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Symbiotic state influences life-history
strategy of a clonal cnidarian

Brian L. Bingham1, James L. Dimond2 and Gisèle Muller-Parker3

1Department of Environmental Sciences, Western Washington University, 516 High Street, Bellingham,
WA 98225, USA
2Shannon Point Marine Center, Western Washington University, 1900 Shannon Point Road, Anacortes,
WA 98221, USA
3Division of Graduate Education, National Science Foundation, Arlington, VA 22230, USA

Along the North American Pacific coast, the common intertidal sea anemone

Anthopleura elegantissima engages in facultative, flexible symbioses with

Symbiodinium muscatinei (a dinoflagellate) and Elliptochloris marina (a chloro-

phyte). Determining how symbiotic state affects host fitness is essential to

understanding the ecological significance of engaging in such flexible

relationships with diverse symbionts. Fitness consequences of hosting

S. muscatinei, E. marina or negligible numbers of either symbiont (aposym-

biosis) were investigated by measuring growth, cloning by fission and

gonad development after 8.5–11 months of sustained exposure to high,

moderate or low irradiance under seasonal environmental conditions. Both

symbiotic state and irradiance affected host fitness, leading to divergent

life-history strategies. Moderate and high irradiances led to a greater level

of gonad development in individuals hosting E. marina, while high irradi-

ance and high summer temperature promoted cloning in individuals

hosting S. muscatinei and reduced fitness of aposymbiotic anemones. Associ-

ating with S. muscatinei may contribute to the success of A. elegantissima as a

spatial competitor on the high shore: (i) by offsetting the costs of living

under high temperature and irradiance conditions, and (ii) by promoting a

high fission rate and clonal expansion. Our results suggest that basic life-

history characteristics of a clonal cnidarian can be affected by the identity

of the endosymbionts it hosts.

1. Introduction
Symbiotic relationships are fundamental to the biology and ecology of numer-

ous archaea, bacteria, protists, fungi, plants and animals. In close associations of

this kind, symbiont presence, identity and physiology can critically affect host

fitness as measured by host growth, asexual replication and sexual reproduc-

tion. For example, removal of a bacterial symbiont from the fungus Rhizopus
microsporus completely eliminates vegetative growth by preventing production

of sporangia or spores [1]. Among plants, the presence and identity of mycor-

rhizal fungal symbionts can change relative rates of seed production and

vegetative replication of the host [2–4], and numerous studies have demon-

strated the effects of endosymbionts on basic reproductive processes in

insects [5–9]. Evidence from symbiotic cnidarians reveals that loss of symbionts

can reduce sexual reproduction [10,11], and a change in the symbiont comp-

lement can transform mutualistic partners to parasites [12]. In one coral

species, the specific clade of the symbiont (Symbiodinium sp.) affects egg size

at spawning [13].

On the northern Pacific coast of North America, the common intertidal

sea anemones Anthopleura elegantissima and Anthopleura xanthogrammica host

two taxonomically distinct phytosymbionts: the dinoflagellate Symbiodinium
muscatinei (zooxanthellae [14,15]) and the chlorophyte Elliptochloris marina
(zoochlorellae [16]). These symbionts, which can occur singly or together in

individual anemones, have different physiologies, growth rates and biotrophic

& 2014 The Author(s) Published by the Royal Society. All rights reserved.
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relationships with their hosts [17–21]. Under high irradiance

and temperature conditions, zooxanthellae will supplant

zoochlorellae in A. elegantissima, and intense, ongoing stress

can lead to complete bleaching (loss of symbionts) and hosts

that are functionally aposymbiotic [22]. Zooxanthellate

A. elegantissima are generally more productive than individuals

hosting zoochlorellae: annual net productivity is estimated at

92 and 60 g C m22 y21, respectively, for zooxanthellate and

zoochlorellate A. elegantissima in the San Juan Islands, WA,

USA [19]. Thus, a change of symbiotic partners or complete

loss of the symbionts may affect host nutritional balance

leading to changes in growth or reproduction of the host.

