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Abstract
Tree rings have long been used to make inferences about the environmental factors that influence
tree growth. Great Basin bristlecone pine is a long-lived species and valuable dendroclimatic
resource, but often with mixed growth signals; in many cases, not all trees at one location are
limited by the same environmental variable. Past work has identified an elevational threshold
below the upper treeline above which trees are limited by temperature, and below which trees
tend to be moisture limited. This study identifies a similar threshold in terms of temperature
instead of elevation through fine-scale topoclimatic modeling, which uses a suite of topographic
and temperature-sensor data to predict temperatures across landscapes. We sampled trees near
the upper limit of growth at four high-elevation locations in the Great Basin region, USA, and
used cluster analysis to find dual-signal patterns in radial growth. We observed dual-signal
patterns in ring widths at two of those sites, with the signals mimicking temperature and
precipitation patterns. Trees in temperature-sensitive clusters grew in colder areas, while
moisture-sensitive cluster trees grew in warmer areas. We found thresholds between temperature-
and moisture-sensitivity ranging from 7.4 °C to 8°C growing season mean temperature. Our
findings allow for a better physiological understanding of bristlecone pine growth, and seek to
improve the accuracy of climate reconstructions.

1. Introduction

Tree rings often reflect variability in the environmental
conditions that drive tree growth. Dendroclimatology
frequently uses variations in radial growth to infer
interannual and longer-term variations in climate
conditions (D’Arrigo et al 2001, Fritts 1966, LaMarche
1974a, Liu et al 2009). In this way, dendrochronology
can be useful to help understand past climate
variability, and permits inferences about climate that
would be impossible with the instrumental climate
record alone.

Great Basin bristlecone pine (Pinus longaeva D. K.
Bailey) provides crucial long-term tree-ring data to
help understand paleoclimate (Leavitt 1994, Salzer and
Hughes 2007), but the growth signals can be difficult

to interpret. While bristlecone pine trees sometimes
reach ages of nearly 5000 years (Currey 1965,
LaMarche 1969), the bristlecone record presents a
potentially confounding narrative because of its mixed
growth signals; in many cases, not all trees at one
location are limited by the same environmental
variable, with some trees responding more strongly
to temperature, and some being limited more acutely
by moisture availability (Bunn et al 2011, Salzer et al
2009, 2013, 2014).

In the semiarid high-elevation regions where
bristlecone pine grows, the forest is bounded on two
sides by upper and lower treelines, defining areas of
the trees’ dual-signal patterns. Trees at the lower forest
border tend to be moisture sensitive (e.g. Hughes and
Funkhouser 1998, 2003, LaMarche 1974b); tree-ring
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chronologies at the upper forest border have typically
been used as temperature proxies (e.g. LaMarche
1974a, LaMarche and Stockton 1974, Salzer et al 2009,
2013), though topography can complicate these
patterns. Salzer et al (2009, 2014) found an elevational
threshold between different growth signals in bris-
tlecone pine only 60 to 80 meters below upper treeline,
with trees above that threshold primarily responding
to temperature, and trees below the threshold
responding to moisture availability. Further, Salzer
et al (2009) conclude that only trees above that
threshold show positive growth responses to recent
increased warming. Trees primarily limited by
temperature often differ from primarily moisture-
limited trees in terms of topoclimatic conditions, the
internal growth statistics of their ring widths, and the
dominant frequency of variation in their ring-width
growth signals (LaMarche 1974b).

Topographic variation has a significant effect on
climate at a fine scale (tens to hundreds of meters), and
in turn, on tree growth; we henceforth refer to climatic
patterns driven by topography as topoclimate (Adams
et al 2014, Bunn et al 2011, Salzer et al 2014, Slavich
et al 2014). Many studies have examined topoclimate
in mountain environments (e.g. Ashcroft et al 2012,
Dobrowski et al 2009, Geiger 1965, Slavich et al 2014).
A better understanding of topoclimate can help
explain multiple growth signals in trees at a single
site. Averaging ring-width measurement data from all
trees in a single stand into a mean site chronology, as
has been common in dendroclimatology historically
(Fritts 1974, Hughes 2011), can muddle the presence
of multiple growth signals in topographically complex
environments.

