

Western Washington University Western CEDAR

Lake Whatcom Annual Reports

Lake Whatcom

2-10-1998

Lake Whatcom Monitoring Project 1996/1997 Report

Robin A. Matthews Western Washington University, robin.matthews@wwu.edu

Michael Hilles Western Washington University, michael.hilles@wwu.edu

Geoffrey B. Matthews Western Washington University, geoffrey.matthews@wwu.edu

Follow this and additional works at: https://cedar.wwu.edu/lakewhat_annualreps Part of the <u>Environmental Monitoring Commons</u>

Recommended Citation

Matthews, Robin A.; Hilles, Michael; and Matthews, Geoffrey B., "Lake Whatcom Monitoring Project 1996/1997 Report" (1998). *Lake Whatcom Annual Reports*. 22. https://cedar.wwu.edu/lakewhat_annualreps/22

This Report is brought to you for free and open access by the Lake Whatcom at Western CEDAR. It has been accepted for inclusion in Lake Whatcom Annual Reports by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.

Lake Whatcom Monitoring

1996/97 Final Report

February, 1998

Lake Whatcom Monitoring Project 1996/97 Final Report

Dr. R. A. Matthews, Mr. M. Hilles Institute for Watershed Studies, Huxley College of Environmental Studies and Dr. G. B. Matthews Computer Science Department Western Washington University*

February 10, 1998

*Funding for this project was provided by the City of Bellingham, as part of their long-term cu^{it} Marilyn environmental education and their concern for maintaining the water quality of Lake Whatcom. We the with this Desmul, Diane Peterson, Judy King, Jason Musante, Dean Uyeno, and Laramie Zent for their assist: project.

Contents

.

1	Introduction					1
2	Lake Whatcom Mo	nitoring				2
	2.1 Site Description	ns			• •	2
	2.2 Field Samplin	and Analytical Methods				2
	2.3 Results and Di	scussion	•	• •		3
	2.3.1 Hydro	ab data	•	•••		3
	2.3.2 Other	mbient water quality data	•			5
	2.3.3 Strawl	erry sill data	•	• •		8
3	Creek Monitoring					9
	3.1 Site Description	ns				9
	3.2 Field Samplin	and Analytical Methods				9
	3.3 Results and D	scussion	• •	•••		9
4	Lake Whatcom Wa	ter Budget				11
5	Park Place Wet Po	id Monitoring				13
	5.1 Sampling proc	edures				. 13
	5.2 Results and D	scussion	••	•••		. 13
6	Quality Control					15
7	References					16
8	Tables					17
9	Figures					42
A	Site Descriptions					169

i

	A.I	Lake Whatcom Monitoring Sites	170
	A.2	Creek Monitoring Sites	175
B	Lake	e Whatcom Data	176
	B.1	Lake Whatcom Hydrolab and Lab Conductivity Data	178
	B.2	Lake Whatcom Laboratory Analysis Data	199
	B.3	Lake Whatcom Plankton and Coliform Data	206
	B.4	Strawberry Sill Hydrolab and Laboratory Analysis Data	210
C	۸m٦	Fest Renorts	221

•

List of Figures

1	Lake Whatcom 1996/97 sampling sites.	43
2	Epilimnion and hypolimnion temperature data from Sites 1–2 compared to 1965–1996 averages.	44
3	Epilimnion and hypolimnion temperature data from Sites 3–4 compared to 1965–1996 averages.	45
4	Site 1 dissolved oxygen concentrations at 10 meters, September only, 1987–1997.	46
5	Lake Whatcom Hydrolab profile for Site 1, February 12, 1997.	47
6	Lake Whatcom Hydrolab profile for Site 2, February 12, 1997.	48
7	Lake Whatcom Hydrolab profile for the Intake site, February 12, 1997	49
8	Lake Whatcom Hydrolab profile for Site 3, February 12, 1997.	50
9	Lake Whatcom Hydrolab profile for Site 4, February 12, 1997.	51
10	Lake Whatcom Hydrolab profile for Site 1, September 10, 1997.	52
11	Lake Whatcom Hydrolab profile for Site 2, September 10, 1997.	53
12	Lake Whatcom Hydrolab profile for the Intake site, September 10, 1997	54
13	Lake Whatcom Hydrolab profile for Site 3, September 18, 1997.	55
14	Lake Whatcom Hydrolab profile for Site 4, September 18, 1997.	56
15	Lake Whatcom temperature data for Site 1.	57
16	Lake Whatcom temperature data for Site 2.	58
17	Lake Whatcom temperature data for the Intake site.	59
18	Lake Whatcom temperature data for Site 3.	60
19	Lake Whatcom temperature data for Site 4.	61
20	Lake Whatcom dissolved oxygen data for Site 1.	62
21	Lake Whatcom dissolved oxygen data for Site 2.	63
22	Lake Whatcom dissolved oxygen data for the Intake site.	64
23	Lake Whatcom dissolved oxygen data for Site 3.	65
24	Lake Whatcom dissolved oxygen data for Site 4.	66
25	Lake Whatcom pH data for Site 1	67

26	Lake Whatcom pH data for Site 2	68
27	Lake Whatcom pH data for the Intake site	69
28	Lake Whatcom pH data for Site 3	70
29	Lake Whatcom pH data for Site 4	71
30	Lake Whatcom conductivity data for Site 1	72
31	Lake Whatcom conductivity data for Site 2	73
32	Lake Whatcom conductivity data for the Intake site.	74
33	Lake Whatcom conductivity data for Site 3	75
34	Lake Whatcom conductivity data for Site 4	76
35	Lake Whatcom alkalinity data for Site 1.	77
36	Lake Whatcom alkalinity data for Site 2.	78
37	Lake Whatcom alkalinity data for the Intake site.	79
38	Lake Whatcom alkalinity data for Site 3	80
39	Lake Whatcom alkalinity data for Site 4	81
40	Lake Whatcom turbidity data for Site 1	82
41	Lake Whatcom turbidity data for Site 2	83
42	Lake Whatcom turbidity data for the Intake site.	84
43	Lake Whatcom turbidity data for Site 3	85
44	Lake Whatcom turbidity data for Site 4	86
45	Lake Whatcom nitrogen summary data for Site 1	87
46	Lake Whatcom nitrogen summary data for Site 2	88
47	Lake Whatcom nitrogen summary data for the Intake site	89
48	Lake Whatcom nitrogen summary data for Site 3	90
49	Lake Whatcom nitrogen summary data for Site 4	91
50	Lake Whatcom ammonia data for Site 1	92
51	Lake Whatcom ammonia data for Site 2	93
52	Lake Whatcom ammonia data for the Intake site.	94
53	Lake Whatcom ammonia data for Site 3.	95

_

.

54	Lake Whatcom ammonia data for Site 4	96
55	Lake Whatcom nitrate/nitrite data for Site 1	97
56	Lake Whatcom nitrate/nitrite data for Site 2	98
57	Lake Whatcom nitrate/nitrite data for the Intake site.	9 9
58	Lake Whatcom nitrate/nitrite data for Site 3	100
59	Lake Whatcom nitrate/nitrite data for Site 4	101
60	Lake Whatcom total nitrogen data for Site 1.	102
61	Lake Whatcom total nitrogen data for Site 2.	103
62	Lake Whatcom total nitrogen data for the Intake site.	104
63	Lake Whatcom total nitrogen data for Site 3.	105
64	Lake Whatcom total nitrogen data for Site 4.	106
65	Lake Whatcom phosphorus summary data for Site 1	107
66	Lake Whatcom phosphorus summary data for Site 2.	108
67	Lake Whatcom phosphorus summary data for the Intake site.	109
68	Lake Whatcom phosphorus summary data for Site 3.	110
69	Lake Whatcom phosphorus summary data for Site 4.	111
70	Lake Whatcom soluble phosphate data for Site 1	112
71	Lake Whatcom soluble phosphate data for Site 2	113
72	Lake Whatcom soluble phosphate data for the Intake site	114
73	Lake Whatcom soluble phosphate data for Site 3.	115
74	Lake Whatcom soluble phosphate data for Site 4.	116
75	Lake Whatcom total phosphorus data for Site 1	117
76	Lake Whatcom total phosphorus data for Site 2	118
77	Lake Whatcom total phosphorus data for the Intake site.	119
78	Lake Whatcom total phosphorus data for Site 3	120
7 9	Lake Whatcom total phosphorus data for Site 4	121
80	Lake Whatcom chlorophyll data for Site 1.	122
81	Lake Whatcom chlorophyll data for Site 2.	123

.

v ·

82	Lake Whatcom chlorophyll data for the Intake site.	124
83	Lake Whatcom chlorophyll data for Site 3.	125
84	Lake Whatcom chlorophyll data for Site 4.	126
85	Lake Whatcom Secchi depths for Site 1	127
86	Lake Whatcom Secchi depths for Site 2	128
87	Lake Whatcom Secchi depths for the Intake site.	129
88	Lake Whatcom Secchi depths for Site 3	130
89	Lake Whatcom Secchi depths for Site 4	131
90	Lake Whatcom total coliform data for Site 1	132
91	Lake Whatcom total coliform data for Site 2.	133
92	Lake Whatcom total coliform data for the Intake site.	134
93	Lake Whatcom total coliform data for Site 3	135
94	Lake Whatcom total coliform data for Site 4	136
95	Lake Whatcom fecal coliform data for Site 1	137
96	Lake Whatcom fecal coliform data for Site 2	138
97	Lake Whatcom fecal coliform data for the Intake site	139
98	Lake Whatcom fecal coliform data for Site 3	140
99	Lake Whatcom fecal coliform data for Site 4	141
100	Lake Whatcom Enterococcus data for Site 1.	142
101	Lake Whatcom Enterococcus data for Site 2.	143
102	Lake Whatcom Enterococcus data for the Intake site.	144
103	Lake Whatcom Enterococcus data for Site 3.	145
104	Lake Whatcom fecal Enterococcus for Site 4	146
105	Lake Whatcom plankton data for Site 1	147
106	Lake Whatcom plankton data for Site 2	148
107	Lake Whatcom plankton data for the Intake Site.	149
108	Lake Whatcom plankton data for Site 3	150
109	Lake Whatcom plankton data for Site 4	151

-

vi

110	Lake Whatcom withdrawals, October 1, 1995–September 30, 1996	152
111	Lake Whatcom withdrawal percentages, October 1, 1995–September 30, 1996.	153
112	Lake Whatcom hydraulic totals, October 1, 1995–September 30, 1996	154
113	Lake Whatcom withdrawals, October 1, 1996–September 30, 1997	155
114	Lake Whatcom withdrawal percentages, October 1, 1996–September 30, 1997	156
115	Lake Whatcom hydraulic totals, October 1, 1996–September 30, 1997.	157
116	Park Place wet pond, cell 1. Photograph taken on September 16, 1997.	158
117	Park Place wet pond, cell 2. Photograph taken on September 16, 1997	159
118	Park Place wet pond, cell 3. Photograph taken on September 16, 1997	160
119	Hydrolab field duplicates (1st sample) compared to laboratory analyses of water samples (2nd sample).	161
120	Alkalinity duplicates control chart.	162
121	Conductivity duplicates control chart.	163
122	Nitrate/nitrite duplicates control chart.	164
123	pH duplicates control chart.	165
124	Total nitrogen duplicates control chart.	166
125	Total phosphorus duplicates control chart.	167
126	Turbidity duplicates control chart.	168
127	Lake Whatcom sampling sites, basins 1–2.	172
128	Lake Whatcom sampling sites, basin 3.	173
129	Strawberry sill sampling sites.	174

•

List of Tables

1	Lake Whatcom 1996/97 lake monitoring schedule.	18	Т
2	Summary of analytical methods	19	0
3	Early September dissolved oxygen concentrations (mg/L) at Site 1	20	۷ fi
4	Site 1 average ambient water quality data	21	CI
5	Site 2 average ambient water quality data	22	Т
6	Intake average ambient water quality data	23	A sı
7	Site 3 average ambient water quality data	24	w dt
8	Site 4 average ambient water quality data	25	e>
9	Lake Whatcom total organic carbon data.	26	fr
10	Lake Whatcom metals data, 1995–1997	27	ye de
11	Strawberry sill hydrolab data summary compared to Site 3	28	T
12	Strawberry sill water quality data summary compared to Site 3	29	w hv
13	Strawberry sill metals and total organic carbon data compared to Site 3	30	le
14	Lake Whatcom 1996/97 creek monitoring schedule	31	T th
15	Physical water quality data for Blue Canyon, Wildwood, Park Place, and Silver Beach Creeks.	32	T S
16	Physical water quality data for Anderson, Austin, and Smith Creeks.	33	a
17	Chemical and biological water quality data for Blue Canyon, Wildwood, Park Place, and Silver Beach Creeks.	34	si b si
18	Chemical and biological water quality data for Anderson, Austin, and Smith Creeks.	35	b
19	Metals data for Blue Canyon, Wildwood, Park Place, and Silver Beach Creeks.	36	b c
20	Metals data for Anderson, Austin, and Smith Creeks.	37	S
21	Total organic carbon data for Lake Whatcom tributaries.	38	C
22	Average coliform and Enterococcus counts for Lake Whatcom tributaries.	39	c c
23	Park Place wet pond water quality summary.	40	c
24	Summary of single-blind quality control results.	41	a c
25	Summary of site codes for Lake Whatcom water quality sampling.	171	-

.

ł

sι w d٤ e> fr

ye de

Tl w

hy le. Tl

th

Tł Si an su ba sh bu be сс Si

> C to cł СС ar of ----

.

Executive Summary

This report describes the results from the 1996/97 Lake Whatcom monitoring program. The objectives of this program were to continue long-term baseline water quality monitoring in Lake Whatcom and selected tributary streams; to continue collecting supplemental water quality data from basin 3 near Strawberry sill; to update the hydrologic model for Lake Whatcom; and to continue monitoring the effectiveness of the Park Place wet pond.

The lake was sampled on October 8, November 12, December 3/12, 1996, and on February 12, April 22, May 15/21, June 10/12, July 10/14, August 13/21, and September 10/18, 1997. The summer of 1996/97 was unusually warm compared to the previous two summers. It was also warmer than usual compared to 30-year temperature averages for Lake Whatcom¹. Sites 1 and 2 developed severe oxygen deficits by mid-summer. Historic data show that the bottom of basin 1 has experienced low oxygen conditions for at least 30 years. Until the early 1990's the oxygen profiles from Site 1 followed predictable, climate-related patterns. Data from Site 1 for the past eleven years, however, show increasing problems with oxygen depletion at 9–13 meters. The oxygen depletion does not appear to be strongly linked to antecedent weather conditions.

The primary cause of deteriorating oxygen conditions in basin 1 is most likely residential runoff, which contains elevated concentrations of nutrients. In addition, the thin buffer between the hypolimnion and epilimnion at Site 1 allows dissolved nutrients, metals, and other compounds that leak from the sediments under low oxygen conditions to move to within 8–10 m of the surface. This places additional nutrients within the photic zone of the lake, increasing the accessibility of these nutrients to phytoplankton, and increasing the overall productivity of the basin.

The remaining 1996/97 water quality data mostly followed patterns consistent for Lake Whatcom. Site 1 (basin 1) was more productive that the rest of the lake, as indicated by the nutrient, chlorophyll, and oxygen data. The total plankton counts were relatively high throughout the lake during the summer of 1997. The summer plankton blooms including an unusually large number of bluegreen bacteria, which are often associated with taste and odor problems in drinking water. Site 2 (basin 2) shared some of the water quality characteristics of basin 1 (e.g., very low oxygen concentrations), but because of its rapid flushing rate and proximity to basin 3, the overall water quality was slightly better than Site 1. Sites 3–4 (basin 3) had excellent water quality, typical for the oligotrophic conditions in basin 3. The water quality along Strawberry sill was similar to the water quality at Site 3 except for minor temperature differences.

Coliform and *Enterococcus* counts were low at nearly all sites in the lake ($\leq 50 \text{ cfu}/100 \text{ mL}$ for total coliforms, $\leq 10 \text{ cfu}/100 \text{ mL}$ for fecal coliforms and *Enterococcus*). Arsenic, chromium, chromium, copper, mercury, nickel, and lead were at, or below, detection limits at most sites. Zinc concentrations were detectable, but low, throughout the lake. Iron concentrations were detectable and within the range that is typical for Lake Whatcom. Cadmium was detectable at the bottom of Site 2 and the Intake ($3 \mu g/L$). This cadmium concentration is less than the Drinking Water

¹IWS unpublished data, 1965–1997.

Standard of 10 μ g/L but higher than the freshwater aquatic criteria of 0.66–1.8 μ g/L (4-day and 1-hr averages; EPA, 1986). The source of the elevated cadmium is unknown. The cadmium value is very close to the analytical detection limit of 2 μ g/L and may reflect analytical variance.

Seven creeks were sampled during February and August, 1997: Austin Creek, Anderson Creek, the Park Place storm drain, Silver Beach Creek, Smith Creek, Wildwood Creek, and Blue Canyon Creek. The water quality in the creeks fell within expected ranges, with the residential creeks having poor water quality compared to the creeks in forested areas. The residential creeks had higher conductivities, higher concentrations of ammonia, phosphorus, and total suspended solids concentrations, and much higher total and fecal coliform counts. These differences are typical for streams receiving urban runoff.

:

1

1

1

t

t

ŧ

t

C

Austin and Silver Beach Creeks, and the Park Place drain exceeded the Class A standards for fecal coliforms and may constitute a public health risk. An independent study by Smith (1997) found *Giardia* and *Cryptosporidium* cysts in water samples from Austin and Brannian Creeks. Cyst densities were found to be correlated with fecal coliform counts and other water quality indicators of agricultural and residential development in watersheds. *Cryptosporidium*, in particular, is of concern in public water supplies because of its resistance to conventional water treatment techniques. In 1993, an outbreak of cryptosporidiosis caused illness in almost 400,000 people in Milwaukee². Whenever feasible, the recommended approach for reducing risks associated with *Giardia* and *Cryptosporidium* is watershed protection.

As an alternative to the overly complex HSPF model, a simple water balance model was developed using measured withdrawals from Lake Whatcom (Whatcom Creek, City of Bellingham Municipal Supply, Whatcom Falls fish hatchery, Georgia-Pacific Corp., and Water District #10), the Middle Fork diversion data, and the lake level. Whatcom Creek was shown to be the major withdrawal from the lake. Georgia Pacific and the City of Bellingham were also important withdrawals during periods of low flow in Whatcom Creek. During the winter there were large quantities of water moving through the lake, and the relative contribution of the diversion was small. During the summer the total withdrawals decreased, the lake level dropped, and the relative contribution of the diversion was higher.

The Park Place wet pond was sampled on February 17–19, 1997 during the wet season at high flow and September 15–17, 1997 during the dry season at nominal flow. We were unable to collect samples during the wet season at nominal flow because the flows remained high throughout the winter and spring. Pond construction and vegetation planting was completed by the fall of 1994. Photographs from the summer of 1997 show extensive macrophyte growth around the edges of the pond. The pond performed poorly for most types of contaminants, with no consistent reduction in sediments, nutrients, total organic carbon, or metals concentrations between the inlet and outlet. In addition, the pond was bypassed much of the fall, winter, and spring of this year because the flow exceeded the pond's capacity. When bypassed, the stormwater flow discharges directly into Lake Whatcom and does not receive any treatment by the wet pond.

²For more information see the Cryptosporidium White Paper, http://www.ci.sf.ca.us/puc/crypto.htm.

1 Introduction

Lake Whatcom is the primary drinking water source for the City of Bellingham and parts of Whatcom County (including Sudden Valley), and provides high quality water for the Georgia-Pacific Corporation mill. The lake and parts of the watershed provide recreational opportunities, as well as providing important habitats for fish and wildlife. The lake is used as a storage reservoir to buffer peak storm water flows in Whatcom Creek. Much of the watershed is zoned for forestry and is managed by state or private timber companies. Because of its aesthetic appeal, much of the Lake Whatcom watershed is highly valued for residential development.

The City of Bellingham and Western Washington University have collaborated on investigations of the water quality in Lake Whatcom since the early 1960's. Beginning in 1981, a monitoring program was initiated by the City and WWU that was designed to provide long-term data for Lake Whatcom for basic parameters such as temperature, pH, dissolved oxygen, conductivity, turbidity, nutrients (nitrogen and phosphorus), and other representative water quality measurements. The major goal of the long-term monitoring effort is to provide a record of Lake Whatcom's water quality over time. In addition, since the City and WWU review the scope of work for the monitoring program each year, short-term water quality questions can be addressed as needed.

The major objectives of the 1996/97 Lake Whatcom monitoring program were to continue longterm baseline water quality monitoring in Lake Whatcom and selected tributary streams, to continue collecting supplemental water quality data from basin 3 near Strawberry sill, to update the hydrologic model for Lake Whatcom, and to continue monitoring the effectiveness of the Park Place wet pond.

This report will be subdivided into the following sections:

Section 1: Introduction	Section 7: References
Section 2: Lake Whatcom Monitoring	Section 8: Tables
Section 3: Creek Monitoring	Section 9: Figures
Section 4: Lake Whatcom Water Budget	Appendix A: Site Descriptions
Section 5: Park Place Wet Pond Monitoring	Appendix B: Lake Whatcom Data
Section 6: Quality Control	Appendix C: AmTest Reports

Note that all of the tables and figures are located at the end of the report in Sections 8–9 (pages 17 and 42, respectively). Detailed site descriptions and raw data are included in the Appendices.

2 Lake Whatcom Monitoring

2.1 Site Descriptions

Water quality samples were collected at five long-term monitoring sites in Lake Whatcom (see Figure 1, page 43; Appendix A, page 170). Sites 1-2 are located at the deepest points in their respective basins. The Intake site is located adjacent to the underwater intake point where the City of Bellingham withdraws raw water from basin 2. Site 3 is located at the deepest point in the northern sub-basin of basin 3 (north of the Sunnyside sill), and Site 4 is located at the deepest point in the southern sub-basin of basin 3 (south of the Sunnyside sill). An orange marker buoy is anchored at each of the sampling sites.

In October 1996 three additional sites were monitored on a transect across Strawberry sill (Appendix A, Figure 129, page 174). These sites are located on the 40-meter depth contour as described in Appendix A.

Water samples were also collected at the City of Bellingham Water Treatment Plant gatehouse, which is located onshore and west of the intake site.

2.2 Field Sampling and Analytical Methods

The lake was sampled on October 8, November 12, December 3/12, 1996, and on February 12, April 22, May 15/21, June 10/12, July 10/14, August 13/21, and September 10/18, 1997³. The water quality parameters measured for the 1996/97 lake monitoring program are shown in Table 1 on page 18 (see Section 8, beginning on page 17, for all Tables).

A Surveyor II Hydrolab was used to measure temperature, pH, dissolved oxygen, and conductivity. All water samples (including bacteriological samples) collected in the field were stored on ice and in the dark until they reached the laboratory, and were analyzed following the procedures listed in Table 2, page 19 (APHA, 1992; EPA, 1983; Lind, 1985). The total metals analyses (arsenic, cadmium, chromium, copper, iron, mercury, nickel, lead, and zinc) were done by AmTest⁴. The plankton samples were placed in a cooler and returned to the laboratory unpreserved. In the laboratory the sample volumes were measured and each sample was split into a taxonomic sample and an archived sample. Both types of plankton samples were preserved with Lugol's solution and analyzed as soon as possible. The bacteria samples were analyzed by the City of Bellingham at their water treatment plant. All other analyses were done by the personnel hired by this grant.

³Multiple dates are needed because of added time required to sample Strawberry sill.

⁴AmTest, 14603 N.E. 87th St., Redmond, WA, 98052.

2.3 Results and Discussion

2.3.1 Hydrolab data

Lake Whatcom Hydrolab data for temperature, dissolved oxygen, conductivity, and pH are illustrated in Figures 2–34 (pages 44–76).

Single-day Hydrolab profiles from mid-winter (February 12, 1997) and late-summer (September 10/18, 1997) are illustrated in Figures 5–14 (pages 47–56). Single-day Hydrolab profiles are sent to the City of Bellingham Public Works Department approximately monthly as part of the reporting process for this project. These figures show typical winter and late summer vertical (depth) profiles for temperature, dissolved oxygen, pH, and conductivity.

The February Hydrolab profiles (Figures 5–9) and the multi-year temperature profiles (Figures 15–19) show that the water column mixes during the fall, winter, and early spring. As a result, temperatures, dissolved oxygen concentrations, pH, and conductivities are fairly uniform from the surface to the bottom of the lake, even at Site 4, which is over 300 ft. (100 meters) deep.

During the summer the lake stratifies into a warm surface layer (the epilimnion) and a cool bottom layer (the hypolimnion). When stratified, the Hydrolab profiles show distinct differences between surface and bottom temperatures (Figures 10–14 and 15–19). Climatic differences alter the timing of lake stratification: if the spring is cool, cloudy, and windy, the lake will stratify later than when it has been hot and sunny. In Lake Whatcom stratification usually occurs in April or May at all sites except the Intake, which is too shallow to develop a stable stratification. Destratification occurs in early fall or winter. The two shallow basins (Sites 1–2) cool quickly and destratification usually occurs by late October or early November. Basin 3 (Sites 3–4), which cools slowly because of its large volume, may not destratify until December or later.

Figures 2–3 (pages 44–45) compare the 1996/97 epilimnion and hypolimnion temperatures to 30year averages from 1965–1996. The epilimnion and hypolimnion depth classes were defined as follows:

Site	Epilimnion	Hypolimnion
1	0-7 meters	≥ 15 meters
2	0-10 meters	\geq 16 meters
3	0-10 meters	\geq 31 meters
4	0-10 meters	\geq 31 meters

Figures 2-3 show that although the winter and spring temperatures were close to the 30-year average, May, August, and September were much warmer. Similarly, Figures 15-16 reveal that the summer of 1997 was much warmer than 1995 and 1996.

Sites 1 and 2 developed severe hypolimnetic oxygen deficits by mid-summer (Figures 10–11 and 20–21, pages 52–53 and 62–63). Hypolimnetic oxygen depletion, if it occurs, only becomes apparent after stratification, at which time the lower waters of the basin are isolated from the lake's

surface and biological respiration consumes the oxygen dissolved in the water. In Lake Whatcom, although climate influences the timing of stratification, the rate of biological activity in the lake is more influenced by nutrient availability. In basin 3, which has very low concentrations of essential nutrients such as phosphorus, biological respiration had little influence on hypolimnetic oxygen concentrations (e.g., Figures 14 and 24, pages 56 and 66). In contrast, Site 1, which is located in nutrient-enriched waters, showed rapid depletion of the hypolimnetic oxygen concentrations following stratification (Figures 10 and 20).

Historic data show that the bottom of basin 1 has experienced low oxygen conditions for at least 30 years. Until recently the oxygen profiles from Site 1 have followed predictable, climate-related patterns. It now appears that since about 1992-1993 the loss of hypolimnetic oxygen at Site 1 has been getting worse. This trend does not appear to be strongly linked to antecedent weather conditions.

The upper portion of the hypolimnion at Site 1 shows the most dramatic shift in oxygen concentrations over time. Table 3 (page 20) shows early September oxygen data from Site 1 for the past eleven years. From 1987 through 1992 the September oxygen concentrations in the upper hypolimnion rarely fell below 1–2 mg/L, maintaining a 3–4 meter "buffer" of oxygenated waters between the hypolimnion and epilimnion. Since 1993 this buffer has thinned to as little as 1 meter.

A scatterplot of the Site 1 oxygen data from 10 meters revealed that all of the September oxygen concentrations since 1993 were lower than the 11-year average (Figure 4, page 46). To examine the strength of this pattern the September 10-meter oxygen and temperature data from all sites were coded into two groups, 1987–1992 and 1993–1997, and tested for statistical differences. The Site 1 1993–1997 oxygen values were significantly lower than the 1987–1992 values, based on the Student's *t*-test (p=0.027) and nonparametric Kolmogorov-Smirnov test of two independent samples (p=0.0285). None of the other sites showed significant differences for the 10-meter oxygen data. None of the sites had significant temperature differences between the two groups, confirming that the low oxygen in the 1993–1997 group was not just the result of warmer water temperatures.

The primary cause of deteriorating oxygen conditions in basin 1 is most likely residential runoff, which contains elevated concentrations of nutrients (see Section 3). In addition, the thin buffer between the hypolimnion and epilimnion at Site 1 allows dissolved nutrients, metals, and other compounds that leak from the sediments under low oxygen conditions to move to within 8-10 m of the surface. This places additional nutrients within the photic zone of the lake, increasing the accessibility of these nutrients to phytoplankton, and increasing the overall productivity of the basin.

The pH and conductivity data followed typical trends for Lake Whatcom, with only small differences between sites and depths except during the summer. During the summer the surface pH increased due to photosynthetic activity, especially at Site 1. The summer pH values were relatively high at all sites because of phytoplankton blooms throughout the lake (see Figures 80–84 and 105–109, pages 122–126 and 147–151). Hypolimnetic pH values decreased and conductivity values increased due to decomposition and the release of dissolved compounds from the sediments.

2.3.2 Other ambient water quality data

The remaining water quality data that were collected monthly or bimonthly (nutrients, alkalinity, turbidity, Secchi depth, chlorophyll, bacteria, and plankton) are shown in Figures 35–109 (pages 77–151) and summarized in Tables 4–8 (pages 21–25). Because of the large amount of data presented in these graphs, only the important patterns will be discussed in the text.

The raw data are listed in Appendix B, beginning on page 176. In order to provide a better analysis of the water quality patterns in the lake, the graphs also include data from the previous two contract years. The metals data from 1995/97 are listed in Table 10 (page 27). The AmTest data reports for the metals analyses are included in Appendix C (page 221).

The alkalinity values remained fairly low at most sites and depths (Figures 35–39, pages 77–81). During the summer the alkalinity and conductivity values at the bottom of Sites 1–2 increase due to decomposition and the release of dissolved compounds in the lower waters. The turbidity values were mostly <1-2 NTU except during late summer samples at the lower depths at Sites 1 and 2 (Figures 40–44, pages 82–86). The late summer turbidity pattern is an indication of increasing turbulence in the lower hypolimnion as the lake nears turn-over. The influence of winter storms on turbidity can be seen in the samples from December 1996. Because the water in the shallow basins of the lake was mixing in December, higher turbidities were measured at all depths. Basin 3 was still stratified below 40-50 meters so higher turbidities were only measured in the epilimnetic samples.

The nutrient data from Site 1 continue to show that basin 1 is more productive than the rest of Lake Whatcom (Figures 45–64, pages 87–106). The late summer ammonia concentrations at Site 1 were high at both 15 and 20 meter depths (Figure 50, page 92). This has been a common occurrence at Site 1 for at least the past eleven years:

Late summer ammonia conc. ($\mu g/L$)				
Site	Year	15 m	20 m	
1	1987	196	248	
1	1988	375	386	
1	1989	14	161	
1	1990	27	па	
1	1991	137	97	
1	1992	154	159	
1	1993	па	na	
1	1994	307	302	
1	1995	183	174	
1	1996	194	182	
1	1997	116	128	

Late summer ammonia conc. (μ g/L)

In oxygenated water, ammonia is rapidly converted to nitrite and nitrate through biological and chemical processes. In the low oxygen environments at the bottom of basins 1 and 2, however,

ammonia diffuses throughout the hypolimnion. When the buffer between the hypolimnion is thin, the soluble ammonia can move to within a few meters of the epilimnion, making nitrogen more available for phytoplankton. This may play an important role in phytoplankton population growth, especially in basin 1, because nitrogen and phosphorus are probably co-limiting algal growth during late summer.

The summer nitrate depletion rates at Sites 1 and 2 were about the same in 1997 as in 1994-1996 (Figures 55–59, pages 97–101). Nitrogen is an essential nutrient for plankton, and the depletion of nitrate during the summer is an indirect measure of phytoplankton productivity. Site 1 nitrate concentrations often fall below 50 μ g-N/L in the late summer. As a result, both nitrogen and phosphate are probably limiting the algal growth in basin 1 during at least part of the year. Epilimnetic nitrate concentrations decrease during the summer at Sites 2–4, but seldom fall below 150 μ g/L, making it less likely that nitrogen is co-limiting at these sites.

Soluble phosphate concentrations remained low at all sites and depths (Figures 70–74, pages 112–116). Unlike the October 1994 and 1995, there were no soluble phosphate peaks measured at the lowest depths at Sites 1 and 2 during late summer. The peaks are caused by the release of phosphorus from the sediments and increased turbulence in the hypolimnion just prior to fall overturn, and do not persist long because of the intense competition for phosphorus by algae.

It should be noted that although the soluble phosphate concentrations were low in the water column, basins 1 and 2 are biological productive, as indicated earlier by the oxygen data. Soluble phosphate is rapidly removed from the water column by biota, so even productive lakes may have relatively low concentrations in the water column. If the biota were uniformly suspended in the water column, we would expect to see high total phosphorus concentrations in basins 1–2 due to conversion of soluble phosphorus into biomass. We do find higher concentrations of total phosphorus in basins 1–2, but mostly at the lower depths rather than uniformly suspended in the water column (Figures 75–76, pages 117–118). This is due to the following factors: a) living biota are not uniformly distributed in the water, but rather form strata or bands that are often missed when sampling the epilimnion; b) dead biota "rain" down into the lower depths, increasing the phosphorus concentration in the hypolimnion; c) late summer turbulence in the hypolimnion resuspends phosphorus-rich sediments; d) low oxygen conditions release sediment-bound phosphorus, which moves into the hypolimnion.

Site 1 continued to have the highest chlorophyll concentrations (Figures 80–84, pages 122–126). The summer plankton counts were exceptionally high throughout the lake (Figure 105–109, pages 147–151), which was probably caused by the warm sunny weather in August and September. The dominant phytoplankton at all sites continued to be diatoms and other Chrysophyta. Green algae (Chlorophyta) and dinoflagellates (Pyrrophyta) contributed to periodic algal blooms. Bluegreen bacteria (Cyanophyta) were unusually abundant throughout the lake during August and September, 1997. Bluegreens are often common in late-summer plankton samples, and may be associated with taste and odor problems in drinking water. Because of their small cell size they are counted as colonies rather than single cells, while most other algae are counted as single cells. As a result, the Cyanophyta colony counts are considerably lower than the counts for other algal taxa in Lake Whatcom.

Many species of bluegreens have specialized abilities that allow them to continue growing when phosphorus and nitrogen concentrations are limiting the growth of other algae. These specializations include the ability to take up excess phosphorus when it is available and store it until needed for growth. Many bluegreens also have the ability to use the lake's abundant supply of dissolved N_2 gas as a nitrogen source⁵. The unusual growth of bluegreens during 1997 may have originated with the winter storms of 1996/97 (see turbidity data, Figures 40–44, pages 82–86) that carried large amounts of nutrients into the lake. Cyanophytes grow slowly, so their populations peaks did not occur until late summer. Diatoms (Chrysophyta) responded quickly to the nutrients in the storm runoff with a winter bloom. Additional diatom blooms developed during the summer as more nutrients washed in from the watershed or were released from internal sources (low-oxygen sediments, decomposition of biota, etc.).

Total organic carbon concentrations were low (1-2 mg/L) at most sites, especially in February when biological activity is low (Table 9, page 26). Secchi depths (Figures 85–89, pages 127–131) continue to show no clear seasonal patterns, probably because transparency in Lake Whatcom is a function of both summer algal blooms and winter storm events.

Coliform and *Enterococcus* counts were low at all sites, $\leq 50 \text{ cfu}/100 \text{ mL}$ for total coliforms⁶, and $\leq 10 \text{ cfu}/100 \text{ mL}$ for fecal coliforms and *Enterococcus* (Figures 90–104, pages 132–146; raw data are listed in Appendix B). The total and fecal coliform counts were slightly higher during October, November, and December, which was probably related to stormwater runoff. In addition to our regularly sampled lake sites, in November, 1994, we began collecting monthly bacteria samples from the Bloedel-Donovan area (Appendix B). The Bloedel-Donovan bacteria counts were slightly higher than mid-basin counts, ranging from 6–50 cfu/100 mL, 2–37 cfu/100 mL, and < 2–8 cfu/100 mL for total coliforms, fecal coliforms, and *Enterococcus*, respectively.

The September 1996 metals concentrations were similar to those from previous years (Table 10, page 27). Arsenic, chromium, chromium, copper, mercury, nickel, and lead were at, or below, detection limits at most sites. Zinc concentrations were detectable, but low, throughout the lake. Iron concentrations were detectable and within the range that is typical for Lake Whatcom. Cadmium was detectable at the bottom of Site 2 and the Intake (3 $\mu g/L$). This cadmium concentration is less than the Drinking Water Standard of 10 $\mu g/L$ but higher than the freshwater aquatic criteria of 0.66–1.8 $\mu g/L$ (4-day and 1-hr averages; EPA, 1986). The source of the elevated cadmium is unknown. The cadmium value is very close to the analytical detection limit of 2 $\mu g/L$ and may reflect analytical variance.

⁵Most other algae can't use N₂ directly.

⁶cfu = colony forming unit

2.3.3 Strawberry sill data

The Strawberry sill hydrolab, water quality, and metals data are summarized in Tables 11 through 13 (pages 28–30) and listed in Appendix B (page 176). The AmTest data reports for the metals analyses are included in Appendix C (page 221).

Strawberry sill was sampled on October 22, 1996 and January 16, February 10, April 29, May 21, June 12, July 14, and September 18, 1997. The water quality values along the sill was mostly similar to those from Site 3. The water temperatures were within $1-2^{\circ}$ C compared to Site 3. The temperature differences were probably caused by more rapid heating and cooling along the shallow sill compared to mid-basin. The total nitrogen concentrations were higher along the sill during October, but the other nutrient concentrations were about the same. Metals concentrations were all low, as were the total organic carbon concentrations.

Two data entry errors were noted in the January AmTest results; therefore, these data were omitted from Table 13 and Appendix B. AmTest is investigating the problem and will forward their findings to IWS.

3 Creek Monitoring

3.1 Site Descriptions

Seven creeks were sampled biannually during the 1996/97 monitoring program, including Austin Creek, Anderson Creek⁷, the Park Place storm drain, Silver Beach Creek, Smith Creek, the unnamed creek that flows through the Wildwood campground, and the northern unnamed creek on Blue Canyon Rd. (Blue Canyon #1). The exact sampling locations for these sites are described by Walker, et al. (1992), and are summarized in Appendix A (page 170).

These creeks included two small, mostly forested creeks located in the southern portion of the watershed (Wildwood Creek and Blue Canyon Creek); a small residential creek located in the northeastern portion of the watershed (Silver Beach Creek); one underground storm drain (Park Place drain); two large, perennial creeks (Austin Creek and Smith Creek): and Anderson Creek, which is a major water source for Lake Whatcom because is receives the diversion flow from the Middle Fork of the Nooksack River. These seven creeks represent water quality conditions ranging from heavily impacted by residential runoff (Park Place drain) to relatively unaffected by residential development (e.g., Blue Canyon Creek). Of the three large creeks, Austin Creek, which is sampled near its mouth, receives residential runoff from Sudden Valley. Smith Creek and Anderson Creek, which are also sampled near their mouths, receive relatively little residential runoff.

3.2 Field Sampling and Analytical Methods

The creeks were sampled in February and August, 1997. The water quality parameters measured for the 1996/97 creek monitoring program are shown in Table 14 (page 31). The analytical procedures are summarized in Table 2 (page 19). All water samples (including bacteriological samples) collected in the field were stored on ice and in the dark until they reached the laboratory. Once in the laboratory the handling procedures that were relevant for each analysis were followed (see Table 2). The total metals analyses (arsenic, cadmium, chromium, copper, iron, mercury, nickel, lead, and zinc) were done by AmTest, Inc. The bacteria samples were analysie field and laboratory Bellingham at their water treatment plant. All other analyses were done by the field and laboratory personnel hired by this grant.

3.3 Results and Discussion

The primary purpose for the biannual creek monitoring was to provide data that can be compared to the more complete data set generated in 1990 during the storm water runoff project (Walker, et al., 1992). Tables 15–20 (pages 32–37) show the recent creek water quality data compared to

⁷Anderson Creek was added to our routine sampling effort beginning in February 1995.

the 1990 average water quality values for each creeks. Wildwood Creek was dry in August so no samples were collected. Discharge measurements were made when feasible, but a number of sites had excessively high flows in February and excessively low flows in August.

Most of the 1996/97 creek data fell within expected ranges. Compared to the streams in forested areas, the residential streams typically had poorer water quality, with higher conductivities; higher ammonia, phosphorus, and total suspended solids concentrations; and much higher total and fecal coliform counts. These differences are typical for streams receiving urban runoff.

The nitrite/nitrate and total nitrogen concentrations were higher in the winter samples than in the summer samples due to leaching of soluble nitrogen compounds during the wet season. Ammonia concentrations were highest in samples from the residential areas. Ammonia is converted fairly quickly to nitrate in turbulent water, so the ammonia in the Lake Whatcom streams probably came from near-by watershed sources (animal wastes, swampy areas, etc.). The August dissolved oxygen concentration was low in the Park Place drain. The metals concentrations at all sites were at or near their detection levels except for iron and zinc, which were within normal ranges for the creeks.

The soluble phosphate concentrations continued to be high in all samples from Silver Beach Creek and the Park Place drain. The Park Place drain has had a stormwater treatment pond in place for three years, which does not appear to be reducing the phosphate concentrations in the drain. Total organic carbon concentrations were low in all the creeks during February, but were high in the residential creeks in August (Table 21, page 38).

1

÷

i

ł

1

1

1

t

t

]

C

١

١

l c t c

1

г

f

٧

Austin and Silver Beach Creeks, and the Park Place drain exceeded the Class A standards⁸ for fecal coliforms, and may constitute a public health risk (Table 22, page 39). Smith (1997) sampled Austin and Brannian Creeks for *Giardia* and *Cryptosporidium*. He reported that cysts were present and cyst densities were correlated with fecal coliform counts. Other researchers have demonstrated that *Giardia* and *Cryptosporidium* densities are correlated with agricultural and residential development in watersheds (e.g., Hansen and Ongerth, 1991; Ongerth, 1989). Both *Giardia* and *Cryptosporidium* may pass through conventional drinking water treatment systems, especially systems that are not functioning properly or are overburdened due to high turbidities or cyst densities. The City of Bellingham⁹ recently upgraded its filtration and disinfection processes to remove and inactivate *Giardia* cysts. *Cryptosporidium*, in particular, is of concern in public water supplies because of its resistance to conventional water treatment techniques. In 1993, an outbreak of cryptosporidiosis¹⁰ caused illness in almost 400,000 people in Milwaukee. Whenever feasible, the recommended approach for reducing risks associated with *Giardia* and *Cryptosporidium* is watershed protection (see literature review by Smith, 1997).

⁸"Freshwater - fecal coliform organism levels shall both not exceed a geometric mean value of 100 colonies/100 mL, and not have more than 10 percent of all samples obtained for calculating the geometric mean value exceeding 200 colonies/100 mL" (WAC 173-201A-030).

⁹Personal communications, Bill McCourt, City of Bellingham Public Works Department.

¹⁰For more information see the Cryptosporidium White Paper, http://www.ci.sf.ca.us/puc/crypto.htm.

4 Lake Whatcom Water Budget

3

The HSPF water budget model information for water year 1996 was not included in the Lake Whatcom Monitoring Project 1995/1996 Final Report (Matthews, et al., 1997). The HSPF approach was subsequently abandoned in favor of a simpler water balance model. This report includes data for the 1996 water year (October 1, 1995 to September 30, 1996) and the 1997 water year (October 1, 1995 to September 30, 1996) and the 1997 water year (October 1, 1996 to September 30, 1997) produced using the simple model.

The reasons for abandoning the HSPF model were primarily the loss of technical expertise in assessing data validity and HSPF operation, and the relatively large errors associated with using the model in its current configuration for Lake Whatcom. The HSPF model used time series data from gauged Lake Whatcom discharges (Whatcom Creek, City of Bellingham Municipal Supply, Whatcom Falls fish hatchery, Georgia-Pacific Corp., and Water District #10), the Middle Fork diversion, and Post Point evaporation to generate monthly estimates of lake surface precipitation, evaporation, and watershed runoff. The measured data and HSPF-generated data were plotted by month to show water balance inputs and outputs. The errors associated with the application of the HSPF model to the Lake Whatcom watershed are discussed by Walker (1995). Some of the most important problems were the paucity of stream discharge data, the location and number of precipitation gauging sites, and the simplification of watershed hydrological response units. In abandoning the HSPF approach, we give up the HSPF estimates of watershed precipitation. It should be noted, however, that these were estimated parameters based on model input. The simple water balance model is based on entirely on measured time series data.

As an alternative to the overly complex HSPF model, a simple water balance model was developed using the measured withdrawals from Lake Whatcom (Whatcom Creek, City of Bellingham Municipal Supply, Whatcom Falls fish hatchery, Georgia-Pacific Corp., and Water District #10), the Middle Fork diversion data, and the lake level. In this simple water balance model, it is assumed that all watershed hydrologic processes (precipitation, runoff, stream discharge, evaporation) are reflected in the difference between known inputs and outputs and the change in lake level.

Daily lake level change was determined by subtracting each day's lake level by the subsequent day's level. This resulted in negative values when the lake level was decreasing and positive values when it was increasing. This net level change was multiplied by lake surface area and the resulting volume was converted to gallons. Changes in surface area due to change in lake level were ignored. Daily changes in lake volume were totaled for each month. Measured daily withdrawals and diversion input were also totaled for each month. Monthly net storage change were determined by subtracting monthly diversion totals from monthly change in lake level and adding monthly cumulative withdrawal totals.

The resulting data were used to generate three types of plots: withdrawals, percentage withdrawals, and hydraulic totals (Figures 110–115, pages 152–157). Whatcom Creek was the major withdrawal from the lake during both years (Figures 110 and 113). Georgia Pacific and the City of Bellingham were also important withdrawals during periods of low flow in Whatcom Creek. Figures 112 and

11

115 summarize the hydrologic patterns for the lake. During the winter there were large quantities of water moving through the lake (as indicated by the total withdrawals), and the relative contribution of the diversion was small. During the summer the total withdrawals decreased (largely due to reduced discharges into Whatcom Creek), the lake level dropped, and the relative contribution of the diversion was higher.

5 Park Place Wet Pond Monitoring

This portion of the project was designed to monitor the water treatment efficiencies for the Park Place wet-pond that has been constructed to treat stormwater runoff prior to its release into the northern basin of Lake Whatcom.

5.1 Sampling procedures

Water quality samples were collected on February 17–19, 1997 during the wet season at high flow and September 16–17, 1997 during the dry season at nominal flow. We were unable to collect samples during the wet season at nominal flow because the flows remained high throughout the winter and spring.

During each sampling period two sites (one inflow and one outflow) were sampled for 48 hrs using composite samplers. The sample regime consisted of two components: composite samples and grab samples. Automatic composite samplers (ISCO type, supplied by the City of Bellingham) were placed at the inlet and outlet of the storm water quality facility. The inlet sampler was located at the casement on North Shore Drive directly opposite Britton Road. The outlet sampler was located at the outlet well of the facility. Water samples were collected by the composite samplers continually over the 48 hours of each sample period at 90 minute intervals. The composite samples were analyzed for total suspended solids, heavy metals (cadmium, chromium, copper, iron, nickel, lead, and zinc), total organic carbon, total nitrogen, and total phosphorus. In addition, both sites were sampled four times during the 48-hr period to measure pH, temperature, dissolved oxygen, conductivity, and total and fecal coliforms. We photographed the pond in September, 1997 and collected field notes to describe the apparent health of the aquatic vegetation, including any nuisance growth of algae or aquatic macrophytes.

Grab samples were collected at the inlet and the outlet. Inlet grab samples were collected from the manhole at the northwest corner of North Shore Drive and Britton road. Outlet grab samples were collected from the casement in the middle of Park Place. Grab samples were taken four times during each 48-hour sample period. *In situ* temperature, pH, dissolved oxygen, and conductivity was measured at each grab sample using the Hydrolab Surveyor.

5.2 Results and Discussion

Pond construction and vegetation planting was completed by the fall of 1994 and preliminary water quality data were presented in an earlier report (Matthews, et al., 1996). At that time the pond was probably only functioning as a sediment trap; it is unlikely that there was much biofiltration occurring. By September 1995, however, the aquatic macrophytes were well established and were expanding their coverage. Photographs of the pond cells show the extent of macrophyte coverage

around the pond (Figures 116-118, pages 158-160). A similar series of photographs was included in last two annual reports (Matthews, et al., 1996; 1997).

The efficiency of the pond in removing sediments and other pollutants is shown in Table 23. The composite samples, which collect a series of samples over the 48-hr sampling period, are a better indicator of the actual removal efficiency than grab samples. The February data showed a reduction in total suspended solids (-30%) from the inlet to the outlet. This reduction was not consistent; the sediment concentration increased between the inlet and outlet in September (+27%). Furthermore, the pond was bypassed much of this year because of high flows in the Park Place drain. The total capacity of the wet pond is only 23,610 ft³ (David Evans and Associates, 1994). Even under low-flow conditions, the daily discharge from the Park Place drain is much greater than the capacity of the pond. For example, the August 1997 discharge was 0.046 m³/sec (Table 15, page 32), which amounts to 140,296 ft³ per day. During storm events the stormwater is often diverted before it reaches the pond, discharging into Lake Whatcom instead.

There were reductions in total nitrogen and total phosphorus during September, but not February. This is to be expected because there is little biological activity in February and the higher flows cause water to move through the ponds quickly. Total organic carbon and metals concentrations were virtually unchanged between the inlet and outlet. (The 100% increase in nickel concentrations is an artifact of the measurement units, which increase in increments of 10 $\mu g/L$.) There was little change in temperature, pH, dissolved oxygen, or conductivity between the inlet and outlet. The 5% increase in temperature in September, accompanied by a decrease in pH and dissolved oxygen, was probably due to warming and biological activity in the ponds.

In summary, the pond performed poorly for most types of contaminants, with no consistent reduction in sediments, nutrients, total organic carbon, or metals concentrations between the inlet and outlet. In addition, the pond was bypassed much of the fall, winter, and spring of this year because the flow exceeded the pond's capacity. When bypassed, the stormwater flow discharges directly into Lake Whatcom and does not receive any treatment by the wet pond.

6 Quality Control

1

1

:

2

2

1

:) In order to maintain a high degree of accuracy and confidence in the water quality data all personnel associated with this project were trained according to standard operating procedures for the methods listed in Table 2 (page 19). Single-blind quality control tests were conducted during August, 1996, and the results are presented in Table 24 (page 41). All results from the single-blind test were within the expected ranges.

Laboratory duplicates were analyzed for at least 10% of all water quality parameters (except Hydrolab data). Separate field duplicates were collected and analyzed for at least 10% of all of the water quality parameters (except Hydrolab). To check the Hydrolab measurements, duplicate samples were analyzed for at least 10% of the Hydrolab measurements using water samples collected from the same depth as the Hydrolab measurement. The Hydrolab field duplicate results are shown in Figure 119 (page 161). Most duplicates were in close agreement, given that they came from different water samples. The greatest differences were seen in dissolved oxygen values in the 2-6 mg/L range. These samples came from the thermocline, which is a region of rapidly changing oxygen concentrations. The Hydrolab samples are measured with a depth meter, whereas the water samples are measured with a marked line. Small differences between sample depths would account for the differences in oxygen concentrations.

The water quality duplicates were used to create control charts ¹¹ using a minimum of 10 replicates for each chart. The control charts are used to check the replicability of samples and to identify analytical problems that require corrective action. The control charts for the Lake Whatcom project are presented in Figures 120–126 (pages 162–168). Values that exceeded \pm 3 standard deviations from the mean are discussed below:

Values ± 3 STD			Reason
pH, Table 123	4/22/97	11-0	Unknown, first sample of batch,
Alkalinity, Table 120	12/3/96	11-15	Analyst error (new analyst)
	19/10/97	11-15	Analyst error (new analyst)
Conductivity, Table 121	2/4/97	Park Place	Sample values higher than higher
			than those normally used in for control limits
Turbidity, Table 126	9/10/96	32-20	Analyst error, unusually low value

¹¹Analyses that generate mostly below-detection values may not produce enough QC data to develop a control chart.

7 References

- APHA. 1992. Standard Methods for the Examination of Water and Wastewater, 18th Edition. American Public Health Association, Washington D. C.
- David Evans and Associates, Inc. 1994. Operation and maintenance manual for the Park Place storm water quality facility. Prepared by David Evans and Associates, Inc for the City of Bellingham Public Works Department, Bellingham, WA.
- EPA. 1983. Methods for Chemical Analysis of Water and Wastes. EPA-600/4-79-020, U. S. Environmental Protection Agency, Cincinnati, OH.
- EPA. 1986. Quality Criteria for Water 1986. EPA-440/5-86-001., U.S. Environmental Protection Agency, Washington, DC.
- Hansen, J. S. and J. E. Ongerth. 1991. Effects of time and watershed characteristics on the concentration of *Cryptosporidium* oocysts in river water. Appl. Environ. Microbiol. 57:2790– 2795.
- Lind, O. T., 1985. Handbook of Common Methods in Limnology, 2nd Edition. Kendall/Hunt Publishing Co., Dubuque, IA.
- Matthews, R. A., M. Hilles, and G. B. Matthews. 1996. Lake Whatcom Monitoring Project 1994–1995 Final Report. Final Report prepared for the City of Bellingham Public Works Department, February 1996, Bellingham, WA.
- Matthews, R. A., M. Hilles, and G. B. Matthews. 1997. Lake Whatcom Monitoring Project 1995–1996 Final Report. Final Report prepared for the City of Bellingham Public Works Department, April 1997, Bellingham, WA.
- Ongerth, J. E. 1989. *Giardia* cyst concentrations in river water. J. Am. Water Works Assoc. 81:81-86.
- Smith, D. E. 1997. The Effects of Land Use Practices on Giardia and Cryptosporidium concentrations in surface water in Whatcom County, Washington. M. S. thesis, Huxley College of Environmental Studies, Western Washington University, Bellingham, WA.
- Walker, S. 1995. A Hydrologic Model for the Lake Whatcom Watershed: Development, Implementation, and Assessment. M. S. thesis, Huxley College of Environmental Studies, Western Washington University, Bellingham, WA.
- Walker, S., R. Matthews, and G. Matthews. 1992. Lake Whatcom Watershed Storm Water Runoff Monitoring Project. Final report prepared for the City of Bellingham, Public Works Department, January 1992, Bellingham, WA.

8 Tables

.

1

٠

1

>

t

t s

t s

Ξ.

f

n. n

:г s

	1996			1997									
Parameter	Οcι	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Location
DO - Hydrolab	•	٠	٠		•		٠	•	•	•	•	٠	Sites 1, 2, Intake - every 1 m;
pH - Hydrolab	٠	•	•		٠		٠	٠	٠	٠	•	٠	Sites 3, 4 - every 1 m to 10 m
Temp - Hydrolab	٠	٠	٠		٠		٠	٠	٠	•	•	•	then every 5 m;
Cond - Hydrolab	٠	•	٠		٠		•	٠	٠	٠	•	٠	Gatehouse
Secchi disc	•	•	٠		•		•	•	•	•	•	٠	Sites 1, 2, 3, 4, Intake
Ammonia	•	٠	٠		•		•	•	•	•	•	•	Sites 1, 2 - 0.3, 5, 10, 15, 20 m;
Nitrite/Nitrate	٠	٠	٠		٠		•	٠	•	٠	•	•	Intake - 0.3, 5, 10 m;
Total Nitrogen	•	٠	•		•		•	٠	٠	•	•	•	Site 3 - 0.3, 5, 10, 20, 40, 60,
Soluble Phosphate	٠	٠	٠		•		٠	٠	•	•	•	٠	80 m;
Total Phosphorus	٠	٠	•		•		٠	٠	•	•	•	٠	Site 4 - 0.3, 5, 10, 20, 40, 60,
Alkalinity	٠	٠	٠		•		•	•	•	٠	٠	٠	80, 90 m;
Turbidity	٠	٠	٠		٠		•	٠	٠	٠	•	•	Gatehouse
Total Arsenic												•	Sites 1, 2, 3, 4, Intake -
Total Cadmium												•	0.3 m and bottom only
Total Chromium												•	•
Total Copper												•	
Total Iron												•	
Total Lead												•	
Total Mercury												٠	
Total Nickel												٠	
Total Zinc												٠	
Total O. Carbon					•							•	Sites 1, 2, 3, 4, Intake - 0.3 m and bottom only
Chlorophyll	•	•	•		•		•	•	•	•	•	•	Sites 1, 2, 3, 4 - 0.3, 5, 10, 15, 20 m; Intake - 0.3, 5, 10 m
Plankton	•	•	•		•		•	•	•	•	٠	•	Sites 1, 2, 3, 4, Intake; 5 m
Bacteria (City)	•	•	•		٠		•	•	•	•	•	٠	Sites 1, 2, 3, 4, Intake; 0,3 m

÷ż.

Table 1: Lake Whatcom 1996/97 lake monitoring schedule.

			Detection Limits (dl)
Parameter	Method	Description	or Sensitivity (±)
Conductivity-field	Field meter	Hydrolab	$\pm 2 \mu$ S/cm
Conductivity-lab	APHA 2510	Low-level	$\pm 2 \mu$ S/cm
Dissolved oxygen-field	Field meter	Hydrolab	\pm 0.1 mg/L
Dissolved oxygen-lab	APHA 4500-O.C.	Winkler titration	\pm 0.1 mg/L
pH-field	Field meter	Hydrolab	± 0.1 pH unit
pH-lab	APHA 4500-H ⁺	Low-ionic	\pm 0.1 pH unit
Temperature	Field meter	Hydrolab	± 0.1° C
Alkalinity	APHA 2320 B	Low level method	± 0.1 mg/L
Discharge	Lind (1985)	Rating curve	na
Secchi disk	Lind (1985)	na	± 0.1 m
Total suspended solids	APHA 2540	Gravimetric	dl = 2 mg/L
Turbidity	EPA 180.1	Nephelometric	± 0.2 NTUs
Ammonia	EPA 350.1 D	Phenate	$dl = 10 \ \mu g/L$
Nitrite/nitrate	EPA 353.1	Cd reduction	$dl = 10 \ \mu g/L$
Total nitrogen	Ebina et al. (1983)	Modified, salicylate	$dl = 100 \ \mu g/L$
Soluble phosphate	EPA 365.1	Ascorbic acid	dl = 5 μ g/L
Total phosphorus	EPA 365.1	Persulf. digestion	dl = 5 μ g/L
Chlorophyll	APHA 10200 H	Acetone extract	$\pm 0.1 \text{ mg/m}^3$
Plankton	Lind (1985)	Schindler trap	na
Total coliform	АРНА 9222 В	Membrane filter	na
Fecal coliform	APHA 9222 D	Membrane filter	na
Enterococcus	APHA 9223 A (mod.)	MPN-methylumbel.	na

Table 2: Summary of analytical methods.

m;

: 1

m

n

Depth	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
0	9.2	9.6	9.7	9.6	9.5	9.2	9.7	9.7	10.3	10.0	9.9
1			9.6	9.6	9.4		10.1	9.6	9.9	10.0	9.9
2	9.1	9.7	9.6	9.7	9.4		10.0	9.6	9.9	10.0	9.8
3			9.6	9.6	9.3		9.9	9.5	9.8	9.9	9.8
4	9.0	9.8	9.5	9.6	9.3		9.9	9.5	9.8	9.9	9.6
5			9.5	9.6	9.2	9.2	9.8	9.4	9.6	9.8	9.6
6	9.0	9.6	9.5	9.5	9.0		9.7	9.1	9.6	9.8	9.1
7			9.4	9.2	8.7		9.6	9.3	9.5	9.7	8.5
8	9.0	8.5	9.0	8.2	8.7		9.3	9.0	9.5	9.2	6.3
9			7.8	6.2	8.3		4.9	4.5	6.4	8.2	4.2
10	4.3	2.4	5.6	4.7	6.8	5.2	3.4	0.1	3.7	3.1	2.0
11			3.0	2.2	5.4		< 2*	0.1	0.1	1.2	0.6
12	0.0	1.2	1.7	1.7	2.1		< 2*	0.0	0.1	0.2	0.5
13			0.8	1.1	1.1		< 2*	0.0	0.1	0.2	0.5
14	0.0	0.7	0.6	0.8	0.6		< 2*	0.0	0.1	0.2	0.5
15			0.6	0.8	0.6	0.7	< 2*	0.0	0.1	0.2	0.4
16	0.0	0.4	0.5	0.8	0.6		< 2*	0.0	0.1	0.2	0.4
17			0.5	0.8	0.6		< 2*	0.0	0.1	0.2	0.4
18	0.0	0.4	0.5	0.9	0.6		< 2*	0.0	0.1	0.2	0.4
19			0.5	0.9	0.6		< 2*	0.0	0.0	0.2	0.4
20	0.0			0.9	0.7	1.1	< 2*	0.0	0.0	0.2	0.4
21				0.8							
-	*Oxygen probe lost sensitivity at very low oxygen concentrations; Hydrolab was reconditioned during fall of 1993.										

; ; ;

. . .

.

Table 3: Early September dissolved oxygen concentrations (mg/L) at Site 1.

	Mean*			
Variable	(10/96-9/97)	Std. Dev.	Min.	Max.
Alkalinity (mg/L CaCO ₃)	19.7	1.6	18.1	25.8
Conductivity - lab (μ S)	63.7	3.5	60.7	72.6
Conductivity - Hydrolab (μ S)	63.7	2.9	60.0	76.0
Dissolved oxygen (mg/L)	8.4	3.8	0.19	12.4
pH	7.6	0.4	6.7	8.9
Temperature (°C)	12.1	4.6	5.2	23.2
Turbidity (NTU)	1.4	1.4	0.53	8.7
Nitrogen, ammonia (µg/L)	25	42	<10	194
Nitrogen, nitrate/nitrite (μ g/L)	224	122	14	418
Nitrogen, total (μ g/L)	358	121	135	623
Phosphorus, sol. phosphate (μ g/L)	<5	1	<5	<5
Phosphorus, total ($\mu g/L$)	6	4	<5	21
Chlorophyll a (mg/m ³)	2.4	1.7	0.36	8.4
Secchi depth (m)	4.8	1.2	2.30	6.8
Coliforms, total (cfu/100 mL)**	4.4	na	<2	40
Coliforms, fecal (cfu/100 mL)**	<2	па	<2	8
Enterococcus (cfu/100 mL)**	<2	na	<2	2

* Arithmetic means were calculated for all parameters except bacteria; **Geometric means were calculated for coliform and *Enterococcus* data

Table 4: Site 1 average ambient water quality data.

	Mean*			
Variable	(10/96-9/97)	Std. Dev.	Min.	Max.
Alkalinity (mg/L CaCO ₃)	18.4	0.6	17.5	19.5
Conductivity - lab (μ S)	60.7	0.8	59.7	61.8
Conductivity - Hydrolab (μ S)	61.3	1.5	59.0	71.0
Dissolved oxygen (mg/L)	9.6	2.2	0.1	12.8
pH	7.7	0.3	6.8	8.4
Temperature (°C)	12.6	4.8	5.8	22.5
Turbidity (NTU)	0.7	0.3	0.4	1.6
Nitrogen, ammonia (µg/L)	10	11	<10	58
Nitrogen, nitrate/nitrite (μ g/L)	293	83	130	440
Nitrogen, total (µg/L)	377	114	85	605
Phosphorus, sol. phosphate (μ g/L)	<5	1	<5	<5
Phosphorus, total ($\mu g/L$)	<5	3	<u>ح</u>	14
Chlorophyll a (mg/m ³)	1.8	0.7	0.9	4.0
Secchi depth (m)	5.6	1.3	3.7	7.6
Coliforna total (ofu/100 ml)**	3.1	20	~2	20
Coliforms, total (cfu/100 mL)**		na	<2	20
Coliforms, fecal (cfu/100 mL)**	<2	na	<2	6
Enterococcus (cfu/100 mL)**	<2	na	<2	2

<u>.</u> ::

ç.

* Arithmetic means were calculated for all parameters except bacteria; **Geometric means were calculated for coliform and *Enterococcus* data

Table 5: Site 2 average ambient water quality data.

Г	Mean*			
Variable	(10/96-9/97)	Std. Dev.	Min.	Max.
Alkalinity (mg/L CaCO ₃)	18.4	0.6	17.6	20.2
Conductivity - lab (μ S)	60.6	0.8	59.3	61.8
Conductivity - Hydrolab (μ S)	61.4	1.0	60.0	63.0
Dissolved oxygen (mg/L)	10.2	1.1	8.5	12.6
pH	7.8	0.3	7.3	8.5
Temperature (°C)	14.0	5.2	5.8	22.6
Turbidity (NTU)	0.7	0.4	0.4	1.8
Nitrogen, ammonia (µg/L)	<10	4	<10	21
Nitrogen, nitrate/nitrite (μ g/L)	268	81	132	437
Nitrogen, total (μ g/L)	348	112	184	629
Phosphorus, sol. phosphate ($\mu g/L$)	<5	1	ব	<5
Phosphorus, total (μ g/L)	<5	1	<5	6
Chlorophyll a (mg/m ³)	2.0	0.9	0.8	3.7
Secchi depth (m)	5.4	1.2	3.4	7.0
Coliforms, total (cfu/100 mL)**	3.8	na	<2	53
Coliforms, fecal (cfu/100 mL)**	<2	na	<2	8
Enterococcus (cfu/100 mL)**	<2	na	<2	2

* Arithmetic means were calculated for all parameters except bacteria; **Geometric means were calculated for coliform and *Enterococcus* data

Table 6: Intake average ambient water quality data.

	Mean*		<u> </u>	
Variable	(10/96-9/97)	Std. Dev.	Min.	Max.
Alkalinity (mg/L CaCO ₃)	18.1	0.5	17.4	19.9
Conductivity - lab (μ S)	61.1	1.1	59.0	63.4
Conductivity - Hydrolab (μ S)	60.7	1.3	57.0	64.0
Dissolved oxygen (mg/L)	9.8	1.2	5.0	12.2
рН	7.6	0.3	7.0	8.4
Temperature (°C)	10.3	4.7	6.1	21.8
Turbidity (NTU)	0.5	0.2	0.2	1.2
Nitrogen, ammonia (µg/L)	<10	4	<10	17
Nitrogen, nitrate/nitrite (μ g/L)	348	89	156	532
Nitrogen, total (μ g/L)	427	116	161	635
Phosphorus, sol. phosphate ($\mu g/L$)	<5	1	<5	<5
Phosphorus, total ($\mu g/L$)	ব	1	<5	5
Chlorophyll a (mg/m ³)	1.7	0.9	0.4	3.7
Secchi depth (m)	6.0	1.6	4.0	8.2
Coliforms, total (cfu/100 mL)**	2.8	па	<2	28
Coliforms, fecal (cfu/100 mL)**	<2	na	<2	8
Enterococcus (cfu/100 mL)**	<2	na	<2	4

÷,

÷

* Arithmetic means were calculated for all parameters except bacteria; **Geometric means were calculated for coliform and *Enterococcus* data

Table 7: Site 3 average ambient water quality data.

	Mean*			
Variable	(10/96-9/97)	Std. Dev.	Min.	Max.
Alkalinity (mg/L CaCO ₃)	18.0	0.4	17.5	19.0
Conductivity - lab (μ S)	61.1	1.1	59.4	63.2
Conductivity - Hydrolab (μ S)	60.7	1.3	57.0	64.0
Dissolved oxygen (mg/L)	10.1	0.9	8.0	11.5
pH	7.5	0.3	7.1	8.5
Temperature (°C)	9.3	3.7	6.0	18.4
Turbidity (NTU)	0.4	0.2	0.2	1.0
Nitrogen, ammonia (μ g/L)	<10	3	<10	16
Nitrogen, nitrate/nitrite (μ g/L)	350	68	191	483
Nitrogen, total ($\mu g/L$)	437	129	189	683
Phosphorus, sol. phosphate (μ g/L)	<5	1	<5	5
Phosphorus, total (μ g/L)	<5	1	<5	6
F		-		•
Chlorophyll a (mg/m ³)	1.5	0.8	0.4	3.7
Secchi depth (m)	6.3	1.1	4.5	9.0
Coliforms, total (cfu/100 mL)**	2.4	na	<2	22
Coliforms, fecal (cfu/100 mL)**	<2	na	<2	4
Enterococcus (cfu/100 mL)**	<2	na	<2	2

* Arithmetic means were calculated for all parameters except bacteria; **Geometric means were calculated for coliform and *Enterococcus* data

Table 8: Site 4 average ambient water quality data.

			TOC			TOC
Site	Date	Depth	(mg/L)	Date	Depth	(mg/L)
Site 1	Feb 13, 1997	0	<1	Sep 18, 1997	0	1.2
	Feb 13, 1997	20	< 1	Sep 18, 1997	20	< 1
Intake	Feb 13, 1997	0	< 1	Sep 18, 1997	0	1.8
	Feb 13, 1997	10	< 1	Sep 18, 1997	10	1.2
Site 2	Feb 13, 1997	0	< 1	Sep 18, 1997	0	1.6
	Feb 13, 1997	20	< 1	Sep 18, 1997	20	1.4
Site 3	Feb 13, 1997	0	< 1	Sep 18, 1997	0	2.9
	Feb 13, 1997	80	< 1	Sep 18, 1997	80	< 1
Site 4	Feb 13, 1997	0	< 1	Sep 18, 1997	0	<1
	Feb 13, 1997	90	< 1	Sep 18, 1997	90	<1

日本でなると言

лî Т

::

1.1

Table 9: Lake Whatcom total organic carbon data.

			As	Cd	Cr	Cu	Fe	Hg	Ni	Pb	Zn
Site	Date	Depth	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Site 1	Sep 11, 1995	0	< 30	<2	< 6	<2	40	<10	<10	< 1	30
	Sep 10, 1996	0	< 30	<2	< 6	<2	<10	<10	<10	< 1	10
	Sep 18, 1997	0	< 30	<2	< 6	<2	10	<10	<10	< 1	13
Site 1	Sep 11, 1995	20	< 30	6	< 6	20	640	<10	<10	< 1	59
	Sep 10, 1996	20	< 30	<2	< 6	<2	55	<10	<10	< 1	8
	Sep 18, 11997	20	< 30	<2	< 6	<2	910	<10	<10	< 1	13
Intake	Sep 11, 1995	0	< 30	<2	< 6	<2	30	<10	<10	<1	19
Incarto	Sep 10, 1996	Õ	< 30	<2	< 6	<2	<10	<10	<10	2	8
	Sep 18, 1997	ů 0	< 30	<2	< 6	<2	<10	<10	<10	<1	11
Intake	Sep 11, 1995	10	< 30	<2	< 6	<2	20	<10	<10	< 1	32
Intake	Sep 10, 1996	10	< 30	<2	< 6	<2	<10	<10	<10 <10	2	16
	Sep 18, 1997	10	< 30	3	< 6	<2	20	<10	<10	< i	7
Site 2	Sep 11, 1995	0	< 30	<2	< 6	<2	110	<10	<10	< 1	18
	Sep 10, 1996	0 0	< 30	<2	< 6	<2	<10	<10	<10	1	5
	Sep 18, 1997	Ů	< 30	<2	< 6	<2	<10	<10	<10	< 1	13
Site 2	Sep 11, 1995	20	< 30	<2	< 6	<2	580	<10	20	< 1	23
Bille 2	Sep 10, 1996	20	< 30	<2	< 6	<2	100	<10	<10	1	23 7
	Sep 18, 1997	20	< 30	3	< 6	<2	120	<10	<10	' <1	, 11
Site 3	Sep 11, 1995	0	< 30	<2	< 6	<2	20	<10	<10	< 1	58
	Sep 10, 1996	Ő	< 30	<2	< 6	<2	<10	<10	<10	1	5
	Sep 18, 1997	0 0	< 30	<2	< 6	<2	10	<10	<10	< 1	21
Site 3	Sep 11, 1995	80	< 30	<2	< 6	<2	50	<10	20	2	50
	Sep 10, 1995	80	< 30	<2	< 6	<2	<10	<10	<10	< 1	8
	Sep 18, 1997	80	< 30	<2	< 6	<2	20	<10	<10	<1	8
Site 4	Sep 11, 1995	0	< 30	<2	< 6	<2	20	<10	20	< 1	41
	Sep 10, 1995	0	< 30	<2	< 0 < 6	<2	<10	<10 <10	<10	2	41 6
	Sep 10, 1990 Sep 18, 1997	0	< 30 < 30	<2	< 6	<2	<10 <10	<10	<10 <10	< 1	12
	och 10, 1221	U	< JU	~2	~ U	~2			<10	< I	12
Site 4	Sep 11, 1995	9 0	< 30	<2	< 6	<2	30	<10	<10	2	34
	Sep 10, 1996	90	< 30	<2	< 6	<2	<10	<10	<10	< 1	7
	Sep 18, 1997	90	< 30	<2	< 6	<2	<10	<10	<10	< 1	10

All metals samples were analyzed by AmTest for total metals (unfiltered, digested).

Table 10: Lake Whatcom metals data, 1995–1997.

		Depth	Temp		Cond	DO
Site	Date	, (m)	(C)	pН	(µS)	(mg/L)
Site 3	Oct 08, 1996	0-35	14.4	7.9	62	9.3
Site s1	Oct 22, 1996	0-35	12.3	7.6	63	9.4
Site s2	Oct 22, 1996	0-35	12.2	7.6	63	9.3
Site s3	Oct 22, 1996	035	12.4	7.6	62	9.4
Site 3	na	na	na	na	na	na
Site s1	Jan 16, 1997	0-35	6.4	7.5	61	10.6
Site s2	Jan 16, 1997	0-35	6.2	7.5	61	10.6
Site s3	Jan 16, 1997	0–35	6.3	7.5	61	10.5
Site 3	Feb 12, 1997	0–35	6.1	7.4	61	11.2
Site s1	Feb 12, 1997	0–35	6.2	7.5	62	11.1
Site s2	Feb 12, 1997	0–35	6.1	7.5	61	11.0
Site s3	Feb 12, 1997	0–35	6.1	7.5	62	11.0
Site 3	Apr 22, 1997	0-35	8.5	7.6	60	11.9
Site s1	Apr 29, 1997	0-35	9.6	7.9	60	11.7
Site s2	Apr 29, 1997	0–35	9.6	7.9	60	11.5
Site s3	Apr 29, 1997	0–35	9.5	7.8	60	11.5
Site 3	May 21, 1997	0–20	13.2	7.8	60	10.9
Site s1	May 21, 1997	0–35	11.7	7.7	60	11.0
Site s2	May 21, 1997	035	11.7	7.6	60	11.0
Site s3	May 21, 1997	0–35	11.3	7.6	60	11.0
Site 3	Jun 12, 1997	0-35	14.2	8.2	60	10.2
Site s1	Jun 12, 1997	0-35	14.5	8.2	61	10.4
Site s2	Jun 12, 1997	0-35	14.6	8.3	61	10.3
Site s3	Jun 12, 1997	0-35	14.5	8.3	60	10.2
	L.1.10.1007	0.27	145	a 0	<i>(</i>)	A 1
Site 3	Jul 10, 1997	0-35	14.5	7.9	60	9.4
Site s1	Jul 14, 1997	0-35	15.4	8.0	60	9.8
Site s2	Jul 14, 1997	0-35	15.5	7.9	60	9.9
Site s3	Jul 14, 1997	0-35	15.3	8.0	60	9.8
Site 3	Sep 18, 1997	035	15.5	7.7	61	9.3
Site 5	Sep 18, 1997 Sep 18, 1997	0-35 0-35	15.7	7.7	60	9.3 9.2
Site s1 Site s2	Sep 18, 1997	0-35	15.6	7.6	60	9.2 9.1
Site s2 Site s3	Sep 18, 1997	0-35	15.5	7.6	61	9.1
5116 55	Jep 10, 1997			7.0	01	7.1

:1

Table 11: Strawberry sill hydrolab data summary compared to Site 3.

		Depth	Alk	Turb	NH3	TN	NO3	SRP	TP
Site	Date	(m)	(mg/L)	(NTU)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Site 3	Oct 08, 1996	0-40	18.5	0.4	5	406	261	< 5	< 5
Site s1	Oct 22, 1996	0–35	18.5	0.3	< 5	699	288	< 5	< 5
Site s2	Oct 22, 1996	0–35	18.7	0.4	5	730	308	< 5	< 5
Site s3	Oct 22, 1996	0-35	18.6	0.3	< 5	694	319	< 5	< 5
Site 3	na	na	na	na	กอ	ла	na	па	па
Site s1	Jan 16, 1997	0–35	17.9	. 0.8	< 5	430	340	< 5	< 5
Site s2	Jan 16, 1997	0–35	17.9	0.8	< 5	481	343	< 5	< 5
Site s3	Jan 16, 1997	035	17.8	0.8	< 5	434	368	< 5	< 5

Table 12: Strawberry sill water quality data summary compared to Site 3.