The goal of our work was to determine how the presence

and identity of symbionts affect growth and reproduction of

A. elegantissima. We predicted that overall fitness would be

highest in individuals hosting zooxanthellae, followed by

those hosting zoochlorellae, and finally by those lacking

symbionts altogether. Anthopleura elegantissima is the most

abundant intertidal sea anemone on the west coast of North

America [23], with densities reaching 500 individuals m22

[24] and with productivity rates that rival those of intertidal

seaweeds [25]. Factors that substantially change anemone fit-

ness, therefore, could cascade through this system, impacting

the rocky shore community as a whole.

2. Material and methods
(a) Anemone experiment
On 3 September 2009, 180 A. elegantissima were collected from a rock

outcrop on Tatoosh Island, WA, USA (48.3928 N, 124.7358 W)

between þ1 and þ2 m mean lower low water (MLLW). Based on

colour alone, 60 each of zooxanthellate (brown anemones hosting

more than 90% S. muscatinei), zoochlorellate (green anemones

hosting more than 90% E. marina) and aposymbiotic individuals

(pale anemones hosting low densities of either symbiont) were col-

lected from adjacent areas of the same rock surface (figure 1a). The

anemones were transported on ice to Shannon Point Marine Center

(SPMC) in Anacortes, WA, USA, where symbiotic state was verified

for each anemone by clipping a single tentacle, compressing it on

a microscope slide and determining the relative abundance of

zooxanthellae and zoochlorellae. In this species, tentacle samples

reasonably approximate symbiont composition, particularly if

populations are dominated by a single symbiont [26], as they

were in this case. Only four of 180 anemones had to be eliminated

because they hosted mixed symbiont populations. The very low

background populations of symbionts in aposymbiotic individuals

were primarily zooxanthellae.

In the laboratory, the anemones were cleaned of debris,

allowed to attach to pre-weighed slate tiles (4.7 � 4.7 � 0.8 cm),

and held for one month prior to the start of the experiment in

an indoor flow-through seawater system with natural sunlight

zooxanthellate

zoochlorellate

aposymbiotic

2%
irradiance

43%
irradiance

85%
irradiance

1 m

1 m

(a)

(b)

Figure 1. Anthopleura elegantissima (a) at the collection site on Tatoosh Island, WA, USA, and (b) in the experimental tank at SPMC. Dashed lines indicate abrupt
changes in the symbiotic complements of the anemones. (Online version in colour.)
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entering directly through large windows. Ten days after collec-

tion, each anemone on its tile was blotted dry and weighed,

and initial body weight was determined by subtracting the

known weight of the wet tile.

To determine how symbiotic state affects host growth and

reproduction under different environmental conditions, the ane-

mones were moved to an outside tank (3 m diameter, 0.9 m deep,

6400 l volume) and held there from October 2009 to September

2010, a period chosen to include an entire reproductive cycle

and the full seasonal range of conditions experienced by these

anemones. Locally, A. elegantissima begin developing gonads in

January, spawn from August to October [27] and are exposed

to the harshest physical stresses during mid-day summer low

tides [28]. Shields were used to reduce natural irradiance in

each of three treatment groups, approximating conditions that

favour zooxanthellate, zoochlorellate and aposymbiotic ane-

mones, respectively [20]: ultraviolet (UV)-transparent acrylic

shield for 85% irradiance, UV-transparent acrylic shield plus a

layer of window screen for 43% irradiance and opaque grey

PVC shield for 2% irradiance. The shields were supported

14 cm above round, PVC platforms (60 cm diameter) covered

with artificial turf to discourage anemones from leaving their

tiles. Two platforms, each holding 10 zooxanthellate, 10 zoo-

chlorellate and 10 aposymbiotic anemones, were randomly

assigned to each irradiance treatment (figure 1b).

Ambient irradiance levels were obtained from a Padilla Bay

National Estuarine Research Reserve database (D. Bulthuis,

N. Burnett and H. Bohlmann 2011, unpublished data, Padilla Bay

National Estuarine Research Reserve Monitoring Program;

http://cdmo.baruch.sc.edu/). The monitoring instrument (located

15 km from SPMC) measured photosynthetically active radiation

(400–700 nm) at sea level every 15 min throughout the study

period. Irradiance in the treatments was determined by using

a Biospherical Instruments QSL-100 4p quantum sensor to

make repeated measurements under the shields during aerial

exposures and calculating the average percentage reduction.

