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ABSTRACT

A homogeneous search for stellar flares has been performed using every available Kepler light curve. An iterative
light curve de-trending approach was used to filter out both astrophysical and systematic variability to detect flares.
The flare recovery completeness has also been computed throughout each light curve using artificial flare injection
tests, and the tools for this work have been made publicly available. The final sample contains 851,168 candidate
flare events recovered above the 68% completeness threshold, which were detected from 4041 stars, or 1.9% of the
stars in the Kepler database. The average flare energy detected is ∼1035 erg. The net fraction of flare stars increases
with g−i color, or decreasing stellar mass. For stars in this sample with previously measured rotation periods, the
total relative flare luminosity is compared to the Rossby number. A tentative detection of flare activity saturation
for low-mass stars with rapid rotation below a Rossby number of ∼0.03 is found. A power-law decay in flare
activity with Rossby number is found with a slope of −1, shallower than typical measurements for X-ray activity
decay with Rossby number.

Key words: stars: activity – stars: flare
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1. INTRODUCTION

Flares occur on nearly all main sequence stars with outer
convective envelopes as a generic result of magnetic
reconnection (Pettersen 1989). These events occur stochasti-
cally, and are most frequently observed on low-mass stars with
the deepest convective zones such as M dwarfs. Solar and
stellar flares are believed to form via the same mechanism: a
magnetic reconnection event that creates a beam of charged
particles which impacts the stellar photosphere, generating
rapid heating and the emission we observe at nearly all
wavelengths. Numerical simulations are now able to describe
much of the physics for solar and stellar flares and their effect
on a star’s atmosphere (Allred et al. 2015).

Flare occurrence frequency and event energy are connected
to the stellar surface magnetic field strength. Reconnection
events on the Sun typically occur around a sunspot pair (or
bipole) or between a group of spots. Surface magnetic field
strength decreases over the life a star, due to a steady loss of
angular momentum, which quiets the internal dynamo
(Skumanich 1972). Older, slowly rotating stars like our Sun
exhibit smaller and fewer starspots, while young, rapidly
rotating stars can produce starspots that are long lived and
cover a significant portion of the stellar surface. Flares are
known to follow this same basic trend (Ambartsumian &
Mirzoian 1975). For example, young T Tauri systems are
known to be highly active with frequent flares (Haro 1957).
Maximal flare energies have also been proposed as a means for
constraining the age of field stars (e.g., Parsamyan 1976, 1995).

The duration of a star’s life in which it produces frequent
large spots and flares may dramatically affect planetary,
atmospheric, and biological processes, and thus impact planet
habitability. This is particularly important for planets around
low-mass stars, whose flares can produce extremely high
amounts of UV and X-ray flux, and whose active lifetimes are
much longer than solar-type stars (West et al. 2008). To better

understand the impact flares might pose for habitability, Segura
et al. (2010) modeled the affect of a single large stellar flare on
an Earth-like planet’s atmosphere. For a single large flare this
study found only a short timescale increase in biologically
harmful UV surface flux, and full planetary atmosphere
recovery within two years. However, due to the possibility of
repeated flaring and constant quiescent UV emission, concerns
remain about UV flux from active and flaring stars, and their
impact on planetary atmosphere chemistry (France et al. 2014).
Given the variety of possible exoplanetary system configura-
tions, it may also be possible for stellar activity and planetary
dynamics to conspire to improve planetary habitability
conditions (Luger et al. 2015). While the impact flares have
on planet habitability is an ongoing topic of research, they pose
a clear difficulty in exoplanet detection and characterization
(Poppenhaeger 2015).
Due to their short timescales and stochastic occurrences,

generating a complete sample of flares for a single star has been
very resource intensive, and has only been accomplished for a
handful of active stars. Contrast between flares and the
quiescent star is also greatest for cooler stars such as M
dwarfs, and has led to fewer flare studies for field G dwarfs.
Flare rates for “inactive” stars like the Sun are largely
unconstrained. However, recent space-based planet hunting
missions like Kepler (Borucki et al. 2010) have started to
collect some of the longest duration and most precise optical
light curves to date. These unique data sets are ideal for
developing complete surveys of stochastic events like flares
from thousands of stars, and have begun to revolutionize the
study of stellar flares. For example, Davenport et al. (2014a)
gathered the largest sample of flares for any single star besides
the Sun using 11 months of Kepler data, and used this
homogeneous sample to develop an empirical template for
single flare morphology. To help characterize the environments
of planets found using Kepler, Armstrong et al. (2016) have
investigated the rates of very large flares for 13 stars that host
planets near their habitable zones. Maehara et al. (2012) have
used Kepler data to show a connection between flare rate and
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stellar rotation in field G dwarfs, in general agreement with
activity–age models.

In this paper I present the first automated search for stellar
flares from the full Kepler data set. The flare event sample
generated here is unique in carefully combining both long- and
short-cadence data to accurately measure each star’s flare rate
over the entire Keplermission. I have also performed extensive
flare injection tests for multiple portions of each light curve,
quantifying the completeness limits for flare recovery over
time. I demonstrate the utility of this large sample by
comparing the flare activity level with stellar rotation and
Rossby number, which reveals a clear connection between
flares and the evolution of the stellar dynamo as stars age.

2. KEPLER DATA

Kepler is a space-based telescope, launched in 2009 as
NASA’s 10th Discovery-class mission, with the goal of
constraining the rates of transiting Earth-like planets around
Sun-like stars. Achieving this science goal required observing a
single large field of view of 115 deg2 with a few-parts-per-
million photometric accuracy, monitoring ∼150,000 stars
simultaneously with a fairly rapid cadence, and observing
continuously for nearly four years. While the exoplanet yield
has been wildly successful (e.g., Jenkins et al. 2015),
Kepler has been equally fruitful in studying the astrophysics
of field stars. For the first time, asteroseismology with
Kepler has provided information on the internal structure of
stars besides our Sun, which places powerful constraints on
their masses, radii, and ages (Chaplin et al. 2010; Chaplin &
Miglio 2013). Kepler ’s precision light curves have also
enabled stellar rotation to be characterized for tens of thousands
of stars (Reinhold et al. 2013; McQuillan et al. 2014), shedding
new light on angular momentum and dynamo evolution.