			As	Cd	Cr	Cu	Fe	Hg	Ni	Pb	Zı
Site	Depth	Date	(µg/L)								
Site 3	0	Sep 18, 1997	< 30	< 2	< 6	< 2	10	< 10	< 10	<1	21
Site s1	0	Oct 22, 1997	< 30	< 2	< 6	< 2	< 10	< 10	< 10	< 1	5
Site s1	35	Oct 22, 1997	< 30	< 2	< 6	< 2	< 10	< 10	< 10	< 1	2
Site s2	0	Oct 22, 1997	< 30	< 2	< 6	< 2	< 10	< 10	< 10	<1	11
Site s2	35	Oct 22, 1997	< 30	< 2	< 6	< 2	< 10	< 10	< 10	< 1	3
Site s3	0	Oct 22, 1997	< 30	< 2	< 6	< 2	< 10	< 10	< 10	< 1	5
Site s3	35	Oct 22, 1997	< 30	< 2	< 6	< 2	< 10	< 10	< 10	< 1	4

Table 13: Strawberry sill metals and total organic carbon data compared to Site 3.

·	1996			1997								
Parameter	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Temperature					•					•		
Discharge					٠					٠		
Alkalinity					•					٠		
Conductivity					٠					•		
DO - Winkler					٠					•		
pН					٠					٠		
T. Suspended Solids					٠					٠		
Turbidity					٠					•		
Ammonia					٠					•		
Nitrite/Nitrate					•					•		
Total Nitrogen					•					•		
Soluble Phosphate					•					•		
Total Phosphorus					٠					٠		
Total Organic Carbon					٠					٠		
Total Arsenic					•							
Total Cadmium					٠							
Total Chromium					٠							
Total Copper					٠							
Total Iron					•							
Total Lead					•							
Total Mercury					٠							
Total Nickel					٠							
Total Zinc					•							
Bacteria (City)					•					•		

(µgl

Table 14: Lake Whatcom 1996/97 creek monitoring schedule.

			Cond.	DO	TSS	Alk.	Disch.	Temp.	Turb.
Site	Date	pН	(µS)	(mg/L)	(mg/L)	(mg/L)	(m ³ /sec)	(°C)	(ntu)
Blue	1990 min	8.1	250	9.0	<2	na	na	4.0	na
Canyon	1990 avg	8.4	344	10.5	5	na	na	10.9	na
	1990 max	8.6	409	12.3	29	na	na	17.0	na
	Feb 1995	8.3	302	9.6	9	123.0	0.18	9.5	4.39
	Feb 1996	8.4	287	11.3	4	124.1	na	7.2	2.84
	Feb 1997	8.3	222	12.8	5	88.6	0.74	na	7.39
	Aug 1995	8.4	369	10.7	4	35.4	0.071	12	1.51
	Jul 1996	8.5	315	10.1	4	147.2	0.074	13.5	3.43
	Aug 1997	8.4	305	10.1	5	148.4	0.039	na	3.96
Park	1990 min	7.1	118	6.4	3	па	na	4.5	na
Place	1990 avg	7.7	245	9.1	13	na	na	13.7	na
	1990 max	8.1	410	11.8	57	na	na	23.0	na
	Feb 1995	7.5	194	9.5	10	63.4	0.83	8.6	6.75
	Feb 1996	7.5	177	11.0	7	59.9	na	8	14.0
	Feb 1997	7.5	184	12.7	2	64.4	0.50	na	5.52
	Aug 1995	7.9	317	8.1	5	25.8	0.025	19	3.56
	Jul 1996	8.0	268	4.5	<2	113.2	0.037	18.5	2.16
r.	Aug 1997	7.6	262	6.6	3	106.2	0.046	па	3.78
Silver	1990 min	7.4	103	6.9	<2	па	па	4.2	na
Beach	1990 avg	7.9	187	9.8	6	па	na	11.1	па
	1990 max	8.1	290	12.1	12	na	na	17.0	па
	Feb 1995	7.6	128	9.9	9	31.1	6	7	10.6
	Feb 1996	7.6	110	11.1	13	33.9	8.5	7	20.4
	Feb 1997	7.7	117	13.7	2	37.7	1.31	na	11.8
	Aug 1995	8.3	257	9.3	4	22.8	0.25	16	2.67
	Jul 1996	8.1	269	5.5	<2	118.4	0.24	15.5	3.22
	Aug 1997	8.0	312	9.2	2	139.8	0.22	na	2.00
Wildwd	1990 min	6.7	34	6.9	<2	па	na	4.0	па
	1990 avg	7.2	54	10.0	2	na	na	10.0	na
	1990 max	7.6	126	12.3	11	na	na	16.5	па
	Feb 1995	7.0	50	10.7	11	15.3	na	8.3	1.22
	Feb 1996	7.3	40	11.6	<2	6.4	na	6.2	0.60
	Feb 1997	7.4	41	13.5	<2	5.5	1.21	0.2 na	0.80
	Aug 1995		reek dry	na	na Na	na	1.21 na	па па	0.62 na
	Jul 1996	7.3	56	8.8	<2	13.5	na	13.5	0.11
	Aug 1997		reek dry	na	na	na	na	13.5 na	
71 1000	Creek data d						114	па	na

-

a contractor a contractor

 e^{it}

. Т

Net and the Second

Ĺ

The 1990 creek data do not include the November 1990 storm event.

Cond = conductivity	ALK = alkalinity	Temp. = temperature
DO = dissolved oxygen	Disch = discharge	Turb. = turbidity
TSS = total susp. solids		

Table 15: Physical water quality data for Blue Canyon, Wildwood, Park Place, and Silver Beach Creeks.

	····		Cond.	DO	TSS	Alk.	Disch.	Temp.	Turb.
Site	Date	pН	(µS)	(mg/L)	(mg/L)	(mg/L)	(m ³ /sec)	(°Ċ)	(ntu)
Anderson	1990 min	7.2	37	10.0	4	па	па	3.5	na
	1990 avg	7.4	57	11.3	17	na	na	8.3	na
	1990 max	8.4	71	13.0	48	па	na	12.5	na
	Feb 1995	7.0	55	9.8	9	14.3	27.9	7.8	5.13
	Feb 1996	7.4	48	11.7	6	15.6	28.5	5	6.87
	Feb 1997	7.2	55	13.1	2	14.4	na	па	2.30
	Aug 1995	7.7	63	11.1	8	15.9	66	10	7.40
	Jul 1996	7.8	55	10.5	16	15.1	58.6	13	19.4
	Aug 1997	7.4	51	10.8	44	11.6	na	na	42.8
Austin	1990 min	7.1	50	8.3	<2	па	па	4.5	na
	1990 avg	7.4	81	10.5	3	na	na	10.6	na
	1990 max	7.6	121	12.1	13	na	na	19.5	па
	Feb 1995	7.2	57	10.2	14	12.7	na	7.4	6.49
	Feb 1996	7.2	53	11.5	8	12.5	ла	6.2	4.20
	Feb 1997	7.3	54	13.6	3	12.7	57	na	3.30
	Aug 1995	7.5	112	10.2	2	15.6	0.427, 0.391	14.5	1.05
	Jul 1996	7.5	111	8.7	1	31.2	0.55	20	0.83
	Aug 1997	7.4	112	9.1	<2	31.5	0.93	na	1.01
Smith	1990 min	6.6	44	8.7	<2	na	na	3.4	na
	1990 avg	7.5	64	10.5	3	na	na	10.0	na
	1990 max	7.8	9 0	12.6	10	па	na	17.0	па
	Feb 1995	7.4	54	10.4	9	11.5	30	6.8	2.87
	Feb 1996	7.7	47	11.7	5	11.7	21.5	6.5	3.25
	Feb 1997	7.5	47	13.8	<2	11.2	na	na	2.10
	Aug 1995	8.6	83	10.4	2	28.6	0.125, 0.156	15.6	0.21
	Jul 1996	7.5	80	5.3	0.2	27.2	1.81	15	0.24
The 1000	Aug 1997	7.6	.79	9.7	<2	26.8	0.85	na	0.28

The 1990 creek data do not include the November 1990 storm event.

h

Cond = conductivity	ALK = alkalinity	Temp. = temperature
DO = dissolved oxygen	Disch = discharge	Turb. = turbidity
TSS = total susp. solids		

Table 16: Physical water quality data for Anderson, Austin, and Smith Creeks.

· · · · · · · · · · · · · · · · · · ·		NH ₃	TN	NO ₂₊₃	SRP	TP	TC (cfu/	FC (cfu/	EC (cfu/
Site	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	100 mL)	100 mL)	100 mL)
Blue	1990 min	10	na	167	<5	<5	90	<2	na
Canyon	1990 avg	20	na	336	_<5	13	1163	7	na
	1990 max	34	na	545	12	25	9000	27	па
	Feb 1995	11	693	707	<5	<5	1400	4	na
	Feb 1996	14	578	473	ර	7	13	< 4	< 4
	Feb 1997	<10	483	283	<5	9	<4	<2	<2
	Aug 1995	27	176	203	<5	<5	140	28	20
	Jul 1996	16	807	179	< <u></u> 5	11	73	8	2
	Aug 1997	16	155	133	6	13	280	20	17
Daula	1990 min	22		145	6	41	220	0	
Park		22 51	ла	357	22	41 66	230	8	na
Place	1990 avg	111	na	549	86	168	8254	1353	na
	1990 max	20	na	1235		30	> 16000	16000	na
	Feb 1995		1187	788	14		114	13	na
	Feb 1996	27	1364		21	52	> 2000	116	44
	Feb 1997	76	2285	532	15	24	3317	500	21
	Aug 1995	110	1469	903	46	68	85000	1192	76
	Jul 1996	46	1058	815	25	33	200	324	900
	Aug 1997	28	1201	725	44	76	720	153	60
Silver	1990 min	<10	na	173	<5	27	170	8	na
Beach	1990 avg	19	na	583	16	41	7110	3307	па
	1990 max	43	na	1118	42	61	> 16000	16000	na
	Feb 1995	13	2380	3053	13	33	800	50	na
	Feb 1996	26	1970	832	16	64	650	364	> 800
	Feb 1997	<10	1797	676	11	30	573	100	7
	Aug 1995	24	532	155	36	59	3020	1484	na
	Jul 1996	11	716	361	33	38	200	404	1600
	Aug 1997	14	875	227	21	35	3200	625	220
Wildwd	1990 min	<10		755	<5	<5	23	<2	
wildwa	1990 min 1990 avg	189	na na	1790	<5	9	1164	74	па
	1990 avg 1990 max	32		4857	9	33	> 16000	1300	na
	Feb 1995	<10	na 2231	2480	<5	<5	> 10000 240	<2	na
	Feb 1995 Feb 1996	<10 <10	1862	1288	ు న	<5	240 7		na 1
				1288	ব			< 4	< 4
	Feb 1997	<10	2103			<5	23	<2	<2
	Aug 1995	na - cree	-	na געבו ג	na	na 4	na 20	na	na 12
	Jul 1996	<10	1131	1155	5	6	20	< 4	<2
L	Aug 1997	na - cree		na		na	na	na	na

「「「「「「「「「「」」」」

となる。 とうてい いたい いたい しょう しょう

:

9 --

ţ

. E. . . T

The 1990 creek data do not include the November 1990 storm event.

NH ₃ = ammonia	SRP = soluble phosphate	TC = total coliforms
TN = total nitrogen	TP = total phosphorus	FC = fecal coliforms
$NO_{2+3} = nitrate/nitrite$		EC = Enterococcus

Table 17: Chemical and biological water quality data for Blue Canyon, Wildwood, Park Place, and Silver Beach Creeks.

		NH ₃	TN	NO ₂₊₃	SRP	TP	TC (cfu/	FC (cfu/	EC (cfu/
Site	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	100 mL)	100 mL)	100 mL)
Anderson	1990 min	10	na	50	<5	6	30	<2	na
	1990 avg	19	na	121	<5	24	344	13	na
	1990 max	32	na	221	8	55	2400	130	па
	Feb 1995	<10	756	956	6	10	110	30	na
	Feb 1996	10	353	219	8	19	7	< 4	< 4
	Feb 1997	21	1116	457	<5	7	16	4	<2
	Aug 1995	10	<100	78	<5	26	100	10	12
	Jul 1996	14	<100	<10	< <5	38	20	16	<2
	Aug 1997	<10	<100	38	5	na	100	14	2
Austin	1990 min	<10	na	259	<5	<5	50	7	na
	1990 avg	20	па	441	<5	13	3366	950	na
	1990 max	40	па	658	9	23	16000	5000	na
	Feb 1995	<10	1292	759	<5	15	70	4	na
	Feb 1996	<10	690	491	5	13	53	12	20
	Feb 1997	<10	1125	677	<5	11	17	6	<2
	Aug 1995	<10	304	326	5	14	540	804	172
	Jul 1996	45	335	242	7	12	480	124	110
	Aug 1997	104	298	185	6	18	300	123	17
Smith	1990 min	12	na	396	<5	<5	17	<2	na
	1990 avg	17	na	687	<5	6	1138	14	na
	1990 max	37	na	1025	8	12	9000	170	па
	Feb 1995	<10	1355	1643	<5	<5	240	<2	na
	Feb 1996	<10	1648	841	<5	8	10	< 4	4
	Feb 1997	<10	1490	549	<5	7	<4	<2	<2
	Aug 1995	<10	383	367	<5	<5	88	14	24
	Jul 1996	<10	491	464	<5	<5	40	8	2
	Aug 1997	14	489	486	<5	<5	192	85	2

The 1990 creek data do not include the November 1990 storm event.

ınd

$NH_3 = ammonia$	SRP = soluble phosphate	TC = total coliforms
TN = total nitrogen	TP = total phosphorus	FC = fecal coliforms
$NO_{2+3} = nitrate/nitrite$		EC = Enterococcus

Table 18: Chemical and biological water quality data for Anderson, Austin, and Smith Creeks.

		As	Cd	Cr	Cu	Fe	Hg	Ni	Pb	Zn
Site	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/Ĺ)	(µg/L)	(µg/L)	(µg/L)
Blue	1990 avg	na	< 0.5	< 0.5	<5	na	na	<5	<5	2
Canyon	1990 min	na	< 0.5	< 0.5	<5	па	па	<5	<১	< 0.2
-	1990 max	na	< 0.5	4	9	na	na	4	6	33
	Feb 1995	< 30	<2	< 6	<2	240	<10	<10	3	15
	Feb 1996	< 30	<2	< 6	3	180	<10	<10	< 1	31
	Feb 1997	< 30	<2	< 6	<2	90	<10	<10	< 1	10
Park	1990 avg	na	< 0.5	< 0.5	7	na	na	<্য	6	16
Place	1990 min	na	< 0.5	1	<5	na	na	ර	<5	3
	1990 max	na	< 0.5	10	16	na	па	7	20	148
	Feb 1995	< 30	<2	< 6	3	600	<10	<10	2	19
	Feb 1996	< 30	<2	< 6	5	890	<10	<10	< 1	27
	Feb 1997	< 30	<2	< 6	<2	340	<10	<10	< 1	19
Silver	1990 avg	na	< 0.5	< 0.5	ব	na	na	<5	ব	2
Beach	1990 min	na	< 0.5	< 0.5	<5	па	na	<5	<5	0.2
	1990 max	па	<5	3	7	na	па	<5	්	5
	Feb 1995	< 30	<2	< 6	<2	790	<10	<10	3	12
	Feb 1996	< 30	<2	< 6	5	940	<10	<10	< 1	23
	Feb 1997	< 30	<2	< 6	<2	270	<10	<10	< !	21
Wildwd	1990 avg	na	< 0.5	< 0.5	<5	na	па	<5	<5	3
	1990 min	na	< 0.5	< 0.5	<5	na	na	<5	<5	0.5
	1990 max	na	< 0.5	2	8	na	na	7	6	10
	Feb 1995	< 30	<2	< 6	<2	270	<10	<10	1	12
	Feb 1996	< 30	<2	< 6	4	60	<10	<10	< 1	38
	Feb 1997	< 30	<2	< 6	<2	10	<10	<10	< 1	17

「「「「「「」」」

÷

.

. •

1997 - 19

1.5

.

È.

;

.

All 1995-1997 metals samples were analyzed by AmTest for total metals.

The 1990 data are "dissolved" metals, and do not include the November 1990 storm event.

Table 19: Metals data for Blue Canyon, Wildwood, Park Place, and Silver Beach Creeks.

		As	Cd	Cr	Cu	Fe	Hg	Ni	Pb	Zn
Site	Date	(µg/L)_	(µg/L)	(µg/L)	(µg/L)	(µg/L)	$(\mu g/L)$	(µg/L)	(µg/L)	(µg/L)
Anderson	1990 avg	na	< 0.5	< 0.5	ব	na	na	< <u>5</u>	ు	1
1	1990 min	na	< 0.5	ł	<5	na	na	<5	<u>්</u>	4
	1990 max	na	< 0.5	3	6	na	na	<5	د >	14
	Feb 1995	< 30	<2	< 6	<2	520	<10	<10	1	11
	Feb 1996	< 30	<2	< 6	3	310	<10	<10	< 1	15
	Feb 1997	< 30	<2	< 6	<2	70	<10	<10	< 1	14
Austin	1990 avg	па	< 0.5	< 0.5	.<5	па	na	ব	<5	5
	1990 min	na	< 0.5	< 0.5	<5	na	na	<5	<5	0.4
	1990 max	па	< 0.5	7	11	na	na	7	26	21
	Feb 1995	< 30	<2.	< 6	8	640	<10	<10	1	10
	Feb 1996	40	<2	< 6	5	240	<10	<10	< 1	26
	Feb 1997	< 30	<2	< 6	<2	130	<10	<10	<1	36
Smith	1990 avg	na	< 0.5	< 0.5	<5	na	na	ব	<5	2
	1990 min	па	< 0.5	< 0.5	<5	na	na	ব	<5	0.3
	1990 max	na	< 0.5	2	18	na	na	<5	<5	3
	Feb 1995	< 30	<2	< 6	<2	310	<10	<10	1	7
	Feb 1996	< 30	<2	< 6	5	200	<10	<10	< 1	30
	Feb 1997	< 30	<2	< 6	<2	40	<10	<10	< 1	12

All 1995–1997 metals samples were analyzed by AmTest for total metals. The 1990 data are "dissolved" metals, and do not include the November 1990 storm event.

Table 20: Metals data for Anderson, Austin, and Smith Creeks.

		TOC		TOC
Site	Date	(mg/L)	Date	(mg/L)
Anderson Creek	Feb 10, 1997	< 1	Aug 11, 1997	1.1
Austin Creek	Feb 10, 1997	< 1	Aug 11, 1997	2.4
Blue Canyon Creek	Feb 10, 1997	< 1	Aug 11, 1997	2.1
Park Place drain	Feb 10, 1997	< 1	Aug 11, 1997	7.1
Silver Beach Creek	Feb 10, 1997	< 1	Aug 11, 1997	7.5
Smith Creek	Feb 10, 1997	< 1	Aug 11, 1997	2.3
Wildwood Creek	Feb 10, 1997	< 1	Aug 11, 1997	< 1

Table 21: Total organic carbon data for Lake Whatcom tributaries.

5

1:

	· · · · · · · · · · · · · · · · · · ·	Min.	Max.	n	\overline{x}^*
Anderson Creek	total coliforms	20	110	6	36.8
	fecal coliforms	<4	30	6	10.1
	Enterococcus	<2	<4	5	3.29
Austin Creek	total coliforms	17	540	6	130
	fecal coliforms	4	804	6	39.0
	Enterococcus	<2	110	5	26.4
Blue Canyon Creek	total coliforms	<4	1400	6	77.1
·	fecal coliforms	<2	20	6	7.23
	Enterococcus	<2	20	5	5.59
Park Place drain	total coliforms	114	85000	6	1449
	fecal coliforms	13	1192	6	188
	Enterococcus	21	90	5	52.0
Silver Beach Creek	total coliforms	200	3200	6	912
	fecal coliforms	50	1484	6	297
	Enterococcus	7	1600	4	211
Smith Creek	total coliforms	<4	240	6	43.2
	fecal coliforms	<2	85	6	7.31
	Enterococcus	<2	24	5	3.78
Wildwood Creek	total coliforms	7	240	4	29.6
	fecal coliforms	<2	<4	3	3.14
	Enterococcus	<2	<4	3	2.50

*3-year geometric means from Feb 1995 to Aug 1997.

Table 22: Average coliform and *Enterococcus* counts for Lake Whatcom tributaries.

Composite !	Samples ()	n~36)									
Site	TN	TP	TSS	TOC	Cd	Cr	Cu	Fe	Ni	Pb	Zn
	$(\mu g/L)$	(µg/L)	(mg/L)	(mg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Feb 17-19,		<u></u>						•			<u> </u>
inlet	744	39	6.0	< 1	< 2	< 6	< 2	250	< 10	< 1	25
outlet	804	41	4.2	< 1	< 2	< 6	< 2	290	< 10	<1	27
% change	+8.1	+5.1	-30	0	0	0	0	+16	0	0	+8
Sep 16-17,	Sep 16–17, 1997										
inlet	1186	96	8.3	< 1	< 2	< 6	< 2	470	< 10	< 1	14
outlet	412	68	10.5	< 1	< 2	< 6	< 2	360	20	< 1	12
% change:	-65	-29	+27	0	0	0	0	-23	+100	0	-14
Grab Samp	les (n = 4))									
Site	Temp		DO	Cond	· T			C		C	
	(°C)	pН	(mg/L)	(μS)	(cfu/1	00 mL)	(cfu/1	00 mL)	(cfu/10	00 mL)	
Feb 17-19,	1997										
inlet	7.1	7.43	12.21	138.3	34	00	1	2	4	4	
inlet	6.2	7.51	12.01	144.7	12	.00	7	0	13		
inlet	4.0	7.45	12.21	128.2	15	50	1	93	30		
inlet	4.2	7.41	12.52	133.0	20	50	3	10	14	40	
outlet	7.3	7.50	na	131.1	8	00	2	24		4	
outlet	na	7.50	12.07	141.1	10	200	<	20		7	
outlet	4.5	7.55	12.26	142.5	10	200	2	23	:	8	
outlet	4.0	7.48	12.27	134.9	62	200	2	16	3	0	
% change:	-2.0	+0.8	-0.3	+1.0	+2	234	-:	52	-	74	
Sep 16-17,	1997										
inlet	16.32	7.62	9.86	0.242		100		28	3	00	
inlet	15.86	7.81	9.72	0.251		500		72	1	40	
inlet	14.89	7.83	10.16	0.184		00	30	000	<	2	
inlet	14.51	7.54	10.26	0.140	82	200	30	000	<	2	
outlet	17.54	7.54	8.45	0.227		50	1	76	ľ	70	
outlet	16.12	7.45	7.48	0.225		30		05		00	
outlet	16.08	7.43	8.10	0.210	10	00	2	20		4	
outlet	15.05	7.45	8.48	0.160		60		00		2	
% change:	+5.2	-3.0	+18.7	+0.6	-	92		85	4	-7	

Table 23: Park Place wet pond water quality summary.

	Date	Lab	Certified	Acceptance
Sample	Analyzed	Value	Value	Limits
рН	9/24/97	6.81	6.80	6.60-7.00
Conductivity	9/24/97	119.6 μS/cm	119	101–137
Alkalinity	9/24/97	22.6 mg/L as CaCO ₃ , low range 23.2 mg/L as CaCO ₃ , single endpt	22.0	19.6–24.4
Turbidity	9/11/97	0.83 NTU	0.800	0.683–0.922
Total P	10/2/97	17 μg/L TP-P	20.0	17.2–22.8
Orthophosphate	10/9/97	13 μg/L PO₄-P	14.5	12.3–16.7
NO_3+NO_2 NO_3 replicate	10/10/97 10/10/97	155 μg/L NO3-N 155 μg/L NO3-N	153	136-169
Ammonia	10/9/97	49 μg/L NH3-N	44.9	37.7–52.1
TSS 1st sample TSS 1st sample rep	9/11/97 9/11/97	22.9 mg/L 22.8 mg/L	25.2	21.4–29.0
TSS, 2nd sample	9/29/97	14.8 mg/L*	18.6	15.8–21.4

.)

*Lab value outside acceptance limits. First set of samples was within acceptance limits, but near low end of acceptable range. Balance was recalibrated to correct possible bias.

Table 24: Summary of single-blind quality control results.

9 Figures

- Figure 1 (page 43) provides a general map of Lake Whatcom and its tributaries, and shows the current lake sampling sites. Refer to Appendix A (page 170) and Figures 127–129 (pages 172–174) for more detailed information about site locations.
- Figures 2, 3, and 4 (pages 44, 45, and 46) compare the current sampling year with historic temperature and dissolved oxygen data.
- Figures 5–14 (pages 47–56) show single-day Hydrolab profiles from Lake Whatcom for the February and September sampling dates.
- Figures 15-34 show multi-year Hydrolab data for Lake Whatcom. The lines connect data from a single sampling depth through time. The lines help identify seasonal patterns of convergence and divergence; however, they do not represent continuous sampling. Furthermore, missing values were not interpolated. As a result, some of the lines join values separated by more than one sampling period, and the minimum and maximum values represent only dates actually sampled, not the annual extremes.
- Figures 35-89 (pages 77-131) show multi-year water quality, chlorophyll, and Secchi depth data for Lake Whatcom.
- Figures 90-109 (pages 132-151) show multi-year coliforms and plankton data for Lake Whatcom.
- Figures 110–115 (pages 152–157) show the water balance data for 1995-96 and 1996-97.

. . .

- Figures 116-118 (pages 158-160) contain photographs of the Park Place wet pond cells.
- Figures 119–126 (pages 162–168) show the quality control results from field and laboratory duplicate samples.

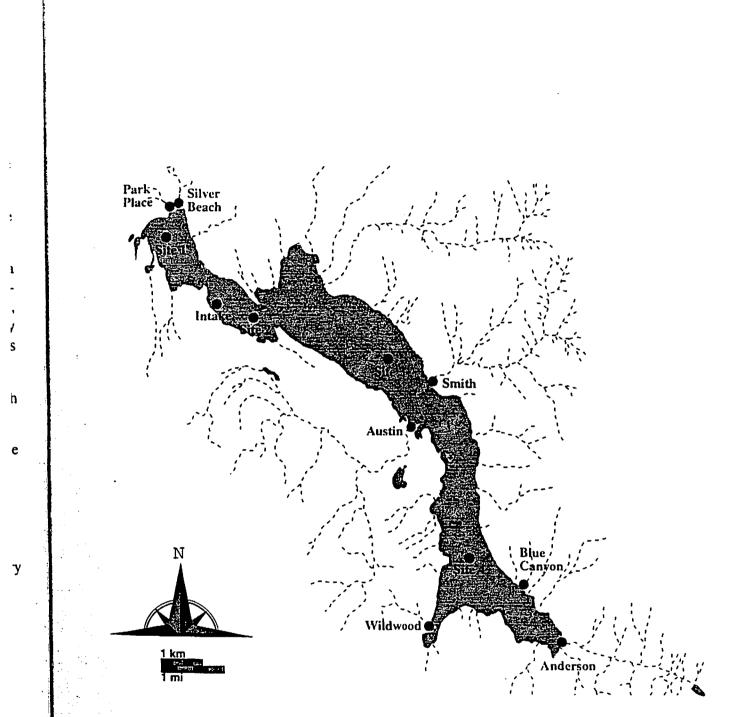


Figure 1: Lake Whatcom 1996/97 sampling sites.

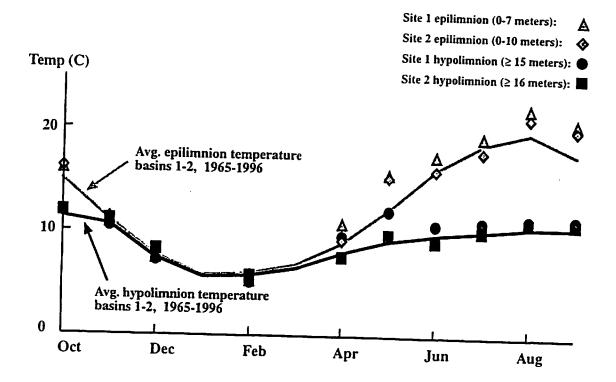


Figure 2: Epilimnion and hypolimnion temperature data from Sites 1-2 compared to 1965-1996 averages.

÷ T

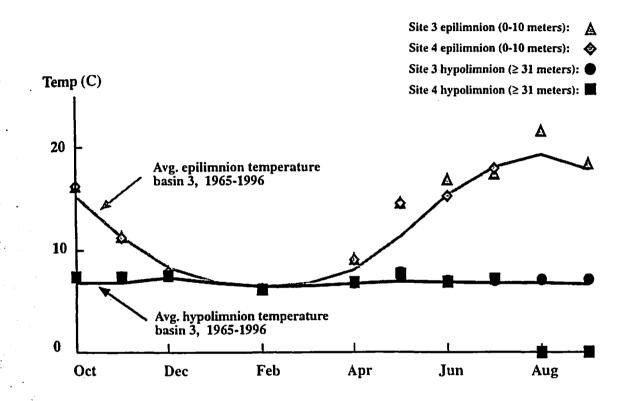
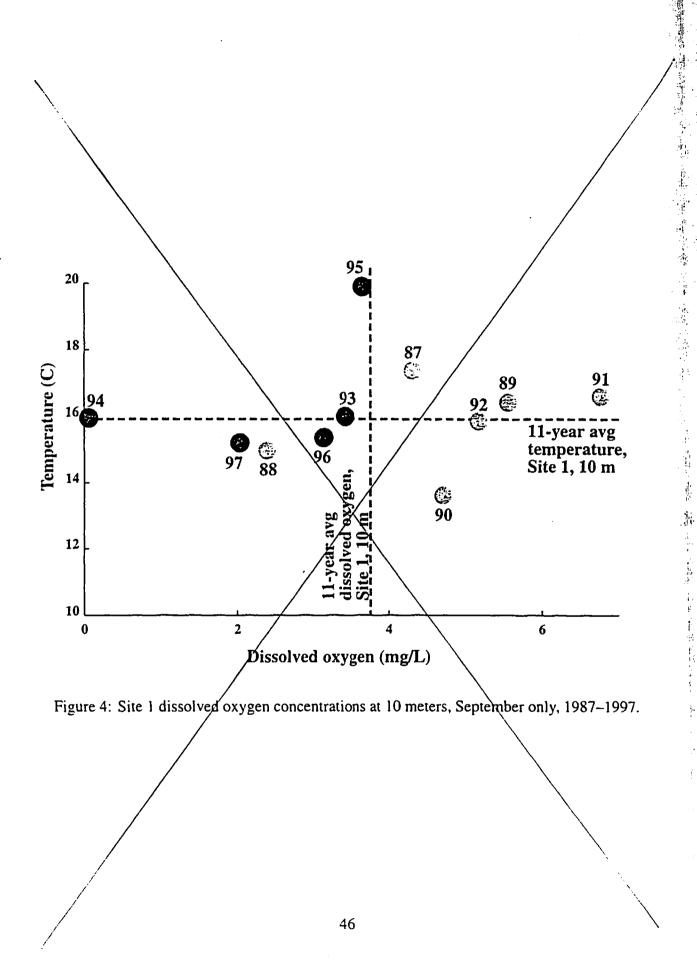



Figure 3: Epilimnion and hypolimnion temperature data from Sites 3-4 compared to 1965–1996 averages.

. E

Fi

ге

ar

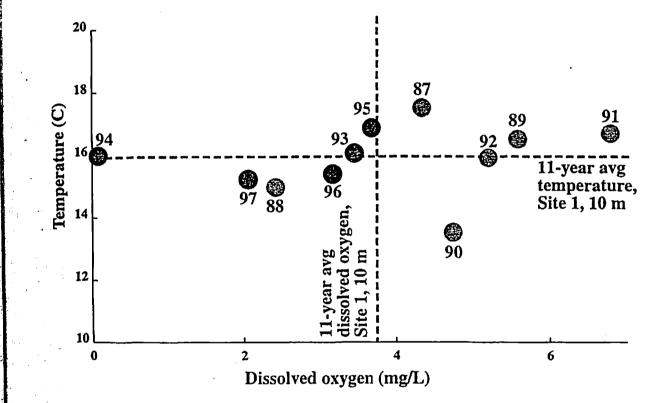


Figure 4: Site 1 dissolved oxygen concentrations at 10 meters, September only, 1987–1997, revised to show corrected 1995 temperature value. Correct data were used for statistical analyses and discussion in text.

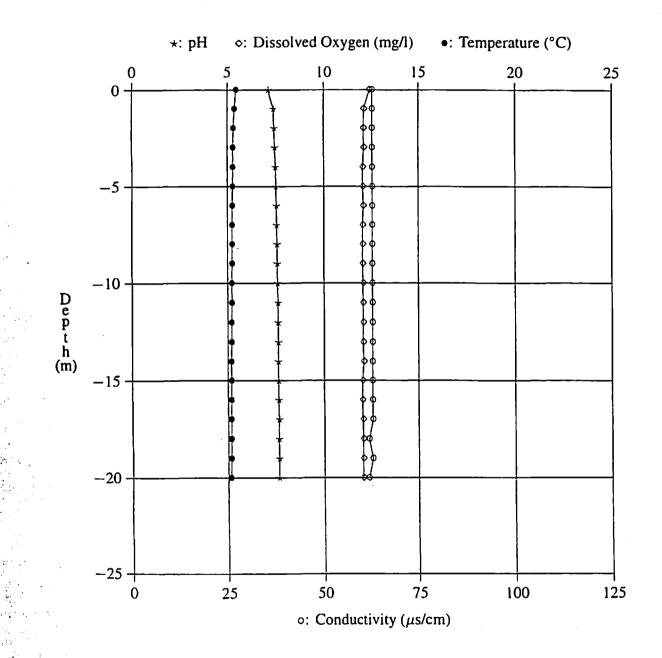


Figure 5: Lake Whatcom Hydrolab profile for Site 1, February 12, 1997.

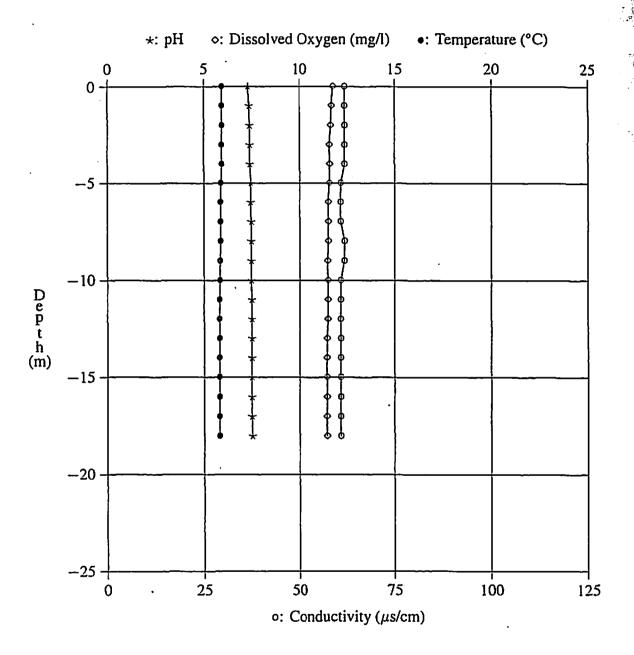


Figure 6: Lake Whatcom Hydrolab profile for Site 2, February 12, 1997.

語いない

> ł L

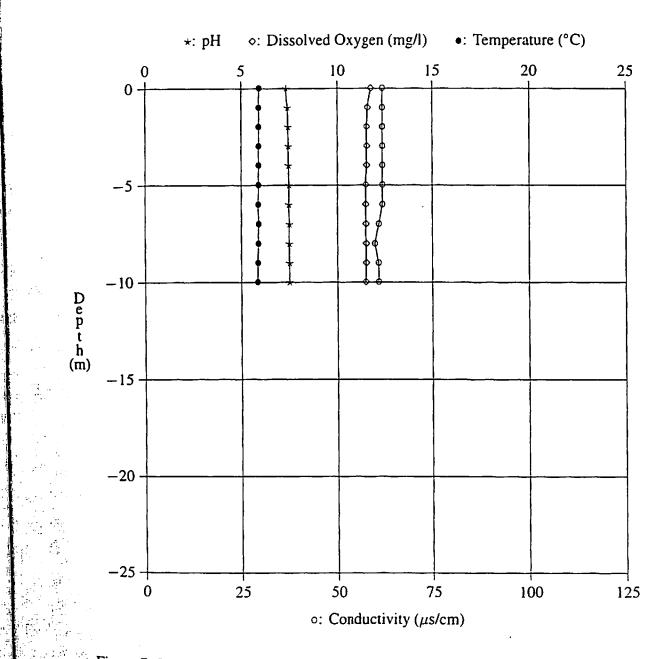


Figure 7: Lake Whatcom Hydrolab profile for the Intake site, February 12, 1997.

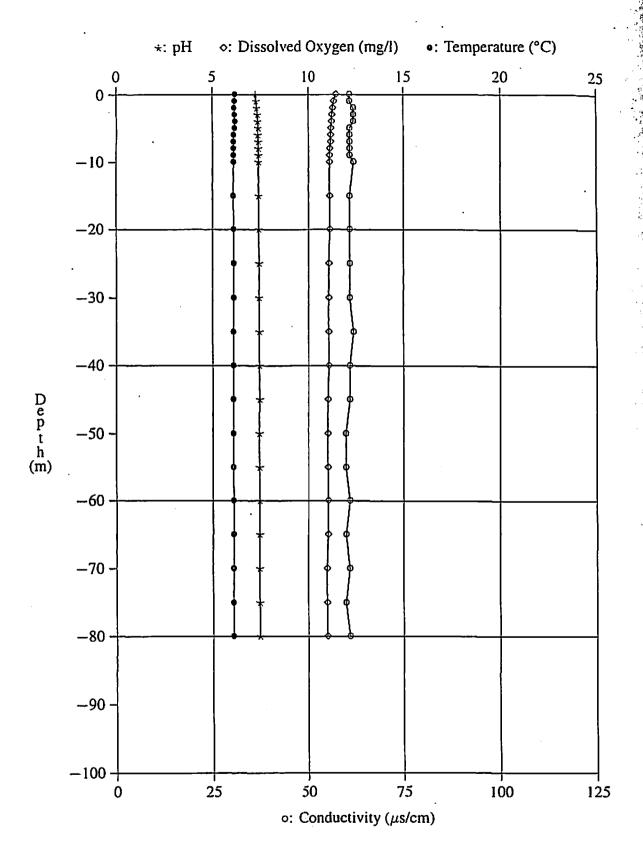
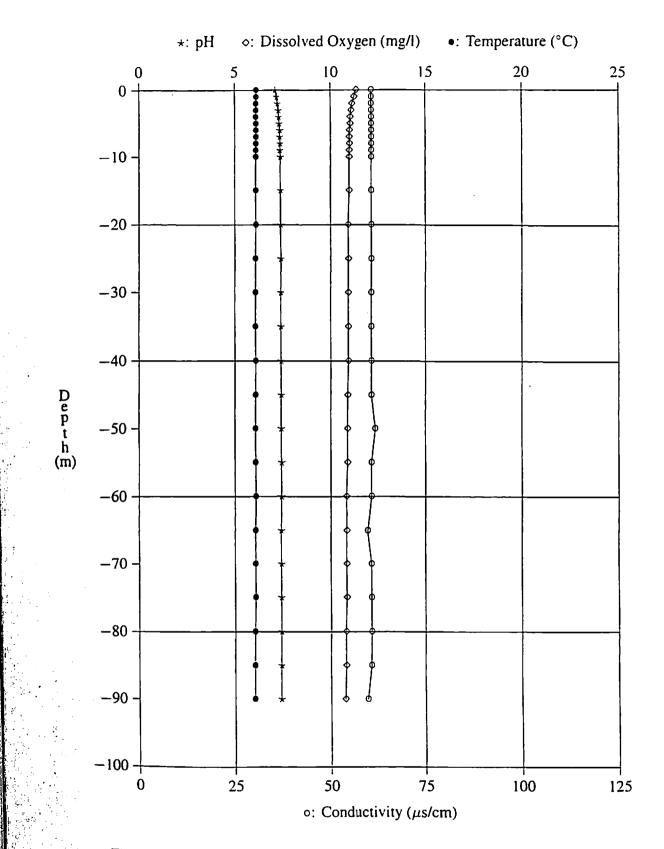
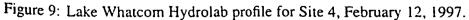




Figure 8: Lake Whatcom Hydrolab profile for Site 3, February 12, 1997.

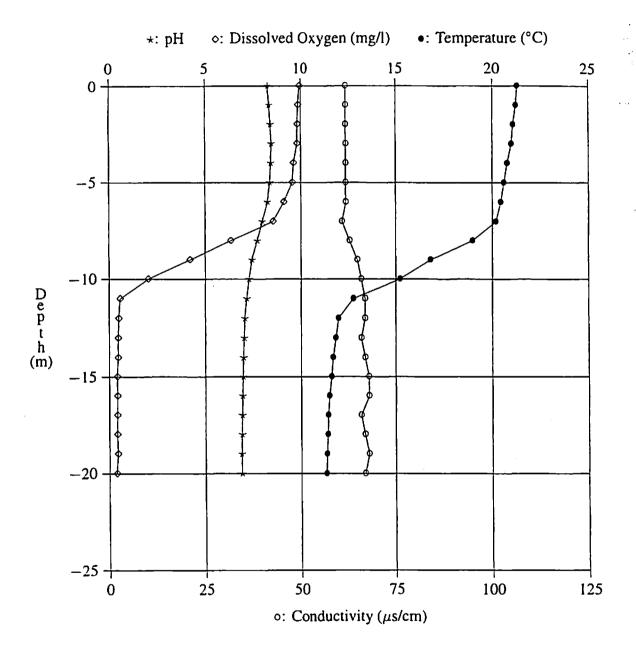


Figure 10: Lake Whatcom Hydrolab profile for Site 1, September 10, 1997.

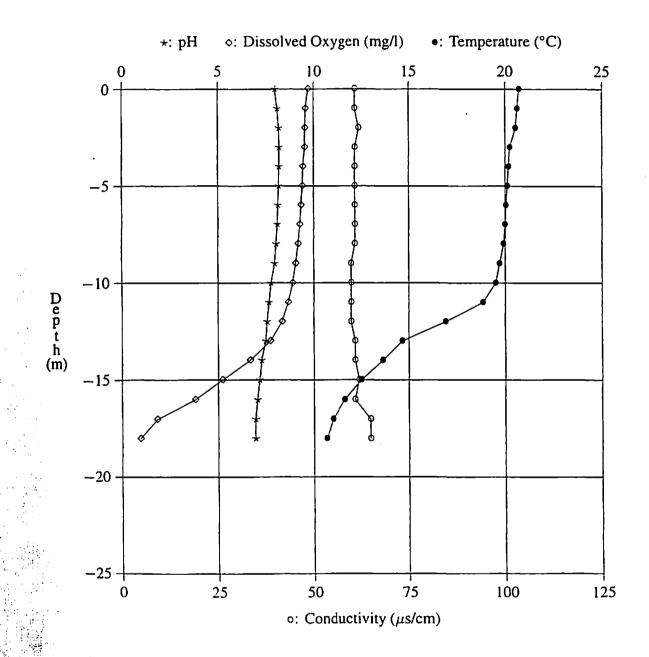


Figure 11: Lake Whatcom Hydrolab profile for Site 2, September 10, 1997.

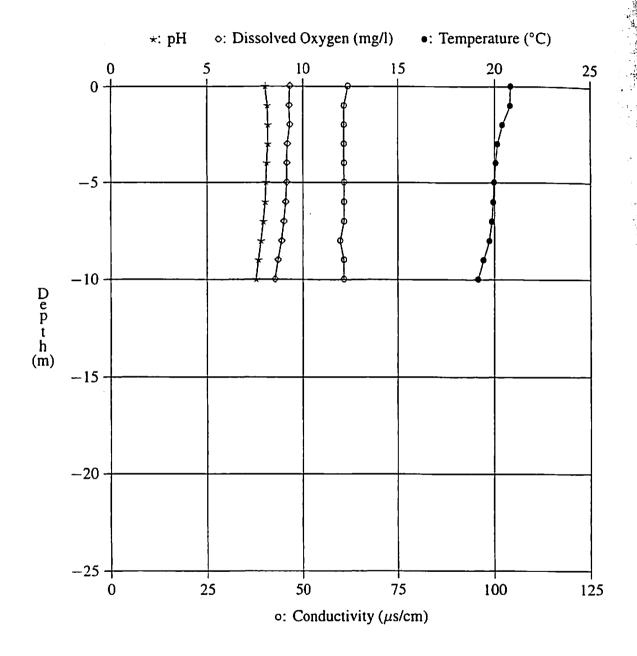
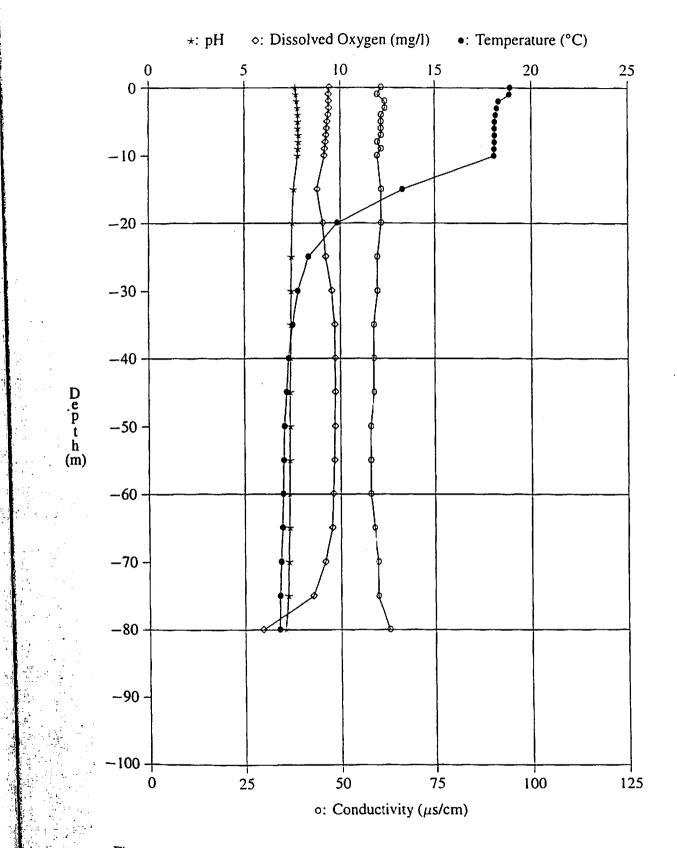
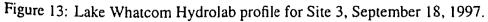




Figure 12: Lake Whatcom Hydrolab profile for the Intake site, September 10, 1997.

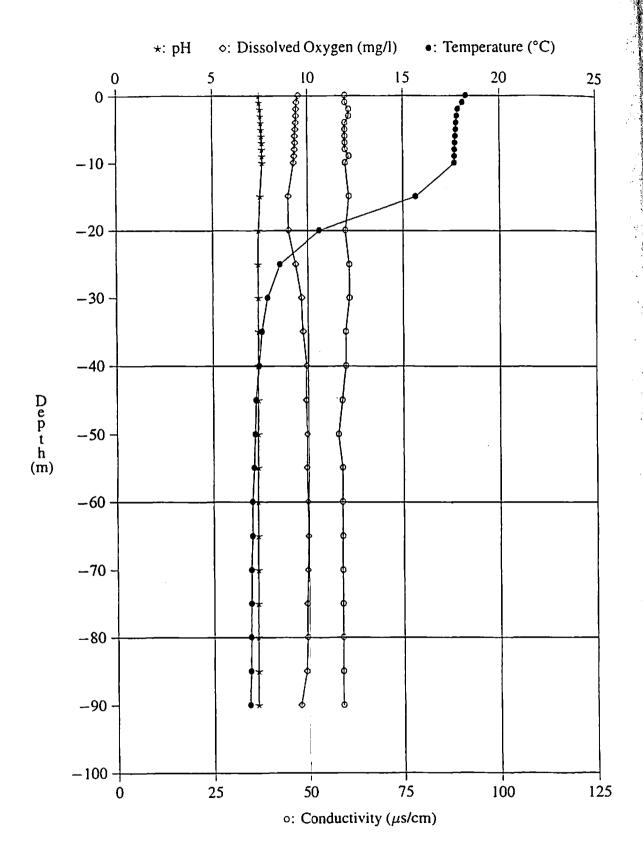
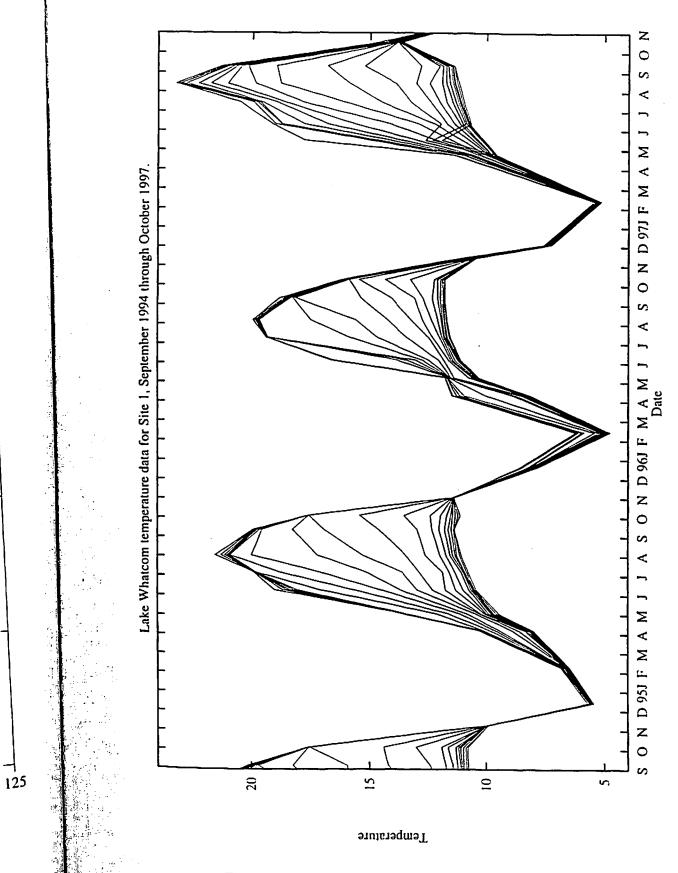
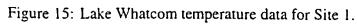
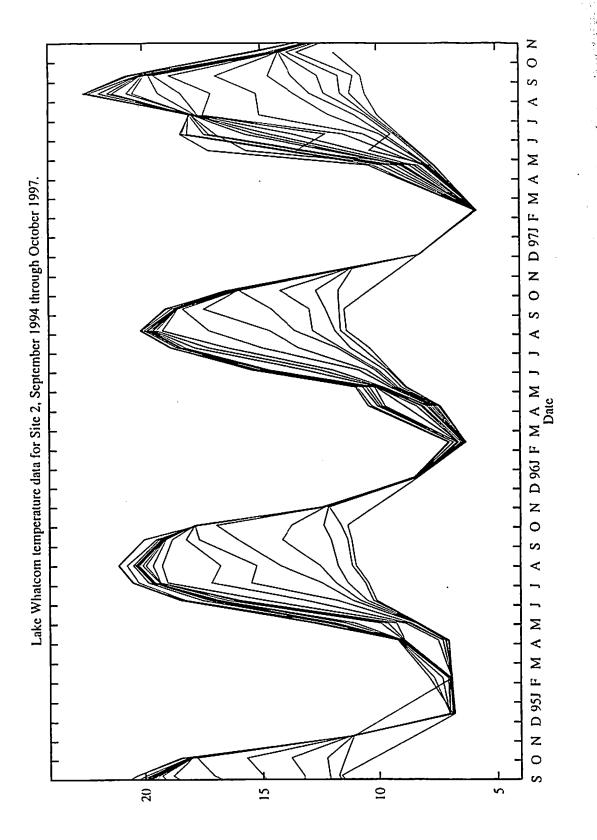





Figure 14: Lake Whatcom Hydrolab profile for Site 4, September 18, 1997.

Ť

王小子子

, i,

Temperature

Figure 16: Lake Whatcom temperature data for Site 2.

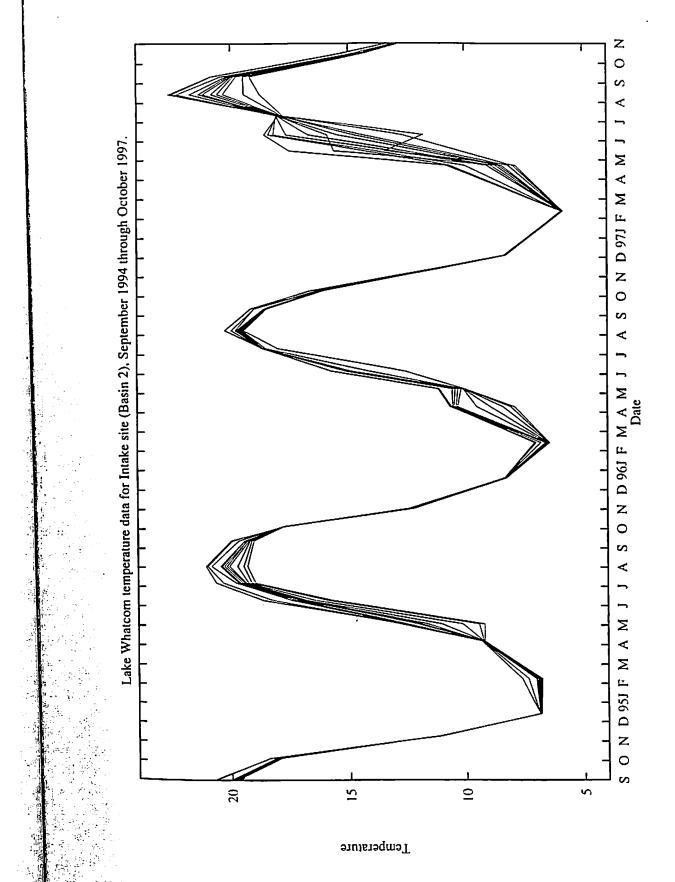
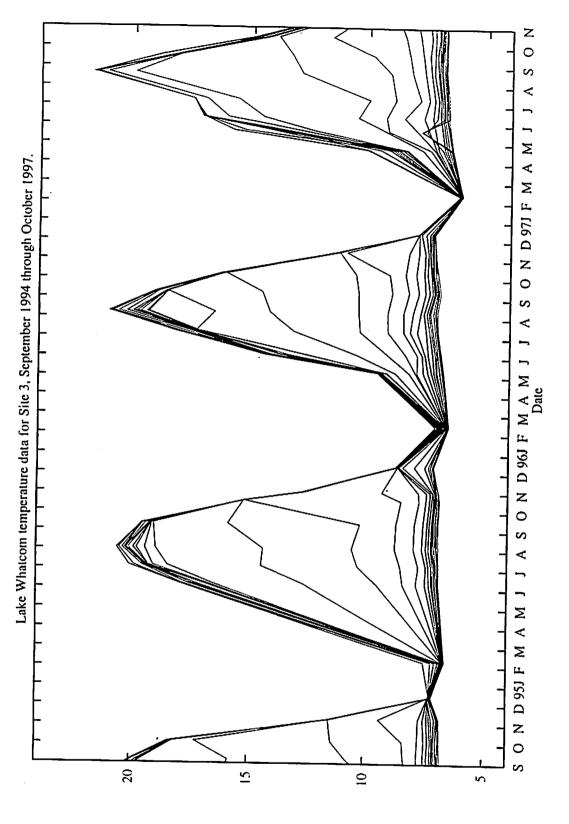



Figure 17: Lake Whatcom temperature data for the Intake site.

Тетрегаците

Figure 18: Lake Whatcom temperature data for Site 3.

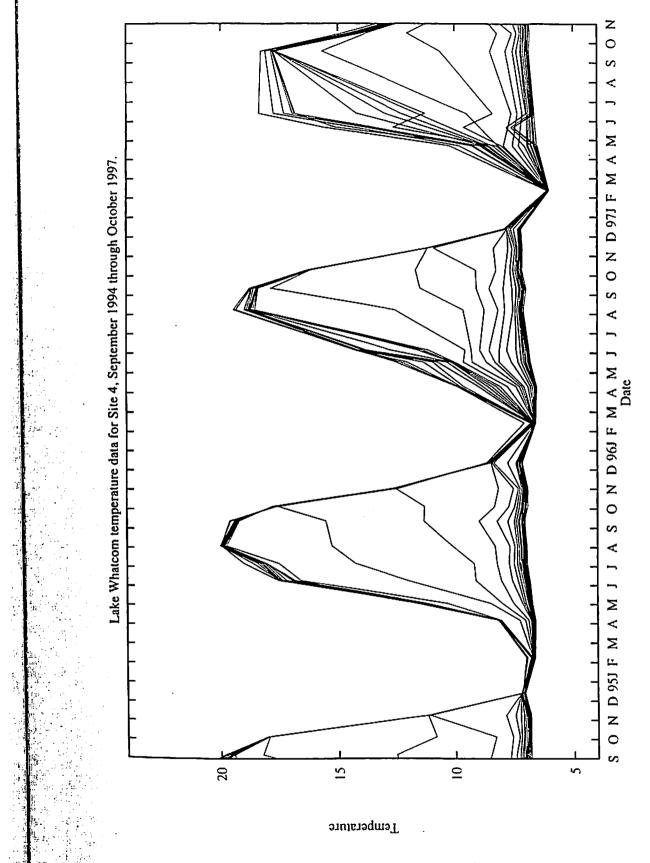
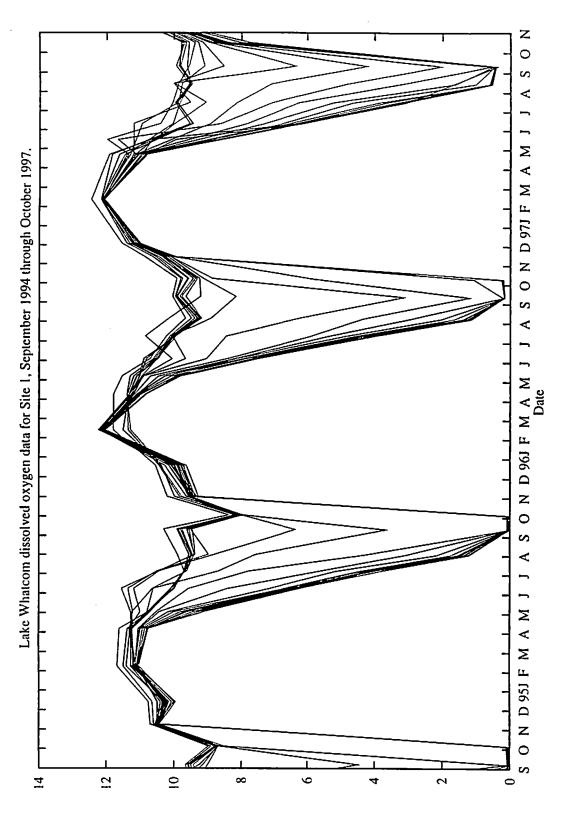
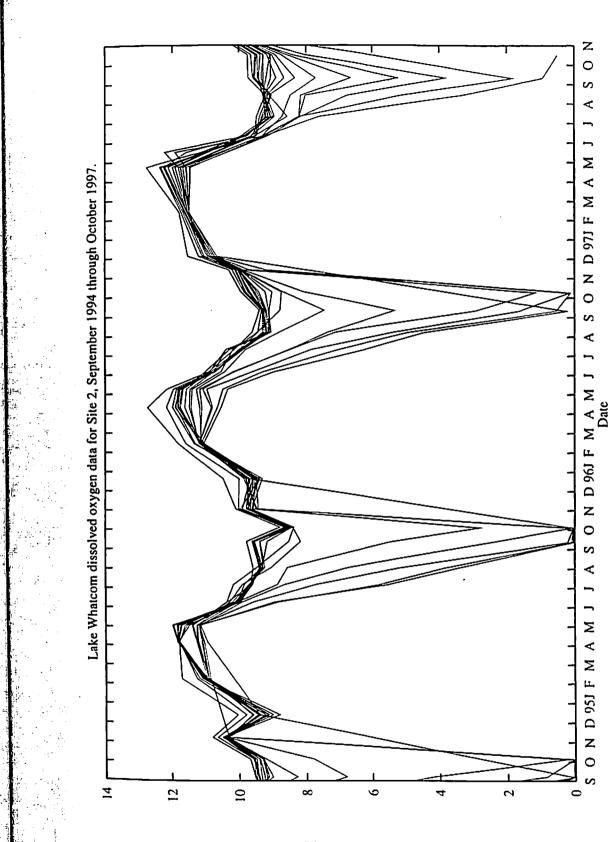



Figure 19: Lake Whatcom temperature data for Site 4.


龜

i,

L.C. State

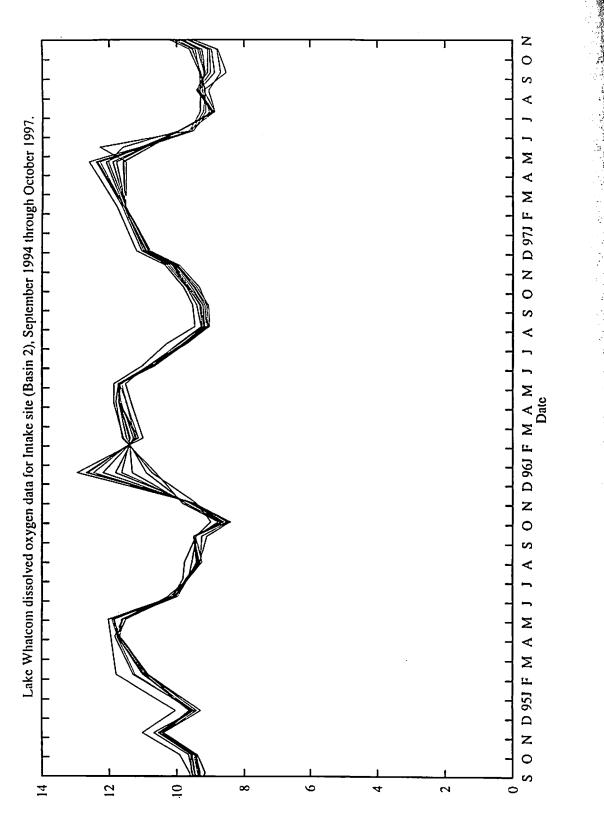

Dissolved Oxygen

Figure 20: Lake Whatcom dissolved oxygen data for Site 1.

Dissolved Oxygen

Figure 21: Lake Whatcom dissolved oxygen data for Site 2.

Dissolved Oxygen

Figure 22: Lake Whatcom dissolved oxygen data for the Intake site.

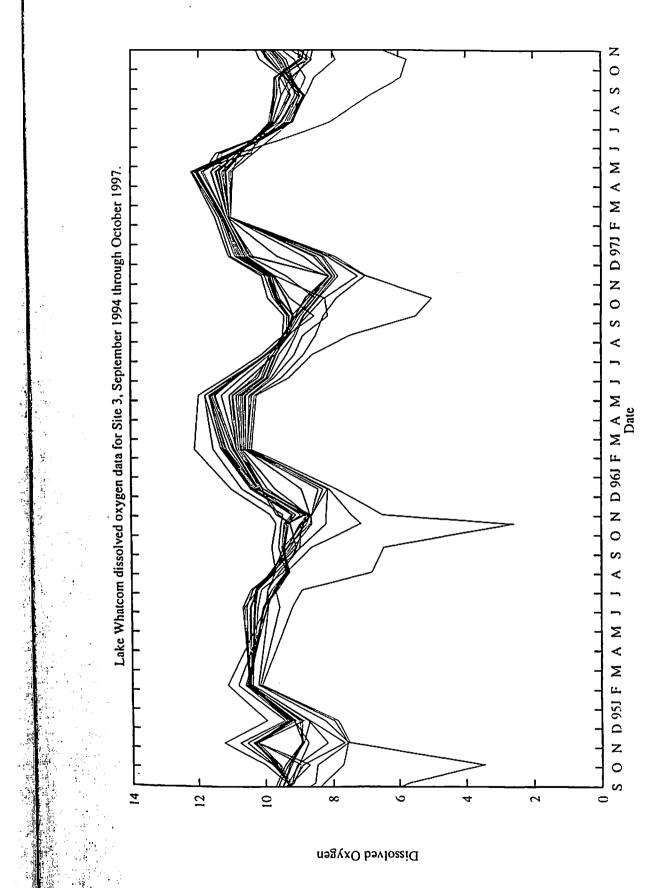
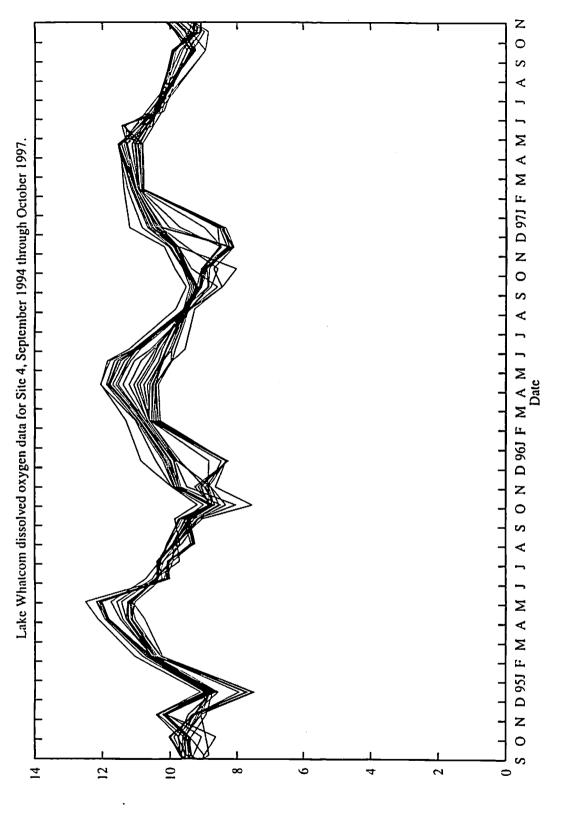



Figure 23: Lake Whatcom dissolved oxygen data for Site 3.

Dissolved Oxygen

ļ,

1

÷

Figure 24: Lake Whatcom dissolved oxygen data for Site 4.

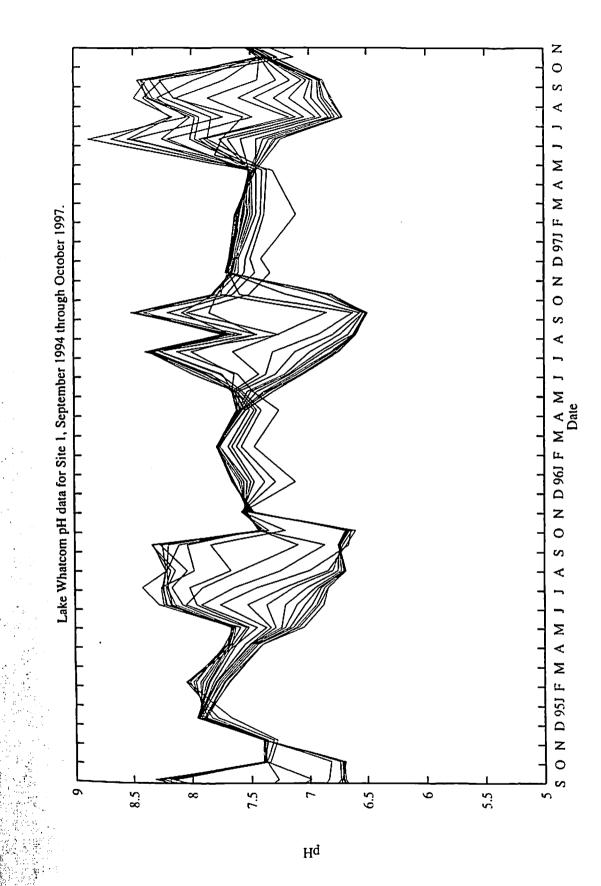
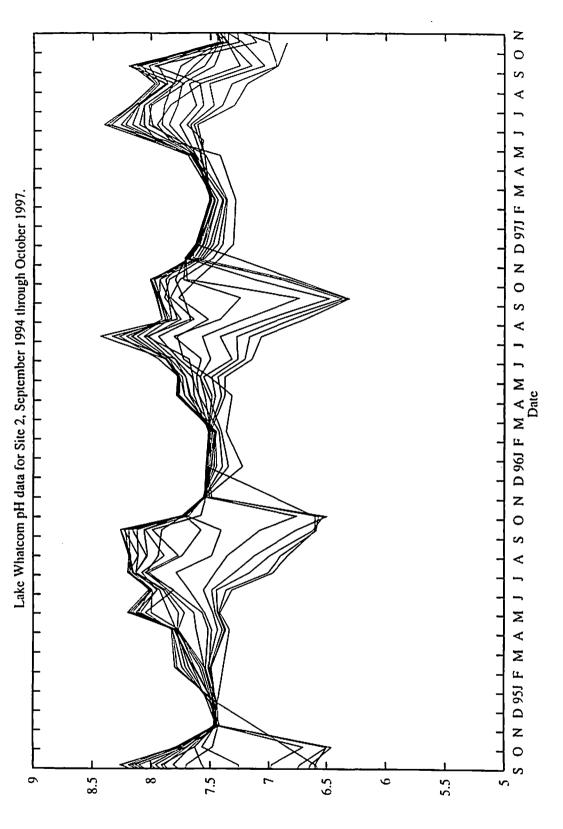



Figure 25: Lake Whatcom pH data for Site 1.

Hď

Ē,

Figure 26: Lake Whatcom pH data for Site 2.

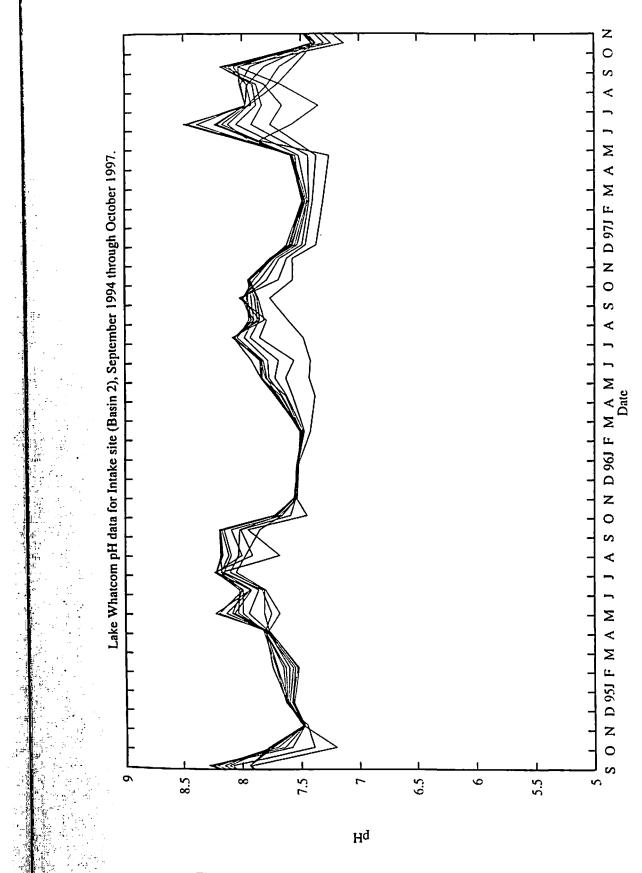
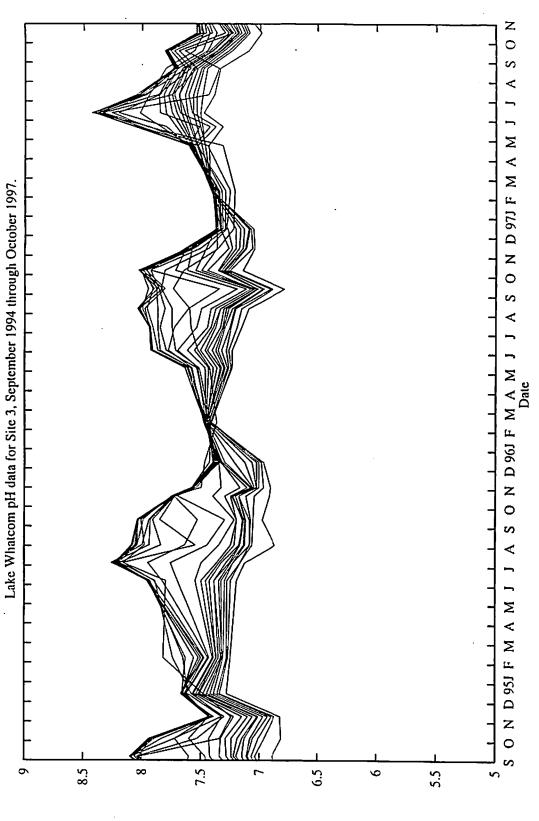



Figure 27: Lake Whatcom pH data for the Intake site.

Hq

Figure 28: Lake Whatcom pH data for Site 3.

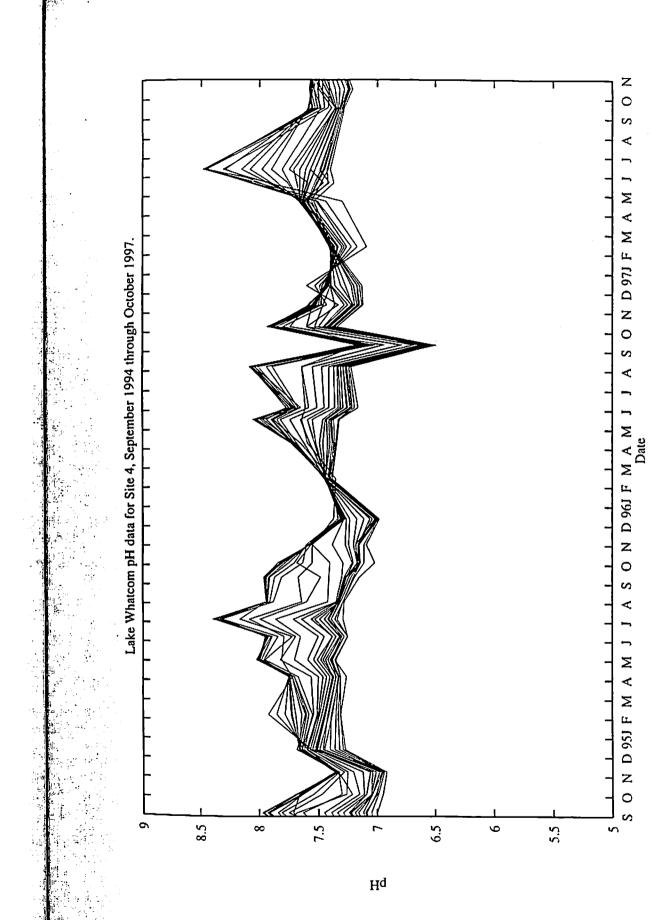
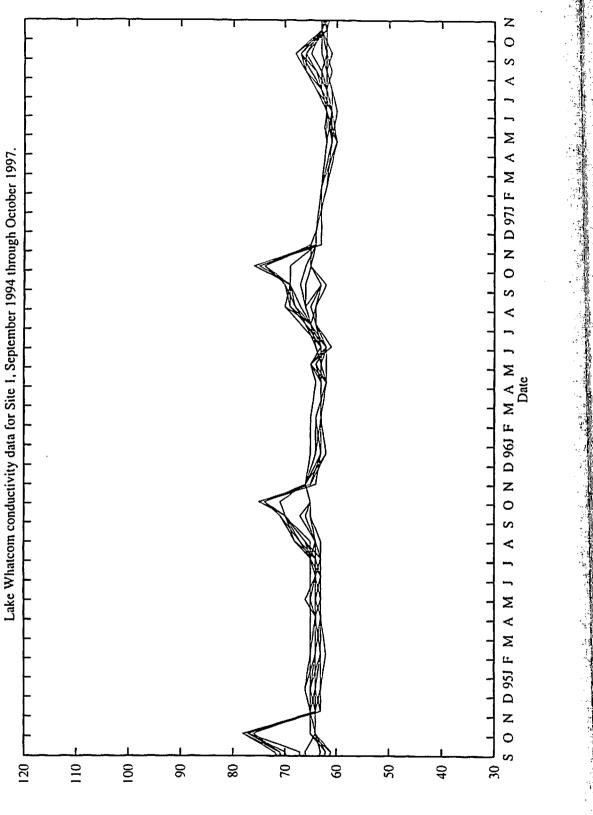
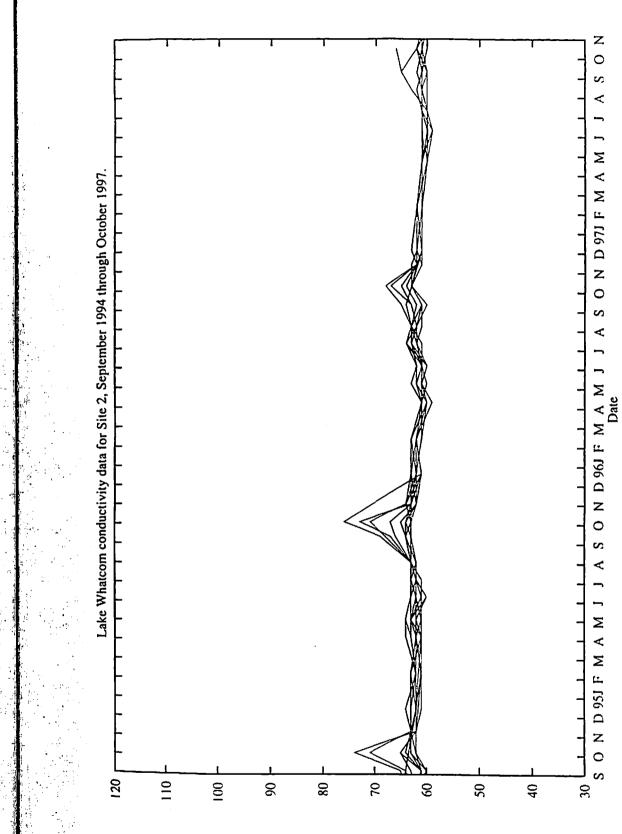
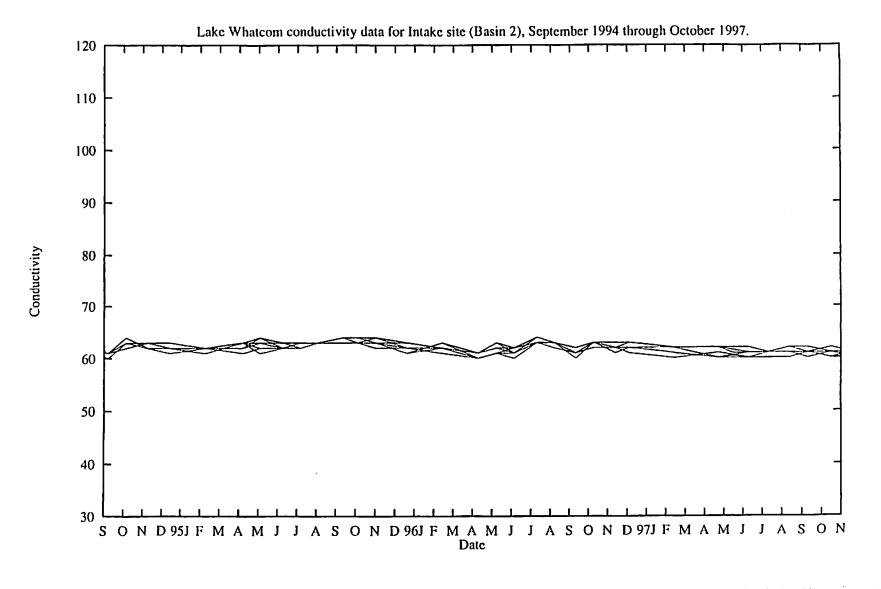




Figure 29: Lake Whatcom pH data for Site 4.