Hobo WaterTemp Pro dataloggers on the platforms monitored

temperatures at 5 min intervals.

Seawater was supplied to the tank at a rate more than or equal

to 38 l min21, with overflow draining through an 85 cm tall PVC

pipe. A Danner Mag Drive submersible pump (113 l min21) ran

continuously, increasing water circulation. When the tank was

full, simulating high tide, the irradiance shields were submerged

and the anemones were under 16 cm of seawater. Low tides

were created with a relay timer (Zelio SR2B121FU, Schneider Elec-

tric) programmed to open an electronic ball valve (Electromni

Series 83, Asahi America) on a shorter drain pipe, dropping the

water to the level of the platforms and completely exposing

the anemones. Timing and duration of exposure mimicked a

þ0.3 m MLLW tide based on predictions from nearby Burrows

Bay, WA, USA. The tank, platforms and shields were cleaned reg-

ularly to remove sediment and fouling organisms. Because

anemones in the tank had limited access to their natural prey

[29], they were fed 0.1 g pellets of frozen squid every other week.

The anemones were maintained in the tank for 8.5–11 months,

depending on their final processing date, which was varied to

maximize the chance of capturing changes in reproductive con-

dition. All anemones were reweighed on 10 February, 20 April

2010 and on their final processing date. On 22 June, 1 August

and 13 September 2010, 5–12 randomly chosen individuals from

each treatment combination were processed. If an anemone had

divided, the clones were kept in the same treatment and their

summed weight was used in calculations representing the original

anemone. Processing involved weighing the anemones, opening

their pedal discs and using increasing magnification (1�, 10�,

100�) as necessary to locate gonad tissue, identify gametes and

assign a gonad index from 0 (no identifiable gonad) to 5 (fully

ripe or recently spawned; table 1).

Only anemones that maintained their original symbiotic

state (119 of 176 anemones ¼ 67%) were used in the final ana-

lyses. The symbiont changes that occurred in anemones

excluded from analyses and the effects of the treatments on the

symbionts themselves are described elsewhere [22]. Final sym-

biotic state was assessed by homogenizing the anemones and

using a haemocytometer to identify and count 80–100 symbiont

cells in each of four replicate homogenate subsamples (or up to

16 haemocytometer chambers if densities were low). Symbiont

counts were normalized to anemone protein content determined

from replicate homogenate subsamples [30]. Anemones were

considered aposymbiotic if symbiont densities were less than

8 � 104 cells mg protein21 (approx. 10% of a normal symbiont

density for A. elegantissima in the nearby San Juan Islands, WA,

USA [20]). All individual anemones with densities above this

threshold and with less than 10% of the other symbiont were

classified as either zooxanthellate or zoochlorellate and were

included in the analysis.

(b) Field population
For comparison, we assessed the relationship of symbiotic state to

anemone body size, fission and gonad development in a convenien-

tly accessible field population of A. elegantissima. Anemones were

collected from a southeast facing rock outcrop at Cattle Point, San

Juan Island on 16 July and 11 November 2008 and on 6 February

and 27 April 2009. On each date, the nearest anemone at 25 ran-

domly chosen positions along a 25 m horizontal transect was

Table 1. Gonad indices of A. elegantissima held in the experimental tank. (Gonad index was evaluated by examining the dissected gonad of individuals
sampled in June, August or September and determining the threshold magnification necessary to identify gonad tissue and determine sex of the anemone.
Except for one zooxanthellate individual in the August sample (GI ¼ 5), all anemones with gonads were female.)

gonad index gonad appearance

magnification required June August September

gonad visible sex obvious number of individuals

0 no identifiable gonad — — 25 28 36

1 bumps on mesenteries 100� 100� 2 3 0

2 swollen mesenteries 10� 100� 3 1 0

3 single-lobed masses 10� 10� 3 1 0

4 multi-lobed masses 1� 10� 4 6 0

5 multiple plump masses 1� 1� 0 6 0

total number of individuals examined each month 37 45 36
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collected, blotted dry and weighed, and then examined with a dis-

secting microscope for the scar on the column that persists for

approximately six weeks after a fission event (electronic supplemen-

tary material, figure S1) [31]. A þ0.2 m MLLW tidal height was

chosen for this sampling because zoochlorellate and zooxanthellate

individuals were both found at this tidal height. Gonad indices were

determined for anemones collected during the fertile period (July

sample only). Symbiotic state of all sampled anemones was deter-

mined as described above and anemones with mixed symbiont

complements were excluded from analyses.