The unique sample size, light curve duration, and photo-
metric precision makes Kepler an ideal platform for studying
stellar flares. Walkowicz et al. (2011) observed many K and M
dwarfs with prominent flare events in the preliminary
Kepler data release, finding correlations between flare rates,
spectral type (or temperature), and quiescent variability levels.
Defining the rate of large-energy “superflares” on solar-type
stars from Kepler is an important aspect for characterizing
exoplanet habitability and understanding the early life of the
Sun (Maehara et al. 2015). Flares have been observed across a
wide range of spectral types with Kepler (Balona et al. 2015),
and the details of flare morphology in these data are now an
active area of research (e.g., Davenport et al. 2014a; Pugh
et al. 2015).

Kepler observed targets using two cadence modes. The vast
majority of stars were observed using the “long,” 30 minute
cadence mode, and were observed continuously for most of the
Keplermission. A small number of targets were selected for
“short,” 1 minute cadence observations, often for only a
fraction of the Keplermission. Most Kepler flare studies to
date have focused on the long-cadence light curves, which
provide the best data for complete samples of large-energy
events such as superflares. However, flare occurrence
frequency is inversely proportional to the event energy, and
short-cadence data is critical for detecting smaller energy,
shorter timescale events, as well as characterizing the temporal
morphology of superflares.

For this study I analyzed every available long- and short-
cadence light curve from the primary Keplermission, obtaining

the most recently available version of the Quarter 0–17
light curves, known as Data Release 24. Light curves are
stored as .fits tables that contain both the Simple Aperture
Photometry (SAP) data, as well as the Pre-search Data
Conditioning (PDC) de-trended data. Since the PDC light
curve de-trending can be affected by the flares being searched
for, the SAP light curves were used instead, as was done in
Balona et al. (2015). Note that additional errors have recently
been uncovered in the short-cadence data processing, which
impact both the SAP and PDC data for nearly half of the short-
cadence targets.2 The amplitude of these calibration errors is
typically small, but since the impact for each affected target is
not yet known, some caution is urged when interpreting the
rates of the smallest energy flares. Future versions of this work
will utilize Data Release 25 when available in late 2016.
The short- and long-cadence light curve files were analyzed

for every star independently, processing a total of 3,144,487
light curve files from 207,617 unique targets. Since the results
from each light curve file are totally independent, this analysis
was ideal for parallel computing. To facilitate this large number
of light curves I utilized the Western Washington University
Computer Science Department’s Compute Cluster. This Linux-
based cluster has 480 cores, and uses the HTCondor scheduling
system (Litzkow et al. 1988; Thain et al. 2005).

3. FLARE-FINDING PROCEDURE

The process of detecting flares in the Kepler light curves
consists of two steps: (1) building a model for the quiescent
stellar brightness over the course of the light curve, and (2)
selecting significant outliers from this model as flare event
candidates. All light curves from Kepler contain significant
systematic variability due to, e.g., spacecraft adjustments and
calibration errors. Given the high precision of Kepler data,
astrophysical variability from a variety of physical processes is
also observed for many targets on timescales of minutes to
days. This combined systematic and astrophysical variability
results in a complex variety of light curve morphologies that
must be carefully modeled to accurately detect flares. Building
this quiescent light curve model for each target, including both
long- and short-cadence data, therefore is the most difficult
component of this endeavor. The complex, iterative de-trending
scheme laid out here has been arrived at from manual
experimentation. However, each step in the procedure is
designed to remove specific forms of systematic or astro-
physical variability.
The entire codebase for this analysis, including all code to

generate each figure, is open source and available online
(Davenport 2016).3

3.1. Building the Quiescent Light Curve Model

Throughout the description of this procedure each step is
numbered for clarity. (1) First, any data points with the
SAP_QUALITY flag bits 5, 8, or 12 set were discarded, which
removed epochs with a reaction wheel zero crossing, cosmic
ray in aperture, or impulsive outlier detected when co-trending,
respectively. The light curve modeling approach begins by
subtracting long-term variations, which are typically due to
systematic errors in the data. Each light curve file, consisting of

2 For more information see this erratum: http://keplerscience.arc.nasa.gov/
data/documentation/KSCI-19080-001.pdf.
3 http://github.com/jradavenport/appaloosa
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either an entire quarter of long-cadence data or one month of
short-cadence data, is smoothed via the rolling_median
filter from the Python package pandas (McKinney 2010),
using a kernel size of 1/100th the size of the light curve
segment. Additionally, a minimum smoothing kernel size is set
at 10 data points, which corresponds to 10 minutes for short-
cadence or 5 hr for long-cadence data. With this heavily
smoothed light curve a third-order polynomial is fit, which is
then subtracted from the original light curve.

(2) Each light curve is then segmented into regions of
continuous observation, breaking the light curve into individual
portions if there are gaps of data of 0.125 days or larger. Each
continuous segment was required to be at least two days in
duration, and any segment less than two days in duration was
discarded from analysis. These sections are the fundamental
regions of data for the analysis because the systematic noise
properties of the Kepler data can change between them due to
spacecraft adjustments. As such, the light curve modeling, flare
finding, and later the artificial flare injection tests, are all
performed on these continuous sections of the light curves.

(3) The light curve modeling approach within these
continuous segments of data was arrived at through manual
experimentation. Within each continuous region the light curve
is smoothed using the same rolling_median filter
procedure as for the whole light curve, again with a kernel of
1/100 the continuous segment or 10 data points, whichever is
larger. This smoothed light curve segment is fitted with a third-
order polynomial, which is again subtracted from the
original data.

(4) A series of iterative smoothing steps is then preformed to
robustly fit the quiescent light curve shape. A two-pass
smoothing with the rolling_median filter with a two-day
kernel is applied, iteratively rejecting flux values residuals that
are more than five times the Kepler photometric uncertainty or
outside of the 5–95 percentile of the residual distribution.