Conductivity


Figure 30: Lake Whatcom conductivity data for Site 1.

Conductivity

Figure 31: Lake Whatcom conductivity data for Site 2.

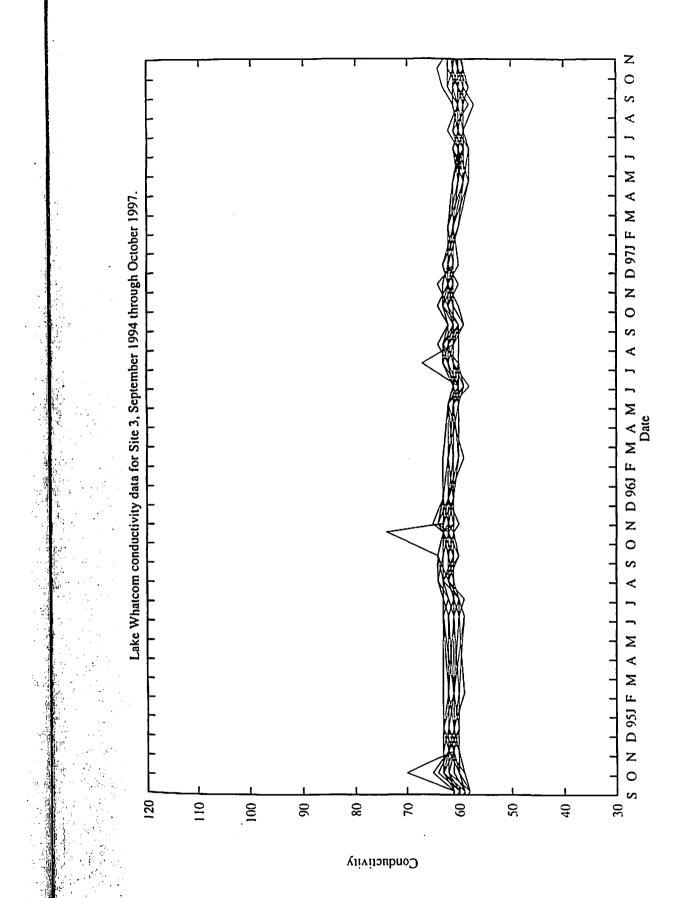
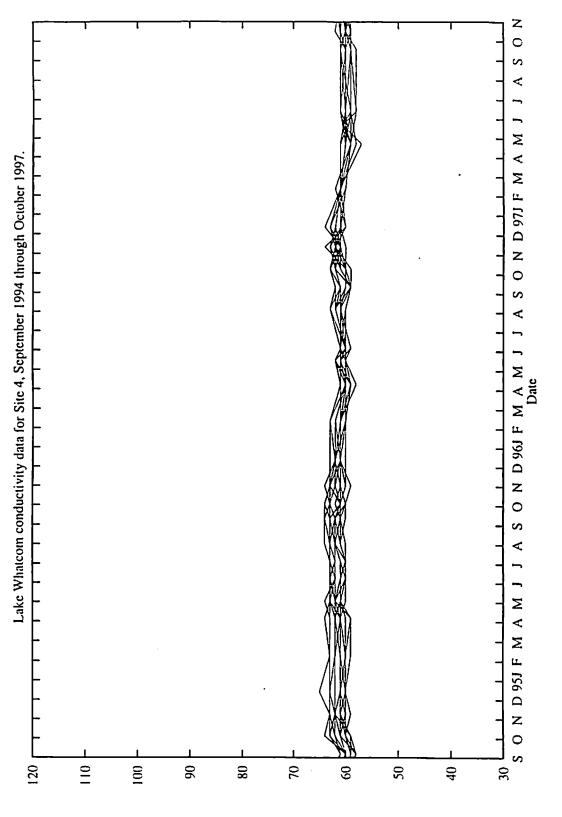
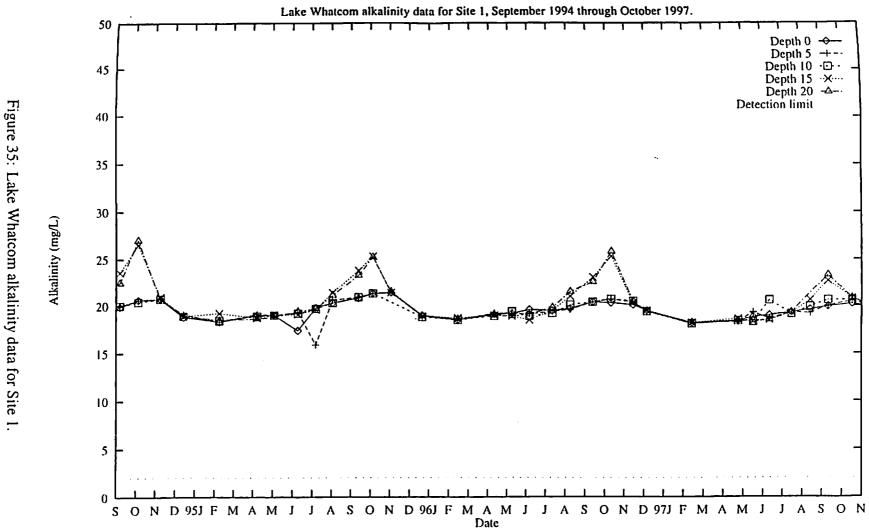
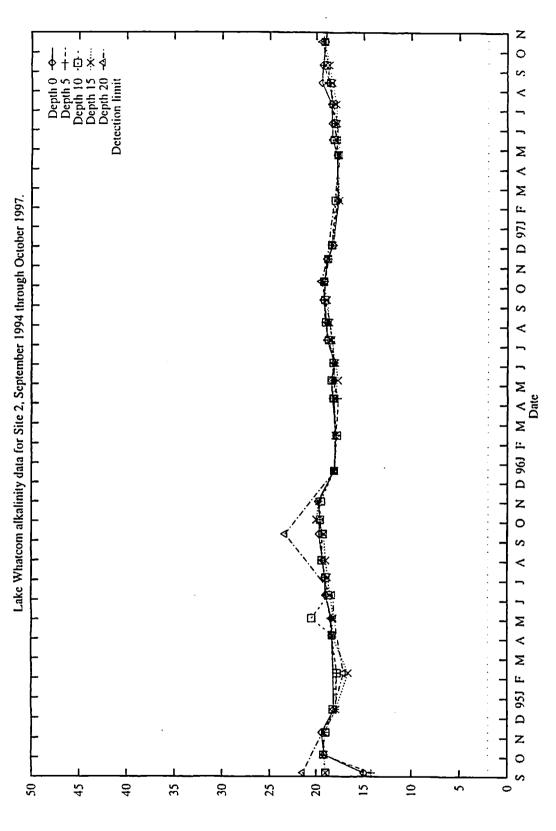




Figure 33: Lake Whatcom conductivity data for Site 3.



Conductivity

Figure 34: Lake Whatcom conductivity data for Site 4.

LL

Alkalinity (mg/L)

Figure 36: Lake Whatcom alkalinity data for Site 2.

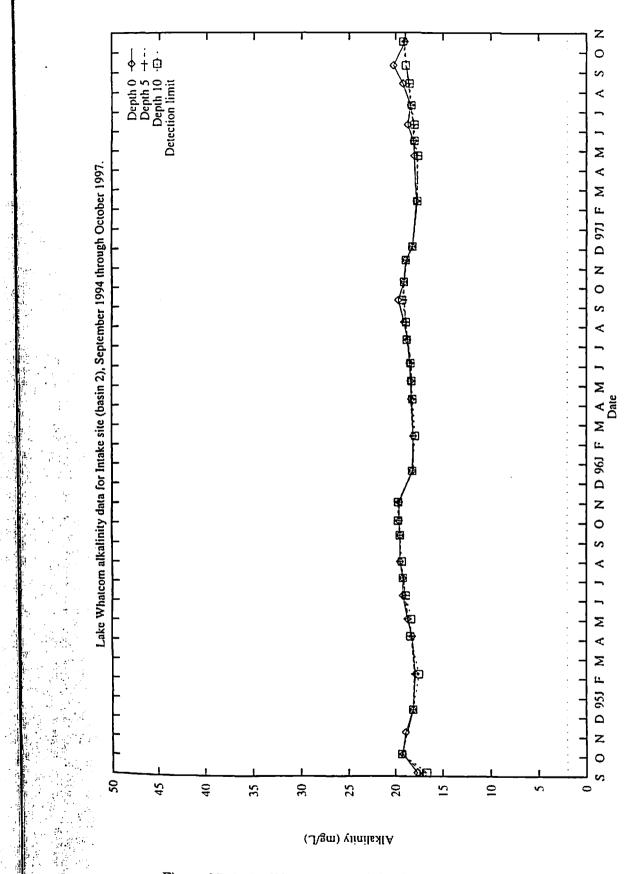
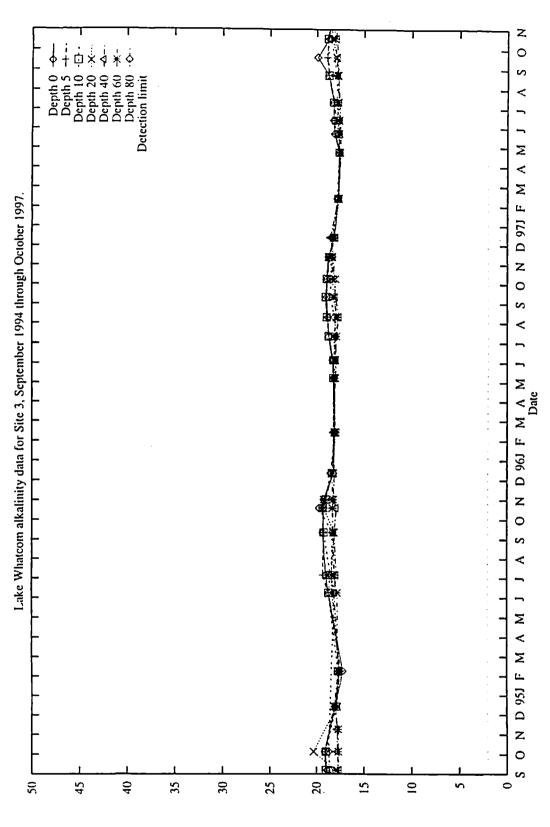
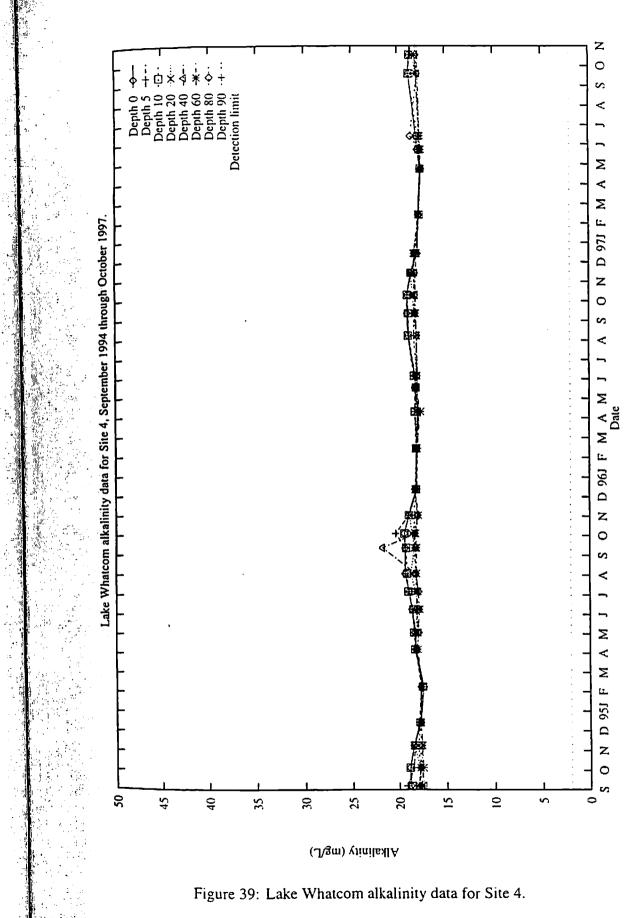
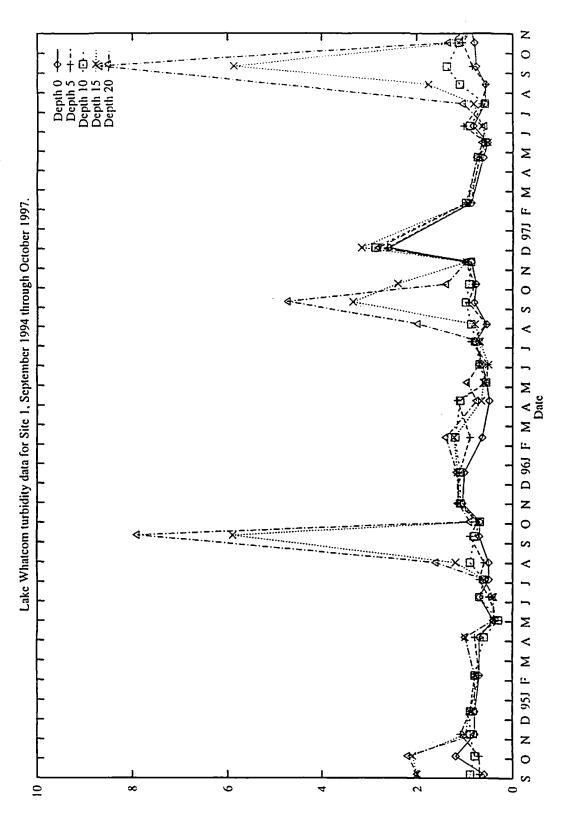
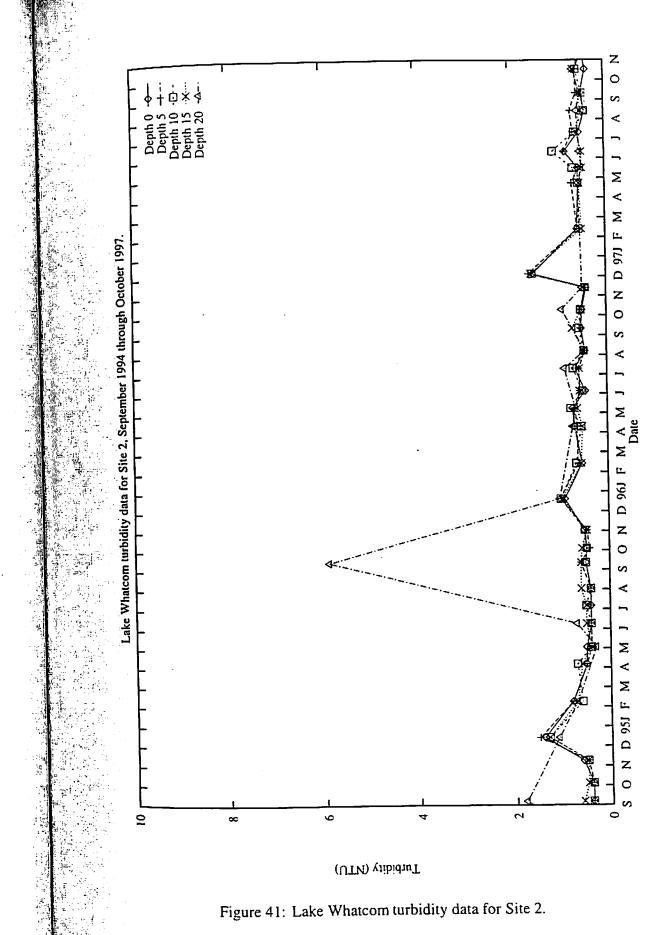




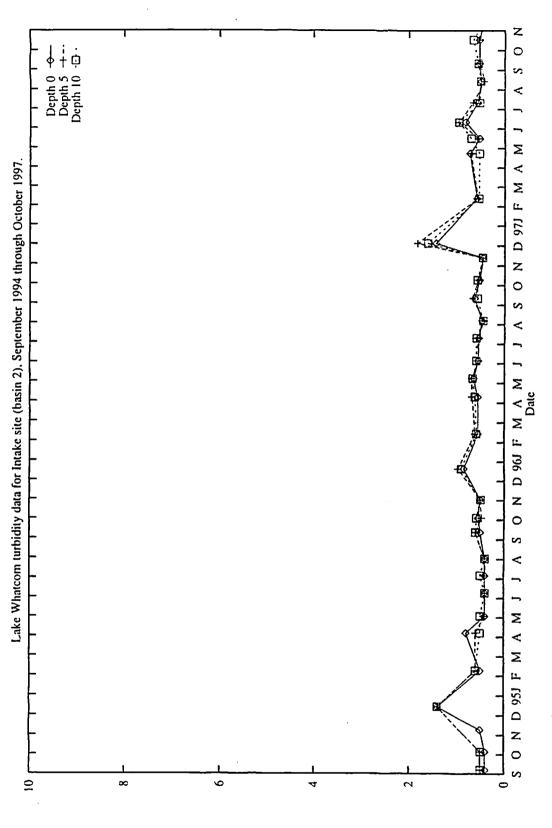
Figure 37: Lake Whatcom alkalinity data for the Intake site.



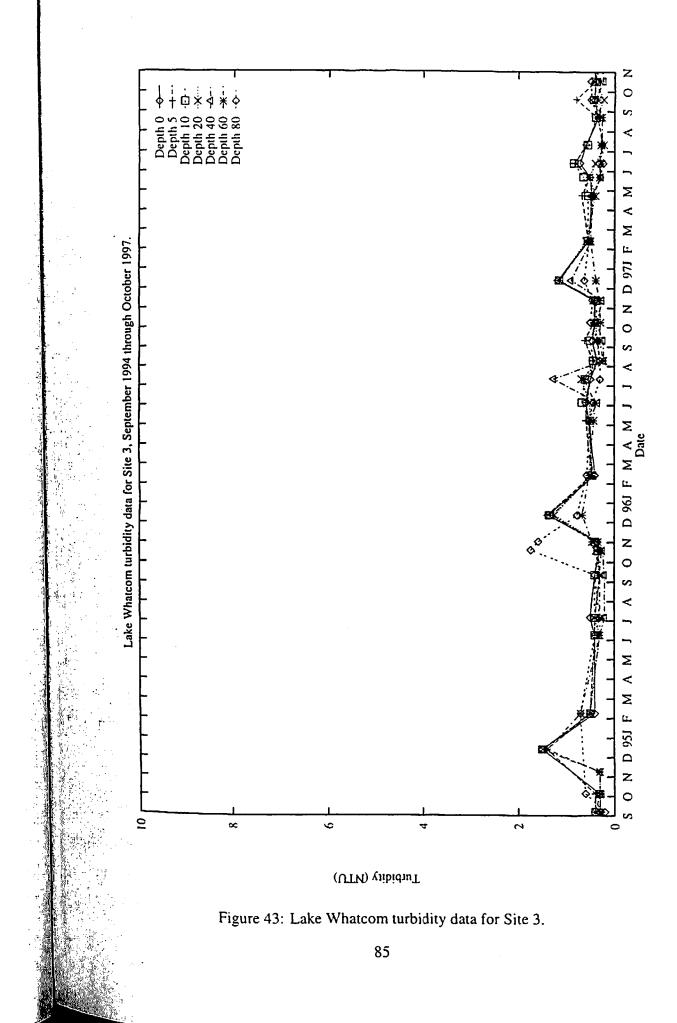
Alkalinity (mg/L)

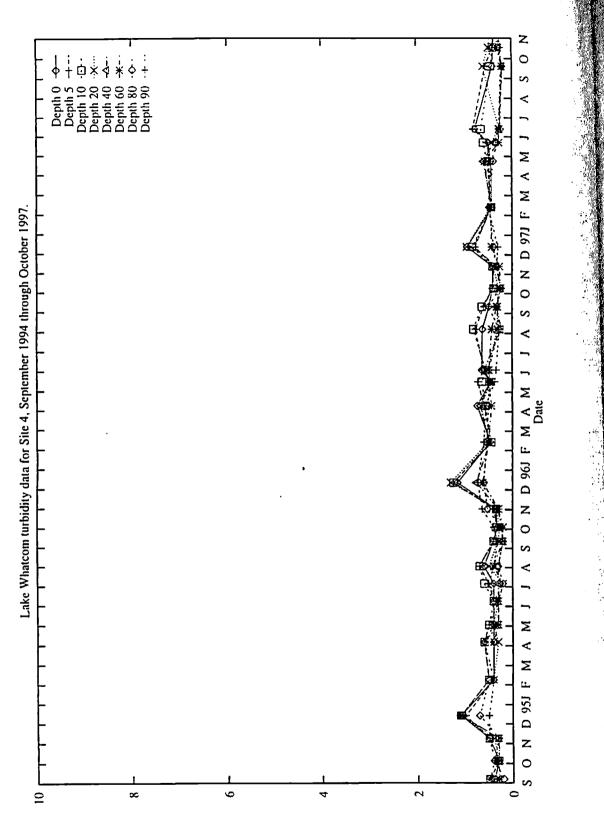
Figure 38: Lake Whatcom alkalinity data for Site 3.



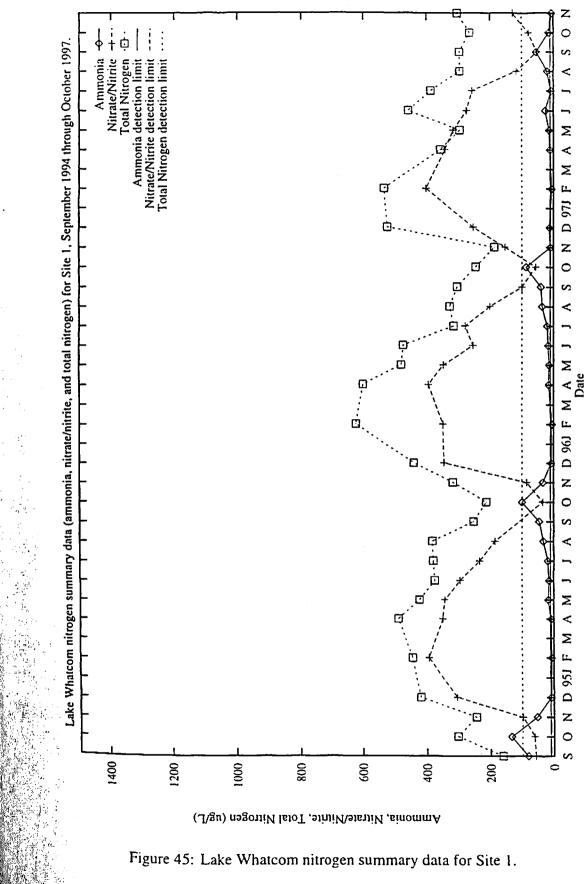


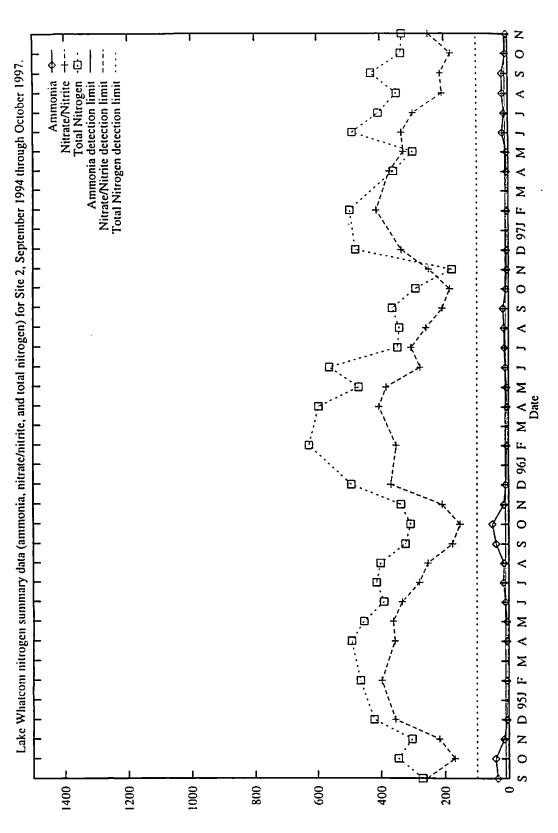
(UTV) VilbidiuT


Figure 40: Lake Whatcom turbidity data for Site I.



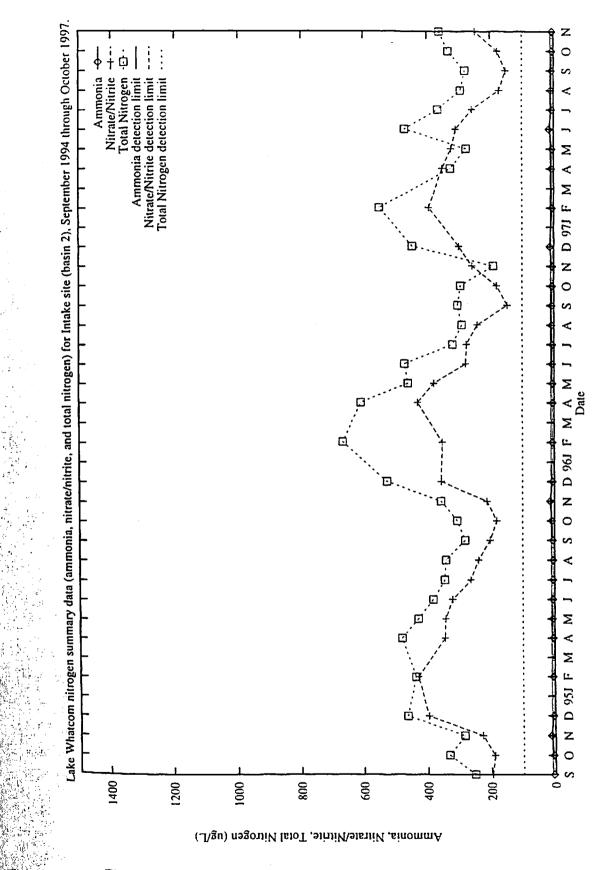
(UTV) γιδιάτυΤ


Figure 42: Lake Whatcom turbidity data for the Intake site.

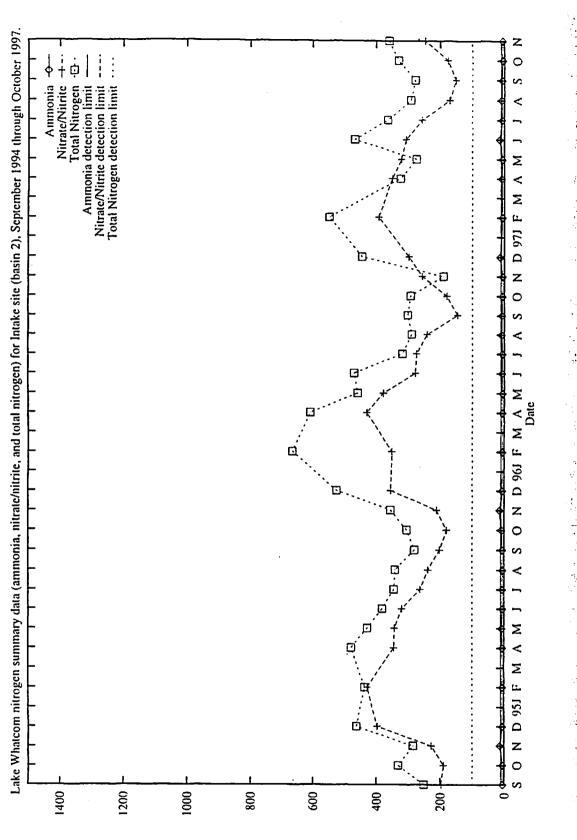


Turbidity (NTU)

Figure 44: Lake Whatcom turbidity data for Site 4.



:


¢

Ammonia, Nitrate/Nitrite, Total Nitrogen (นยู/L)

Figure 46: Lake Whatcom nitrogen summary data for Site 2.

Lake Whatcom nitrogen summary data (ammonia, nitrate/nitrite, and total nitroorn) for Site A Sammers inco

Ammonia, Nitrate/Nitrite. Total Nitrogen (ug/L)

Figure 48: Lake Whatcom nitrogen summary data for Site 3.

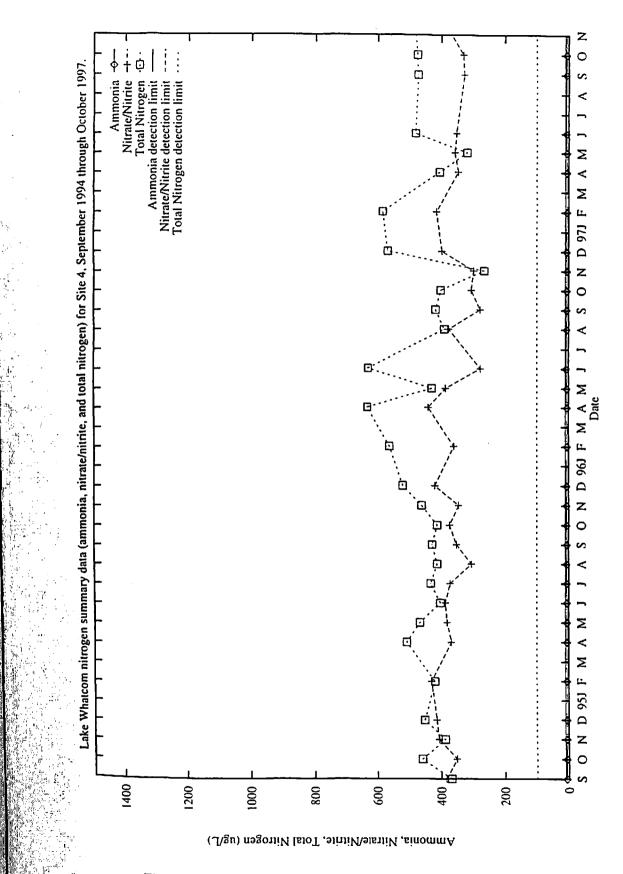
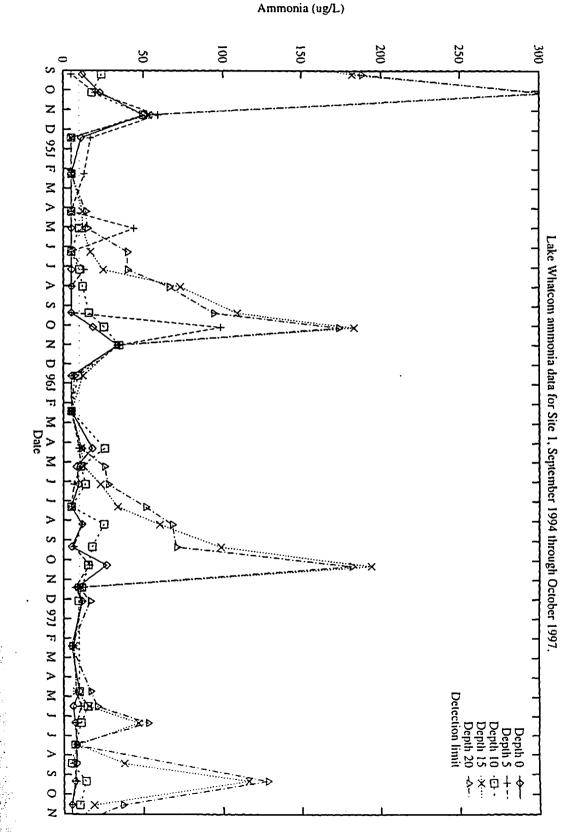
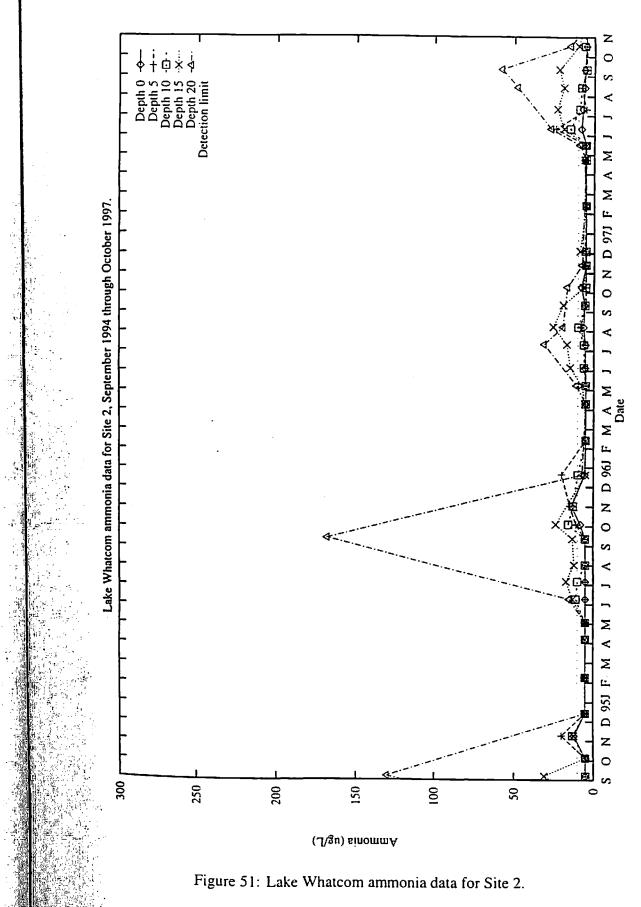




Figure 49: Lake Whatcom nitrogen summary data for Site 4.

. . . .

Figure 50: Lake Whatcom ammonia data for Site 1.

.

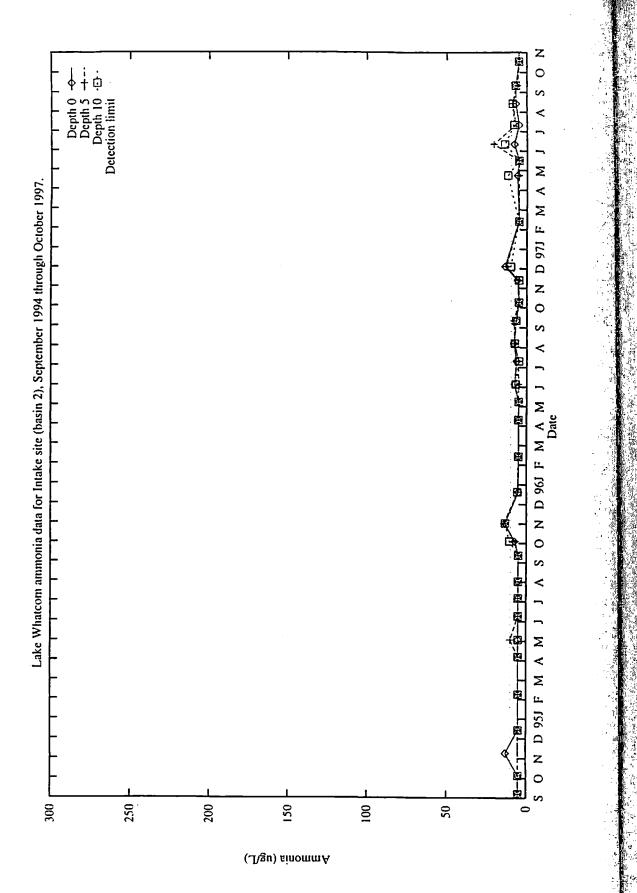
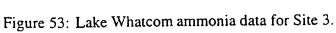



Figure 52: Lake Whatcom ammonia data for the Intake site.

ΰ× ¢ Depth 0 Depth 5 Depth 10 Depth 10 Depth 20 Depth 40 Depth 80 Depth 80 Lake Whatcom ammonia data for Site 3, September 1994 through October 1997. 300 200 250 (Agu) sinommA

150

100

50

z o

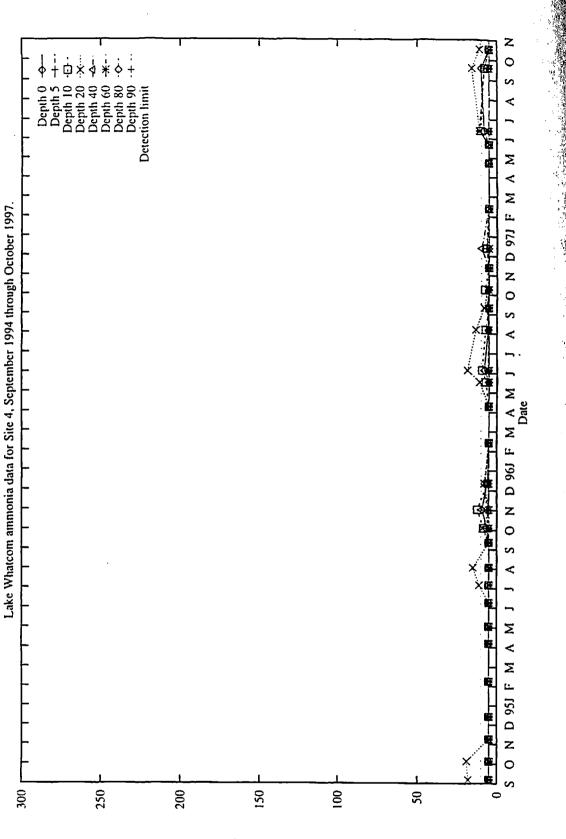
ŝ

<

-Σ < Σ <u>ات</u>

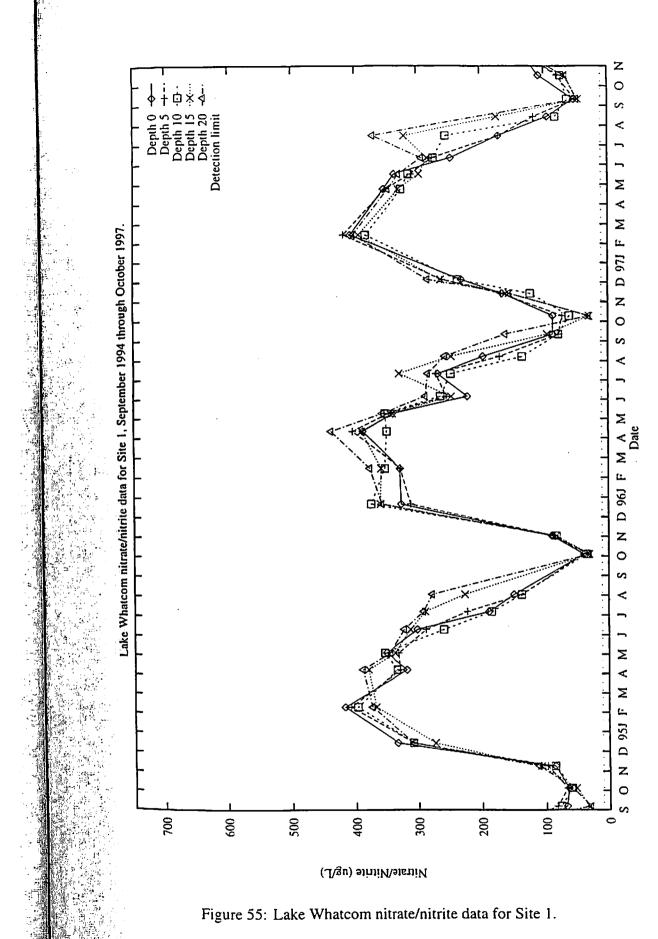
97J Δ z 0 S <

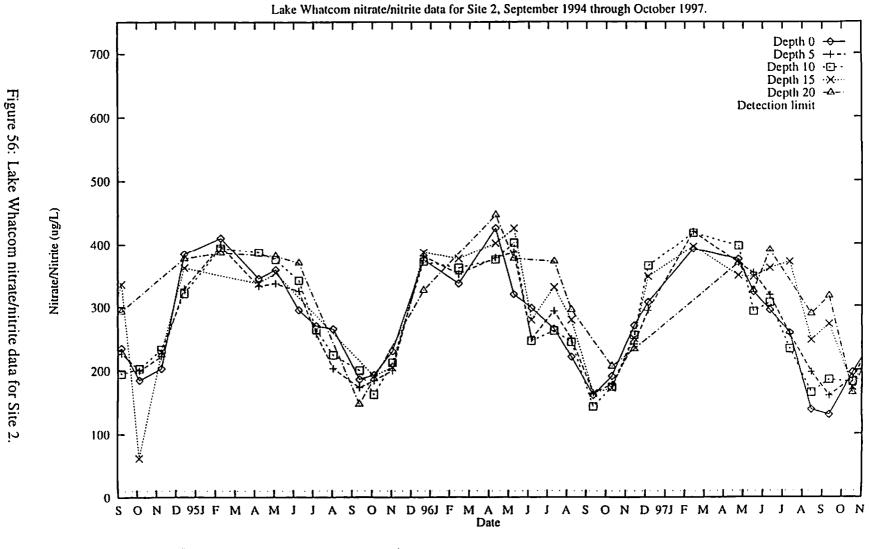
I A M J Date

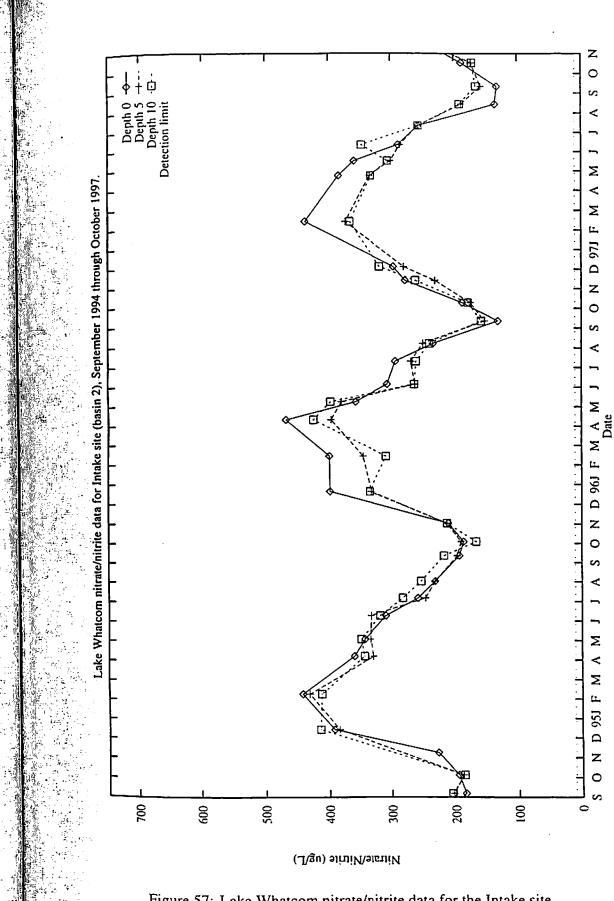

۲ ۲

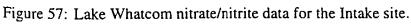
D 96J

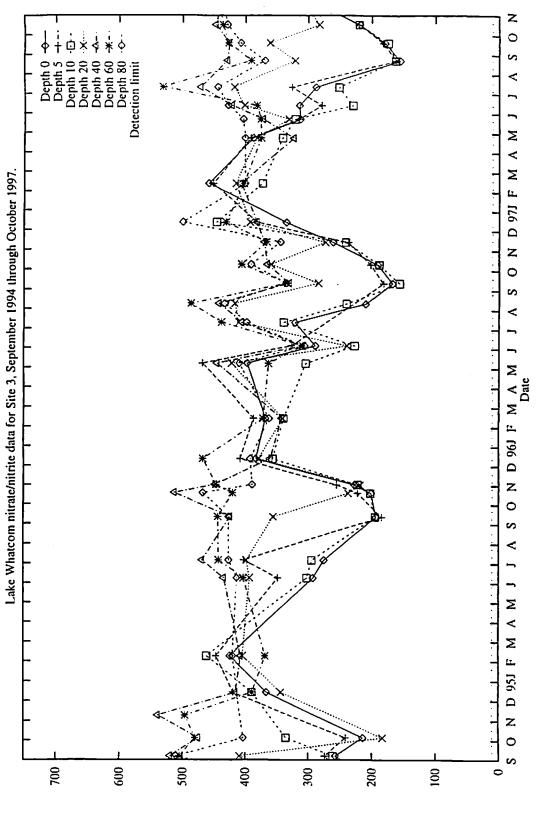
z 0 ŝ < --Σ < Σ 뜨

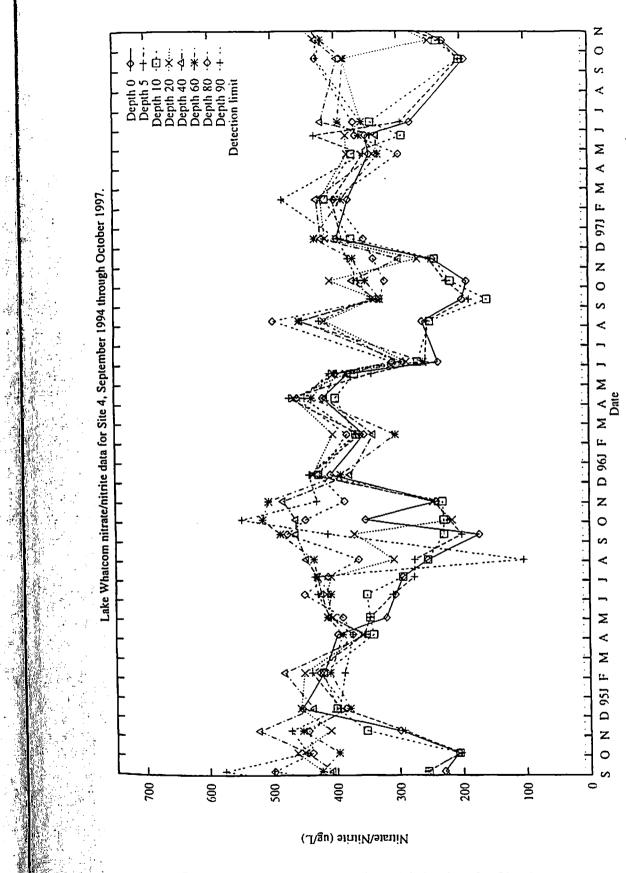

D 95J

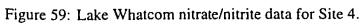

z 0 S




(J\Zu) sinommA

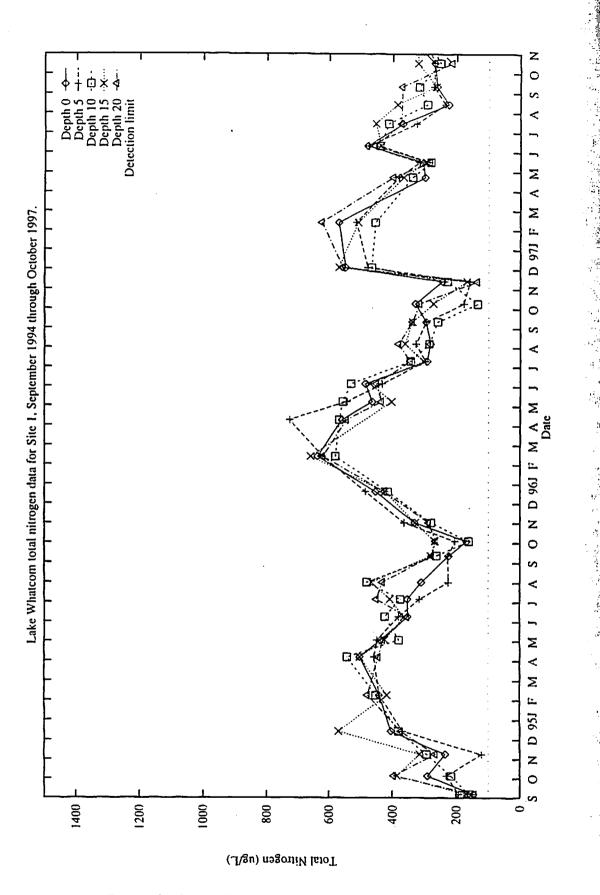
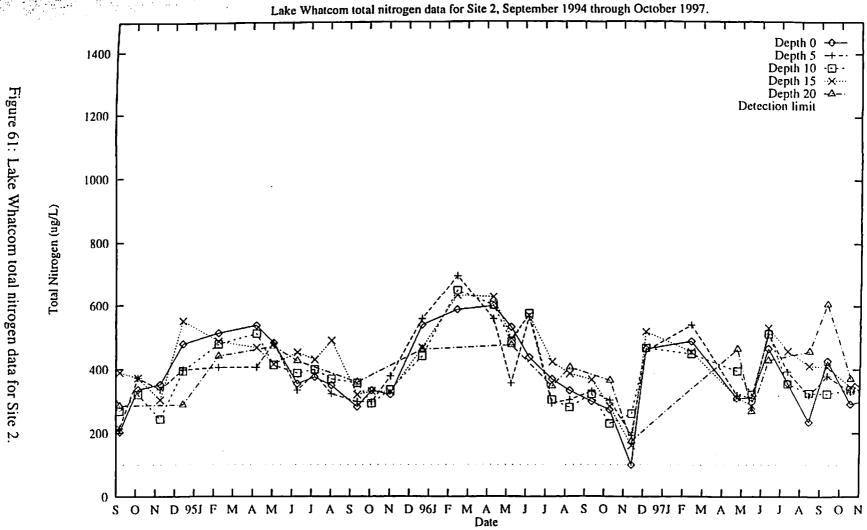
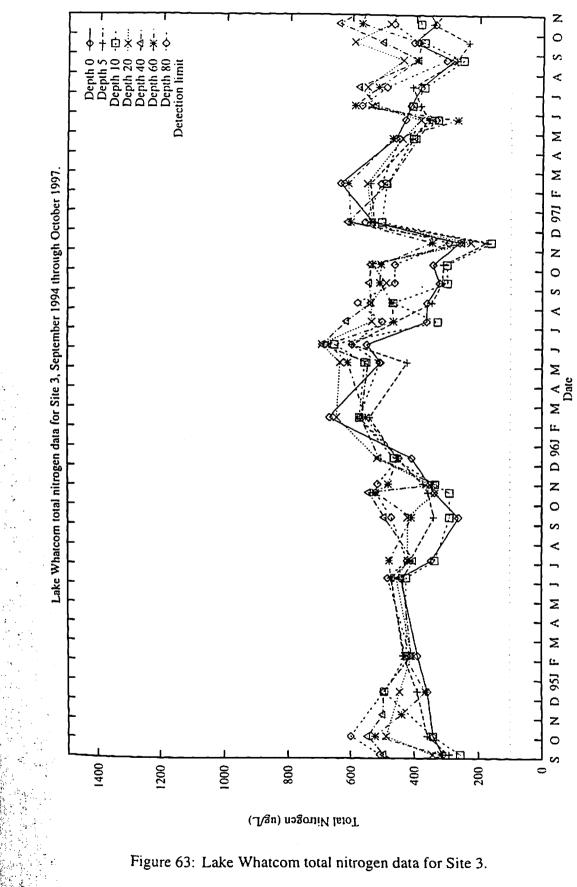

Figure 54: Lake Whatcom ammonia data for Site 4.

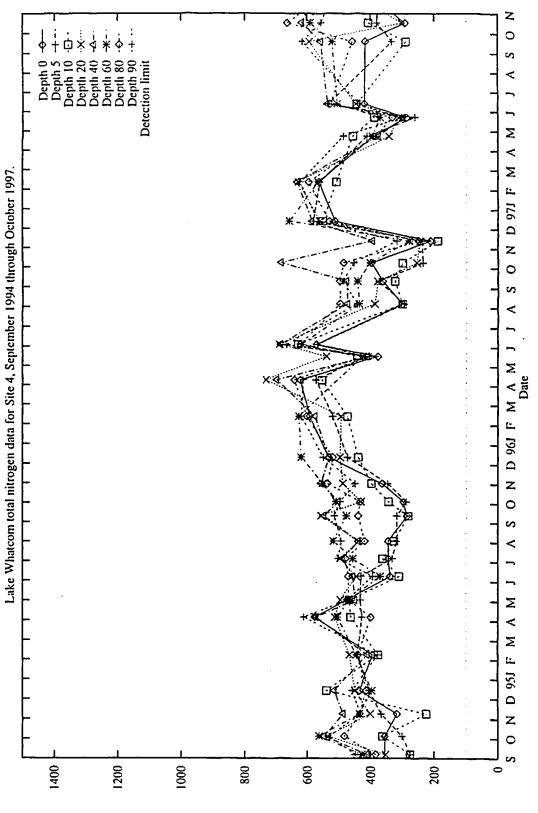


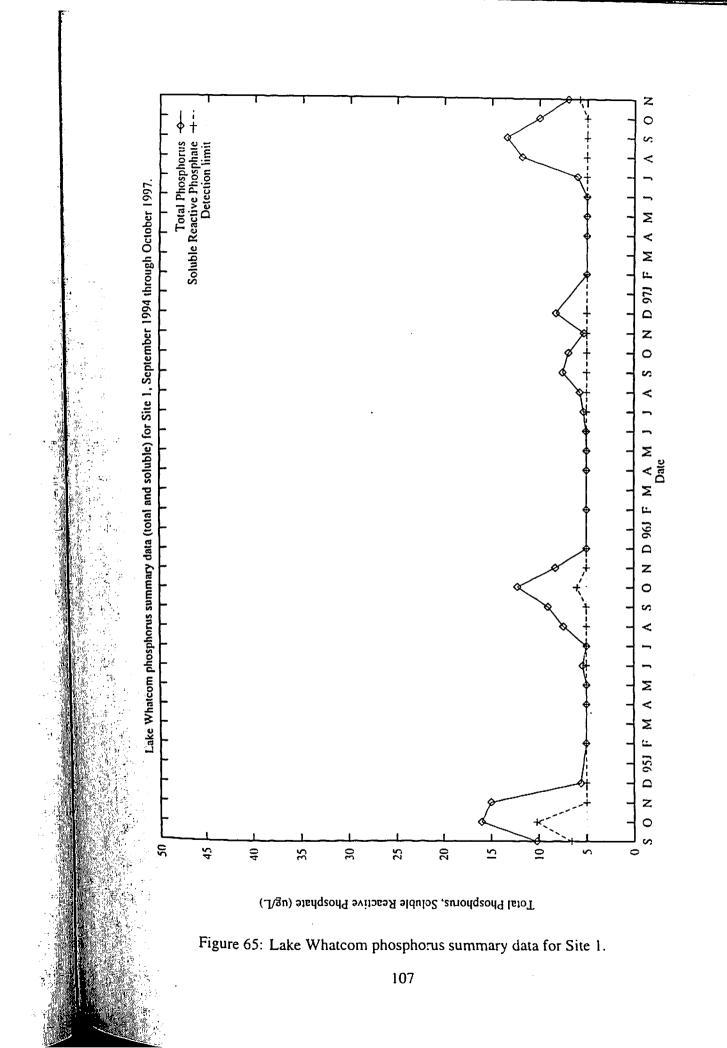


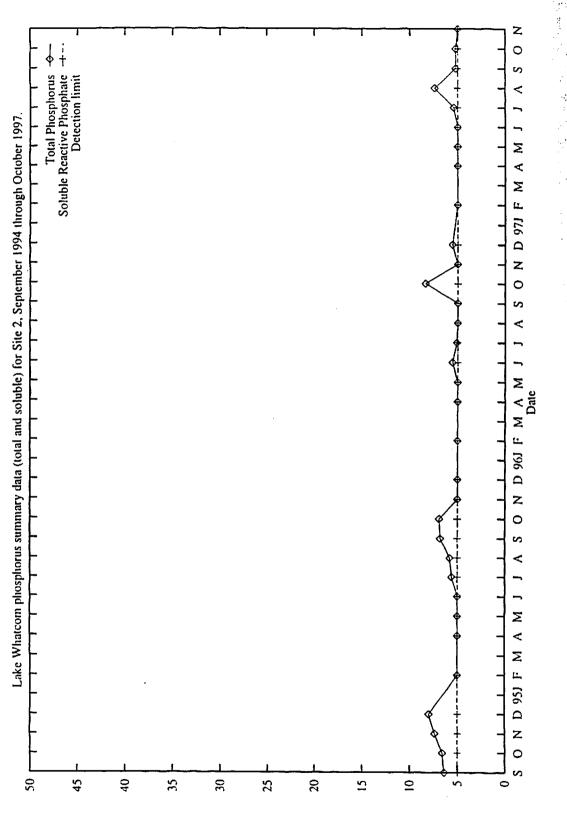
Nitrate/Nitrite (ug/L)

Figure 58: Lake Whatcom nitrate/nitrite data for Site 3.


Figure 60: Lake Whatcom total nitrogen data for Site 1.


• •



Total Nirrogen (ug/L)

Figure 64: Lake Whatcom total nitrogen data for Site 4.

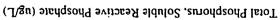
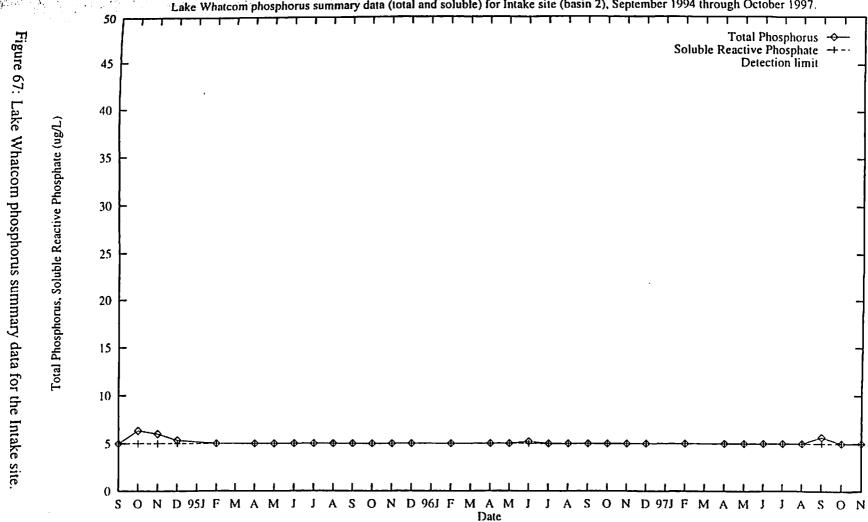
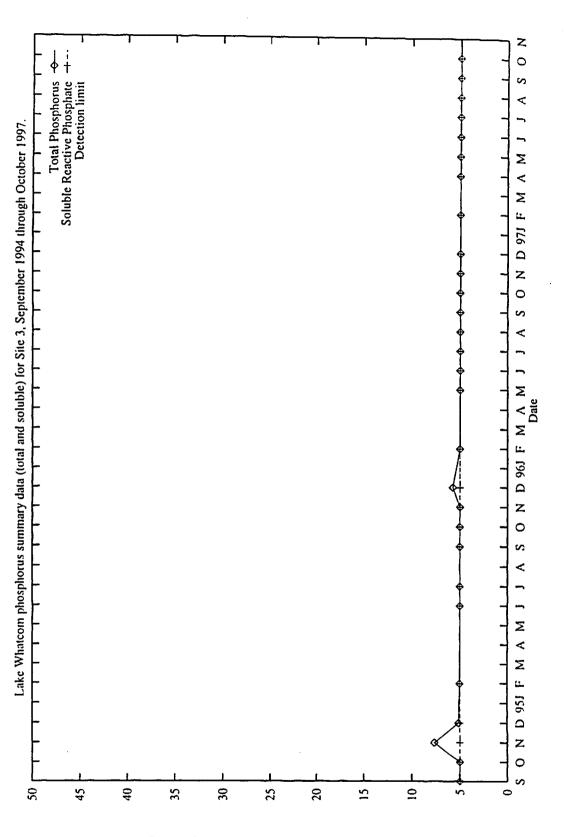
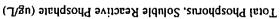
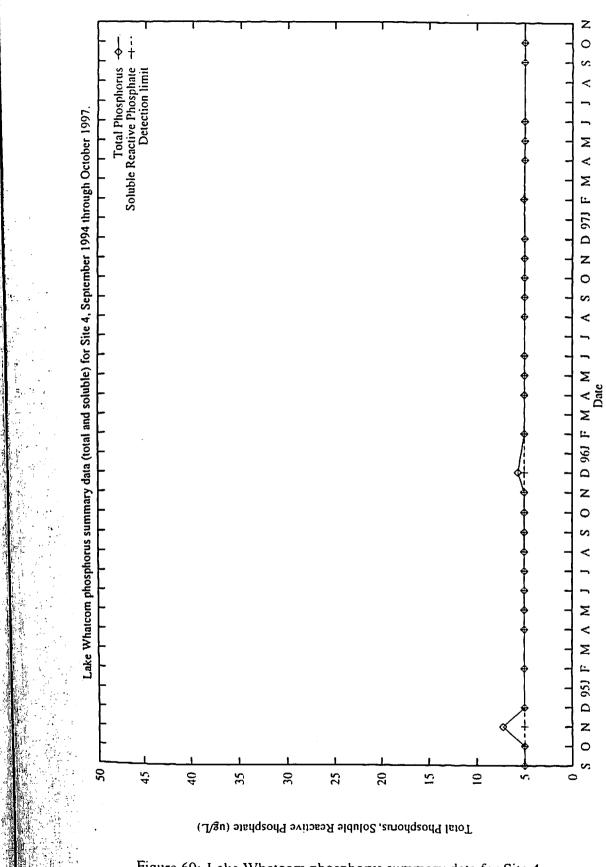





Figure 66: Lake Whatcom phosphorus summary data for Site 2.


Lake Whatcom phosphorus summary data (total and soluble) for Intake site (basin 2), September 1994 through October 1997.

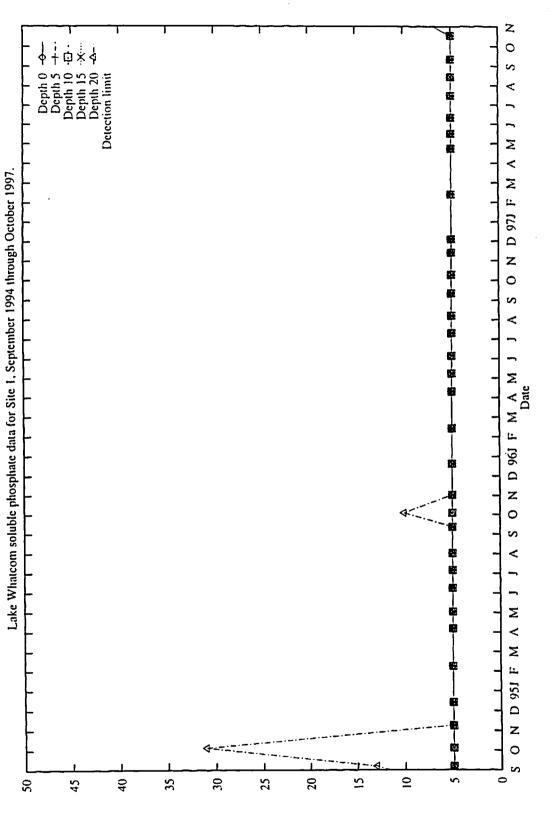
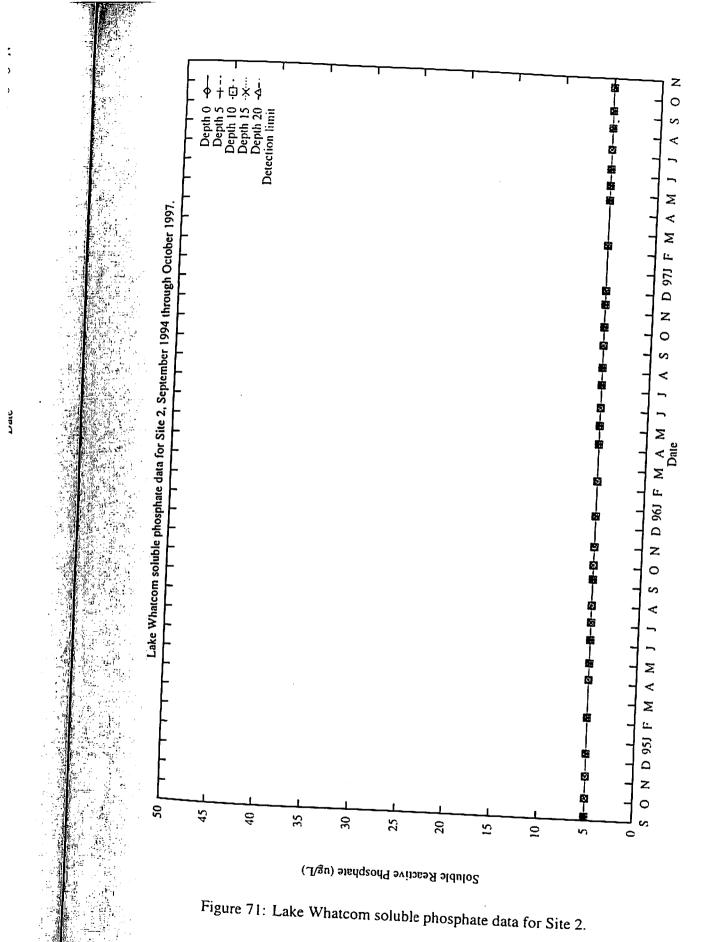
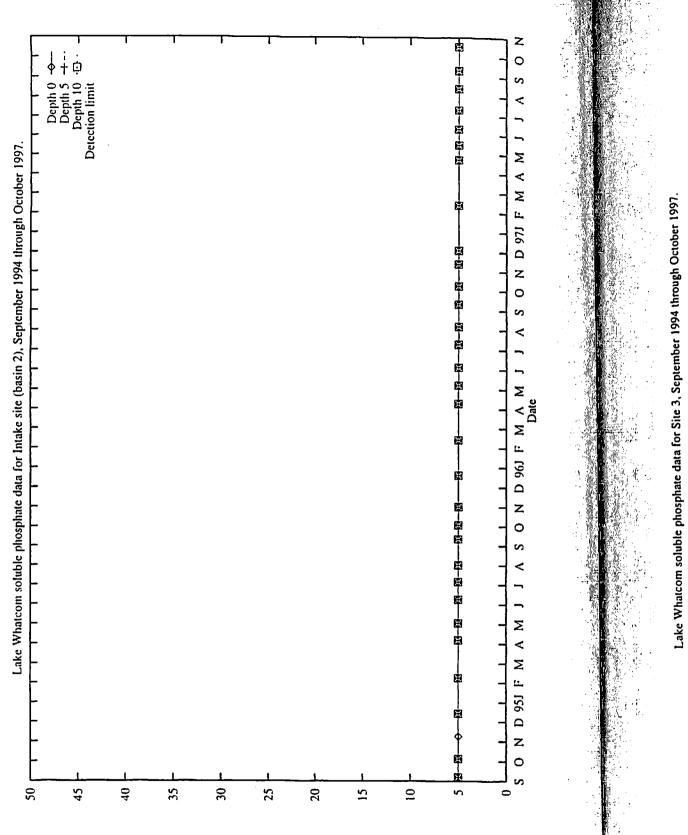

i

Figure 68: Lake Whatcom phosphorus summary data for Site 3.

ì

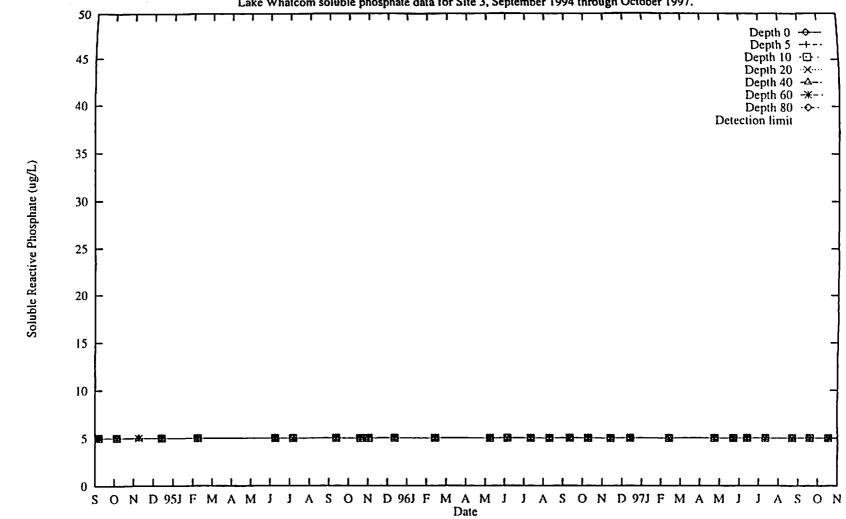

Figure 69: Lake Whatcom phosphorus summary data for Site 4.



े। नि

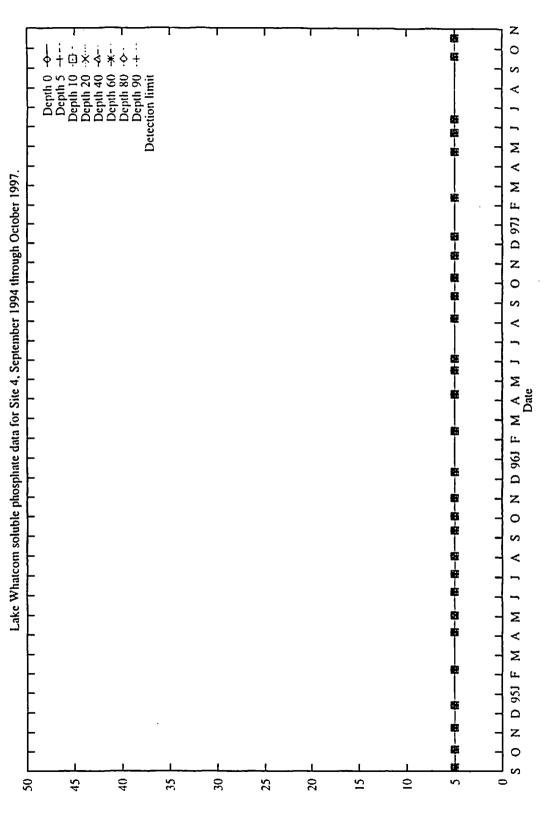
Soluble Reactive Phosphate (ug/L)

Figure 70: Lake Whatcom soluble phosphate data for Site 1.



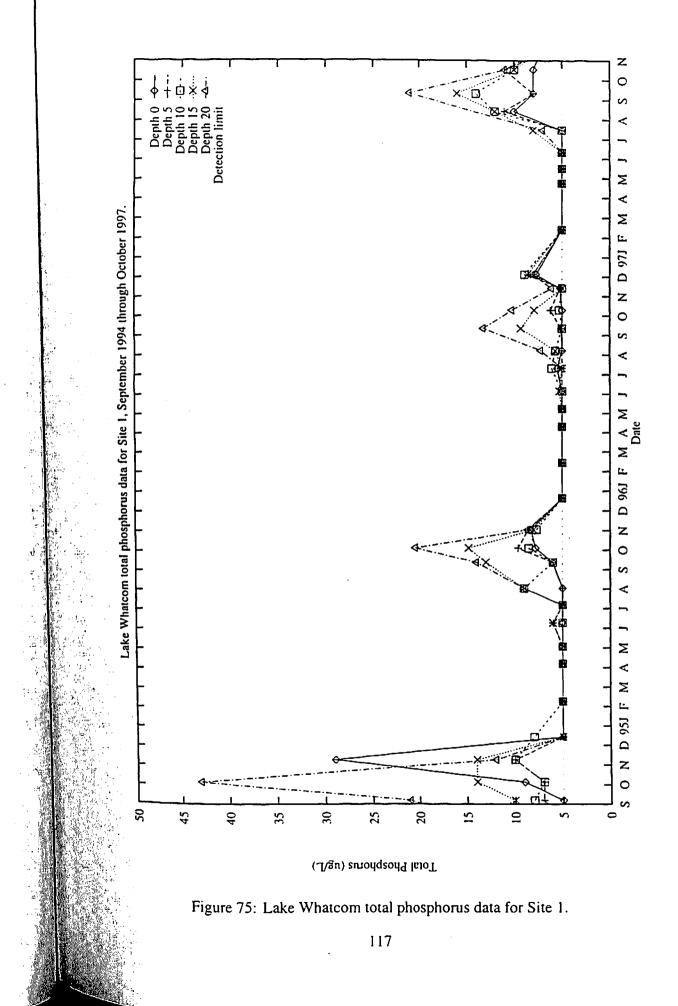
Soluble Reactive Phosphate (ug/L)

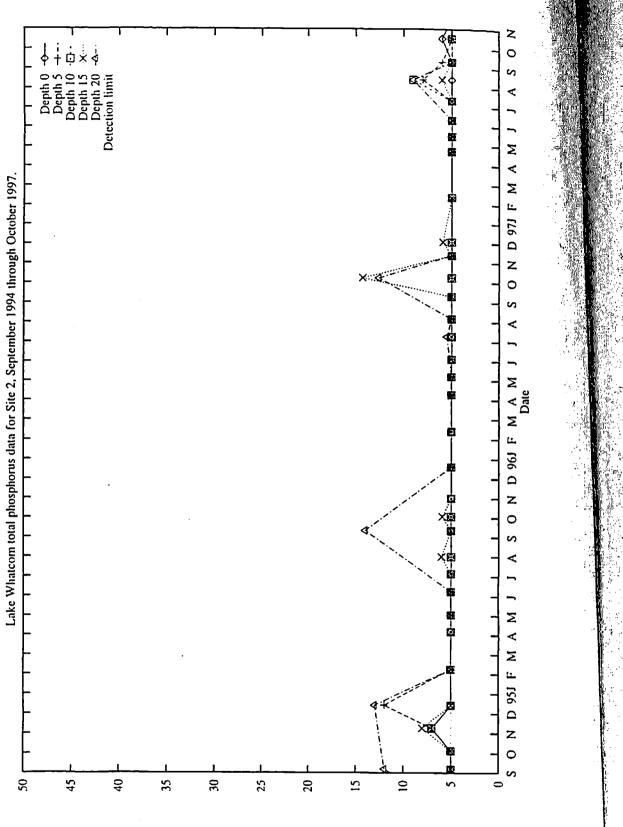
Ś


Figure 72: Lake Whatcom soluble phosphate data for the Intake site.

Lake Whatcom soluble phosphate data for Site 3, September 1994 through October 1997.