(c) Statistical analysis
To ensure that body size did not confound tests for treatment

effects, initial weights of the anemones in different symbiotic

states were compared with one-way ANOVA following a

Levene’s test for equal variances. Per cent weight change per

month (to account for different final processing dates) and

gonad index at the end of the experiment were each analysed

by two-way ANOVA with irradiance (85, 43 and 2%) and sym-

biotic state (aposymbiotic, zooxanthellate and zoochlorellate) as

fixed factors. Post hoc comparisons were carried out with

Tukey tests. To correct for unequal variances, a was adjusted

to 0.025 for these tests [32]. Numbers of fissions were insufficient

to allow testing for combined effects of irradiance and symbiotic

state, and those factors were tested individually with exact multi-

nomial tests, followed by calculation of z-scores to determine

where observed and expected values differed [33]. A discrimi-

nant analysis was used to determine whether combined

measurements of per cent weight change, number of fission

events and gonad index for each anemone could distinguish

the nine treatment combinations (3 irradiance treatments � 3

symbiotic states). Box’s M test was used to verify homogeneity

of the covariance matrices and Wilks’ l was used to test for sig-

nificant discrimination of the groups.

To determine whether fission was related to symbiotic state in

the field population of Cattle Point anemones, a 2 � 3 contingency

analysis was carried out with fission scar (present and absent) and

symbiotic state (aposymbiotic, zoochlorellate and zooxanthellate)

as the factors. The data from all four sampling periods were

pooled to test for patterns across an entire annual cycle. Z-scores

were calculated for each cell of the table to determine whether

observed and expected values differed significantly.

3. Results
(a) Anemone experiment
Daily irradiance levels varied considerably during the seasonal

progression of the experiment. Long days, high sun angle and

clear skies increased irradiance in the tanks during the summer

months (electronic supplementary material, figure S2a). Ane-

mones in all irradiance treatments experienced similar mean,

maximum and minimum temperatures from October through

to February (electronic supplementary material, figure S2b–d)

when ambient air temperatures are typically moderate during

low tides, which occur during the night. However, beginning

in March, and throughout the summer when low tides occur

during the day, maximum temperatures in the 85% irradiance

treatment were routinely 1–28C and 2–48C higher than in the

43% and 2% irradiance treatments, respectively. Measured

effects of treatments on the anemones therefore reflect the com-

bined effects of irradiance and maximum temperature, as

would be the case in natural habitats.

Initial body weights were independent of symbiotic state

(F2,116¼ 0.79, p ¼ 0.45), averaging 2.28+1.22 g (mean+ s.d.;

n ¼ 34), 2.16+0.91 g (n ¼ 40) and 2.50+1.55 g (n ¼ 45) for

aposymbiotic, zoochlorellate and zooxanthellate individuals,

respectively. Most anemones lost weight during the experiment,

decreasing from September to February, decreasing more

gradually or increasing from February to April, then diverging

with no clear pattern after April (electronic supplementary

material, figure S3). The most obvious effects were a rapid initial

weight loss in aposymbiotic anemones exposed to 85% or 43%

irradiance, and an absence of weight loss among zooxanthellate

anemones in the 43% irradiance treatment. Overall weight

loss was significantly affected by symbiotic state (F2,110 ¼ 5.13,

p ¼ 0.007), but not by irradiance (F2,110 ¼ 3.64, p ¼ 0.029). The

interaction was also non-significant (F4,110 ¼ 1.93, p ¼ 0.11).

On average, aposymbiotic anemones lost approximately 2.5�
as much weight as did zooxanthellate individuals (figure 2a).