(5) Using this iteratively smoothed light curve segment,
which should have most large amplitude flares removed, I
search for periodic signals in the data that are typically due to
starspot modulations (e.g., Reinhold et al. 2013; Davenport
et al. 2015). I use the LombScargleFast procedure from
VanderPlas & Ivezic (2015) to search for periodicity. The

largest significant (Lomb–Scargle Power >0.25) peak in the
periodogram is first chosen. If present, the sine function
corresponding to this periodic signal is subtracted from the
smoothed data. This process is repeated until no significant
peak in the periodogram is found, up to a maximum of five
times. The search is limited to 20,000 periods spaced
logarithmically between 0.1 and 30 days. This multi-period
model approach is similar to that used by Reinhold & Reiners
(2013) to search for signals of differential rotation in
Kepler data. The sine curves fit to this data segment are
subtracted from the polynomial-smoothed data from step (3),
which still has flares present.
(6) A three-pass iterative rolling_median filter approach

is then used on the sine-subtracted data, smoothing with a 0.3
day kernel, and iteratively removing outlier points as in step (4)
above. This again removes the largest energy flares from the
light curve.
(7) Using this smoothed light curve segment, which should

have the starspots mostly removed via the sine-fitting and the
flares removed from the median filtering, I perform a 10-pass
least-squares spline fitting. Rather than removing data points
after each pass, the data are iteratively re-weighted (e.g., see
Green 1984) using the per-datum c2 statistic multiplied by a
penalty factor, Q, which is set to a very high value of 400. This
results in outliers that increasingly have less and less weight. A
similar iterative re-weighting least-squares (IRLS) approach
was described in the de-trending module of the exoplanet data
analysis package, Bart.4 Smaller amplitude flares, and the
decay phases of larger flares previously removed, are smoothed
out at this step.
The final model used to represent the quiescent light curve is

defined as the addition of the IRLS smoothed light curve from
step (7), and the multi-sine component from step (5). Examples
of this model compared with the original data are shown in
Figure 1.

3.2. Flare Detection

The model generated above is then subtracted from the
original data in each continuous light curve segment. I then

Figure 1. Two examples of flare star light curves we have analyzed. Kepler SAP_FLUX is shown (black line) with the final quiescent light curve model overlaid (blue
line). Flares recovered in this analysis are highlighted (red lines). Left: short-cadence data from the well-studied M dwarf, KIC 9726699 (GJ 1243). The starspot
modulations for this rapidly rotating system are very stable over many rotations. Right: long-cadence data for KIC 6224062. This M dwarf rotates with a moderate
period (∼8.5 days), and the starspot configuration evolves significantly in amplitude and phase between subsequent rotations.

4 https://github.com/dfm/bart
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cross correlated the model-subtracted light curve with a flare
profile, using the analytical flare template defined in Davenport
et al. (2014a). The flare template is generated with an amplitude
arbitrarily set to 1, and a characteristic timescale t1 2 of two
times the local cadence, 60 minutes for long-cadence data and 2
minutes for short-cadence data. By cross correlating the model-
subtracted data with a flare filter we are effectively taking a
matched filter approach in detecting flares against the noisy
data. Since the cross correlation smooths the flare events out
longer in duration, only flare detection is performed using the
matched filter version of the model-subtracted data, and not
flare energy measurements.

Candidate epochs belonging to flares are found in this
matched filter light curve using a slightly modified version of
the FINDflare algorithm, defined by Equations (3a)–(3d) in
Chang et al. (2015). This algorithm chooses candidate flares as
consecutive epochs are positively offset from the quiescent
model by more than the local scatter in the data, as well as
being offset by more than the formal errors, where each of
these three criteria is governed by scaling factors. I found that
adjusting the scale factor N3, defined in Chang et al. (2015) as
the number of consecutive points that satisfied the model offset
requirements, to N3=2 improved flare recovery for long-
cadence data and did not negatively impact recovery for short-
cadence data. The local scatter within each model-subtracted
light curve segment in my implementation of FINDflare is
determined by computing the median of a rolling seven-data-
point standard deviation. To avoid spurious flare detections due
to spacecraft reheating, as well as erroneous de-trending, flares
are not selected within 0.1 days of the edges of continuous
regions of data. Candidate flare events within three data points
of each other are combined.

Every candidate flare event has several statistics measured
and saved for future analysis. These include the start, stop, and
peak times of the flare, the maximum amplitude in the original
light curve, and the FWHM (in days). Start and stop times of
the flare are defined as the first and last epochs that pass the
FINDflare algorithm. This algorithm can under-report the
actual flare duration, typically due to the slow decay portion of
the flare being mistaken for the quiescent background. While
the matched filtering approach mitigates this, the flare durations
reported are not exact or based on model fits. The normalized
c2 of the flare is then measured, defined as

åc
s

=
-

N

y c1
1i i

i
fl
2

2

2

( )
( )

where yi is the ith flux value of the flare (using the de-trended
fluxes), si is the ith photometric uncertainty, ci is the ith value
from the same region of the iterative quiescent light curve
model, and N is the number of data points contained in the
flare. I also compute the two-dimensional Kolmogorov–
Smirnov (K-S) statistics for the flare, which defines the
probability that the flares and some background sample of
data are drawn from the same population. The K-S test is
computed for both the flare data versus an equal-sized
continuum region around the flare, and the flare versus the
de-trended quiescent model. Finally I calculate the flare
equivalent duration (ED), which is the integral under the flare
in fractional flux units. The ED has units of time (seconds in
this case), similar to how equivalent widths of spectral lines
have units of wavelength (e.g., see Hunt-Walker et al. 2012).

The ED is computed using a trapezoidal sum of the flare data
between the start and stop times defined by the FINDflare
algorithm.

3.3. Determining Flare Energies

The ED values measured above provide a relative energy for
each flare event without having to flux calibrate the Kepler light
curves. As a result the ED values are robust against the
observed variability, both systematic and astrophysical. The
actual energy of the flare emitted in the Kepler bandpass (units
of ergs) can be determined from the ED (units of seconds) by
multiplying by the quiescent luminosity (units of erg s−1).
For each star the quiescent luminosity is estimated in order to

place the relative flare energies on an absolute scale.
Shibayama et al. (2013) accomplish this by assuming black-
body radiation from both the star and flare, as well as a fixed
flare temperature of 10,000 K. However, flare spectra are
known to have both non-thermal emission, and changing
effective temperatures throughout the event (Kowalski
et al. 2013). For this reason it better not to assume a single
flare spectrum, and instead I estimate the distance and
luminosity for each star to determine its quiescent luminosity.
The Kepler Input Catalog (KIC) provides ground-based

photometry for all available stars in the Kepler field of view.
Using Version 10 of this catalog,5 I obtained the g, Ks, and Kp
(Kepler ) photometry for every star in the sample. The -g Ks
color is then used to place each star on to a stellar isochrone
model, which gives an absolute magnitude and mass for each
star. Typical photometric uncertainties from the -g Ks color
propagate to mass uncertainties of ∼0.02 M . This assumes that
all stars in the sample are on the isochrone’s main sequence. A
1 Gyr isochrone from the PARSEC models (Bressan
et al. 2012) with Z=0.019 and no dust extinction is used.
Note that this will yield an incorrect distance for giant and sub-
giant stars. The star’s absolute g K, ,s and Kp (Kepler )
magnitudes are determined by linearly interpolating the
observed g−K color to the gridded values from the isochrone.
The apparent Ks magnitude for each star is used to determine
the distance modulus. The isochrone-derived absolute Kp
magnitude is finally converted from AB magnitudes to a
quiescent luminosity, which is denoted LKp, and is used to
convert flare ED’s to energies. The resulting flare energy that is
calculated does not correct for the spectrum of the flare through
the Kepler bandpass, or for the flare energy emitted outside the
Kepler bandpass, as discussed more in Section 6.