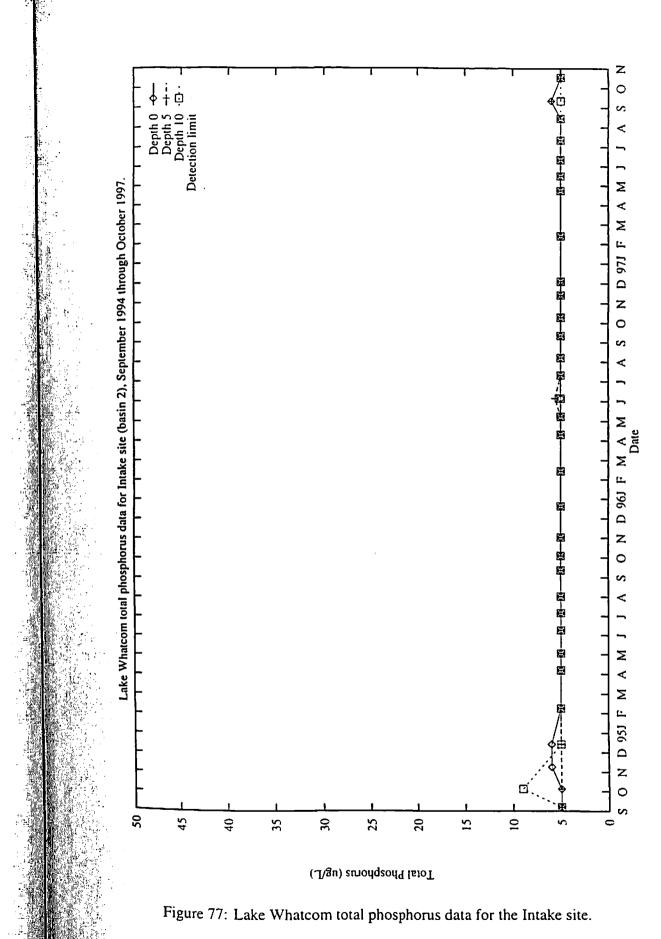
115

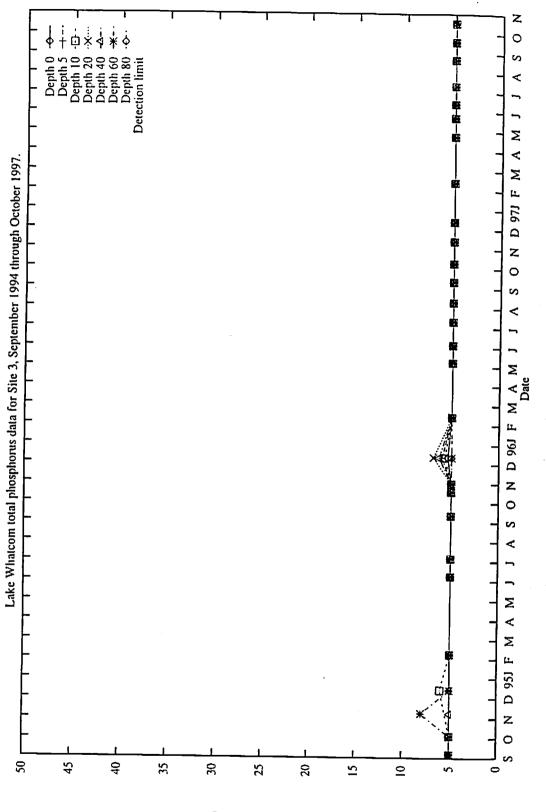

Figure 73: Lake Whatcom soluble phosphate data for Site 3.



i

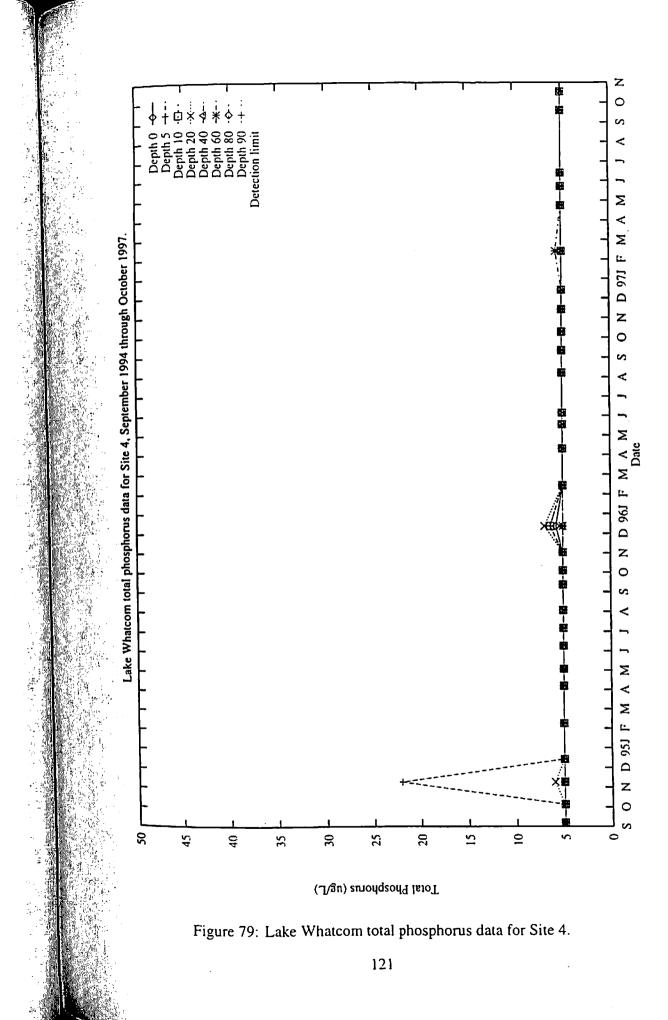
Soluble Reactive Phosphate (ug/L)

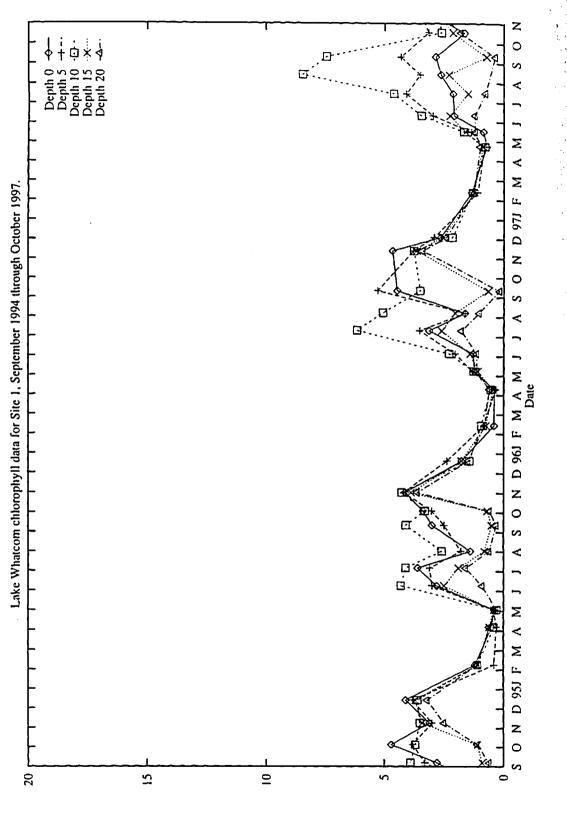

Figure 74: Lake Whatcom soluble phosphate data for Site 4.



(J\gu) sunohqeond leioT

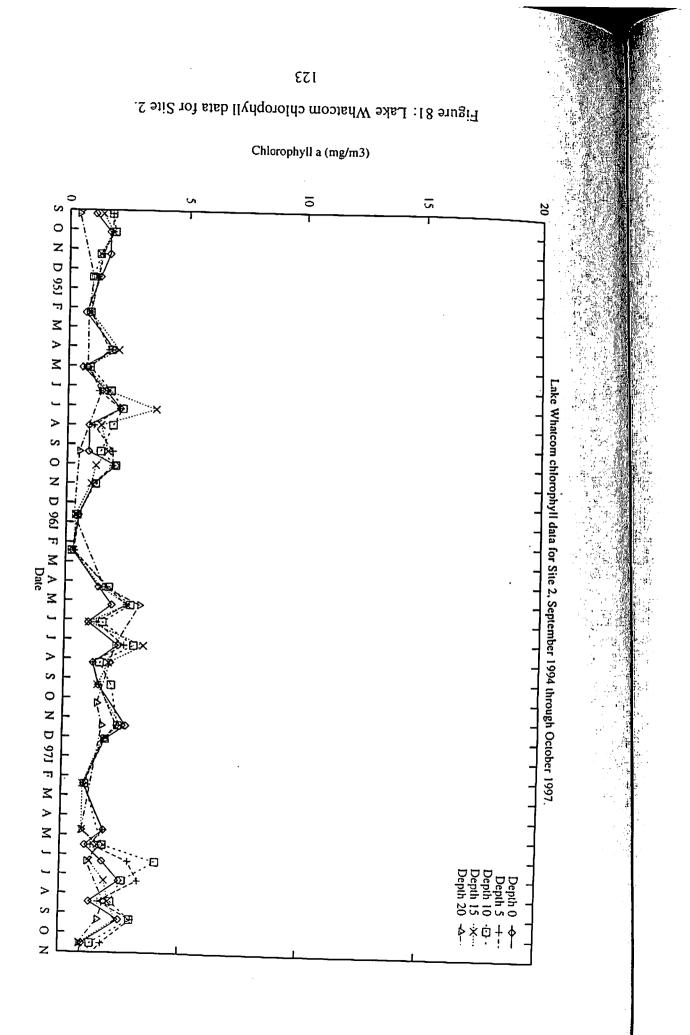
Figure 76: Lake Whatcom total phosphorus data for Site 2.

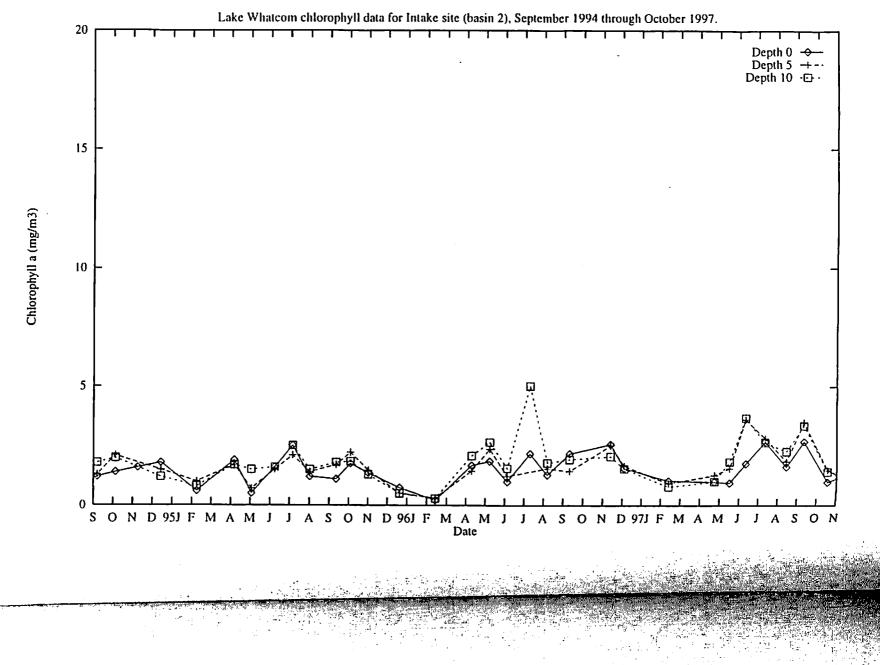




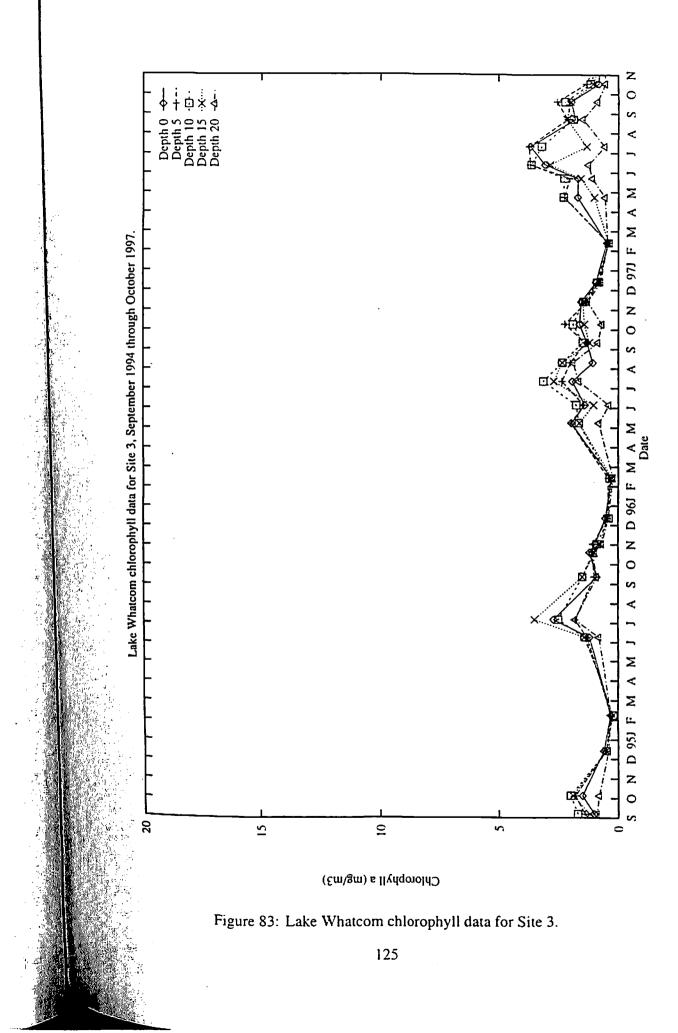
Lake Whatcom total nhosnhon

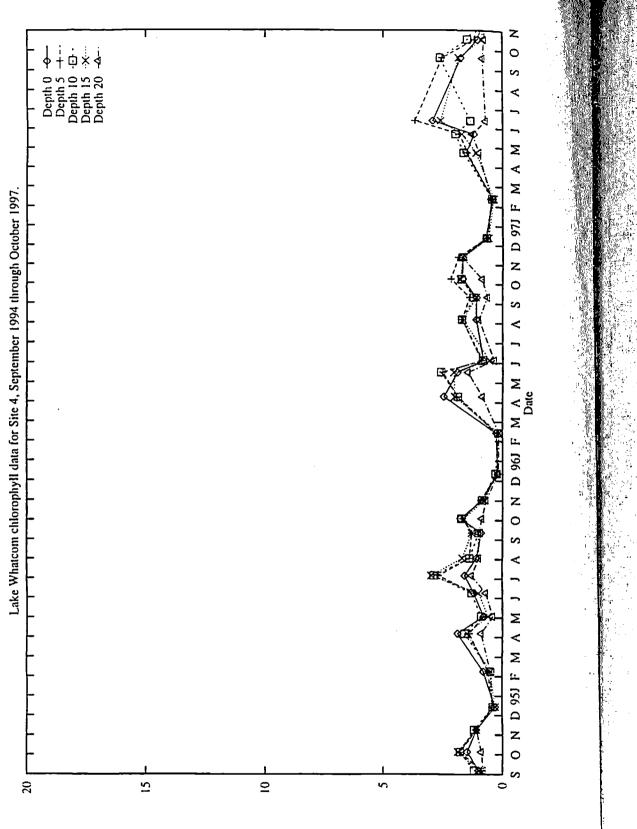
(J\gu) smongsong leioT

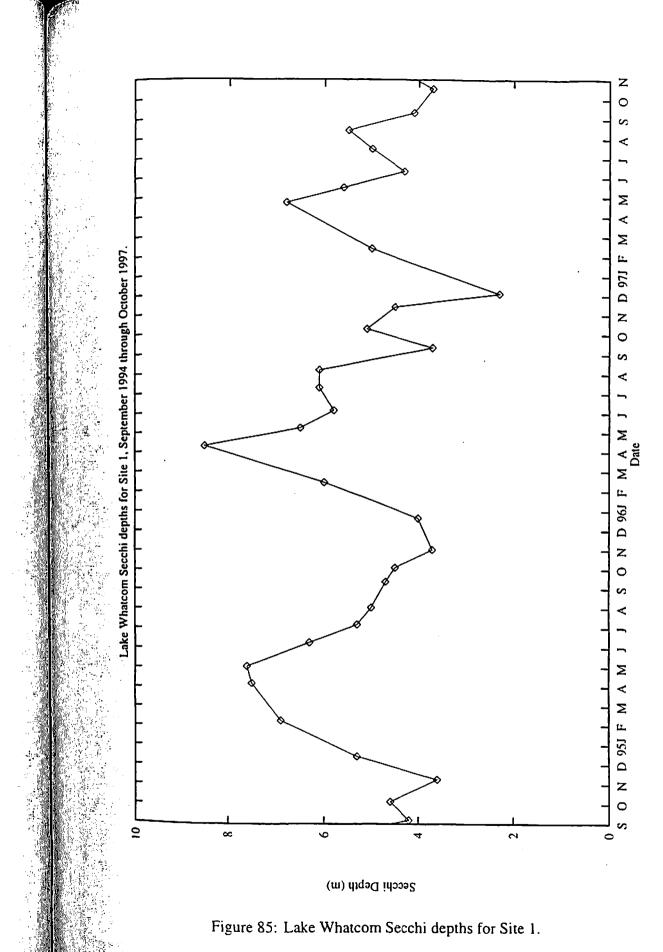

Figure 78: Lake Whatcom total phosphorus data for Site 3.

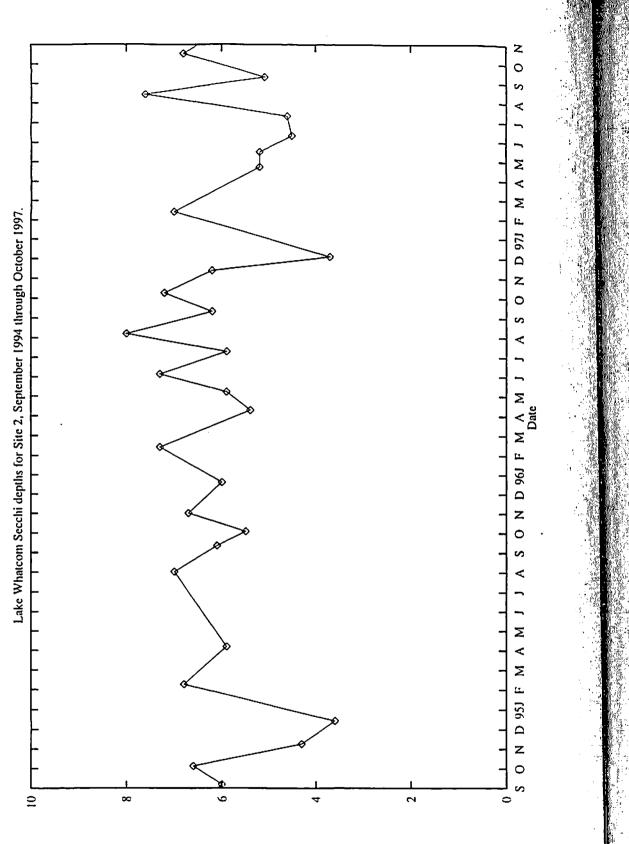


Chlorophyll a (mg/m3)

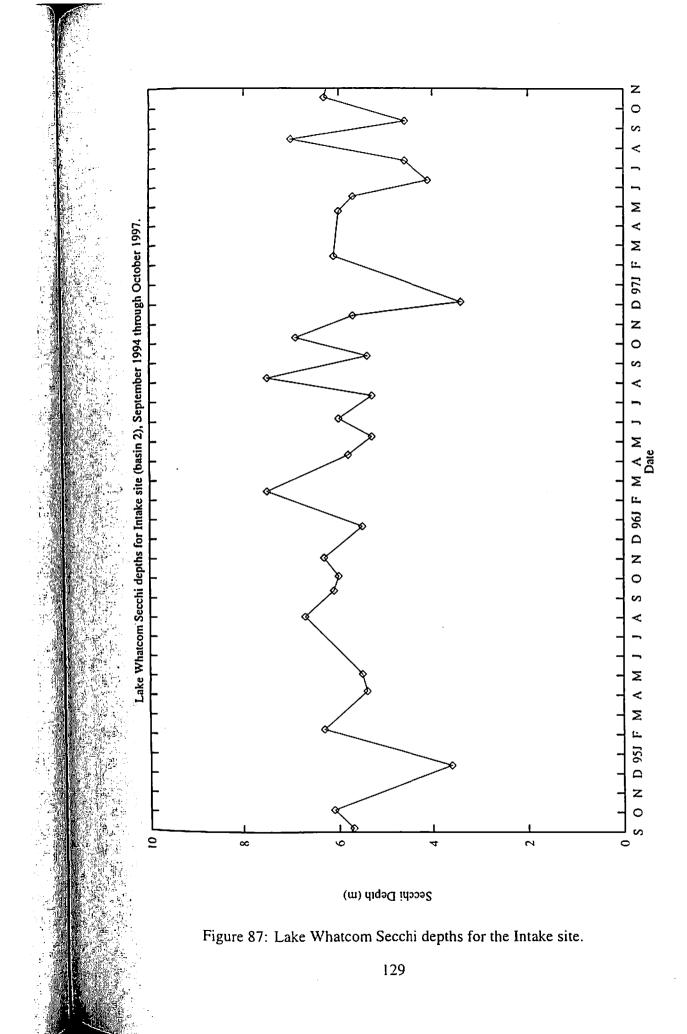

Figure 80: Lake Whatcom chlorophyll data for Site 1.




I aka Whateom chlorophull data for Site 2. Sentember 1004 through October 1007



Chlorophyll a (mg/m3)


Figure 84: Lake Whatcom chlorophyll data for Site 4.

Secchi Depth (m)

Figure 86: Lake Whatcom Secchi depths for Site 2.

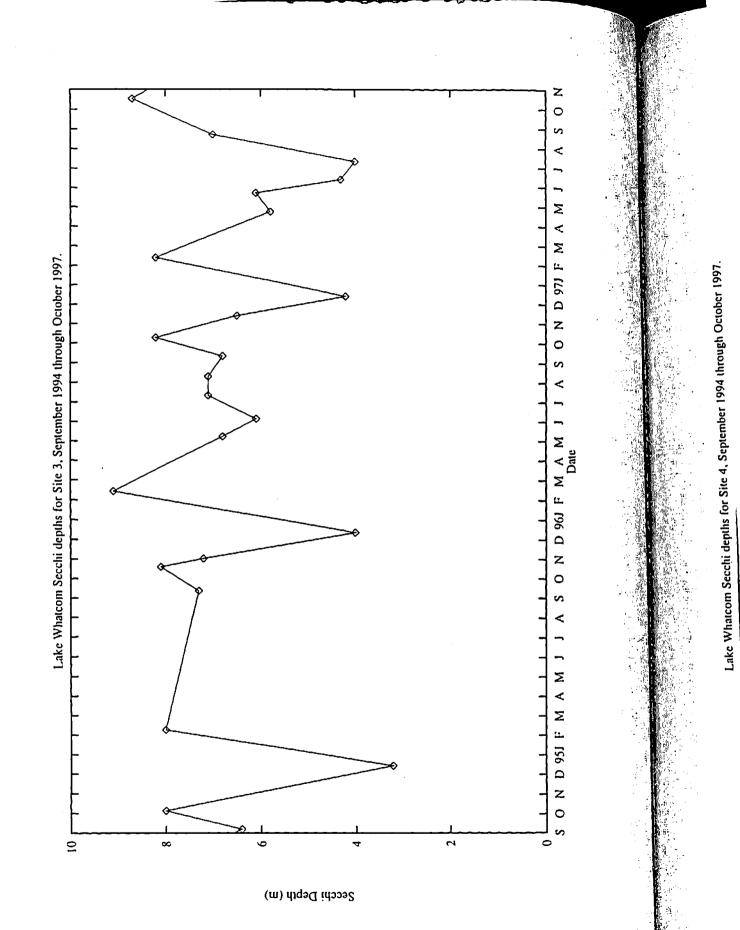
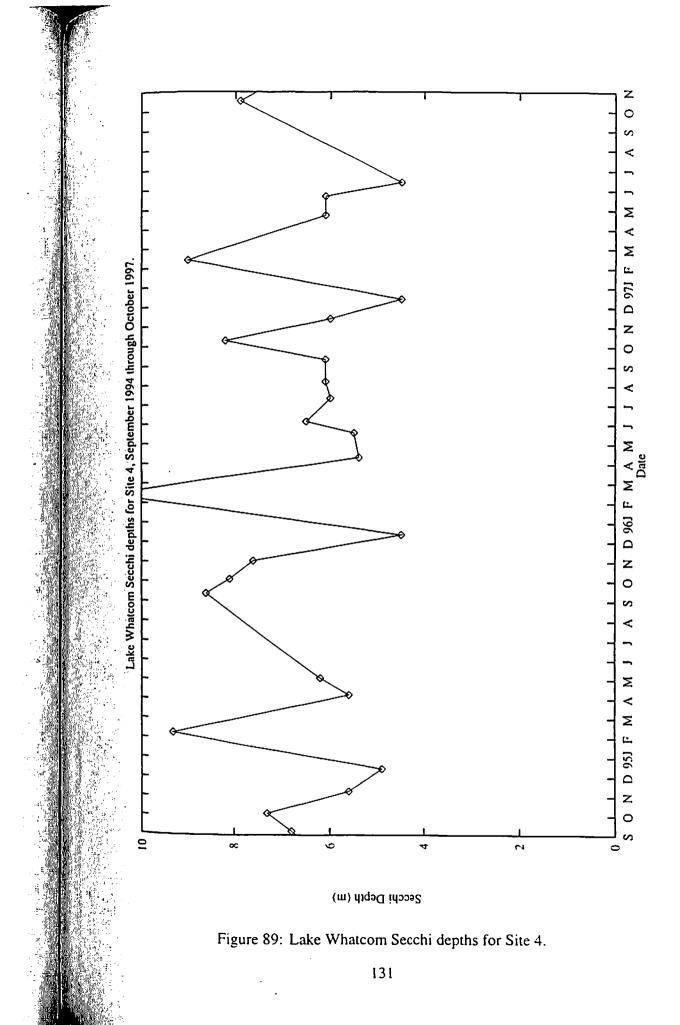
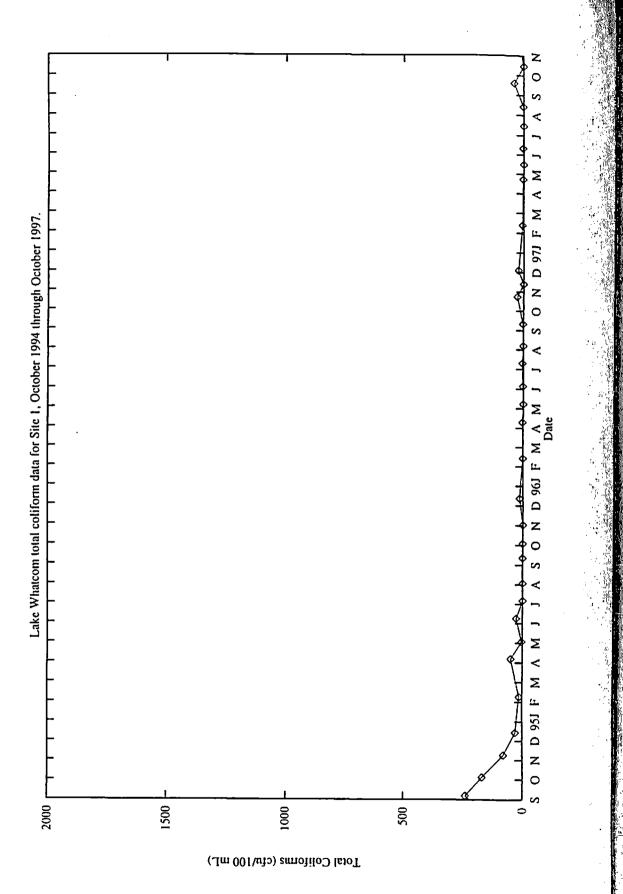
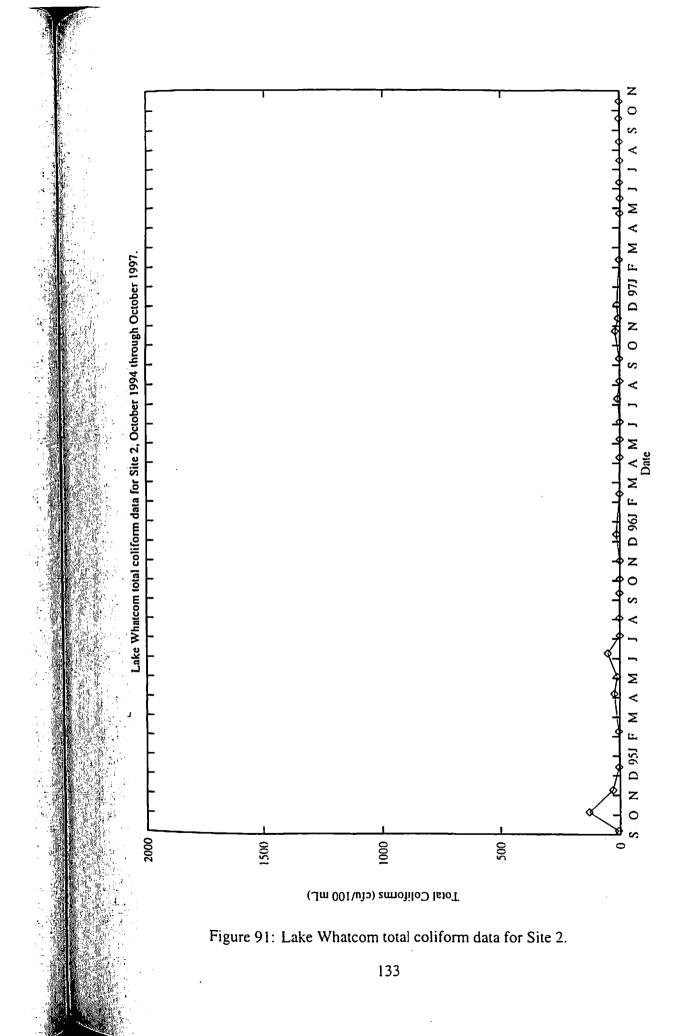




Figure 88: Lake Whatcom Secchi depths for Site 3.



lota

ake Whatcom

Figure 90: Lake Whatcom total coliform data for Site 1.

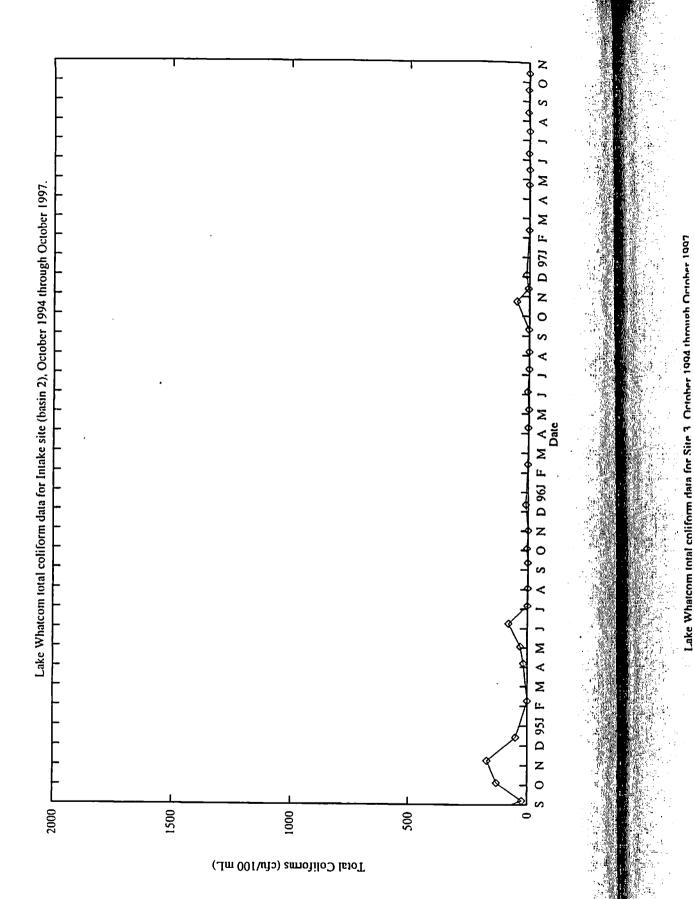
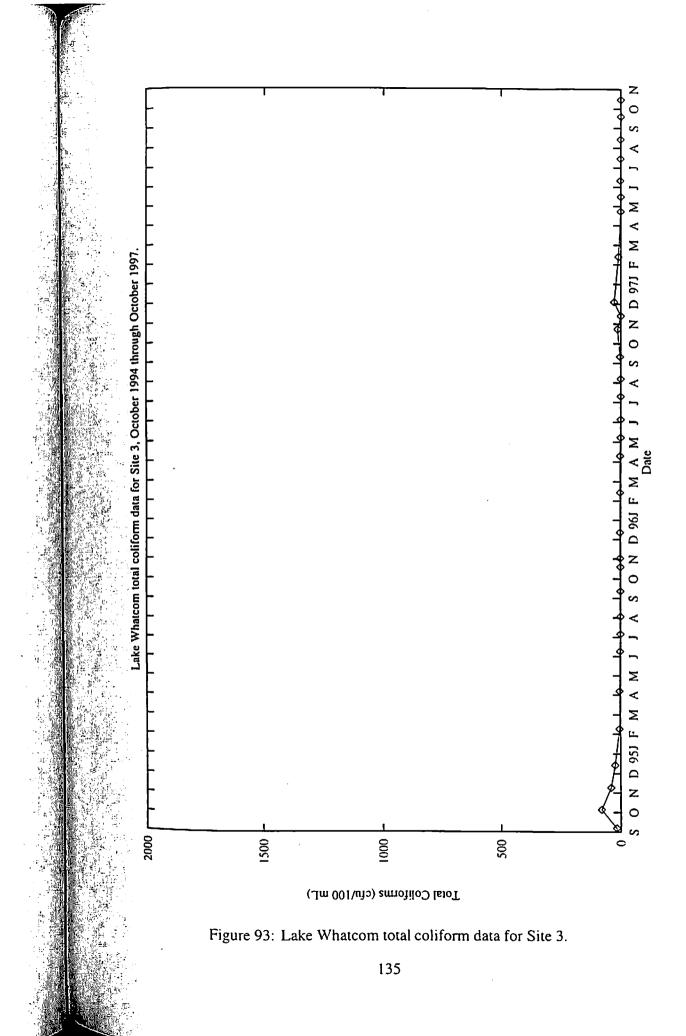



Figure 92: Lake Whatcom total coliform data for the Intake site.

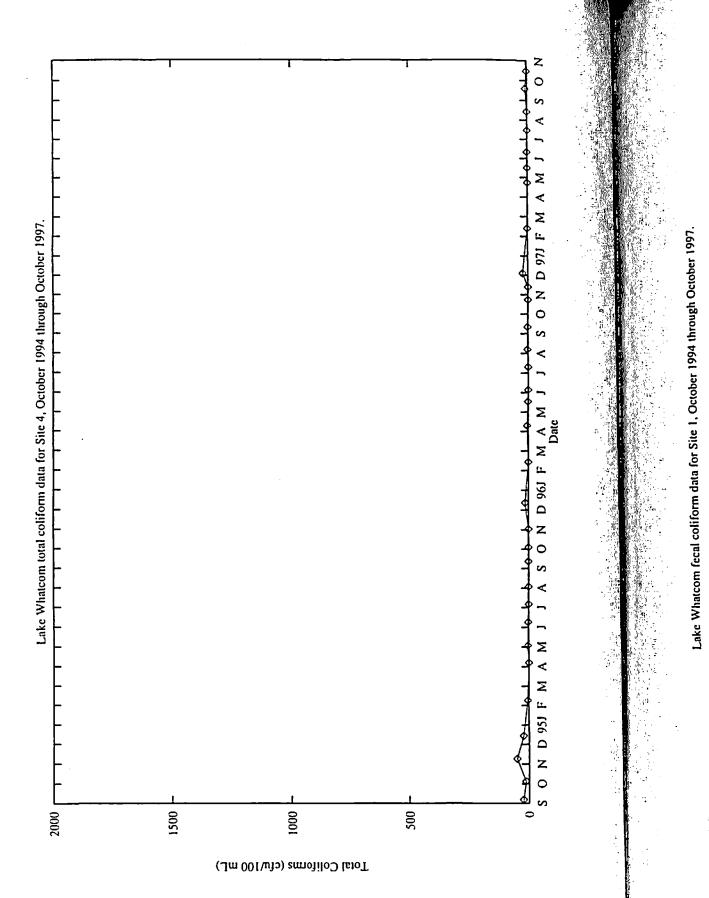
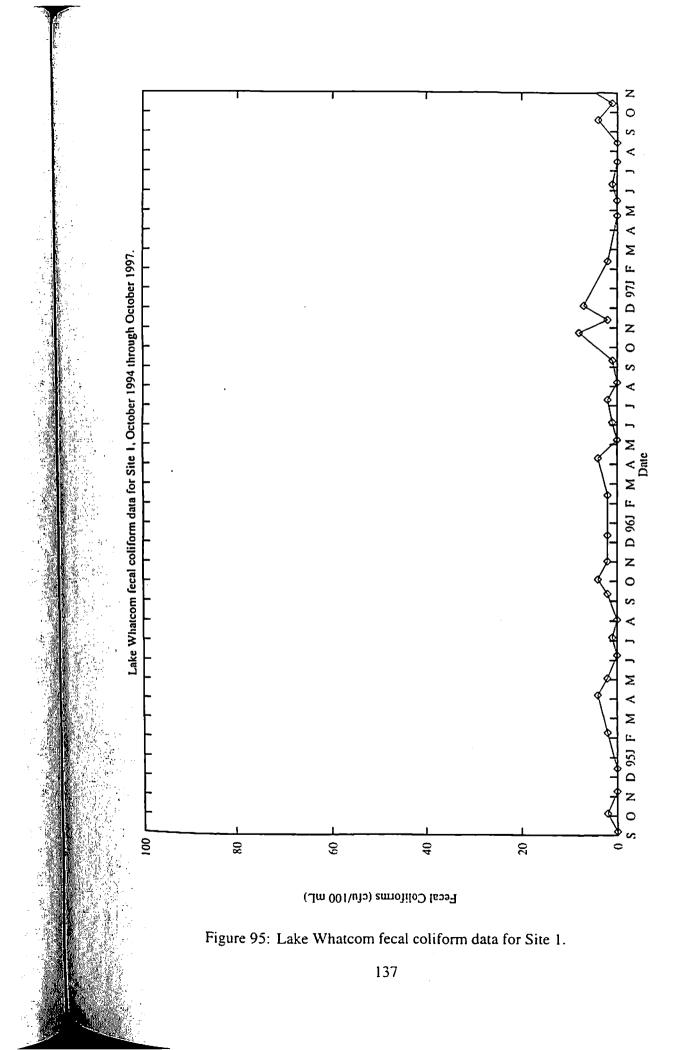



Figure 94: Lake Whatcom total coliform data for Site 4.

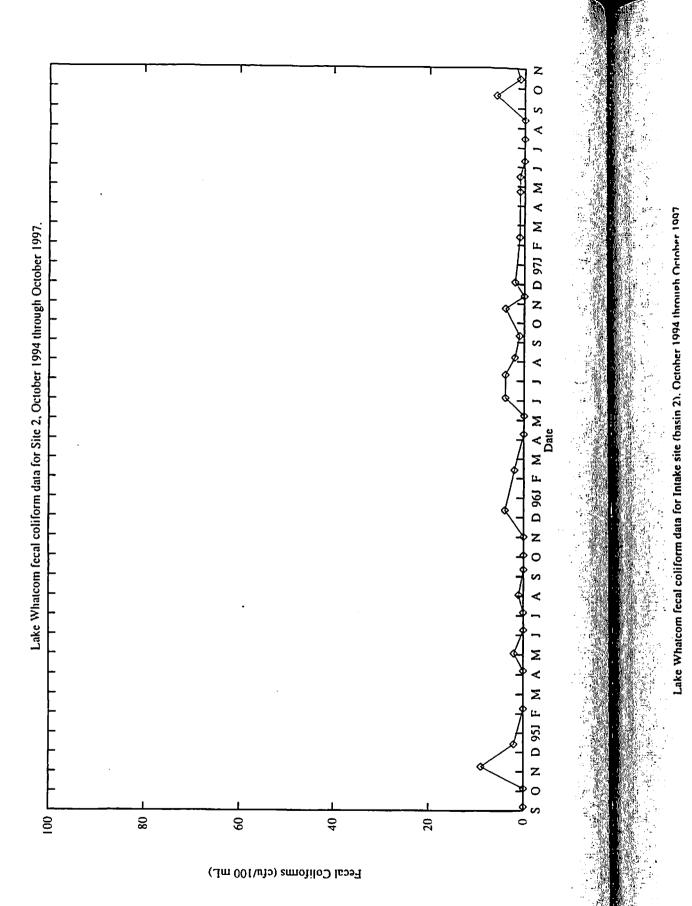


Figure 96: Lake Whatcom fecal coliform data for Site 2.

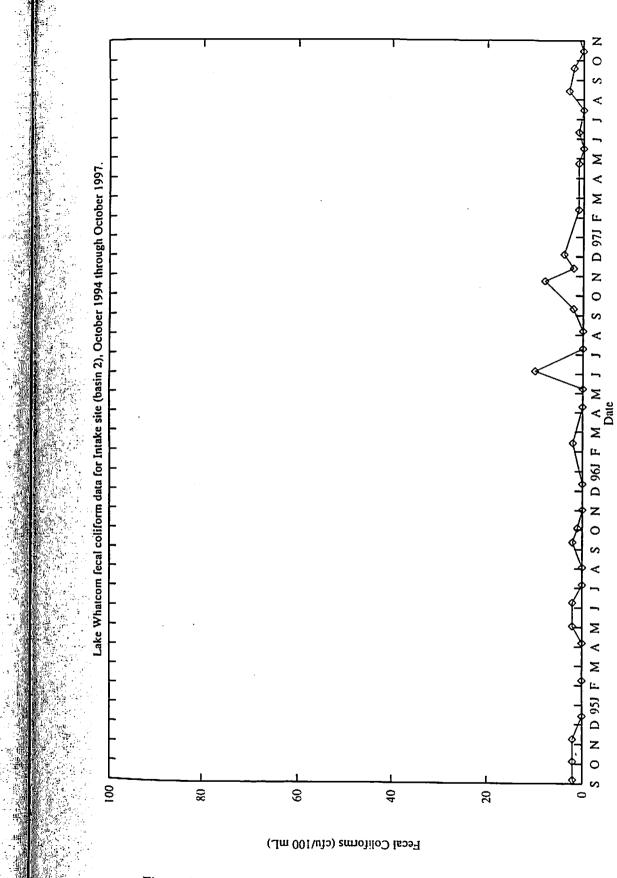
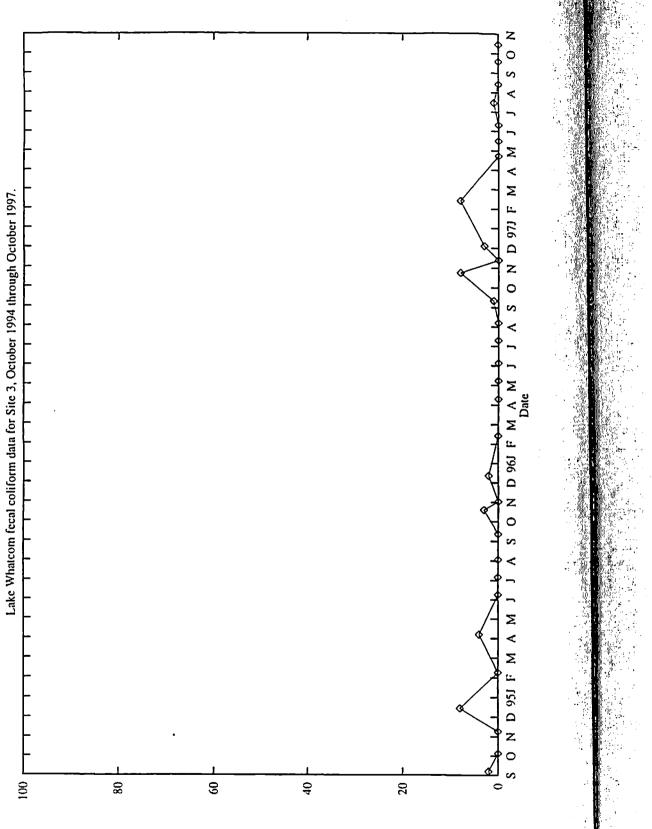
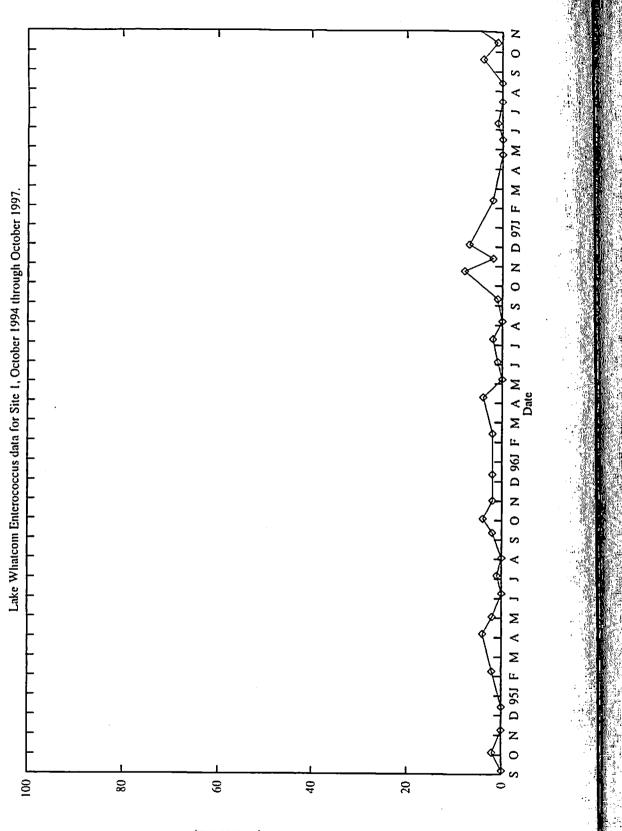
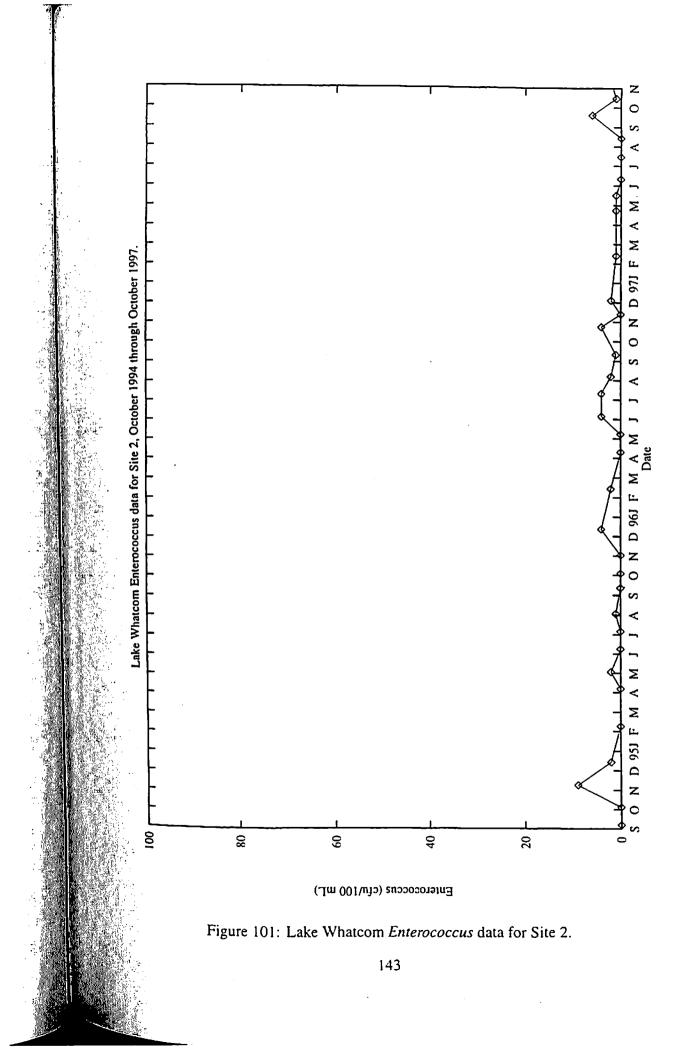



Figure 97: Lake Whatcom fecal coliform data for the Intake site.



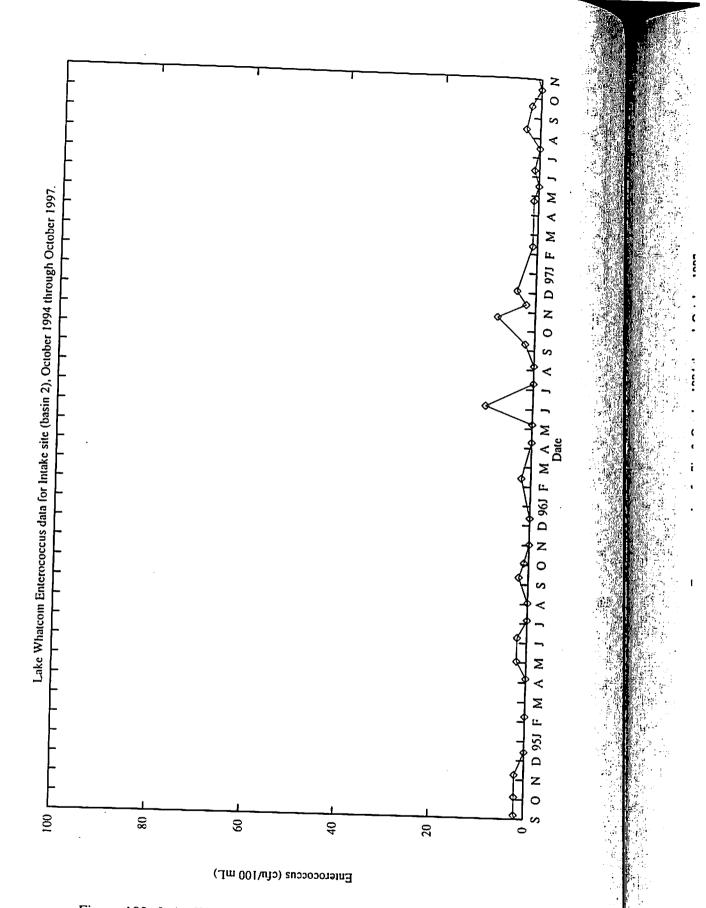
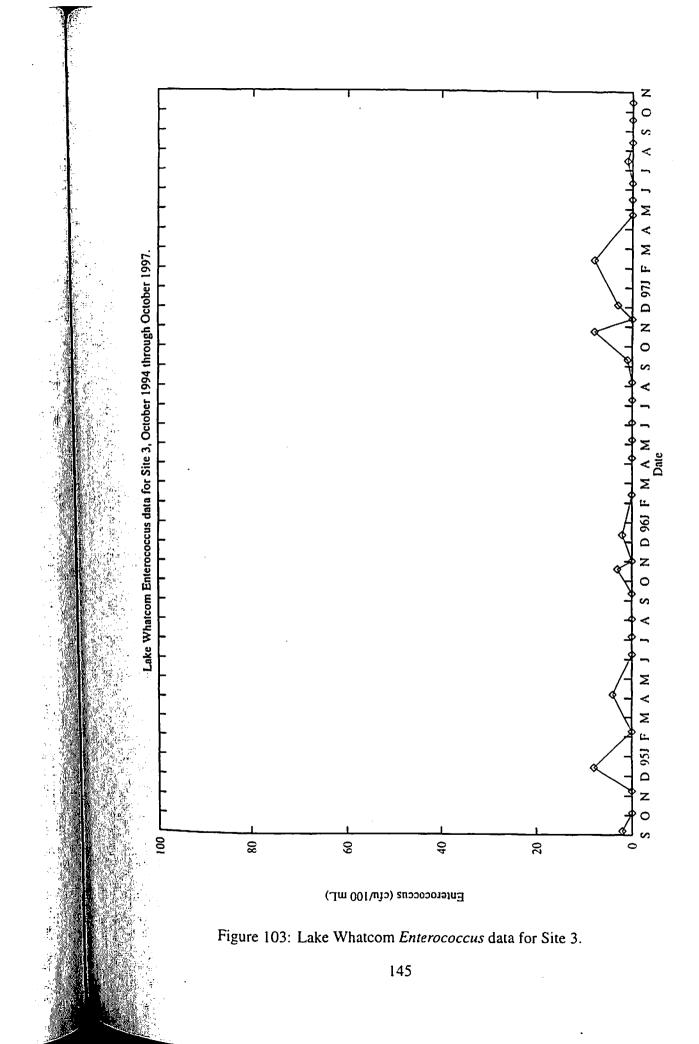
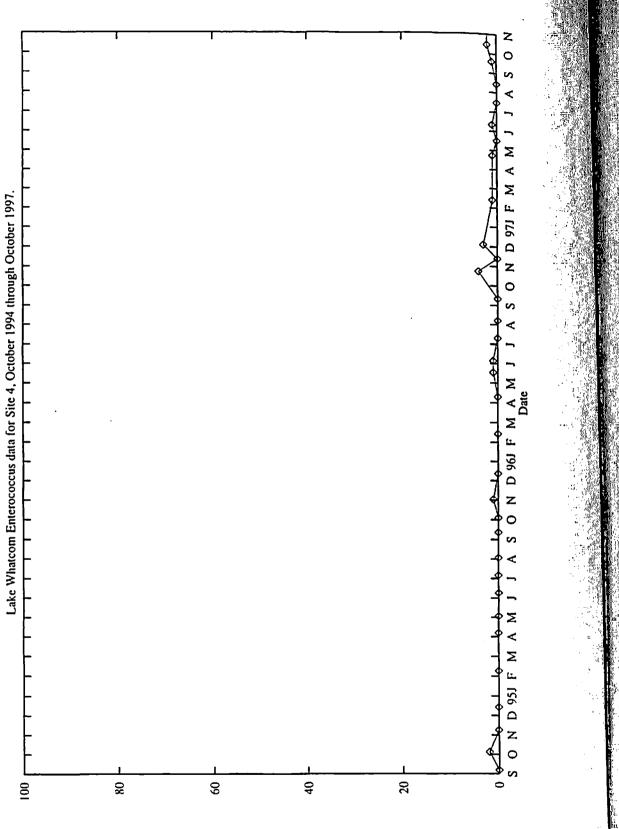
Lake Whatcom fecal coliform data for Site 4, October 1994 through October 1997.

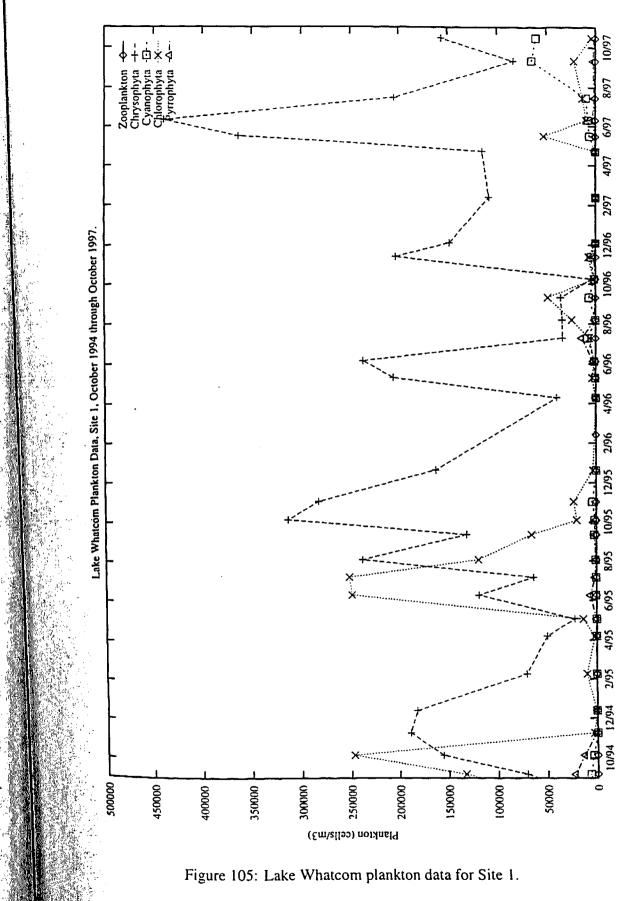
Fecal Coliforns (cfu/100 mL)


Figure 98: Lake Whatcom fecal coliform data for Site 3.

Enterococcus (cfu/100 mL)

Figure 100: Lake Whatcom Enterococcus data for Site 1.


Figure 102: Lake Whatcom Enterococcus data for the Intake site.

Enterococcus (ctu/100 mL)

Figure 104: Lake Whatcom fecal Enterococcus for Site 4.

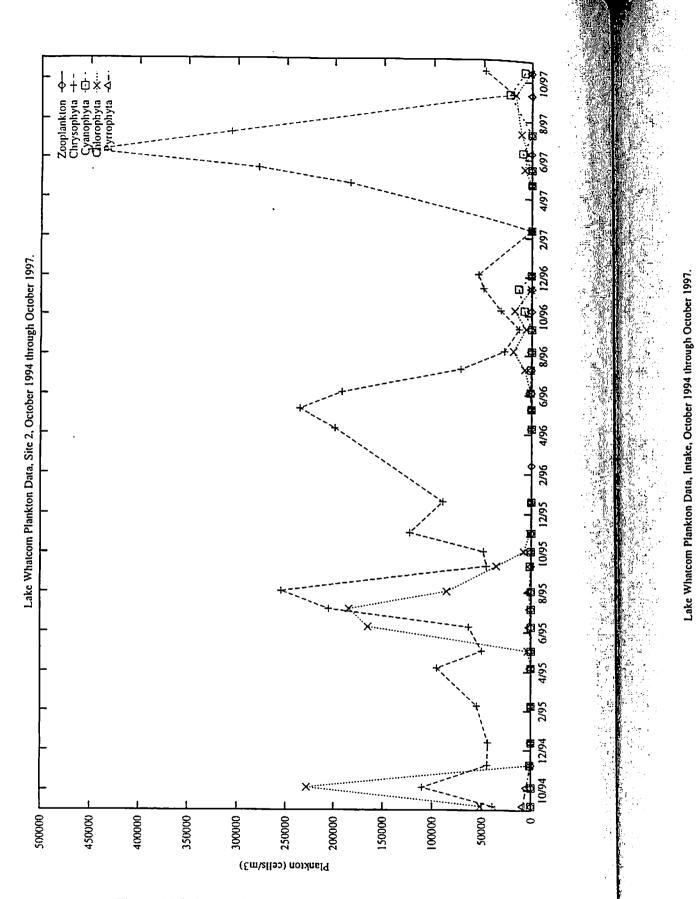
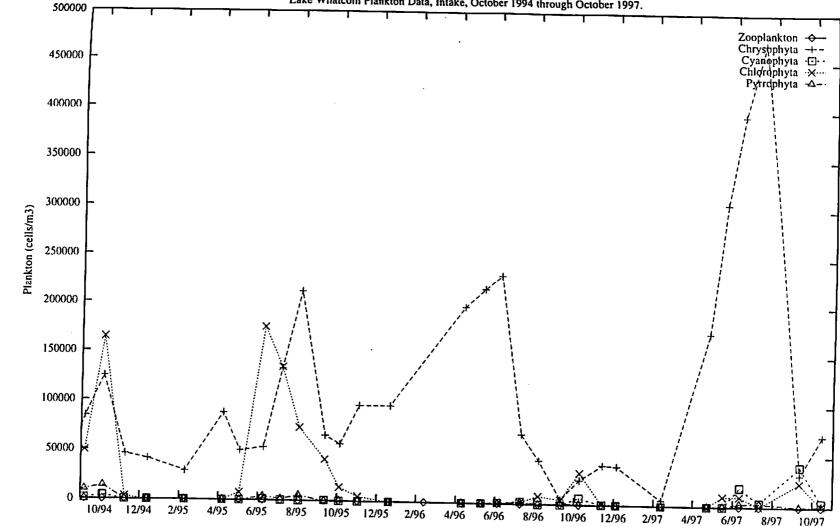



Figure 106: Lake Whatcom plankton data for Site 2.

NNNNS

Figure 107: Lake Whatcom plankton data for the Intake Site.

Lake Whatcom Plankton Data, Intake, October 1994 through October 1997.

The second se

346

a.

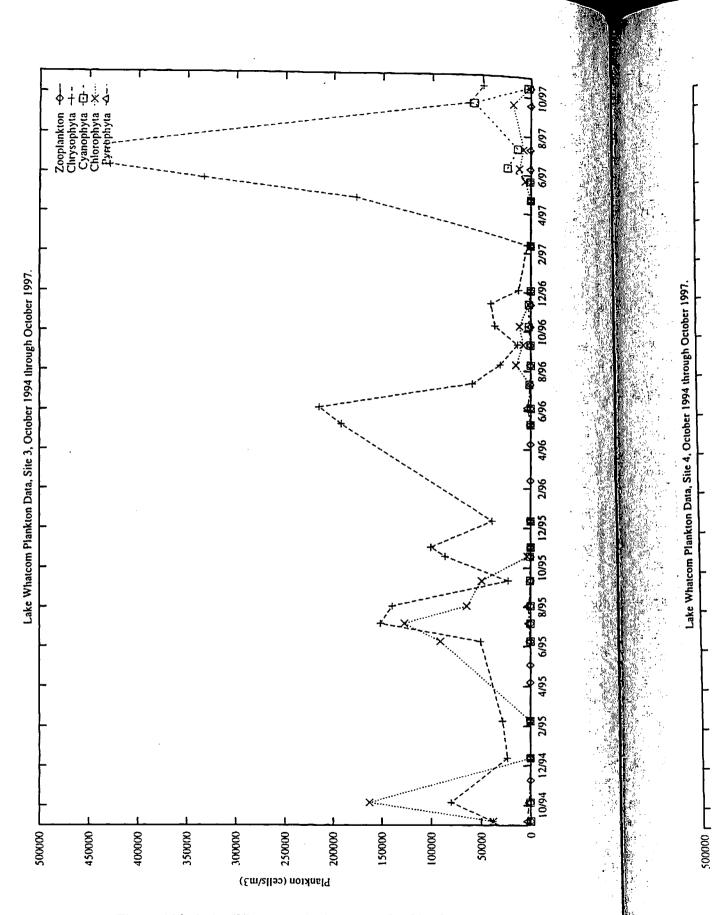
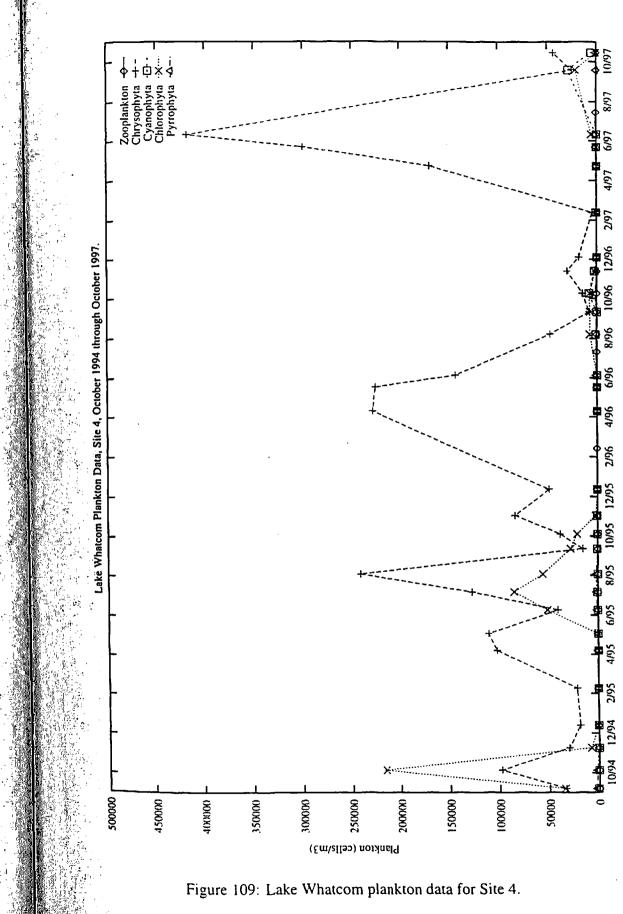
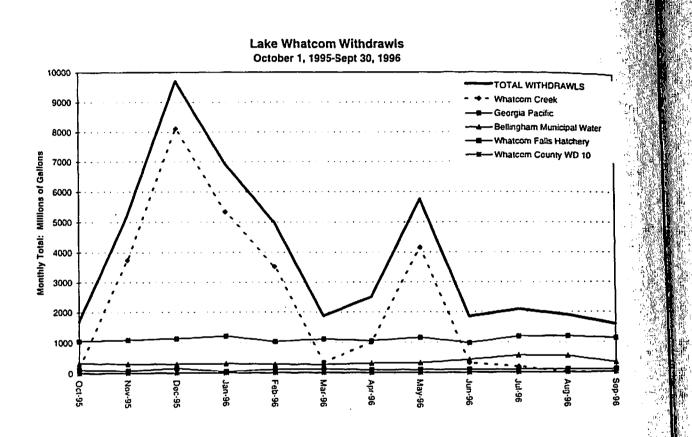
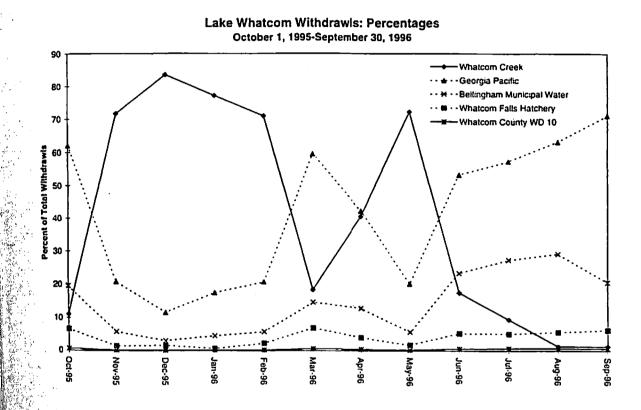
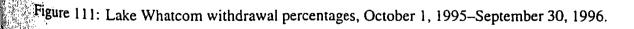
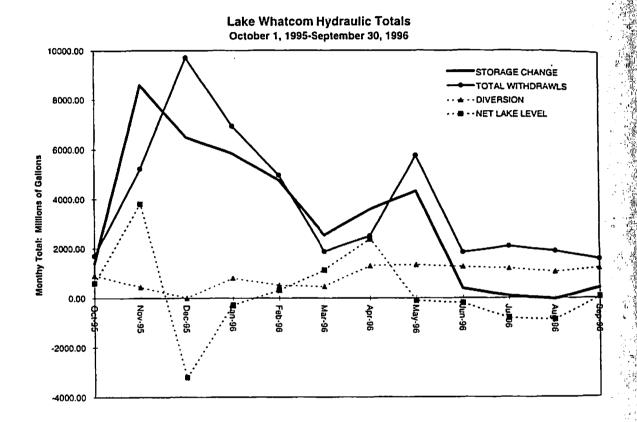




Figure 108: Lake Whatcom plankton data for Site 3.

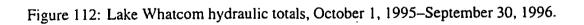





RÔ

Fi

Figure 110: Lake Whatcom withdrawals, October 1, 1995-September 30, 1996.


10(

91

ณ

7

Ŧ.

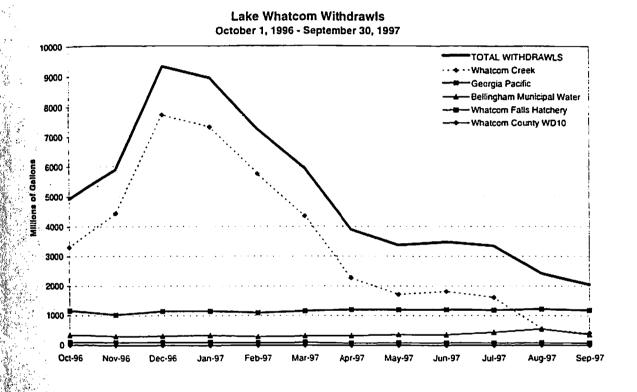
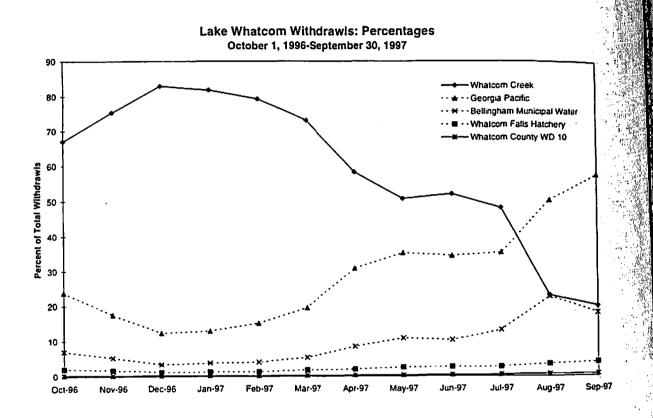
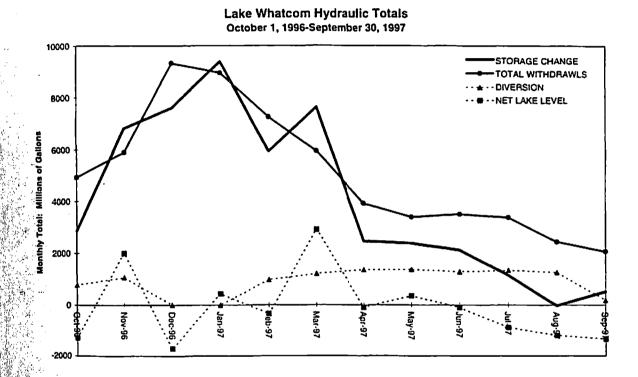




Figure 113: Lake Whatcom withdrawals, October 1, 1996-September 30, 1997.

Monthly Total: Mill

Figure 114: Lake Whatcom withdrawal percentages, October 1, 1996-September 30, 1997.

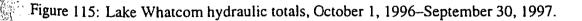


Figure 116: Park Place wet pond, cell 1. Photograph taken on September 16, 1997.

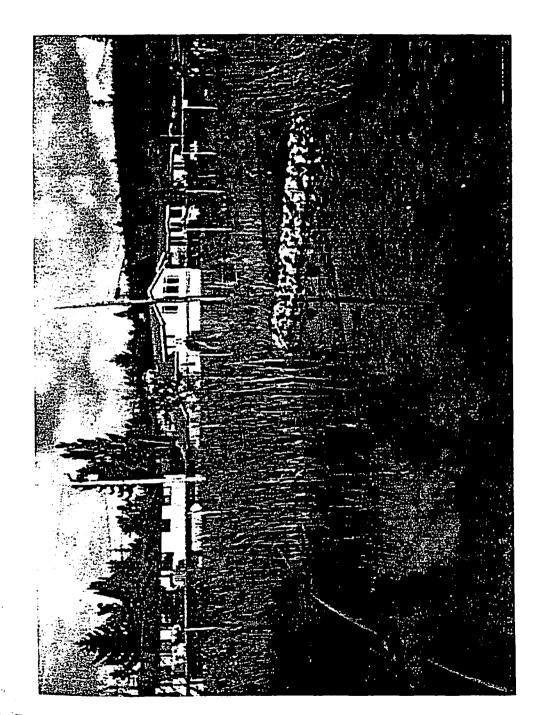
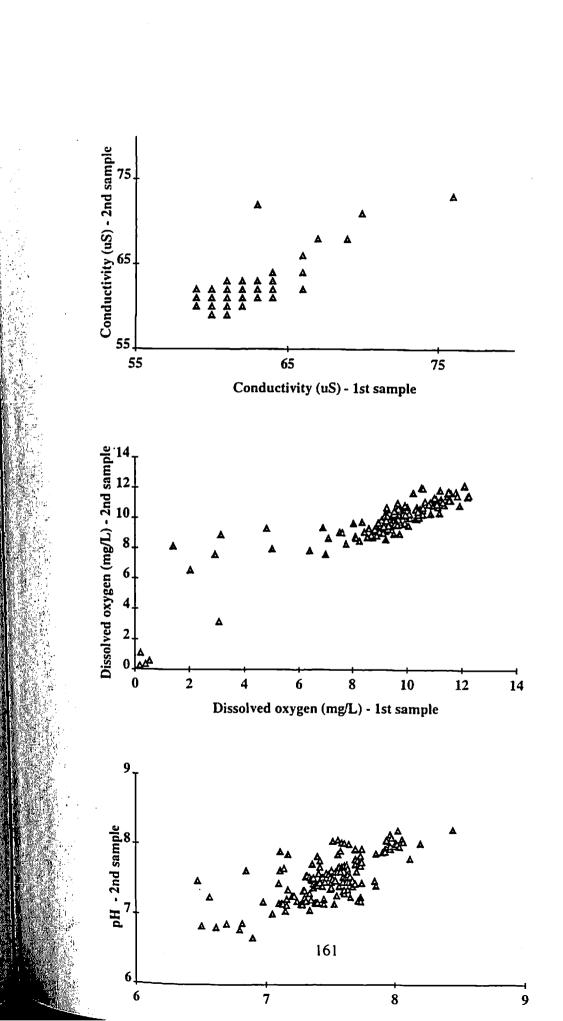
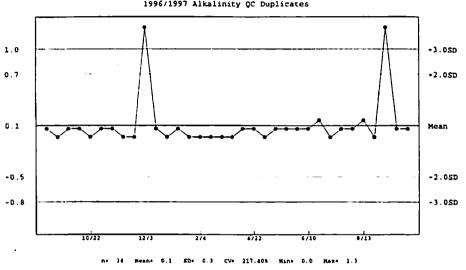
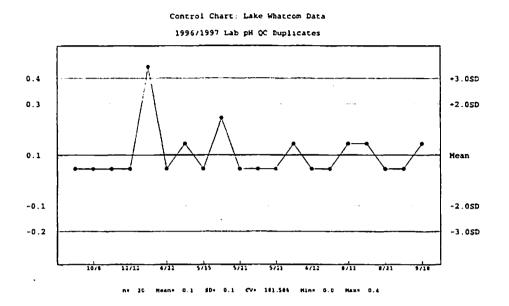
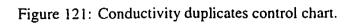
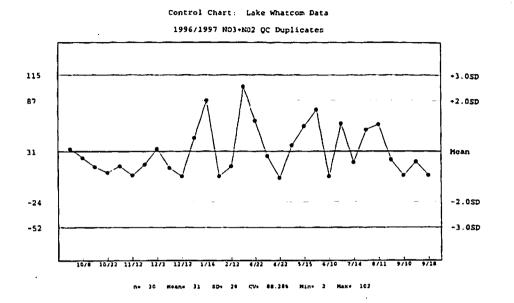




Figure 117: Park Place wet pond, cell 2. Photograph taken on September 16, 1997.


Figure 118: Park Place wet pond, cell 3. Photograph taken on September 16, 1997.





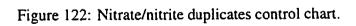

Control Chart: Lake Whatcom Data 1996/1997 Alkalinity QC Duplicates

Figure 120: Alkalinity duplicates control chart.

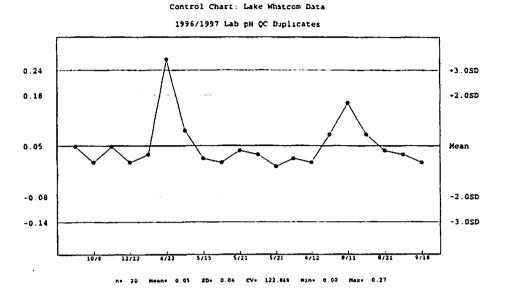
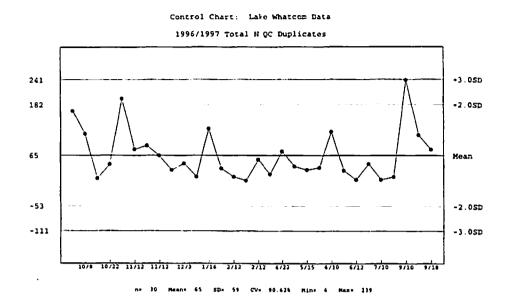
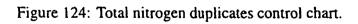




Figure 123: pH duplicates control chart.

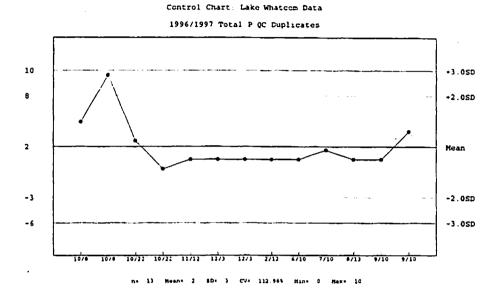


Figure 125: Total phosphorus duplicates control chart.

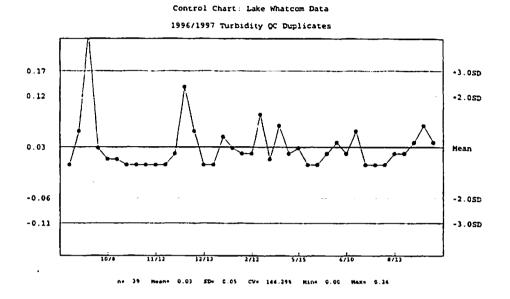
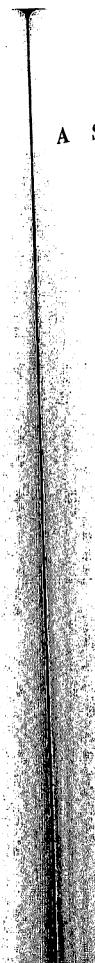



Figure 126: Turbidity duplicates control chart.

Site Descriptions

A.1 Lake Whatcom Monitoring Sites

Please refer to Figures 127-129 for assistance with locating each site. In the field, each site should be marked with an orange buoy; however, stormy weather or vandalism may have resulted in the movement or loss of a marker buoy. The four major lake sampling sites have been used since the early 1960's. Table 25 shows a summary of the identification codes that have been used for these five sites over time.

