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Abstract. Large Mississippi River (MR) diversions (peak water flow >1416 m3/s and sediment loads
>165 kg/s) have been proposed as part of a suite of coastal restoration projects and are expected to rehabili-
tate and rebuild wetlands to alleviate the significant historic wetland loss in coastal Louisiana. These
coastal wetlands are undergoing increasing eustatic sea-level rise, land subsidence, climate change, and
anthropogenic disturbances. However, the effect of MR diversions on wetland soil organic carbon (SOC)
sequestration in receiving basins remains unknown. The rate of SOC sequestration or carbon burial in wet-
lands is one of the variables used to assess the role of wetland soils in carbon cycling and also to construct
wetland carbon budgets. In this study, we examined the effects of MR water and sediment diversions on
landscape-scale SOC sequestration rates that were estimated from vertical accretion for the next 50 yr
(2010–2060) under two environmental (moderate and less optimistic) scenarios. Our analyses were based
on model simulations taken from the Wetland Morphology model developed for Louisiana’s 2012 Coastal
Master Plan. The master plan modeled a “future-without-action” scenario as well as eight individual MR
diversion projects in two of the hydrologic basins (Barataria and Breton Sound). We examined the effects
that discharge rates (peak flow) and locations of these individual diversion projects had on SOC sequestra-
tion rates. Modeling results indicate that large river diversions are capable of improving basin-wide SOC
sequestration capacity (162–222 g C�m�2�yr�1) by up to 14% (30 g C�m�2�yr�1) in Louisiana deltaic wet-
lands compared to the future-without-action scenario, especially under the less optimistic scenario. When
large river diversions are placed in the upper receiving basin, SOC sequestration rates are 3.7–10.5% higher
(6–24 g C�m�2�yr�1) than when these structures are placed in the lower receiving basin. Modeling results
also indicate that both diversion discharge and location have large effects on SOC sequestration in
low-salinity (freshwater and intermediate marshes) as compared to high-salinity marshes (brackish and
saline marshes).

Key words: Barataria Basin; Breton Sound Basin; Louisiana; Mississippi River; sea-level rise; sediment diversion; soil
organic carbon sequestration; subsidence; vertical accretion.
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INTRODUCTION

Large Mississippi River (MR) diversions have
been proposed for coastal restoration to rehabili-
tate and rebuild wetlands to alleviate significant
historic wetland loss in coastal Louisiana (Day
et al. 2009, Allison and Meselhe 2010, Allison
et al. 2014). The Louisiana wetland loss crisis is
mainly caused by the combination of eustatic
sea-level rise (SLR), subsidence, and reduced
sediment supply due to the construction of dams
and levees along the MR (Blum and Roberts
2009). These dams and levees restrict the distri-
bution of wetland-building mineral sediments
and associated nutrients onto the deltaic plain.
River diversions, akin to punching holes in exist-
ing levees, reintroduce freshwater and mineral
sediments to degraded wetlands (Allison and
Meselhe 2010, Allison et al. 2012, 2013, Kolker
et al. 2012, Nittrouer et al. 2012) and, in the
process, enhance marsh vertical accretion and
surface elevation when sediment loads are suffi-
cient (DeLaune et al. 2003, 2013, Lane et al. 2006,
Day et al. 2011, Couvillion et al. 2013, Wang
et al. 2014) which, in turn, could potentially
mitigate the effects of climate change, specifically
rising sea levels.

Other ecological benefits of freshwater and sed-
iment diversions (hereafter, “diversions”) include
removing elevated nitrates in river water before
discharge into the Gulf of Mexico (DeLaune et al.
2005, Wang et al. 2011, Rivera-Monroy et al.
2013, VanZomeren et al. 2013), increasing marsh
primary productivity (both aboveground and
belowground; Twilley and Nyman 2005, Day
et al. 2012), and, potentially, increasing rates of
soil organic carbon (SOC) sequestration (DeLaune
and White 2012, DeLaune et al. 2013). Soil
organic carbon sequestration is defined as “the
process of transferring CO2 from the atmosphere
into the soil of land unit through unit plants,
plant residue, and other organic solids, which are
stored or retained in the unit as part of the soil
organic matter (SOM)” (Olson et al. 2014). Gener-
ally, coastal wetland ecosystems are known to
sequester carbon efficiently because of their high
rates of primary productivity and low rates of
SOM decomposition as well as accumulating soil
and sediment carbon 40 times faster than the
average terrestrial forest (Mcleod et al. 2011). This
ecosystem service allows coastal wetlands to be

entered into the voluntary carbon market, once a
SOC sequestration rate is quantified (Chmura
et al. 2003, Mitra et al. 2005, Crooks et al. 2011,
Callaway et al. 2012, DeLaune and White 2012,
Pendleton et al. 2012, Mitsch et al. 2013). As it
stands now, due to net wetland loss in the MR
Deltaic Plain, the estimated rates of SOC loss
range from 1000 to 2050 g C�m�2�yr�1 for the
period 1978–2000 (Markewich et al. 2007), while
sequestration by vertical accretion occurs at a
lower rate (100–380 g C�m�2�yr�1; DeLaune and
White 2012). However, little is known about the
influence of large river diversions on landscape-
level sequestration of SOC. One major question
is whether large MR diversions can maximize
SOC sequestration and land-building potential
simultaneously.
In this study, our objective was to examine the