4. TESTING EFFICIENCY WITH ARTIFICIAL
FLARE INJECTIONS

Each continuous section of light curve, defined in Step 2 of
Section 3.1 above, has unique properties of both systematic
noise and astrophysical variability. The accuracy of the de-
trending in each light curve section is naturally dependent on
the local photometric noise and variability. Comparing flare
rates from both long- and short-cadence data requires knowing
the flare completeness for both cadences, as the sampling rate
strongly affects the smallest detectable flares. Flare recovery
efficiency therefore varies between light curve segments, and
must be determined within each to accurately characterize the
true total flare rate for each star.

5 https://archive.stsci.edu/pub/kepler/catalogs/kic.txt.gz
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Given the variable noise and sampling within each light
curve, and the iterative approach of the de-trending procedure
used in flare finding, the uncertainty in flare finding cannot be
analytically computed. Instead, flare recovery efficiency is
empirically determined using artificially injected flares. This is
analogous to the work of Christiansen et al. (2013), who
robustly tested the efficiency in detecting planetary transits
from Kepler data using artificially injected transits. Unlike
Christiansen et al. (2013) I do not utilize the pixel-level data,
and instead inject flares directly into the raw SAP_FLUX light
curves.

The temporal profile of the artificial flares is the empirical
flare model determined in Davenport et al. (2014a). The
analytic form of this model (their Equations (1) and (4))
describes the flare shape using three free parameters: the
impulsive timescale t1 2, the flare’s peak amplitude, and the
time of flare maximum tpeak. Within each continuous light
curve segment 100 fake flares are injected. The tpeak times for
the artificial flare events are spaced randomly throughout the
quiescent, non-flaring portions of each light curve segment.
Each set of 100 fake flares has t1 2 timescales chosen randomly
in the range  t0.5 601 2 minutes, and amplitudes between
0.1 and 100 times the median photometric error of the
respective light curve segment. While Davenport et al.
(2014a) show that their empirical flare model can be used to
identify and decompose complex, multi-peaked flare events,
only classical single-peaked events are injected for the artificial
flare tests here. The decay phase of the injected flares may
partially overlap real or other artificial flares, and as such may
create serendipitous complex events.

The light curve segment with added fake flares is then
processed using the same iterative de-trending and flare-finding
algorithm from Sections 3.1 and 3.2, respectively. Artificial
flares are considered recovered if the flare peak time is
contained within the start and stop times of any resulting flare
event candidates. For this study I do not keep track of how
accurately each artificial flare was recovered, either in duration
or event energy. A detailed analysis of the flare energy
recovery will be used for evaluating and improving future
versions of the code.

The fraction of recovered flares as a function of energy is
then computed for each light curve segment. Simulated flares
are binned as a function of the event energy, using 20 bins of
ED. The locations of these bins were not fixed, and varied
between light curve segments due to the simulated flare
amplitudes being a function of the local photometric uncer-
tainty. Examples of the recovery fraction for two light curve
segments for the M dwarf GJ 1243 (KIC 9726699) are shown
in Figure 2. The recovery fraction is then smoothed using a
Wiener filter with a kernel of three ED bins, and from this
smoothed version the 68% and 90% flare recovery ED is
measured for each light curve segment. These local ED limits
are saved along side each recovered flare for use as
completeness limits in later analysis. In cases where the 68%
or 90% recovery rate is not met, a value of −99 is saved for
these limits.

5. THE FLARE SAMPLE

In this section I describe the flare sample, including selecting
high-probability flare event candidates from each light curve,
and how to combine both the long- and short-cadence data to
determine robust flare rates.

5.1. Flare Statistics

This analysis of every short- and long-cadence light curve
from the Keplermission produced 2,304,930 flare event
candidates. This large number of events includes event
candidates below the 68% completeness threshold for each
light curve segment, spurious detections of non-flares that the
iterative de-trending and flare-finding algorithm did not
remove, and may have detections of real brightening events
that are not flares. The distribution of total number of flare
event candidates per star is shown in Figure 3. This distribution
reveals that most stars have very few flare event candidates,
e.g., only 8149 stars have 25 or more candidate flare events in
their light curves. Stars with very few flares are likely to be
spurious detections.
Given the large number of light curves and flare events the

entire sample could not be manually validated. Instead, further
selection criteria were imposed on the sample to analyze only

Figure 2. Results from recovery tests of artificial flares injected into the Kepler light curves for KIC 9726699 using short cadence (left) and for KIC 6224062 using
long cadence (right). The binned recovery fraction for 100 artificial flares is plotted (black line) along with a Weiner-filter smoothed version (red dashed line).
Recovery fractions of 68% and 90% for the smoothed version are given for reference (heavy blue lines), and are saved for each artificial flare test.

5

The Astrophysical Journal, 829:23 (12pp), 2016 September 20 Davenport



likely flare stars. Specifically, each star in the flare rate analysis
was required to have

1. at least 100 total flare event candidates;
2. at least 10 flare event candidates with energies above the

local 68% completeness threshold.

Note that these criteria are conservative and will exclude stars
with a small number of significant flare detections throughout
their light curves. The KIC (Brown et al. 2011) does provide an
estimate of each Kepler target’s surface gravity ( glog ), which
nominally could be used to remove any giants or sub-giants
from the sample. However, this glog estimate has been shown
to be unreliable for many stars. I carried out the final analysis
including both a cut glog 4 and with no cut on glog . The
population statistics explored in the following sections were not
strongly affected by this cut, but several known dwarf flare
stars from Walkowicz et al. (2011) were erroneously tagged as
giants and removed. Therefore I opted to not include the glog
cut in the final analysis, but note the sample may include some
targets that are not bona fide dwarf stars.