During the August 5, 1993 lake sampling, geographical locations for each site were determined using a GPS locater. These coordinates are listed below, but should be used with the caution because site locations in Lake Whatcom have always been approximate.

Three sites were added in the fall of 1996 along the 40 meter depth contour in basin 3 near Strawberry sill. These sites are identified as "s1-s3" in Figure 129. There are no permanent buoys at these sites; depth is determined at each site using an electronic depth finder.

Site 1 is located in basin 1 along a straight line from the Bloedel Donovan boat launch to a square, white house with a dark grey roof that is located about half way up the hillside (171 E. North Shore Rd.) The sampling site is at a point perpendicular to the second group of condominiums in a cluster of four. The depth at Site 1 should be at least 20 m. The GPS coordinates for Site 1 on August 5, 1993 were: 48° 45.74 N, 122° 24.63 W.

Site 2 is located in basin 2 just west of the intersection of a line between a boat house with a rust-colored roof (73 Strawberry Point) and the point of Geneva sill, and a line between three aspent trees on Lake Whatcom Blvd. and a red house on the west side of Strawberry sill (2170 Delestra, Rd.). The depth at Site 2 should be at least 20 m. The GPS coordinates for Site 2 on August 5_i 1993 were: 48° 44.55 N, 122° 22.81 W.

The Intake Site is located offshore from the City of Bellingham's raw water gatehouse. This site is one of the more difficult sites to locate because the marker buoy is frequently missing. The depth at the Intake site should be at least 13 m deep. The GPS coordinates for the Intake site on August 5, 1993 were: 48° 44.89 N, 122° 23.47 W.

Site 3 is located mid-basin just north of a line between the old railroad bridge and Lakewood. The depth at Site 3 should be at least 80 m deep. The GPS coordinates for Site 3 on August 5, 1993 were: 48° 44.27 N, 122° 20.25 W.

Site 4 is located at the intersection of a line between two points of land and a line parallel to the north edge of an inlet (see Figure A2). The depth at Site 4 should be at least 90 m deep. The GPS coordinates for Site 4 on August 5, 1993 were: 48° 41.53 N, 122° 18.01 W.

Site s1 northw curves coordi to topc Site s2 is mid Delest Strawl

Site s.

		Ch. D.
Site Code	Years Used	Site Description
1	1985-present	Located at approximately the deepest
11	1987–present	point in basin 1
A	1982–1984	
14	1982	(14 is near Site 1)
7	1960's-1981	
2	1985-present	Located at approximately the deepest
22	1987-present	point in basin 2
В	1982–1984	
13	1982	
6	1960's-1981	
Intake	1980-present	Located at the intake in basin 2
21	1987–present	
3	1985-present	Located at approximately the deepest
31	1987-present	point in N. sub-basin of basin 3
C	1982–1984	
5	1960's-1981	
• 4	1985-present	Located at approximately the deepest
32	1987-present	point in S. sub-basin of basin 3
E	1982–1984	
10	1960's-1981	

Table 25: Summary of site codes for Lake Whatcom water quality sampling.

а

5.

te

ħ

10 13 Site s1 is located along the 40 m depth contour in the basin 3 side of Strawberry sill off the northnorthwest shore of Lake Whatcom. The site is off a point with a house and dock as the lakeshore curves into Agate Bay; the point of Delstra Park is on a bearing slightly south of west. The GPS spordinates are 48° 44.83 N, 122° 21.8 W, although the GPS response is erratic at this location due 10 lopography.

Site s2 is located approximately mid-channel between Delestra Park and Strawberry sill. The site is midway between a flat-roofed, brown-grey boathouse with red trim on the northeast point of Delestra Park and a white boathouse with two square windows just back from the north side of Strawberry point. The GPS coordinated are 48° 44.65 N, 122° 22.42 W.

Site s3 is located off the southwest shore just before the road cut of Lake Whatcom Blvd., straight of and between two stair towers. The GPS coordinates are 48° 44.50 N, 122° 21.92 W.

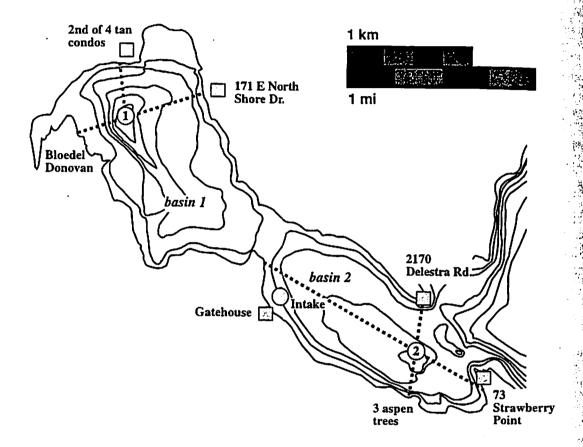
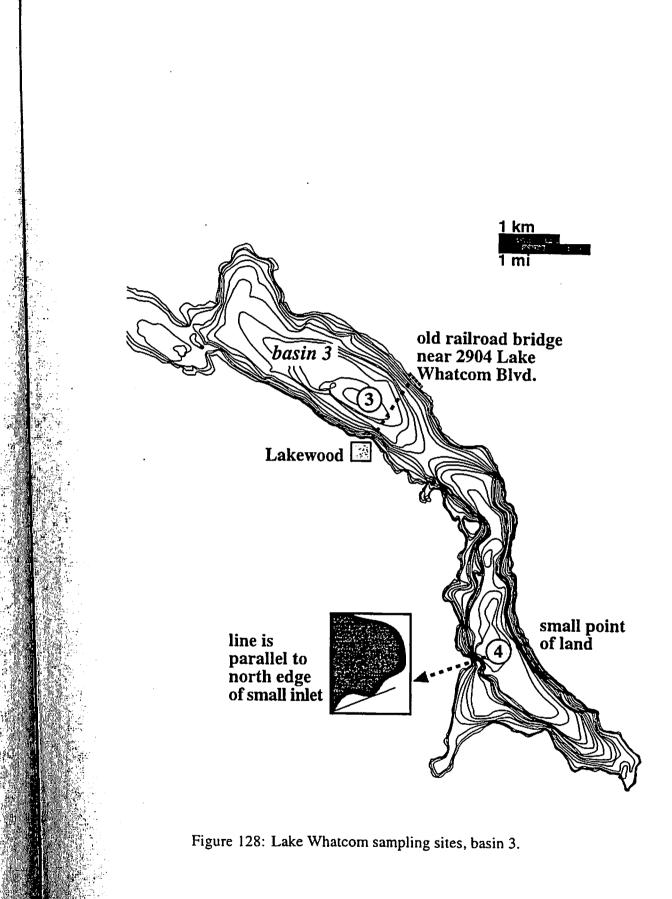
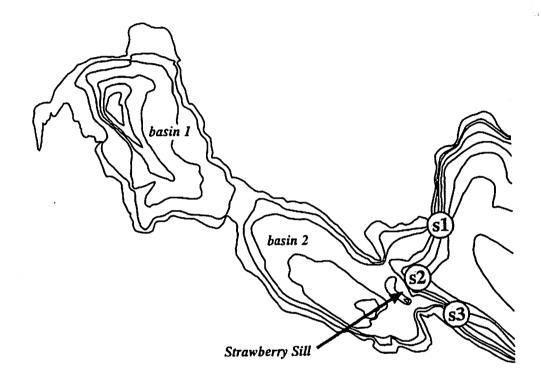




Figure 127: Lake Whatcom sampling sites, basins 1-2.

(

\$2

The rout below.

Smith (Sample:

Silver I All rout Shore R

Park P

Sample When t

into the

Austin The sit the cre

Wildw

The sit

where

Ander The si discha

Blue

This s just r min. (the B

Figure 129: Strawberry sill sampling sites.

A.2 Creek Monitoring Sites

The routine creek monitoring sites are described in detail by Walker, et al. (1992), and summarized below.

Smith Creek:

Samples are collected approximately 100 yards upstream from Lake Whatcom.

Silver Beach Creek:

All routine monitoring samples are collected immediately upstream from the culvert under North Shore Road.

Park Place storm drain:

Samples are collected inside the storm drain under Park Place (road off of North Shore Drive.) When the lake level is low enough, samples can be collected at the mouth of the outlet pipe flowing into the lake.

Austin Creek:

The site is located at the Sudden Valley golf course approximately 1800 ft upstream from where the creek flows into Lake Whatcom.

Wildwood Creek:

The site is located approximately 30 feet south of the entrance to the Wildwood Resort at the culvert where South Lake Whatcom Boulevard crosses the creek.

Anderson Creek:

The site is located at the bridge where South Bay Drive crosses the creek. Water samples and discharge measurements are collected upstream from the bridge.

Blue Canyon Creek:

This small creek is not shown on the USGS topographic map for the area. However, it is located just north of the two major Blue Canyon streams pictured on the USGS Lake Whatcom 7.5 min. quadrangle (Sect. 22, T 37N, R 4E). Samples are collected upstream from the culvert crossing the Blue Canyon road.

B Lake Whatcom Data

CAUTIC data, neg limit in ti Therefor The 1990 cial samj are show lower de on the lc report ar certainty

> Variat Alkali Carbo Chlor Colifc Colife Cond Cond Enter Meta Meta Meta Meta Met2 Meta Meta Meta Meta

CAUTION! Not all of the raw data contained in this appendix have been edited to remove "bdl" data, negative values, outliers, or other extreme values. All bdl values are plotted at their detection limit in the report figures; outliers and questionable values are discussed in the text, if appropriate. Therefore, you are cautioned against using these raw data without including the necessary qualifiers.

The 1996/97 Lake Whatcom water quality data, including data from representative creeks and special sampling projects, are included on the following pages. The detection limits for each parameter are shown below. The detection limits for each parameter were estimated based on recommended lower detection ranges (APHA, 1992; EPA 1983), instrument limitations, and analyst judgement on the lowest repeatable concentration for each test. Accordingly, the detection limits used in this report are a conservative estimate of the lowest concentration that we can measure with reasonable certainty.

	Detection Limits (dl)		Detection Limits (dl)
Variable	or Sensitivity (±)	Variable	or Sensitivity (±)
Alkalinity	± 0.1 mg/L	Nitrogen, ammonia	$dl = 10 \mu g/L$
Carbon, total organic	\pm 0.1 mg/L	Nitrogen, nitrate/nitrite	$dl = 10 \ \mu g/L$
Chlorophyll a	$\pm 0.1 \text{ mg/m}^3$	Nitrogen, total nitrogen	$dl = 100 \ \mu g/L$
Coliforms, fecal	$dl \leq 2 \text{ col/100 mL}$	Oxygen, Hydrolab	\pm 0.1 mg/L
Coliforms, total	$dl \leq 2 \text{ col}/100 \text{ mL}$	Oxygen, Winkler	\pm 0.1 μ g/L
Conductivity, Hydrolab	$\pm 2 \mu$ S/cm	pH, Hydrolab	\pm 0.1 pH unit
Conductivity, lab	$\pm 2 \mu$ S/cm	pH, lab	\pm 0.1 pH unit
Enterococcus	$dl \leq 2 \text{ col/100 mL}$	Phosphate, soluble reactive	$dl = 5 \mu g/L$
Metals, total arsenic*	$dl = 30 \ \mu g/L^2$	Phosphorus, total	$dl = 5 \mu g/L$
Metals, total cadmium*	$dl = 2 \ \mu g/L$	Secchi depth	± 0.1 m
Metals, total chromium*	$dl = 6 \ \mu g/L$	Temperature	± 0.1° C
Metals, total copper*	$dl = 2 \mu g/L$	Total Suspended Solids	dl = 2 mg/L
Metals, total iron*	$dI = 10 \ \mu g/L$	Turbidity	± 0.2 NTU
Metals, total lead*	$dl = 1 \ \mu g/L$		
Metals, total mercury*	$dI = 10 \mu g/L$		
Metals, total nickel*	$dl = 10 \ \mu g/L$		
Metals, total zinc*	$dl = 2 \mu g/L$		
934. v () (*			

B.1 Lake Whatcom Hydrolab and Lab Conductivity Data

Ga Ga

Gi Gi

Gi Gi Gi Gi

Site	Depth	Month	Day	Year	Temp	pН	Cond	DO		a
Gatehouse	00	10	08	1996	16.4	7.4	63		LCond	Secchi
Gatehouse	00	11	12	1996	11.6	7.6	63	9.82	na	na
Gatehouse	00	12	03	1996	8.9	7.3		10.43	61.9	na
Gatehouse	00	02	12	1997	6.3	7.1	62 61	11.00	na	na
Gatehouse	00	04	22	1997	8.3	7.6	60	11.59	60.8	กอ
Gatehouse	00	05	15	1997	11.2	7.6	60	11.54	60.4	na
Gatehouse	00	06	10	1997	11.1	7.5	60	11.91	na	na
Gatchouse	00	07	10	1997	16.2	7.3	60	10.01	60.2	na
Gatehouse	00	08	13	1997	16.3	7.3	61	9.09	na	Na
Gatchouse	00	09	16	1997	19.0	7.4	61	9.11	ກຊ	na
							01	9.49	na	na
Site 1	00	10	08	1996	16.2	7.5	65	9.92		
Site 1	01	10	08	1996	16.2	7.6	65	9.92 9.80	na	5.1
Site 1	02	10	08	1996	16.2	7.7	65		na	па
Site I	03	10	08	1996	16.1	7.8	65	9.75 9.60	na	na
Site I	04	10	08	1996	16.1	7.8	65	9.58	na	ha
Site 1	05	10	08	1996	16.0	7.8	65	9.44	na	na
Site 1	06	10	08	1996	16.0	7.8	65	9.37	na	na
Site 1	07	10	08	1996	16.0	7.8	65	9.32	na	na
Site 1	08	10	08	1996	15.9	7.8	65	9.25	na	na
Site 1	09	10	08	1996	15.9	7.8	65	9.14	па	ñ2
Site 1	. 10	10	08	1996	15.9	7.8	65	8.87	ла	na
Site 1	11	10	08	1996	15.5	7.6	66	5.87	na	na
Site 1	12	10	08	1996	14.3	7.2	69	1.08	na	na
Site 1	13	10	08	1996	13.2	6.9	74	0.26	na	na
Site 1	14	10	08	1996	12.2	6.8	74	0.23	na	na
Site 1	15	10	08	1996	12.1	6.8	74 •	0.19	па	na
Site 1	16	10	08	1996	12.0	6.8	74	0.19	Па	na
Site 1	17	10	08	1996	11.9	6.8	74	0.20	na	па
Site 1	18	10	08	1996	11.8	6.8	75	0.20	na	па
Site 1	19	10	08	1996	11.8	6.8	75	0.20	па Ла	D2
Site 1	20	10	08	1996	11.8	6.8	76	0.20	па 72.6	na
Site 1	00	11	12	1996	11.2	7.3	65	10.86	72.0 na	na A C
Site 1	01	11	12	1996	11.0	7.5	65	10.62	na	4.5
Site 1	02	11	12	1996	10.9	7.5	65	10.52	ла	na
Site 1 Site 1	03	11	12	1996	10.8	7.6	64	10.45	na	na na
Site 1	04	11	12	1996	10.7	7.6	64	10.34	na	na
Site 1	05	11	12	1996	10.7	7.6	64	10.30	na	па
Site 1	06 ~~	11	12	1996	10.7	7.7	64	10.25	na	na
Site 1	07	11	12	1996	10.6	7.7	64	10.18	na	na
Site 1	08	11	12	1996	10.6	7.7	65	10.17	na	na
Site 1	09	11	12	1996	10.6	7.7	64	10.09	ла	na
Sile]	10	11	12	1996	10.6	7.7	64	10.09	na	na
Sile 1	11	EI	12	1996	10.6	7.7	64	10.02	na	па
Sile 1	12	11	12	1996	10.5	7.7	64	9.97	па	па
Site 1	13 14	11	12	1996	10.5	7.7	64	9.98	na	na
Site 1	14	11	12	1996	10.5	7.7	65	9.99	na	па
Site	15	11	12	1996	10.5	7.7	64	10.00	na	па
Site 1	17	11	12	1996	10.5	7.7	64	10.00	na	na
Site 1	18	11	12	1996	10.5	7.7	65	10.00	na	па
Site 1	19	11 11	12	1996	10.5	7.7	64	9.93	na	na
1 NIS 1	20	11	12 12	1996	10.5	7.7	63	9.95	па	กล
		••	12	1996	10.4	7.7	64	9.92	63.9	na

				Ŧ			-				
Site	Depth	Month	Day	Year	Temp	pН	Cond	DO	LCond	Secchi	
Site 1	00	12	03	1996	7.6	7.4	64	11.54	na	23	S
Site 1	01	12	03	1996	7.5	7.5	64	11.40	na	na -	Sil Sil
Site 1	02	12	03	1996	7.5	7.5	64	11.32	na		Sit
Site 1	03	12	03	1996	7.4	7.6	64	11.25	Па	na 👘 👯	Sit Sit
Site 1	04	12 12	03	1996	7.4	7.6	64	11.20	na	na 👘	Sit
Site 1 Site 1	05	12	03 03	1996	7.4	7.6	64	11.21	na	na -	Sit
Site 1	06 07	12	03	1996 1996	7.4	7.6	64 64	11.16	na	na j	Sit
Site 1	08	12	03	1996	7.4	7.6	64	11.12	na	na -	Sit
Site 1	09	12	03	1996	7.3 7.3	7.6 7.6	64 64	11.11 11.06	ha	na:	Sit
Site 1	10	12	03	1996	7.3	7.0	64	11.06	na CA 1	na	Siu
Site I	10	12	03	1996	7.3	7.6	64	11.00	64.1	na 🚬 🚬	Sit
Site 1	12	12	03	1996	7.3	7.7	64	11.02	na	na, se	Site
Site 1	13	12	03	1996	7.3	7.7	64	11.02	na na	na) (1) (1)	Site
Site 1	14	12	03	1996	7.3	7.7	64	11.03	na		Site
Site 1	15	12	03	1996	7.3	7.7	64	11.04	na na		Site
Site 1	16	12	03	1996	7.3	7.7	64	10.99	กอ	na	Site
Site 1	17	12	03	1996	7.2	7.7	64	10.98	na	11 4 , -4	Site
Site 1	18	12	03	1996	7.2	7.7	64	10.99	na	na Na	Site
Site I	19	12	03	1996	7.2	7.7	63	10.99	na		Site
Site 1	20	12	03	1996	7.2	7.7	64	11.00	62.4	na	Site
Site 1	00	02	12	1997	5.5	7.]	63	12.45	na	S.D 11	Site
Site 1	10'	02	12	1997	5.4	7.4	63	12.16	па	NA	Site
Site 1	02	02	12	1997	5.3	7.4	63	12.14	na	D4	Site
Site 1	03	02	12	1997	5.3	7.5	63	12.16	na	na i	Site
Site 1	04	02	12	1997	5.3	7.5	63	12.09	na	na - 1	Site
Site 1	05	02	12	1997	5.3	7.5	63.	12.09	71.6	na. 👘	Site
Site 1	06	02	12	1997	5.3	75	63	12.12	na	CA 1	Site
Site 1	07	02	12	1997	5.2	7.5	63	12.08	na		' Site
Site 1	08	02	12	1997	5.2	7.5	63	12.08	na	63	Site
Site 1	09	02	12	1 9 97	5.2	7.6	63	12.08	па		Site
Site I	10	02	12	1 9 97	5.2	7.6	63	12.10	па	na stat	Site
Site 1	11	02	12	1997	5.2	7.6	63	12.09	na	na 👘	Site
Site 1	12	02	12	1997	5.2	7.6	63	12.10	na	DA	Site
Site 1	13	02	12	1997	5.2	7.6	63	12.10	na	na sisterationality and the second seco	Site
Site 1	14	02	12	1997	5.2	7.6	63	12.13	na	D 2	Site
Site 1	15	02	12	1997	5.2	7.6	63	12.06	na		Site
Site 1	16	02	12	1997	5.2	7.6	63	12.05	na	DA	Site
Site 1	17	02	12	1997	5.2	7.6 2.6	63	12.07	na	n 2	Site
Site 1 Site 1	18 19	02 02	12 12	1997 1997	5.2 5.2	7.6 7.6	62	12.08	na	n 2	Site
Site 1	20	02	12	1997	5.2 5.1	7.6	63 63	12.08 12.09	na 62.1	na 👘	Site
Site 1	20 00	02	22	1997	5.1 11.4	7.3	62 62	12.09	61.6	6.8	Site
Site 1	01	04	22	1997	11.3	7.4	62	11.83	n2	na 🖓	Site
Site 1	02	04	22	1997	11.0	7.4	61	11.62	na	na 🔍	Site
Site 1	03	04	22	1997	10.9	7.5	61	11.45	па	na 👘	Site
Site 1	04	04	22	1997	10.7	7.5	62	11.40	na	na 🛱	Site
Site 1	05	04	22	1997	10.6	7.5	62	11.35	61.8	n2	Site
Site 1	06	04	22	1997	10.5	7.5	62	11.30	na	na	Site
Site 1	07	04	22	1997	10.3	7.5	61	11.20	na	n2	Site
Site 1	08	04	22	1997	10.2	7.5	62	11.15	กอ	NA SA	Site
Site 1	09	04	22	1997	10.0	7.5	61	11.13	na	្រាំ ដំព	Site
Site 1	10	04	22	1997	9.9	7.5	61	11.13	61.8	na 👎 👘	Site
Site I	11	04	22	1997	9.9	7.5	61	11.14	na	n2	Site
					180						

	Site	Depth 12	Month 04	Day	Year	Temp	pH	Cond	DO	LCond	Secchi
	Site I Site 1	12	04	22 22	1997 1997	9.8 9.8	7.5 7.5	61	11.08	na	na
	Site 1	13	04	22	1997	9.8 9.8	7.5	61 61	11.06 11.04	na	na
	Site 1	15	04	22	1997	9.7	7.5	61	10.97	na	na
	Site 1	16	04	22	1997	9.7	7.5	60	10.97	na na	na na
	Site 1	17	04	22	1997	9.6	7.5	60	10.80	na	na na
	Site 1	18	04	22	1997	9.6	7.5	61	10.78	na	na
	Site 1	19	04	22	1997	9.6	7.5	61	10.79	па	na
	Site 1	20	04	22	1997	9.5	7.5	60	10.85	na	na
	Site 1	00	05	15	1997	17.8	7.8	62	10.68	na	5.6
	Site 1	01	05	15	1997	na	na	na	па	na	па
	Site 1	02	05	15	1997	па	na	na	na	na	na
	Site I	03	05	15	1997	na	na	na	па	na	na
	Site 1	04	05	15	1997	ла	na	na	na	na	па
	Site 1	05	05	15	1997	13.6	7.9	61	11.98	na	na
	Site 1	06	. 05	15	1997	na	na	na	na	na	na
	Site 1	07	05	15	1997	na	na	na	na	na	na
	Site I	08	05	15	1997	ла	กอ	na	na	na	na
÷	Site 1	09	05	15	1997	na	na	na	na	па	na
•	Site 1	10	05	15	1997	12.6	7.7	61	11.66	na	па
	Site 1	11	05	15	1 9 97	na	na	na	na	na	na
•	Site 1	12	05	15	1997	na	na	na	na	na	па
1	Site 1	13	05	15	1997	na	па	na	na	N2	па
	Site 1	14	05	15	1997	na	па	na	na	na	па
	Site 1	15	05	15	1997	12.3	7.5	62	10.63	na	na
	Site 1	16	05	15	1997	na	na	na	na	na	па
4 .	Site 1 Site 1	17	05 05	15	1997	na	na	na.	na	na	na
3. i 2. i i	Site 1	18 19	05 05	15 15	1997	na	na	กอ	na	na	na
() 	Site 1	20	05	15	1997 1997	na	na	na	na	na	na
	Site 1	00	05	10	1997	11.9 19.2	7.3	62	9.95	na	па
	Site 1	01	06	10	1997	19.2	7.7 7.9	62	9.46	61.2	4.3
ы. Ул	Site 1	02	06	10	1997	19.1	7.9 8.0	62 62	9.54 9.44	na	na
1	Site 1	03	06	10	1997	18.8	8.0 8.0	62	9.44 9.46	na	na
es are	Site 1	04	06	10	1997	17.8	8.3	62	9.40 10.04	na na	na
	Site 1	05	06	10	1997	16.8	8.5	61	10.41	ла	na na
Â.	Site 1	06	06	10	1997	15.7	8.7	61	10.95	na	na
	Site 1	07	06	10	1997	14.1	8.9	60	11.20	n3	 na
	Site 1	08	06	10	1997	12.9	8.5	61	9.99	na	na
	Site 1	09	06	10	1997	12.2	8.2	61	8.93	na	 na
服品	Site 1	10	06	10	1997	11.9	7.9	61	8.62	na	ла
	Site 1	11	06	10	1997	11.7	7.9	61	7.85	na	па
橋川	Site [12	06	10	1997	11.4	7.8	62	7.33	na	па
	Site [13	06	10	1997	11.1	7.7	61	6.78	na	na
(*)) [10]7	Site 1	14	06	10	1997	11.0	7.6	61	6.58	na	na
R.	Site 1	15	06	10	1997	10.9	7.5	61	6.39	61.6	na
	Site 1 Site 1	16	06	10	1997	10.9	7.4	62 ·	6.32	па	па
	Site 1	17	06	10	1997	10.8	7.3	61	6.28	na	na
	Sile 1	18	06	10	1997	10.8	7.3	61	6.23	na	na
1) A	Site 1	19	06	10	1997	10.7	7.3	61	6.19	na	na
	Sile 1	20	06	10	1997	10.7	7.2	61	6.15	na	na
	Site 1	00 01	07	14	1997	20.5	7.6	63	9.92	60.7	5.0
pe.	Sile 1	01	07	14	1997	19.9	7.8	62	9.98	na	na
		02	07	14	1997	19.8	7.9	62	9.94	na	na
1246						181					

							nauchvity	Dala		- 1. 7		ŧ
Site	Depth	Month	Day	Year	Temp	pН	Cond	DO	LCond			ai 1. A me a
Site I	03	07	14	1997	19.7	8.0	62	9.90	na	Secchi		Site
Site 1	04	07	14	1997	19.6	8.0	62	9.83	ла	na -		Site 1
Site I	05	07	14	1997	18.9	8.2	62	10.04	กล	nal i P		Site I Site I
Site 1	06	07	14	1997	18.6	8.2	61	9.88	na	. D a		Site I
Site 1	07	07	14	1997	17.8	8.0	61	9.53	Na	· · · · Na		Site 1
Site 1	08	07	14	1997	16.0	7.7	62	9.06	ha	na		Site 1
Site 1	09	07	14	1997	14.5	7.5	63	8.13	na	N I (1997)		
Site 1	10	07	14	1997	13.2	7.2	63	7.08	61.8	na i citat		Intake
Site 1	11	07	14	1997	12.4	7.1	62	6.26	па	na l		Intake
Site 1	12	07	14	1997	12.0	7.0	63	5.23	па	Da de la		Intake
Site 1	13	07	14	1997	11.7	6.9	63	4.64	na	. Da :	基本有	Intake
Site 1	14	07	14	1997	11.4	6.9	63	3.89	na	Ra . (Intake
Site I	15	07	14	1997	11.3	6.8	64	3.67	na 📜	na -		Intake
Site 1 Site 1	16 17	07 07	14	1997	11.2	6.8	64	3.39	na	na		Intake
Site 1	18	07	14	1997	11.1	6.8	64	3.31	na	na		Intake
Site 1	18	07	14 14	1997	11.1	6.7	63	3.27	na	na		Intake
Site I	20	07	14	1997	11.0	6.7	64	3.15	па	na -		Intake
Site 1	00	07	14	1997 1997	11.0	6.7	63	3.07	63.3	na		Intake
Site 1	01	08	13	1997	23.2	8.2	63	9.55	па	5.5		Intake
Site I	02	08	13	1997	23.2	8.2	63	9.51	па			Intake
Site 1	03	08	13	1997	23.0	8.3	62	9.50	па			Intake
Site 1	04	08	13	1997	22.8 22.3	8.4	62	9.45	na	na	1947 -	Intake
Site 1	05	08	13	1997	22.3	8.4 8.5	6l	9.50	na	na 👘		Intakt
Site 1	06	08	13	1997	21.8	8.4	61 62	9.87	n 2	na - 7 (1)		Intake
Site 1	07	08	13	1997	19.9	8.3	62 62	9.77	na	N2		Intake
Site 1	08	08	13	1997	18.8	8.1	62.	10.01 9.99	na	D2		intak:
Site 1	09	08	13	1997	15.9	7.9	63	9.99 7.10	na	D2		Intakı
Site 1	10	08	13	1997	13.9	7.6	64	4.80	П2 61.2	na		Intak: Intak:
Site 1	11	08	13	1997	13.0	7.5	64	3.20	61.3	na		Intak
Site 1	12	08	13	1997	12.4	7.3	66	1.63	na	na		Intak
Site I	13	08	13	1997	11.9	7.2	66	1.03	na	na -****[Intak
Site 1	14	08	13	1997	11.7	7.0	66	0.61	na na			Intak
Site 1	15	08	13	1997	11.6	7.0	· 66	0.61	na	na juli na juli		Intak
Site 1	16	08	13	1997	11.4	6.9	66	0.57	na	na		Intak
Site 1	17	08	13	1997	11.4	6.9	66	0.53	na	nă		Intak
Site 1	18	08	13	1997	11.4	6.9	65	0.53	na	na		Intak
Site 1	. 19	08	13	1997	11.3	6.8	66	0.53	65.8	na		Intak
Site 1	20	08	13	1 9 97	Na	na	па	na	па	na		Intak
Site 1	00	09	10	1997	21.3	8.3	62	9.94	na	4.1		Intal
Site 1	01	09	10	1997	21.2	8.4	62	9.86	па	na 🔅		Intal
Site 1	02	09	10	1997	21.1	8.4	62	9.83	па	na		Intal
Site 1	03	09	10	1997	21.0	8.5	62	9.81	па	na L		Intal
Site 1	04	09	10	1997	20.8	8.4	62	9.62	na	กอ		Intal
Site 1	05	09	10	1997	20.6	8.4	62	9.56	na	กอ		Intal
Site 1	06	09	10	1997	20.4	8.3	62	9.10	na	กอ		Intal
Sile I	07	09	10	1997	20.2	8.0	61	8.53	па	na		Inta
Site 1	08	09	10	1997	19.0	7.7	63	6.34	na	na		Inta
Site 1	09	09	10	1997	16.8	7.4	65	4.21	па	na		Inta
Site 1	10	09	10	1997	15.2	7.3	66	2.03	62.2	na		Inta
Site I	11	09 00	10	1997	12.8	7.2	67	0.57	na	na	1	Inta
Site 1 Site 1	12	09 00	10	1997	12.0	7.1	67	0.50	na	na		ไกเล
Site I	13 14	09 09	10	1997	11.9	7.0	66	0.46	na	na		Inte
5110 1	17	07	10	1997	11.7	7.0	67	0.46	па	กล	ŀ	Intz
											•	

:chi a a a a

Site	Depth	Month	Day	Year	Temp	pН	Cond	DO	LCond	Secchi
Site 1 Site 1	15 16	09	10	1997	11.6	7.0	68	0.42	na	па
Site 1	18	09	10	1997	11.5	6.9	68	0.42	na	na
Site I	18	09 09	10	1997	11.5	6.9	66	0.42	ла	na
Site 1	18	09	10 10	1997	11.4	6.9	67	0.42	na	na
- Site 1	20	09	10	1997	11.4	6.9	68	0.43	na	па
		07	10	1997	11.4	6.9	67	0.38	67.5	na
Intake	00	10	08	1996	16.7		4-			
Intake	01	10	08	1996	16.6	7.6	63	9.81	na	6.9
Intake	02	10	08	1996	16.4	7.7 7.8	63	9.72	กอ	na
Intakc	03	10	08	1996	16.3	7.8 7.8	63	9.68	na	na
Intake	04	10	08	1996	16.2	7.8	63 62	9.69	na	na
Intake	05	10	08	1996	16.2	7.9	63	9.64	na	na
Intake	06	10	08	1996	16.2	7.9	63	9.57 9.50	na	па
Intake	07	10	08	1996	16.1	8.0	63	9.50 9.50	па	па
Intake	08	10	08	1996	16.1	8.0	63	9.30 9.48	na	na
Intake	09	10	08	1996	16.1	7.9	63	. 9.48 9.42	na	na
Intake	10	10	08	1996	16.1	7.9	63	9. 4 2 9.34	na	na
Intake	00	11	12	1996	11.4	7.6	63	10.36	61.8	na
Intake	01	11	12	1996	11.4	7.6	63	10.30	na ла	5.7
Intake	02	11	12	1996	11.3	7.7	62	10.22	na	па
Intake	03	11	12	1996	11.4	7.7	62	10.15	na	na
intake	· 0 4	11	12	1996	11.3	7.7	62	10.11	na	na na
Intake	05	11	12	1996	11.2	7.7	62	10.08	61.7	na Na
Intake	06	11	12	1996	11.2	7.8	61	10.04	na	па
Intake	07	11	12	1996	11.2	7.7	62	10.01	na	ла
Intake	08	11	12	1996	11.2	7.8	62.	10.01	na	ла
Intake	09	11	12	1996	11.2	7.8	62	9.98	na	na
Intake	10	11	12	1996	11.1	7.8	62	9.93	61.7	ла
Intake Intake	00	12	03	1996	8.3	7.4	63	11.19	61.1	3.4
Intake	01	12	03	1996	8.3	7.5	63	11.04	na	па
Intake	02 03	12	03	1996	8.4	7.5	63	10.98	па	na
Intake	03	12	03	1996	8.3	7.5	62	10.93	na	na
	04	12	03	1996	8.3	7.5	62	10.89	па	па
Intake	06	12 12	03	1996	8.3	7.6	62	10.84	61.1	na
Intake	07	12	03 03	1996	8.3	7.6	62	10.85	na	па
Intake	08	12	03	1996 1996	8.3	7.6	62	10.81	na	na
Intake	09	12	03	1996	8.3	7.6	61	10.81	na	па
Intake	10	12	03	1996	8.3 8.3	7.6 7.6	62	10.81	na	na
Intake	00	02	12	1997	5.9	7.6 7.3	62 (2	10.77	na	na
, Intake	01	02	12	1997	5.9	7.3 7.4	62 62	11.78	60.8	6.1
Intake	02	02	12	1997	5.9	7.4	62 62	11.62	na	na
Intake	03	02	12	1997	5.9	7.4	62	11.57 11.57	na	na
Intake	04	02	12	1997	5.9	7.5	62	11.57	na	na
Intake	05	02	12	1997	5.9	7.5	62	11.52	па 60.8	na
Intake	06	02	12	1997	5.9	7.5	62	11.52	na	ла па
intake	07	02	12	1997	5.9	7.5	61	11.52	ла	na
Intake	08	02	12	1997	5.9	7.5	60	11.53	na	na
Intake	09	02	12	1997	5.9	7.5	61	11.54	na	na
Intake	10	02	12	1997	5.8	7.5	61	11.51	60.9	na
Intake	00	04	22	19 97	10.8	7.3	62	12.60	na	6.0
Intake	01	04	22	1997	10.6	7.4	62	12.39	na	ึกอ
	02	04	22	1997	10.0	7.4	62	12.35	na	na
				18	33					

2	Month		V	Tomo							
Monu	_	uay ''	1 C21	l emp	ud 15	Cond S	28 51	r.Cond	用 み の		Si
3		77	1661	9.1	<u>.</u>	8	97.7	5	1		101
3		22	1997	8.9	7.6	8	12.10	U3	E.		lat:
3		5	1997	8.7	7.6	8	12.03	112	n1 ¹⁰		lot.
3		22	1997	8.6	7.6	8	06.11	na			let.
5		52	1997	8.4	7.6	8	11.79	na	3		lat
3		77	1997	8.2	7.6	61	11.60	5	â		lat
3			1661	8.0	7.6	8	11.57	4 L	8		lot
33		2 1	7991	7.9 2 -1	2.7 8.5	83	05.11	60.5	â		lat
3 2		2 2	1001		o.,	5 8	71.11	2 1	S:1		Int
3 8		: SI	7991					<u> </u>	8		i
3		15	2661	2	20	113	03	1 2	3 1		S.
20		15	1997	ĘIJ	na	Na	na	L1	1 2		1
05		15	661	15.6	8.0	8	11.60	na	. a		5.5
3		15	2661	ца	ла	na	L2	¢U	8		in Vi
20		15	1997	t1	na	na	na	гu			Sit
02		51	1997	cu	na	N 2	na	n a	1 . 1		Sit
05		15	2661	n 2	N 2	na	L1	n 2	a		Sil
S		15	1997	13.4	7.9	8	12.28	na	300		Si
8		10	L661	18.6	7.6	61	9.63	na	4.1		Si.
8		01	1997	18.4	7.8	62	9.57	N2	2	ii Nii	Si
8	5	01	661	18.2	7.9	61	9.52	21	7		Si
0	8	0	1997	17.6	8.1	61	9.52	na	8		Si
0	8	10	1997	16.7	ځ گ	8	9.96	D 3	2		Si
0	83	9	1997	15.9	8.5	8	9.97	D 2	8		Si
	8 3	10	1997	15.5	8.4	8	9.94	u	2		Si
0 (88	01 :	1997	14.8	8.2	ର୍ଚ୍ଚ :	9.92	na	a		S
	8 8	2 9	1661	14.4 6 c c	7.2	8 8	9.94	N3	3		N .
	38	2 9	1001	1.21	7.0	8 5	66.6 79.0	113 50 4	2		ŝ
	36	9 9	1997	11.0	1.0	3 3	00.6	0.4C	4 9 9		5 U
0	6	10	1997	18.0	L.T.	61	9.22	13	5.U)		3 V.
0	5	10	1997	18.1	7.8	61	9.15	na	8	la Maria Gali	1 01
U	6	10	1997	18.1	7.9	61	9.04	ЛЗ	a B		•,
Ŭ	8	10	1997	18.0	7.9	61	8.97	na	2		
•	6	01	1997	18.0	8.0		8.95	59.4	na		•••
	68	2 9	1991	18.0	0.0	19 3	8.90	N 2	2		
	5 8	2 9	1001	6./1 0 7 1	0.0	10 5	0.92				
	; 6	2 9	1997	17.8	8.0	58	8.87	1 1 1		ii Manana Manana	-
-	01	01	1997	17.8	7.9	61	8.87	L 2	13	tillin F	
U	08	13	1997	22.6	1.1	62	9.30	na	7.0	<u>kirina.</u> Apost	
0	08	13	1997	22.5	7.8	62	9.15	na	an Na	3	
0	08	13	1997	22.3	7.9	62	9.16	112	na		
0	08	13	L661	21.7	7.9	61	9.25	Па	L2		
0	80	13	1997	21.3	8.0	61	9.41	na	L2	1 	
0	80	13	1997	21.2	8.0	61	9.32	U3	112	usp.sz	
0	08	13	2661	20.8	8.0	61	9.42	ца	L1		
0	80	13	1997	20.6	8.0	62	9.38	U2	Пâ		
0	08	13	1997	20.3	8.0	61	9.34	U 3	na		
0	80 88	<u> </u>	1997 1001	19.4	7.8	84	90.6	ខេត្ត	13		
	88	<u> </u>	1001	10.0		5 8	17.6	C. 40	9 Y Y	نت: ب	
00	58	2 2	1997	20.8 20.8	8.2 8.2	6 19	9.28	1.00 EI	0. 4 1	-	
5						;		!			

	Site Intake	Depth 02	Month 09	Day 10	Year 1997	Temp 20.4	рН 8.2	Cond 61	DO 9.32	LCond	Secchi
•	Intake	03	09	10	1997	20.9	8.2	61	9.19	na na	na na
	Intake	04	09	10	1997	20.1	8.1	61	9.16	ла	na
	Intake	05	09	10	1997	20.0	8.1	61	9.15	59.9	ла
	Intake	06	09	10	1997	19.9	8.0	61	9.09	na	na
	Intake	07	09	10	1997	19.9	7.9	61	9.00	na	na
	Intake	08	09	10	1997	19.7	7.8	60	8.88	na	na
	Intake	09	09	10	1997	19.4	7.7	61	8.70	na	na
	Intake	10	09	10	1997	19.2	7.6	61	8.54	59.8	ពរ
	Site 2	00	10	08	1996	16.6	7.6	63	9.94	na	7.2
di i	Site 2	01	10	08	1996	16.5	7.8	64	9.85	na	na
et. Me	Site 2	02	10	08	1996	16.3	7.8	63	9.81	па	па
ili Print Maria	Site 2	03	10	08	1996	16.2	7.9	63	9.80	na	na
8.	Site 2	04	10	08	1996	16.2	8.0	63	9.73	na	na
	Site 2	05	10	08	1996	16.2	8.0	63	9.68	61.7	na
	Site 2	06	10	08	1996	16.2	8.0	63	9.58	па	na
	Site 2	07	10	08	1996	16.2	8.0	63	9.53	na	na
	Site 2	08	10	08	1996	16.2	8.0	63	9.47	na	na
	Site 2	09	10	08	1996	16.1	8.0	63	9.41	na	na
	Site 2	10	10	08	1996	16.1	7.9	63	9.22	61.8	na
	Site 2	11	10	08	1996	16.1	7.9	63	9.02	na	na
	Site 2	12 13	10 10	08 08	1996	16.0	7.8	63	8.74	nı	กอ
	Site 2 Site 2	13	10	08	1996	16.0	7.7	63	8.69	na	na
	Site 2	14	10	08	1996 1996	15.9 14.2	7.7	63	8.08	D2	na
	Site 2	15	10	08	1996	14.2	7.1	65	1.16	па	na
	Site 2	17	10	08	1996	12.0	6.9 6.8	67. 68	0.15	na	na
	Site 2	17.8	10	08	1996	11.4	6.8	71	0.12 0.12	na	na
	Site 2	00	11	12	1996	11.4	0.8 7.4	62	10.30	па 61.6	na 6.2
	Site 2	01	11	12	1996	11.4	7.5	62	10.20	ла Па	0.2 Na
	Site 2	02	- 11	12	1996	11.4	7.5	62	10.12	กล	na
	Site 2	03	11	12	1996	11.4	7.6	62	10.09	na	na
	Site 2	04	11	12	1996	11.4	7.6	62	10.04	па	па
CR.	Site 2	05	11	12	1996	11.3	7.6	62	10.03	па	na
	Site 2	06	11	12	1996	11.3	7.6	62	10.01	na	na
	Site 2	07	11	12	1996	11.3	7.6	63	10.00	กอ	na
	Site 2	08	11	12	1996	11.3	7.7	62	9.99	n 1	na
	Site 2	09	11	12	1996	11.2	7.7	62	10.00	na	па
	Site 2	10	11	12	1996	11.2	7.7	62	9.97	na	na
R. Ma	Site 2	11	11	12	1996	11.2	7.7	61	9.97	па	na
	Site 2	12	11	12	1996	11.2	7.7	61	9.97	na	na
	Ŝile 2	13	11	12	1996	11.2	7.7	62	9.93	na	na
4.N.V.	Site 2	14	11	12	1996	11.2	7.7	62	9.89	па	na
222	Sile 2	15	11	12	1996	11.2	7.7	62	9.86	61.7	па
	Site 2	16	11	12	1996	11.1	7.7	62	9.69	па	па
	Site 2	17	11	12	1996	11.1	7.6	62	9.19	na	па
	Site 2	00	12	03	1996	8.2	7.3	63	11.51	na	3.7
r XII.	Sile 2	01	12	03	1996	8.3	7.4	62	11.19	na	na
	Site 2	02	12	03	1996	8.3	7.4	62	11.08	na	na
	Site 2	03	12	03	1996	8.3	7.5	62	11.03	na	na
	Sile 2	04	12	03	1996	8.3	7.5	61	10.93	na	na
	Site 2	05 06	12	03	1996	8.3	7.5	62	10.88	na	na
	in K	UQ.	12	03	1996	8.3	7.6	61	10.88	na	na
	82										

			/// 1 <i>/</i> //	· · · · ·	ioiad allu	LaD CO	nauctivity	y Data			
Site	Depth	Month	Day	Year	Temp	рH	Cond	DO	LCond		
Site 2	07	12	03	1996	8.3	7.6	62	10.83	na cond	Secchi	Si Si
Site 2	08	12	03	1996	8.3	7.6	61	10.77	na	Da III	Siu
Site 2	09	12	03	1996	8.3	7.6	61	10.77	na	, na ; 1997	Siu
Site 2	10	12	03	1996	8.3	7.6	61	10.77	Na	na vije	Sit
Site 2	11	12	03	1996	8.3	7.6	62	10.77	na		Sit
Site 2	12	12	03	1996	8.3	7.6	61	10.77	na	na 17.024	Sit Sit
Site 2	13	12	03	1996	8.3	7.6	61	10.72	na	u i	Sit
Site 2	14	12	03	1996	8.3	7.6	61	10.72	na		Sit
Site 2	15	12	03	1996	8.3	7.6	61	10.72	na	na :	Sit
Site 2	16	12	03	1996	8.3	7.6	62	10.71	na	Da 🦷	Sit Sit
Site 2	17	12	03	1996	8.3	7.6	62	10.71	na	na 👘	Sit
Site 2	18	12	03	1996	8.3	7.6	61	10.65	61.1		Sit
Site 2	00	02	12	1997	5.9	7.3	62	11.78	na		Sit
Site 2	01	02	12	1997	5.9	7.4	62	11.72	ha	7.0	Sit
Site 2	02	02	12	1997	5.9	7.4	62	11.66		D2	Sit
Site 2	03	02	12	1997	5.9	7.4	62	11.60	па	na 1100. 14	Sit
Site 2	04	02	12	1997	5.9	7.4 7.4	62	11.62	na		Sit Sit
Site 2	05	02	12	1997	5.9 5.9	7.4	61	11.59	па		Sit
Site 2	06	02	12	1997	5.9 5.9				na	na:	Si Si
Site 2	07	02	12	1997		7.4	61	11.54	na		Si Si
					5.9	7.5	61	. 11.54	na	na 🛞	Si
Site 2	08	02	12	1997	5.9	7.5	62	11.54	na	na 📜 🦹	Si Si
Site 2	09	02	12	1997	5.8	7.5	62	11-51	na	na 👘	Si Si
Site 2	10	02	12	1997	5.8	7.5	61	11.52	na	na (1977)	Si
Site 2	11	02	12	1997	5.8	7.5	61	11.52	na	na 🕴	Si Si
Site 2	12	02	12	1997	5.8	7.5	61	11.52	na	na 👘	Si 🖓
Site 2	13	02	12	1997	5.8	7.5	61	11.47	па		Si 🕴
Site 2	14	02	12	1997	5.8	7.5	61.	11.47	na	NA	Si
Site 2	15	02	12	1997	5.8	7.5	61	11.47	60.9	na 👋	Si Si
Site 2	16	02	12	1997	5.8	7.5	61	11.47	па	NA	Si Si
Site 2	17	02	12	1 9 97	5.8	7.5	61	11.47	па	na wet	S S
Site 2	18	02	12	1997	5.8	7.5	61	11.47	ħa		S S
Site 2	00	04	22	1997	10.4	7.4	61	12.75	na	5.2	S S
Site 2	01	04	22	1997	10.2	7.5	61	12.36	na	na 🖏	S S
Site 2	02	04	22	1997	9.8	7.6	61	12.33	na	na	S S
Site 2	03	04	22	1997	9.5	7.7	60	12.21	na	na	S S
Site 2	04	04	22	1997	9.2	7.6	61	12.25	na	ла	S
Site 2	05	04	22	1997	9.0	7.6	61	12.25	60.4	na	736 W 1
Site 2	06	04	22	1997	8.9	7.7	61	12.20	па	na	S S
Site 2	07	04	22	1997	8.8	7.7	60	12.11	na	na	s in the second se
Site 2	08	04	22	1997	8.6	7.7	60	11.98	na	na -	
Site 2	09	04	22	1997	8.4	7.7	60	11.90	na	กอ	5
Site 2	10	04	22	1997	8.3	7.6	60	11.80	na	na	
Site 2	11	04	22	1997	8.1	7.6	60	11.79	па	na	
Site 2	12	04	22	1997	8.0	7.6	60	11.74	na	na	
Site 2	13	04	22	1997	7.9	7.6	60	11.73	na	na	
Site 2	14	04	22	1997	7.8	7.6	60	11.66	па	ла 1	
Site 2	14	04 04	22	1997	7.8	7.6	61	11.57	па	na	
Site 2	16	04 04	22	1997	7.8	7.6	60	11.57	11a 112	na	
			22	1997	7.6	7.5	60	11.46		ла Ла	
Site 2	17	04							na		
Site 2	18	04	22	1997	7.6	7.5	60 61	11.43	na	na 5 7	T.
Site 2	00	05	15	1997	17.2	7.8	61	11.15	na	5.2	·••]
Site 2	01	05	15	1997	na	na	na	ла	na	na	ł.
Site 2	02	05	15	1997	na	nà	U3	na	na	na	l'
Site 2	03	05	15	1997	na	na	na	па	na	n2	
					107						1 🖷

:cchi na fi a na Na na D2 ពរ па na na 84 na 7.0 Ria. па пa 04 Ŋ2 па ná ni 01 31 ai aia 1Í azi 11 ų 32 u 12 18 11 u u 18 u 12 12 u 13 38 น 11 12 62 ģ1 22 ġ2 i.2 63 n 1 ń\$

	C'1-	Depth	Marth	~							
	Site 2	Depth 04	Month 05	Day 15	Year 1997	Temp	pН	Cond	DO	LCond	Secchi
	Site 2	05	05	15	1997	na	na	na	בת	na	na
1	Site 2	06	05	15	1997	15.6	7.9	60	11.56	ла	na
	Site 2	07	05	15	1997	na	na	กอ	na	na	na
1	Site 2	08	05	15	1997	na	ກລ	na	na	па	na
1	Site 2	09	05	15	1997	na	กา	na	na	na	กล
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Site 2	10	05	15	1997	na	па	na	na	na	па
	Site 2	11	05	15	1997	13.4	8.0	60	12.21	กล	па
	Site 2	12	05	15	1997	na	na	na	na	na	na
	Site 2	13	05	15	1997	na na	na	па	ла	กอ	na
	Site 2	14	05	15	1997	na	па	na	ña	na	па
	Site 2	15	05	15	1997	10.3	na	na	na	па	Na
	Site 2	16	05	15	1997		7.6	60	11.90	па	па
	Site 2	17	05	15	1997	na	na	na	па	na	па
	Site 2	18	05	15	1997	na na	па	па	na	na	na
	Site 2	19	05	15	1997	па	na	na	na	na	na
	Site 2	20	05	15	1997	9.8	na 7.3	па бі	ла	na	na
	Site 2	00	06	10	1997	18.4	7.3 8.0	61 61	10.89	na Co o	na
	Site 2	01	06	10	1997	18.3	8.0 8.0	61 61	9.53	59.9	4.5
	Site 2	.02	06	10	1997	18.1	8.1	61	9.50	na	na
	Site 2	03	06	10	1997	17.4	8.2	61	9.48	na	na
	Site 2	04	06	10	1997	17.2	8.2 8.3	60 60	9.62	na	па
	Site 2	05	06	10	1997	16.9	8.4	60 60	9.64	па	กล
	Site 2	06	06	10	1997	15.6	8.4	60 60	9.74	па	па
	Site 2	07	06	10	1997	15.1	8.3	60	9.92 9.94	na	na
	Site 2	08	06	10	1997	14.6	8.3	60	9.94 9.86	па	па
	Site 2	09	06	10	1997	13.6	8.2	60 ·	9.82	na	na
	Site 2	10	06	10	1997	12.2	8.1	60	9.82 9.80	па	па
	Site 2	11	06	10	1997	11.4	8.0	59	9.62	na	na
	Site 2	12	06	10	1997	10.6	7.9	60	9.53	na	na
	Site 2	13	06	10	1997	9.9	7.8	59	9.32	na na	na
	Site 2	14	06	10	1997	9.7	7.8	59	9.31	na	na
	Site 2	15	06	10	1997	9.4	7.7	59	9.26	60.1	ла па
	Site 2	16	06	10	1997	9.3	7.7	59	9.31	na	па
	Site 2	17	06	10	1997	9.2	7.6	59	9.13	na	па
	Site 2 Site 2	18	06	10	1997	9.1	7.6	60	9.22	na	0a
	Site 2	00	07	10	1997	18.0	7.8	61	9.47	na	4.6
	Site 2	01	07	10	1997	18.0	8.0	61	9.38	na	na
	Site 2	02	07	10	1997	18.0	8.1	61	9.32	па	03
	Site 2	03	07	10	1997	18.0	8.1	61	9.27	na	na
	Site 2	04	07	10	1997	17.9	8.1	61	9.22	na	na
	Site 2	05	07	10	1997	17.9	8.2	61	9.19	na	па
	Sile 2	06 07	07	10	1997	17.9	8.2	61	9.14	na	Na
	Site 2	07 08	07	10	1997	17.8	8.1	61	9.12	па	па
	Site 2	08 09	07	01	1997	17.8	8.1	60	9.06	na	па
	Site 2	10	07	10	1997	17.8	8.1	60	9.05	na	na
	Site 2	11	07	10	1997	17.7	8.1	60	8.99	na	na
0	Sile 2	12	07 07	10	1997	17.4	8.0	60	8.94	па	na
	Site 2	13	07 07	10	1997	15.0	7.9	61	8.56	na	na
	Site 2	13	07 07	10	1997	12.1	7.8	61	8.71	па	na
	Site 2	15	07	10	1997	11.0	7.6	61	8.21	กอ	na
	Site 2	16	07	10 10	1997	10.5	7.6	60	8.20	na	na
	Site 2	17	07 07	10	1997	10.4 to 2	7.5	61	8.14	na	na
			07	IV.	1997	10.2	7.4	60	8.16	na	na
					18	7					
						-					

S S S S S S s s S S S S ٤ S

				,	· · · · ·		•	,		1.3	
Site	Depth	Month	Day	Year	Temp	pН	Cond	DO	LCond		Si Si
Site 2	18	07	10	1997	10.0	7.3	60	7.60	60.3	Secchi	Si i Si
Site 2	00	08	13	1997	22.5	7.6	61	9.22	60.0	na 7.6	Si
Site 2	01	08	13	1997	22.5	7.7	62	9.13	па	. na 1	Si Si
Site 2	02	08	13	1997	22.4	7.8	61	9.05	na	na C	Si 🗧 Si
Site 2	03	08	13	1997	22.3	7.9	61	9.02	na	na (11)	Si
Site 2	04	08	13	1 9 97	21.9	7.9	62	9.08	na	in a	Si Si
Site 2	05	08	13	1997	21.5	8.0	62	9.29	59.7	na i i	Si Si
Site 2	06	08	13	1997	21.3	8.0	61	9.21	na	na (1997)	Si Si
Site 2	07	08	13	1997	20.7	8.0	61	9.25	па	Da 👘	Si Si
Site 2	08	08	13	1997	20.4	7.9	61	9.28	па	na (^{Flue})	Si
Site 2	09	08	13	1997	19.3	7.9	60	9.22	па	na 😳	Si
Site 2	10	08	13	1997	18.4	7.8	60	9.24	na	na 💦	– Si
Site 2	11	08	13	1997	17.1	7.8	60	9.17	na	na 🖾 🖓	Si Si
Site 2	12	08	13	1997	15.2	7.8	61	9.10	па	na	Si
Site 2	13	08	13	1997	13.6	7.7	61	8.47	na	na. 👘	i Si
Site 2	14	08	13	1997	12.9	7.7	62	8.16	na	na i Sala	Si
Site 2	15	08	13	1997	12.2	7.6	61	8.02	na	na 👘	Si Si
Site 2	16	08	13	1997	11.6	7.5	61	6.78	па	na 🕓 🖓	Si
Site 2	17	08	13	1997	11.2	7.3	63	5.15	na	D a	Si
Site 2	18	08	13	1997	10.5	7.2	63	3.37	na	na (1)	Si
Site 2	00	09 00	10	1997	20.7	8.0	61	9.72	60.1	5.1	Si
Site 2	01 02	09	10	1997	20.6	8.1	61	9.58	na	na	Si Si
Site 2	02	09 00	10	1997	20.5	8.2	62	9.55	na	na 👘	Si Si
Site 2		09 00	10	1997	20.2	8.2	61	9.53	па	na (1067)	Si Si
Site 2	04	09 00	10	1997	20.2	8.2	61	9.44	na		Si Si
Site 2	05 07	09	10	1997	20.1	8.2	61	9.41	nà	na (jest	Si Si
Site 2	06 77	09 00	10	1997	20.0	8.1	61.	9.33	na		Si
Site 2 Site 2	07 08	09 09	10	1997	20.0	8.1	61	9.27	na	DB (14)	Si Si
Site 2	08	09	10 10	1997	19.9	8.0	61	9.18	na	na 👘	Si Si
Site 2	10	09	10	1997 1997	19.7	7.9	60 (0	9.05	na		Si Si
Site 2	11	09	10	1997	19.5 18 e	7.8 7.6	60 60	8.89	59.9		Si Si
Site 2	12	09	10		18.8	7.6	60 60	8.65	na	n1 (18)	Si Si
Site 2	12	09	10	1997 1997	16.9	7.5	60	8.33	na	n1	Si
Site 2	13	09	10	1997	14.7	7.5	61 61	7.71	na		Si
Site 2	15	09	10	1997	13.7 12.5	7.3		6.66 5.22	na	n 4	Si
Site 2	16	09	10	1997	12.5	7.1 7.0	62	5.22	กล	NA 🦾 👘	S.
Site 2	17	09	10	1997	11.0	6.9	61 65	3.80 1.82	กล	na si	S
Site 2	18	09	10	1997	10.7	6.9	65	0.94	па	na di d	S
0.00 1	10	0,7				0.9	05	0.74	na		S S
Site 3	00	10	08	1996	16.3	7.6	63	9.92	61.7	8.2	S
Site 3	01	10	08	1996	16.3	7.8	63	9.76	па	ла	S
Site 3	02	10	08	1996	16.3	7.9	63	9.71	л <u>.</u> л2	na	S S
Site 3	03	10	08	1996	16.3	8.0	63	9.70	<u>па</u>	na	S
Site 3	04	10	08	1996	16.2	8.0	63	9.68	n2	na	S S
Site 3	05	10	08	1996	16.2	8.0	63	9.65	61.6	U7	s S
Site 3	06	10	08	1996	16.2	8.0	63	9.62	па	n2	s
Site 3	07	10	08	1996	16.2	8.0	63	9.63	na	กอิ	s s
Site 3	08	10	08	1996	16.2	8.0	63	9.57	ла	D2	S
Site 3	09	10	08	1996	16.2	8.0	63	9.40	na	na	S
Site 3	10	10	08	1996	16.2	8.0	63	9.37	 na	na	S S
Site 3	15	10	08	1996	16.0	7.9	62	9.27	па	na .	S
Site 3	20	10	08	1996	10.5	7.7	62	8.25	61.8	na	- 1 S
Site 3	25	10	08	1996	9.1	7.6	61	8.51	n1	na 	<u> </u>
-					188	·		-			

ıi

2.1.1.1.1

Site	Depth	Month	Day	Year	Temp	pH	Cond	DO	LCond	Secchi
Site 3	30	10	08	1996	8.4	7.5	60	8.64	n 2	na
Site 3	35	10	08	1996	8.0	7.5	61	8.78	na	na
Site 3	40	10	08	1996	7.6	7.5	62	8.81	62.4	na
Site 3	45	10	08	1996	7.5	7.4	62	8.71	na	בח
Site 3	50	10	08	1996	7.3	7.3	62	8.61	na	ла
Site 3	55	10	08	1996	7.3	7.3	61	8.52	na	nà
Site 3	60 (5	10	08	1996	7.3	7.3	63	8.44	na	na
Site 3	65 70	10	08	1996	7.2	7.3	62	8.40	na	na
Site 3	70 75	10	08	1996	7.2	7.3	62	8.22	na	na
Site 3	75 80	10 10	08 08	1996 1996	7.1 7.0	7.3	62	7.87	na	กล
Site 3 Site 3	00	11	12	1996	7.0 11.4	7.1	64	5.00	63.1	na
Site 3	01	11	12	1996		7.4	62	10.10	61.5	6.5
Site 3	02	11	12	1996	11.4	7.4	62	10.01	na	na
	02	11	12	1996	11.3 11.3	7.5	62 (2	9.94	na	na
Site 3	03	11	12	1996		7.6	63	9.90	na	na
Site 3 Site 3	04	11	12		11.3	7.6	62 (2	9.87	na	na
	06	11	12	1996 1996	11.3	7.6	62	9.84	na	na
Site 3 Site 3	07	11	12	1996	11.3	7.6	61	9.80	n3	na
Site 3	07	11	12	1996	11.3 11.3	7.6	62 (2	9.80	na	na
Site 3	09	11	12	1996	11.3	7.6	62	9.80	na	па
Site 3	10	11	12	1996	11.3	7.6 7.6	61	9.77	na	na
Site 3	10	11	12	1996	11.2	7.6	6l	9.74	61.5	na
Site 3	20	11	12	1996		7.6	61	9.72	n 2	na
Site 3	20 25	11			11.2	7.6	60	9.69	n a	na
Site 3	20 30	11	12 12	1996 1996	10.9	7.6	61	9.37	na	na
Site 3	30	11	12	1996	8.3 7.9	7.5	62	8.10	na	na
Site 3	40	11	12	1996	7. 9 7.6	7.4	62. 62	8.10	na (2.4	na
Site 3	45	11	12	1996	7.5	7.3 7.2	62	8.12	62.4	na
Site 3	50	11	12	1996	7.4	7.2	64	8.09	na	па
Site 3	55	11	12	1996	7.4 7.4	7.2	61	8.02	n2	na
Site 3	60	11	12	1996	7.3	7.1	62	7.99 7.00	na	na
Site 3	65	11	12	1996	7.3	7.1	63 62	7.92	na	na
Site 3	70	11	12	1996	7.2	7.1	62 62	7.83 7.24	na	na
Site 3	75	11	12	1996	7.2	7.1	62	7.03	na	na
Site 3	80	11	12	1996	7.2	7.0	62	6.98	na 62.8	ла
Site 3	00	12	12	1996	7.9	7.2	62	11.07		na 4.2
Site 3	01	12	12	1996	7.9	7.3	62	11.00	na na	
Site 3	02	12	12	1996	7.9	7.3	62	10.88	na na	ла па
Site 3	03	12	12	1996	7.9	7.3	62	10.82	na	па
Site 3	04	12	12	1996	7.9	7.3	62	10.76	กอ	กล
Site 3	05	12	12	1996	7.9	7.3	62	10.71	R2	na
Site 3	06	12	12	1996	7.9	7.3	62	10.71	па	na
Site 3	07	12	12	1996	7.9	7.3	62	10.65	na	na na
Sile 3	08	12	12	1996	7.9	7.3	62	10.59	na	na
Site 3	09	12	12	1996	7.9	7.4	61	10.59	na	 na
Site 3	10	12	12	1996	7.9	7.4	62	10.58	61.3	na
Site 3	15	12	12	1996	7.9	7.4	62	10.52	na	na
Site 3	20	12	12	1996	7.9	7,4	62	10.52	61.2	na
Site 3	25	12	12	1996	7.9	7.4	61	10.46	na	na
Site 3	30	12	12	1996	7.9	7.4	60	10.41	na	na
Sile 3	35	12	12	1996	7.9	7.4	61	10.35	na	na
Sile 3	40	12	12	1996	7.8	7.3	61	9.64	61.9	na
Sile 3	45	12	12	1996	7.6	7.3	61	8.85	กว	na
					189					

	Lak			i zi riyu	ioiau and		nauctivity	Data			
Site	Depth	Month	Day	Year	Temp	pН	Cond	DO	LCond		
Site 3	50	12	12	1996	7.4	7.2	62	8.55	LCond	Seccia	Site
Site 3	55	12	12	1996	7.3	7.2	63	8.46	ла .		Sic Sic
Site 3	60	12	12	1996	7.3	7.1	62	8.31	na	N4	Sile
Site 3	65	12	12	1996	7.3	7.1	62	8.26	na		Sile
Site 3	70	12	12	1996	7.2	7.1	63	8.14	na	-	Sile
Site 3	75	12	12	1996	7.2	7.1	62	8.03	na		Site Site
Site 3	80	12	12	1996	7.2	7.1	62	7.91	na	n	Sice
Site 3	00	02	12	1997	6.2	7.2	61	11.49	na	82	Sile
Site 3	01	02	12	1997	6.1	7.3	61	11.38	na j	na Ne	Siu
Site 3	02	02	12	1997	6.1	7.3	62	11.32	na	. Di .	Siu Siu
Site 3	03	02	12	1997	6.1	7.3	62	11.28	na		Siu
Site 3	04	02	12	1997	6.2	7.3	62	11.26	na	Da No P	Sit
Site 3	05	02	12	1997	6.1	7.4	61	11.23	61.1	na (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	Sit
Site 3	06	02	12	1997	6.1	7.3	61	11.21	na		Sit
Site 3	07	02	12	1997	6.1	7.4	61	11.21	na	na	Sit
Site 3	08	02	12	1997	6.1	7.4	61	11.16	па	na - 5	Sit Sit
Site 3	09	02	12	1997	6.1	7.4	61	11.15	na	na	Sil
Site 3	10	02	12	1997	6.1	7.4	62	11.15	na	na 🕂	Si
Site 3	15	02	12	1997	6.1	7.4	61	11.16	na	<u>n</u> , 1	Si
Site 3	20	02	12	1997	6.1	7.4	61	11.16	na	112	Si
Site 3	25	02	12	1997	6.1	7.4	61	11.10	na		Si Si
Site 3	30	02	12	1997	6.1	7.4	61	11.10	na	na jet in	Si Si
Site 3	·35	02	12	1997	6.1	7.4	62	11.10	N2	na 👘	Si Si
Site 3	40	02	12	1997	6.1	7.4	61	11.10	na	na	Si Si
Site 3	45	02	12	1997	6.1	7.4	61	11.05	na		S S
Site 3 Site 3	50 55	02 02	12	1997	6.1 6.1	7.4	60 60	11.05	na	na cyk	S
Site 3	50 60	02	12 12	1997 1997	6.1	7.4	60. (1	11.05	na (7.4	52	S
Site 3	65	02	12	1997	6.1	7.4	61	11.06	63.4	na /	S S
Site 3	70	02	12	1997	6.1 6.1	7.4 7.4	60 61	11.05	na		S
Site 3	75	02	12	1997	6.1	7.4		11.00	na	na 💦	S S
Site 3	80	02	12	1997	6.I	7.4	60 61	11.00 11.01	na	na	
Site 3	00	02	22	1997	10.1	7. 4 7.3	61	12.20	na 60.6	na 5.8	
Site 3	01	04	22	1997	10.1	7.5	61	12.20	60.5 na	2 (de 12)	
Site 3	02	04	22	1997	9.5	7.5	60	12.16		na (
Site 3	03	04	22	1997	9.1 9.1	7.5	61	12.19	na	na (1	
Site 3	04	04	22	1997	9.0	7.6	60	12.19	na na	n2	
Site 3	05	04	22	1997	8.9	7.6	60	12.06	na	na	\$P\$\$\$\$\$\$***112 板翅目的
Site 3	05	04	22	1997	8.8	7.6	60	12.00	na	na .	
Site 3	07	04	22	1997	8.7	7.6	60	11.99	na	na	
Site 3	08	04	22	1997	8.6	7.6	60	11.89	na Na	na na	
Site 3	09	04 04	22	1997	8.5	7.6	60	11.83	114 N2	na	
Site 3	10	04	22	1997	8.4	7.6	60	11.83	60.0	na	
Site 3	15	04	22	1997	7.8	7.6	60	11.61	ла	na	
Site 3	20	04	22	1997	7.4	7.6	60	11.59	60.4	na	. #
Site 3	25	04	22	1997	7.3	7.6	60	11.48	na	na	
Site 3	30	04	22	1997	7.2	7.6	61	11.43	na	nă	
Site 3	35	04	22	1997	7.1	7.6	59	11.37	na	na	
Site 3	40	04	22	1997	6.9	7.6	59	11.34	na	na	
Site 3	45	04	22	1997	6.8	7.6	60	11.28	па	n2	••
Site 3	50	04	22	1997	6.8	7.5	58	11.23	na	n3	4
Site 3	55	04	22	1997	6.7	7.5	58	11.18	na	na	l
Site 3	60	04	22	1997	6.6	7.5	59	11.23	na	na	
Site 3	65	04	22	1997	6.5	7.5	59	11.15	na	па	
					190		-				

-

	- 1				N	D	N /	T			DO		a 1.
cchi	14 14	111	Site	Depth 70	Month 04	Day 22	Year 1997	Temp 6.5	рН 7.5	Cond 58	DO 11.06	LCond	Secchi
na na			Site 3 Site 3	75	04 04	22	1997	6.5	7.5	59	11.00	na na	na na
na			Site 3	80	04	22	1997	6.5	7.4	59	10.95	60.5	na
na		_	Site 3	00	05	21	1997	15.8	8.0	60	10.40	na	6.1
па		- ,	Site 3	01	05	21	1997	na	na	na	па	na	па
na			Site 3	02	05	21	1997	лà	กล	na	па	na	na
na			Site 3	03	05	21	1997	na	กฉ	na	na	na	na
B.2	100		Site 3	04	05	21	1997	na	กฉ	na	па	na	na
na -			Site 3	05	05	21	1997	15.3	7.9	60	10.51	na	па
na -			Site 3	06	05	21	1997	na	na	na	na	na	na
na		l A C	Site 3	07	05	21	1997	na	na	na	na	ពង	na
Ra		1.001	Site 3	08	05	21	1997	na	ла	na	na	na	na
na -		1 パースとう	Site 3	09	05	21	1997	na	na	na	na	na	D1
ла			Site 3	10	05	21	1997	12.3	7.8	60	11.45	na	na
na		ان المراجع (المراجع المراجع (المراجع (ال	Site 3	15	05	21	1997	na	na	na	na	na	na
na			Site 3	20	05	21	1997	9.2	7.5	60	11.35	na	na
na _s			Site 3	25	05	21	1997	na	na	na	na	па	na
na			Site 3	30	05	21	1997	na	na	na	na	na	na
na			Site 3	35	05	21	1997	na	na	na	na	па	na
D 3			Site 3	40	05	21	1997	7.6	7.4	60	11.28	ла	па
na			Site 3	45	05	21	1997	na	na	ла	na	na	na
na			Site 3	50	05	21	1997	na	na	na	na	na	na
na -	n, 200		Site 3	55	05	21	1997	na	na	ла	na	па	па
D A			Site 3	60	05	21	1997	7.8	7.4	60	11.02	ла	па
na -			Site 3	65	05	21	1997	03	na	ла	na	па	na
na -			Site 3	70	05	21	1997	na	na	na	na	na	na
nı			Site 3	75	05	21	1997	na	na	na.	na	na	na
83 '		1022 a 2 a 2 a 4	Site 3	80	05	21	1997	7.8	7.3	61	10.78	па	na
na		16 Mar 19	Site 3	00	06	12	1997	17.1	8.3	61	10.23	па	4.3
pa		8 2 • • • • * * * *	Site 3	01	06	12	1997	17.1	8.3	60	10.19	na	na
01 01		「「「「「「「」」」	Site 3	02	06	12	1 9 97	17.1	8.4	61	10.15	na	na
5.8	1544	66 L. 025 635 a.S.	Site 3	03	06	12	1997	17.1	8.4	60	10.13	na	na
nz		12 With Your and	Site 3	04	06	12	1997	17.1	8.4	60	10.14	na	na
614			Site 3	05	06	12	1997	17.1	8.4	61	10.11	na	na
D 2			Site 3	06	06	12	1997	17.0	8.4	60	10.11	na	na
R 2	20		Site 3	07	06	12	1997	17.0	8.4	60	10.08	na	na
na			Site 3 Site 3	08	06	12	1997	17.0	8.4	60	10.09	na	nä
na :			Site 3	09	06	12	1997	16.1	8.3	60	10.28	na 60.2	na
N1	101		Site 3	10 15	06	12	1997	14.6	8.2	60 60	10.40	59.3	na
nt			Sile 3	20	06 06	12 12	1997 1997	10.5 9.3	8.0 7.8	60 59	10.34	na	na
n 2			Site 3	25	06 06	12	1997	8.6	7.8	59 60	10.31 10.32	60.1	na
na -			Site 3	30	06	12	1997	7.7	7.8	60	10.32	па па	па па
na -			Site 3	35	06	12	1997	7.4	7.8	60	10.39	ла	na
na (Site 3	40	06	12	1997	7.2	7.7	60	10.35	60.4	па
ņa :			Site 3	45	06	12	1997	7.0	7.7	59	10.35	na	na na
n#			Sile 3	50	06	12	1997	6.9	7.6	58	10.36	na	na
n2			Sile 3	55	06	12	1997	6.9	7.6	60	10.33	ла	na
n3	- 29		Site 3	60	06	12	1997	6.8	7.6	59	10.29	na	na
na			Site 3	65	06	12	1997	6.8	7.6	58	10.35	na	na
na .			Site 3	70	06	12	1997	6.8	7.5	60	10.10	na	na
20 10			Site 3	75	06	12	1997	6.7	7.5	59	9.84	na	n= n2
na na			Sile 3	80	06	12	1997	6.7	7.5	59	9.52	па	na
tra			Site 3	00	07	10	1997	17.5	7.4	60	9.65	па	4.0
			set. L		-			191					·
· ·			Sali A										

	<u>.</u>			-		•		bala	•	1
Site 3	Depth		Day	Year	Temp	рH	Cond	DO	to	
Site 3	01	07	10	1997	17.5	7.8	60	9.50	LCond	Secchi
Site 3	02	07	10	1997	17.5	7.9	60	9.41	na	na
Site 3	03 04	07	10	1997	17.5	8.0	60	9.35	na	na)
Site 3		07	10	1997	17.5	8.0	60	9.30	na na	na:
Site 3	05	07	10	1997	17.5	8.0	60	9.24	na 59.0	Na . 👬
Site 3	06	07	10	1997	17.5	8.0	60	9.24		ni
Site 3	07	07	10	1997	17.5	8.1	60	9.19	na Na	na di
Site 3	08	07	10	1997	17.5	8.1	60	9.17	na	ha 1 ()
Site 3	09	07	10	1997	17.0	8.0	60	9.16	na	Da i
Site 3	10 15	07	10	1997	15.6	7.8	60	9.19	Na	na
Site 3		07	10	1997	10.0	7.9	62	9.56	na	ha e e
Site 3	20	07	10	1997	8.9	7.9	61	9.68	60.2	na = 9,
Site 3	25 30	07	10	1997	7.9	7.8	60	9.76	na	ារ ្ន
Site 3		07	10	1997	7.5	7.8	61	9.84	na	Ra
Site 3	35	07	10	1997	7.3	7.8	60	9.81	na	na -
Site 3	40	07	10	1997	7.1	7.7	59	9.88	ла	
Site 3 Site 3	45	07	10	1997	7.0	7.7	59	9.84	na Na	N2
	50	07	10	1997	7.0	7.7	60	9.83	na	na _{fin}
Site 3 Site 3	55	07	10	1997	6.9	7.6	59	9.81	па	na ,
Site 3	60	07	10	1997	6.9	7.6	59	9.78	60.6	na
Site 3	65	07	10	1997	6.8	7.6	59	9.72	лa	Na 🦷
	70	07	10	1997	6.8	7.5	60	9.52	па	ña
Site 3	75	07	10	1997	6.7	7.5	60	9.22	na na	na
Site 3	80	07	10	1 9 97	6.7	7.4	60	8.08	na	na di
Site 3	00	08	21	1997	21.8	7.3	60	9.23	na	П2
Site 3	01	08	21	1997	21.7	7.5	60	9.04	na	7.0
Site 3	02	08	21	1997	21.7	7.6	60.	9.02	กอ	ña 🦷
Site 3 Site 3	03	08	21	1 9 97	21.7	7.6	60	8.95	na	NA
Site 3	04	08	21	1997	21.7	7.7	60	8.88	na	D2 Л2
	05	08	21	1997	21.7	7.7	61	8.86	па	114 112
Site 3	06	08	21	1997	21.7	7.7	60	8.82	па	na
Site 3	07	08	21	1997	21.6	7.7	60	8.80	na	па
Site 3	08	08	21	1997	21.6	7.7	60	8.81	na	na
Site 3 Site 3	09	08	21	1997	21.2	7.7	60	8.85	л2 Л2	ла —
Site 3	10	08	21	1997	20.0	7.7	60	8.98	59.7	na -
Site 3	15	08	21	1997	12.9	7.8	60	9.03	na	na
	20	08	21	1 9 97	9.1	7.7	60	9.33	60.3	na
Site 3	25	08	21	1997	8.2	7.7	59	9.51	ña	na :
Site 3	30 26	08	21	1997	7.7	7.7	58	9.65	na	па
Site 3	35	08	21	1997	7.4	7.6	59	9.73	ла	
Site 3	40 45	08	21	1997	7.3	7.6	57	9.76	na	na na
Site 3	45	08	21	1997	7.1	7.6	59	9.70	na	na
Site 3	50	08	21	1997	7.1	7.6	59	9.75	na	na
Site 3	55	08	21	1997	7.0	7.6	59	9.65	па	na
Site 3	60	08	21	1997	7.0	7.5	59	9.52	61.2	na
Site 3	65	08	21	1997	6.9	7.5	60	9.26	na	na
Site 3	70	08	21	1997	6.8	7.5	60	9.12	na	na na
Site 3	75	08	21	1997	6.8	7.5	60	8.79	ла	ла Ла
Site 3	80	08	21	1997	6.8	7.3	61	6.88	61.5	na
Site 3	00	09	18	1997	18.9	7.6	61	9.43	n2	na
Site 3	01	09	18	1997	18.9	7.7	60	9.39	na	na na
Site 3	02	09	18	1997	18.3	7.7	62	9.40	na	na
Site 3	03	09	18	1997	18.2	7.8	62	9.41	กอ	na
Site 3	04	09	18	1997	18.2	7.8	61	9.37	na	na
					_					114