effect of MR diversions on the capacity of Louisi-
ana’s deltaic wetlands to sequester carbon in soils
using a range of discharge rates and locations
along the MR. Establishing discharge rates (in-
cluding opening time and duration) and suitable
locations for river diversion projects are the two
major concerns in studying, planning, and imple-
menting diversions to achieve maximum land
building while simultaneously reducing flood
risks to established wetlands (Day et al. 2012,
Meselhe et al. 2012, 2013). Specifically, we evalu-
ated SOC sequestration by vertical accretion and
land area change under the influence of a series of
individual proposed diversion projects from the
lower MR in the Barataria and Breton Sound
basins under future plausible environmental
changes using simulation results of a Wetland
Morphology model developed for the 2012
Coastal Master Plan (Steyer et al. 2012, Couvillion
et al. 2013, Peyronnin et al. 2013, Wang et al.
2014). The Wetland Morphology model simulated
multiple individual diversion projects for a 50-yr
period (2010–2060) under future environmental
conditions taking into account eustatic SLR, subsi-
dence, MR discharge, and storm frequency and
intensity (Peyronnin et al. 2013). The assessment
of river diversion impacts on SOC sequestration
in deltaic wetlands could provide critical informa-
tion for the optimal design and implementation of
future river diversion projects. Such information
is crucial not only for coastal Louisiana, but also
for other coastal regions in the world (e.g., the
Yellow River Delta, China), where river diversions
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are used as a technique for coastal restoration
(Cui et al. 2009, Wang et al. 2011).

MATERIALS AND METHODS

Study area
The MR Deltaic Plain includes the Terrebonne,

Barataria, Breton Sound, MR Delta, and Pontchar-
train basins (Fig. 1). We focused our analyses on
the coastal marsh within two major hydrological
basins: Barataria and Breton Sound (Fig. 1). These
locations were selected because the 2012 Louisiana
Coastal Master Plan (http://coastal.la.gov/a-com
mon-vision/2012-coastal-master-plan/) proposed a
number of MR diversions in these two basins (Pey-
ronnin et al. 2013). Vegetation across the region
was classified into four types along a salinity
gradient from low to high seaward in our model
application: freshwater (0–0.5 practical salinity
units [psu]), intermediate (0.5–5 psu), brackish
(5–12 psu), and saline (12–20 psu) marshes (Stagg
et al. 2016). The dominant species in these habi-
tats are Panicum hemitomon and Typha lancifolia

(freshwater marsh), Sagittaria lancifolia and Schoeno-
plectus americanus (intermediate marsh), Spartina
patens and S. americanus (brackish marsh), and
Spartina alterniflora and Juncus roemerianus (saline
marsh; Visser et al. 2003, Sasser et al. 2008).

Calculation of landscape SOC sequestration rates
In this study, we used the simulation results of

a spatially explicit Wetland Morphology model to
assess and predict the landscape effects of MR
diversions on SOC sequestration under future
environmental conditions. The Wetland Morphol-
ogy model was one of the seven integrated, coast-
wide predictive models that were developed in
support of Louisiana’s 2012 Coastal Master Plan
(Peyronnin et al. 2013). The description of each
predictive model and their integration appears in
Appendix S1. Other models include the Eco-
Hydrology, Barrier Shoreline Morphology, Vege-
tation, Ecosystem Services, Storm Surge and
Wave, and Risk Assessment models (Appendix S1:
Fig. S1). The Wetland Morphology model predicts
coastwide land area and landscape configuration
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Fig. 1. Map of studied Louisiana deltaic wetlands and locations of selected diversions along the lower Missis-
sippi River.
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in response to surface elevation change, hurri-
canes, and implementation of protection and
restoration projects. The model is driven by salin-
ity, water level (stage), and sediment accumula-
tion provided by the Eco-Hydrology model and
plant community type and distribution from the
Vegetation model. Other inputs for the Wetland
Morphology model include historical land loss
rates, wetland area, topography, bathymetry, land
subsidence, and eustatic sea level. The outputs of
the Wetland Morphology model include areas of
land and water, vertical accretion, and surface ele-
vation (Steyer et al. 2012). The Wetland Morphol-
ogy model was calibrated and validated on long-
term (decadal) vertical accretion derived from
cesium-137 (137Cs) dating of sediment cores from
previous studies and the Coastwide Reference
Monitoring System (CRMS; http://lacoast.gov/crm
s2/home.aspx). Appendix S1 also describes in
detail the theory, assumptions, equations, inputs,
outputs, calibration, and validation of the Wet-
land Morphology model.

The rate of SOC sequestration (ΔSOC) is esti-
mated from model-simulated vertical accretion,
depending on location, as:

DSOC ¼ BD�OM� 0:01
2:2

� �
�H � 10;000 (1)

where DSOC is SOC sequestration rate
(g C�m�2�yr�1), BD is soil bulk density (g/cm3),
OM is soil organic matter content (%), 2.2 is the
organic carbon-to-organic matter conversion
(OC-OM) factor, which was derived from CRMS
data analysis (Steyer et al. 2012, Wang et al.
2016), and H is the rate of vertical accretion (cm/
yr). In this study, SOC sequestration rates
depend mainly upon the contribution of OM that
is determined by the balance between plant
growth (belowground) and OM decomposition
in addition to inputs from other sources via river
diversion. The OC-OM factor was derived from
60 soil cores collected during 2006–2007 to a
depth of ~50 cm at 30 sites across costal Louisi-
ana (Piazza et al. 2011). The linear regression
between OC and OM in coastal Louisiana soils
using this data set is described by the following
equation (Steyer et al. 2012):