The final sample of flare stars included 4041 targets, or 1.9%
of the stars in the Kepler data, that passed these selection
criteria, with a total of 1,390,796 flare event candidates
recovered. From these candidates, 851,168 events (61%) had
energies over the local 68% recovery threshold determined
from the artificial flare injection tests in Section 4. Summary
statistics for all 4041 stars in this final sample are provided in
Table 1. Figure 4 shows the fraction of Kepler stars that have
detected flares from the final sample of 4041 stars in bins of
g−i color, which is a proxy for stellar temperature (Covey
et al. 2007; Davenport et al. 2014b). The overall fraction of
flare stars in the sample (1.9%) agrees well with total rates from
previous studies of Kepler data, e.g., 1.6% from Walkowicz
et al. (2011). A general trend of increasing rates of flare stars
with decreasing stellar mass (redder g− i color) is seen. Flaring
M dwarfs, seen in the reddest two color bins make up 2.1% of
the M dwarfs in the Kepler field. The large, asymmetric
uncertainties on flare star occurrence rates in Figure 4 are
calculated using the 1-σ (68%) confidence interval from the

binomial distribution (e.g., see Burgasser et al. 2003). These
are consistent with the confidence intervals that would be
computed from previous Kepler studies of flare star occurrence
rates.
The average flare energy detected in the sample is

=Elog 34.6 erg, very close to the ∼1035 erg reported as the
average F star flare energy by Balona (2012). Figure 5 shows
the highest energy flare recovered as a function of stellar g−i
color for each star in the final sample. The striping seen is due
binning of the flare energy. This binning is used to keep track
of flare rates between light curve segments and for comparing
flare energies between stars. For comparison, the Sun has a
g−i color of ∼0.6, and a maximum observed flare energy of
∼1032 erg (Emslie et al. 2012). Assuming this is the maximum
flare energy the Sun is currently capable of producing, a dearth
of objects with similarly low activity levels is recovered in this
sample. The sample does contain, however, many G dwarfs
that produce superflares.
Most G dwarfs show a peak flare energy of ∼1037 erg,

consistent with the maximum flare energy found by Wu et al.
(2015). However, the highest energy flares in the sample
appear to be nearly two orders of magnitude larger than this
limit. Note that dust extinction has not been accounted for in
the broadband color isochrone-fitting approach for determining
the quiescent luminosities. Dust has the effect of making star
appear fainter, and thus the distance becomes overestimated.
This may be why larger flare energies are found than in
previous studies such as Maehara et al. (2015). The Gaia
mission (Eyer et al. 2013) will provide vastly improved
distance estimates for nearly all of these nearby stars, which
will help determine the true maximum flare energy observed by
Kepler.

5.2. Flare Rates from Long- and Short-cadence Data

Flare rates for stars and the Sun have long been described
using the cumulative Flare Frequency Distribution (FFD; e.g.,
Lacy et al. 1976). The FFD is preferred because flares occur
stochastically and span many orders of magnitude in energy
and duration. Flare frequency is typically modeled with a
power-law function, which shows many small-energy flares
and very few large-energy events. In the the case of the Sun this
power law is traced over ∼8 orders of magnitude in observed
flare energy (Schrijver et al. 2012; Maehara et al. 2015).
For all 4041 stars in the final sample a FFD is generated.

Unlike Maehara et al. (2015) and references therein, I do not
produce combined flare frequency distributions for aggregates
of stars within spectral type bins, and instead study each star
individually. Figure 6 shows two examples of FFDs for
previously known Kepler flare stars.
Correctly combining data from different continuous light

curve segments (including long- and short-cadence data) to
make a single FFD is non-trivial. The varying completeness
limits and noise properties mean each light curve segment can
potentially probe different flare energy regimes. The artificial
flare injection tests allow us to analyze only the range of
energies that each light curve segment can detect. Any effort to
search for changes in flare rates over time must take this
varying efficiency into account, or non-physical turnovers or
breaks in the FFD may appear.
For each month of short-cadence or quarter of

long-cadence data I compute an FFD that is truncated at
the low-energy end by the average of the local 68% flare

Figure 3. Histogram of number of flare event candidates per star. This includes
the entire sample of 2,304,930 flare event candidates from 207,617 stars. For
the vast majority of stars the event candidates have small energies and are
likely spurious detections that the iterative de-trending algorithm failed to
remove.
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recovery limits defined within that portion of the light curve.
These are shown in the two examples in Figure 6 color coded
by cadence type. To combine data from these different
cadence modes, every FFD is sampled at a fixed set of
energies using log-uniform bins of =Elog 0.1 erg. The mean
flare rate is computed in each FFD bin that has any valid data
(flares above the 68% completeness threshold). This results
in a single FFD for each star, which is overlaid for the two
examples in Figure 6. Uncertainties in the flare frequency in
this combined FFD are computed for each energy bin using
the asymmetric Poisson confidence interval approximations
from Gehrels (1986). Each combined FFD is then fit with a
weighted least-squares power law, and the coefficients saved
for future ensemble analysis.

The FFD for the highly active, rapidly rotating M4 dwarf, GJ
1243, has been previously studied using Kepler data (Ramsay
et al. 2013; Davenport et al. 2014a; Hawley et al. 2014). These
studies have found that a constant power-law slope describes
the FFD up to energies of 1033 erg using only the short-cadence

Kepler data. In Figure 6 I find that this power law extends more
than an order of magnitude higher in energy due to the addition
of studying the 14 quarters of long-cadence data. Unfortunately
the iterative flare-finding algorithm does not sufficiently
recover flares with energies lower than ~Elog 31.5 erg for
GJ 1243. The break in the power law reported in the human-
validated sample from Hawley et al. (2014) below

~Elog 31 erg can therefore not verified.
The FFD for the flaring G dwarf, KIC 11551430, shows a

remarkable rate of superflares of nearly one per day in the
analysis. The highest energy flares for this star are in excess of
1036 erg. Interestingly, the weighted least-squares power-law fit
to the FFD for KIC 11551430 in Figure 6 shows a significant
deviation from a single power law at the high-energy end. Such
a break has been suggested for superflare stars previously
(Chang et al. 2015; Hudson 2015), and lends weight to the
indication by Wu et al. (2015) of a maximum flare energy
around 1037 erg for G dwarfs.