	Site	Depth	Month	Day	Year	Temp	pН	Cond	DO	LCond	Secchi
	Site 3 Site 3	05 06	09 09	18	1997	18.1	7.8	61	9.32	\$9.8	na
	Site 3	00	09	18 18	1997 1997	18.1	7.8	61	9.29	na	na
	Site 3	08	09	18	1997	18.1	7.8	61	9.26	na	na
	Site 3	09	09	18	1997	18.1	7.8	60	9.23	na	na
	Site 3	10	09	18	1997	18.1	7.8	61	9.19	na	na
	Site 3	15	09	18	1997	18.1 `13.3	7.8	60	9.17	na	n2
	Site 3	20	09	18	1997	9.8	7.6 7.5	61 61	8.79 9.09	na	na
	Site 3	25	09	18	1997	8.3	7.5	60	9.09 9.24	na	na
	Site 3	30	09	18	1997	7.8	7.4	60	9.55	na	na
	Site 3	35	09	18	1997	7.5	7.4	59	9.70	na na	na
	Site 3	40	09	18	1997	7.3	7.4	59	9.72	60.8	ла
	Site 3	45	09	18	1997	7.2	7.4	59	9.73	na	na
	Site 3	50	09	18	1997	7.1	7.4	58	9.70	na	na
	Site 3	55	09	18	1997	7.0	7.3	58	9.67	na	na na
	Site 3	60	09	18	1997	7.0	7.3	58	9.60	na	na na
	Site 3	65	09	18	1997	7.0	7.3	59	9.54	na	na
	Site 3	70	09	18	1997	6.9	7.3	60	9.18	na na	na
	Site 3	75	09	18	1997	6.8	7.2	60	8.54	na	na
	Site 3	80	09	18	1997	6.8	7.1	63	5.93	na	na
											,,,,
S	Site 4	00	10	08	1996	16.3	7.6	63	9.87	na	8.2
	Site 4	01	10	08	1996	16.3	7.8	63	9.63	na	na
¹² S	Site 4	02	10	08	1996	16.3	7.8	63	9.60	na	na
: s	Site 4	03	10	08	1996	16.2	7.9	63	9.58	na	na
	Site 4	. 04	10	08	1996	16.2	7.9	63	9.56	na	na
÷ 8	Site 4	05	10	08	1996	16.2	7.9	63.	9.56	61.7	na
	Site 4	06	10	08	1996	16.2	7.9	63	9.53	na	na
<u> </u>	Site 4	07	10	08	1996	16.2	7.9	63	9.51	na	na
	Site 4	08	10	08	1996	16.2	7.9	63	9.50	na	กล
្រូវ	Site 4	09	10	08	1996	16.2	7.9	63	9.47	na	na
	Site 4	10	10	08	1996	16.2	7.9	63	9.47	na	na
	Site 4	15	10	08	1996	16.2	7.9	62	9.38	na	na
N	Site 4	20	10	08	1996	11.7	7.7	62	8.03	61.6	na
5 A.A.	Site 4	25	10	08	1996	9.1	7.6	61	8.58	na	na
N. 1	Site 4	30	10	08	1996	8.3	7.5	61	8.90	na	na
10 1	Site 4	35	10	08	1996	7.9	7.5	60	9.00	na	na
WG .	Site 4	40	10	08	1996	7.7	7.5	62	8.90	na	na
	Site 4	45	10	08	1996	7.5	7.5	62	9.02	na	na
ST	Site 4	50	10	08	1996	7.4	7.4	60	9.02	na	na
u 🕅	Site 4	55	10	08	1996	7.4	7.4	60	9.05	na	na
641C	Site 4 Site 4	60	10	08	1996	7.3	7.4	61	9.07	na	na
6389 X	Site 4	65	10	08	1996	7.3	7.4	60	9.08	na	na
1996 - N. S.	Site 4	70 76	10	08	1996	7.3	7.4	61	8.95	na	na
9882 - A. (Site 4	75	10	08	1996	7.2	7.4	61	8.93	na	na
1. 16 28 19 3	Site 4	80 86	10	08	1996	7.2	7.4	59	8.98	na	na
N2070	Site 4	85 90	10	08	1996	7.2	7.3	61	8.84	na	na
22 ali # 1	Site 4	90 00	10	08	1996	7.1	7.3	62 62	8.71	na	na 6 0
120021	Site 4	01	11	12	1996	11.2	7.3	62 62	10.18	na	6.0
	Site 4	02	11	12 12	1996 1996	11.2	7.4 7.5	62 62	10.04 9.99	na 03	na 82
ine fil Ditta	Sile 4	02	11 11	12	1996	11.2 11.2	7.5 7.5	62 61	9.99 9.91	n 2	na
	Sile 4	04	,11 _11	12	1996	11.2	7.5 7.5	62	9.91	na 02	na
	Sile 4	05	11	12	1996	11.2	7.5	62	9.83	na na	na na
V.	Č.		• •	14	.,,,,	193	مي. و	52		11.0	.14
SK143	R.1.1					127					

193

Р Г

				-			-					
Site	Depth	Month	Day	Year	Temp	pН	Cond	DO	LCond			Ę
Site 4	06	11	12	1996	11.2	7.5	62	9.83	na	Secchi		S
Site 4	07	11	12	1996	11.2	7.5	62	9.79	na	na:		: S
Site 4	08	11	12	1996	11.2	7.5	61	9.79	Па	na. Na stra		S
Site 4	09	11	12	1996	11.2	7.5	62	9.79	Na	2752988		5 S.
Site 4	10	11	12	1996	11.2	7.6	62	9.75	กอ	na nat		Si
Site 4	15	11	12	1996	11.1	7.6	61	9.75	na	na		Si
Site 4	20	11	12	1996	11.2	7.6	61	9.76	па	na		Si
Site 4	25	11	12	1996	10.9	7.5	61	9.54	па	na di di		- Si
Site 4	30	11	12	1996	8.4	7.5	63	8.18	na			Si
Site 4	35	11	12	1996	7.7	7.4	61	8.26	па	na -		Si
Site 4	40	11	12	1996	7.6	7.3	62	8.25	ña	Da ,		Si
Site 4	45	11	12	1996	7.5	7.3	63	8.20	na	Ra 👘		Si
Site 4	50	11	12	1996	7.4	7.2	64	8.50	па	па		Si
Site 4	· 55	11	12	1996	7.3	7.2	62	8.47	па	ла 👘		Si
Site 4	60	11	12	1996	7.3	7.2	62	8.54	na	ni S		Si
Site 4	65	11	12	1996	7.3	7.2	60	8.30	ла	na: 🔒		Si
Site 4	70	11	12	1996	7.2	7.2	62	8.15	па	na .		Si
Site 4	75	11	12	1996	7.2	7.2	61	8.12	na	na 📜		Sit
Site 4	80	11	12	1996	7.2	7.1	62	8.23	па	na teka		Sil
Site 4	85	11	12	1996	7.2	7.1	61	8.25	na			Sit
Site 4	90	11	12	1996	7.1	7.1	61	8.10	62.4	na i M		Sit
Site 4	.00	12	12	1996	7.9	7.6	62	11.20	61.2	45		Sit
Site 4	01	12	12	1996	7.9	7.5	62	10.83	na	61		Sit
Site 4	02	12	12	1996	7.9	7.5	62	10.66	na	na j		Sit
Site 4	03	12	12	1996	7.8	7.5	62	10.61	na	na		Sit
Site 4	04	12	12	1996	7.8	7.5	62	10.55	na	Di		Sit
Site 4	05	12	12	1996	7.8	7.5	62 ·	10.50	Nà	DA		Sit
Site 4	06	12	12	1996	7.8	7.5	62	10.44	na			Sit
Site 4	07	12	12	1996	7.8	7.4	62	10.38	na	na		Sit
Site 4	08	12	12	1996	7.8	7.4	62	10.38	na	Da , 197		Sit
Site 4	09	12	12	1996	7.8	7.4	62	10.39	na	DA		Sit
Site 4	10	12	12	1996	7.8	7.4	62	10.33	na			Sib
Site 4	15	12	12	1996	7.8	7.4	61	10.33	na			Site
Site 4	20	12	12	1996	7.8	7.4	61	10.27	na	па		Site
Site 4	25	12	12	1996	7.8	7.4	61	10.28	na	na 💒		Sit
Site 4	30	12	12	1996	7.8	7.4	62	10.28	na	02 1		Situ
Site 4	35	12	12	1996	7.8	7.4	61	10.28	na	na na		Site
Site 4	40	12	12	1996	7.8	7.4	61	10.22	61.2	na		Site
Site 4	45	12	12	1996	7.7	7.4	61	10.03	na			Site
Site 4	50	12	12	1996	7.6	7.4	60	9.71	na	02		Site
Site 4	55	12	12	1996	7.5	7.3	60	8.9 9	na	n t		Site
Site 4	60	12	12	1996	7.3	7.3	63	8.59	па	na		Site
Site 4	65	12	12	1996	73	7.2	61	8.54	na	ла		Site
Site 4	70	12	12	1996	7.3	7.2	63	8.50	na	na		Site
Site 4	75	12	12	1996	7.3	7.2	62	8.44	na	na i i		Site
Site 4	80	12	12	1996	7.2	7.2	62	8.45	na	na,		Site
Site 4	85	12	12	1996	7.2	7.1	64	8.40	na	กล		Site
Site 4	90	12	12	1996	7.2	7.1	63	8.35	63.2	n2 -	i i	Sit
Site 4	00	02	12	1997	6.1	7.1	61	11.36	na	9.0		Sit
Site 4	01	02	12	1997	6 .1	7.2	61	11.25	na	N2		Sit
Site 4	02	02	12	1997	6.1	7.2	61	11.14	па	n 2		Sit
Site 4	03	02	12	1997	6. 1 .	7.3	61	11.09	na	na i		Sit
Site 4	04	02	12	1997	6.1	7.3	61	11.04	na	na di di		Sit
Site 4	05	02	12	1997	6.1	7.3	61	11.04	na	na -		Sit
					194					-		

hi

ж.	Site	Depth	Month	Day	Year	Temp	pН	Cond	DO		-
	Site 4	06	02	12	1997	6.1	7.3	61	DO 11.00	LCond	Secchi
	Site 4	07	02	12	1997	6.1	7.3	61	10.99	60	na
	Site 4	08	02	12	1997	6.1	7.3	61	11.00	na na	בח
	Site 4	09	02	12	1997	6.1	7.3	61	10.99	na	na
	Site 4	10	02	12	1997	6.1	7.4	61	10.99	па	па
	Site 4	15	02	12	1997	6.1	7.4	61	10.99	na	ла
51	Site 4	20 25	02	12	1997	6.1	7.4	61	10.93	60.8	па па
i.	Site 4 Site 4	30	02	12	1997	6.1	7.4	61	10.94	na	па
ļ	Site 4	35	02 02	12	1997	6.1	7.4	61	10.94	па	na
	Site 4	40	02	12	1997	6.1	7.4	61	10.94	па	па
c,	Site 4	45	02	12 12	1997	6.1	7.4	61	10.94	61.8	na
	Site 4	50	02	12	1997	6.1	7.4	61	10.90	na	na
) 	Site 4	55	02	12	1997 1997	6.1	7.4	62	10.89	ña	na
	Site 4	60	02	12	1997	6.1 6.1	7.4	61	10.89	па	na
alis I	Site 4	65	02	12	1997	6.I	7.4	61	10.83	па	na
	Site 4	70	02	12	1997	6.1	7.4	60	10.84	na	na
	Site 4	75	02	12	1997	6.1	7.4	61	10.84	na	na
	Site 4	80	02	12	1997	6.0	7.4 7.4	61	10.84	na	na
	- Site 4	85	02	12	1997	6.0	7.4	61 61	10.79	na	na
	Site 4	90	02	12	1997	6.0	7.4	60	10.81 10.76	na	na
1	Site 4	.00	04	22	1 9 97	10.2	7.3	61	10.78	na Ch 7	па
	Site 4	01	04	22	1997	9.8	7.4	60	11.54	61.7	6.1
03~ 1.2	Site 4	02	04	22	1997	9.3	7.5	60	11.54	па па	fia Ta
399 87 - 840 - 840 -	Site 4	03	04	22	1 9 97	9.2	7.5	61	11.52	na	па па
	Site 4 Site 4	04	04	22	1997	8.9	7.6	60	11.51	 Na	na
, t	Site 4	05 06	04	22	1997	8.8	7.6	60.	11.50	na	па
	Site 4	07	04 04	22	1997	8.7	7.6	60	11.50	па	na
	Site 4	08	04	22	1997	8.6	7.6	60	11.44	na	па
l I.	Site 4	09	04	22 22	1997 1997	8.5	7.7	60	11.42	па	па
	Site 4	10	04	22	1997	8.4	7.7	60	11.36	па	na
	Site 4	15	04	22	1997	8.2	7.7	60	11.30	па	na
	Site 4	20	04	22	1997	8.1 8.0	7.7	60	11.30	na	na
i i N	Site 4	25	04	22	1997	8.0 7.9	7.7 7.6	59 60	11.27	па	Na
	Site 4	30	04	22	1997	7.5	7.7	60 60	11.25	na	na
	Site 4	35	04	22	1997	7.3	7.6	60	11.12 11.13	na	na
9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Site 4	40 .	04	22	1997	7.0	7.6	59	11.13	na	na
	Site 4 Site 4	45	04	22	1997	6.9	7.6	59	11.05	па па	na na
	Site 4	50	04	22	1997	6.9	7.6	59	11.03	na	na
	Site 4	55	04	22	1997	6.8	7.6	59	11.00	na	па
Å.	Site 4	60 65	04	22	1997	6.7	7.6	57	10.96	na	па
	Site 4	70	04 04	22	1997	6.7	7.6	59	10.94	na	па
2 	Site 4	75	04 04	22	1997	6.6	7.6	58	10.92	na	па
	Site 4	80	04	22 22	1997	6.6	7.6	59	10.88	na	na
	Site 4	85	04	22	1997 1997	6.6 6.5	7.6 7.4	59	10.84	na	na
	Site 4	90	04	22	1997	6.5	7.6 7.5	59	10.82	na	na
	Site 4	00	05	21	1997	15.6	7.9	59 60	10.79	na	na
	Site 4	01	05	21	1997	na	na	60 na	10.52	ຄາ	6.1
90" 23	Site 4 Site 4	02	05	21	1997	na	na	па	na na	na	na
 N c	Site 4	03	05	21	1997	ла	na	กล	na	กอ กอ	ла
	Site 4	04	05	21	1997	na	na	na	па	na	na na
	- · ·	05	05	21	1997	15.1	7.9	60	10.51	па	па
1692. 1855	5				19	5					

	D			••	~		~ .			
Site Site 4	Depth 06	Month 05	Day 21	Year 1997	Temp na	рН na	Cond	DO na	LCond	Secchi
Site 4	07	05	21	1997	na na	na	na	na	na	na 👘
Site 4	08	05	21	1997	na	na	na	na	na na	P4, 1
Site 4	09	05	. 21	1997	na	na	na	กล	na	
Site 4	10	05	21	1997	12.6	7.8	60	11.29	па	D 3
Site 4	15	05	21	1997	na	na	na	กฉ	na	01
Site 4	20	05	21	1997	9.6	7.6	60	11.42	na	04) 04
Site 4	25	05	21	1997	na	na	na	na	па	
Site 4	30	05	21	1 99 7	กล	na	na	na	па	na
Site 4	35	05	21	1997	na	na	na	na	па	na (* 1916)
Site 4	40	05	21	1997	7.8	7.5	60	11.32	na	ni ())
Site 4	45	05	21	1997	na	na	na	na	na	ni i
Site 4	50	05	21	1997	กล	na	na	na	na	na
Site 4	55	05	21	1997	na	na	na	na	na	na - ¹¹⁷
Site 4	60	05	21	1997	7.6 ·	7.4	61	11.38	na	na
Site 4	65	05	21	1997	na	na	na	na	na	ពរ ៍
Site 4	70	05	21	1997	na	na	na	na	na	na 🛒
Site 4	75	05	21	1997	na T c	na	na	n2	na	na j
Site 4	80 86	05	21	1997	7.5	7.4	61	11.38	na	N2
Site 4	85 90	05 05	21	1997	na 2 c	n1 7.4	na	na 11.27	па	na i
Site 4	90 00	05	21 12	1997	7.5	7.4	61	11.37	na	DA .
Site 4 Site 4	01	06	12	1997 1997	18.4	8.3	61 61	10.41 10.38	па	4.5
Site 4	02	06	12		17.7	8.5			ла	na
Site 4	02	06	12	1997 1997	17.3 16.9	8.5 8.5	61 60	10.36 10.44	na	na "
Site 4	04	06	12	1997	16.9	د.ه 8.5	60	10.44	na na	ດລ. ກລຸ
Site 4	05	06	12	1997	16.8	8.5	60-	10.39	59.4	na -
Site 4	06	06	12	1997	14.2	8.3	60	10.61	n2	
Site 4	07	06	12	1997	13.0	8.2	60	10.71	na	
Site 4	08	06	12	1997	12.3	8.1	60	10.52	па	n a
Site 4	09	06	12	1997	11.6	8.0	60	10.59	na	01
Site 4	10	06	12	1997	11.3	7.9	61	10.60	na	na
Site 4	15	06	12	1997	9.5	7.8	60	10.44	nà	ns
Site 4	20	06	12	1997	8.4	7.8	60	10.34	60.1	na
Site 4	25	06	12	1997	7.6	7.7	59	10.38	na	na
Site 4	30	06	12	1997	7.3	7.7	60	10.39	na	na
Site 4	35	06	12	1997	7.1	7.6	61	10.51	na	រាង
Site 4	40	06	12	1 9 97	7.0	7.6	61	10.47	na	na
Site 4	45	06	12	1997	6.9	7.6	58	10.45	na	na
Site 4	50	06	12	1997	6.9	7.5	58	10.43	na	na
Site 4	55	06	12	1997	6.8	7.5	59	10.39	ກລ	na
Site 4	60	06	12	1997	6.8	7.5	58	10.34	กล	na
Site 4	65	06	12	1997	6.8	7.5	59	10.35	na	na
Sile 4	70	06	12	1997	6.7	7.5	59	10.38	na	ກລ
Site 4	75	06	12	1997	6.7	7.5	59	10.40	na	Ла
Site 4	80 86	06 06	12	1997	6.7	7.4	60 58	10.30	na	na
Site 4	85	06 06	12	1997	6.6	7.4	58	10.24	na	na
Site 4	90 00	06	12	1997	6.6	7.4	59	10.19	na	N3
Site 4	00	07	14	1997 1997	na	na	n2 03	na	na	N3 UJ
Site 4	01 02	07 07	14 14	1997	na	na na	na na	na na	na na	na na
Site 4 Site 4	02	07	14	1997	na na	na	na	na	na	n1
Site 4	03	07	14	1997	na	กอ	na	na	na	20, 20,
Site 4	05	07	14	1997	na	na	na	ла	na	 ภว
			•		104					

Site	Depth	Month	Day	Year	Temp	pН	Cond	DO	LCond	Secchi
Site 4	06	07	14	1997	na	na	na	na	na	na
Site 4	07	07	14	1997	na	na	na	na.	na	na
Site 4 Site 4	08 09	07 07	14 14	1997	na	na	na	na	nı	na
Site 4	10	07	14	1997 1997	na	na	na	na	na	na
Site 4	15	07	14	1997	na	na	กล	na	na	na
Site 4	20	07	14	1997 1997	na	กล	na	na	na	na
Site 4	20	07	14	1997	กา	na	na	na	na	na
Site 4	30	07	14	1997	na na	na	na	па	na	na
Site 4	35	07	14	1997		na	na	Na	na	na
Site 4	40	07	14	1997	na	na	па	na	na	na
Site 4	45	07	14	1997	na	na	na	na	na	na
· Site 4	50	07	14	1997	na	na	na ·	na	na	na
Site 4	55	07	14	1997	na	na	na	na	na	na
Site 4	60	07	14	1997	na na	па	па	na	na	na
Site 4	65	07	14	1997	กอ	па	na	na	na	na
Site 4	70	07	14	1997	na	na	па	па	na	na
Site 4	75	07	14	1997	n a 114	ла	na	na	na	na
Site 4	80	07	14	1997		па	na	กล	na	na
Site 4	85	07	14	1997	na	na	na	па	na	na
Site 4	90	07	14	1997	na	na	na	na	na –	na
Site 4	00	08	21	1997	na	na	na	na	па	na
Site 4	·01	08	21	1997	na	na	na	na	na	na
Site 4	02	08	21	1997	na na	na	na	na	na	па
Site 4	02	08	21	1997	na	na	па	na	na	na
Site 4	04	08	21	1997	na	na na	na	na	na	na
Site 4	05	08	21	1997	na	na	па	па	na	na
Site 4	06	08	21	1997	na	na na	na.	na	na	na
Site 4	07	08	21	1997	па	na	na na	na 84	na	na
Site 4	08	08	21	1997	na	na na	na	กา กา	na	na
Site 4	09	08	21	1997	n2	па	na na	na	na na	na
Site 4	10	08	21	1997	na	na	na	n1	na	na na
Site 4	15	08	21	1997	ла	na	па	กล	n2	n3
Site 4	20	08	21	1997	na	na	па	na	na	na
Site 4	25	08	21	1997	na	na	па	na	na	na
Ś Site 4	30	08	21	1997	na	na	กล	na	na	na
Site 4	35	08	21	1997	na	na	na	n= na	na	na
Site 4	40	08	21	1997	na	na	na	 n2	n2	na
Site 4	45	08	21	1997	na	กล	na	בת	na	n3
Site 4	50	08	21	1997	na	ла	ла	na	na	na
Site 4	55	08	21	1997	na	na	na	n2	na	na
Site 4	60	08	21	1997	na	กา	na	na	na	na
Site 4 Site 4 Site 4 Site 4 Site 4 Site 4 Site 4 Site 4 Site 4	65	08	21	1997	na	na	na	na	na	na
Site 4	70	08	21	1997	กอ	na	na	na	па	na
Site 4	75	08	21	1997	na	na	na	בת	na	na
Sile 4	80	08	21	1997	na	na	ла	na	na	па
Site 4	85	08	21	1997	па	na	na	nà	กล	na
Site 4	90	08	21	1997	па	na	na	na	na	กอ
Site 4	00	09	18	1997	18.3	7.4	60	9.49	59.7	na
Sile 4	01	09	18	1997	18.1	7.5	60	9.40	na	na
Site 4	02	09	18	1997	17.9	7.5	61	9.38	ла	па
Site 4	03	09	18	1997	17.8	7.5	61	9.38	na	na
Sile 4 Sile 4	04	09	18	1997	17.8	7.5	60	9.36	na	na
and the second s	05	09	18	1997	17.8	7.5	60	9.34	na	na
					107					

Site	Depth	Month	Day	Year	Temp	pН	Cond	DO	LCond	
Site 4	06	09	18	1997	17.7	7.6	60	9.31	na	Secchi
Site 4	07	09	18	1997	17.7	7.6	60	9.32	Ra	na -
Site 4	08	09	18	1997	17.7	7.6	60	9.29	Па	na
Site 4	09	09	18	1997	17.7	7.6	61	9.26	na	Na 👌
Site 4	10	09	18	1997	17.7	7.6	60	9.23	Ra	na
Site 4	15	09	18	1997	15.7	7.5	61	8.95	ha	na
Site 4	20	09	18	1997	10.6	7.4	60	8.95	60.2	na
Site 4	25	09	18	1997	8.5	7.4	61	9.33	_	83
Site 4	30	09	18	1997	7.8	7.4	61	9.63	na na	62
Site 4	35	09	18	1997	7.5	7.4	60	9.70	na	N2
Site 4	40	09	18	1997	7.4	7.3	60	9.89	60.6	กล
Site 4	45	09	18	1997	7.2	7.3	59	9.85		na 🦻
Site 4	50	09	18	1997	7.2	7.3	58	9.92	па	na
Site 4	55	09	18	1997	7.1	7.3	59	9.88	na Ta	Da -
Site 4	60	09	18	1997	7.0	7.3	59	9.94	na	na,
Site 4	65	09	18	1997	7.0	7.3	59		กอ	na
Site 4	70	09	18	1997	7.0	7.3	59	9.95	na	Па
Site 4	75	09	18	1997	6.9	7.3		9.93	ла	na .
Site 4	80	09	18	1997			59	9.87	па	na
Site 4	85	09	18	1997	6.9	7.3	59	9.87	na	па
Site 4	90	09	18		6.9	7.3	59	9.82	na	na
	20	07	10	1997	6.8	7.3	59	9.51	па	ла

B.2 Lake Whatcom Laboratory Analysis Data

:chi a

a a

Lake Whatcom 1996/97 Water Quality Data.

.

											1. Å		
Site	Depth	Month	Day	Үсаг	Alk	Turb	NHJ	TN	NO3	SRP	TP		Sit
Gatehouse	00	10	08	96	19.1	0.7	< 10	221	174	< 5	< 5	<u>G</u> a 🦾	Sile
Gatehouse	00	11	12	96	19.0	0.6	< 10	261	219	< 5	<5 -	9	Sile
Gatehouse	00	12	03	96	18.3	1.6	13	396	378	< 5	6 .		Sile
Gatchouse	00	02	12	97	17.8	0.5	< 10	623	411	< 5	S		Sile
Gatehouse	00	04	22	97	17.6	0.5	< 10	509	349	< 5	< 5		Sic
Gatehouse	00	05	15	97	17.7	0.5	< 10	336	329	< 5	< \$		
Gatehouse	00 00	06 07	10 10	97 97	17.9	0.6	30	559	361	< 5	< 5	a)	Inta
Gatchouse	00	08	13	97 97	18.3	0.6	15	469	349	< 5	< 5	à	ana inte
Gatehouse Gatehouse	00	09	15	97 97	18.3 19.3	0.6 0.8	18 10	307 327	236	< 5	6 .		lata
Qatchouse	00	0,	10	,,	17.5	0.0	10	321	150	< 5	<5	nä	Inte
Site I	00	10	08	96	20.3	0.8	27	328	87	< 5			Inte
Site I	05	10	08	96	20.7	0.8	16	178	72	< 5	S	na	Inte
Site 1	10	10	08	96	20.7	0.9	16	135	61	< 5	6 5	ma .	inti Inti
Site 1	15	10	08	96	25.3	2.4	194	272	14	< 5	8		inu Inu
Site 1	20	10	08	96	25.8	1.4	182	315	17	< 5	10		Inti
Site 1	00	11	12	96	20.1	0.9	< 10	244	166	< 5	5	D2.	Int
Site 1	05	П	12	96	20.4	1.0	< 10	159	168	< 5	s	4.7 3.8	int lat
Site 1	10	11	12	96	20.5	0.9	11	228	122	< 5	< 5	3.8	int int
Site 1	15	11	12	96	20.3	1.0	п	168	155	< 5	S	3.6	Int
Site 1	20	П	12	96	20.5	1.0	10	136	155	< 5	6	3.4	Int
Site 1	00	12	03	96	19.5	2.6	12	548	230	< 5	8	2.7	in Int
Site I	05	12	03	96	19.4	2.6	11	478	260	< 5	8	2.9	lat int
Site 1	10	12	03	96	19.4	2.9	< 10	466	236	< 5	9	22	int int
Site 1	15	12	03	96	19.5	3.2	na	569	262	< 5	9	2.6.	ini 🦾
Site 1	20	12	03	96	19.4	2.8	17	557	283	< 5	8	2.4 = 1 ^{+%}	la la
Site 1	00	02	12	97	18.1	0.9	< 10	569	407	< 5	< 5	1.4	in in
Site 1	05	02	12	97	18.2	0.9	< 10	514	418	< 5	< 5	1.1	al in
Site 1	10	02	12	97	18.1	1.0	na	454	383	< 5	< 5	13 . 🧃	in In
Site 1	15 -	02	12	97	18.2	1.0	< 10	508	394	< 5	< 5	1.2	ln in
Site 1	20	02	12	97	18.2	1.0	< 10	623	403	< 5	< 5	1.2	in in
Site 1	00	04	22	97	18.4	0.6	10	299	354	< 5	< 5	0.7	in in
Site 1 Site 1	05 10	04 04	22 22	97 97	18.3	0.7	< 10	381	351	< 5	< 5	0.8	u State
Site I	15	04	22	97 97	18.4 18.6	0.7 0.7	10 < 10	338 366	325 330	< 5 < 5	< 5	0.8 0.9	k L
Site 1	20	04	22	97	18.4	0.7	17	398	330 347	< 5	< 5 < 5	1.0	
Site I	00	05	15	97 97	18.8	0.8	< 10	304	337	< 5	< 5	0.9	
Site I	05	05	15	97	19.3	0.6	11	316	309	<5	< 5	1.4	
Site 1	10	05	15	97	18.3	0.6	15	281	313	<5	< 5	1.7	i sina si
Site 1	15	05	15	97	18.3	0.5	15	296	296	<5	<5	1.6	
Site 1	20	05	15	97	18.4	0.6	21	283	329	< 5	< 5	1.2	
Site 1	00	06	10	97	19.0	0.8	< 10	478	246	< 5	< 5	2.1	
Site 1	05	06	10	97	18.6	1. 0	< 10	475	275	< 5	5	3.0	
Site 1	10	06	10	97	20.6	0.9	11	440	273	< 5	5	3.5	
Site 1	15	06	10	97	18.5	0.7	47	437	283	< 5	< 5	2.3	
Site 1	20	06	10	97	18.5	0.6	53	454	292	< 5	< 5	1.2	
Site 1	00	07	14	97	19.3	0.6	< 10	368	171	< 5	< 5	2.1	
Site I	05	07	14	97	19.3	0.7	< 10	325	171	< 5	< 5	4.1	
Site 1	10	07	14	97	19.1	0.6	< 10	413	254	< 5	5	4.6	
Site 1	15	07	14	97	19.2	C.8	< 10	453	320	< 5	8	1.5	
Site 1	20	07	14	97	19.3	1.0	< 10	373	371	< 5	7	0.8	
Site I	00	08	13	97	19.6	0.6	< 10	225	95	< 5	10	2.6	l
Site I	05	08	13	97	19.2	0.6	< 10	236	116	< 5	11	3.5	
Site 1	10	08	13	97	19.9	1.1	< 10	292	82	< 5	12	8.5	
Site 1	15	08	13	97	20.6	1.8	38	386	174	< 5	12	2.3	
Site 1	19	08	13	97	21.3	24	41	339	na	< 5	14	1.4	
													1

Inti Inti Inti Int Int Int Int Int lat Int lni la: ĺn In In ln ln In lr lr և h

> S S ę ţ : :

Lake Whatcom 1996/97 Water Quality Data.

ŧ

Site	•	Month	Day	Year	Alk	Turb	NH3	TN	NO3	SRP	TD	<i></i>
Site		09	10	97	19.9	0.8	< 10	262	53	< 5	тр 8	C社 2.9
Site		09	10	97	20.0	0.9	< 10	271	51	< 5	8	4.3
Site		09	10	9 7	20.6	1.4	14	317	63	< 5	14	7.4
Site		09	10	97	22.7	5.9	116	265	46	< 5	16	0.7
Site	1 20	09	10	97	23.3	8.7	128	370	48	< 5	21	0.4
1-1-1-				_								•
Intak		10	08	96	19.1	0.5	< 10	333	187	< 5	< 5	па
Intak Intak		10	08	96	19.1	0.6	< 10	270	174	< 5	< 5	ла
Intak		10	80	96	19.1	0.6	< 10	275	178	< 5	< 5	na
Intak		11	12	96	18.9	0.5	< 10	198	277	< 5	< 5	2.6
Intak		11 11	12	96	18.8	0.5	< 10	189	230	< 5	< 5	2.5
Intak		12	12 03	96	18.9	0.5	< 10	184	261	< 5	<5	2.1
Intako		12	03	96 06	18.2	1.4	14	478	296	< 5	< 5	1.6
Intako		12	03	96 06	18.2	1.8	13	481	279	< 5	< 5	1.7
Intake		02	12	96 07	18.2	1.6	10	375	318	< 5	< 5	1.6
Intake		02	12	97 07	17.8	0.6	< 10	629	437	< 5	< 5	1.0
Intake		02	12	97 97	17.7	0.6	< 10	435	373	< 5	< 5	0.9
Intake		04	22	97 97	17.7	0.5	< 10	581	366	< 5	< 5	0.8
Intake		04	22	97 97	18.0	0.7	< 10	325	384	< 5	< 5	1.0
Intake		04	22	97 97	17.7 17.6	0.7	< 10	362	334	<5	< 5	1.3
Intake		05	15	97	17.5	0.5 0.5	12	286	332	< 5	< 5	1.0
Intake		05	15	97	18.1	0.5	< 10	237	359	< 5	< 5	1.0
Intake		05	15	97	18.0	0.8	< 10	314	300	< 5	< 5	1.6
Intake	00	06	10	97	18.7	0.8	< 10	271	305	< 5	< 5	1.8
Intake		06	10	97	18.1	1.0	< 10 21	446 486	288	< 5	< 5	1.8
Intake	10	06	10	97	18.0	1.0	14	480 472	285	< 5	5	3.6
Intake	00	07	10	97	18.4	0.6	< 10	336	347	<5	< 5	3.7
Intake	05	07	10	97	18.4	0.7	< 10	346	256 256	< 5	< 5	2.7
. Intake	10	07	10	97	18.3	0.5	< 10	410	256	<5	< 5	2.8
latake	00	08	13	97	19.2	0.5	< 10	292	135	<5 <5	< 5	2.6
Intake	05	08	13	97	18.6	0.4	< 10	275	188	<5	<5	1.6
Intake	10	08	13	97	18.5	0.5	< 10	309	191	<5	<5 5	1.9
Intake		09	10	97	20.2	0.5	< 10	258	132	<5	6	2.3
Intake	05	09	10	97	ла	0.5	< 10	227	157	<5	6	2.7
Intake	10	09	10	97	18.9	0.6	< 10	348	165	< 5	< 5	3.5 3.4
											~ 5	3.4
Site 2	00	10	08	96	19.1	0.5	< 10	272	191	< 5	< 5	na
Site 2	05	10	08	96	19.1	0.5	< 10	303	178	< 5	< 5	па
Site 2 Site 2	10	10	08	96	19.2	0.5	< 10	229	174	< 5	< 5	na
Site 2	15	10	08	96	19.2	0.5	< 10	283	172	< 5	14	ла
Site 2	20	10	08	96	19.5	0.9	17	365	206	< 5	13	1.4
Site 2	00 05	11	12	96	18.9	0.4	< 10	< 100	270	< 5	< 5	2.6
Site 2	05	11	12	9 6	18.7	0.4	< 10	194	241	< 5	< 5	2.3
Site 2	10 15	11	12	9 6	18.8	0.4	< 10	261	255	< 5	< 5	2.3
Site 2	20	11	12	96	18.8	0.5	< 10	161	250	< 5	< 5	2.4
Site 2	00	11 12	12	96 07	18.9	0.5	< 10	175	233	`< \$	< 5	1.7
Site 2	05	12	03	96 06	18.2	1.5	< 10	463	307	< 5	5	1.8
Site 2	10	12	03 03	96 96	18.4 18.4	1.6	< 10	457	294	< 5	5	1.8
Sile 2	15	12	03	96 96	18.4	1.5	< 10	466	365	< 5	5	1.8
Sile 2	18	12	03	96 96	18.3	1.6 1.6	< 10	518	348	< 5	6	1.7
Site 2	00	02	12	90 97	18.5	1.6 0.6	< 10 < 10	490	363	< 5	7	1.7
Sile 2	05	02	12	97 97	17.8	0.6	< 10 < 10	487 538	392 420	< 5	< 5	1.0
Sile 2 Sile 2	10	02	12	97	17.5	0.6	< 10	538 448	420	< 5	< 5	0.9
Sile 2	15	02	12	97	17.6	0.5	< 10	448 454	418 396	< 5	< 5	1.0
Sile 2	18	02	12	97	17.6	0.6	< 10	557	396 440	< 5	< 5	0.9
	00	04	22	97	17.8	0.6	< 10	309	375	< 5 < 5	< 5	0.9
					20					< J	< 5	1.8

Lake Whatcom 1996/97 Water Quality Data.

Site	Depth	Month	Day	Year	Alk	Turb	NH3	TN	NO3	SRP	TP			S - 5	it
Site 2	05	04	22	97	17.8	0.7	< 10	318	369	< 5	< 5	Ci), (*	> [5]	Si	
Site 2	10	04	22	97	17.7	0.6	< 10	394	397	< 5	< 5	- 1 3		Si	ite
Site 2	15	04	22	97	17.6	0.5	< 10	312	349	< 5	< 5	na (S Si	ite
Site 2	20	04	22	97	17.5	0.6	< 10	463	369	< 5	< 5	0.9 0.9		S	itc
Site 2	00	05	15	97	18.3	0.6	< 10	310	323	< 5	< 5	1.1		S S	it
Site 2	05	05	15	97	17.9	0.5	< 10	312	353	< 5	< 5	13		MANA -	jt.
Site 2	10	05	15	97	18.1	0.7	< 10	320	292	< 5	< 5	18		30.00	it.
Site 2	15	05	15	97	17.9	0.5	< 10	285	347	< 5	< 5	1.6	20,115	#01/ ····	iit
Site 2	20	05	15	97 07	17.7	0.5	< 10	267	325	< 5	< 5	17		8	it
Site 2	00	06	10	97	18.3	0.8	< 10	464	294	< 5	< 5	18 🛝	· .	\$11.1	Sil
Site 2	05	06 06	10 10	97 97	18.1	0.9	24	510	318	< 5	< 5	28		999 I.I.	Sit
Site 2 Site 2	10 15	06	10	97 97	18.0 17.8	1.1 0.5	15 19	510 520	306	<5	< 5	40± 🐘		202 5 1	Sil cu
Site 2	20	06	10	97	17.8	0.5	27	529 427	361 390	< 5	< 5	13	$\mathcal{F}_{\mathcal{F}}_{\mathcal{F}_{\mathcal{F}_{\mathcal{F}_{\mathcal{F}_{\mathcal{F}_{\mathcal{F}_{\mathcal{F}}_{\mathcal{F}_{\mathcal{F}_{\mathcal{F}}_{\mathcal{F}_{\mathcal{F}}_{\mathcal{F}}_{\mathcal{F}}}}}}}}}}$	C& c .	Si) Si
Site 2	00	07	10	97	17.8	0.5	< 10	357	258	< 5	< 5	LI A		Gine i	Si
Site 2	05	07	10	97	18.3	0.5	< 10	392	256	< 5	<5	25			Si
Site 2	10	07	10	97	18.2	0.7	< 10		238	< 5	< 5	33 📲	S	Tra : Contra in the second	Si
Site 2	15	07	10	97	17.9	0.6	23	354 456	233 371	< 5	<5	2.6			Si
Site 2	15	07	10	97	17.5	0.5	23	430	373	< 5 < 5	< S 7	1.9		hills -	Si
Site 2	00	08	13	97	17.8	0.4	< 10	234	138	< 5	7	14			S
Site 2	05	OB	13	97	18.6	0.4	< 10	317	138	< 5	5 8	13			S
Site 2	10	08	13	97	18.5	0.4	< 10	324	165	<5	9	1.7			s
Site 2	15	08	13	97	18.3	0.4	19	410	247	<5	6	22	14.0000 AP 12.0000 AP		S
Site 2	20	08	13	97	18.5	0.6	48	455	288	<5	9.	2.1 1.9			S
Site 2	00	09	10	97	19.3	0.5	-10	426	130	<5	< 5	2.5			S
Site 2	05	09	10	97	19.2	0.6	< 10	379	160	<5	6	3.0			S
Site 2	10	09	10	97	18.9	0.5	< 10	323	185	<5	< 5	3.0		r.(5
Site 2	15	09	10	97	18.6	0.5	22	407	272	<5	< 5	2.4			· E
Site 2	20	09	10	97	18.7	0.5	58	605	316	<5	< 5	1.6			£
0122	20	•••				0.5	50	005	510		~ 2				1
Site 3	00	10	08	96	18.9	0.4	13	343	191	<5	< 5	1.6	1. ² .1		:
Site 3	05	10	08	96	18.8	0.4	< 10	311	202	<5	<5	2.2		ф.	:
Site 3	10	10	08	96	18.9	0.4	< 10	300	189	<5	<5	1.9		E.S.	
Site 3	15	10	08	96	ла	ла	па	กอ	na	па	па	1.4	: <u>_</u>	- 航空電話 前手	
Site 3	20	10	08	96	18.0	0.4	< 10	535	359	< 5	< 5	0.7			
Site 3	40	10	08	96	18.1	0.4	< 10	539	365	< 5	< 5	na	2 10 2 10 2 10 2 10		
Site 3	60	10	08	96	18.3	0.3	< 10	507	406	< 5	< 5	na		i i de la companya de La companya de la comp	
Site 3	80	10	08	96	18.5	0.5	< 10	464	391	< 5	< 5	613			
Site 3	00	11	12	96	18.7	0.4	< 10	261	261	< 5	< 5	1.6		4 (空) [4]	
Site 3	05	11	12	96	18.7	0.4	< 10	178	237	< 5	< 5	1.3			
Site 3	10	11	12	96	18.6	0.4	< 10	161	241	< 5	< 5	1.5			
Site 3	15	11	12	96	na	na	na	na	na	na	na	15	9 *		
Site 3	20	11	12	96	18.7	0.4	< 10	226	273	< 5	< 5	1.3]	
Site 3	40	11	12	96	18.2	0.3	< 10	251	370	< 5	< 5	nà		1	
Site 3	60	11	12	96	18.3	0.3	< 10	346	366	< 5	< 5	nž			
Site 3	80	11	12	96	18.3	0.5	< 10	295	344	< 5	< 5	na			
Site 3	00	12	12	96	18.1	1.2	< 10	533	335	< 5	< 5	0.9	•	1	
Site 3	05	12	12	96	18.1	1.2	< 10	530	382	< 5	5	0.8		а н	
Site 3	10	12	12	9 6	18.1	1.2	16	506	447	< 5	< 5	0.9		4	
Site 3	15	12	12	96	na	na	na	na	na	na	na	0.8			
Site 3	20	12	12	96	18.1	1.2	< 10	536	393	< 5	< 5	0.7		1	
Site 3	40	12	12	96	18.5	0.9	< 10	612	382	< 5	< 5	n 2			
Site 3	60	12	12	96	18.2	0.4	< 10	603	432	< 5	< 5	ຄວ		·	
Site 3	80	12	12	96	18.3	0.6	< 10	557	500	< 5	< 5	U7		1	
Site 3	00	02	12	97	17.7	0.5	< 10	635	459	< 5	< 5	0.5		1	
Site 3	05	02	12	97	17.7	0.6	< 10	541	452	< 5	< 5	0.4		1	
Site 3	10	02	12	97	17.7	0.6	< 10	490	373	< 5	< 5	0.4		1	
Site 3	15	02	12	97	na	na	na	na	na	na	na	0.4			
						202								1.	

Lake Whatcom 1996/97 Water Quality Data.

Site	Depth	Month	Day	Year	Alk	Turb	NH3	TN	NO3	SRP	TP	Chl
Site 3	20	02	12	97	17.6	0.6	< 10	551	416	< 5	< 5	0.4
Site 3	40	02	12	97	17.7	0.5	< 10	487	407	< 5	< 5	na
Site 3	60	02	12	97	17.7	0.5	< 10	611	403	< \$	< 5	na
Site 3	80	02	12	97	17.8	0.5	< 10	508	401	< 5	< 5	na
Site 3	00	04	22	97	17.6	0.5	< 10	463	388	< 5	< 5	1.7
Site 3	05	04	22	97	17.5	0.7	< 10	411	392	< 5	< 5	2.3
Site 3	10	04	22	97	17.6	0.6	< 10	407	341	< 5	< 5	2.3
Site 3	15	04	22	97	na	па	na	na	na	na	na	1.0
Site 3	20	04	22	97	17.5	0.4	< 10	442	382	< 5	< 5	0.6
Site 3	40	04	22	97	17.4	0.5	< 10	394	323	< 5	< 5	па
Site 3	60	04	22	97	17.5	0.5	< 10	472	375	< 5	< 5	na
Site 3	80	04	22	97	17.6	0.5	< 10	450	401	< 5	< 5	ла
Site 3	00	05	21	97	18.1	0.5	< 10	432	313	< 5	< 5	1.7
Site 3	05	05	21	97	18.1	0.5	< 10	360	315	< 5	< 5	2.0
Site 3	10	05	21	97	17.7	0.7	< 10	330	321	< 5	< 5	2.3
Site 3	15	05	21	97	na	na	na	na	na	na	na	1.6
Site 3	20	05	21	97	17.6	0.5	< 10	384	331	< 5	< 5	1.1
Site 3	40	05	21	97	na	0.3	< 10	354	372	< 5	< 5	na
Site 3	60	05	21	97	17.6	0.3	< 10	267	376	< 5	< 5	na
Site 3	80	05	21	97	17.7	0.3	< 10	336	404	< 5	< 5	ла
Site 3	00	06	12	97	18.2	0.7	< 10	416	314	< 5	< 5	3.1
Site 3	05	06	12	97	18.0	0.8	< 10	384	279	< 5	5	3.7
Site 3	10	06	12	97	18.0	0.9	< 10	410	230	< 5	< 5	3.6
Site 3	15	06	12	97	na	па	па	na	na	па	na	2.8
Site 3	20	06	12	97	17.9	0.4	< 10	540	402	< 5	< 5	1.2
Site 3	40	06	12	97	17.5	0.3	< 10	524	423	< 5	< 5	na
Site 3	60	06	12	97	17.6	0.3	< 10	591	382	< 5	< 5	na
Site 3	80	06	12	97	17.7	0.2	< 10	570	429	< 5	< 5	na
Site 3	00	07	10	97	18.2	0.6	< 10	384	288	< 5	< 5	3.7
Site 3	05	07	10	97	18.1	0.6	< 10	410	326	< 5	< 5	3.7
Site 3	10	07	10	97	18.2	0.6	< 10	373	252	<5	< 5	3.2
Site 3	15	07	10	97	na	na	na	na	na	na	na -	1.3
Site 3	20	07	10	97	17.7	0.2	16	552	419	< 5	< 5	0.6
Site 3	40	07	10	97	17.6	0.3	< 10	576	472	<5	< 5	па
Site 3	60	07	10	97	17.7	0.3	< 10	517	532	< 5	< 5	na
Site 3	80	07	10	97	17.9	0.3	< 10	491	445	< 5	< 5	na
Site 3	00	08	21	97 97	18.7	0.3	< 10	281	156	<5	< 5	1.8
Site 3 Site 3	05	08	21	97 97	18.7	0.4	< 10	272	162	< 5	< 5	2.1
Site 3	10	08	21	97 07	18.7	0.4	< 10	251	163	<5	< 5	1.9
Site 3	15	08	21	97 07	na	na	na	na	N2	na	na	2.1
Site 3	20	08	21	97	17.7	0.4	14	440	321	<5	< 5	1.5
Site 3	40 60	08	21	97 97	17.7	0.3	< 10	390	430	< 5	< 5	na
Site 3	80	08 08	21	97 97	17.8 17.9	0.3 0.4	< 10 < 10	395 305	391 369	< 5	< 5	па
Site 3	00	08	21 18	97 97	19.9	0.4 0.4	< 10	407	180	< 5 < 5	< 5	na
Site 3	05	09	18	97 97	19.9	0.4	< 10	234	180		< 5	2.0
Site 3	10	09	18	97 97		0.a 0.4	< 10	373	185	< 5 < 5	< 5 < 5	2.6
Site 3	15	09	18	97	na							2.2
Site 3	20	09	18	97 97	na 17.9	na 0.2	na 12	na 593	na 361	na < 5	na < 5	2.0 0.9
'Site 3	40	09	18	97	17.9	0.2	< 10	503	427	< 5	< 5	
Site 3	60	09	18	97	17.0 Ла	0.4	< 10	385	427	< 5	< 5	na na
Sile 3	80	09	18	97 .	na	0.4	< 10	392	408	< 5	< 5	na
		07	10	<i></i>		0.0	10	J/2	-00	~ 2	~ 2	114
Site 4	00	10	08	96	19.0	0.4	< 10	397	191	< 5	< 5	1.7
Site 4	05	10	08	96	19.0	0.4	< 10	236	223	< 5	< 5	2.2
Sile 4	10	10	08	96	19.0	0.4	< 10	300	216	< 5	< 5	1.7
Sile 4	15	10	08	96	na	р. о	па	na	n3	па	na	1.8
Sile 4	20	10	08	96	18.4	0.3	< 10	255	408	< 5	< 5	0.9
					•	203					••	
1200 S - C -					4							

5 5 3

Lake Whatcom 1996/97 Water Quality Data.

Sit Sit Sit Sit Sit Sit Sit Sit Sit

Sil Sil Sil

							~	·	,			
Site Site 4	Depth 40	Month 10	Day 08	Year 96	Alk 18.1	Turb	NH3	TN	NO3	SRP	TP	
Site 4	60	10	08	96	18.2	0.2 0.2	< 10 < 10	683 401	372	< 5	< 5	Cu
Site 4	80	10	08	96	18.2	0.2	< 10	485	352 320	< 5	< 5	4 6 9
Site 4	90	10	08	96	18.3	0.3	< 10	453	363	< 5 < 5	<\$	
Site 4	00	11	12	96	18.6	0.4	< 10	212	244	< 5	< 5	Ra
Site 4	05	11	12	96	18.5	0.4	< 10	237	250	< 5	<5	- 17 编》
Site 4	10	11	12	96	18.6	0.4	< 10	189	241	<5	<5.	19
Site 4	15	11	12	96	na	na	na	na	na	ла	<5	1
Site 4	20	11	12	9 6	18.6	0.4	< 10	244	268	< 5	na < 5.	17
Site 4	40	11	12	96	18.1	0.3	< 10	394	297	< 5	<5	1.7
Site 4	60	11	12	96	18.3	0.3	< 10	279	372	< 5	<5	
Site 4	80	11	12	96	18.2	0.3	< 10	249	339	< 5	<5	
Site 4	90	11	12	96	18.2	0.3	< 10	318	379	< 5	<5	na . 14
Site 4	00	12	12	96	17.9	1.0	< 10	512	397	< 5	< 5	112 0 1
Site 4	05	12	12	96	18.0	0.8	< 10	581	389	<5	< 5	0.7 0.7
Site 4	10	12	12	96	18.1	0.8	< 10	551	374	< 5	< 5	0.7
Site 4	15	12	12	96	na	na	na	na	na	na	na	0.6
Site 4	20	12	12	96	18.0	1.0	< 10	560	415	< 5	<5	0.6
Site 4	40	12	12	96	18.0	0.8	10	584	421	< 5	< 5	Da
Site 4	60	12	12	96	18.3	0.4	< 10	657	432	< 5	< 5	N 2 4 1
Site 4	80	12	12	96	18.2	0.4	< 10	530	354	< 5	< 5	na
Site 4	90	12	12	96	18.3	0.3	< 10	566	395	< 5	< 5	na
Site 4	00	02	12	97	17.8	0.4	< 10	563	379	< 5	< 5	0.4
Site 4	05	02	12	97	17.8	0.5	< 10	560	403	< 5	<5	0.5
Site 4	10	02	12	97	17.7	0.4	< 10	508	416	< 5	< 5	0.5
Site 4	15	02	12	97	na	na	na	na	па	na	па	0.4
Site 4	20	02	12	97	17.8	0.5	< 10	629	422	< 5	< 5	0.5
Site 4	40	02	12	97	17.7	0.4	< 10	632	429	< 5	5	DA .
Site 4	60	02	12	97	17.8	2.0	< 10	566	390	< 5	6	na
Site 4	80	02	12	97	17.7	0.5	< 10	596	401	· <5	<5	na ⁽¹ .58)
Site 4	90	02	12	97	17.7	0.5	< 10	623	483	<5	< 5	na
Site 4	00	04	22	97	17.6	0.4	< 10	390	345	< 5	< 5	1.6
Site 4	05	04	22	97	17.5	0.5	< 10	411	354	< 5	< 5	1.5
Site 4	10	04	22	97	17.6	0.5	< 10	455	373	< 5	< 5	1.7
Site 4	15	04	22	97	กอ	па	ла	па	па	na	па	1.1
Site 4	20	04	22	97	17.6	20	< 10	342	380	< 5	< 5	1.0
Site 4	40	04	22	97	17.6	0.6	< 10	375	334	< 5	< 5	na
Site 4	60	04	22	97	17.6	0.6	< 10	394	330	< 5	< 5	na
Site 4	80	04	22	97	17.5	0.4	< 10	383	297	< 5	< 5	na
Site 4	90	04	22	97	17.5	0.4	< 10	485	354	< 5	< 5	na
Site 4	00	05	21	97	17.9	0.5	< 10	287	351	< 5	< 5	1.2
Site 4	05	05	21	97	17.7	0.5	< 10	261	432	< 5	< 5	1.8
Site 4	10	05	21	97	17.7	0.6	< 10	388	292	< 5	< 5	2.0
Site 4	15	05	21	97	na	na	na	na	na	na	na	1.7
Site 4	20	05	21	97	17.7	0.4	< 10	312	382	< 5	< 5	1.3
Site 4	40	05	21	97	17.6	0.4	< 10	298	333	5	< 5	па
Site 4	60	05	21	97	17.5	0.3	< 10	370	361	< 5	< 5	na
Site 4	80	05	21	97	17.6	0.3	< 10	332	367	< 5	< 5	па
Site 4	90	05	21	97	17.7	0.3	< 10	302	343	< 5	< 5	ла
Site 4	00	06 06	12	97	18.0	0.8	< 10	419	279	< 5	< 5	3.0
Site 4	05	06 06	12	97	18.0	0.8	11	532	294	< 5	5	3.7
Site 4	10	06 06	12	97 07	17.8	0.7	10	443	343	< 5	< 5	1.4
Site 4	15	06	12	97	na	na	na	na	na	na	na	2.6
Site 4	20	06	12	97 07	17.6	0.3	11	446	357	< 5	< 5	0.7
Site 4	40 60	06 06	12	97 07	17.6	0.3	< 10	535	421	< 5	< 5	na
Site 4	60 80	06 06	12	97 07	17.6	0.3	< 10	505	394	< 5	< 5	na
Site 4	80 80	06 06	12	97 07	18.6	0.2	< 10	526	370	< 5	< 5	na
Site 4	90	06	12	97	17.7	0.3	< 10	435	357	< 5	< 5	na
					2	<u>∩/</u>						

Lake Whatcom 1996/97 Water Quality Data.

Site	Depth	Month	Day	Year	Alk	Turb	NH3	TN	NO3	SRP	TP	Chi
Site 4	00	07	14	97	ла	na	na	na	na	na	בת	na
Site 4	05	07	14	9 7	па	na	na	กจ	na	រាង	na	na
Site 4	10	07	14	97	na	na	па	na	na	na	na	nà
Site 4	15	07	14	97	na	Na	na	na	na	na	na	na
Site 4	20	07	14	97	na	na	na	na	กอ	na	na	na
Site 4	40	07	14	97	na	na	na	па	na	Na	na	па
Site 4	60	07	14	97	na	na	na	па	na	na	na	na
Site 4	80	07	14	97	na	па	na	na	па	na	na	na
Site 4	90	07	14	97	na	na	ла	na	na	na	na	בת
Site 4	00	08	21	97	กอ	na	na	na	na	na	ña	па
Site 4	05	08	21	97	na	na	na	na	na	na	na	na
Site 4	10	08	21	97	กอ	na	па	пà	na	na	na	na
Site 4	15	08	21	97	na	na	na	na	na	na	ña	na
Site 4	20	08	21	97	กอ	กจ	na	na	na	na	na	na
Site 4	40	08	21	97	na	na	na	na	na	na	па	na
Site 4	60	08	21	97	בת	na	па	na	na	na	na	na
Site 4	80	08	21	97	na	na	na	na	na	na	na	• па
Site 4	90	08	21	97	na	na	na	na	na	na	na	na
Site 4	00	09	18	97	18.8	0.4	10	416	193	< 5	< 5	1.8
Site 4	05	09	18	97	18.8	0.6	< 10	333	201	< 5	< 5	2.6
Site 4	10	09	18	97	18.8	0.4	< 10	289	201	< 5	< 5	2.6
Site 4	15	09	18	97	na	na	na	na	na	na	na	1.9
Site 4	20	09	18	97	18.0	0.6	16	593	387	< 5	< 5	0.9
Site 4	40	09	18	97	17.8	0.2	< 10	556	395	< 5	< 5	na
Site 4	60	09	18	97	18.0	0.2	< 10	520	385	< 5	< 5	na
Site 4	80	09	18	97	17.9	0.2	< 10	457	430	< 5	< 5	па
Site 4	90	09	18	97	18.0	0.2	< 10	615	428	< 5	< 5	na

B.3 Lake Whatcom Plankton and Coliform Data

Site 1 Intake Site 2 Site 3 Site 3 Site 3 Site 3 Site : Site : Site Sit Sit

Sit

Lake Whatcom 1996/97 Plankton Data.

	Site	Depth	Month	Day	Year	Zooplankton (#/L)	Chrysophyta (#/L)	Cyanophyta (#/L)	Chlorophyta (#/L)	Pyrrophyta (#/L)
	Site 1	5	10	8	1996	7	3895	1404	2148	286
	Site 1	5	11	12	1996	116	202715	4921	7265	1875
	Site 1	5	12	3	1996	80	147715	146	292	29 2
	Site 1	5	2	12	1997	2	107696	0	0	0
	Site I	5	4	22	1997	66	114586	0	0	508
	Site 1	5	5	15	1997	59	363309	6216	52532	802
	Site 1	5	6	10	1997	150	439667	7624	9530	2541
	Site 1	5	7	14	1997	88	204069	9739	13280	1328
	Site 1	5	9	10	1997	30	83128	64681	21800	2156
	Site 1	5	10]4	1997	148	156142	60557	4354	1385
	Intake	5	10	8	1996	42	24644	7109	31989	1185
	Intake	5	11	12	1996	47	39830	333	1333	167
	Intake	5	12	3	1996	23	38861	406	542	0
-	Intake	5	2	12	1997	4	5749	0	0	0
-	Intake	5	4	22	1997	59	173551	0	0	323
	Intake	5	5	15	1997	63	306570	0	10301	448
	Intake	5	6	10	1997	193	395536	19373	10332	3229
	Intake	5	7	10	1997	77	469857	4323	432	3458
	Intake	5	9	10	1997	36	32179	40658	24086	771
 	Intake	5	10	14	1997	47	70814	4432	1542	1349
ſ	Site 2	5	10	8	1996	66	32078	7830	17681	1010
	Site 2	5	11	12	1996	25	49592	13879	846	677
i.	Site 2	5	12	3	1996	26	54839	542	271	135
	Site 2	5	2	12	1997	6	599	.0	0	0
	Site 2	5	4	22	1997	41	184319	0	0	0
	Site 2	5	5	15	1997	79	278724	0	7708	208
	Site 2	5	6	10	1997	188	449812	9681	3724	1117
1	Site 2	5	7	10	1997	83	306534	0	11249	281
	Site 2	5	9	10	1997	36	18618	23175	17316	391
	Site 2	5	10	14	1997	73	48238	7447	1016	677
	Site 3	5	10	8	1996	77	37335	2094	11863	698
	Site 3	5	11	12	1996	49	41496	2166	2333	0
	Site 3	5	12	3	1996	20	13025	0	635	318
	Sile 3	5	2	12	1997	4.	3953	120	0	0
	Site 3	5	4	22	1997	43	176843	0	0	0
i) N	Site 3	5	5	21	1997	88	333107	664	6197	443
j.	Site 3	5	6	10	1997	258	429092	24589	12121	346
	Sile 3	5	7	10	1997	109	433167	13874	7708	385
	Sile 3	5	9	18	1997	59	63494	58864	18850	331
and the second	Sile 3	· 5	10	14	1997	53	49592	3554	1862	0
	Sue 4	5	10	8	1996	27	14236	7820	7218	1604
	Suc 4	5	11	12	1996	37	29997	2500	2000	0
Sej.	Sile 4	5	12	3	1996	15	18108	0	0	159
	Sile A	5	2	12	1997	2	4583	115	0	0
	Sile 4	5	4	22	1997	23	169005	0	0	0
	Sile 4	5	5	21	1997	119	299487	0	453	453
	Sue 4	5	6	10	1997	200	417664	0	5195	693
	Sted	5	7	14	1997	268	na	กอ	กอ	na
	Sile V	5	9	18	1997	81	24982	28825	21139	320
		5	10	14	. 1997	35	43538	5416	208	208
		*				207	7			

Lake Whatcom 1996/97 Coliform and Enterococcus Data.

: :

::

B

B B B B

> E E

E E I

Site	Depth	Month	Day	Year	Total Coliforms (cfu/100 mL)	Fecat Coliforms (cfu/100 mL)	Enterococcus (cfw/100 mL)	
Site 1	0.3	10	22	1996	26	8	2	
Site 1	0.3	11	12	1996	< 4	2		
Site 1	0.3	12	03	1996	22	7		
Site 1	0.3	02	12	1997	5	2	<2	
Site 1	0.3	04	22	1997	2	0	<2	
Site 1	0.3	05	15	1997	< 1	< 1	<2	
Site 1	0.3	06	10	1997	3	1	<2	
Site 1	0.3	07	14	1997	< 1	< 1	<2	
Site 1	0.3	08	13	1997	1	< 1	<2	
Site 1	0.3	09	18	1997	40	4	<2	
Intake	0.3	10	22	1996	53	8	<2	
Intake	0.3	11	12	1996	4	2	<2	
Intake	0.3	12	03	1996	12	4	<2	
Intake	0.3	02	12	1997	2	1	<2 误	
Intake	0.3	04	22	1997	2	1	2	
Intake	0.3	05	15	1997	< 1	< 1	<2	
Intake	0.3	06	10	1 9 97	3	1	<2	
Intake	0.3	07	14	1997	< 1	< 1	<2	
Intake	0.3	08	13	1997	5	3	<2	
Intake	0.3	09	18	1997	4	2	<2	
					•			
Site 2	0.3	10	22	1996	20	4	2	
Site 2	0.3	11	12	1996	8	< 4	<2	3
Site 2	0.3	12	03	1996	12	2	2	
Site 2	0.3	02	12	1997	3	I	<2	
Site 2	0.3	04	22	1997	1	1	<2 sets fr	
Site 2	0.3	05	15	1997	< 1	1	<2	
Site 2	0.3	06	10	1997	2	< 1	<2	
Site 2	0.3	07	14	1997	< 1	< 1	<2	
Site 2	0.3	08	13	1997	2	< 1	<2 a H _{ab} 1	
Site 2	0.3	09	18	1997	4	6	<2	0
								201 1-25
Site 3	0.3	10	22	1996	13	8	<2	
Site 3	0.3	11	12	1996	< 4	< 4	< 2	η
Site 3	0.3	12	03	1996	28	3	< 2	
Site 3	0.3	02	12	1997	10	8	< 2	- 1
Site 3	0.3	04	22	1997	1	0	< 2	
Site 3	0.3	05	15	1997	< 1	< 1	< 2	
Site 3	0.3	06	10	1997	2	< 1	< 2	
Site 3	0.3	07	14	1997	1	L	4	
Site 3	0.3	08	13	1997	1	< 1	< 2	
Site 3	0.3	09	18	1997	< 1	< 1	< 2	

Lake Whatcom 1996/97 Coliform and Enterococcus Data.

Site	Depth	Month	Day	Year	Total Coliforms (cfu/100 mL)	Fecal Coliforms (cfu/100 mL)	Enterococcus (cfu/100 mL)
Site 4	0.3	10	22	1996	< 10	4	< 2
Site 4	0.3	11	12	1996	< 4	< 2	< 2
Site 4	0.3	12	03	1996	22	3	< 2
Site 4	0.3	02	12	1997	1	- 1	<2
Site 4	0.3	04	22	1997	I	1	2
Site 4	0.3	05	15	1997	<1	< 1	<2
Site 4	0.3	06	10	1997	1	1	<2
Site 4	0.3	07	14	1997	< 1	<1	<2
Site 4	0.3	08	13	1997	1	<1	2
Site 4	0.3	09	18	1 997	8	1	< 2
B. Donov.	0.3	10	22	1996	20	8	< 2
B. Donov.	0.3	11	12	1996	20	4	< 2
B. Donov.	0.3	12	03	1996	28	3	< 2
B. Donov.	0.3	02	12	1997	8	6	<2
B. Donov.	0.3	04	22	1997	6	4	2
B. Donov.	0.3	05	15	1997	10	7	<2
B. Donov.	0.3	06	10	1997	8	2	<2
B. Donov.	0.3	07	14	1997	6	6	4
B. Donov.	0.3	08	13	1997	45	37	4
B. Donov.	0.3	09	18	1997	50	6	°<2

•

B.4 Strawberry Sill Hydrolab and Laboratory Analysis Data

S

Site	Depth	Month	Day	Year	Temp	pН	Cond	DO
Site s1	00	10	22	1996	13.5	7.5	63	10.21
Site s1	01	10	22	1996	13.5	7.6	63	9.92
Site s1	02	10	22	1996	13.5	7.7	63	9.74
Site s1	03	10	22	1996	13.4	7.7	63	9.70
Site s1	04	10	22	1996	13.4	7.7	63	9.67
Site s1	05	10	22	1996	13.4	7.7	63	9.60
Site s1	06	10	22	1996	13.4	7.7	63	9.61
Site s1	07	10	22	1996	13.4	7.7	63	9.58
Site s1	80	10	22	1996	13.4	7.7	63	9.54
Site s1	09	10	22	1996	13.4	7.8	63	9.55
Site s1	10	10	22	1996	13.4	7.7	63	9.51
Site s1	15	. 10	22	1996	13.4	7.7	62	9.47
Site s1	20	10	22	1996	12.8	7.7	62	9.23
Site s1	25	10	22	1996	8.3	7.5	61	8.33
Site s1	30	10	22	1996	7.8	7.4	62	8.57
Site s1	35	10	22	1996	7.6	7.3	62	8.50
Site s1	· 0 0	01	16	1997	6.7	7.3	62	10.97
Site s1	01	01	16	1997	6.5	7.4	62	10.84
Site s1	02	01	16	1997	6.5	7.4	62	10.85
Site s1	03	01	16	1997	6.5	7.5	62	10.80
Site s1	04	01	16	1997	6.5	7.5	62	10.76
Site s1	05	01	16	1997	6.4	7.5	62	10.71
Site s1	06	01	16	1997	6.4	7.5	61	10.66
Site s1	07	01	16	1997	6.4	7.5	61	10.66
Site s1	08	01	16	1997	6.4	7.5	62	10.61
Site s1	09	01	16	1997	6.4	7.5	62	10.55
Site s 1	10	01	16	1997	6.4	7.5	61	10.56
Site s1	15	01	16	1997	6.4	7.6	61	10.50
Site s1	20	01	16	1997	6.4	7.5	61	10.51
Site s1	25	01	16	1997	6.4	7.5	60	10.46
Site s1	30	01	16	1997	6.4	7.5	60	10.46
Site s1	35	01	16	1997	6.3	7.5	61	10.47
Site s1	00	02	10	1997	6.5	7.4	63	11.30
Site s1	01	02	10	1997	6.4	7.4	63	11.27
Site s1	02	02	10	1997	6.3	7.5	62	11.28
Site s)	03	02	10	1997	6.3	7.5	62	11.24
Site s1	04	02	10	1997	6.3	7.5	62	11.22
Site s1	05	02	10	1997	6.3	7.5	61	11.21
Site s1	06	02	10	1997	6.2	7.5	61	11.17
Site s1	07	02	10	1997	6.2	7.5	62	11.18
Site s]	08	02	10	1997	6.2	7.5	61	11.13
				211				

Site	Depth	Month	Day	Year	Temp	pН	Cond	DO
Site s1	09	02	10	1997	6.2	7.5	62	11.14
Site s1	10	02	10	1997	6.2	7.5	62	11.09
Site s1	15	02	10	1997	6.2	7.6	61	11.06
Site s1	20	02	10	1997	6.2	7.6	62	11.07
Site s1	25	02	10	1997	6.1	7.6	61	11.03
Site s1	30	02	10	1997	6.1	7.6	61	11.00
Site s1	35	02	10	1997	6.1	7.6	61	10.99
Site s1	00	04	29	1997	10.7	7.8	60	12.07
Site s1	01	04	29	1997	10.7	7.9	60	12.03
Site s1	02	04	29	1997	10.6	7.9	60	I1.99
Site s1	03	04	29	1997	10.5	7.9	60	11.99
Site s1	04	04	29	1997	10.3	8.0	61	11.99
Site s1	05	04	29	1997	10.3	8.0	61	11.96
Site s1	06	04	29	1997	10.3	8.0	60	11.93
Site s1	07	04	29	1997	10.2	8.0	60	11.87
Site s1	08	04	29	1997	10.2	8.0	60	11.84
Site s1	. 09	04	29	1997	10.2	8.0	60	11.82
Site s1	10	04	29	1997	10.1	8.0	60	11.77
Site s1	15	04	29	1997	10.0	8.0	60	11.69
Site s1	20	04	29	1997	8.1	7.9	60	11.36
Site s1	25	04	29	1997	7.7	7.8	60	11.30
Site s1	30	04	29	1997	7.3	7.8	60	11.24
Site s1	35	04	29	1997	7.0	7.8	60	11.13
Site s1	00	05	21	1997	15.9	8.0	60	10.46
Site s1	05	05	21	1997	15.8	8.0	60	10.39
Site s1	10	05	21	1997	15.3	7.9	60	10.62
Site s1	15	05	21	1997	10.4	7.6	60	11.38
Site s1	20	05	21	1997	9.4	7.5	60	11.29
Site s1	25	05	21	1997	9.3	7.5	60	11.29
Site s1	30	05	21	1997	8.7	7.5	60	11.26
Site s1	35	05	21	1997	8.5	7.4	60	11.20
Site s1	00	06	12	1997	17.5	8.2	61	10.49
Site s1	01	06	12	1997	17.4	8.3	61	10.43
Site s1	02	06	12	1997	17.4	8.3	61	10.40
Site s1	03	06	12	1997	17.4	8.3	61	10.37
Site s1	04	06	12	1997	17.4	8.4	61	10.34
Site s1	05	06	12	1997	17.4	8.4	61	10.31
Site s1	06	06	12	1997	17.4	8.4	61	10.29
Site s1	07	06	12	1997	17.3	8.4	61	10.26
Site s1	08	06	12	1997	17.3	8.4	61	10.23
Site s1	09	06	12	1997	17.3	8.4	61	10.18
				212				

Site	Depth	Month	Day	Year	Temp	рН	Cond	DO
Site s1	10	06	12	1997	16.2	8.3	61 60	10.45
Site s1	15	06	12	1997	10.7	8.0 7.0		10.60
Site s1	20	06	12	1997	9.2	7.9	60 50	10.49
Site s1	25	06	12	1997	8.2	7.9	59	10.58
Site s1	30	06	12	1997	7.4	7.8	60	10.43
Site s1	35	06	12	1997	7.2	7.8	59	10.41
Site s1	00	07	14	1997	18.4	8.1	60	9.80
Site s1	01	07	14	1997	18.4	8.1	60	9.83
Site s1	02	07	14	1997	18.4	8.1	60	9.76
Site s1	03	07	14	1997	18.3	8.1	60	9.79
Site sI	04	07	14	1997	18.3	8.2	60	9.78
Site s1	05	07	14	1997	18.2	8.2	60	9.80
Site s1	06	07	14	1997	18.1	8.2	60	9.76
Site s1	07	07	14	1997	18.1	8.2	61	9.75
Site s1	08	07	14	1997	18.1	8.2	61	9.75
Site s1	09	07	14	1997	18.0	8.2	60	9.69
Site s1	10	07	14 ·	1997	18.0	8.2	60	9.68
Site s1	15	07	14	1997	13.4	7.9	61	9.40
Site s1	20	07	14	1997	9.5	7.7	61	9.92
Site s1	25	07	14	1997	8.2	7.6	60	10.05
Site s1	30	07	14	1997	7.6	7:5	60	10.07
Site s1	35	07	14	1997	7.4	7.5	60	10.15
Site s1	00	09	18	1997	19.2	7.6	61	9.25
Site s1	01	09	18	1997	18.4	7.7	61	9.32
Site s1	02	09	18	1997	18.3	7.8	62	9.30
Site s1	03	09	18	1997	18.2	7.8	61	9.26
Site s1	04	09	18	1997	18.2	7.8	60	9.24
Site s1	05	09	18	1997	18.2	7.8	60	9.22
Site s1	06	09	18	1997	18.2	7.8	61	9.20
Site s1	07	09	18	1997	18.2	7.8	61	9.17
Site s1	08	09	18	1997	18.1	7.8	60	9.14
Site s1	09	09	18	1997	18.1	7.8	60	9.11
Site s1	10	09	18	1997	18.1	7.8	60	9.09
Site s I	15	09	18	1997	17.9	7.6	60	9.08
Site s1	20	09	18	1997	9.1	7.5	59	9.17
Site s1	25	09	18	1997	8.1	7.5	59	9.14
Site s1	30	09	18	1997	7.7	7.4	60	9.43
Site s1	35	09	18	1997	7.4	7.4	59	9.32
		07	10			1.7	57	2.32
Site s2	00	10	22	1996	13.6	7.6	63	9.91
Site s2	01	10	22	1996	13.6	7.6	63	9.81
				213				

: S S S

.

