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Abstract 

In many games, it is desirable to find strategies for all players that 
simultaneously  maximize their respective worst-case payoffs. A set of 
strategies satisfying this criterion is called a Nash equilibrium. Because 
the search space of possible strategies grows rapidly as the size of the 
game increases, specialized algorithms are needed to efficiently find Nash 
equilibria. In this paper, current equilibrium-finding methods are presented 
and key areas for future work are identified. The first algorithm, due to 
Koller, Megiddo, and von Stengel, computes standard Nash equilibria in 
two-player, zero-sum games. The second algorithm, due to Miltersen and 
Sorensen, extends the method of Koller, Megiddo, and von Stengel to find 
proper equilibria. Both algorithms run in polynomial time in the worst 
case. The hardness of the equilibrium-finding problem for general-sum 
games highlights the need for new approximation methods. 
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1. Introduction 

This paper is a survey of algorithms for finding Nash equilibria and proper 
equilibria in two-player games. A Nash equilibrium in this context is a pair of strategies, 
one for each player, such that each strategy is a best response to the other. In other words, 
no player has incentive to unilaterally deviate from his or her respective strategy. The 
related concept of proper equilibrium imposes additional constraints on acceptable 
strategies. Roughly speaking, proper equilibrium strategies take into account the 
possibility that a player may occasionally make suboptimal choices with small 
probability. In any case, the number of strategies increases exponentially with the size of 
the game. The objective of the research surveyed here is to present efficient algorithms 
for computing strategy pairs that constitute equilibria. An additional goal of this survey is 
to define the current frontiers of research in the field of two-player games and show 
possible directions for future research. 

 
In the remainder of this paper, basic concepts and terminology of game theory are 

introduced. Two algorithms are presented for computing Nash equilibria in two-player, 
zero-sum games. Finally, several promising areas for future work are identified. 

2. Background 

In game theory, a game is a strategic situation involving multiple agents. It  
specifies the choices available to the agents and the payoffs associated with each possible 
sequence of choices. Each agent attempts to maximize the payoff to himself, but his 
actions may depend on both past and future choices of the other players. 



A strategy defines the action a player takes at each of his available choices. The 
particular strategies we are interested in finding satisfy Nash equilibrium, which may be 
defined by example. Suppose that each player P adopts a strategy satisfying the following 
condition: given that the other players’ strategies remain fixed, P may not increase his 
own payoff by changing his strategy. A set of strategies (one for each player) that 
satisfies this condition is called a Nash equilibrium. Strategies may be pure or mixed: a 
pure strategy defines a set action for each possible decision; a mixed strategy is a 
probability distribution over the set of pure strategies. 

 
 A game may be represented as a set of matrices, one for each player, that specify 
the payoff to that player given the strategies of all players. This representation is known 
as the normal or strategic form. Each dimension of a matrix corresponds to the complete 
set of strategies available to a single player. Accordingly, in the case of a two player 
game, we can call one player the row player and the other the column player. 
 
 Alternatively, a game may be represented as a tree whose nodes each belong to 
one of the players and whose edges represent choices by that player. There may also be a 
pseudo-player, called Nature or Chance, representing random occurrences in the game. 
This tree representation is called the extensive form. In a game with imperfect 
information, a node may belong to an information set. Nodes in an information set 
represent distinct states of the game, but to the player who owns them they are 
indistinguishable. Associated with each leaf node is a tuple of payoffs to the players. A 
path from the root to a leaf describes a possible sequence of events in the game from start 
to finish. The probability of a player making a particular sequence of choices under a 
given mixed strategy is called the realization weight of that sequence. If the payoffs to 
each player for any given combination of strategies add up to zero, the game is called 
zero-sum. 
 

