the intrinsic value 
of natural biological processes can be seen 
through chaos theory. From the fractal 
patterns in the naked branches of trees 
to the orbiting asteroids in outer space, 
deterministic chaos plays a role in the 
character of life. With this century’s modern 
computing methods, we are able to capture 
and model these systems in a way that 
scientists never could before, allowing for 
medical innovations that may change how 
humans respond to physiological concerns. 

Original methods used arti�cial 
pacemakers that induced large electrical 
currents to force the heart out of 
irregularities [8]. We can, however, use 
smaller electrical currents that are applied 
at speci�c intervals computed from the 
deterministic relationship between these 
stimulations and heartbeats. Chaos control 
techniques can now be employed by 
scientists to �x the medical complications 
caused by abnormal heart rate variability. 
Smaller impulses in pacemakers can be used 
to stabilize the heartbeat; the technique of 
subtle perturbations can be used to stabilize 
any biological oscillator that demonstrates 
chaotic behavior [11]. By explicitly modeling 
the impulses of the human heart, we are able 
to apply chaos control techniques to modern 
pacemakers, and attempt to reduce the risk 
of heart attacks and other potentially life-
threatening cardiovascular problems. 

IV. CONCLUSION

9
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