Instead of using site chronologies to study
bristlecone pine growth, the dual-signal (tempera-
ture-limited growth versus moisture-limited growth)
might be explored more clearly with smaller, topo-
graphically-modified chronologies that experience
different topoclimatic conditions. Additionally, because
individual trees at a single site (on the order of tens of
meters apart) can be limited by different factors due to
topoclimate (Bunn et al 2005, 2011, Salzer et al 2014),
the use of elevational lapse rates to estimate temperature
might not be accurate in areas of complex terrain.

At four locations in the Great Basin region, USA,
we use cluster analysis to identify mixed-signa patterns
in bristlecone pine radial growth, mostly using trees at
the upper end of the elevational growth gradient. At
sites where dual temperature-versus-moisture signals
are present, we examine the different growth clusters
using fine-scale topoclimate modeling and by com-
paring ring-width data and regional climate data. We
use estimates of temperatures at tree locations to
understand the fine-scale spatial differences in climate
response. Our study improves upon work by Bunn
et al (2011) by modeling temperatures driven by
topographic variation (termed ‘topoclimate’), instead
of using unitless topographic indices to examine tree

growth. Additionally, instead of presenting thresholds
between trees of differing limiting factors in terms of
elevation as Salzer et al (2014) did, we estimate
thresholds in terms of topoclimate variables. By
examining tree growth signals with topoclimate
variables, we hope to improve understanding of
physiological processes that drive and limit growth,
and ultimately improve climate reconstructions using
bristlecone pine.

2. Methods

2.1. Study areas
Tree cores and cross sections from both live trees and
dead wood were collected during the summer of 2014.
We attempted to choose trees across the range of
complex terrain. GPS points were recorded at each tree
location, and the coordinates were differentially
corrected, yielding a horizontal accuracy � 2 meters.
The samples were added to an extant data set at four
sites (figure 1) in eastern California and eastern
Nevada: Mount Washington, Snake Range, NV
(henceforth MWA, 38.91 N, 114.31 W, treeline
position approximately 3400 m.a.s.l.); the White
Mountains, CA (henceforth WHT, 37.5 N, 118.2 W,
treeline approx. 3500 m.a.s.l.); Chicken Spring Lake,
Sierra Nevada Range, CA (henceforth CSL, 36.46 N,
118.22 W, treeline approx. 3600 m.a.s.l.); and at Pearl
Peak, Ruby Range, NV (henceforth PRL, 40.23 N,
115.54 W, max elevation approx. 3300 m.a.s.l.). These
four sites were chosen both for reasons of accessibility
and to maintain continuity with past research focusing
on climate-growth relationships of bristlecone pine in
the same locations (Bunn et al 2011, Salzer et al 2009,
2013, 2014). Bristlecone pine grows at MWA, WHT,
and PRL, and foxtail pine (Pinus balfouriana Grev. et
Balf.) grows at CSL; the two species tend to have
similar growth responses to climate (Bunn et al 2005).

2.2. Chronology construction
Bristlecone sampleswerepreparedaccording tostandard
dendrochronological protocol (Stokes and Smiley
1968). This included air drying, gluing to mounting
boards, and sanding with progressively finer grit. The
sampleswere crossdatedandabsolutedates (withannual
resolution) were assigned to the tree rings. Accuracy of
the crossdating was confirmed using COFECHA
software (Holmes 1999) and dplR (Bunn 2008, 2010).
The ringwidthswere thenmeasured to the nearest 0.001
mm for each calendar year of the chronologies.

In cases where multiple cores were collected for
single trees, ring widths were averaged by tree.
Though in some cases the data extend back in time to
around 2000 BC, we only used data from the past four
to five centuries in our cluster analyses in order to
preserve robustness of both time period and
chronology. For the cluster analysis, the ring-width
data were detrended using a smoothing spline with
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a wavelength 2 / 3 the series length to remove
non-climatic variability (Cook and Peters 1981).
Because the samples in cluster analysis are exactly the
same length this means each tree is detrended
identically in terms of the rigidity of the spline. For
the climate-growth analysis, the data extended back
further in time to 1400. For those analyses, we opted
to standardize the series with a conservative nonlinear
model of biological growth with the form
yt ¼ aebt þ k, where a, b, and k values vary by series
(Fritts 1966). We used a different detrending method
for the climate-growth analysis because the data
extend back further and therefore are more likely to
include periods of fast juvenile growth.