Of the anemones sampled in June and August, 35% con-

tained identifiable gonads (i.e. gonad indices from 1 to 5;

table 1); no gonads were present in September samples. Of

29 individuals with gonads, 28 were female. The June sample
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Figure 2. (a) Per cent weight loss per month (n for each treatment is indi-
cated within the bars), (b) gonad index and (c) number of A. elegantissima
undergoing fission events while held in the experimental tank for 8.5 – 11
months (standard errors are shown for (a,b)). Horizontal bars summarize
results of Tukey tests comparing symbiotic states (groups not joined by a
line are significantly different).
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included individuals with gonad states from early develop-

ment (GI ¼ 1) to near spawning (GI ¼ 4). The August sample

captured the transition from pre- to post-spawning; nine of

12 reproductive individuals (GI ¼ 4 or 5) had ripe gonads

filled with gametes while the remainder had large gonads,

but few gametes, suggesting that spawning had already

occurred. Symbiotic state affected gonad index (F2,110 ¼ 5.22,

p , 0.01), with greater gonad development in aposymbiotic

than in zooxanthellate anemones (figure 2b). There was no

significant irradiance effect (F2,110 ¼ 1.76, p ¼ 0.17) and no sig-

nificant interaction between irradiance and symbiotic state

(F4,110 ¼ 1.17, p ¼ 0.32).

Twelve individuals underwent fission while in the exper-

imental tank. Strong seasonality was evident: 67% of all

fissions occurred in April, May or June. An exact multinomial

goodness-of-fit test showed that the number of fissions was

not significantly affected by irradiance alone ( p ¼ 0.11), but

did differ among symbiotic states ( p ¼ 0.05; figure 2c).

Standardized residuals indicated significantly fewer divisions

than expected among aposymbiotic (z ¼ 22.38, p , 0.05) and

more divisions than expected among zooxanthellate

anemones (z ¼ 4.0, p , 0.01).

The homogeneous variance assumption required

for the discriminant analysis was violated (Box’s M ¼ 97.7,

p , 0.01), but matrix scatterplots of the groups showed that

the violation was not severe. Linear combinations of weight

change, number of fissions and gonad index effectively dis-

criminated the treatment groups (Wilks’ l ¼ 0.60, x2 ¼ 56.1,

p , 0.001). The first discriminant function was weighted

most heavily by change in anemone weight, with smaller,

and nearly equal but opposite contributions of fissions and

gonad index (figure 3). The second discriminant function

was heavily weighted by gonad index. The discriminant

plot was divided into quadrants and labelled according to

the coefficients of the functions (figure 3), producing regions

qualitatively identified as sexual reproduction, highest fitness
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function 1 explained 74.2% of the variance, and function 2 an additional 22.0%. Coefficients of the discriminant functions (shown on the axes) were used to
separate the plot into quadrants representing different fitness strategies/outcomes for A. elegantissima in the experimental tank.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

281:20140548

5

 on March 6, 2015http://rspb.royalsocietypublishing.org/Downloaded from 

http://rspb.royalsocietypublishing.org/


(both sexual and asexual reproduction and no weight loss),

lowest fitness (little reproduction and high weight loss) and

asexual reproduction.

Zooxanthellate anemones in 43% irradiance fell in the

highest fitness quadrant, maintaining their weight while

showing a high degree of fission and sexual development.

Aposymbiotic anemones in 85% irradiance and zooxanthel-

late individuals in 2% irradiance fell in the lowest fitness

quadrant. Zoochlorellate anemones in 43% and 85% irradi-

ance, and aposymbiotic anemones in 43% and 2%

irradiance showed primarily sexual reproduction. Zoox-

anthellate individuals in 85% irradiance and zoochlorellate

individuals in 2% irradiance showed the opposite pattern:

more asexual reproduction and little gonad development.

(b) Field population
The presence of fission scars was related to symbiotic state in ane-

mones collected from Cattle Point, (x2
2 ¼ 11:43, p ¼ 0.003; table

2). Thirty-five per cent of zooxanthellate anemones had fission

scars (nearly twice the number expected) versus 9% of the zoo-

chlorellate and 0% of the aposymbiotic anemones. Gonad

indices were also different among anemones in different symbio-

tic states. Of the zooxanthellate anemones, 54% were sexually

mature (gonad indices of four or five), versus 20% of zoochlorel-

late and 0% of aposymbiotic individuals. Eighty per cent of the

reproductive individuals were male (table 3). There were no

significant differences in mean wet body weights of individuals

in different symbiotic states (F2,83¼ 2.83, p ¼ 0.06), but the

trend was towards larger size among aposymbiotic anemones:

2.4+3.4 g (s.d.), 1.0+1.3 g and 1.0+1.6 g, respectively, for

aposymbiotic, zooxanthellate and zoochlorellate individuals.