~ ••	. .		~		-		•		- A
Site	Depth	Month	Dav	Year	Temp	pH	Cond	DO	
Site s2	02	10	22	1996	13.6	7.6	63	9.78	
Site s2	03	10	22	1996	13.6	7.7 	63	9.75	
Site s2	04	10	22	1996	13.5	7.7	63	9.70	
Site s2	05	10	22	1996	13.5	7.7	63	9.65	t de la companya de l La companya de la comp
Site s2	06	10	22	1996	13.5	7.7	63	9.66	
Site s2	07	10	22	1996	13.5	7.7	63	9.63	
Site s2	08	10	22	1996	13.5	7.7	63	9.60	
Site s2	09	10	22	1996	13.5	7.7	62	9.60	
Site s2	10	10	22	1996	13.5	7.7	63	9.54	
Site s2	15	10	22	1996	13.4	7.7	63	9.39	م بر ۲۰۱۲ ۱۹۱۹ - ۲۰۱۲ ۱۹۹۹ - ۲۰۱۹
Site s2	20	10	22	1996	10.2	7.5	60	8.22	
Site s2	25	10	22	1996	7.9	7.3	62	8.39	
Site s2	30	10	22	1996	7.6	7.2	62	8.33	
Site s2	35	10	22	1996	7.5	7.2	62	8.39	
Site s2	00	01	16	1997	6.3	7.4	62	11.03	
Site s2	01	01	16	1997	6.3	7.4	62	10.92	
Site s2	· 02	01	16	1997	6.3	7.5	62	10.80	
Site s2	03	01	16	1997	6.3	7.5	62	10.74	
Site s2	04	01	16	1997	6.3	7.5	62	10.68	
Site s2	05	01	16	1997	6.3	7.5	62 ·	10.57	
Site s2	06	01	16	1997	6.3	7.5	62	10.57	41 .
Site s2	07	01	16	1997	6.3	7.5	61	10.52	
Site s2	08	01	16	1997	6.3	7.5	61	10.52	·
Site s2	09	01	16	1997	6.3	7.5	61	10.45	
Site s2	10	01	16	1997	6.3	7.5	61	10.45	
Site s2	15	01	16	1997	6.3	7.5	61	10.47	
Site s2	20	01	16	1997	6.3	7.5	61	10.42	
Site s2	25	01	16	1997	6.3	7.5	61	10.42	
Site s2	30	01	16	1997	6.0	7.5	62	10.56	
Site s2	35	01	16	1997	5.9	7.6	60	10.62	
Site s2	00	02	10	1997	6.3	7.4	63	11.33	
Site s2	01	02	10	1997	6.2	7.4	63	11.24	
Site s2	02	02	10	1997	6.2	7.5	62	11.08	
Site s2	03	02	10	1997	6.2	7.5	62	11.06	
Site s2	04	02	10	1997	6.1	7.5	62	11.03	
Site s2	05	02	10	1997	6.1	7.5	61	11.04	
Site s2	06	02	10	1997	6.1	7.5	61	10.99	
Site s2	07	02	10	1997	6.1	7.6	61	10.99	
Site s2	08	02	10	1997	6.1	7.5	61	11.00	
Site s2	09	02	10	1997	6.1	7.6	61	11.00	
Site s2	10	02	10	1997	6.1	7.6	61	11.00	
				224					

Site	Depth	Month	Day	Year	Temp	pH	Cond	DO
Site s2	15	02	10	1997	6.1	7.6	61	10.96
Site s2	20	02	10	1997	6.1	7.6	61	10.96
Site s2	25	02	10	1997	6.1	7.6	61	10.95
Site s2	30	02	10	1997	6.1	7.6	61	10.91
Site s2	35	02	10	1997	6.0	7.6	61	10.99
Site s2	00	04	29	1997	10.7	7.8	60	11.79
Site s2	01	04	29	1997	10.7	7.9	60	11.70
Site s2	02	04	29	1997	10.6	7.9	60	11.66
Site s2	03	04	29	1997	10.6	7.9	60	11.63
Site s2	04	04	29	1997	10.4	7.9	60	11.63
Site s2	05	04	29	1997	10.2	7.9	61	11.61
Site s2	06	04	29	1997	10.2	8.0	60	11.58
Site s2	07	04	29	1997	10.1	7.9	61	11.59
Site s2	08	04	29	1997	10.1	7.9	60	11.55
Site s2	09	04	29	1997	10.0	7.9	59	11.57
Site s2	10	04	29	1997	10.0	7.9	60	11.54
Site s2	. 15	04	29	1997	9.9	7.9	60	11.49
Site s2	20	04	29	1997	8.3	7.8	59	11.13
Site s2	25	04	29	1997	7.5	7.7	60	11.14
Site s2	30	04	29	1997	7.3	7.7	60	11.08
Site s2	35	04	29	1997	7.0	7.6	58	11.00
Site s2	00	05	21	1997	16.1	7.9	60	10.41
Site s2	05	05	21	1997	15.7	8.0	60	10.37
Site s2	10	05	21	1997	14.8	8.0	61	10.77
Site s2	15	05	21	1997	10.5	7.6	60	11.38
Site s2	20	05	21	1997	9.7	7.5	60	11.21
Site s2	25	05	21	1997	9.6	7.4	60	11.20
Site s2	30	05	21	1997	8.6	7.4	61	11.20
Site s2	35	05	21	1997	8.5	7.4	60	11.16
Site s2	00	06	12	1997	17.4	8.2	61	10.31
Site s2	01	06	12	1997	17.5	8.4	61	10.21
Site s2	02	06	12	1997	17.5	8.4	61	10.19
Site s2	03	06	12	1997	17.4	8.5	61	10.16
Site s2	04	06	12	1997	17.4	8.5	61	10.13
Site s2	05	06	12	1997	17.3	8.5	61	10.11
Site s2	06	06	12	1997	17.3	8.5	61	10.12
Site s2	07	06	12	1997	17.1	8.4	61	10.20
Site s2	08	06	12	1997	16.8	8.4	60	10.24
Site s2	09	06	12	1997	16.7	8.4	61	10.29
Site s2	10	06	12	1997	16.3	8.5	61	10.42
Site s2	15	06	12	1997	12.0	8.2	61	10.46

÷

•••

1

÷

5

~								
Site	Depth	Month	Dav	Year	Temp	рH	Cond	DO
Site s2	20	06	12	1997	9.5	8.1	60	10.37
Site s2	25	06	12	1997	8.0	8.0	60	10.34
Site s2	30	06	12	1997	7.4	7.9	60	10.27
Site s2	35	06	12	1997	7.3	7.8	60	10.34
Site s2	00	07	14	1997	19.3	7.8	60	9.87
Site s2	01	07	14	1997	19.0	7.9	61	9.84
Site s2	02	07	14	1997	18.6	8.0	61	9.87
Site s2	03	07	14	1997	18.4	8.1	60	9.86
Site s2	04	07	14	1997	18.3	8.1	60	9.81
Site s2	05	07	14	1997	18.2	8.1	60	9.80
Site s2	06	07	14	1997	18.1	8.1	60	9.80
Site s2	07	07	14	1997	18.1	8.1	61	9.76
Site s2	08	07	14	1997	18.1	8.1	60	9.77
Site s2	09	07	14	1997	18.0	8.1	60	9.75
Site s2	10	07	14	1997	18.0	8.1	60	9.74
Site s2	15	07	14	1997	13.2	7.8	61	9.68
Site s2	. 20	07	14	1997	9.8	7.7	61	9.99
Site s2	25	07	14	1997	8.3	7.6	60	10.14
Site s2	30	07	14	1997	7.7	7.6	60	10.15
Site s2	35	07	14	1997	7.3	7.6	60	10.38
Site s2	00	09	18	1997	18.8	7.5	61	9.31
Site s2	01	09	18	1997	18.8	7.6	61	9.24
Site s2	02	09	18	1997	18.4	7.6	61	9.24
Site s2	03	09	18	1997	18.3	7.7	61	9.18
Site s2	04	09	18	1997	18.2	7.7	61	9.20
Site s2	05	09	18	1997	18.2	7.7	61	9.22
Site s2	06	09	18	1997	18.2	7.8	61	9.20
Site s2	07	09	18	1997	18.2	7.8	60	9.16
Site s2	08	09	18	1997	18.2	7.8	60	9.13
Site s2	09	09	18	1997	18.1	7.8	60	9.07
Site s2	10	09	18	1997	18.1	7.8	60	9.09
Site s2	15	09	18	1997	15.3	7.6	61	8.66
Site s2	20	09	18	1997	9.2	7.5	59	8.94
Site s2	25	09	18	1997	8.3	7.5	61	8.92
Site s2	30	09	18	1997	7.6	7.4	60	9.23
Site s2	35	09	18	1997	7.4	7.4	59	9.32
Site s3	00	10	22	1995	13.6	7.4	63	9.95
Site s3	01	-10	22	1995	13.6	7.5	63	9.79
Site s3	02	10	22	1996	13.5	7.6	63	9.71
Site s3	03	10	22	1996	13.5	7.6	63	9.69
				216				

ć

<u>.</u>

	Site Site s3	Depth 04	Month 10	Dav 22	Year 1996	Temp 13.4	рН 7.7	Cond 63	DO 9.64
	Site s3	05	10	22	1996	13.4	7.7	63	9.60 9.60
	Site s3	06	10	22	1996	13.4	7.7	63	9.58
	Site s3	07	10	22	1996	13.4	7.7	63	9.54
	Site s3	08	10	22	1996	13.4	7.7	62	9.50
	Site s3	09	10	22	1996	13.4	7.7	63	9.46
	Site s3	10	10	22	1996	13.4	7.7	63	9.47
	Site s3	15	10	22	1996	13.4	7.7	62	9.43
	Site s3	20	10	22	1996	13.2	7.7	61	9.27
	Site s3	25	10	22	1996	8.0	7.4	61	8.27
	Site s3	30	10	22	1996	7.7	7.3	61	8.35
•	Site s3	35	10	22	1996	7.5	7.3	63	8.37
	Site s3	00	01	16	1997	6.3	7.4	61	11.02
	Site s3	01	01	16	1997	6.3	7.4	61	10.82
1	Site s3	02	01	16	1997	6.3	7.4	61	10.70
:	Site s3	03	01	16	1997	6.3	7.4	61	10.64
:	Site s3	. 04	01	16	1997	6.3	7.5	61	10.57
	Site s3	05	01	16	1997	6.3	7.5	61	10.51
	Site s3	06	01	16	1997	6.3	7.5	61	10.51
-	Site s3	07	01	16	1997	6.3	7.5	61	10.45
	Site s3	08	01	16	1997	6.3	7.5	61	10.46
:	Site s3	09	01	16	1997	6.3	7.5	61	10.46
	Site s3	10	01	16	1997	6.3	7.5	61	10.47
	Site s3	15	01	16	1997	6.3	7.5	61	10.41
1.4	Site s3	20	01	16	1997	6.3	7.5	60	10.42
	Site s3	25	01	16	1997	6.3	7.5	60	10.36
	Site s3	30	01	16	1997	6.3	7.5	60	10.36
,	Site s3	35	01	16	1997	6.2	7.5	61	10.36
	Site s3	00	02	10	1997	6.3	7.4	63	11.53
; •·· .: ··	Site s3	01	02	10	1997	6.3	7.4	63	11.28
	Site s3	02	02	10	1997	6.3	7.5	63	11.17
-	Site s3	03	02	10	1997	6.2	7.5	62	11.08
i s	Site s3	04	02	10	1997	6.1	7.5	61	11.02
i i i	Site s3	05	02	10	1997	6.1	7.5	61	10.99
u oji : u	Site s3	06	02	10	1997	6.1	7.5	61	10.94
	Site s3	07	02	10	1997	6.1	7.5	61	10.95
5	Site s3	08	02	10	1997	6.1	7.5	62	10.95
	Site s3	09	02	10	1997	6.1	7.5	61	10.95
	Site s3	10	02	10	1997	6.1	7.5	61	10.95
	Site s3	15	02	10	1997	6.1	7.5	62	10.96
	Site s3	20	02	10	1997	6.1	7.6	62	10.98
No internet					217				

217

.

								144
Site	Depth	Month	Day	Year	Temp	pHq	Cond	DO
Site s3	25	02	10	1997	6.0	7.6	62	11.00
Site s3	30	02	10	1997	6.0	7.6	60	11.01
Site s3	35	02	10	1997	6.0	7.6	60	11.01
Site s3	00	04	29	1997	10.7	7.6	60	11.86
Site s3	01	04	29	1997	10.6	7.7	60	11.74
Site s3	02	04	29	1997	10.4	7.7	60	11.77
Site s3	03	04	29	1997	10.3	7.8	60	11.71
Site s3	04	04	29	1997	10.1	7.8	61	11.65
Site s3	05	04	29	1997	10.1	7.8	60	11.60
Site s3	06	04	29	1997	10.0	7.8	60	11.59
Site s3	07	04	29	1997	10.0	7.8	60	11.55
Site s3	08	04	29	1997	10.0	7.8	60	11.54
Site s3	09	04	29	1997	10.0	7.8	60	11.52
Site s3	10	04	29	1997	9.9	7.8	60	11.51
Site s3	15	04	29	1997	9.8 ·	7.8	60	11.44
Site s3	20	04	29	1997	8.9	7.8	59	11.27
Site s3	. 25	04	29	1997	7.3	7.7	60	11.09
Site s3	30	04	29	1997	7.0	7.7	60	11.01
Site s3	35	04	29	1997	6.9	7.7	59	10.91
Site s3	00	05	21	1997	15.8	7.9	60	10.38
Site s3	05	05	21	1997	15.5	7.9	60	10.35
Site s3	10	05	21	1997	13.1	7.8	60	11.04
Site s3	15	05	21	1997	10.5	7.5	60	11.36
Site s3	20	05	21	1997	9.6	7.5	60	11.33
Site s3	25	05	21	1997	9.3	7.4	60	11.28
Site s3	30	05	21	1997	8.6	7.4	60	11.26
Site s3	35	05	21	1997	8.2	7.4	60	11.22
Site s3	00	06	12	1 9 97	17.6	8.4	61	10.05
Site s3	01	06	12	1997	17.6	8.5	61	10.08
Site s3	02	06	12	1997	17.6	8.5	61	10.06
Site s3	03	06	12	1997	17.5	8.5	61	10.06
Site s3	04	06	12	1997	17.3	8.5	61	10.05
Site s3	05	06	12	1997	17.1	8.5	61	10.16
Site s3	06	06	12	1997	17.0	8.5	60	10.20
Site s3	07	06	12	1997	16.9	8.5	60	10.21
Site s3	08	06	12	1997	16.8	8.5	61	10.21
Site s3	09	06	12	1997	16.7	8.4	61	10.21
Site s3	10	06	12	1997	16.6	8.4	61	10.20
Site s3	15	06	12	1997	11.2	8.1	60	10.30
Site s3	20	06	12	1997	9.1	8.0	60	10.27
Site s3	25	06	12	1997	8.2	7.9	59	10.25
				21.0				

E

	Site	Depth	Month	Day	Year	Temp	pН	Cond	DO
	Site s3	30	.06	12	1997	7.5	7.9	60	10.26
	Site s3	35	06	12	1997	7.3	7.8	59	10.16
	Site s3	00	07	14	1997	18.9	8.0	61	9.74
	Site s3	01	07	14	1997	18.9	8.1	61	9.71
	Site s3	02	07	14	1 9 97	18.6	8.1	60	9.74
	Site s3	03	07	14	1997	18.2	8.2	61	9.75
	Site s3	04	07	14	1997	18.1	8.2	60	9.76
	Site s3	05	07	14	1997	18.0	8.2	61	9.73
	Site s3	06	07	14	1997	17.9	8.2	60	9.72
	Site s3	07	07	14	1997	17.9	8.1	60	9.71
	Site s3	08	07	14	1997	17.8	8.1	60	9.68
	Site s3	09	07	14	1997	17.8	8.1	61	9.65
	Site s3	10	07	14	1997	17.8	8.1	60	9.66
	Site s3	15	07	14	1997	12.9	7.8	59	9.63
	Site s3	20	07	14	1997	9.0	7.7	60	10.07
•	Site s3	25	07	14	1997	8.1	7.6	60	10.10
	Site s3	. 30	07	14	1997	7.7	7.5	61	10.06
	Site s3	35	07	14	1997	7.3	7.5	60	10.08
•	Site s3	00	09	18	1997	18.5	7.5	62	9.30
	Site s3	01	09	18	1997	18.5	7.6	61	9.27
•	Site s3	02	09	18	1997	18.4	7.6	61	9.26
	Site s3	03	09	18	1997	18.3	7.7	61	9.26
	Site s3	04	09	18	1997	18.2	7.7	61	9.25
	Site s3	05	09	18	1997	18.2	7.8	61	9.22
•,	Site s3	06	09	18	1997	18.2	7.8	61	9.20
9	Site s3	07	09	18	1997	18.2	7.8	61	9.16
	Site s3	08	09	18	1997	18.2	7.8	60	9.14
ļ	Site s3	09	09	18	1997	18.1	7.8	60	9.12
1	Site s3	10	09	18	1997	18.1	7.8	61	9.09
2	Site s3	15	09	18	1997	14.2	7.6	60	8.67
1	Site s3	20	09	18	1997	9.4	7.4	60	8.84
1 5	Site s3	25	09	18	1997	8.2	7.4	60	9.01
,	Site s3	30	09	18	1997	7.5	7.3	60	9.13
	Site s3	35	09	18	1997	7.3	7.3	59	9.46

Strawberry Sill 1996/97 Water Quality Data

Site	Depth	Month	Dav	¥		_						「たれ」
Site s1	•	10	Day 22	Year 1996	Alk	Turb	NH3	TN	NO3	SRP	TP	
Site s1		10	22	1996	18.8	0.4	5	617	224	< 5	۲۲ <5	I.C
Site s1	10	10	22	1996	18.8 18.9	0.4	5	595	216	< 5	<5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Site s1	15	10	22	1996	18.9	0.4 0.4	5	552	243	< 5	<5	
Site s1	20	10	22	1996	18.8	0.4 0.4	5	755	278	< 5	<5	
Site s1	25	10	22	1996	18.8	0.4	5	577	278	5	<5	The fc
Site s1	30	10	22	1996	18.0	0.2	< 5	715	371	<5	<5	
Site s1	35	10	22	1996	18.1	0.2	< 5 < 5	925 853	303	< 5	<5	然 [].新始。 助何的。 例 这种语言
Site s1	00	01	16	1997	17.8	0.2	< 3 6	853 412	387	< 5	<s :<="" td=""><td></td></s>	
Site s1	05	01	16	1997	17.9	0.9	5	412 401	331	< 5	<5	
Site s1	10	01	16	1997	18.0	0.9	5	348	310 312	< 5	<5	
Site \$1	15	01	16	1997	17.9	0.9	5	558	312 304	< 5	<s td="" 🔅<=""><td></td></s>	
Site s1	20	01	16	1997	17.9	0.9	< 5	501	304 390	< 5	<5	
Site s1	25	01	16	1997	17.9	0.9	< 5	433	409	< 5	<5	
Site s1	30	01	16	1997	17.8	0.8	5	414	356	< 5	<5	
Site s1	35	01	16	1997	18.0	0.8	5	37]	310	< 5 < 5	<5	
.							-		240	ر >	<5	åi¥
Site s2	00	10	22	1996	18.9	0.4	< 5	802	230	< 5		
Site s2	05	10	22	1996	18.8	0.4	5	624	224	< 5	<5 · · · · · · · · · · · · · · · · · · ·	
Site s2	10	10	22	1996	18.9	0.4	5	646	235	< 5	<5 <5	
Site s2	15	10	22	1996	19.0	0.5	7	635	251	< 5	<5	
Site s2	20 25	10	22	1996	19.4	0.6	14	519	273	< 5	<5	
Site s2 Site s2	25 20	10	22	1996	18.1	0.2	<5	773	457	< 5	<5 <5	
Site s2 Site s2	30 35	10	22	1996	18.3	0.2	< 5	9 36	425	< 5	<5	
Site s2	35 00	10	22	1996	18.2	0.3	<5	907	365	<5	<5	
Site s2	00	01	16 16	1997	17.8	0.8	< 5	499	312	<5	<5	
Site s2	10	01 01	16 16	1997	17.9	0.7	< 5	430	371	< 5	<5	
Site s2	15	01	16 16	1997	17.9	0.8	< 5	462	314	< 5	<5	
Site s2	20	01 01	16	1997	17.9	0.8	< 5	487	337	< 5	<5	
Site s2	20 25	01	16	1997	18.0	0.8	< 5	469	411	< 5	<5	έε <u>ι</u> : 1γ
Site s2	30	01	16 16	1997	17.9	0.8	<5	442	375	< 5	<5	
Site s2	35	01	16	1997	17.8	0.8	< 5	526	346	< 5	<5	ا بر ا مراجع ا
	<i>~~</i>	01	10	1997	17.8	0.8	< 5	535	281	<5	<5	
Site s3	00	10	22	1996	10.1	• •	_				1 - X	
Site s3	05	10	22	1996 1996	19.1	0.4	6	599	230	< 5	<5	1 1 1
Site s3	10	10	22	1996	18.8 18.8	0.4	5	588	249	< 5	<5	
Site s3	15	10	22	1996	18.8	0.4	5	526	259	< 5	<5	
Site s3	20	10	22	1996	18.8	0.4	5	642	240	< 5	<5	
Site s3	25	10	22	1996	18.8	0.3	6	624	251	<5	<5	
Site s3	30	10	22	1996	18.2	0.2 0.2	< 5	907 760	379	< 5	<5	
Site s3	35	10	22	1996	18.2	0.2 0.2	<5 <5	769 000	471	< 5	<5	
Site s3	00	01	16	1997	17.8	0.2	< 5 < 5	900 387	476	< 5	< 5	
Site s3	05	01	16	1997	17.8	0.8	< 5	387 440	323	< 5	< 5	
Site s3	10	01	16	1997	17.9	0.8	< 5	481	388 373	< 5	<5	
Site s3	15	01	16	1997	17.9	0.8	< 5	442	373	< 5	< 5	
Site s3	20	01	16	1997	17.8	0.8	< 5	453	383 358	< 5	<5 ÿ	
Site s3	25	01	16	1997	17.9	0.8	< 5	328	338	< 5	< 5	
Site s3	30	01	16	1997	17.9	0.8	5	456	321 377	< 5	<5	
Site s3	35	01	16	1997	17.8	0.8	5	483	417	< 5	<5	4
					220		÷	100	~11	< 5	< 5	

C AmTest Reports

The following AmTest data reports are filed by sampling date:

Sample location	Date	Analyses
1. Strawberry sill, surface and 35 m	Oct 22, 1997	metals, total organic carbon
2. Watershed creeks	Feb 10, 1997	metals, total organic carbon
3. Lake Whatcom, surface and bottom	Feb 12, 1997	total organic carbon only
4. Park Place wet pond	Feb 19, 1997	metals, total organic carbon
5. Watershed creeks	Aug 14, 1996	total organic carbon only
6. Lake Whatcom, surface and bottom and Park Place wet pond	Sep 18, 1997	metals, total organic carbon

LW - STRAWBERRY TOL & METALS

AVITEST

Protessiona Analytical Services

14603 N.E. 1711

Redmond WA

Fax: 206 803 349

Tel: 206 885 1684

98052

tern

Tey

MS

int

Mingh

TEST lient I

節pling

menic

bron (r

brium (

Erylliv

alcium Edmium

bbalt

opper tion (m

aromiu

ercury

Massi

athium gnesi

angane

blybde

losphc

ead (n plfur

eleniu Milicor ilver ⁱⁿ (mc

tront:

^{lit}aniı hallin

anad i

ttriu linc (

podium licke1

Nov 1 1996

Western Washington University Huxley College IWS MS 9069 Bellingham, WA 98225 Attention: Michael Hilles

Dear Michael Hilles:

Enclosed please find the analytical data for your Lake Whatcom Aux project.

The following is a cross correlation of client and laboratory identifications for your convenience.

CLIENT ID		MATRIX	AM TEST ID	TEST	IRAMETE
					·
109633-0 site \$1	Om	Water	96-A014837 CONV	MET,	mventi
109633-B	35 m	Water	96-A014838 CONV	MET,	
109634-0 Sile 52	Dm	Water	96-A014839 CONV	MET,	tal OI
109634-B .	SEM	Water	96-A014840 CONV	, MET,	
109635-0 5.4 53	Om	Water	96-A014841 CONV	MET,	tal Me
109635-B	35 m	_Water	96-A014842 CONV	, MET,	
1096FD 51452	Om	- Water	96-A014843 CONV	, MET,	" Juminun
					intimony

Your seven (7) samples were received on Wednesday, October 23 1996. This was within 24 hours of the time that the samples were collected (10/22/96). At the time of receipt, the samples were logged in and properly maintained prior to their subsequent analyses.

The analytical procedures used at Am Test are well documented, and are typically derived from the protocols of the EPA, USDA, FDA or the Army Corps of Engineers.

Following the analytical data you will find the OC results and "Methodology Report". This table includes information relative to the detection limits, analyses dates and method references.

Please note that the detection limits that are listed in the body of the report refer to the Method Detection Limits (MDL's), as opposed to Practical Quantitation Limits (PQL's).

If you should have any questions pertaining to the data package, please feel free to contact me.

Sincerely,

Kathy Fugiel Director of Inorganic Laboratory

Project #: 55815 PO Number: T21979

ANAT.Y	SIS REPORT AVIES	AmTest Inc.
		Professional Analytical Services
Western Washington University _{Hux} ley College _I WS MS 9069 _{Be} llingham, WA 98225	Date Received: 10/23/96 Date Reported: 11/ 1/96	
Attention: Michael Hilles		Fax: 206 883 349
	Project Name: Lake Whatcom Au Project #: 55815 PO Number: T21979	lX . Tel: 206 885 166-
WA	ATER SAMPLES	
M TEST Identification Number Client Identification Sampling Date	96-A014837 109633-0 5,4 51 om 10/22/96	
PARAMETER	RESULT Q	D.L.
Conventionals		
<pre>intal Organic Carbon (mg/l)</pre>	< 1	1.0
fotal Metals		
Aluminum (mg/l)	< 0.01	0.01
Intimony (mg/l)	< 0.02	0.02
Arsenic (mg/l)	< 0.03	0.03
boron (mg/l)	< 0.1	0.10 0.003
Barium (mg/l) Beryllium (mg/l)	0.007 < 0.005	0.005
Calcium (mg/l)		0.10
Cadmium (mg/l)	• 5. (*E)(*	0.002
Cobalt (mg/l)	< 0.003	0.003
Chromium (mg/l)	< 0.006	0.006
Copper (mg/l)	< 0.002	0.002
lron (mg/l)	< 0.01	0.01
Mercury (mg/1)	< 0.01	0.01
Potassium (mg/l)	< 1	1.0 0.02
lithium (mg/l) Magnesium (mg/l)	< 0.02 2.0	0.02
anganese (mg/l)	< 0.002	0.002
blybdenum (mg/l)	< 0.01	0.01
odium (mg/l)	3.2	0.1
Nickel (mg/l)	< 0.01	0.01
Mosphorus (mg/l)	< 0.05	0.05
lead (mg/l)	< 0.001	0.001
Sulfur (mg/1)	1.8	0.1
Selenium (mg/1)	< 0.03	0.03
^{Sili} con (mg/l) ^{Silver} (mg/l)	0.3 < 0.01	0.10 0.01
lin (mg/1)	< 0.01	0.01
trontium (mg/1)	0.060	0.003
^{ut} anium (mg/l)	< 0.01	0.01
(nallium (mg/l)	< 0.03	0.03
(anadium (mg/l)	< 0.002	0.002
(crium (mg/l)	< 0.001	0.001
linc (mg/1)	₂₂₃ 0.005	0.002

AVITEST

ANAI	LYSIS REPORT / VII =)	
Western Washington University Michael Hilles	Date Received: 10/23/9 Date Reported: 11/ 1/9	
Wł	ATER SAMPLES	
AM TEST Identification Number Client Identification Sampling Date	96-A014838 109633-B 5.4 5/ 35m 10/22/96	TEST I Tent Id spling
PARAMETER	RESULT Q	D.L.
Conventionals		aventic
Total Organic Carbon (mg/l)	< 1	1.0
Total Metals		jaj Met
Aluminum (mg/l) Antimony (mg/l) Arsenic (mg/l) Boron (mg/l) Barium (mg/l) Beryllium (mg/l) Calcium (mg/l) Cadmium (mg/l) Cobalt (mg/l)	$\begin{array}{c} 0.01 \\ < 0.02 \\ < 0.03 \\ < 0.1 \\ 0.007 \\ < 0.005 \\ \hline 7.5 \\ \hline 4 0.005 \\ \hline 7.5 \\ < 0.003 \\ \end{array}$	0.01 uminum 0.02 himony 0.03 penic 0.10 fron (m 0.003 frium (1 0.005 frylliu 0.10 ucium 0.002 fmium 0.003 Salt (
Chromium (mg/l) Copper (mg/l) Iron (mg/l) Mercury (mg/l) Potassium (mg/l) Lithium (mg/l) Magnesium (mg/l)	< 0.006 < 0.002 < 0.01 < 0.01 < 1 < 0.02 1.8	0.006 fromium 0.002 sper (0.01 from (mo 0.01 from (mo 0.01 from (mo incury) 1.0 from
Manganese (mg/l) Molybdenum (mg/l) Sodium (mg/l) Nickel (mg/l) Phosphorus (mg/l) Lead (mg/l) Sulfur (mg/l)	< 0.002 < 0.01 3.0 < 0.01 < 0.05 < 0.001 1.8	0.002 ingane 0.01 ilybde 0.1 dium 0.01 ickel 0.05 iospho 0.001 idd (m 0.1 ilfur
<pre>Selenium (mg/l) Silicon (mg/l) Silver (mg/l) Tin (mg/l) Strontium (mg/l) Titanium (mg/l) Thallium (mg/l) Vanadium (mg/l) Yttrium (mg/l)</pre>	< 0.03 0.4 < 0.01 < 0.02 0.057 < 0.01 < 0.03 < 0.002 < 0.001	0.03 0.10 0.01 0.02 0.02 0.003 0.003 0.01 0.03 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.02 0.03 0.03 0.02 0.03 0.02 0.03 0.03 0.02 0.03 0.02 0.03 0.03 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.002 0.003 0.003 0.002 0.003 0.003 0.003 0.003 0.002 0.003 0.003 0.002 0.003 0.002 0.003 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.0

IANA	LYSIS REPORT AVITES	
stern Washington University chael Hilles	Date Received: 10/2: Date Reported: 11/ 1	
wa	ATER SAMPLES	
TEST Identification Number jent Identification mpling Date	96-A014839 109634-0 5, k 32 On 10/22/96	
RAMETER	RESULT Q	D.L.
nventionals		
tal Organic Carbon (mg/l)	1.7	1.0
tal Metals		
<pre>uminum (mg/l) stimony (mg/l) senic (mg/l) pron (mg/l) eryllium (mg/l) deryllium (mg/l) deryllium (mg/l) deryllium (mg/l) beat (mg/l) storn (mg/l) ercury (mg/l) thium (mg/l) dercury (mg/l) thium (mg/l) dercury (m</pre>	$\begin{array}{c} 0.03 \\ < 0.02 \\ < 0.03 \\ < 0.1 \\ 0.007 \\ < 0.005 \\ \hline \\ < 0.003 \\ < 0.006 \\ < 0.002 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 1 \\ < 0.02 \\ 1.8 \\ < 0.002 \\ 0.03 \\ 3.0 \\ < 0.001 \\ < 0.05 \\ < 0.001 \\ 1.9 \\ 0.04 \\ 0.3 \\ < 0.01 \\ < 0.05 \\ < 0.001 \\ 1.9 \\ 0.04 \\ 0.3 \\ < 0.01 \\ < 0.02 \\ 0.054 \\ < 0.01 \\ < 0.03 \\ < 0.002 \end{array}$	0.01 0.02 0.03 0.10 0.003 0.005 0.10 0.002 0.003 0.006 0.002 0.01 0.01 1.0 0.02 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.02

ANALYSIS REPORT AVITEST

Western Washington University Michael Hilles	Date Received: 10/23/96 Date Reported: 11/ 1/96	was)
Michael Milles		el Hil
WAS	TER SAMPLES	
AM TEST Identification Number	96-A014840	'T Ide
Client Identification	109634-B Sik s人 35m 10/22/96	Tden
Sampling Date		ing Da
PARAMETER	RESULT Q	D.L.
Conventionals		entiona
Total Organic Carbon (mg/l)	< 1	1.0
Total Metals		h Meta.
Aluminum (mg/l)	0.01	0.01
Antimony (mg/l)	< 0.02	0.01 0.02 1 cony (1
Arsenic (mg/l)	< 0.03	0.03
Boron (mg/l)	< 0.1	0.10 (mg/
Barium (mg/l)	0.007	0.003 (mg
Beryllium (mg/l)	< 0.005	0.003 (mg 0.005 nllium
Calcium (mg/l)		0.10 (m
Cadmium (mg/l)		0.002 μιυπ (π
Cobalt (mg/l)	< 0.003	0.003 alt (mc 0.006 minm (
Chromium (mg/l)	< 0.006 < 0.002	Superior Party Par
Copper (mg/l) Iron (mg/l)	< 0.01	
Mercury (mg/l)	< 0.01	0.01 [mg/] 0.01 [ary (t
Potassium (mg/l)	< 1	1.0 Ussium
Lithium (mg/l)	< 0.02	0.02 ium (1
Magnesium (mg/1)	1.8	0.10 esium
Manganese (mg/l)	0.002	0.002 manese
Molybdenum (mg/1)	0.01	0.01 bdenu
Sodium (mg/l)	3.1	0.1 (m
Nickel (mg/l)	< 0.01	0.01 tel (m
Phosphorus (mg/l)	< 0.05	0.05 phoru
Lead (mg/l)	< 0.001	0.001 (mg/
Sulfur (mg/l)	1.8	0.1 fur (n
Selenium (mg/l)	< 0.03	0.03 mium
Silicon (mg/l)	0.4	0.10 icon (
Silver (mg/l)	< 0.01	0.01 Ver (r
Tin (mg/l) Strontium (mg/l)	< 0.02 0.057	0.02 (mg/: 0.003 (mtiu
Strontium (mg/l) Titanium (mg/l)	< 0.01	0.005 millin
Thallium (mg/l)	< 0.01	0.03 Ilium
Vanadium (mg/l)	< 0.002	0.002 idium
Yttrium (mg/l)	< 0.001	0.001 ^{tium}
Zinc (mg/l)	0.003	0.002 ^c (mg
		(

ANAL	YSIS REPORT AVTEST	
_t ern Washington University _h ael Hilles	Date Received: 10/2 Date Reported: 11/	
WA	TER SAMPLES	
TEST Identification Number ent Identification pling Date	96-A014841 109635-0 Sile 53 Om 10/22/96	
AMETER	RESULT Q	D.L.
rentionals		
al Organic Carbon (mg/l)	1.8	1.0
al Metals		
<pre>sinum (mg/l) imony (mg/l) enic (mg/l) ium (mg/l) ium (mg/l) sium (mg/l) aium (mg/l) aium (mg/l) at (mg/l) per (mg/l) assium (mg/l) cury (mg/l) assium (mg/l) hum (mg/l) besium (mg/l) ybdenum (mg/l) ium (mg/l) tel (mg/l) fur (mg/l) fur (mg/l) enium (mg/l) icon (mg/l) icon (mg/l) icon (mg/l) anium (mg/l)</pre>	$\begin{array}{c} 0.01 \\ < 0.02 \\ < 0.03 \\ < 0.1 \\ 0.008 \\ < 0.005 \\ \hline \\ < 0.003 \\ < 0.006 \\ < 0.002 \\ < 0.01 \\ < 0.01 \\ < 1 \\ < 0.02 \\ 2.0 \\ < 0.01 \\ < 1 \\ < 0.02 \\ 2.0 \\ < 0.01 \\ < 0.02 \\ 2.0 \\ < 0.01 \\ 3.3 \\ < 0.01 \\ < 0.05 \\ < 0.001 \\ 1.8 \\ < 0.03 \\ 0.3 \\ < 0.01 \\ < 0.02 \\ 0.061 \\ < 0.03 \\ < 0.002 \\ \end{array}$	0.01 0.02 0.03 0.10 0.003 0.005 0.10 0.002 0.003 0.006 0.002 0.01 0.01 1.0 0.02 0.01 0.03 0.01 0.03 0.03 0.002

AVITEST

METHODOLOGY REPORT

AM TEST ID 96-A014837 CLIENT ID 109633-0

MATRIX : Water 10/22/96 SAMPLED:

9605921

ĩÌÌ)

- 18

1014837 414837

UL SPI

1014839

101463

101483

ANALYTE	UNITS	METHOD NUMBER	METHOD REFERENCE	DETECTION LIMIT *	DATE OF ANALYSIS	1060 1061 11842
						u11843
Total Organic Carbon	mg/l	415.1	EPA	1.0	10/31/96	TITES
Silver	mg/l	200.7	EPA	0.01	10/30/96	
Aluminum	mg/l	200.7	EPA	0.01	10/30/96	DIT37 DUP:
Arsenic	mg/l	200.7	EPA	0.03	10/30/96	HI453B DUP:
Boron	mg/l	200.7	EPA	0.10	10/30/96	014937 DUP
Barium	mg/l	200.7	EPA	0.003	10/30/96	ALLEST DUP
Beryllium	mg/l	200.7	EPA	0.005	10/30/96	1114837 DUP
Calcium	mg/l	200.7	EPA	0.10	10/30/96	014837 DUP
Cadmium	mg/l	200.7	EPA	0.002	10/30/96	SULLEDT DUP
Cobalt .	mg/l	200.7	EPA	0.003	10/30/96	TUP TEAL
Chromium	mg/l	200.7	EPA	0.006	10/30/96	DUP
Jopper	mg/l	200.7	EPA	0.002	10/30/96	114837 DUP
Iron	mg/l	200.7	EPA	0.01	10/30/96	14837 DUF
4ercury	mg/l	200.7	EPA	0.010	10/30/96	14837 DUE
otassium	.mg/l	200.7	EPA .	1.0	10/30/96	in(837 DUI
Lithium	mq/l	200.7	EPA	0.02	10/30/96 🖓 👘	100 DUI
lagnesium	mg/l	200.7	EPA	0.10	10/30/96	11(837 DUI
langanese	mg/l	200.7	EPA	0.002	10/30/96	JI4837 DU
lolybdenum	mg/l	200.7	EPA	0.01	10/30/96	- MI14837 DU
Jodium	mg/l	200.7	EPA	0.5	10/30/96	14837 DU
lickel	mg/l	200.7	EPA	0.01	10/30/96	ີ ຟີຟາ(837 DU
'hosphorus	mg/l	200.7	EPA	0.05	10/30/96	DL
Jead	mg/l	239.2	EPA	0.001	10/30/96	014837 DL
Julfur	mg/l	200.7	EPA	0.1	10/30/96	9014837 DI
intimony	mg/l	200.7	EPA	0.02	10/30/96	5 111837 DI
Selenium	mg/l	200.7	EPA	0.03	100100	014955 D
Silicon	mg/l	200.7	EPA	0.1	10/30/96	14995 D
lin	mg/l	200.7	EPA	0.02	10/30/96	1014637 D
;trontium	mg/l	200.7	EPA	0.003	10/30/96	14837 D
litanium	mg/l	200.7	EPA	0.01	10/30/96	₩14837 E
'hallium	mg/l	200.7	EPA	0.03	10/30/96	014837 t
'anadium	mg/l	200.7	EPA	0.002	10/30/96	14837 1
ttrium	mg/l	200.7	EPA	0.001	10/30/96	i914837
inc	mg/l	200.7	EPA	0.002	10/30/96	1914837
cid Dig.(Tot Metals)	mg/ I	3010	EPA	5.002	10/28/96	414837
lete big. (for hereis)		3010	UT N		10/20/20	1014837

= Standard Methods for the Examination of Water and Wastewater 18th ed. 846 = Test Methods for Evaluating Solid Waste Physical/Chemical Methods . = Methods for Chemical Analysis of Water and Wastes 1983 nstrument Detection Limit

AVITEST

Quality Control Summary

[or ap0542]				
4014837				
014030				
014839				
014840				
014841				
014842				
,014843				
ICATES		sample	duplicate	RPD
		value	value	•
014737 DUP: Total Organic Carbon	mg/l	\$30	510	3.8
014838 DUP: Total Organic Carbon	mg/l	< 1	< 1	
014837 DUP: Silver	mg/l	< 0.01	< 0.01	
014B37 DUP: Aluminum	mg/l	< 0.01	0.01	
014837 DUP: Arsenic	mg/l	< 0.03	< 0.03	
014837 DUP: Boron	mg/l	< 0.1	< 0.1	
014837 DUP: Barium	mg/l	0.007	0.007	0.00
014837 DUP: Beryllium .	mg/l	< 0.005	< 0.005	
014837 DUP: Calcium	mg/l	6.13	6.10	0.49
014837 DUP: Cadmium	mg/l	< 0.002	< 0.002	
014837 DUP: Cobalt	mg/l	< 0.003	< 0.003	
014837 DUP: Chromium	mg/l	< 0.006	< 0.006	
014837 DUP: Copper	mg/l	< 0.002	< 0.002	•
014837 DUP: Iron	mg/l	< 0.01	< 0.01	
014837 DUP: Mercury	mg/l	< 0.01	< 0.01	
014837 DUP: Potassium	mg/1	< 1	< 1	
014837 DUP: Lithium	mg/l	< 0.02	< 0.02	
014837 DUP: Magnesium	mg/l	2.03	2.01	0.99
014637 DUP: Manganese	mg/l	< 0.002	< 0.002	
014837 DUP: Molybdenum	mg/l	< 0.01	< 0.01	
014837 DUP: Sodium	mg/l	3.2	3.2	0.00
014837 DUP: Nickel	mg/1	< 0.01	< 0.01	
014837 DUP: Phosphorus	mg/l	< 0.05	< 0.05	
014955 DUP: Lead	mg/1	0.005	0.004	22.
014995 DUP: Lead	mg/l	0.009	0.009	0.00
014837 DUP: Sulfur	mg/l	1.8	1.7	5.7
014837 DUP: Antimony	mg/l	< 0.02	< 0.02	
014837 DUP: Selenium	mg/1	< 0.03	< 0.03	
)14837 DUP: Silicon	mg/1	0.3	0.3	0.00
014837 DUP: Tin	mg/1	< 0.02	< 0.02	
)14837 DUP: Strontium	mg/1	0.060	0.060	0.00
)14837 DUP: Titanium	mg/1	< 0.01	< 0.01	0.00
)14837 DUP: Thallium	mg/1	< 0.03	< 0.03	
)14837 DUP: Vanadium	mg/1	< 0.002	< 0.002	
14837 DUP: Yttrium	mg/1	< 0.001	< 0.002	
14037 DUP: Zinc	-	0.005	0.001	10
····· bur, binc	mg/l	0.005	0.000	18.

(or 9605921

X SPIKES		sample	sample•spk	spike	Recovery
		value	value	value	8
14839 SPIKE: Total Organic Carbon	mg/l	1.7	21.	20.	96.5
14838 SPIKE: Aluminum	mg/l	0.01	11.0	10.0	110.
14838 SPIKE: Arsenic	mg/l	< 0.03	1.13	1.00	113.
		23	31		

ANTEST

Quality Control Summary (continued)

QC for 9605921

BLANK: Total Organic Carbon	mg/l	< 1
BLANK: Total Organic Carbon	mg/l	< 1
BLANK: Silver	mg/l	< 0.01
BLANK: Aluminum	mg/l	< 0.01
BLANK: Arsenic	mg/l	< 0.03
BLANK: Boron	mg/l	< 0.1
BLANK: Barium	mg/l	< 0.003
BLANK: Beryllium	mg/l	< 0.005
BLANK: Calcium	mg/l	< 0.1
BLANK: Cadmium	mg/l	< 0.002
BLANK: Cobalt	mg/l	< 0.003
BLANK: Chromium	mg/l	< 0.006
BLANK: Copper	mg/l	< 0.002
BLANK: Iron	mg/l	< 0.01
BLANK: Mercury	mg/l	< 0.01
BLANK: Potassium	mg/l	< 1
BLANK: Lithium	mg/l	< 0.02
BLANK: Magnesium	mg/l	< 0.1
BLANK: Manganese	mg/l	< 0.002
BLANK: Molybdenum	mg/l	< 0.01
BLANK: Sodium	mg/l	< 0.5
BLANK: Nickel	mg/l	< 0.01
BLANK: Phosphorus	mg/l	< 0.05
BLANK: Lead	wg/1	< 0.001
BLANK: Lead	mg/l	< 0.001
BLANK: Sulfur	mg/l	< 0.1
BLANK: Antimony	mg/l	< 0.02
BLANK: Selenium	mg/l	< 0.03
BLANK: Silicon	mg/l	< 0.1
BLANK: Tin	mg/l	< 0.02
BLANK: Strontium	mg/l	< 0.003
BLANK: Titanium	mg/l	< 0.01
BLANK: Thallium	mg/l	< 0.03
BLANK: Vanadium	mg/l	< 0.002
BLANK: Yttrium	mg/l	< 0.001
BLANK: Zinc	mg/l	< 0.002

11(838 SPI 11(838 SPI 11(838 SPI

1 141636 SPI

11438 SPI 11438 SPI 11438 SPI

21(638 SPI 1638 SPI 1638 SPI 1638 SPI

л,

ĺ,

5RH SRM STON 8RH SRM STH 6RM SRM δR SR SR SR SR SR SR SR SP S 81 S

Quality Control Summary (continued)

for 9605921

.

FA01483	B SPIKE:	Barium	mg/1		0.007	1.08	1.00	107.
A014830	SPIKE:	Beryllium	#g/1	<	0.005	1.10	1.00	118.
4.A01483	SPIKE:	Calcium	mg/l		5.69	16.5	10.0	100.
\$1014836	SPIKE:	Cadmium	mg/l	<	0.002	1.18	1.00	118.
-A014836	SPIKE:	Chromium	mg∕l	<	0.006	1.07	1.00	107.
A014836	SPIKE:	Copper	mg/l	<	0.002	1.07	1.00	107.
1014838	SPIRE:	Iron	mg/1	<	0.01	5.55	5.00	111.
A014836	SPIKE:	Potasejum	mg/l	<	1	10.6	10.0	106.
A014836	SPIKE:	Magnesium	mg/l		1.84	12.5	10.0	107.
A014838	SPIKE:	Manganese	⊳ g/1	<	0.002	1.11	1.00	111.
-1014834	SPIKE:	Molybdenum	mg/l	<	0.01	1.08	1.00	108.
A014831	SPIKE:	Sodium	mg/l		3.0	14.5	10.0	115.
101483	SPIKE:	Nickel	mg/l	<	0.01	1.16	1.00	116.
1014956	5 SPIKE:	Lead	mg/l		0.002	D.028	0.025	104.
4014996	SPIKE:	Lead	ng/l		0.001	0.026	0.025	100.
4014838	B SPIKE:	Selenium	mg/l	<	0.03	1.16	1.00	116.
101483	B SPIKE:	Thallium.	mg/l	<	0.03	1.14	1.00	114.
3,014831	SPIKE:	Zinc	mg/l		0.002	1.12	1.00	112.

SDARD RE	FERENCE MATERIALS		measured	true	Recover
			value	value	*
m	SRM: Total Organic Carbon	mg/l	49.	49.	99.6
ann.	SRM: Total Organic Carbon	pg/l	49.	49.	99.6
own.	SRM: Silver	mg/l	0.23	0.20	115.
ana.	SRM: Aluminum	mg/l	10.4	10.0	104.
M	SRM: Arsenic	mg/l	2.17	2.00	108.
P m	SRM: Barium	mg/l	2.03	2.00	102.
anu -	SRM: Calcium	mg/l	10.7	10.0	107.
ann.	SRM: Cadmium	mg/l	2.13	2.00	106.
ovn	SRM: Chromium	mg/l	1.97	2.00	98.5
own.	SRM: Copper	mg/l	1.98	2.00	99.0
0vm	SRM: Iron	mg/l	2.11	2.00	106.
own.	SRM: Potassium	mg/l	94.4	100.	94.4
ovn	SRM: Magnesium	mg/l	10.3	10.0	103.
0wn	SRM: Manganese	mg/l	2.06	2.00	103.
0vn	SRM: Molybdenum	mg/l	2.06	2.00	103.
0wn	SRM: Sodium	mg/l	21.3	20.0	106.
0wn	SRM: Nickel	mg/l	2.13	2.00	106.
0wn	SRM: Phosphorus	mg/l	11.9	10.0	119.
Owη	SRM: Lead	mg/l	0.013	0.013	100.
orus.	SRM: Lead	mg/l	0.013	0.013	100.
CPU .	SRM: Sulfur	mg/l	2.0	2.0	100.
own.	SRM: Antimony	mg/l	1.95	2.00	97.5
5vr;	SRM: Selenium	mg/l	2.00	2.00	100.
or u	SRM: Tin	mg/l	1.8	2.0	90.0
0vn	SRM: Strontium	mg/l	2.2	2.0	110.
ave.	SRM: Titanium	mg/l	2.17	2.00	108.
low n	SRM: Thallium	mg/1	2.30	2.00	115.
10en	SRM: Zinc	mg/l	2.04	2.00	102.

.

LW CREEKS - FED IU METALS & TOC

Feb 21 1997

Michael Hilles WWU Huxley College IWS MS 9069 Bellingham, WA 98225 Attention: Michael Hilles

Dear Michael Hilles:

Enclosed please find the analytical data for your Lake Whatcom Creek project.

The following is a cross correlation of client and laboratory identifications for your convenience.

CLIENT ID	MATRIX	AM TEST ID	TEST
55815FEBC1 - Smith Cr	Water	97-A001911 C	CONV, MET,
55815FebC2 - Silver Beach	Water	97-A001912 C	CONV, MET,
55815FebC3- Park Place	Water	97-A001913 C	CONV, MET,
55815FebC4-Blue Canyon	Water	97-A001914 C	CONV, MET,
55815FebC5 - Anderson	Water	97-A001915 C	CONV, MET,
55815FebC6-Wildwood	Water	97-A001916 C	CONV, MET,
55815FebC7 - Austin	Water	97-A001917 C	
55815FebCFD - Wildwood	Water	97-A001918 C	CONV, E TOL only

Your eight (8) samples were received on Tuesday, February 11 1997. This was within 24 hours of the time that the samples were collected (2/10/97). At the time of receipt, the samples were logged in and properly maintained prior to their subsequent analyses.

The analytical procedures used at Am Test are well documented, and are typically derived from the protocols of the EPA, USDA, FDA or the Army Corps of Engineers.

Following the analytical data you will find the QC results and "Methodology Report". This table includes information relative to the detection limits, analyses dates and method references.

Please note that the detection limits that are listed in the body of the report refer to the Method Detection Limits (MDL's), as opposed to Practical Quantitation Limits (PQL's).

If you should have any questions pertaining to the data package, please feel free to contact me.

Sincerely,

Kathy Fugiel' Director of Inorganic Laboratory

BACT = Bacteriological CONV = Conventionals MET = Metals ORG = Organics AmTest inc.

1771

Professional Analytical Services

14603 N.E. 87th St. Redmond, WA 98052

Fax: 206 883 3495

Tel: 206 885 1664-

ANALYSIS REPORT ANTEST

Michael Hilles Michael Hilles

Date Received: 2/11/97 Date Reported: 2/21/97

chael

chae1

TEST

lent I

pling

RAMETE

havent:

stal O:

btal M

WATER SAMPLES AM TEST Identification Number 97-A001912 55815FebC2 Silver Beach Creek Client Identification Sampling Date 2/10/97 PARAMETER RESULT Q D.L. Conventionals Total Organic Carbon (mg/l) < 1 1.0 Total Metals 0.20 0.01 Aluminum $(m\alpha/1)$

Aluminum (mg/l)	0.20	0.01 Juminu
Antimony (mg/l)	< 0.02	0.02
Arsenic (mg/l)	< 0.03	0.03
Boron (mg/1)	< 0.1	0.10 bron (
Barium (mg/l)	0.021	0.003
Beryllium (mg/l)	< 0.005	0.005 rylli
Calcium (mg/l)	9.9 ·	0.10 alcium
Cadmium (mg/l)	< 0.002	0.002
Cobalt (mg/l)	< 0.003	0.003 (mbalt
Chromium (mg/l)	< 0.006	0.006 iromiu
Copper (mg/1)	< 0.002	0.002 ppper
Iron (mg/1)	0.27	0.01 ron (r
Mercury (mg/l)	< 0.01	0.01 ercur
Potassium (mg/l)	< 1	1.0 btass
Lithium (mg/l)	< 0.02	0.02 Ithiu
Magnesium (mg/l)	4.4	0.10 Agnes
Manganese (mg/l)	0.042	0.002 angan
Molybdenum (mg/l)	< 0.01	0.01 wlybd
Sodium (mg/l)	5.3	0.1 Ödium
Nickel (mg/l)	< 0.01	0.01 ickel
Phosphorus (mg/1)	0.18	0.05 hosph
Lead (mg/l)	< 0.001	0.001 ead (
Sulfur (mg/l)	2.2	0.1 ulfur
Selenium (mg/l)	< 0.03	0.03 elenj
Silicon (mg/l)	0.6	0.10 ilice
Silver (mg/l)	< 0.01	0.01 ilve:
Tin $(mg/1)$	< 0.02	0.02 [in (1
Strontium (mg/l)	0.080	0.003 [tron
Titanium (mg/l)	< 0.01	0.01 (itan
Thallium (mg/l)	< 0.03	0.03 hall
Vanadium (mg/l)	< 0.002	0.002 anad
Yttrium (mg/l)	< 0.001	0.001 ^{tt} ri
Zinc (mg/l)	0.021	0.002 ^{finc}
(1

ANALYSIS REPORT AVTEST

WATER SAMPLES TEST Identification Number ient Identification mpling Date 97-A001913 55815FebC3 2/10/97 Place Joan RAMETER RAMETER RESULT Q D.L. nventionals tal Organic Carbon (mg/l) < 1 1.0 tal Metals uminum (mg/l) 0.18 0.01 timony (mg/l) < 0.02 0.02 senic (mg/l) < 0.10 0.10 rum (mg/l) 0.026 0.003 ron (mg/l) < 0.005 0.005 rum (mg/l) < 0.002 0.002 rum (mg/l) < 0.001 0.01 rum (mg/l) < 0.002 0.002 rum (mg/l) < 0.002 0.002 rum (mg/l) < 0.001 0.01 </th <th>chael Hilles chael Hilles</th> <th>Date Received: 2/11/97 Date Reported: 2/21/97</th> <th></th>	chael Hilles chael Hilles	Date Received: 2/11/97 Date Reported: 2/21/97	
mpling Date 2/10/97 RAMETER RESULT Q D.L. nventionals 1 1.0 tal Organic Carbon (mg/l) < 1	WATE	ER SAMPLES	
nventionals tal Organic Carbon (mg/l) < 1	ient Identification		
tal Organic Carbon (mg/l) < 1	RAMETER	RESULT Q	D.L.
tal Metals uminum (mg/l) 0.18 0.01 timony (mg/l) < 0.02	nventionals		
uminum (mg/l) 0.18 0.01 timony (mg/l) < 0.02	tal Organic Carbon (mg/l)	< 1	1.0
timony (mg/1)< 0.020.02senic (mg/1)< 0.03	tal Metals		
lenium (mg/l) < 0.03	<pre>timony (mg/l) senic (mg/l) ron (mg/l) rium (mg/l) lcium (mg/l) dmium (mg/l) balt (mg/l) romium (mg/l) pper (mg/l) rcury (mg/l) tassium (mg/l) thium (mg/l) gnesium (mg/l) lybdenum (mg/l) dium (mg/l) ckel (mg/l) lfur (mg/l) lfur (mg/l) licon (mg/l) lver (mg/l) rontium (mg/l) tanium (mg/l) tanium (mg/l) allium (mg/l)</pre>	< 0.02 < 0.03 < 0.1 0.026 < 0.005 15. < 0.002 < 0.003 < 0.006 < 0.002 0.34 < 0.01 < 1 < 0.02 7.3 0.091 < 0.01 7.0 < 0.01 7.0 < 0.01 0.26 < 0.001 4.9 < 0.001 4.9 < 0.03 0.8 < 0.01 < 0.02 0.12 < 0.01 < 0.02 < 0.03	0.02 0.03 0.10 0.003 0.005 0.10 0.002 0.003 0.006 0.002 0.01 0.01 1.0 0.02 0.10 0.02 0.01 0.02 0.01 0.05 0.001 0.1 0.05 0.001 0.1 0.03 0.01 0.02 0.001 0.03 0.01 0.02 0.001 0.03 0.01 0.02 0.001 0.03 0.01 0.02 0.001 0.03 0.01 0.02 0.001 0.03 0.01 0.02 0.003 0.01 0.02 0.003 0.01 0.02 0.003 0.01 0.02 0.003 0.01 0.02 0.003 0.01 0.03 0.03 0.01 0.03

ANALYSIS REPORT AVIES

Michael Hilles Michael Hilles

Yttrium (mg/l)

Zinc (mg/l)

Date Received: 2/11/97 Date Reported: 2/21/97 ichael

ichael

Ittri

linc

0.001

0.002

WF	ATER SAMPLES	
AM TEST Identification Number Client Identification Sampling Date	97-A001914 55815FebC4 Blue Canyon 2/10/97	TEST lient pplin
PARAMETER	RESULT Q	D.L.
Conventionals		mvent
Total Organic Carbon (mg/l)	< 1	1.0 tal C
Total Metals		stal Þ
Aluminum (mg/l) Antimony (mg/l) Arsenic (mg/l) Boron (mg/l) Barium (mg/l) Beryllium (mg/l) Calcium (mg/l) Cadmium (mg/l) Cobalt (mg/l) Cobalt (mg/l) Copper (mg/l) Iron (mg/l) Mercury (mg/l) Potassium (mg/l) Lithium (mg/l) Magnesium (mg/l) Manganese (mg/l) Nickel (mg/l) Phosphorus (mg/l) Lead (mg/l)	$\begin{array}{c} 0.04 \\ < 0.02 \\ < 0.03 \\ < 0.1 \\ 0.059 \\ < 0.005 \\ 21. \\ < 0.002 \\ < 0.003 \\ < 0.006 \\ < 0.002 \\ 0.09 \\ < 0.01 \\ < 1 \\ < 0.02 \\ 6.0 \\ 0.006 \\ 0.02 \\ 13. \\ < 0.01 \\ 0.14 \\ < 0.001 \end{array}$	0.01 0.02 1.0 0.003 0.003 0.005 0.10 0.005 0.005 0.10 0.005 0.10 0.002 0.003 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.002 0.002 0.001 0.002 0.001 0.002 0.001 0.
Sulfur (mg/l) Selenium (mg/l) Silicon (mg/l) Silver (mg/l) Tin (mg/l) Strontium (mg/l)	6.2 < 0.03 0.4 < 0.01 < 0.02 0.67 < 0.01	0.1 wift 0.03 eler 0.10 iii 0.01 iiiv 0.02 iin 0.003 itro 0.01 iita
Titanium (mg/l) Thallium (mg/l) Vanadium (mg/l) Yttrium (mg/l)	< 0.01 < 0.03 < 0.002	0.01 hal 0.03 hal 0.002 han

< 0.001

0.010

	v	
ANALY	SIS REPORT AVITEST	
dichael Hilles dichael Hilles	Date Received: 2/1 Date Reported: 2/2	1/97 1/97
WAT	ER SAMPLES	
M TEST Identification Number lient Identification ampling Date	97-A001915 55815FebC5 Anderson C 2/10/97	rek
ARAMETER	RESULT Q	D.L.
conventionals		
otal Organic Carbon (mg/l)	< 1	1.0
notal Metals		
Aluminum (mg/l) Antimony (mg/l) Arsenic (mg/l) Boron (mg/l) Beryllium (mg/l) Calcium (mg/l) Cadmium (mg/l) Cobalt (mg/l) Cobalt (mg/l) Copper (mg/l) Foromium (mg/l) Mercury (mg/l) Mercury (mg/l) Magnesium (mg/l) Magnesium (mg/l) Manganese (mg/l) Molybdenum (mg/l) Sodium (mg/l) Nickel (mg/l) Nickel (mg/l) Selenium (mg/l) Silicon (mg/l) Silicon (mg/l) Silver (mg/l) Strontium (mg/l) Titanium (mg/l) Thallium (mg/l)	<pre>< 0.02 < 0.03 < 0.1 0.012 < 0.005 5.8 < 0.002 < 0.003 < 0.006 < 0.002 0.07 < 0.01 < 1 < 0.02 0.83 0.010 < 0.01 1.9 < 0.01 1.9 < 0.01 1.9 < 0.01 0.14 < 0.001 1.5 < 0.001 0.14 < 0.001 1.5 < 0.03 0.01 < 0.02 0.04 < 0.001 1.5 < 0.03 0.05 < 0.01 < 0.02 0.01 < 0.02 0.03</pre>	0.02 0.03 0.10 0.003 0.005 0.10 0.002 0.003 0.006 0.002 0.01 0.01 1.0 0.02 0.10 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.05 0.001 0.10 0.05 0.001 0.10 0.03 0.01 0.02 0.01 0.03 0.01 0.02 0.01 0.03 0.01 0.02 0.01 0.03 0.01 0.02 0.03 0.01 0.02 0.01 0.03 0.01 0.02 0.01 0.03 0.01 0.02 0.01 0.03 0.03 0.01 0.03 0.03 0.01 0.03 0.03 0.01 0.03 0.03 0.01 0.03 0.03 0.01 0.02 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.02 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.02 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03

.

v

ANALYSIS REPORT AVITEST

Michael Hilles Michael Hilles	Date Received: 2/11/9 Date Reported: 2/21/9	
W	ATER SAMPLES	
AM TEST Identification Number Client Identification Sampling Date	97-A001916 55815FebC6 Wildwood Cr. 2/10/97	ITEST lient mplin
PARAMETER	RESULT Q	D.L.
Conventionals		pnvent
Total Organic Carbon (mg/l)	< 1	1.0 5 stal C
Total Metals		, otal }
Aluminum (mg/l) Antimony (mg/l) Arsenic (mg/l) Boron (mg/l) Barium (mg/l) Calcium (mg/l) Calcium (mg/l) Cadmium (mg/l) Cobalt (mg/l) Cobalt (mg/l) Copper (mg/l) Iron (mg/l) Mercury (mg/l) Potassium (mg/l) Magnesium (mg/l) Magnesium (mg/l) Manganese (mg/l) Molybdenum (mg/l) Sodium (mg/l) Nickel (mg/l) Nickel (mg/l) Sulfur (mg/l) Silicon (mg/l) Silicon (mg/l) Tin (mg/l) Strontium (mg/l) Titanium (mg/l)	$\begin{array}{c} 0.01 \\ < 0.02 \\ < 0.03 \\ < 0.1 \\ < 0.003 \\ < 0.005 \\ 3.0 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ & 0.01 \\ < 0.01 \\ < 1 \\ < 0.01 \\ < 1 \\ < 0.02 \\ 1.0 \\ < 0.002 \\ < 0.01 \\ 2.4 \\ < 0.01 \\ 2.4 \\ < 0.01 \\ 0.9 \\ < 0.001 \\ 0.9 \\ < 0.001 \\ 0.9 \\ < 0.001 \\ 0.9 \\ < 0.001 \\ 0.9 \\ < 0.03 \\ 0.4 \\ < 0.01 \\ < 0.03 \\ \end{array}$	0.01 iumini 0.02 itimoi 0.03 irseni 0.10 oron 0.003 arium 0.005 eryll 0.10 alciu 0.002 admiu 0.002 admiu 0.002 opper 0.01 iron (0.01 ercur 1.0 otass 0.02 ithin 0.10 algnes 0.02 ithin 0.10 algnes 0.02 ingai 0.01 olybo 0.1 ootasp 0.001 icke 0.05 hosp 0.001 ead 0.1 silve 0.02 in (0.003 itror 0.01 itar 0.03 itror
Vanadium (mg/l) Yttrium (mg/l) Zinc (mg/l)	< 0.002 < 0.001 0.017	0.002 lanad 0.001 lttr 0.002 linc

ANAI	YSIS REPORT AVITES	ज
tichael Hilles Jichael Hilles	Date Received: Date Reported:	
WZ	TER SAMPLES	
M TEST Identification Number lient Identification sampling Date	97-A001917 55815FebC7 Austin 2/10/97	Creek
PARAMETER	RESULT Q	D.L.
conventionals		
Total Organic Carbon (mg/l)	< 1	1.0
Total Metals		
Aluminum (mg/l) Antimony (mg/l) Arsenic (mg/l) Boron (mg/l) Barium (mg/l) Beryllium (mg/l) Calcium (mg/l) Cadmium (mg/l) Cobalt (mg/l) Cobalt (mg/l) Copper (mg/l) Foromium (mg/l) Mercury (mg/l) Potassium (mg/l) Magnesium (mg/l) Magnesium (mg/l) Magnesium (mg/l) Sodium (mg/l) Nickel (mg/l) Nickel (mg/l) Selenium (mg/l) Silicon (mg/l) Silicon (mg/l) Silicon (mg/l) Silver (mg/l) Strontium (mg/l)	$\begin{array}{c} 0.08 \\ < 0.02 \\ < 0.03 \\ < 0.1 \\ 0.008 \\ < 0.005 \\ 4.0 \\ < 0.002 \\ < 0.002 \\ < 0.003 \\ < 0.006 \\ < 0.002 \\ 0.13 \\ < 0.01 \\ < 1 \\ < 0.02 \\ 1.2 \\ 0.014 \\ < 0.01 \\ 4.4 \\ < 0.01 \\ 4.4 \\ < 0.01 \\ 4.4 \\ < 0.01 \\ 1.3 \\ < 0.001 \\ 1.3 \\ < 0.001 \\ 1.3 \\ < 0.001 \\ 1.3 \\ < 0.001 \\ 1.3 \\ < 0.001 \\ 1.4 \\ < 0.01 \\ 0.08 \\ < 0.001 \\ 1.3 \\ < 0.02 \\ 0.045 \end{array}$	$\begin{array}{c} 0.01\\ 0.02\\ 0.03\\ 0.10\\ 0.003\\ 0.005\\ 0.10\\ 0.002\\ 0.003\\ 0.006\\ 0.002\\ 0.001\\ 0.01\\ 1.0\\ 0.01\\ 1.0\\ 0.02\\ 0.01\\ 0.02\\ 0.10\\ 0.02\\ 0.01\\ 0.1\\ 0.02\\ 0.01\\ 0.1\\ 0.03\\ 0.10\\ 0.03\\ 0.10\\ 0.02\\ 0.003\\ \end{array}$
Titanium (mg/l) Thallium (mg/l) Vanadium (mg/l) Yttrium (mg/l) Zinc (mg/l)	< 0.01 < 0.03 < 0.002 < 0.001 0.036	0.01 0.03 0.002 0.001 0.002

ANAI.	YSIS REPORT A	VITES	Г		
Michael Hilles Michael Hilles		ceived: ported:			
WA	ATER SAMPLES				
AM TEST Identification Number Client Identification Sampling Date	97-A001918 55815FebCFD 2/10/97	Wildwa	ood Cr.		AM CL AN
PARAMET'ER	RESULT	Q		D.L.	
Conventionals					TC S A
Total Organic Carbon (mg/l)	1.1			1.0	AN B B C C C C C C C C C I I M F I N N S S S S S S S S S S S S S S S S S
	243				3

METHODOLOGY REPORT

AM TEST ID 97-A001911 CLIENT ID 55815FEBC1

MATRIX : Water SAMPLED: 2/10/97

ANALYTE	UNITS	METHOD NUMBER	METHOD REFERENCE	DETECTION LIMIT *	DATE OF ANALYSIS
Total Organic Carbon	mg/1	415.1	EPA	1.0	2/19/97
Silver	mg/l	200.7	EPA	0.01	2/14/97
Aluminum	mg/l	200.7	EPA	0.01	2/14/97
Arsenic	mg/l	200.7	EPA	0.03	2/14/97
Boron	៣g/1 ៣g/1	200.7	EPA	0.10	2/14/97
Barium	mg/l	200.7	EPA	0.003	2/14/97
Beryllium	mg/l	200.7	EPA	0.005	2/14/97
Calcium	mg/l	200.7	EPA	0.10	2/14/97
Cadmium	mg/l	200.7	EPA	0.002	2/14/97
Cobalt	mg/l	200.7	EPA ·	0.003	2/14/97
Chromium	mg/l	200.7	EPA	0.006	2/14/97
Copper	mg/1	200.7	EPA	0.002	2/14/97
Iron	mg/1	200.7	EPA	0.01	2/14/97
Mercury	mg/1	200.7	EPA	0.010	2/14/97
Potassium	mg/l	200.7		1.0	2/14/97
Lithium	mg/l	200.7	EPA	0.02	2/14/97
Magnesium	mg/1	200.7	EPA	0.10	2/14/97
Manganese	mg/1	200.7	EPA	0.002	2/14/97
Molybdenum	mg/l	200.7	EPA	0.01	2/14/97
Sodium	mg/l	200.7	EPA	0.5	2/14/97
Nickel	mg/l	200.7	EPA	0.01	2/14/97
Phosphorus	mg/l	200.7	EPA	0.05	2/14/97
Lead	mg/l	239.2	EPA	0.001	2/18/97
Sulfur	mg/l	200.7	EPA	0.1	2/14/97
Antimony	mg/l	200.7	EPA	0.02	2/14/97
Selenium	mg/1.	200.7	EPA	0.03	2/14/97
Silicon	mg/l	200.7	EPA	0.1	2/14/97
Tin	mg/l	200.7	EPA	0.02	2/14/97
Strontium	mg/l	200.7	EPA	0.003	2/14/97
Titanium	mg/l	200.7	EPA	0.01	2/14/97
Thallium	mg/l	200.7	EPA	0.03	2/14/97
Vanadium	mg/l	200.7	EPA	0.002	2/14/97
Yttrium	mg/l	200.7	EPA	0.001	2/14/97
Zinc	mg/l	200.7	EPA	0.002	2/14/97
Acid Dig.(Tot Metals)	2	3010	EPA		2/12/97
1					

SM = Standard Methods for the Examination of Water and Wastewater 18th ed. SW-846 = Test Methods for Evaluating Solid Waste Physical/Chemical Methods EPA = Methods for Chemical Analysis of Water and Wastes 1983 ' Instrument Detection Limit

oC fc

97-AC

97-AC

97-A(

97-26

97-21

97-A(

97-X 97-X

97-21

31-A

97-A

97-A

97-A

97-N

97-A

97-N

97-A

97-N

STAN

f.s.cs

Inc

Kno

Kaca

Inc

Knm

Kno

Kno

Ino

Lno

Kao

Knc

Knc

Knc

Knc

Enc

Knc

Fine

Km

Kni

En.

Kŋ

۴n

Kn

Kn Kn

81

÷.,

4.

Quality Control Summary

CC for 9707311 97-A001911 97-A001912 97-A001913 97-A001914 97-A001915 97-A001915 97-A001917

97-2001918

DUFLICATES sample duplicate RPD value value ۹ 97-A001911 DUP: Total Organic Carbon 583/1 < 1 < 1 97-A001911 DUP: Silver 1937 l < 0.01 < 0.01 97-A001911 DUP: Aluminum mg / 1 0.08 9.07 13. 97-A001911 DUP: Arsenic mo/1< 0.03 < 0.03 97-A001911 DUP: Boron mg/1 < 0.1 < 0.1 97-A001911 DUP: Barium 0.004 mg/10.004 0.00 97-A00J911 DUP: Beryllium < 0.005 < 0.005 mg/l 97-A001911 DUP: Calcium mg/l 3.96 3.95 0.25 97-ACO1911 DUP: Cadmium mg/l < 0.002 < 0.002 97-A001911 DUP: Cobalt mg/1 < 0.003 < 0.003 97-A001911 DUP: Chromium mg/1< 0.006 < 0.006 97-A001911 DUP: Copper < 0.002 < 0.002 mg/197-A001911 DUP: Iron mg/10.04 0.04 0.00 97-A001911 DUP: Mercury < 0.01 mg/1< 0.01 97-A001911 DUP: Potassium mg/l < 1 < 1 97-A001911 DUP: Lithium mg/1< 0.02 < 0.02 97-A001911 DUP: Magnesium mg/11.31 1.30 0.77 97-A001911 DUP: Manganese < 0.002 mg/1 < 0.002 97-A001911 DUF: Molybdenum mg/1 < 0.01 < 0.01 97-A001911 DUP: Sodium 2.7 2.7 mg/1 0.00 97-A001911 DUP: Nickel mg/1 < 0.01 < 0.01 27-A001911 DUP: Phosphorus mg/1 0.20 0.19 5.1 97-A001723 DUP: Lead 0.063 0.062 1.6 97 -A001943 DUP: Lead mg/1 0.011 0.010 9.5 97-A001911 DUP: Sulfur mg/l 1.0 1.0 0.00 97-AC01911 DUP: Antimony mg/1 < 0.02 < 0.02 97-A001911 DUP: Selenium 1\g# < 0.03 < 0.03 97-A001911 DUP: Silicon 10q/1 0.5 0.5 0.00 97-A001911 DUT: Tin 10g/] < 0.02 < 0.02 97-A001911 DUP: Strontium 0.046 0.047 rg/12.2 97-4001911 DUP: Titanium mu/l < 0.01 < 0.01 47-A001311 DUP: Thaliium mq/1< 0.03 < 0.03 97-A001911 DUP: Vanadium mg/1 < 0.002 < 0.002 97-A001911 DUP: Yttrium $m_{\rm cl}/1$ - C.001 < 0.001 97-A001911 DUP: Zinc mg/10.012 0.011 8.7 MATRIX CRIVES ••

WIRL SPIKES	sample	sample•spk	spike	Recovery
	value	value	value	8
97-A001912 SPIKE: Total Organic Carbon mg/l	< 1	20.	20.	100.
97-A001912 SPIKE: Aluminum mg/1	0.20	9.90	10.0	96.0
97-A001912 SFIFE: Arsenic mg/l	< 0.03	1.12	1.00	112.
	n	1 5		

Quality Control Summary (continued)

QC for 9707311 .

97-A001912 SPIKE: Barium	10g/1	0.021	1.09	1.00	107.
97-A001912 SPIKE: Beryllium	a r g/1	< 0.005	1.03	1.00	103.
97-A001912 SPIKE: Calcium	mg/1	9.92	19.0	10.0	90.8
97-A001912 SPIKE: Cadmium	mg/1	< 0.002	1.13	1.00	113.
97-A001912 SPIKE: Chromium	mg/l	< 0.006	1.00	1.00	100.
97-AC01912 SPIKE: Copper	mg/l	< 0.002	1.03	1.00	103.
97-A001912 SPIKE: Iron	mg/l	0.27	5.36	5.00	102.
97-A001912 SPIKE: Potassium	n mg/1	< 1	10.7	10.0	107.
97-A001912 SPIKE: Magnesium	n mg/1	4-40	14.2	10.0	98.0
31-A001312 SFIKE: Manganese	e mg/l	0.042	1.07	1.00	103.
97-A001912 SPIKE: Molybdam	m ∍ g/1	< 0.01	0.95	1.00	95.0
97-ACC1912 SPIRE: Sodium	mg/1	5.3	15,1	10.0	98.0
97-A001912 SPIKE: Nickel	pg/1	< 0.01	1.05	1.00	105.
97-A001724 SPIRE: Lead	mg/l	0.004	0.033	0.025	116.
97-A0C1944 SPIRE: Lead	mg/l	< 0.001	0.027	0.025	108.
97-A0C1912 SPIKE: Selenium	æg/l	< 0.03	1.10	1.00	110.
97-A001912 SPIKE: Thallium	mg/l	< 0.03	1.00	1.00	100.
97-A001912 SPIKE: Zinc	mg/l	0.021	1.10	1.00	108.

STANDARD REFERENCE MATERIALS

BLANK: Silver

STANDARD	REFERENCE MATERIALS		measured	true	Recovery
			value	value	£
Known	SRN: Total Organic Carbon	mg∕l	. 49.	49.	99.6
Known	SRM: Silver	mg/l	0.20	0.20	100.
Known	SRM: Aluminum	mg/l	8.60	10.0	86.0
Known	SRM: Arsenic	mg/l	2.14	2.00	107.
Known	SRM: Barium	mg/l	1.98	2.00	99.0
Known	SRM: Calcium	mg/l	9.40	10.0	94.0
Known	SRM: Cadmium	mg/1	. 2.04	2.00	102.
Known	SRM: Chromium	mg/l	1.87	2.00	93.5
Enown	SRN: Copper	mg/l	1.93	2.00	96.5
Inown	SRM: Iron	wg/l	1,92	2.00	96.0
Kaowa	SRM: Potassium	mg/1	95.0	100.	95.0
Known	SRM: Magnesium	z g/1	9,60	10.0	98.0
Known	SRM: Manganese	mg/l	1.92	2.00	96.0
Known	SRM: Molybdenum	mg/l	1.80	2.00	90.0
Frown	SRM: Nickel	mg/l	1.85	2.00	92.5
i.ncvm	SRM: Phosphorus	mg/l	11.6	10.0	116.
Known	SRM: Lead	mg/1	0.016	0.015	107.
Fnown	SRI: Lead	mg/l	0.015	0.015	100.
Known	SRH: Sulfur	mq∕l	1.8	2.0	90.0
Known	SRM: Antimony	mg/l	2.09	2.00	104.
Known	SRN: Selenium	90.j/l).94	2.00	97.0
Known	SRM: Tin	mg/l	1.9	2.0	95.0
Known	SPM: Strontium	mg/1	2.08	2.00	104.
Known	SRH: Tilanium	mg/1	1.91	2.00	95.5
Known	SRN: Thallium	mg/1	1.95	2.00	97.5
Known	SR4: Zinc	r g/1	2.03	2.00	102.
BLANKS				Result	
	BLANK: Total Organic Carbon	#g/1	246	< 1	

#971	246
ng/1	2.0

< 0.01

Quality Control Summary (continued)

QC for 9707311

BLANK: Aluminum mg/1 < 0.01 BLANK: Arsenic mg/1 < 0.03 BLANK: Boron mg/1 < 0.1 BLANK: Barium mg/l < 0.003 BLANK: Beryllium mg/1 < 0.005 BLANK: Calcium mg/1 < 0.1 BLANK: Cadmium mg/1< 0.002 PLANK: Cobalt ng/l < 0.003 BLANK: Chromium mg/1 < 0.005 BLANK: Copper mg/1 < 0.002 BLANK: Iron mq/l < 0.01 BLANK: Mercury mg/l < 0.01 ELANK: Fotassium mg/1 < 1 **BLANK: Lithium** mg/l < 0.02 BLANK: Magnesium mg/l < 0.1 BLANK: Manganese ≖g/l < 0.002 BLANK: Molybdenum < 0.01 nig/1 BLANK: Sodium r¤g/1 < 0.5 BLANK: Nickel tøg/1 < 0.01 BLANK: Phosphorus < 0.05 mg/1BLANK: Load < 0.001 mg/1 BLANK: Lead mg/1 < 0.001 BLANK: Sulfur mg/1 < 0.1 BLANK: Antimony mg/1 < 0.02 BLANK: Selenium ∞g/1 < 0.03 BLANK: Silicon < 0.1 mg/1 BLANK: Tin mq/1< 0.02 BLANK: Strontium < 0.003 mg/1 BLANK: Titanium < 0.01 mg/1 BLANK: Thallium mg/i < 0.03 BLANK: Vanadium mg/1 < 0.002 BLANK: Yttrium mg/l < 0.001 BLANK: Zinc mg/1 < 0.002

Kno

Kno

Kno

Kno

Inc

Knc

Knc

Enr

Enc

Knc

Kne

Kni Kni Kni Kni Kni Kni Kni Kri Kri Ki Ki Ki Ki

E

a:

oc ti

97-AI

97-N

97-N

97-N

07-X

97-N

97-X

97 - A

97-A

Quality Control Summary (Continued)

QC for 9707311

97-A001912 SPIKE:	Barium	10g/1		0.021	1.09	1.00	107.
97-A001912 SPIKE:	Beryllium	r g/1	<	0.005	1.03	1.00	103.
97-A001912 SPIKE:	Calcium	mg/l		9.92	19.0	10.0	90.8
97-A001912 SPIKE:	· Cadmium	mg/l	<	0.002	1.13	1.00	113.
97-A001912 SPIRE:	Chromium	wg/1	<	0.006	1.00	1.00	100.
97-A001912 SPIKE:	Copper	≖g/l	<	0.002	1.03	1.00	103.
97-A001912 SPIKE:	Iron	mg/l		0.27	5.36	5.00	102.
97-A001912 SPIKE:	Potassium	mg/l	<	1	10.7	10.0	107.
97-A001912 SPIKE:	Magnesium	mg/1		4.40	14.2	10.0	98.0
97-A001912 SPIKE:	Manganesc	mg/1		0.042	1.07	1.00	103.
97-A001912 SPIKE:	Molybdenum	ज्जg/1	<	0.01	0.95	1.00	95.0
97-A001912 SPIRE:	Sodium	mg/1		5.3	15.1	10.0	98.0
97-A001912 SPIKE:	Nickel	pg/1	<	0.01	1.05	1.00	105.
97-A001724 SPIKE:	Lead	mg/l		0.004	0.033	0.025	115.
97-A001944 SPIRE;	Lead	mg/1	<	0.001	0.027	0.025	108.
97-A001912 SPIKE:	Selenium .	mg/l	<	0.03	1.10	1.00	110.
97-A001912 SPIKE:	Thallium	mg/1	<	0.03	1.00	1.00	100.
97-A001912 SPIKE:	Zinc	mg/l		0.021	1.10	1.00	108.