2.3. Comparisons of growth clusters
Hierarchical cluster analysis was used to identify
different growth signals in the tree-ring data, with
growth years as variables in the cluster analysis.We used
Euclidean distance matrices and Ward’s method (Ward
1963) to maintain continuity with past research (see
Bunn et al 2011), though other methods, such as
clustering on principal components analysis, were also
performed with similar results. The time periods for
cluster analysis differed slightly between the four sites.
The clustering method we used cannot operate with
missing data; samples and time periods were chosen
using the ‘common.interval’ function in dplR (Bunn
2008), which maximizes both the number of trees and
number of years used in the analysis. We used 98 trees
from 1652–2005 at WHT, 51 trees from 1651–2002 at
MWA, 41 trees from 1774–2000 at PRL, and 25 trees
from 1517–2009 at CSL (see supplementary materials).

Wehenceforth refer to two clusters at each site as the ‘red
cluster’ and ‘blue cluster.’

We used multiple metrics to assess cluster
structure (table 1), apart from visually examining
dendrograms. We calculated Pearson’s correlation
coefficient (henceforth, ‘actual r’) between a mean
chronology of all trees in red clusters and a mean
chronology of trees in blue clusters at each site, as
clusters that are more distinct from each other should
be less strongly-correlated.

Using the ‘sample’ function in R, we randomly
assigned trees to a cluster at each site, with the same
number of trees per randomly-assigned cluster as in
the actual clusters at each site. We then calculated a
mean value chronology for each random-assigned
cluster. Then, we calculated correlations (henceforth,
‘random r’) between those two mean value chronolo-
gies (i.e. correlation between randomly-assigned blue
cluster mean chronology and randomly-assigned red
cluster mean chronology) to compare to the actual
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Figure 1. Site map displaying locations of tree-ring data collection in the Great Basin region, USA at Mount Washington (MWA),
White Mountains (WHT), Chicken Spring Lake (CSL), and Pearl Peak (PRL).

Table 1. Cluster distances and correlation coefficients. Distance
and distance difference are measures of cluster quality in the
analysis, with higher numbers denoting stronger two-cluster
separation. A larger difference between actual r and random r
suggests a stronger two-cluster separation.

Site n

trees

Distance Dist.

difference

actual

rred;blue

Random r ±
95% CI

MWA 51 13.49 4.41 0.58 0.90 ± 0.001

WHT 98 22.84 10.38 0.55 0.96 ± 0.001

CSL 25 9.95 0.08 0.73 0.84 ± 0.001

PRL 41 8.58 1.80 0.75 0.76 ± 0.003
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red-blue correlations. We performed 1000 random
trials at each site, and averaged correlation coefficients
from these 1000 trials to find ‘random r’ for each site.
Euclidean distance values at which data agglomerated
into one cluster ðk ¼ 1Þ and a ‘distance difference’
measure, or the difference between distances at k ¼ 1
and k ¼ 2, were also calculated. These distance
measures are indicative of similarity of trees in each
cluster, with larger distances or distance differences
denoting individual trees in a cluster being more
similar to each other (i.e. better cluster ‘quality’).

We performed a climate-growth analysis by
correlating ring-width index (RWI) for each growth
cluster with regional reconstructed and modeled
climate data over the period 1400–1990. RWI data
were compared to reconstructed PDSI data from the
North American Drought Atlas (Cook and Krusic
2004) and temperatures from the ECHO-G ERIK2
model (Legutke and Voss 1999, Stevens et al 2008). We
gauge the climate sensitivity of these trees using
climate models instead of long-term climate obser-
vations, because the models extend further back in
time than the instrumental climate record, allowing us
more time in common between the climate estimates
and the tree-ring data. The PDSI data were
reconstructed from tree-ring data, although none of
the trees used in this study were used in the PDSI
reconstructions. As far as we know, no chronologies
from these particular sites are included in the PDSI
estimates. However, it is possible there is some
minimal overlap with lower elevation sites from
close mountain ranges. Thus, our tree-ring data may
not be completely independent of the PDSI
estimates, as trees from the same region were likely
used in both. Both annual and decadal correlations
between RWI and regional climate data were
calculated by cluster. We used wavelet analysis to
examine tree growth in the frequency domain
(Torrence and Compo 1998).