OC ð%Þ ¼ 0:4541�OM ð%Þ
ðn ¼ 1142;R2 ¼ 0:93; P\0:0001Þ: (2)

The values of BD and OM were determined for
each basin-vegetation type based on CRMS soil
data (0–24 cm depth) and the set of 60 soil cores
described above through a vertical accretion cali-
bration process (Steyer et al. 2012). Bulk density
and OM values vary correspondingly when veg-
etation types change in a particular basin as a
result of fluctuations in salinity and flooding
regimes (Visser et al. 2013).
The landscape processes of vegetation type

change, vertical accretion, wetland/water area
change, and associated SOC sequestration were
represented at a grid cell resolution of 500 m. We
first calculated SOC density ([BD 9 OM]/2.2) at
each pixel (500-m resolution) for two time periods
(2010–2035 and 2036–2060) based on the
vegetation community distribution model output
from the Vegetation model (Visser et al. 2013). We
then estimated SOC sequestration rates for each
diversion project and Future-Without-Action
(FWOA) scenario under the two future environ-
mental scenarios (moderate and less optimistic;
see details in Future environmental scenarios) dur-
ing the two periods by multiplying the derived
SOC density by the vertical accretion rate from
the Wetland Morphology model (Couvillion et al.
2013). Lastly, we used the areas of land and water
distribution during the two periods simulated by
the Wetland Morphology model (Couvillion et al.
2013) to define wetland areas across basins and
vegetation types. These estimated areas served as
the zones for the estimation of SOC sequestration
rates in the selected basins (Barataria and Breton
Sound) and vegetation types (freshwater, interme-
diate, brackish, and saline marshes) using the
ESRI’s ArcGIS zonal statistical analysis tool (Arc-
Map 10.2.2.; ESRI, Redlands, California, USA).

Individual sediment diversion projects
We selected eight individual river diversion

projects (Table 1) from a series of proposed
diversion projects evaluated for the 2012 Coastal
Master Plan to assess their effects on basin-wide
and vegetation-based SOC sequestration rates.
The discharge rates (Q: peak flow through the
structure and channel) of these diversion projects
range from 142 to 7080 m3/s. Three scales of MR
diversions were selected using the peak flow
rate: (1) large: diversion discharge ≥1416 up to
7080 m3/s; (2) medium: >283–1415 m3/s; and (3)
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small: ≤283 m3/s (Wang et al. 2014). According
to the diversion protocols described in Table 1,
there are power function relationships between
peak flow rates and annual total water amounts
and between peak rates and sediment load; thus,
we used peak flow rates in our model evaluation.
The higher the peak flow rate, the higher the
delivered water amount and sediment load. For
example, annual total flows through the Caernar-
von Diversion at Breton Sound Basin with diver-
sion flow regimes of 142, 1416, and 7080 m3/s
would be 4.5 9 109, 38.4 9 109, and 56.3 9 109

m3, respectively. Under these three diversion
regimes, the annual total sediment loads
would be 0.1, 1.2, and 2.1 million metric tons,
respectively.

Future environmental scenarios
A number of uncertainty parameters were

identified in the 2012 Coastal Master Plan
modeling study: eustatic SLR, subsidence, hurri-
cane/storm intensity and frequency, MR dis-
charge, rainfall, evapotranspiration, MR nutrient

concentrations, and marsh collapse thresholds
(Peyronnin et al. 2013). The ranges in uncertainty
parameters in the next 50 yr (2010–2060) were
determined from previous studies and best pro-
fessional judgment (Table 2). Two future envi-
ronmental change scenarios were selected: (1)
moderate and (2) less optimistic (Couvillion et al.
2013, Meselhe et al. 2013, Visser et al. 2013). Full
details on the plausible range of each uncertainty
parameter under each scenario are described in
Peyronnin et al. (2013) and Wang et al. (2014). In
particular, eustatic SLR rates over the 50-yr simu-
lation period were non-linear and resulted in
0.27 and 0.45 m of sea-level change, respectively.
In the case of the moderate and less optimistic
scenarios, subsidence rates varied spatially in the
range of 0–1.9 cm/yr and 0–2.5 cm/yr. Conse-
quently, the time-averaged rates of relative SLR
(RSLR = eustatic SLR + subsidence) for Bara-
taria Basin and Breton Sound Basin were 1.24
and 1.14 cm/yr under the moderate scenario and
2.00 and 1.80 cm/yr under the less optimistic sce-
nario, respectively (Wang et al. 2014). As a

Table 1. Features of selected individual diversion projects in the 2012 Coastal Master Plan for the Barataria and
Breton Sound basins.

Diversion Description
Peak flow
(m3/s)

Barataria
Myrtle Grove Myrtle Grove Diversion, 142 m3/s capacity (continuous operation at capacity for river

flows above 5663 m3/s; no operation below 5663 m3/s)
142

Myrtle Grove Myrtle Grove Diversion, 1416 m3/s capacity (operation at capacity when
Mississippi River (MR) flow exceeds 16,990 m3/s; operation at 8% of river flow
from 16,990 down to 5663 m3/s; no operation below 5663 m3/s)

1416

Myrtle Grove Myrtle Grove Diversion, 7080 m3/s capacity (operation at capacity when MR flow
exceeds 25,485 m3/s; operation at 1416 m3/s for flows from 25,485 down to 16,990 m3/s;
operation at 8% of river flow for river flows from 16,990 down to 5663 m3/s; no
operation below 5663 m3/s)