Table 1
Summary Statistics for the Final 4041 Flare Star Sample

KID # g−i Mass Prot Nflares Nflares L Lfl Kp s L Lfl Kp( ) α β

(mag) M( ) (days) >E E68( )
10000490 K 1.38 K 241 45 4.31×10−5 1.48×10−7 18.83 −0.55
10001145 0.013 1.60 K 271 61 5.18×10−5 1.43×10−8 48.85 −1.40
10001154 1.404 0.72 K 118 115 1.43×10−5 1.64×10−8 17.34 −0.56
10001167 1.151 0.77 K 147 131 7.24×10−5 2.67×10−8 12.79 −0.41
10002792 1.393 0.73 1.165 225 210 4.10×10−4 3.38×10−7 16.81 −0.52
10002897 0.079 1.49 K 155 146 6.35×10−5 4.56×10−7 11.18 −0.28
10004510 1.449 0.71 1.373 142 128 7.23×10−4 2.40×10−7 13.82 −0.43
10004660 −0.252 1.88 K 135 68 2.19×10−5 6.49×10−9 64.71 −1.83
10005966 1.318 0.74 K 175 143 3.26×10−5 1.27×10−8 25.21 −0.79
10006158 1.184 0.77 K 279 237 5.61×10−5 1.40×10−8 27.63 −0.85

Note. Masses are determined from isochrone fits using the g−K color provided in the KIC, as described in Section 3.3. Rotation periods come from McQuillan et al.
(2014). α and β are the power-law fit coefficients to the FFDs.

(This table is available in its entirety in machine-readable form.)

Figure 4. Fraction of stars that pass the final flare sample cuts as a function of
their g−i color. Horizontal bars show the range of color within each bin.
Vertical uncertainties shown are computed using the 1-σ (68%) binomial
confidence interval. A general but weak trend of increasing total flare
occurrence with decreasing stellar temperature (redder g − i) is seen.

Figure 5. Maximum flare energy per star vs. g−i color for the 4041 stars in
the final sample. The discretization of flare energies, apparent as “stripes” in
flare energy in the figure, is due to binning of the flare sample used to combine
flare rates between light curve segments.
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6. STELLAR FLARES AND ROTATION

Rotation is directly linked to the generation and strength of
stellar magnetic fields. Stars lose angular momentum as they
age via magnetic braking, which in turn decreases the strength
of the stellar magnetic dynamo over time. This age–rotation–
activity connection was first illustrated by Skumanich (1972).
As a result, the use of rotation periods to infer or constrain
stellar ages has recently become popular (e.g., Barnes 2007;
Mamajek & Hillenbrand 2008; van Saders et al. 2016).

The decay in magnetic field strength with stellar rotation
evolution has also been explored using various magnetic
activity indicators. Wright et al. (2011), for example, measured
a decrease in the X-ray luminosity as low-mass stars spun
down, demonstrating a clear connection between the magne-
tically driven coronal activity and stellar rotation. Similar decay
profiles of chromospheric activity with rotation have been
observed using indicators such as Hα line emission strength
(Douglas et al. 2014).

Flares are a highly localized manifestation of stellar surface
magnetic fields. The evolution of stellar flare rates and
properties with stellar rotation has been explored with limited
ground-based flare samples (Skumanich 1986). Recent work
with Kepler flares has indicated a decreasing rate of superflares
for solar-type stars with increasing rotation periods (Maehara
et al. 2015). Total flare frequency for KeplerG, K, and M
dwarfs that have superflares has also been shown to decay with
slowing stellar rotation (Candelaresi et al. 2014). Though a
detailed analysis of flare rates with stellar age is beyond the
scope of this paper, in this section I will point out interesting
trends with rotation seen in this sample.

To compare flare rates between stars, the information content
within the FFD must be reduced from the two parameters in the
power-law fit to a single quantity that describes the star’s total
flare activity level. Such a metric can be constructed in varying
ways. For example, the cumulative rate of flares per day
(vertical axis in Figure 6) could be measured at a fixed,
standard energy. While this standardized flare rate metric is not
used for the analysis shown here, it is briefly described here for

use in future ensemble flare studies. Using the average flare
energy from the Kepler sample presented here, a benchmark
flare rate could be evaluated at 1035 erg for all stars. The
interpretation of this rate is simple and potentially useful for
observers, and its measurement benefits from the careful
investigation of flare completeness for each star described in
Section 4. However, there are several important limitations in
measuring such a quantity. Many stars do not exhibit flares at
this particular energy, either for their rarity at such high
energies (e.g., flaring M dwarfs), or from faint stars where only
the largest superflares are detected. The power-law fit to the
FFD can be evaluated at this benchmark energy, extrapolating
the flare rate estimation beyond the observed energy range.
However, the accuracy of this fit flare rate is limited due to the
possible presence of significant breaks in the FFD power-law
shape as shown in Figure 6 at the high-energy end, or by
Hawley et al. (2014) at lower flare energies. Also, errors in the
quiescent luminosity calculation for each star due to factors like
interstellar dust correction and isochrone fitting will impact the
flare energy estimates, possibly giving inaccurate flare rates at
the specified standard energy.
Instead, the total fractional flare luminosity in the

Kepler bandpass, L Lfl Kp, is used to characterize each star’s
flare activity level. This quantity was previously introduced in
Lurie et al. (2015) to compare the flare yields from the two
members of a wide M+M dwarf binary system observed with
Kepler. This metric is calculated by summing up all the flare
EDs for each star, and gives the relative luminosity a star
produces in flares across the Kepler bandpass within the
observed energy range. This quantity has the advantage of
being easily calculated without the need for flux calibrating the
light curve or assuming a stellar distance, and is qualitatively
similar to other classical indicators of stellar magnetic activity,
such as L LX bol and aL LH bol.
Note that this quantity could be normalized to the stellar

bolometric luminosity, by computing L LKp bol. Generating this
normalization would be analogous to the creation of the “χ
factor” used to convert Hα equivalent widths into aL LH bol.

Figure 6. Left: cumulative flare frequency diagram from all 14 long-cadence quarters (red lines) and 11 short-cadence months (blue lines) for the active M dwarf GJ
1243. The flare rate has been sampled using bins of logarithmic energy. Note that the low-energy cutoff for each data file has been set to the average local 68% flare
recovery completeness limit. The average flare frequency distribution is computed by taking the mean in each bin for all files above their respective completeness
limits (black line). Uncertainties shown are computed using the Poisson distribution. A weighted least-squares power-law fit to the data is computed, which describes
well the entire observed flare energy distribution (dark blue line), with power-law fit coefficients listed. Right: same diagram for the flaring G dwarf KIC 11551430
(nicknamed “Pearl” by David R. Soderblom). Unlike GJ 1243, a break is apparent in the flare frequency distribution power law at high energies.
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The Hα χ factor accounts for the changes in the spectral
continuum shape and contrast between stars of different
spectral types. A comparable “flare χ” to convert L Lfl Kp into
L Lfl bol would require both a correction for the stellar spectrum
across the Kepler bandpass, as well as an estimation of the
spectral energy distribution of the flare throughout the event.
This latter term requires a unified model of white light emission
for both simple (single-peaked) and complex (multi-peaked)
stellar flares (Allred et al. 2015).