At sites with distinct dual-signal patterns, we
compared characteristics of the two clusters in terms
of topoclimate and and internal growth statistics. We
modeled topoclimate using a network of temperature
sensors and topographic data according to the
methods described by Bruening et al (2017). This
temperature sensor network included 50 sensors at
each ofMWA,WHT, CSL, and PRL, and collected data
during 2013–2014. Bruening et al (2017) also used
topographic variables to model topoclimate, including
elevation, slope, eastness, southness, solar radiation
loads, and topographic indices. Modeled after
parameters presented by Paulsen and Korner
(2014), topoclimate variables included length of
growing season in days (LGS) and seasonal mean
temperature in °C (SMT). LGS is a sum of days with
daily mean temperature above 0.9 °C, and SMT is an
average of the daily mean temperatures for the days
included in the LGS (Paulsen and Korner 2014). We
also used degree-hours above 5 °C (DH5C) as a

measure of cumulative heat sum, a common threshold
for cambium cell formation in upper treeline trees
(Korner 2012).

We created classification models using the top-
oclimate variables to predict cluster membership of
individual trees. We used recursive partitioning for
classification with the R package ‘rpart’ (Therneau
et al 2014) to create these models. The models result in
a single classification tree for each site, a decision tree
with leaves representing the two growth signals, and
branches representing climate variables that most
strongly drive growth patterns (Loh 2011). At the
branches, the classification trees display thresholds
between the two clusters in terms of the climate
variables of importance. We also compared growth
clusters in terms of climate variables deemed
important by the classification models with boxplots
of climate variables and internal growth statistics.

All analysis was done in the R programming
environment (R Core Team 2016).

3. Results

3.1. Two-cluster distinction
Cluster analyses of ring-width data at MWA andWHT
showed two clearly distinct growth clusters of trees
(figure 2). CSL displayed only one growth signal and
PRL had a more complicated structure than a dual-
signal pattern (supplemental materials). Distinct
clusters in the provided dendrograms are colored
red and blue for easier distinction and for reference as
‘red cluster’ and ‘blue cluster.’

Red and blue clusters at MWA andWHTwere less-
strongly correlated with each other than clusters at
CSL and PRL (table 1). The correlation coefficients
(random r) between clusters when trees were
randomly assigned were significantly higher than
the actual red-blue correlation coefficients atMWA and
WHT (table 1). On the other hand, random r values
were similar to actual r values atCSL andPRL.Note that
our reported correlation coefficients arenot correlations
between individual trees within a cluster, but are rather
correlations between mean chronologies of different
clusters. Cluster analysis at MWA and WHT each
producedmore distinct clusters in terms of distance and
distance difference than CSL and PRL. Therefore, we
continuedwithanalysis only atMWAandWHT, the two
sites that showed clear dual-signal patterns.

3.2. Climate-growth analysis by cluster
Correlations between ring-width index (RWI) and
climate data both as annual data and with 20-year
smoothing splines of those data are displayed in
table 2. At both sites, relationships between 20-year
splines of RWI and temperature have the highest
coefficients for the blue clusters. For red clusters, there
are notable correlations between RWI and annual
PDSI data.

Environ. Res. Lett. 12 (2017) 014007
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Wavelet analysis plots (figures 3 and 4) show that
variation is most apparent at multidecadal frequencies
in the blue cluster signals, and more sub-decadal
variation is present in red cluster signals. Additionally,
blue clusters at both sites show increased growth in
recent years, as displayed by increases in RWI.

3.3. Cluster topoclimate and growth differences
Trees at MWA and WHT show distinct two-cluster
patterns in radial growth. We used several methods to
compare cluster characteristics at the two sites:
boxplots of topoclimate variables and growth charac-
teristics were useful in comparing clusters, and we
created classification models to find the most
important topoclimate variables in determining
cluster membership.

At both MWA and WHT, trees in the blue clusters
grow in areas with colder seasonal mean temperature
(SMT), shorter growing seasons, and fewer annual
degree hours above 5 °C (figure 5). Blue cluster trees
tend to have higher first order autocorrelation and
higher standard deviation of RWI.