4. Discussion
Compared with tropical symbioses, cnidarian–algal associations

in temperate seas are generally thought to have more limited

benefits for the host, particularly during the cold, dark winter

months [34]. Nonetheless, the symbionts can translocate substan-

tial portions of their phytosynthate to the host and have been

hypothesized to augment the hosts’ energy budget enough to

boost reproductive output [34–36]. Our results are, to our knowl-

edge, the first to directly support this hypothesis and further

suggest that hosting different symbionts can fundamentally

change the life-history strategy of the host. Rather than simply

enhancing sexual reproduction, symbiosis with the more pro-

ductive S. muscatinei may promote cloning by fission, a strategy

that makes A. elegantissima a highly successful spatial dominant

in upper intertidal zones. Under bright, warm conditions, both

in the tank experiment and at the Cattle Point field site, symbiosis

with S. muscatinei was associated with more fission events, poss-

ibly at the expense of sexual reproduction. The reduced body

sizes produced by cloning may be physiologically advantageous

for A. elegantissima on the high shore, where a larger feeding sur-

face area created by fission may compensate for reduced feeding

opportunities resulting from shorter immersion times [27,37].

Cloning may also decrease the risk of extinction for individual

genotypes in these high stress locations where clonal diversity

is low and successful sexual reproduction may be infrequent

[31,38]. Aggregation of cloned individuals can reduce the costs

of a high surface to volume ratio associated with smaller body

size by reducing air drying and causing individuals to warm

more slowly during low tides [39], allowing the clone to extend

outward from protected crevices onto open rock where con-

ditions would be too harsh for isolated individuals [31]. By

supporting a shift towards clonal replication, S. muscatinei may

contribute critically to the abundance and persistence of A. ele-
gantissima, and indeed itself, in upper shore habitats along

much of the North American Pacific coast.

Anemones hosting E. marina generally had higher fitness

than aposymbiotic individuals, suggesting that E. marina
contributes to host success, possibly by facilitating sexual repro-

duction. This bears some similarity to Hydra viridis (green

hydra), which produces female gonads only if the Chlorella
algal symbiont is present [40]. Although E. marina is less tolerant

of high temperature and irradiance [17–19] and consistently less

productive than S. muscatinei on a per-cell basis [41], the growth

rate of E. marina is higher [19,21], and in habitats where irradi-

ance and temperature are low year round, A. elegantissima
commonly hosts E. marina at up to twice the density of S. musca-
tinei [20,28]. Thus, zoochlorellate A. elegantissima may be nearly

as productive as zooxanthellate individuals under some con-

ditions [19,28], but appear to direct more energy to sexual

reproduction. Although anemones held in our experiment for

many months may have experienced decreased feeding or

assimilation efficiency, some of the most pronounced weight

loss actually occurred among aposymbiotic anemones during

the first four to five months, before mid-day, summer low

tides resulted in possible thermal stress. The comparatively

low rate of weight loss in symbiotic as compared with aposym-

biotic individuals suggests that both S. muscatinei and E. marina

Table 2. Presence or absence of fission scars of A. elegantissima collected
from þ0.2 m MLLW at Cattle Point, San Juan Island, WA, USA ( pooled
data for July and November 2008, and February and April 2009). (Numbers
in parentheses are expected contingency table values.)

symbiotic state

aposymbiotic zoochlorellate zooxanthellate

scar 0 (2.5) 3 (6.5) 14 (7.9)a

no scar 13 (10.4) 30 (26.5) 26 (32.1)
aThe observed and expected values differ based on z-scores ( p , 0.05).

Table 3. Gonad indices of A. elegantissima collected from þ0.2 m MLLW
at Cattle Point, San Juan Island, WA, USA (July 2008). (Gonad index values
as in table 1.)

gonad
index

aposymbiotic zoochlorellate zooxanthellate

number of individuals

0 1 3 5

1 0 0 0

2 1 (F) 0 0

3 1 (F) 1 (C) 0

4 0 1 (C) 3 (F)

5 0 0 3 (F)

number

examined

3 5 11
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contribute nutritionally to their hosts even under the low-light

conditions of winter.