7080

West Point a la Hache West Pointe a la Hache Diversion, 1416 m3/s capacity (operation at capacity when MR
flow exceeds 16,990 m3/s; operation at 8% of river flow from 16,990 down to
5663 m3/s; no operation below 5663 m3/s)

1416

Empire Empire Diversion, 1416 m3/s capacity (operation at capacity when MR flow exceeds
16,990 m3/s; operation at 8% of river flow from 16,990 down to 5663 m3/s; no
operation below 5663 m3/s)

1416

Breton Sound
Caernarvon Caernarvon Diversion, 1416 m3/s capacity (operation at capacity when MR flow exceeds

16,990 m3/s; operation at 8% of river flow from 16,990 down to 5663 m3/s; no
operation below 5663 m3/s)

1416

Caernarvon Caernarvon Diversion, 7080 m3/s capacity (70% Mississippi/30% Atchafalaya; operation
at capacity when MR flow exceeds 25,485 m3/s; operation at 1416 m3/s for flows from
25,485 down to 16,990 m3/s; operation at 8% of river flow for river flows from 16,990
down to 5663 m3/s; no operation below 5663 m3/s)

7080

Black Bay Black Bay Diversion, 7080 m3/s capacity (60% Mississippi/40% Atchafalaya; operation at
capacity when MR flow exceeds 25,485 m3/s; operation at 1416 m3/s for flows from
25,485 down to 16,990 m3/s; operation at 8% of river flow for river flows from 16,990
down to 5663 m3/s; no operation below 5663 m3/s)

7080
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comparison, the average RSLR in coastal Louisi-
ana based solely upon tide gauge trends at
Grand Isle, Louisiana, during 1947–2006, was
0.92 cm/yr (Couvillion and Beck 2013). These
rates would be higher if wetland submergence
were included (Cahoon 2015).

Assessment of diversion effects on landscape SOC
sequestration rates

The effects of sediment diversions on SOC
sequestration were evaluated under the follow-
ing criteria.

Discharge rate effect.—We selected Myrtle Grove
in Barataria Basin and Caernarvon in Breton
Sound Basin and used three master plan diver-
sion peak flow rates in each basin: 142, 1416, and
7080 m3/s as well as the FWOA condition to
examine the basin-wide and vegetation type-
based average SOC sequestration rates. Because
historical flows from existing diversions at Davis
Pond in Barataria and Caernarvon in Breton

Sound basins were incorporated in both FWOA
and master plan diversion conditions (Meselhe
et al. 2013), the diversion discharge rates used in
our analysis do represent FWOA water flows
into the two basins.
Location effect.—We selected diversions in Bara-

taria Basin with the same discharge peak flow
rate of 1416 m3/s (downriver order: Myrtle
Grove, West Pointe a la Hache, and Empire) and
in Breton Sound Basin with the same discharge
rate of 7080 m3/s (downriver order: Caernarvon
and Black Bay) to examine basin-wide and vege-
tation type-based average SOC sequestration
rates over the 50-yr simulation period (Fig. 1).

Statistical analysis
We conducted a three-way ANOVAwith hydro-

logic basin, future environmental scenario, and
diversion discharge and all possible interactions as
explanatory variables for SOC sequestration rates
in Barataria and Breton Sound basins. We also

Table 2. Environmental uncertainty parameters and the two scenarios used in the 2012 Louisiana Master Plan
model simulations.

Parameter Plausible range Moderate scenario Less optimistic scenario

Sea-level rise 0.16–0.8 m over 50 yr 0.27 m over 50 yr 0.45 m over 50 yr
Subsidence 0–3.5 cm/yr; varies spatially 0–1.9 cm/yr (values vary

spatially)
0–2.5 cm/yr (values vary
spatially)

Storm intensity Current storm intensities to
+30% of current intensities

+10% of current intensities +20% of current intensities

Storm frequency �20% to +10% of current
storm frequency

Current storm frequency (One
Category 3 or greater storm
every 19 yr)

+2.5% of current storm
frequency (One Category 3
or greater storm every 18 yr)

Mississippi River (MR)
discharge

�7% to +14% of annual mean
discharge; adjusted for
seasonality

Mean annual discharge
(15,121 m3/s)

�5% of mean annual
discharge (14,413 m3/s)

Rainfall Historical monthly range;
varies spatially

Variable percentage of
historical monthly mean

Variable percentage of
historical monthly mean

Evapotranspiration Historical monthly range (�1
SD); varies spatially

Historical monthly mean
(values vary spatially)

+0.4 SD from historical mean
monthly (values vary
spatially)

MR nutrient concentration �45% to +20% of current
nitrogen and phosphorus
concentrations

�12% of current
concentrations (mg/L)
Phosphorus = 0.19
Nitrite + nitrate = 1.1
Ammonium = 0.038
Organic nitrogen = 0.67

Current concentrations (mg/L)
Phosphorus = 0.22
Nitrite + nitrate = 1.3
Ammonium = 0.044
Organic nitrogen = 0.77

Marsh collapse threshold Salinity (psu)
Swamp: 4–7
Fresh marsh: 6–8
Inundation (water depth, cm)
Intermediate marsh: 31–38
Brackish marsh: 20–26
Saline marsh: 16–23

Mid-range values of salinity
and inundation result in
collapse
Salinity (psu)
Swamp: 6
Fresh marsh: 7
Inundation (cm)
Intermediate marsh: 34
Brackish marsh: 23
Saline marsh: 21

Lower 25th percentile values
of salinity and/or inundation
ranges result in collapse
Salinity (psu)
Swamp: 5
Fresh marsh: 7
Inundation (cm)
Intermediate marsh: 33
Brackish marsh: 21
Saline marsh: 18
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conducted a three-way ANOVA with vegetation
type, future environmental scenario, and diversion
discharge and their interactions on SOC sequestra-
tion rates. A three-way ANOVA was also used to
examine the effects of diversion location, vegeta-
tion types, and future environmental scenario on
SOC sequestration rates. Data were square-
root-transformed to meet normality and
homoscedasticity assumptions. The SAS 9.3 soft-
ware package (SAS Institute, Cary, North Carolina,
USA) was used for the statistical analyses. All the
tests were two-tailed based on type III sums of
squares and considered significant at P < 0.05.