The second method of comparing growth signals/
clusters by topoclimate used R package ‘rpart’ to create
models that predict tree cluster membership based on
topoclimate variables. Classification trees in figure 6
display the most influential topoclimate variable in
determining cluster membership at both sites. At
MWA, trees growing in locations with SMT < 8 �C
tend to be in the blue cluster, while trees in areas with
SMT > 8 �C tend to be in the red cluster. At WHT, a
similar pattern is evident, but with a threshold of SMT
¼ 7:4 �C instead of 8 �C. Cohen’s kappa statistic was
used as a measure of the quality of the classifications
(Cohen 1960). The kappa value at MWA ðk ¼ 0:67Þ
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Figure 2. Dendrograms of clustering from MWA (above) and WHT (below). There are two distinct growth signals at each site,
henceforth the red and blue clusters.

Table 2. Correlations between RWI of clusters and climate
variables from climate-growth analysis over 1400-1990. PDSI
estimates are reconstructed from tree ring data, and temperature
estimates come from the ECHO-G ERIK2 model. Most notable
coefficients are in bold. MWA is above, WHT is below. We did
not perform significance testing, because the large sample sizes
would likely result in finding meaningless statistical significance
(Sullivan and Feinn 2012).

MWA Blue

(Annual)

Blue

(20 yr)

Red

(Annual)

Red

(20 yr)

PDSI 0.06 −0.03 0.39 0.10

Temp 0.42 0.48 0.30 0.47

PDSI (20 yr) −0.06 −0.07 0.17 0.23

Temp (20 yr) 0.54 0.66 0.40 0.64

WHT Blue

(Annual)

Blue (20 yr) Red

(Annual)

Red (20 yr)

PDSI 0.11 0.001 0.52 0.20

Temp 0.47 0.54 0.26 0.39

PDSI (20 yr) 0.01 −0.02 0.40 0.51

Temp (20 yr) 0.63 0.74 0.33 0.53
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Figure 3. MWA time series and wavelet analysis by cluster. The blue cluster is displayed on top, and the red cluster is displayed below.
Most variability is low-frequency (decadal to multidecadal) in the blue cluster and high-frequency (annual to sub-decadal) in the red
cluster.
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cluster.
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was quite high, suggesting substantial agreement
between predicted class and actual class in the
classification models. The kappa value at WHT
ðk ¼ 0:52Þ was lower, suggesting moderate agreement
between predicted and actual classes. Univariate
classification models were also created, using only
one topoclimate variable as a predictor at a time. The
resultsof theseunivariatemodels aredisplayed in table3;
thresholds between clusters for the three topoclimate
variables are quite similar at the two sites.

The spatial distribution of red cluster and blue
cluster trees is displayed infigure 7. The SMT thresholds
of 8�C and 7:4�C at MWA and WHT, respectively, are

shownasblackcontour lines infigure7, anddistribution
of trees dictated by these thresholds is evident.

4. Discussion

4.1. Two-cluster distinction
The presence of multiple growth signals at a site is
potentially significant, as it would justify the need for
analysis based on growth signal (likely related to
limiting factor) rather than overall site chronologies in
dendroclimatological studies (Fritts 1976). When
reconstructing past temperatures with tree rings, the
assumption that all trees at a site are temperature-
limited causes the introduction of noise from the
moisture-limited trees that might get mixed in, thus
diluting and masking the temperature signal in the
chronology.

The lack of a clear two-signal growth structure at
CSL and PRL could be a result of sampling techniques
when collecting wood or a true one-signal growth
pattern at the site. Samples were collected over a much
narrower range of temperatures (and elevations) at
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14000 18000
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First order autocorrelation

Degree hours above 5°C

Length of growing season (days)

Seasonal mean temp (°C)

MWA WHT

Figure 5. Comparisons between blue and red clusters at MWA (left) and WHT (right). We compared topoclimate variables deemed
important and internal growth statistics by cluster.

SMT < 8°C?

Blue
9/13

Red
36/38

yes no SMT < 7.4°C?

Blue
27/27

Red
47/71

yes no

MWA WHT

Figure 6. Classification trees predicting cluster using seasonal mean temperature (SMT) as the sole predictor variable at MWA (left)
and WHT (right).

Table 3. Thresholds between clusters in terms of three
topoclimate variables from univariate classification models to
compare to the multivariate classification models presented in
figure 6. Kappa values are displayed in parentheses.