The uncertainty for L Lfl Kp is calculated by adding in
quadrature the uncertainties on the ED from every flare. This
uncertainty on ED for each flare is computed as

s
c

=
n

ED
2i

i

i i

ED,

2

2
( )

where EDi is the flare’s ED, and ni the number of data points
contained in the flare. The c2 here is the typical reduced
goodness-of-fit metric computed for each flare in Equation (1).
In this way, which may be counterintuitive, larger values of c2

indicate more certainty in flare detection, and in turn yield a
smaller error on the total L Lfl Kp computed for a star.

From the final sample of 4041 flare stars, 402 targets had
rotation periods of at least 0.1 days measured from the
ensemble analysis of McQuillan et al. (2014). These rotation
periods were determined using the auto-correlation function,
which is less prone to detecting period aliases as compared to
Lomb–Scargle approaches. These periods have been well
vetted, and compared against independent measures of rotation
in the Kepler data (Reinhold et al. 2013). Additionally, the
sample of stars with reported rotation periods from McQuillan

et al. (2014) are not known to have significant contamination
from giant stars. While the de-trending and flare detection
algorithm featured in this work (Section 3.1) does fit sine
curves to the the continuous portions of the light curve, at
present it does not report a characteristic period for each object.
Future work with updated version of the algorithm and newer
releases of Kepler data will investigate the possible correlation
between the McQuillan et al. (2014) rotation periods and the
periods determined by this de-trending algorithm.
In Figure 7 I show the relative flare luminosity versus

rotation period for the 402 stars with valid periods, separated
into six bins of the stellar g−i color. Using Table 4 from
Covey et al. (2007), these g−i color bins correspond to
spectral type ranges of G0–G8, G8–K2, K2–K5, K5–M0, M0–
M2, and M2–M4, respectively. In total 357 stars fall within the
color bins shown in Figure 7. There were 45 additional objects
with KIC colors bluer than - =g i 0.5, i.e., with spectral
types of A and F. While it is surprising to detect flares or flare-
like events from such early type stars given their lack of deep
convection zones, they have been reported previously in the
Kepler data (Balona 2012).
The earliest spectral type (bluest) bin in Figure 7 shows only

a weak correlation between relative flare luminosity and stellar
rotation period. The large scatter in this diagram, especially for
the stars with very high levels of flare activity, may be due to
outliers in the sample from binary stars, or stars with
anomalous flare-like events as seen in the A and F stars noted
above. However, stars in this mass range with rotation periods
less than ∼10 days are also considered to be in the “super-
saturated” dynamo regime (e.g., Argiroffi et al. 2016). Stars
with saturated dynamos have a high level of magnetic activity,
and show a decoupling between magnetic activity indicators

Figure 7. Relative flare luminosity vs. rotation period for six cuts in -g i( ) color space, which correspond to approximate spectral type ranges of G0–G8, G8–K2,
K2–K5, K5–M0, M0–M2, and M2–M4. Each data point represents the total flare luminosity for a star that passes the sample cuts described in the text, and has a valid
rotation period from McQuillan et al. (2014). The number of stars in each bin is indicated in the panel titles. A significant decrease in flare luminosity is seen as a
function of rotation period for each subsample.
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and their rotation periods. The mechanism behind the observed
magnetic activity saturation is debated. Given the lack of G
dwarfs with long rotation periods in McQuillan et al. (2014),
and thus in the sample of 402 stars presented here, it is not clear
that any strong or coherent evolution in flare activity with
rotation should be expected for this bluest bin.

For stars with - >g i 0.75 (spectral types later than
approximately G8) in Figure 7, a significant trend in flare
activity is seen with rotation period. A saturation-like regime is
seen at short periods, and power-law decay for rotation periods
longer than ∼1 day. For stars in the reddest bin ( - >g i 2.5,
spectral type M2–M4), the paucity of targets with very short
rotation periods means only a power-law decay is observed.
There are too few stars with spectral types later than M4 to
investigate the evolution of flare activity with rotation across
the “fully convective boundary.” This form of saturation and
decay profile of magnetic activity has been observed using
several other metrics. X-ray luminosity for low-mass stars
saturates at rotation periods of a few days (Pizzolato
et al. 2003; Wright et al. 2011). Ultraviolet excess emission
appears to follow X-ray luminosity for young stars, with a
similar saturation regime (Shkolnik & Barman 2014).

Stellar activity indicators are often compared between low-
mass stars with a range of masses by normalizing the rotation
period to a dimensionless rotation indicator. The Rossby
number is commonly used for this purpose, and is defined as

t= PRo rot , where τ is the (model derived) convective
turnover timescale that is a function of stellar mass. In this
way Rossby number gives a mass-independent metric for the
star’s rotation, which is useful for comparing to manifestations
of magnetic activity. For example, Candelaresi et al. (2014)
have investigated superflare rates in Kepler as a function of
Rossby number. Masses for stars in the final flare sample
presented here are determined using the isochrone fits
described in Section 3.3. The τ values are computed using
Equation (11) from Wright et al. (2011), which are then used to
convert rotation periods from McQuillan et al. (2014) into
Rossby number.

In Figure 8 I present the relative flare luminosity as a
function of Rossby number for stars with spectral types later
than G8. A clear decay in flare activity with increasing Rossby
number (or rotation period) is seen. Following other studies of
activity evolution with Rossby number (e.g., Wright
et al. 2011), a simple piecewise model can be used to fit the
data in Figure 8, with a constant (flat) level of activity up to a
critical Rossby number, and a single power-law decay for
larger values of Ro. The data in Figure 8 were fit using this
piecewise function and a weighted least-squares fitting routine,
yielding saturated relative flare luminosity, critical Rossby
number, and power-law slope values of

b

=- 

= 
=- 

-L Llog 2.99 0.03

Ro 0.036 0.004
0.97 0.06 3

fl Kp
1

sat

sat

[ ( )]