The notion of normal form proper equilibrium is a refinement of the concept of 
Nash equilibrium. Proper equilibrium seeks to address certain logical inconsistencies in 
Nash equilibria. In particular, Nash equilibrium does not necessarily require certain 
moves to maximize payoff to the player playing the move, if the information set 
containing the move is reached with zero probability. In that case, the particular move 
chosen is undefined. Assuming players are perfectly rational, this has no impact on the 
game since the suboptimal move can never be reached in the game tree. However, in 
practice, players may make mistakes and make non-equilibrium choices. In such cases, it 
is desirable to capitalize on mistakes made by the opponent in order to maximize one’s 
payoff. Thus, reasonable behavior should be specified at all nodes of the tree, even ones 
that can be reached only by “unreasonable” behavior. 

3. Methods 

 In this section, two algorithms for computing Nash equilibria in two-player games 
are described. The first, due to Koller, Megiddo, and von Stengel, finds standard Nash 
equilibria. The method of Miltersen and Sorensen finds proper equilibria. 
 
 Koller et al introduced an efficient algorithm for computing Nash equilibria in 



two-player games represented in extensive form [3]. Unlike previous methods, this 
algorithm does not require that the game first be converted into normal form. This feature 
represents a significant improvement, since conversion from extensive to normal form 
exponentially increases the size of the game representation. Their method for general-
sum games is equivalent to solving a special case of quadratic programming called the 
linear complementarity problem. No polynomial-time algorithm is known for solving 
LCPs, though they can be solved, for example, by the Lemke-Howson algorithm in 
exponential time. However, in the special case of a two-player zero-sum game, their 
method corresponds to the solution of a linear program, for which polynomial-time 
algorithms (such as Karmarkar’s interior-point method) are known. 
 
 The linear program to be solved to find the column player’s equilibrium strategy y 
in a two-player, zero-sum game is 
 

 
 
The objective function eTp represents the payoff from the column player to the row 
player. e and f are the scalar 1. A is the payoff matrix for Player 1. E and F are 1  m and 
1  n unit matrices, respectively. 
 
 To find the corresponding equilibrium strategy x for the row player, we must 
solve the dual problem. By the theorem of strong duality, a solution to the primal 
problem determines a solution to its dual. The dual of the first program is 
 

 
 
where the variables are defined as in the previous program. 
 
 The solution of these linear programs suffices to determine a Nash equilibrium in 
a two-player, zero-sum game. If the game is in normal form, then the entries of A are 
known simply from the description of the game. However, the method of Koller, 
Megiddo, and von Stengel specifies how these variables are determined in an extensive 
form game. 
 
 In an extensive form game, the entries of E are computed as follows. The first 
entry in the first row is 1 and the rest of the entries in the row are 0. Each other row 
corresponds to an information set, and each column corresponds to a sequence, with the 



first column being the empty sequence. The entries of each row are 1 if the last choice in 
the sequence is a choice in that row’s information set, and -1 in the column corresponding 
to the choice leading into the information set. The entries of x correspond to the 
probability of choosing a given sequence. Then Ex = e corresponds to the constraint that 
the realization weight of a sequence must equal the sum of the realization weights of its 
child sequences. This ensures that the x corresponds to a some mixed strategy, allowing 
us to use the linear program previously defined. The entries of A are determined as 
follows: for each leaf, consider the entry in the matrix (where the rows and columns 
represent sequences belonging to the respective players) which leads to that leaf. The 
entry of the matrix is then the product of all chance probabilities on that sequence times 
the payoff associated with the leaf. All other entries of the matrix are zero. The values of 
y, F, f and B are defined similarly. 
 
 Miltersen and Sorensen have extended the algorithm of Koller, Megiddo and von 
Stengel to compute proper equilibria in two-player, zero-sum extensive games [4]. The 
core of the algorithm is the repeated solution of the following linear programs: 

 
 
and 
 

 
 
where A, F, e, f, and x  are defined as in the Koller, Megiddo and von Stengel method, m 
represents actions that are mistakes for Player 2, v(k) is the value to be gained from 
exploiting mistakes, and t is the payoff to Player 1. The number of iterations required is 
bounded by the number of actions owned by Player 2 in the game tree, and the algorithm 
yields a pair of proper equilibrium strategies. 