RESULTS

Discharge rate effect
Our results indicated that simulated SOC seq-

uestration rates varied significantly (P < 0.001)
with hydrologic basin, future environmental sce-
nario, diversion discharge, and their interactions
(Table 3). The highest average simulated SOC
sequestration rates within Barataria Basin (mean �
standard error; moderate: 168 � 1.0 g C�m�2�yr�1,

n = 10,325; and less optimistic: 252 � 1.4 g C�
m�2�yr�1, n = 9433) were observed for the
sediment diversion with a peak flow rate of
1416 m3/s under both the moderate and less opti-
mistic scenarios (Fig. 2a). Compared to the rates
under the FWOA condition and the moderate
scenario (162 � 1.07 g C�m�2�yr�1, n = 9699), the

Table 3. Statistical result of the effects of hydrologic
basin, future environmental scenario, and diversion
discharge on simulated SOC sequestration rate.

Factor df Type III SS F P

Basin 1 20,265.48 1438.15 ***
Environmental scenario 1 66,914.92 4748.65 ***
Discharge 3 20,681.75 489.23 ***
Basin 9 environmental
scenario

1 27,918.03 1981.22 ***

Basin 9 discharge 2 20,452.09 725.70 ***
Environmental scenario 9
discharge

3 31,780.32 751.77 ***

Basin 9 environmental
scenario 9 discharge

2 14,302.72 507.50 ***

Note: SOC, soil organic carbon; SS, sums of squares; df,
degrees of freedom.

*** P < 0.001.

Fig. 2. Simulated soil organic carbon (SOC) sequestration rates with varying diversion discharge rates in the
Barataria and Breton Sound basins under moderate and less optimistic scenarios. Means (�1 standard error) are
significantly different (P < 0.001) among diversion discharge and future environmental scenario combinations.
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simulated SOC sequestration rates increased by
3.8% at a 1416 m3/s discharge, whereas simulated
rates decreased by 0.6% and 45.5% when 142 and
7080 m3/s discharge rates were used. In contrast,
simulated SOC sequestration rates increased with
discharge rates of 142 (2.1%), 1416 (13.7%), and
7080 m3/s (7.5%), compared to rates under the
FWOA and the less optimistic scenarios (222 � 1.3
g C�m�2�yr�1, n = 8914).

Similarly, within the Breton Sound Basin, the
highest averaged SOC sequestration rates were
observed for the diversion with the peak flow rate
of 1416 m3/s under both scenarios (moderate:
199 � 2.0 g C�m�2�yr�1; less optimistic: 225 � 2.3
g C�m�2�yr�1; Fig. 2b). In the case of the FWOA
condition under the moderate scenario (SOC
sequestration rate: 175 � 2.2 g C�m�2�yr�1), the
simulated rate of SOC sequestration increased by
13.7% applying the 1416 m3/s discharge, while the
rate decreased by 1.1% using the 7080 m3/s dis-
charge rate. Further, SOC sequestration rates
increased by 15.4% and 10.8% using the 1416 and
7080 m3/s discharge rates as input when com-
pared to simulated SOC sequestration rates under
FWOA condition and the less optimistic scenario
(i.e., 195 � 2.8 g C�m�2�yr�1).

Simulated SOC sequestration rates varied signif-
icantly as a result of interactions (P < 0.001)
among vegetation type, environmental scenario,
and diversion discharge (Table 4). Plots of simu-
lated SOC sequestration rates across vegetation
types under various discharge rates and environ-
mental scenarios in Barataria Basin and Breton

Sound Basin are shown in Appendix S2. In
Barataria Basin, brackish marsh soils had the high-
est SOC sequestration (374 � 3.4 g C�m�2�yr�1)
under diversion water flow of 1416 m3/s in the
moderate scenario followed by saline and inter-
mediate marsh soils (280 � 2.7 g C�m�2�yr�1 and
276 � 3.6 g C�m�2�yr�1, respectively). Freshwater
marsh soils showed the lowest SOC sequestration
rates (166 � 0.7 g C�m�2�yr�1) under the flow of
1416 m3/s (Appendix S2: Fig. S1a).
Under the less optimistic scenario, SOC seques-