( )

respectively. The critical Rossby number separating the
saturated and decay regimes of Rosat is much smaller than
the typical value of 0.1 found using X-ray activity, indicating
that stellar flares become coupled to a star’s angular momentum
evolution sooner than the coronal X-ray emission (Pizzolato
et al. 2003). Wright et al. (2011) point out that the saturation
threshold Rossby number is not universal among

chromospheric and coronal activity indicators, and that
Marsden et al. (2009) find a break as low as Ro∼0.08 using
Ca II emission.
The power-law decay in flare luminosity shown in Figure 8

is slower than for X-ray luminosity or L LX bol, which typically
is found to decay with a power-law slope of b ~ -2 (Wright
et al. 2011). A similarly shallow decay with Rossby number of
b ~ -1 was indicated for chromospheric Hα emission in two
open clusters by Douglas et al. (2014). Flare activity has been
suspected as a cause for the heating of both the stellar
chromosphere and coronae (Skumanich 1985), and flares have
repeatedly been shown to be a probable cause of quiescent
coronal emission (e.g., Kashyap et al. 2002). The similar
evolution of Hα emission and flare activity found in this work
is further suggestion toward a connection between flares and
chromospheric heating.
The data in Figure 8 can also be fit using a single power-law

decay, with no saturation regime. Using this model a power-
law decay slope of b = - 0.77 0.04 is found. This single
power law has nearly the same quality of fit as a broken power-
law model using the reduced c2 parameter. The Bayesian
Information Criterion (BIC) can be used to determine which
model is preferred by penalizing additional degrees of freedom
or parameters in the model. A more complicated model is
typically preferred if the BIC improves by at least two. I
calculated the BIC for both the single and broken power-law
models as c= + ´k nBIC ln2 ( ), where k is the number of
free parameters in the model and n is the number of data points
contained in Figure 8. The broken power-law model had a BIC
value 6% larger than the single power law, indicating the
simpler model is slightly preferred for this data.
Interestingly, when each subsample shown in Figure 7 is

fitted with these two models, the picture becomes less clear.
The broken power-law model is preferred by the BIC for the

Figure 8. Relative flare luminosity vs. Rossby number (Ro) for the final sample
of flare stars in the color range < - <g i0.75 3. Convective turnover
timescales (τ) are derived from Equation (11) of Wright et al. (2011).
Uncertainties in the total relative flare luminosities, described in the text, are
smaller than the data points shown. A clear trend is seen in this diagram, with
flare activity decreasing at larger Rossby numbers. Two models are shown for
comparison: a single power law with slope of −0.77 (blue dashed line) and a
broken power law (red solid line) as is typically used to describe magnetic
activity vs. Rossby number. The “saturated” regime suggested by the latter
model occurs at Ro∼0.03, and a power-law decay with slope ∼−1 dominates
to high Ro.
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two bluest (highest mass) samples, while the single power-law
model is slightly preferred for the reddest two (lowest mass)
samples. As the statistical errors on L Lfl Kp are far smaller than
the scatter shown in Figures 7 or 8, it is not clear if the change
in flare activity with Ro can be described by either the single or
broken power-law model for all stars.

7. SUMMARY AND DISCUSSION

I have presented a homogeneous search for stellar flares
using every available light curve from the primary four-year
Keplermission. A final sample of 4041 flare stars was
recovered, with 851,168 flare events having energies above
the locally determined completeness limit. This analysis
included extensive completeness testing, using artificial flare
injection and recovery tests throughout each light curve to
determine the flare recovery efficiency as a function of time.
While these tests provide a robust and straightforward means to
estimate the event recovery efficiency, they currently do not
estimate how accurately artificial flare event energies were
reproduced. Future improvements to the flare-finding algorithm
could keep track of the recovered energy and duration for every
simulated flare. The light curve de-trending algorithm may also
be simplified by using more advanced techniques, such as
continuous autoregressive moving average-type models to
describe the many forms and timescales of variability at once
(e.g., Kelly et al. 2014).

As a demonstration, in Figure 6 I have shown one example
of a deviation or break from a single power law in flare
occurrence at large flare energies. However, many other active
stars show similar breaks at large flare energies in this sample.
A systematic follow-up study of FFDs is needed to determine if
this break is common among young solar-type or low-mass
stars, which will be impact detailed studies of superflare
occurrence. The maximum flare energies recovered in this work
are also much higher than previous studies, with a small
number of stars in Figure 5 exhibiting up to 1039 erg events.
These events may be the result of errors in either the light curve
de-trending leading to spurious flare events, or the quiescent
luminosity determination yielding incorrect energies for real
events. Note also that small offsets between flare energies
calculated with short- and long-cadence data are seen, as in
Figure 6. This may be largely an effect of the respective light
curve sampling (e.g., see Maehara et al. 2015).

From the final sample of 4041 flare stars, 402 were found to
have published rotation periods from McQuillan et al. (2014).
A striking evolution of flare activity with stellar Rossby
number is seen. This evolution includes a possible saturated
flare regime for rapidly rotating (low Rossby number) stars,
and power-law decay that is qualitatively similar to previous
results for chromospheric Hα emission. The tentative discovery
of a flare saturation regime gives credence to the model of
magnetic activity reaching a peak level due to a maximum
filling factor of small-scale active regions on the surface
(Vilhu 1984). However, the Rossby saturation limit (Rosat) and
the power-law decay slope do not match expected values from
most previous studies of magnetic activity saturation and
evolution. Since the sample of flare stars is biased more toward
K and M dwarfs than most studies of coronal or chromospheric
saturation, the smaller Rosat value may indicate that lower mass
stars have different saturation limits than solar-type stars (West
& Basri 2009). Alternatively, this result may indicate that flare
activity traces a fundamentally different component of the

stellar surface magnetic field. The connection between white
light flares, chromospheric emission, coronal heating, and the
generation of the magnetic dynamo clearly deserves further
observational investigation. Given the varied dependance on
Rossby number that these related manifestations of magnetic
activity have shown, the dependence of Rossby number as the
fundamental metric for tracing dynamo evolution is uncertain
(Basri 1986; Stepien 1994).
The large sample of flares observed by Kepler enables a new

generation of statistical studies of magnetic activity. This may
yield power advances in constraining stellar ages via flare rates
or maximum flare energies, known as “magnetochronology.”
The uniformity of flare activity evolution can be tested using
wide binary stars or stellar clusters, many of which are being
observed by the Kepler and K2 missions. Beyond the total flare
activity levels for ensembles of stars, the temporal morphology
of individual flare events may shed new light on the formation
of “classical” versus “complex,” multi-peaked flares, as
discussed by Davenport et al. (2014a), Balona et al. (2015),
and Davenport (2015). Modeling the detailed structure of these
complex events will help in detecting rare “quasi-periodic
pulsations” in flares (Pugh et al. 2015). Finally, the statistical
knowledge we gain from Keplerwill enable more accurate
predictions of flare yields from future photometric surveys.
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