On sample dates falling within the reproductive period of

A. elegantissima, 35% of the anemones in the tank produced

gonad. This is lower than the 66% fertility reported for field

populations of A. elegantissima at Tatoosh Island, but is

close to the 39% fertility reported for A. elegantissima at

Cattle Point by Sebens [27]. The degree of gonad develop-

ment was significantly affected by symbiotic state, but not

as expected. Independent of irradiance, aposymbiotic indi-

viduals in the tank produced the most gonad. However,

freshly collected anemones from Cattle Point showed the

reverse pattern, with the most fully developed gonad in zoox-

anthellate anemones. The pattern of gonad development in

the field may be related to timing of gonad development

among anemones in different symbiotic states, to differences

in the microhabitats from which the anemones were collected

or to differences in sex of the anemones (table 3). More fine-

scale study of gonad development, with larger sample sizes,

will be necessary to explain this result.

We obtained an average of 0.09 divisions individual21 yr21

among all anemones during the 8.5–11 months they were in

the experimental tank. This is within the range of fissions

reported for Tatoosh Island populations of A. elegantissima
(0–0.3 divisions individual21 yr21 depending on tidal height

and location) [37]. Exposure to direct sunlight increases

A. elegantissima fission rate, with the most pronounced effect

on zooxanthellate individuals [42]. Although this suggests

that irradiance alone can affect fission, there is some interplay

between irradiance and symbiotic state, as association with

S. muscatinei enhanced asexual reproduction.

The comparatively low fitness of both the zooxanthellate

anemones in 2% irradiance and the aposymbiotic anemones

in 85% irradiance suggests a high host cost for symbiosis

under low irradiance and for aposymbiosis under high irradi-

ance. Under low irradiance, a large symbiont population can

create significant respiratory demands not compensated by

photosynthesis [43], and the symbionts, unable to meet their

metabolic needs through photosynthesis, may instead con-

sume host nutrients [44]. This would explain why, in our 2%

irradiance treatment, anemones hosting S. muscatinei, which

photosynthesizes poorly under low irradiance, showed lower

fitness than anemones lacking symbionts altogether. At the

other extreme, aposymbiotic anemones under high irradiance

conditions were also at a disadvantage. Increased host respir-

ation owing to elevated temperatures [17,18] may have

created an energy deficit uncompensated by contributions

from the symbionts, leaving less energy for growth and repro-

duction. This suggests that, in addition to increasing fission

rates, symbiosis with S. muscatinei may offset the high meta-

bolic costs associated with living in open, sun-exposed

microhabitats.

The intertidal distributions of E. marina and S. muscatinei
populations are remarkably stable over annual cycles, under-

going only minor changes in density and relative abundance

despite large daily and seasonal fluctuations in the physical

environment [28]. However, persistent changes in irradiance

or temperature can change symbiont composition [22] or, in

extreme cases, lead to bleaching [20,28,45]. Thus, shifts in

symbiont dominance are likely to occur in response to climate

change [28], with the more heat-tolerant zooxanthellae repla-

cing zoochlorellae where air and seawater temperatures

increase. Over the short term, this could increase anemone

productivity and carbon cycling where A. elegantissima is abun-

dant. Over the longer term, changes in the relative importance

of sexual versus asexual reproduction could impact abundance,

distribution, dispersal, population dynamics and genomics of

this important species.

Experimental infections of the tropical anemone Aiptasia pul-
chella with homologous or heterologous Symbiodinium types

show the fundamental impact of symbiont identity on auto-

trophic potential, functionality and, presumably, fitness of that

species [46], and work with multiple coral species demonstrates

that photosymbiont density can significantly affect tissue bio-

mass and levels of gamete production [10,11]. Our results

indicate that, in A. elegantissima, the presence and identity of

the symbionts interact with environmental conditions to alter

the balance between growth, asexual cloning and sexual repro-

duction. Such basic life-history differences undoubtedly affect

the fitness of this temperate anemone host. Working to under-

stand the biochemical and energetic mechanism driving these

divergent life histories and determining whether similar

changes occur in other species, are important next steps, particu-

larly in the context of a changing global climate that may drive

changes in other symbiotic partnerships.
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