tration capacity in Barataria Basin changed in
response to the salinity gradient. Saline marsh
soils showed the highest SOC sequestration rates
(350 � 3.1 g C�m�2�yr�1), followed by brackish
and intermediate marsh soils (296 � 4.5 and
282 � 1.3 g C�m�2�yr�1); the lowest SOC seques-
tration capacity (177 � 1.4 g C�m�2�yr�1) was
registered in the freshwater marsh soils under
diversion water flow of 1416 m3/s (Appendix S2:
Fig. S1a). Unlike the basin-wide increase in SOC
sequestration capacity under the less optimistic
scenario, the 1416 m3/s diversion scenario
resulted in decreasing SOC sequestration rates in
brackish (�3.4%) and saline marshes (�23.5%)
compared to the FWOA condition. Further, fresh-
water and intermediate marshes sequestered
more carbon than saline and brackish marshes in
Barataria Basin when the total area for each vege-
tation category was considered (Fig. 3a). Indeed,
freshwater marshes (1373–1723 km2) contributed
53–66% of the total annual sequestered soil carbon
under the moderate scenario while intermediate
marshes (941–991 km2) contributed 54–62% of the
total annual carbon sequestration under the less
optimistic scenario (Fig. 3a).
In the case of Breton Sound Basin, a river diver-

sion of 7080 m3/s resulted in an increase in SOC
sequestration in freshwater marsh when com-
pared to the FWOA scenario (Appendix S2:
Fig. S1b). The increase in simulated SOC seques-
tration rates per marsh type was 37.8% under the
moderate scenario and 37.6% under the less opti-
mistic scenario. Similar to the case in Barataria
Basin, freshwater marshes in Breton Sound Basin
(116–242 km2) were also critical contributors (up
to 55%) to total carbon sequestered, especially
under medium- to large-scale diversions,
although brackish marshes (20–249 km2) con-
tributed more carbon under FWOA (up to 70%)
and with small freshwater flow (Fig. 3b). These

Table 4. Statistical results of the effects of vegetation
type, environmental scenario, and diversion dis-
charge on simulated SOC sequestration rate.

Factor df Type III SS F P

Vegetation type 3 346,317.78 9928.71 ***
Environmental scenario 1 29,669.47 2551.82 ***
Discharge 3 29,230.39 838.02 ***
Vegetation type 9
environmental scenario

3 7352.89 210.80 ***

Vegetation
type 9 discharge

9 27,529.09 263.08 ***

Environmental scenario 9
discharge

3 19,783.86 567.19 ***

Vegetation
type 9 environmental
scenario 9 discharge

9 17,711.46 169.26 ***

Note: SOC, soil organic carbon; SS, sums of squares; df,
degrees of freedom.

*** P < 0.001.
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simulation results for Breton Sound showed a
larger effect of MR diversion on SOC sequestra-
tion in low-salinity (freshwater and intermediate
marshes) than in high-salinity marshes (brackish
and saline marshes).

Location effect
Simulated basin-wide SOC sequestration rates

varied with the diversion structure location. The
highest basin-wide SOC sequestration rates
(168 � 1.0 g C�m�2�yr�1 and 252 � 1.4 g C�m�2�
yr�1 under the moderate and less optimistic sce-
narios, respectively) were obtained when placing
the diversion at or near Myrtle Grove in the upper
receiving basin in Barataria Basin (Fig. 4a). Plac-
ing a diversion with a capacity flow of 1416 m3/s
near West Pointe a la Hache and Empire resulted
in reduction in SOC sequestration ranging from
3.2% to 9.4% (159 � 0.9 g C�m�2�yr�1 and 162 �
1.1 g C�m�2�yr�1 under the moderate scenario
and 231 � 1.3 g C�m�2�yr�1 and 228 � 1.3 g
C�m�2�yr�1 under the less optimistic scenario)
compared to the case when the diversion struc-
ture was placed next to Myrtle Grove (Fig. 4a).
Placing a diversion of 7080 m3/s near Black Bay in

the lower receiving basin in the Breton Sound
Basin resulted in an increase in SOC sequestration
rates by 7.5% and 1.0% under the moderate (i.e.,
186 � 2.5 g C�m�2�yr�1) and less optimistic sce-
narios (i.e., 218 � 2.5 g C�m�2�yr�1) when com-
pared to building the diversion structure at or
near Caernarvon (173 � 2.5 g C�m�2�yr�1 and
216 � 2.5 g C�m�2�yr�1 under the two scenarios;
Fig. 4b).
Simulated SOC sequestration rates varied sig-

nificantly (P < 0.001) with diversion structure
location, vegetation type, environmental scenario,
and their interactions in Barataria Basin (Table 5)
and Breton Sound Basin (Table 6). The effect of
diversion location on carbon sequestration rates
varied with the type of vegetation present within
each of the two hydrological basins. Plots of simu-
lated SOC sequestration rates across vegetation
types under different diversion structure locations
and environmental scenarios in Barataria Basin
and Breton Sound Basin are shown in Appen-
dix S2: Fig. S2. Placing the 1416 m3/s diversion
at or near Empire in the lower receiving basin in
Barataria Basin slightly increased SOC sequestra-
tion rates in saline marsh soils under the

Fig. 3. Simulated annual total sequestered soil carbon (91000 t/yr) within different marsh types with varying
diversion discharge rates under moderate and less optimistic scenarios (cms = m3/s).
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Fig. 4. Simulated soil organic carbon (SOC) sequestration rates under moderate and less optimistic scenarios
when placing diversion structures at Barataria Basin (with diversion discharge of 1416 m3/s) and Breton Sound
Basin (with diversion discharge of 7080 m3/s) at different locations. Means (�1 standard error) are significantly
different (P < 0.001) among diversion location and future environmental scenario combinations.

Table 5. Statistical results of the effects of diversion
location, vegetation type, and environmental scenario
on simulated SOC sequestration rate in Barataria
Basin.