 

 



4. Results 

 Both the methods of Koller, Megiddo, and von Stengel and Miltersen and 
Sorensen rely fundamentally on formulating and solving linear programs. Although the 
latter requires the solution of a series of linear programs, the number of such programs is 
polynomially bounded. Therefore, since LPs can be solved in polynomial time (using 
Karmarkar’s algorithm, for example), both methods are in the complexity class P. 
  

Algorithm Output Computation 
Required Complexity Class 

Koller, Megiddo, 
von Stengel [3] 

Standard Nash 
equilibrium 

Single solution of 
linear program P 

Miltersen-Sorensen 
[4] 

Normal form proper 
Nash equilibrium 

Iterated solution of 
linear program P 

 
Table 1: A comparison of algorithms for computing standard and proper Nash equilibria in terms of the 
general method and time complexity. 

5. Discussion 

The algorithms presented here fulfill complementary roles. Koller, Megiddo, and von 
Stengel describe a method for computing standard Nash equilibria that is applicable to 
extensive form two-player games, both zero- and general-sum. In the latter case, it may 
take exponential time. The algorithm of Miltersen and Sorensen computes proper 
equilibria in two-player extensive form games, provided the game is zero-sum. 
  
Algorithm Advantages Disadvantages 

Koller, Megiddo, von 
Stengel [3] 

Operates on extensive form 
representation, applies to 
general-sum games 

Computed strategies may 
not take advantage of 
opponent’s mistakes, in 
general-sum case takes 
worst-case exponential time 

Miltersen-Sorensen [4] 

Operates on extensive form 
representation, eliminates 
certain insensible behaviors 
(e.g., failing to take 
advantage of opponent’s 
mistakes) 

Applies to zero-sum games 
only, proper equilibrium 
concept may be also 
counterintuitive 

 
Table 2: Advantages and disadvantages of the Koller-Megiddo-von Stengel and Miltersen-Sorensen 
algorithms. 

6. Future work 

The main difficulty in this area is that computing equilibria in the general-sum 
case is intractable. It has been shown by Chen and Deng that even in the two-player case, 
computing exact Nash equilibria is complete in a complexity class known as PPAD [1]. 



Evidence suggests that no efficient algorithms exist for such problems [5]. Therefore, 
finding approximate solutions is an important area of current research. -approximate 
Nash equilibrium is a promising idea related to this issue. In an -approximate Nash 
equilibrium, by changing strategy no player may achieve a payoff more than  plus the 
optimal payoff in the exact equilibrium. Currently, the best polynomial time 
approximation algorithm for two-player,  general-sum games achieves  equal to 0.3393, 
where the payoffs have been linearly mapped into the [0, 1] interval [6]. However, note 
that in this result,  is constant. It has been shown that general problem of approximating 
Nash equilibrium to arbitrary  is also PPAD-complete. Thus, it appears that the best that 
may be hoped for in this endeavor is to find a smaller, but still constant, value for . 
Ideally, a theoretical bound on the value of  could be determined. 

 
 An interesting approach to approximation is to cluster strategically-similar nodes 
of the game tree to reduce the problem size [2]. However, the techniques of Gilpin and 
Sandholm seem to be somewhat specific to poker. It would be interesting to discover 
more general techniques for abstracting games via clustering. 
 
 Another contribution that could be made is further refinement of the idea of 
proper equilibrium. Miltersen and Sorensen give an example of a game in which the first 
player has two moves [4]. The first move leads to a state in which the second player can 
make a mistake that has a payoff of 1 to the first player. Player 1’s other move gives 
Player 2 the opportunity to make a mistake that pays 2 to Player 1. According to the 
proper equilibrium concept, Player 1 should make the first move with probability 2/3 and 
the second with probability 1/3, instead of always giving Player 2 the opportunity to 
make a bigger mistake. The justification given is that if Player 1 always made the second 
move, Player 2 could train to avoid making the more costly mistake. However, this model 
of mistakes may not always be logical. For example, if a game is being played at a 
computer, mistakes may result from an accidental input error rather than an erroneous 
decision. In this situation, mistakes could be better modeled as all having equal 
probability. 
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