Site DH5C [°h] SMT [°C] LGS [days]

MWA 16760 ðk ¼ 0:61Þ 8 ðk ¼ 0:67Þ 162 ðk ¼ 0:67Þ
WHT 17480 ðk ¼ 0:50Þ 7.4 ðk ¼ 0:52Þ 180 ðk ¼ 0:50Þ

Environ. Res. Lett. 12 (2017) 014007
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CSL and PRL than at MWA and WHT. The lack of
diversity of sampling locations likely contributed to a
lack of a dual-signal structure at CSL and PRL.

4.2. Climate-growth analysis by cluster
Several lines of evidence suggest that low-frequency
signals are associated with temperature variability and
that high-frequency signals are related to moisture
variability in bristlecone chronologies from the same
site (LaMarche 1974b, Esper et al 2002, Hughes and
Funkhouser 2003). Low-frequency temperature sig-
nals are often apparent on multidecadal and multi-
centennial terms, while high-frequency moisture
signals tend to be observed with one to several year
variations (Hughes and Funkhouser 2003). Blue
clusters at MWA and WHT show most power around
32-years and greater periods. Red clusters show higher
power in higher frequencies, though there are some
low-frequency signals mixed in (figures 3 and 4).
Frequency analysis (figures 3 and 4) and correlations
between RWI and regional climate data (table 2)
suggest that blue clusters at both sites are made up of
temperature-sensitive trees, and red clusters at both
sites are composed of moisture-sensitive trees. We will
henceforth refer to the blue and red clusters as
temperature-sensitive and moisture-sensitive clusters,
respectively.

At both sites, the temperature-sensitive clusters are
accurately composed almost exclusively of tempera-
ture-limited trees. Temperature data from the ECHO-
G ERIK2 model correlate very well with RWI with
20-year smoothing splines (r = 0.66 and r = 0.74 at
MWA and WHT, respectively) for the temperature-
sensitive clusters (table 2). These clusters also have
negligible correlation with PDSI, suggesting that
trees in the temperature-sensitive clusters were
properly assigned. Because the temperature-sensitive
cluster has less of a mixed signal than the overall site
chronologies, mean chronologies from the tempera-
ture-sensitive clusters in this study would be
appropriate for temperature reconstructions. Cluster
analysis did not produce as clean of results for
moisture-sensitive clusters, as there appear to be
some temperature-sensitive trees within the moisture-
sensitive clusters at both sites. Bunn et al (2011)
addressed the more complicated moisture-sensitive
signal by using more than two clusters in their analysis.
We followed a conceptual model of only two limiting
factors on tree growth (temperature and moisture
availability) for simplicity. One of the strengths of this
study is the use of fine-scale temperature data, and a
definitive temperature-sensitive cluster allows use of
those data; the same data are not currently available for
moisture.

SMT (°C)

2.8 - 5.5

5.5 - 6

6 - 6.5

6.5 - 7

7 - 7.5

7.5 - 8

8 - 8.5

8.5 - 9

9 - 9.5

9.5 - 10

10 - 13.3

0 1 km

Blue cluster trees

Red cluster trees

SMT threshold

MWA WHT

0 1 km

Figure 7. Maps of trees colored by cluster at MWA (left) and WHT (right) on a layer of seasonal mean temperature (SMT), with the
estimated SMT threshold between temperature and moisture limitation represented as a black contour. Elevation is represented with
100 meter gray contour lines. White areas are below 3000 m, where we did not model topoclimate. Note that the two maps are at
different spatial scales.
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Tree growth response to climate can change over
the lifespan of a tree, both in magnitude of correlation
coefficient with climate variables, and in changing
from positive to negative relationship or vice versa
(Jacoby and D’Arrigo 1995, Biondi 2000, Sullivan et al
2015, Zang and Biondi 2015). Nonstationary climate-
tree growth relationships could be especially applicable
with bristlecone pine because of its extreme longevity.
The use of wavelet analysis allows frequency analysis
over a multicentennial time period. To avoid mixed
signals, consideration of stable relationships between
growth and climate should be considered prior to the
application of these types of data in climate
reconstructions.