Factor df Type III SS F P

Vegetation type 3 289,712.37 10,384.90 ***
Environmental scenario 1 240.38 25.85 ***
Location 2 5318.96 285.99 ***
Vegetation type 9
environmental scenario

3 6223.75 223.09 ***

Vegetation type 9 location 6 2880.69 51.63 ***
Environmental scenario 9
location

2 57.87 3.11 *

Vegetation type 9
environmental
scenario 9 location

6 2653.17 47.55 ***

Note: SOC, soil organic carbon; SS, sums of squares; df,
degrees of freedom.

�P < 0.05, ���P < 0.001.

Table 6. Statistical results of the effects of diversion
location, vegetation type, and environmental scenario
on simulated SOC sequestration rate in Breton Sound
Basin.

Factor df Type III SS F P

Vegetation type 3 8629.18 335.75 ***
Environmental scenario 1 722.56 84.34 ***
Location 1 445.08 51.95 ***
Vegetation type 9
environmental scenario

3 761.16 29.62 ***

Vegetation type 9 location 3 4955.04 192.79 ***
Environmental scenario 9
location

1 45.48 5.31 *

Vegetation type 9
environmental
scenario 9 location

3 646.37 25.15 ***

Note: SOC, soil organic carbon; SS, sums of squares; df,
degrees of freedom.

�P < 0.05, ���P < 0.001.
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moderate scenario (284 � 2.3 g C�m�2�yr�1) and
in brackish marsh soils under the less optimistic
scenario (309 � 3.2 g C�m�2�yr�1) compared to
placing the diversion next to Myrtle Grove (280 �
3.4 g C�m�2�yr�1 for saline marsh and 296 � 4.5
g C�m�2�yr�1 for brackish marsh; Appendix S2:
Fig. S2a). This is in contrast with the decreasing
basin-wide SOC rates with locations at Myrtle
Grove, West Point a la Hache and Empire
(Fig. 4a). In the case of Breton Sound Basin, plac-
ing a 7080 m3/s large diversion at Caernarvon
resulted in higher SOC sequestration rates for
freshwater (220 � 2.2 g C�m�2�yr�1 and 229 �
2.4 g C�m�2�yr�1) and intermediate (245 � 3.6
g C�m�2�yr�1 and 329 � 3.6 g C�m�2�yr�1) marsh
soils when compared to placing the diversion at
or near Black Bay under the moderate and less
optimistic scenarios (Appendix S2: Fig. S2b). In
contrast, installing the 7080 m3/s river diversion
at or near Black Bay resulted in increased SOC
sequestration rates for brackish marshes (243 �
2.2 g C�m�2�yr�1 and 277 � 2.1 g C�m�2�yr�1)
compared to placing the diversion at Caernarvon
(215 � 7.9 g C�m�2�yr�1 and 223 � 2.4 g C�m�2�
yr�1) under the two scenarios (Appendix S2:
Fig. S2a). In addition, relatively stable SOC
sequestration rates were estimated for saline
marsh soils (~130 and 144 g C�m�2�yr�1 under
the two future scenarios; Appendix S2: Fig. S2b).
These simulation results underscore the signifi-
cant impact of diversion location on basin-wide
and marsh type-specific SOC sequestration rates
in Louisiana deltaic wetland soils. Locations of
large diversions affect to a larger degree SOC
sequestration in freshwater, intermediate, and
brackish marshes than in saline marshes.

DISCUSSION

Our results show that increasing discharge
from 142 to 1416 m3/s could significantly enhance
SOC sequestration rates in Barataria and Breton
Sound basins. However, the benefit in soil carbon
gain due to a large diversion would decline as dis-
charge rate increases beyond a threshold. This
threshold appears between 1416 and 7080 m3/s
(Figs. 2, 3) depending on a hydrologic basin’s geo-
morphological features and change in environ-
mental conditions (e.g., salinity, inundation, and
temperature). The diminishing marginal benefit
of large diversions on soil carbon sequestration is

primarily attributed to changes in vegetation
structure (e.g., species composition, spatial distri-
bution) as a result of the direct changes in salinity
and hydroperiod regimes associated with large
river diversions (Visser et al. 2013). Visser et al.
(2013) found that brackish marsh area would
shrink and saline marsh area would remain rela-
tively stable, while areas of freshwater and inter-
mediate marshes would expand with restoration
including river diversions and SLR over the next
50 yr. The rate of SOC sequestration in this study
was calculated as the product of OC density and
vertical accretion (Eq. 1). Thus, estimated SOC
sequestration rates depend largely upon the OC
density regulated by the type of wetland vegeta-
tion growing in situ especially if communities are
dominated by wetlands with high peat produc-
tion as is the case of intermediate (mean OC den-
sity = 0.041 g/cm3), brackish (0.039 g/cm3), and
saline (0.036 g/cm3) marshes (Morris et al. 2013,
Wang et al. 2016). Indeed, the lowest OC density
has been reported for freshwater marshes
(0.028 g/cm3) based on the Louisiana CRMS soil
data (over the 0–24 cm depth) compiled during
2006–2009 (Wang et al. 2016). This difference in
SOC densities was explicitly included in the Wet-
land Morphology model, which assigned SOC
values to the four marsh categories included in
our simulations. The interaction between SOC
density and plant composition is clearly observed
when large diversions (i.e., 1416 to 7080 m3/s)
promote the conversion of non-freshwater
marshes to freshwater marshes as a result of low
surface water and porewater salinity (DeLaune
et al. 2003). Once freshwater wetlands are domi-
nant, total carbon sequestration decreases on a
per unit area basis. Large diversions (i.e.,
7080 m3/s) could lead to a significant decrease in
the percentage of SOC density when marshes
switch from brackish (48%) and intermediate
(28%) marshes to freshwater marshes while verti-
cal accretion tended to increase (<20%) under the
7080 m3/s diversion (Wang et al. 2014).
Further, marsh plant productivity also tends to

have a parabolic relationship with water level or
elevation (Morris et al. 2002, Mudd et al. 2009,
Kirwan et al. 2012) with maximum growth and
production at the peak of the parabola. In coastal
Louisiana, relatively high plant productivity indi-
cated by high Normalized Difference Vegetation
Index was found to be at an elevation relative to
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mean water level: 4.7–19.0 cm for intermediate
marsh, 12.6–26.8 cm for brackish marsh, and
16.3–31.9 cm for saline marsh, respectively (Cou-
villion and Beck 2013). This relationship between
productivity and elevation indicates optimal
water depths for marsh plant productivity, and
once these optimal depths are exceeded, plant
growth and biomass significantly decrease, likely
resulting in a decrease in SOM accumulation. For
instance, both aboveground biomass and below-
ground biomass of Spartina alterniflora and Spar-
tina patens were found to decrease significantly in
response to increased flooding in Breton Sound
Basin (Snedden et al. 2015).

The location of a diversion structure relative to
the coastline and the river watershed also plays a
critical role in SOC sequestration. This role is fur-
ther influenced by the discharge rate regime and
the in situ geomorphological properties of the
receiving hydrologic basin (e.g., configuration of
land and water areas, vegetation distribution,
topography, and bathymetry). A representative
example of this effect on SOC rates in our model-
ing exercise is the diversion placed near Myrtle
Grove in Barataria Basin that used a peak water
flow of 1416 m3/s (a large diversion). High SOC
sequestration rates (Fig. 4a) correlated with the
highest vertical accretion and reduction in eleva-
tion loss when placing the 1416 m3/s diversion at
or near Myrtle Grove (Wang et al. 2014). In con-
trast, when placing the diversion structure and
setting a flow rate of 7080 m3/s (a mega-diver-
sion) within Breton Sound Basin at or near
Caernarvon, SOC sequestration was not the high-
est at the basin-wide level (Fig. 4b) although this
large diversion at this location could lead to the
highest vertical accretion (>0.7 cm/yr) and reduc-
tion in wetland surface elevation loss compared
to FWOA (Wang et al. 2014). Previous studies
show that a diversion at an upriver location
would reduce the energy, water, and sediment
capture at downriver distributaries (Allison and
Meselhe 2010, Allison et al. 2013, Meselhe et al.
2013). Normally, along the upper ? middle ?
lower estuary gradient within a hydrologic basin,
the land-to-water ratio decreases while the per-
centage of vegetated marsh area decreases, and
marsh elevation decreases while water depth
increases. All of these factors contribute to the
lower retention rates of delivered sediment and
decreased vertical accretion (Couvillion et al.

2013, Wang et al. 2014). Even with relatively
higher OC densities (Wang et al. 2016), SOC
sequestration in brackish and saline marshes
would decrease because of lower vertical accre-
tion in the lower basin (Wang et al. 2014).
Overall, the discharge and location effects of

MR diversion projects identified by this study
underscore the need to evaluate management
priorities in obtaining desired ecosystem services
from carbon sequestration under brackish or
freshwater dominated marshes characterized by
significant mineral sediment input that promotes
vertical accretion in the MR Delta Plain.

CONCLUSIONS

Landscape-level SOC sequestration rates (both
basin-wide and vegetation type averaged) under
three MR sediment diversion discharge rates
(peak flow: 142, 1416, and 7080 m3/s) and under
different diversion structure locations along the
lower MR were evaluated using simulation
results of a Wetland Morphology model devel-
oped, calibrated, and validated for the Louisiana’s
2012 Coastal Master Plan. A diversion with a
water discharge rate of 1416 m3/s and placed in
the upper reach of the lower MR resulted in the
highest SOC sequestration at the landscape level.
Simulation results indicate that large MR diver-
sions (peak flow ≥1416 m3/s and sediment loads
>165 kg/s) are capable of improving landscape-
scale SOC sequestration capacity in Louisiana del-
taic wetlands. Additionally, large diversions could
help mitigate wetland salinity stress (salinization)
due to saltwater intrusion from SLR and land sub-
sidence (Herbert et al. 2015), thus improving SOC
sequestration capacity in freshwater marshes.
Additional individual diversion projects with

large discharge rates ranging from 2000 to
6000 m3/s should be considered in future feasi-
bility modeling studies to explore the specific
discharge thresholds in specific basins, vegeta-
tion types, and future environmental conditions
including a range of relative SLR rates. Since
most existing river diversions are small scale
(≤283 m3/s) and sea level is rising at an accelerat-
ing rate induced by climate change (Williams
2013), large diversions would be required if soil
carbon sequestration capacity in Louisiana del-
taic wetlands is to be enhanced or maintained
under future climate and environmental change.
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Since SOC sequestration rates may decrease
once a potential threshold of discharge is
exceeded, it is paramount to evaluate the eco-
nomic and ecological consequences due to the
decline of diversion benefit in sequestering car-
bon via vertical accretion. Model results imply
that the diversion discharge threshold, if present,
would vary with basin, vegetation type, future
environmental conditions, and possibly location
of diversion structure as well.
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