4.3. Cluster topoclimate and growth differences
Paulsen and Korner (2014) use length of the growing
season (LGS) and growing season mean temperature
(SMT) to predict treeline position in a global model.
We apply the same variables, along with annual degree
hours above 5 °C (DH5C) as a cumulative measure
of temperatures experienced by trees. The global
TREELIM model by Paulsen and Korner (2014) found
that aminimumLGSof 94 days and aminimumSMTof
6.4 °C were required for tree growth. A more regional
model focusing on bristlecone pine by Bruening et al
(2017) found that at sites in the Great Basin region,
minimum LGS ranging from 147–153 days and
minimum SMTof 5.5 °C–7.2 °C dictated upper treeline
position. Insteadof thresholds forgrowthpossibility, the
values presentedhere (figure 6 and table 3) are estimated
thresholds between temperature sensitivity and mois-
ture sensitivity, similar to those alluded to in terms of
elevation by Salzer et al (2014). Naturally, these values
are greater than the minimum limits for growth
presented by Paulsen and Korner (2014) and Bruening
et al (2017).

At both MWA and WHT, the creation of
classification trees found that SMT is the variable
that most distinctly defines differences between
temperature- and moisture-sensitive trees. It is
possible to predict whether trees will be part of a
temperature-sensitive cluster or a moisture-sensitive
cluster based solely on SMTas a predictor variable for
the majority of trees at MWA and WHT. Bunn et al
(2011) characterized clusters of trees in terms of
unitless topographic indices. The use of modeled
temperature values in our study allows for a better
physiological understanding of bristlecone pine
growth response to climate than thresholds based
on elevations or topographic indices allow, as
temperature is the primary driver of growth in many
high-elevation trees (LaMarche 1974a, Bunn et al
2011, Salzer et al 2009, 2014). Warming climates will
likely further complicate the puzzle of understanding
mixed signals in bristlecone pine growth. Lloyd and
Graumlich (1997) suggest that with warming temper-
atures, precipitation will play a larger role in dictating
upper treeline position and structure. Complicated

topography in mountainous areas often provides
climate refugia (Scherrer and Korner 2011), but
topoclimatic conditions in these areas will likely
impact growth patterns in bristlecone pine. Tempera-
ture thresholds between limiting factors of growth like
the ones we present in our study will be important in
interpreting mixed growth signals under changing
conditions.

Internal tree-ring statistics such as standard
deviation and first order autocorrelation coefficient
(AR1) are sometimes indicative of different limiting
factors of a tree-ring chronology. Ring-width data
from MWA and WHT demonstrated higher AR1 for
temperature-sensitive trees, and we also observed
higher values of standard deviation in temperature-
sensitive trees, similar to what Wilson and Luckman
(2003) found with upper treeline Engelmann spruce.
The separation between clusters for standard deviation
and AR1 was not as defined as cluster separation for
temperature variables (figure 5).

5. Conclusions

This research expands on work by Bunn et al (2011)
and Salzer et al (2009, 2014) by using modeled
topoclimatic variables instead of variables that are
physiologically less-influential, such as elevation or
topography to examine multiple growth signals in
bristlecone pines. Cluster analysis is a strong tool for
identifying patterns in multivariate data, and in this
study, it was used to find groups of trees with similar
limiting factors of growth. A central goal of this study
was to more easily identify trees that are sensitive to a
certain limiting factor to improve climate reconstruc-
tions of that factor.

At two of our four sites, we found two different
growth signals (clusters) within the many trees
sampled. One subset of trees showed a temperature
signal while the other subset of trees displayed a mode
of growth consistent with a precipitation signal. Our
findings largely coincided with results of past research
(LaMarche and Stockton 1974, Bunn et al 2011, Salzer
et al 2014): temperature-sensitive trees have the
tendency to grow at higher elevations and in colder
temperatures than moisture-sensitive trees. However,
using topoclimate modeling, we were able to take these
conclusions one step further. We were able to define
thresholds between trees limited by temperature and
trees limited by moisture availability by differences in
growing season mean temperatures. Attempts made to
use potential evapotranspiration and topographically-
derived drought indices as water balance proxies to
improve understanding of hydroclimatic thresholds
were unfruitful. Future studies could use hydrologic
modeling to better understandmoisture limitations on
bristlecone pine growth. A possible candidate for an
appropriate hydrologic model is the California Basin
Characterization Model (Flint et al 2013).
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One aim of this study was to help improve the
accuracy of climate reconstructions that use bristle-
cone pine. Cluster analysis and topoclimate modeling
can be valuable and powerful tools when used to better
understand the complicated bristlecone pine growth
signal. Detailed descriptions of different growth
signals based on topoclimate will help researchers
better target trees for sampling and more clearly
understand tree physiology.
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