STANDARD	REFERENCE MATERIALS		measured	true	Recovery
		-	value	value	*
Known	SRM: Total Organic Carbon	mg/l	49.	49.	99.6
Known	SPM: Silver	mg/l	0.20	0.20	100.
Known	SRM: Aluminum	mg/1	8.50	10.0	86.0
Known	SRM: Arsenic	mg/l	2-14	2.00	107.
Known	SRM: Barium	mg/l	1.98	2.00	99.0
Known	SRM: Calcium	mg/l	9.40	10.0	94.0
Known	SRM: Cadmium	mg/l	2-04	2.00	102.
Known	SRM: Chromium	mg/l	1.87	2.00	93.5
₹nown	SRN: Copper	m g/l	1.93	2.00	96.5
Known	SRM: Iron	mg/l	1.92	2.00	96.0
Known	SRM: Potassium	mg/1	95.0	100.	95.0
Knewn	SRM: Magnesium	mg/l	9.60	10.0	98.0
Known	SRN: Manganese	mg/l	1.92	2.00	96.0
Known	SRM: Molybdenum	mg/1	1.60	2.00	90.0
Клоwn	SRM: Wickel	mg/1	1.85	2.00	92.5
('UCM	SRM: Phosphorus	mg/l	11.6	10.0	116.
Known	SRM: Lead	mg/1	0.016	0.015	107.
Enown	SRI: Lead	mg/l	0.015	0.015	100.
Known	SRM: Sulfur	mq/l	1.8	2.0	90.0
Known	SRM: Antimony	mg/l	2.09	2.00	104.
Known	SRM: Selenium	ang∕1	1.94	2.00	97.0
Known	SRM: Tin	mg/l	1.9	2.0	95.0
Known	SPM: Strontium	m g/1	2.08	2.00	104.
Known	SRM: Titanium	neg / 1	1.91	2.00	95.5
Known	SRM: Thallium	mg/1	1.95	2.00	97.5
Known	SH4: Zinc	5 G/1	2.03	2.00	102.
ELANKS				Result	
	RLANK: Total Organic Carbon	.≓g/1	246	< 1	

mg/l

BLANK: Silver

240		
	<	0.01

Feb 21 1997

WWU Huxley College IWS MS 9069 Bellingham, WA 98225 Attention: Michael Hilles

Dear Michael Hilles:

Enclosed please find the analytical data for your Lake Whatcom Monitor project.

LAKE WHATCOM - FEB

Am Test the

Professional Analytical Services

14603 N.E. 871h SL

Fax: 206 883 3495

Tel: 206 885 1664

WY

I٧

B€

At

9 С

9 С

> 9 С

> > 9

C

ç

(

•

¢

Redmond, WA

98052

TOC only

AN/ITEST

The following is a cross correlation of client and laboratory identifications for your convenience.

CLIENT ID	MATRIX	AM TEST ID	TEST
02129711-0 Site Or	n Water	97-A002127	-
02129711-В " 20 г	n Water	97-A002128	CONV,
02129721-0 Intake 0+	n Water	97-A002129	CONV,
02129721-В * 10+	• Water	97-A002130	CONV,
02129722-0 Site 2 Om	Water	97-A002131	CONV,
02129722-B " ISM	• Water	97-A002132	CONV,
02129731-0 Sile 3 ; On	Water	97-A002133	CONV,
02129731-В " (80)	Mater	97-A002134	CONV,
02129732-0 5ite 4 10m	Water	97-A002135	CONV,
02129732-В " 901	Water	97-A002136	CONV,

Your ten (10) samples were received on Friday, February 14 1997. This was a total of 48 hours (2 days) after sample collection (2/12/97). At the time of receipt, the samples were logged in and properly maintained prior to their subsequent analyses.

The analytical procedures used at Am Test are well documented, and are typically derived from the protocols of the EPA, USDA, FDA or the Army Corps of Engineers.

Following the analytical data you will find the QC results and "Methodology Report". This table includes information relative to the detection limits, analyses dates and method references.

Please note that the detection limits that are listed in the body of the report refer to the Method Detection Limits (MDL's), as opposed to Practical Quantitation Limits (PQL's).

If you should have any questions pertaining to the data package, please feel free to contact me.

Sincerely, Kathy Fugiel

Director of Inorganic Laboratory Project #: 55815 PO Number: T25389

248

AmTest Inc. AN/TEST Professional Analytical ANALYSIS REPORT Services 14603 N.E. 87th St. 871h St. Redmond, WA WWU Huxley College Date Received: 2/14/97 98052 IWS MS 9069 Date Reported: 2/21/97 Fax: 206 883 3495 Bellingham, WA 98225 3 3495 Attention: Michael Hilles Tel: 206 885 1664 Project Name: Lake Whatcom Monitor Project #: 55815 PO Number: T25389 Date Sampled: 2/12/97 Water Samples PARAMETER UNITS RESULT 97-A002127 Client ID: 02129711-0 Site 1-0m < 1 Total Organic Carbon mq/l97-A002128 Client ID: 02129711-B 51+e 1- 20m < 1 Total Organic Carbon mq/l97-A002129 Client ID: 02129721-0 Intake Om < 1 Total Organic Carbon mq/197-A002130 Client ID: 02129721-B Intake 10m < 1 Total Organic Carbon mg/l97-A002131 Client ID: 02129722-0 514 2 0m Total Organic Carbon mq/1< 1 97-A002132 180 Client ID: 02129722-B 5.4 2 Total Organic Carbon mg/l < 1 97-A002133 Client ID: 02129731-0 54 3 Om < 1 Total Organic Carbon mg/l97-A002134 Client ID: 02129731-B 514 3 80m Total Organic Carbon < 1 mq/197-A002135 Client ID: 02129732-0 544 0m Total Organic Carbon < 1 mg/l

31

NΔ

1664

C

AMTEST

ANALYSIS REPORT

WWU Huxley College

Date Received: 2/14/97 Date Reported: 2/21/97

> AM CLI

Attention: Michael Hilles

Water Samples

PARAMETER	UNITS	RESULT	NA
97-A002136 Client ID: 02129732-B Total Organic Carbon	Sile 4 90 m mg/1	< 1	rot

•

METHODOLOGY REPORT

 AM TEST ID 97-A002127
 MATRIX : Water

 CLIENT ID 02129711-0
 SAMPLED: 2/12/97

ANALYTE	UNITS	METHOD NUMBER	METHOD REFERENCE	DETECTION LIMIT *	DATE OF ANALYSI:
Total Organic Carbon	mg/l	415.1	EPA	1.0	2/20/97

SM = Standard Methods for the Examination of Water and Wastewater 18th ed. SW-846 = Test Methods for Evaluating Solid Waste Physical/Chemical Methods EPA = Methods for Chemical Analysis of Water and Wastes 1983 * Instrument Detection Limit

1

Quality Control Summary

QC for 9707389 97-A002127 97-A002128 97-A002129 97-A002130 97-A002130 97-A002132 27-A002133 97-A002133

97-A002135

97-A902136

DUPLICATES		sample value	duplicate value	RPD &	
97-A002127 DUP: Total Organic Carboa	mg/1	< 1	< 1		
MATRIX SPIKES		sample value	sample+spk value	opike value	Recovery
97-A002128 SPIKE: Total Organic Carbon	_ mg/l	< 1	8.6	10.	85.0
STANDARD REFERENCE MATERIALS		measured [.] Value	true value		overy ¥
Known SRM: Total Organic Carbon	my/1	4.8	4.9	-	7.6
Planks			Result		
BLANK: Total Organic Carbon	_ mg/1		< 1		

PARK PLACE PONDS - FEB 19,199 TOC & METALS

Mar 4 1997

7

Western Washington University Huxley College of Env. Science IWS MS 9069 Bellingham, WA 98225 Attention: Michael Hilles

Dear Michael Hilles:

Enclosed please find the analytical data for your Lake Whatcom Park Pl project.

The following is a cross correlation of client and laboratory identifications for your convenience.

CLIENT ID	MATRIX	AM TEST ID TEST
Park Place		<u>-</u>
55815APP4 Intet 55815APP5 outlet	Water	97-A002502 CONV, MET,
SSEISAPPS Durice.	Water	97-A002503 CONV, MET,

Your two (2) samples were received on Friday, February 21 1997. This was a total of 48 hours (2 days) after sample collection (2/19/97). At the time of receipt, the samples were logged in and properly maintained prior to their subsequent analyses.

The analytical procedures used at Am Test are well documented, and are typically derived from the protocols of the EPA, USDA, FDA or the Army Corps of Engineers.

Following the analytical data you will find the QC results and "Methodology Report". This table includes information relative to the detection limits, analyses dates and method references.

Please note that the detection limits that are listed in the body of the report refer to the Method Detection Limits (MDL's), as opposed to Practical Quantitation Limits (PQL's).

If you should have any questions pertaining to the data package, please feel free to contact me.

Sincerely, Kathy Fudiel

Director of Inorganic Laboratory

Project #: 55815 PO Number: T25389

BACT = Bacteriological CONV = Conventionals MET = Metals ORG = Organics

253

AmTest Inc. Prolessional

Analytical Services

14603 N.E. 87th St. Redmond, WA 98052

Fax: 206 883 3495

Tel: 206 885 1664

ANALYSI	S REPORT AVITEST	AmTest Inc. Professional Analytical
Western Washington University Huxley College of Env. Science IWS MS 9069	Date Received: 2/21/97 Date Reported: 3/ 4/97	Services We
Bellingham, WA 98225 Attention: Michael Hilles		Fax: 206 883 3495
	Project Name: Lake Whatcom Pa Project #: 55815 PO Number: T25389	rk p] rel: 206 885 1664 AM Cl
WATE	R SAMPLES	Sa
AM TEST Identification Number Client Identification Sampling Date	97-A002502 55815APP4 Park Place Inlet 2/19/97	
PARAMETER	RESULT Q	D.L. TC
Conventionals		Tc
Total Organic Carbon (mg/l)	< 1	1.0 A]
Total Metals		AI AJ
Aluminum (mg/l) Antimony (mg/l) Arsenic (mg/l) Boron (mg/l) Barium (mg/l) Barium (mg/l) Calcium (mg/l) Cadmium (mg/l) Cobalt (mg/l) Cobalt (mg/l) Copper (mg/l) Iron (mg/l) Mercury (mg/l) Potassium (mg/l) Magnesium (mg/l) Magnesium (mg/l) Molybdenum (mg/l) Sodium (mg/l) Nickel (mg/l) Phosphorus (mg/l) Sulfur (mg/l) Silicon (mg/l) Silicon (mg/l) Silver (mg/l) Tin (mg/l) Titanium (mg/l) Vanadium (mg/l) Vanadium (mg/l)	$\begin{array}{c} 0.16 \\ < 0.02 \\ < 0.03 \\ < 0.1 \\ 0.027 \\ < 0.005 \\ 12. \\ < 0.002 \\ < 0.003 \\ < 0.006 \\ < 0.002 \\ 0.25 \\ < 0.01 \\ < 1 \\ < 0.02 \\ 5.5 \\ 0.053 \\ < 0.01 \\ 6.4 \\ < 0.01 \\ < 0.05 \\ < 0.001 \\ 3.8 \\ < 0.001 \\ 3.8 \\ < 0.03 \\ 0.7 \\ < 0.001 \\ 3.8 \\ < 0.03 \\ 0.7 \\ < 0.001 \\ < 0.02 \\ 0.10 \\ < 0.01 \\ < 0.02 \\ 0.10 \\ < 0.01 \\ < 0.03 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.002 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001$	A) 0.01 B: 0.02 B: 0.03 0.10 0.003 0.005 0.10 0.002 I 0.002 I 0.001 M 0.002 I 0.01 M 0.002 I 0.001 M 0.002 I 0.002 I 0.001 M 0.002 I 0.002 I 0.001 N I 0.002 I 0.002 I 0.001 N I 0.002 I 0.001 I 0.002 I 0.001 I 0.002 I 0.001 I 0.002 I 0.001 I 0.002 I 0.001 I 0.002 I 0.001 I 0.003 0.001 0.01 0.02 0.001 0.01 0.02 0.001 0.002 0.001 0.01 0.02 0.001 0.02 0.001 0.02 0.001 0.002 0.001 0.02 0.001 0.02 0.001 0.01 0.002 0.001 0.02 0.001 0.02 0.001 0.02 0.003 0.001 0.02 0.003 0.001 0.002 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.002 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.002 0.001 0.003 0.001 0.003 0.002 0.001 0.003 0.002 0.001 0.003 0.002 0.001 0.003 0.002 0.001 0.003 0.001 0.003 0.002 0.001 0.003 0.001 0.003 0.002 0.001 0.001 0.003 0.002 0.001 0.003 0.001 0.003 0.002 0.001 0.003 0.002 0.001 0.001 0.003 0.002 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.0

đ

]							
•	ANALYSIS REPORT AVITEST						
:							
n SL	Western Washington University Michael Hilles	Date Received: 2/2 Date Reported: 3/	1/97 4/97				
495	WATER SAMPLES						
64	AM TEST Identification Number Client Identification Sampling Date	97-A002503 55815APP5 Park Place 2/19/97	outlet				
	PARAMETER	RESULT Q	D.L.				
-	Conventionals						
	Total Organic Carbon (mg/l)	< 1	1.0				
	Total Metals						
	Aluminum (mg/l)	0.20	0.01				
	Antimony (mg/l)	< 0.02	0.02				
	Arsenic (mg/l)	< 0.03	0.03				
	Boron (mg/l)	< 0.1	0.10				
	Barium (mg/1)	0.025	0.003				
	Beryllium (mg/l)	< 0.005	0.005				
	Calcium (mg/l)	12.	0.10 0.002				
	Cadmium (mg/l)	< 0.002 < 0.003	0.002				
	Cobalt (mg/l) Chromium (mg/l)	< 0.005	0.005				
	Copper (mg/l)	< 0.002	0.002				
	Iron (mg/l)	0.29	0.01				
	Mercury (mg/l)	< 0.01	0.01				
	Potassium (mg/l)	< 1	1.0				
	Lithium (mg/l)	< 0.02	0.02				
	Magnesium (mg/l)	5.4	0.10				
	Manganese (mg/l)	0.044	0.002				
	Molybdenum (mg/l)	< 0.01	0.01				
	Sodium (mg/l)	6.3	0.1				
	Nickel (mg/l)	< 0.01	0.01				
	Phosphorus (mg/1)	< 0.05	0.05				
	Lead (mg/l) Sulfur (mg/l)	< 0.001 3.8	0.001 0.1				
	Selenium (mg/l)	< 0.03	0.03				
	Silicon (mg/l)	0.7	0.10				
	Silver (mg/l)	< 0.01	0.01				
	Tin (mg/l)	< 0.02	0.02				
	Strontium (mg/l)	0.097	0.003				
	Titanium (mg/l)	< 0.01	0.01				
	Thallium (mg/l)	< 0.03	0.03				
	Vanadium (mg/l)	< 0.002	0.002 0.001				
	Yttrium (mg/l) Zinc (mg/l)	< 0.001 0.027	0.002				
		255					
;	,						

.

AMTEST

METHODOLOGY REPORT

AM TEST ID 97-A002502 MATRIX : Water 97-A CLIENT ID 55815APP4 SAMPLED: 2/19/97 97-A 97-A						97-X
ANALYTE	UNITS	METHOD NUMBER	METHOD REFERENCE	DETECTION LIMIT *	DATE OF ANALYSIS	DUPL 97-A
						97-A
Total Organic Carbon	mg/l	415.1	EPA	1.0	2/27/97	97 -እ 97-እ
Silver	mg/l	200.7	EPA	0.01	2/27/97	97-A
Aluminum	mg/l	200.7	EPA	0.01	2/27/97	97-A
Arsenic	mg/l	200.7	EPA	0.03	2/27/97	97-A
Boron	mg/l	200.7	EPA	0.10	2/27/97	97-A
Barium	mg/l	200.7	EPA	0.003	2/27/97	97-A
Beryllium	mg/l	200.7	EPA	0.005	2/27/97	97-A
Calcium	mg/l	200.7	EPA	0.10	2/27/97	97-A
Cadmium	mg/l	200.7	EPA	0.002	2/27/97	97-AI
Cobalt	mg/l	200.7	EPA	0.003	2/27/97	: 97-AI
Chromium	mg/l	200.7	EPA	0.006	2/27/97	97-AI
Copper	mg/l	200.7	EPA	0.002	2/27/97	97-A
Iron	mg/l	200.7	EPA	0.01	2/27/97	97-A
Mercury	mg/l	200.7	EPA	0.010	2/27/97	97-A
Potassium	mg/l	200.7	EPA .	1.0	2/27/97	97-AI
Lithium	mg/l	200.7	EPA	0.02	2/27/97	ŀ
Magnesium	mg/l	200.7	EPA	0.10	2/27/97	HATR
Manganese	mg/l	200.7	EPA	0.002	2/27/97	
Molybdenum	mg/l	200.7	EPA	0.01	2/27/97	97-XI
Sodium	mg/l	200.7	EPA	0.5	2/27/97	97-AI
Nickel	mg/l	200.7	EPA	0.01	2/27/97	97-A
Phosphorus	mg/l	200.7	EPA	0.05	2/27/97	97-AI
Lead	mg/l	239.2	EPA	0.001	2/25/97	97-AI
Sulfur	mg/l	200.7	EPA	0.1	2/27/97	97-AI
Antimony	mg/l	200.7	EPA	0.02	2/27/97	97-AI
Selenium	mg/l	200.7	EPA	0.03	2/27/97	97-A
Silicon	mg/l	200.7	EPA	0.1	2/27/97	97-A
Tin	mg/l	200.7	EPA	0.02	2/27/97	97-A
Strontium	mg/l	200.7	EPA	0.003	2/27/97	97-A
Titanium	mg/l	200.7	EPA	0.01	2/27/97	97-A
Thallium	mg/l	200.7	EPA	0.03	2/27/97	97-A
Vanadium	mg/l	200.7	EPA	0.002	2/27/97	97-A
Yttrium	mg/l	200.7	EPA	0.001	2/27/97	97-A
Zinc	mg/l	200.7	EPA	0.002	2/27/97	97-A
Acid Dig.(Tot Metals)		3010	EPA	0.002	2/24/97	
5 ()					*	

SM = Standard Methods for the Examination of Water and Wastewater 18th ed. SW-846 = Test Methods for Evaluating Solid Waste Physical/Chemical Methods EPA = Methods for Chemical Analysis of Water and Wastes 1983 * Instrument Detection Limit

256

STAN

know Know

tho.

Know Know

Know Know

Quality Control Summary

QC for 9707491 97-A002502 97-A002503

٦

S

DUPLICATES			sample	duplicate	RPD
			value	value	8
97-A002345 DUP:	Total Organic Carbon	mg/l	310	350	12.
97-AC02453 DUP:	Silver	mg/l	< 0.01	< 0.01	
97-A002453 DUP:	Boron	mg/l	0.23	0.23	0.00
97-A002453 DUP:	Cadmium	mg/1	< 0.002	< 0.002	
97-A002508 DUP:	Cadmium	mg/l	< 0.002	< 0.002	
97-A002453 DUP:	Chromium	mg/l	< 0.005	< 0.006	
97-A002508 DUP:	Chromium	mg/l	< 0.006	< 0.006	
97-A002453 DUP:	Copper	mg/l	0.077	0.075	2.6
97-A002508 DUP:	Iron	mg/l	2.38	2.32	2.6
97-A002508 DUP:	Manganese	mg/l	0.020	0.019	5.1
97-A002453 DUP:	Kolybdenum	mg/l	< 0.01	< 0.01	
97-A002453 DUP:	Nickel	mg/l	< 0.01	< 0.01	
97-A002508 DUP:	Nickel	mg/l	< 0.01	< 0.01	
97-A002018 DUP:	Lead	mg/l	< 0.001	< 0.001	
97-A002452 DUP:	Lead	mg/l	0.003	0.002	40.
97-A002508 DUP:	Lead	mg/l	0.002	0.001	67.
97-A002644 DUP:	Lead	mg/l	0.002	0.002	0.00
97-A002453 DUP:	Zinc	mg/l	0.115	0.118	1.7

MATRIX SPIKES

1

				-	•
		value	value	value	۲.
97-A002346 SPIKE: Total Organic Carbon	mg/l	2.1	12.	10.	99.0
97-A002454 SPIKE: Cadmium	⊒g/l	< 0.002	1.04	1.00	104.
97-A002509 SPIKE: Cadmium	mg/l	< 0.002	1.05	1.00	105.
97-A002454 SPIKE: Chromium	mg/l	< 0.005	0.951	1.00	95.1
97-A002509 SPIKE: Chromium	mg/l	< 0.006	0.950	1.00	95.0
97-A002454 SPIKE: Copper	mg/l	0.066	1.06	1.00	99.4
97-A002509 SPIKE: Iron	mg/l	0.63	5.53	5.00	98.0
97-A002509 SPIKE: Manganese	mg/l	0.007	0.982	1.00	97.5
97-A002454 SPIKE: Molybdenum	æg∕l	< 0.01	0.96	1.00	96.0
97-A002454 SPIKE: Nickel	mg/l	< 0.01	1.01	1.00	101.
97-A002509 SPIKE: Nickel	mg/l	< 0.01	1.00	1.00	100.
97-A002273 SPIKE: Lead	≖g/l	< 0.001	0.022	0.025	88.0
97-A002453 SPIRE: Lead	ng/l	0.004	0.029	0.025	100.
97-A002509 SPIKE: Lead	ng/l	< 0.001	0.028	0.025	112.
97-A002675 SPIKE: Lead	≖g/l	< 0.001	0.026	0.025	104.
97-A002454 SPIKE: Zinc	mg/l	0.186	1.09	1.00	90.4

sample

sample+spk spike

Recovery

STANDARD REFERENCE MATERIALS measured true Recovery value value ٩. Known SRM: Total Organic Carbon **zg/1** 4.7 4.9 95.5 sg/l Known SRM: Silver 0.20 0.20 100. Known SEM: Aluminum mg/l 9.00 10.0 90.0 Known SRM: Barium . mg/l 2.00 2.00 100. SRM: Calcium 9.22 Known ≡g/l 10.0 92.2 Known 2.09 SRM: Cadmium æg/1 2.00 104. Known SRM: Chromium mg/l 1.90 2.00 95.0

AVITEST

Quality Control Summary (continued)

QC for 9707491

Known	SRM: Copper	mg/l	1.95	2.00	AF a
Known	SRM: Iron	mg/l	1.97	2.00	97.5
Known	SRM: Potassium	mg/l	98.3	2.00	98.5
Known	SRM: Magnesium	ng/l	9.84	100.	98.3
Known	SRM: Manganese	mg/l	1.94	10.0	98.4
Known	SRM: Molybdenum	mg/l	1.84	2.00 2.00	97.0
Known	SRM: Sodium	mg/l	21.0	20.0	92.0
Known	SRM: Nickel	mg/l	1.90	20.0	105.
Known	SRM: Lead	mg/l	0.014	0.015	95.0
Known	SRM: Lead	mg/l	0.014	0.015	93.3 93.3
Known	SRM: Lead	mg/l	0.017	0.015	93.3 113.
Known	SRM: Lead	mg/l	0.016	0.015	113.
Known	SRM: Lead	mg/l	0.017	0.015	113.
Known	SRM: Sulfur	mg/l	1.9	2.0	95.0
Known	SRM: Antimony	mg/l	2.11	2.00	105.
Known	SRM: Selenium	mg/l	2.00	2.00	100.
Known	SRM: Zinc	mg/l	2.06	2.00	103.

BLANKS

		Result
BLANK: Total Organic Carbon	mg/l	< 1
BLANK: Silver	mg/l	< 0.01
BLANK: Aluminum	mg/l	< 0.01
BLANK: Arsenic	mg/l	< 0.03
BLANK: Boron	mg/l	< 0.1
BLANK: Barium	mg/l	< 0.003
BLANK: Beryllium	mg/l	< 0.005
BLANK: Calcium	mg/l	< 0.1
BLANK: Cadmium	mg/l	< 0.002
BLANK: Cobalt	mg/l	< 0.003
BLANK: Chromium	mg/l	< 0.006
BLANK: Copper	mg/l	< 0.002
BLANK: Iron	mg/l	< 0.01
BLANK: Mercury	mg/l	< 0.01
BLANK: Potassium	mg/1	< 1
BLANK: Lithium	mg/l	< 0.02
BLANK: Magnesium	mg/l	< 0.1
BLANK: Manganese	mg/l	< 0.002
BLANK: Molybdenum	mg/l	< 0.01
BLANK: Sodium	mg/l	< 0.5
BLANK: Nickel	mg/l	< 0.01
BLANK: Phosphorus	mg/l	< 0.05
BLANK: Lead	mg/l	< 0.001
BLANK: Lead	mg/l	< 0.001
BLANK: Lead	mg/l	< 0.001
BLANK: Lead	mg/l	< 0.001
BLANK: Lead	mg/l	< 0.001
BLANK: Sulfur	mg/l	< 0.1
BLANK: Antimony	mg/l	< 0.02
BLANK: Selenium	mg/l	< 0.03
BLANK: Silicon	mg/l	< 0.1
BLANK: Tin	mg/l	< 0.02
	-	258

QC 11

•

Quality Control Summary (continued)

QC for 9707491

ž

0.003
0.01
0.03
0.002
0.001
0.007

		CREEKS - AUG only	II, 1997
ANZ	ALYSIS REPORT	/ITEST	Professional Analytical Services
WWU Huxley College C/O Michael Hilles 1WS MS 9069 Bellingham, WA 98225 Attention: Michael Hilles		ceived: 8/14/97 ported: 8/15/97	14603 N.E. 871h SI, Redmond, WA 98052 Fax: 206 883 3455 Tel: 206 885 1664
Wat	Project Name: Project #: 55 PO Number: T2 Date Sampled: ter Samples	25389	t.Cks
PARAMETER	UNITS	RESULT	
97-A010967 Client ID: CLW1b Smith Creek Total Organic Carbon	mg/l	2.3	
97-A010968 Client ID: CLW2b Sulver Beach Cr. Total Organic Carbon	mg/l	. 7.5	
97-A010969 Client ID: CLW3b Park Place Total Organic Carbon	mg/l	7.1	
97-A010970 Client ID: CLW4b Blue Comyon Total Organic Carbon	mg/l	2.1	
97-A010971 Client ID: CLW5b Anderson Total Organic Carbon	mg/l	1.1	
97-A010972 Client ID: CLW7b Austin Total Organic Carbon	mg/l	2.4	
97-A010973 Client ID: CLWFDb Smith Creek Total Organic Carbon	mg/l	2.0	

1 1 11-11-1 Xî, Reported by: 9

N = N-84 PA = Ins

METHODOLOGY REPORT

AM TEST ID 97-A010967 CLIENT ID CLW1b

7

1.

MATRIX : Water SAMPLED: 8/11/97

ANALYTE	UNITS	METHOD NUMBER	METHOD REFERENCE	DETECTION LIMIT *	DATE OF ANALYSIS
Total Organic Carbon	mg/l	415.1	EPA	1.0	8/14/97

SM = Standard Methods for the Examination of Water and Wastewater 18th ed.
SW-846 = Test Methods for Evaluating Solid Waste Physical/Chemical Methods
EPA = Methods for Chemical Analysis of Water and Wastes 1983
* Instrument Detection Limit

Quality Control Summary

BLANKS	BLANK: Total Organic Carbon	mg/l		Result < 1 .		
Known	SRM: Total Organic Carbon	mg/1	5.1	4.9	10	
STANDARD	REFERENCE MATERIALS		measured value	true value	Rec	covery %
97-A01096	8 SPINE: Total Organic Carbon	mg/l	7.5	52.	50.	89.0
MATRIX SP	IKES		sample value	sample+spk value	spike value	Recovery
97-A01096	9 DUP: Total Organic Carbon	mg/l	7.1	6.0	27	7.
97-A01096	7 DUP: Total Organic Carbon	mg/l	2.3	2.8	20)_
DUPLICATE	s		sample value	duplicate value	RPÍ	
97-A01097	3					
97-A01097						
97-A01097 97-A01097						
97-201096						
97-201096	8			•		
97-201096	7					
QC for 97	09913					

LAKE WHATCOM - SEPT 18, 1997 - TOC & ME PARK PLACE POND - SEPT'18,1997 . TOC & ME

AmTest Inc.

14603 N.E. 87th St. Redmond, WA 98052

Tel: 425 885 1664

Fax: 425 883 3495

WWU Huxley College IWS MS 9069 Bellinghanm, WA 98225 Attention: Michael Hilles

Dear Michael Hilles:

Enclosed please find the analytical data for your Lake Whatcom Monitor project.

The following is a cross correlation of client and laboratory identifications for your convenience.

CLIENT ID	MATRIX	AM TEST ID	TEST
09189711-0 5ile1 Om	Water	97-A013579 CONV,	•
09189711-B 20m	Water	97-A013580 CONV,	
09189721-0 Intake om 09189721-B 10 m	Water Water	97-A013580 CONV, 97-A013581 CONV, 97-A013582 CONV,	MET,
09189722-0 514 2 0m	Water	97-A013583 CONV,	MET,
09189722-B 20m	_Water	97-A013584 CONV,	
09189731-0 5н 3 0т	Water	97-A013585 CONV,	MET,
09189731-в 80т	Water	97-A013586 CONV,	
09189732-0 5.k 4 Om	Water	97-A013587 CONV,	MET,
09189732-B 90m	Water	97-A013588 CONV,	
091897FD Site 1 20m 55815BPP4 Park Place Inlet	Water Water	97-A013589 CONV, 97-A013590 CONV, 97-A013591 CONV,	MET,
558158995 Park Place Owliet	waler	97-A013591 CONV,	

Your thirteen (13) samples were received on Wednesday, September 24 1997. This was a total of 144 hours (6 days) after sample collection (9/18/97). At the time of receipt, the samples were logged in and properly maintained prior to their subsequent analyses.

The analytical procedures used at Am Test are well documented, and are typically derived from the protocols of the EPA, USDA, FDA or the Army Corps of Engineers.

Following the analytical data you will find the QC results and "Methodology Report". This table includes information relative to the detection limits, analyses dates and method references.

Please note that the detection limits that are listed in the body of the report refer to the Method Detection Limits (MDL's), as opposed to Practical Quantitation Limits (PQL's).

If you should have any questions pertaining to the data package, please feel free to contact me.

Sincerely,

Oct 9 1997

ANALYSTS REPORT

Tin (mg/l)

Strontium (mg/l)

Titanium (mg/l)

Thallium (mg/l)

Vanadium (mg/l)

Yttrium (mg/l)

Zinc (malli

.

.

AmTesiu

0.02

0.01

0.03

0.002

0.001

1

0.003

۲

1

. ı.

.

. 1

ţ

	ANALISIS REPORT AVIISI			titlest inc.	
WHI Huyloy Collogo		LABORATORIES ate Received: 9/24/9		14603 N.E. 87th s Redmond, WA	
WWU Huxley College IWS MS 9069			i: 10/ 9/97	/ 98052	
Bellinghanm, WA 98225				Tel: 425 885 1664	
Attention: Michael Hilles	Project Name: Project #: 558 PO Number: T25	15	Whatcom Mo	Fax: 425 883 3495 Dnitor	
WA	TER SAMPLES				
AM TEST Identification Number Client Identification Sampling Date	97-A013579 09189711-0 5 9/18/97	ite l	Om		
PARAMETER	RESULT	Q		D.L.	
Conventionals					
Total Organic Carbon (mg/l)	1.2			1.0	
Total Metals					
Aluminum (mg/l)	< 0.01			0.01	
Antimony (mg/l)	< 0.02			0.02	
Arsenic (mg/l)	< 0.03	•		0.03	
Boron (mg/l)	< 0.1			0.10	
Barium (mg/l)	0.007			0.003	
Beryllium (mg/l)	< 0.005			0.005	
Calcium (mg/l)	6.1			$0.10 \\ 0.002$	
Cadmium (mg/l)	< 0.002 0.004			0.002	
Cobalt (mg/l) Chromium (mg/l)	< 0.004			0.005	
Copper (mg/l)	< 0.002			0.002	
Iron (mg/l)	0.01			0.01	
Mercury (mg/l)	< 0.01			0.01	
Potassium (mg/l)	< 1			1.0	
Lithium (mg/l)	< 0.02			0.02	
Magnesium (mg/l)	2.0			0.10	
Manganese (mg/l)	0.012			0.002	
Molybdenum (mg/l)	< 0.01			0.01	
Sodium (mg/l)	3.1			0.1	
Nickel (mg/l)	< 0.01			0.01	
Phosphorus (mg/1)	< 0.05			0.05	
Lead (mg/l)	< 0.001			0.001	
Sulfur (mg/l)	1.6			0.1	
Selenium (mg/l)	< 0.03			0.03	
Silicon (mg/l)				0.10	
Silver (mg/l)	< 0.01			0.01	

< 0.02

< 0.01

< 0.03

< 0.002

< 0.001

- - - -

0.062

ANALYSIS REPORT AVITEST

WWU Huxley College Michael Hilles

-

-

Date Received: 9/24/97 Date Reported: 10/ 9/97

WATER SAMPLES				
AM TEST Identification Number Client Identification Sampling Date	97-A013580 09189711-B 514 2 9/18/97	.0 m.		
PARAMETER	RESULT Q	D.L.		
Conventionals				
Total Organic Carbon (mg/l)	< 1	1.0		
Total Metals				
Aluminum (mg/l) Antimony (mg/l) Arsenic (mg/l) Boron (mg/l) Barium (mg/l) Beryllium (mg/l) Calcium (mg/l) Cadmium (mg/l) Cobalt (mg/l) Cobalt (mg/l) Copper (mg/l) Iron (mg/l) Mercury (mg/l) Potassium (mg/l) Magnesium (mg/l) Magnesium (mg/l) Molybdenum (mg/l) Sodium (mg/l) Nickel (mg/l) Phosphorus (mg/l) Sulfur (mg/l) Sulfur (mg/l) Silicon (mg/l) Silicon (mg/l) Tin (mg/l) Strontium (mg/l) Titanium (mg/l) Vanadium (mg/l) Yttrium (mg/l) Zinc (mg/l)	<pre>< 0.01 < 0.02 < 0.03 < 0.1 0.011 < 0.005 6.7 < 0.002 < 0.003 < 0.006 < 0.002 0.91 < 0.01 < 1 < 0.02 2.1 0.25 < 0.01 3.2 < 0.01 3.2 < 0.01 3.2 < 0.01 3.2 < 0.01 0.05 < 0.001 1.3 < 0.03 0.3 < 0.01 < 0.02 0.03 < 0.01 < 0.03 < 0.001 < 0.03 < 0.002 < 0.001 < 0.03</pre>	0.01 0.02 0.03 0.10 0.003 0.005 0.10 0.002 0.003 0.006 0.002 0.01 0.01 1.0 0.02 0.10 0.02 0.10 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.002 0.001 0.002 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002		

ANALYSIS REPORT AVIES

WWU Huxley College Michael Hilles

Date Received: 9/24/97 Date Reported: 10/ 9/97 ٢

ł

i t ;

ī

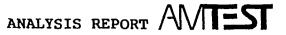
WATER SAMPLES				
AM TEST Identification Number Client Identification Sampling Date	97-A013581 09189721-0 9/18/97	Intake	Om	
PARAMETER	RESULT	Q		D.L.
Conventionals				
Total Organic Carbon (mg/l)	1.8			1.0
Total Metals				
Aluminum (mg/l) Antimony (mg/l) Arsenic (mg/l) Boron (mg/l) Barium (mg/l) Calcium (mg/l) Cadmium (mg/l) Cadmium (mg/l) Cobalt (mg/l) Cobalt (mg/l) Copper (mg/l) Iron (mg/l) Mercury (mg/l) Potassium (mg/l) Magnesium (mg/l) Magnesium (mg/l) Molybdenum (mg/l) Sodium (mg/l) Nickel (mg/l) Nickel (mg/l) Sulfur (mg/l) Selenium (mg/l) Silicon (mg/l) Silicon (mg/l) Silver (mg/l) Tin (mg/l) Strontium (mg/l) Titanium (mg/l) Vanadium (mg/l) Yttrium (mg/l)	<pre>< 0.01 < 0.02 < 0.03 < 0.1 0.006 < 0.005 5.6 < 0.002 < 0.003 < 0.006 < 0.002 < 0.001 < 0.01 < 0.01 < 0.02 1.8 < 0.002 < 0.01 < 0.02 1.8 < 0.002 < 0.01 2.9 < 0.01 < 0.05 < 0.001 < 0.05 < 0.001 < 0.05 < 0.001 < 0.02 0.01 < 0.03 < 0.002 < 0.01 < 0.03 < 0.002 < 0.001 < 0.01 < 0.02 < 0.01 < 0.01 < 0.05 < 0.001 < 0.0</pre>			0.01 0.02 0.03 0.10 0.005 0.10 0.002 0.003 0.002 0.003 0.002 0.01 0.01 1.0 0.02 0.01 0.03 0.02 0.003 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.002 0.003 0.002 0.001 0.002 0.001 0.002 0.003 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.003 0.002 0.001 0.002 0.001 0.002 0.003 0.002 0.001 0.002 0.001 0.003 0.002 0.001 0.002 0.001 0.003 0.002 0.001 0.00

Date Received: 9/24/97 Date Reported: 10/ 9/97

WATER SAMPLES				
AM TEST Identification Number Client Identification Sampling Date	97-A013582 09189721-B 9/18/97	Intake	10m	
PARAMETER	RESULT	Q		D.L.
Conventionals			<u></u>	
Total Organic Carbon (mg/l)	1.2			1.0
Total Metals				
Aluminum (mg/l) Antimony (mg/l) Arsenic (mg/l) Boron (mg/l) Barium (mg/l) Calcium (mg/l) Calcium (mg/l) Cadmium (mg/l) Cobalt (mg/l) Copper (mg/l) Iron (mg/l) Mercury (mg/l) Potassium (mg/l) Lithium (mg/l) Magnesium (mg/l) Manganese (mg/l) Molybdenum (mg/l) Sodium (mg/l) Nickel (mg/l) Phosphorus (mg/l) Silicon (mg/l) Silicon (mg/l) Silicon (mg/l) Silicon (mg/l) Tin (mg/l) Strontium (mg/l) Titanium (mg/l) Vanadium (mg/l) Yttrium (mg/l)	$\begin{array}{c} 0.01 \\ < 0.02 \\ < 0.03 \\ < 0.1 \\ 0.006 \\ < 0.005 \\ 5.6 \\ 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.006 \\ < 0.002 \\ 0.02 \\ < 0.01 \\ 1.4 \\ < 0.02 \\ 1.8 \\ 0.003 \\ 2.8 \\ < 0.5 \\ < 0.01 \\ 1.5 \\ < 0.01 \\ 1.5 \\ < 0.001 \\ < 0.1 \\ 0.14 \\ < 0.1 \\ < 0.1 \\ < 0.01 \\ < 0.01 \\ < 0.03 \\ < 0.003 \\ < 0.002 \\ < 0.001 \\ < 0.03 \\ < 0.002 \\ < 0.001 \\ < 0.002 \\ < 0.001 \\ \end{array}$			0.01 0.02 0.03 0.10 0.003 0.005 0.10 0.002 0.003 0.006 0.002 0.01 0.01 1.0 0.02 0.01 0.03 0.01 0.03 0.02 0.003 0.002 0.001 0.03 0.002 0.003 0.002 0.001

Date Received: 9/24/97 Date Reported: 10/ 9/97 ۱

1


(;

.

1

1

WATER SAMPLES				
AM TEST Identification Number Client Identification Sampling Date	97-A013583 09189722-0 9/18/97	sile 2 Om		
PARAMETER	RESULT	Q	D.L.	
Conventionals				
Total Organic Carbon (mg/l)	1.6		1.0	
Total Metals				
Aluminum (mg/l) Antimony (mg/l) Arsenic (mg/l) Boron (mg/l) Barium (mg/l) Calcium (mg/l) Calcium (mg/l) Cadmium (mg/l) Cobalt (mg/l) Cobalt (mg/l) Copper (mg/l) Mercury (mg/l) Mercury (mg/l) Magnesium (mg/l) Magnesium (mg/l) Manganese (mg/l) Molybdenum (mg/l) Sodium (mg/l) Nickel (mg/l) Nickel (mg/l) Sulfur (mg/l) Silicon (mg/l) Silicon (mg/l) Silver (mg/l) Tin (mg/l) Strontium (mg/l) Titanium (mg/l) Vanadium (mg/l) Yttrium (mg/l) Zinc (mg/l)	<pre>< 0.01 < 0.02 < 0.03 < 0.1 0.007 < 0.005 5.6 < 0.002 < 0.003 < 0.006 < 0.002 < 0.01 0.01 1.3 < 0.02 1.8 0.02 1.8 0.02 1.8 0.003 < 0.01 2.8 < 0.01 2.8 < 0.01 2.8 < 0.01 2.8 < 0.01 2.8 < 0.01 2.8 < 0.01 2.8 < 0.01 2.8 < 0.01 2.055 < 0.001 1.6 < 0.02 0.0555 < 0.01 < 0.03 < 0.002 < 0.001 < 0.03 < 0.002 < 0.001 < 0.03</pre>	. · ·	0.01 0.02 0.03 0.10 0.003 0.005 0.10 0.002 0.003 0.006 0.002 0.01 0.01 1.0 0.02 0.01 0.03 0.02 0.03 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.002 0.002 0.001 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.	

٦.

Date Received: 9/24/97 Date Reported: 10/ 9/97

WATER SAMPLES

AM TEST Identification Number Client Identification Sampling Date	97-A013584 09189722-B 9/18/97	sile a ac	m
PARAMETER	RESULT	Q	D.L.
Conventionals			
Total Organic Carbon (mg/l)	1.4		1.0
Total Metals			
Aluminum (mg/l) Antimony (mg/l) Arsenic (mg/l) Boron (mg/l) Barium (mg/l) Calcium (mg/l) Cadmium (mg/l) Cobalt (mg/l) Cobalt (mg/l) Chromium (mg/l) Mercury (mg/l) Potassium (mg/l) Magnesium (mg/l) Magnesium (mg/l) Magnese (mg/l) Molybdenum (mg/l) Sodium (mg/l) Nickel (mg/l) Phosphorus (mg/l) Lead (mg/l) Sulfur (mg/l) Silicon (mg/l) Silicon (mg/l) Silicon (mg/l) Tin (mg/l) Strontium (mg/l) Titanium (mg/l) Vanadium (mg/l)	<pre>< 0.01 < 0.02 < 0.03 < 0.1 0.008 < 0.005 .5.9 0.003 0.005 < 0.006 < 0.002 0.12 < 0.01 < 1 < 0.02 1.9 0.074 < 0.01 3.0 < 0.01 3.0 < 0.01 3.0 < 0.01 3.0 < 0.01 3.0 < 0.01 1.4 < 0.03 0.2 < 0.01 1.4 < 0.03 0.2 < 0.01 < 0.05 < 0.001 1.4 < 0.03 0.2 < 0.01 < 0.02 0.061 < 0.03 < 0.002</pre>		$\begin{array}{c} 0.01\\ 0.02\\ 0.03\\ 0.10\\ 0.003\\ 0.005\\ 0.10\\ 0.002\\ 0.003\\ 0.006\\ 0.002\\ 0.001\\ 0.01\\ 1.0\\ 0.02\\ 0.01\\ 1.0\\ 0.02\\ 0.10\\ 0.02\\ 0.10\\ 0.002\\ 0.01\\ 0.1\\ 0.05\\ 0.001\\ 0.1\\ 0.05\\ 0.001\\ 0.1\\ 0.03\\ 0.10\\ 0.03\\ 0.01\\ 0.03\\ 0.002\end{array}$
Yttrium (mg/l) Zinc (mg/l)	< 0.001 0.011		0.001 0.002

ANALYSIS REPORT AVITES

WWU Huxley College Michael Hilles

Date Received: 9/24/97 Date Reported: 10/ 9/97

WATER SAMPLES				
AM TEST Identification Number Client Identification Sampling Date	97-A013585 09189731-0 5 , k 3 On 9/18/97	~		
PARAMETER	RESULT Q	D.L.		
Conventionals				
Total Organic Carbon (mg/l)	2.9	1.0		
Total Metals				
Aluminum (mg/l) Antimony (mg/l) Arsenic (mg/l) Boron (mg/l) Barium (mg/l) Calcium (mg/l) Cadmium (mg/l) Cobalt (mg/l) Cobalt (mg/l) Chromium (mg/l) Copper (mg/l) Iron (mg/l) Mercury (mg/l) Potassium (mg/l) Lithium (mg/l) Magnesium (mg/l) Molybdenum (mg/l) Sodium (mg/l)	$\begin{array}{c} 0.02 \\ < 0.02 \\ < 0.03 \\ < 0.1 \\ 0.007 \\ < 0.005 \\ 5.5 \\ < 0.002 \\ < 0.003 \\ < 0.006 \\ < 0.002 \\ 0.01 \\ < 0.01 \\ < 1 \\ < 0.01 \\ < 1 \\ < 0.02 \\ 1.8 \\ < 0.002 \\ 1.8 \\ < 0.002 \\ < 0.01 \\ 2.9 \end{array}$	$\begin{array}{c} 0.01\\ 0.02\\ 0.03\\ 0.10\\ 0.003\\ 0.005\\ 0.10\\ 0.002\\ 0.003\\ 0.006\\ 0.002\\ 0.01\\ 1.0\\ 0.01\\ 1.0\\ 0.02\\ 0.10\\ 0.002\\ 0.10\\ 0.002\\ 0.01\\ 0.1\\ \end{array}$		
Nickel (mg/l) Phosphorus (mg/l) Lead (mg/l) Sulfur (mg/l) Selenium (mg/l) Silicon (mg/l) Silver (mg/l) Tin (mg/l) Strontium (mg/l) Thallium (mg/l)	< 0.01 < 0.05 < 0.001 1.6 < 0.03 0.1 < 0.01 < 0.02 0.055 < 0.01 < 0.03	0.01 0.05 0.001 0.1 0.03 0.10 0.01 0.02 0.003 0.01 0.03		

Thallium (mg/l) Vanadium (mg/l) Yttrium (mg/l) Zinc (mg/l)

270

< 0.002 < 0.001

0.021

) (

> { -] -

> > .

ī

0.002

0.001

0.002

Ý

ŀ

ANALYSIS REPORT AVITES

WWU Huxley College Michael Hilles

Strontium (mg/l)

Titanium (mg/l)

Thallium (mg/l)

Vanadium (mg/l)

Yttrium (mg/l)

Zinc (mg/l)

Date Received: 9/24/97 Date Reported: 10/ 9/97 0.003

0.01

0.03

0.002

0.001

0.002

WATER SAMPLES

WATER SAMPLES				
AM TEST Identification Number Client Identification Sampling Date	97-A013586 09189731-B Sile 3 80 m 9/18/97	L · ·		
PARAMETER	RESULT Q	D.L.		
Conventionals	•			
Total Organic Carbon (mg/l)	< 1	1.0		
Total Metals				
Aluminum (mg/l) Antimony (mg/l) Arsenic (mg/l) Boron (mg/l) Barium (mg/l) Beryllium (mg/l) Calcium (mg/l) Cadmium (mg/l) Cobalt (mg/l) Cobalt (mg/l) Chromium (mg/l) Iron (mg/l) Mercury (mg/l) Potassium (mg/l) Lithium (mg/l) Manganese (mg/l) Molybdenum (mg/l) Sodium (mg/l)	$\begin{array}{c} 0.02 \\ < 0.02 \\ < 0.03 \\ < 0.1 \\ 0.006 \\ < 0.005 \\ 5.7 \\ < 0.002 \\ < 0.003 \\ < 0.006 \\ < 0.002 \\ 0.02 \\ < 0.01 \\ < 1 \\ < 0.02 \\ 1.8 \\ 0.016 \\ < 0.01 \\ 2.9 \end{array}$	$\begin{array}{c} 0.01\\ 0.02\\ 0.03\\ 0.10\\ 0.003\\ 0.005\\ 0.10\\ 0.002\\ 0.003\\ 0.006\\ 0.002\\ 0.01\\ 0.01\\ 1.0\\ 0.02\\ 0.01\\ 1.0\\ 0.02\\ 0.10\\ 0.002\\ 0.01\\ 0.1\\ \end{array}$		
Nickel (mg/l) Phosphorus (mg/l) Lead (mg/l) Sulfur (mg/l) Selenium (mg/l) Silicon (mg/l) Silver (mg/l) Tin (mg/l)	<pre>< 0.01 < 0.05 < 0.001 1.6 < 0.03 0.2 < 0.01 < 0.02</pre>	0.01 0.05 0.001 0.1 0.03 0.10 0.01 0.02		

0.058

< 0.01

< 0.03

< 0.002

< 0.001

0.008

ANALYSIS REPORT AVITEST

WWU Huxley College Michael Hilles

Date Received: 9/24/97 Date Reported: 10/ 9/97

WATER SAMPLES					
AM TEST Identification Number Client Identification Sampling Date	97-A013587 09189732-0 5.42 4 0 9/18/97	m.			
PARAMETER	RESULT Q	. D.L.			
Conventionals					
Total Organic Carbon (mg/l)	< 1	1.0			
Total Metals					
Aluminum (mg/l) Antimony (mg/l) Arsenic (mg/l) Boron (mg/l) Barium (mg/l) Calcium (mg/l) Calcium (mg/l) Cadmium (mg/l) Cobalt (mg/l) Cobalt (mg/l) Copper (mg/l) Iron (mg/l) Mercury (mg/l) Potassium (mg/l) Magnesium (mg/l) Magnesium (mg/l) Manganese (mg/l) Molybdenum (mg/l) Sodium (mg/l) Nickel (mg/l) Nickel (mg/l) Sulfur (mg/l) Silicon (mg/l) Silicon (mg/l) Silver (mg/l) Tin (mg/l) Strontium (mg/l) Thallium (mg/l) Vanadium (mg/l)	$\begin{array}{c} 0.04 \\ < 0.02 \\ < 0.03 \\ < 0.1 \\ 0.006 \\ < 0.005 \\ 5.6 \\ < 0.002 \\ < 0.003 \\ < 0.006 \\ < 0.002 \\ < 0.01 \\ < 0.01 \\ < 1 \\ < 0.01 \\ < 1 \\ < 0.02 \\ 1.8 \\ < 0.002 \\ 1.8 \\ < 0.002 \\ < 0.01 \\ 3.0 \\ < 0.01 \\ 3.0 \\ < 0.01 \\ 3.0 \\ < 0.01 \\ 1.5 \\ < 0.001 \\ 1.5 \\ < 0.03 \\ 0.1 \\ < 0.03 \\ < 0.01 \\ < 0.03 \\ < 0.002 \end{array}$	$\begin{array}{c} 0.01\\ 0.02\\ 0.03\\ 0.10\\ 0.003\\ 0.005\\ 0.10\\ 0.002\\ 0.003\\ 0.006\\ 0.002\\ 0.01\\ 0.01\\ 1.0\\ 0.02\\ 0.01\\ 1.0\\ 0.02\\ 0.01\\ 0.02\\ 0.10\\ 0.02\\ 0.01\\ 0.02\\ 0.01\\ 0.02\\ 0.01\\ 0.1\\ 0.05\\ 0.001\\ 0.1\\ 0.05\\ 0.001\\ 0.1\\ 0.03\\ 0.01\\ 0.03\\ 0.01\\ 0.03\\ 0.002\end{array}$			
Yttrium (mg/l) Zinc (mg/l)	< 0.001 0.012	0.001 0.002			

Zinc (mg/l)

Date Received: 9/24/97 Date Reported: 10/ 9/97 語語でした。「日本語語」の語言のなどので、「日本語」のない。

の記事の語言で

0.002

WATED CAMPIES

WATER SAMPLES				
AM TEST Identification Number Client Identification Sampling Date	97-A013588 09189732-B 5.4 1 9 9/18/97	Dm		
PARAMETER	RESULT Q	D.L.		
Conventionals				
Total Organic Carbon (mg/l)	< 1	1.0		
Total Metals				
Aluminum (mg/l) Antimony (mg/l) Arsenic (mg/l) Boron (mg/l) Barium (mg/l) Beryllium (mg/l) Calcium (mg/l) Cadmium (mg/l) Cobalt (mg/l) Cobalt (mg/l) Copper (mg/l) Iron (mg/l) Mercury (mg/l) Potassium (mg/l) Lithium (mg/l) Magnesium (mg/l) Maganese (mg/l) Nickel (mg/l) Phosphorus (mg/l) Lead (mg/l)	$\begin{array}{c} 0.02 \\ < 0.02 \\ < 0.03 \\ < 0.1 \\ 0.007 \\ < 0.005 \\ 5.7 \\ < 0.002 \\ < 0.003 \\ < 0.006 \\ < 0.002 \\ < 0.001 \\ < 0.01 \\ < 1 \\ < 0.02 \\ 1.8 \\ 0.004 \\ < 0.01 \\ 3.0 \\ < 0.01 \\ 3.0 \\ < 0.01 \\ < 0.05 \\ < 0.001 \end{array}$	$\begin{array}{c} 0.01\\ 0.02\\ 0.03\\ 0.10\\ 0.003\\ 0.005\\ 0.10\\ 0.002\\ 0.003\\ 0.006\\ 0.002\\ 0.01\\ 0.01\\ 1.0\\ 0.02\\ 0.10\\ 0.02\\ 0.10\\ 0.002\\ 0.01\\ 0.1\\ 0.01\\ 0.05\\ 0.001 \end{array}$		
Sulfur (mg/l) Selenium (mg/l) Silicon (mg/l) Silver (mg/l) Tin (mg/l) Strontium (mg/l) Thallium (mg/l) Vanadium (mg/l) Yttrium (mg/l)	$ \begin{array}{r} 1.6 \\ < 0.03 \\ 0.2 \\ < 0.01 \\ < 0.02 \\ 0.059 \\ < 0.01 \\ < 0.03 \\ < 0.002 \\ < 0.001 \\ 0.010 \\ \end{array} $	$\begin{array}{c} 0.1\\ 0.03\\ 0.10\\ 0.01\\ 0.02\\ 0.003\\ 0.01\\ 0.03\\ 0.002\\ 0.002\\ 0.001\\ 0.002\end{array}$		

273

0.010

ANALYSIS REPORT AVIES

WWU Huxley College Michael Hilles Date Received: 9/24/97 Date Reported: 10/ 9/97

WATER SAMPLES					
AM TEST Identification Number Client Identification Sampling Date	97-A013589 091897FD Sile I 20 m 9/18/97				
PARAMETER	RESULT Q	D.L.			
Conventionals					
Total Organic Carbon (mg/l)	1.2	1.0			
Total Metals					
Aluminum (mg/l) Antimony (mg/l) Arsenic (mg/l) Boron (mg/l) Barium (mg/l) Calcium (mg/l) Calcium (mg/l) Cadmium (mg/l) Cobalt (mg/l) Cobalt (mg/l) Copper (mg/l) Iron (mg/l) Mercury (mg/l) Potassium (mg/l) Magnesium (mg/l) Magnesium (mg/l) Molybdenum (mg/l) Sodium (mg/l) Nickel (mg/l) Nickel (mg/l) Phosphorus (mg/l) Selenium (mg/l) Silicon (mg/l) Silicon (mg/l) Siliver (mg/l) Tin (mg/l) Titanium (mg/l) Vanadium (mg/l) Yttrium (mg/l) Zinc (mg/l)	<pre>< 0.01 < 0.02 < 0.03 < 0.1 0.012 < 0.005 6.6 < 0.002 < 0.003 < 0.006 < 0.002 0.89 < 0.01 < 1 < 0.02 2.0 0.24 < 0.01 3.0 < 0.01 3.0 < 0.01 3.0 < 0.01 1.4 < 0.03 0.3 < 0.01 1.4 < 0.03 0.3 < 0.01 < 0.02 0.03 0.3 < 0.01 < 0.02 0.067 < 0.01 < 0.03 < 0.002 < 0.001 < 0.03 < 0.002 < 0.002 < 0.001 < 0.03 < 0.002 < 0.002 < 0.001 < 0.03 < 0.002 < 0.001 < 0.003 < 0.002 < 0.001 < 0.003 < 0.001 < 0.003</pre>	0.01 0.02 0.03 0.10 0.003 0.005 0.10 0.002 0.003 0.006 0.002 0.01 0.01 1.0 0.02 0.10 0.02 0.10 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.03 0.01 0.03 0.002 0.001 0.03 0.002 0.001 0.003 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.03 0.002 0.001 0.002 0.002 0.001 0.002 0.00			

i.

ANALYSIS REPORT AVITEST

WWU Huxley College Michael Hilles

Date Received: 9/24/97 Date Reported: 10/ 9/97

WATER SAMPLES

.

AM TEST Identification Number Client Identification Sampling Date	97-A013590 55815BPP4 9/18/97	Park Place	Inlet
PARAMETER	RESULT	Q	D.L.
Conventionals			
Total Organic Carbon (mg/l)	4.0		1.0
Total Metals			
Aluminum (mg/l) Antimony (mg/l) Arsenic (mg/l) Boron (mg/l) Barium (mg/l) Beryllium (mg/l) Calcium (mg/l) Cadmium (mg/l) Cadmium (mg/l) Cobalt (mg/l) Cobalt (mg/l) Copper (mg/l) Iron (mg/l) Mercury (mg/l) Potassium (mg/l) Magnesium (mg/l) Magnesium (mg/l) Manganese (mg/l) Molybdenum (mg/l) Sodium (mg/l) Nickel (mg/l) Sulfur (mg/l) Silicon (mg/l) Silicon (mg/l) Silver (mg/l) Tit (mg/l) Titanium (mg/l) Vanadium (mg/l)	$\begin{array}{c} 0.19 \\ < 0.02 \\ < 0.03 \\ < 0.1 \\ 0.024 \\ < 0.005 \\ 18. \\ < 0.002 \\ < 0.003 \\ < 0.006 \\ < 0.002 \\ 0.47 \\ < 0.01 \\ < 1 \\ < 0.02 \\ 7.5 \\ 0.10 \\ < 0.01 \\ < 1 \\ < 0.01 \\ 9.1 \\ < 0.01 \\ 9.1 \\ < 0.01 \\ 0.08 \\ < 0.001 \\ 2.3 \\ < 0.001 \\ 2.3 \\ < 0.001 \\ 2.3 \\ < 0.001 \\ < 0.02 \\ 0.14 \\ < 0.01 \\ < 0.03 \\ < 0.002 \end{array}$		$\begin{array}{c} 0.01\\ 0.02\\ 0.03\\ 0.10\\ 0.003\\ 0.005\\ 0.10\\ 0.002\\ 0.003\\ 0.006\\ 0.002\\ 0.001\\ 0.01\\ 1.0\\ 0.01\\ 1.0\\ 0.02\\ 0.01\\ 0.02\\ 0.01\\ 0.02\\ 0.01\\ 0.02\\ 0.01\\ 0.01\\ 0.05\\ 0.001\\ 0.1\\ 0.03\\ 0.10\\ 0.03\\ 0.002\\ \end{array}$
Phosphorus (mg/l) Lead (mg/l) Sulfur (mg/l) Selenium (mg/l) Silicon (mg/l) Silver (mg/l) Tin (mg/l) Strontium (mg/l) Titanium (mg/l) Thallium (mg/l)	0.08 < 0.001 2.3 < 0.03 0.4 < 0.01 < 0.02 0.14 < 0.01 < 0.03		0.05 0.001 0.1 0.03 0.10 0.01 0.02 0.003 0.01 0.03

Date Received: 9/24/97 Date Reported: 10/ 9/97

WATER SAMPLES

ATER SAMPLES	
97-A013591 55815B995 Park Plac 9/18/97	e Outlet
RESULT Q	D.L.
4.2	1.0
$\begin{array}{c} 0.05 \\ < 0.02 \\ < 0.03 \\ < 0.1 \\ 0.030 \\ < 0.005 \\ 21. \\ < 0.002 \\ < 0.003 \\ < 0.006 \\ < 0.002 \\ 0.36 \\ < 0.001 \\ 1.7 \\ < 0.02 \\ 0.36 \\ < 0.01 \\ 11. \\ 0.02 \\ 0.01 \\ 11. \\ 0.02 \\ 0.09 \\ < 0.001 \\ 2.0 \\ < 0.001 \\ 2.0 \\ < 0.001 \\ 2.0 \\ < 0.001 \\ < 0.02 \\ 0.16 \\ < 0.01 \\ < 0.03 \\ < 0.002 \\ < 0.001 \\ < 0.002 \\ < 0.001 \\ < 0.002 \\ < 0.001 \\ \end{array}$	$\begin{array}{c} 0.01\\ 0.02\\ 0.03\\ 0.10\\ 0.003\\ 0.005\\ 0.10\\ 0.002\\ 0.003\\ 0.006\\ 0.002\\ 0.001\\ 0.01\\ 1.0\\ 0.01\\ 1.0\\ 0.02\\ 0.01\\ 1.0\\ 0.02\\ 0.10\\ 0.02\\ 0.10\\ 0.02\\ 0.01\\ 0.1\\ 0.03\\ 0.10\\ 0.03\\ 0.10\\ 0.03\\ 0.01\\ 0.03\\ 0.01\\ 0.03\\ 0.002\\ 0.001\\ 0.002\\ 0.0002\\ 0.001\\ 0.002\\ 0.001\\ 0.002\\ 0.002\\ 0.001\\ 0.002\\ 0.002\\ 0.001\\ 0.002\\ 0.002\\ 0.001\\ 0.002\\ 0.002\\ 0.002\\ 0.001\\ 0.002\\ 0.002\\ 0.001\\ 0.002\\ 0.002\\ 0.001\\ 0.002\\ 0.002\\ 0.001\\ 0.002\\ 0.002\\ 0.001\\ 0.002$
	$\begin{array}{c} 97-A013591\\55815B995\\9/18/97\end{array} Park Place RESULT Q 4.2 4.2 4.2 4.2 0.05 < 0.02 < 0.03 < 0.01 0.030 < 0.005 21. < 0.002 < 0.003 < 0.002 < 0.003 < 0.002 0.36 < 0.01 1.7 < 0.02 0.36 < 0.01 1.7 < 0.02 0.36 < 0.01 1.7 < 0.02 0.36 < 0.01 1.7 < 0.02 0.36 < 0.01 1.7 < 0.02 0.36 < 0.01 1.7 < 0.02 0.36 < 0.01 1.7 < 0.02 0.36 < 0.01 1.7 < 0.02 0.36 < 0.01 1.7 < 0.02 0.36 < 0.01 1.7 < 0.02 0.36 < 0.01 1.7 < 0.02 0.36 < 0.01 1.7 < 0.02 0.09 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 2.0 < 0.001 < 0.02 0.16 < 0.03$

SM SW EF

ł

A C

Α

_

T S

A A B B

BCCCCCIM

PLMMMSNF

1

METHODOLOGY REPORT

AM TEST ID 97-A013579 CLIENT ID 09189711-0 MATRIX : Water SAMPLED: 9/18/97

~	ANALYTE	UNITS	METHOD NUMBER	METHOD REFERENCE	DETECTION LIMIT *	DATE OF ANALYSIS
_	Total Organic Carbon	mg/l	415.1	EPA	1.0	10/ 8/97
_	Silver	mq/l	200.7	EPA	0.01	10/ 2/97
	Aluminum	mg/l	200.7	EPA	0.01	10/ 2/97
	Arsenic	mg/l	200.7	EPA	0.03	10/ 2/97
	Boron	mg/l	200.7	EPA	0.10	10/ 2/97
	Barium	mg/l	200.7	EPA	0.003	10/ 2/97
	Beryllium	mg/l	200.7	EPA	0.005	10/ 2/97
	Calcium	mg/l	200.7	EPA	0.10	10/ 2/97
	Cadmium	mg/l	200.7	EPA	0.002	10/ 2/97
	Cobalt	mg/l	200.7	EPA	0.003	10/ 2/97
	Chromium	mg/l	200.7	EPA	0.006	10/ 2/97
	Copper	mg/l	200.7	EPA	0.002	10/ 2/97
	Iron	mg/l	200.7	EPA	0.01	10/ 2/97
	Mercury	mg/l	200.7	EPA	0.010	10/ 2/97
	Potassium	mg/l	200.7	EPA ·	1.0	10/ 2/97
	Lithium	mg/l	200.7	EPA	0.02	10/ 2/97
	Magnesium	mg/l	200.7	EPA	0.10	10/ 2/97
	Manganese	mg/l	200.7	EPA	0.002	10/ 2/97
	Molybdenum	mg/l	200.7	EPA	0.01	10/ 2/97
	Sodium	mg/l	200.7	EPA	0.5	10/ 2/97
	Nickel	mg/l	200.7	EPA	0.01	10/ 2/97
	Phosphorus	mg/l	200.7	EPA	0.05	10/ 2/97
	Lead	mg/l	239.2	EPA	0.001	10/ 2/97
	Sulfur	mg/l	200.7	EPA	0.1	10/ 2/97
	Antimony	mg/l	200.7	EPA	0.02	10/ 2/97
	Selenium	mg/l	200.7	EPA	0.03	10/ 2/97
	Silicon	mg/l	200.7	EPA	0.1	10/ 2/97
	Tin	mg/l	200.7	EPA	0.02	10/ 2/97
	Strontium	mg/l	200.7	EPA	0.003	10/ 2/97
	Titanium	mg/l	200.7	EPA	0.01	10/ 2/97
	Thallium	mg/l	200.7	EPA	0.03	10/ 2/97
	Vanadium	mg/l	200.7	EPA	0.002	10/ 2/97
	Yttrium	mg/l	200.7	EPA	0.001	10/ 2/97
	Zinc	mg/l	200.7	EPA	0.002	10/ 2/97
	Acid Dig.(Tot Metals)		3010	EPA		10/ 1/97

SM = Standard Methods for the Examination of Water and Wastewater 18th ed. SW-846 = Test Methods for Evaluating Solid Waste Physical/Chemical Methods EPA = Methods for Chemical Analysis of Water and Wastes 1983 * Instrument Detection Limit

AVITEST

ç

> > M

Quality Control Summary

QC for 9710531

97-A013579
97-A013580
97-A013581
97-1013582
97 -A01358 3
97-A013584
97-A013585
97-A013586
97-A013587
97-A013588
97-A013589
97-2013590

97-A013591

DUPLICATES		sample	duplicate	RPD
		value	value	8
97-A013579 DUP: Total Organic Carbon	mg/1	1.2	1.2	0.00
97-A013590 DUP: Total Organic Carbon	mg/l	4.C	4.6	14.
97-A013579 DUP: Silver	mg/l	< 0.01	< 0.01	
97-A013589 DUP: Silver	mg/1	< 0.01	< 0.01	
97-A013579 DUP: Aluminum	mg/l	< 0.01	< 0.01	
97-A013589 DUP: Aluminum	mg/l	< 0.01	< 0.01	•
97-A013579 DUP: Arsenic	mg/l	< 0.03	< 0.03	
97-A013589 DUP: Arsenic	mg/l	< 0.03	< 0.03	
97-A013579 DUP: Boron	mg/l	< 0.1	< 0.1	
97-A013589 DUP: Boron	mg/l	< 0.1	< 0.1	
97-A013579 DUP: Barium	mg/l	0.007	0.008	13.
97-A013589 DUP: Barium	mg/l	0.012	0.011	8.7
97-A013579 DUP: Beryllium	mg/l	< 0.005	< 0.005	
97-A013589 DUP: Beryllium	mg/l	< 0.005	< 0.005	
97-A013579 DUP: Calcium	mg/1	6.13	6.19	0.97
97-A013589 DUP: Calcium	mg/l	6.59	6.52	1.1
97-A013579 DUP: Cadmium	mg/l	< 0.002	< 0.002	
97-A013589 DUP: Cadmium	mg/l	< 0.002	< 0.002	
97-A013579 DUP: Cobalt	mg/l	0.004	< 0.003	
97-A013589 DUP: Cobalt	mg/l	< 0.003	< 0.003	
97-A013579 DUP: Chromium	mg/l	< 0.005	< 0.006	
97-A013589 DUP: Chromium	mg/l	< 0.006	< 0.006	
97-A013579 DUP: Copper	mg/l	< 0.002	< 0.002	
97-A013589 DUP: Copper	mg/l	< 0.002	< 0.002	
97-A013579 DUP: Iron	mg/l	0.01	0.02	67.
97-A013589 DUP: Iron	mg/l	0.89	0.96	7.6
97-A013579 DUP: Mercury	mg/l	< 0.01	< 0.01	
97-A013589 DUP: Mercury	mg/l	< 0.01	< 0.01	
97-A013579 DUP: Potassium	mg/l	< 1	< 1	
97-A013589 DUP: Potassium	mg/l	< 1	< 1	
97-A013579 DUP: Lithium	mg/l	< 0.02	< 0.02	
97-A013589 DUP: Lithium	mg/l	< 0.02	< 0.02	
97-A013579 DUP: Møgnesium	mg/l	1.98	2.01	1.5
97-A013589 DUP: Magnesium	mg/l	2.02 278	2.00	1.0

Quality Control Summary (continued)

QC for 9710531

-

97-A013579 DUP: Manganese	mg/l	0.012	0.011	8.7
97-A013589 DUP: Manganese	mg/l	0.243	0.243	0.00
97-A013579 DUP: Molybdenum	12g/l	< 0.01	< 0.01	
97-A013589 DUP: Molybdenum	mg/l	< 0.01	< 0.01	
97-A013579 DUP: Sodium	mg/l	3.1	3.2	3.2
97-A013589 DUP: Sodium	mg/1	3.0	3.0	0.00
97-A013579 DUP: Nickel	mg/l	< 0.01	< 0.01	
97-A013589 DUP: Nickel	mg/l	< 0.01	< 0.01	
97-A013579 DUP: Phosphorus	mg/1	< 0.05	< 0.05	
97-A013589 DUP: Phosphorus	mg/1	< 0.05	< 0.05	
97-A013401 DUP: Lead	mg/l	0.001	< 0.001	
97-A013411 DUP: Lead	mg/l	< 0.001	< 0.001	
97-A013421 DUP: Lead	mg/l	0.002	0.002	0.00
97-A013436 DUP: Lead	ng/l	< 0.001	< 0.001	
97-A013581 DUP: Lead	mg/1	< 0.001	< 0.001	
97-A013660 DUP: Lead	mg/l	< 0.001	< 0.001	
97-A013579 DUP: Sulfur	ng/l	1.6	1.6	0.00
97-A013589 DUP: Sulfur	mg/1	1.4	1.4	0.00
97-A013579 DUP: Antimony	mg/l	< 0.02	< 0.02	
97-A013589 DUP: Antimony	mg/l	< 0.02	< 0.02	
97-A013579 DUP: Selenium	mg/l	< 0.03	< 0.03	
97-A013589 DUP: Selenium	mg/1	< 0.03	< 0.03	
97-A013579 DUP: Silicon	mg/1	0.1	0.1	0.00
97-A013589 DUP: Silicon	mg/l	0.3	0.3	0.00
97-A013579 DUP: Tin	mg/l	< 0.02	< 0.02	
97-A013589 DUP: Tin	mg/l	< 0.02	< 0.02	
97-A013579 DUP: Strontium	mg/l	0.062	0.062	0.00
97-A013589 DUP: Strontium	mg/l	0.067	0.067	0.00
97-A013579 DUP: Titanium	mg/l	< 0.01	< 0.01	
97-A013589 DUP: Titanium	ng/l	< 0.01	< 0.01	
97-A013579 DUP: Thallium	mg/l	< 0.03	< 0.03	
97-A013589 DUP: Thallium	mg/l	< 0.03	< 0.03	
97-A013579 DUP: Vanadium	mg/l	< 0.002	< 0.002	
97-A013589 DUP: Vanadium	mg/l	< 0.002	< 0.002	
97-A013579 DUP: Yttrium	mg/l	< 0.001	< 0.001	
97-A013589 DUP: Yttrium	mg/l	< 0.001	< 0.001	
97-A013579 DUP: Zinc	mg/1	0.013	0.011	17.
97-A013589 DUP: Zinc	mg/1	0.009	0.010	11.

MATRIX SPIRES

97-A013580 SPIKE: Total Organic Carbon	mg/l
97-A013580 SPIKE: Aluminum	mg/l
97-A013590 SPIKE: Aluminum	mg/l
97-A013580 SPIKE: Arsenic	mg/l
97-A013590 SPIKE: Arsenic	· mg/l
97-A013580 SPIKE: Barium .	ng/l
97-A013590 SPIKE: Barium	mg/l
97-A013580 SPIKE: Beryllium	mg/l
97-A013590 SPIKE: Beryllium	=g/1

sample	sample+spk	spike	Recovery
value	value	value	۲
< 1	46.	50.	92.0
< 0.01	11.4	10.0	114.
0.19	11.9	10.0	117.
< 0.03	1.03	1.00	103.
< 0.03	1.06	1.00	106.
0.011	1.00	1.00	98.9
0.024	1.05	1.00	103.
< 0.005	0.997	1.00	99.7
< 0.005	1.03	1.00	103.

Quality Control Summary (continued)

AVITEST

1

QC for 9710531

Known

SRM: Copper

.

97-A013580 SPI	KE: Calcium	mg/l	6.66	15.6	10.0	89.4
97-A013590 SPI	KE: Calcium	mg/l	17.7	26.0	10.0	83.0
97-A013580 SPI	KE: Cadmium	mg/l	< 0.002	1.00	1.00	100.
97-A013590 SPI	KE: Cadmium	mg/l	< 0.002	1.03	1.00	103.
97-A013580 SPI	KE: Chromium	mg/l	< 0.005	0.964	1.00	96.4
97-A013590 SPI	KE: Chromium	mg/l	< 0.005	1.01	1.00	101.
97-A013580 SPI	IKE: Copper	mg/l	< 0.002	0.966	1.00	96.6
97-A013590 SPI	IKE: Copper	mg/l	< 0.002	1.01	1.00	101.
97-A013580 SPI	IKE: Iron	mg/l	0.91	5.91	5.00	100.
97-2013590 SPI	IKE: Iron	mg/l	0.47	5.67	5.00	104.
97-A013580 SPI	IKE: Potassium	mg/1	< 1	9.4	10.0	94.0
97-A013590 SPI	IKE: Potassium	mg/l	< 1	11.2	10.0	112.
97-A013580 SPI	IKE: Magnesium	mg/l	2.06	11.7	10.0	95.4
97-A013590 SPI	[KE: Magnesium	mg/l	7.46	16.7	10.0	92.4
97-A013580 SPI	IKE: Manganese	ng/l	0.248	1.24	1.00	99.2
97-AC13590 SP1	IKE: Manganese	mg/1	0.101	1.16	1.00	105.
97-A013580 SPI	IKE: Molybdenum	mg/l	< 0.01	0.94	1.00	94.0
97-A013590 SPI	IKE: Molybdenum	mg/l	< 0.01	1.02	1.00	102.
97-A013580 SPI	IKE: Sodium	mg/l	3.2	13.2	10.0	100.
97-A013590 SP1	IKE: Sodium	mg/l	9.1	19.0	10.0	99.0
97-A013580 SP1	IKE: Nickel	mg/l	< 0.01	0.93	1.00	93.0
97-A013590 SP1	IKE: Nickel	mg/l	< 0.01	0.98	1.00 .	98.0
97-A013402 SPI	IKE: Lead	mg/l	0.005	0.030	0.025	100.
97-A013412 SP	IKE: Lead	mg/l	0.002	0.027	0.025	100.
97-A013422 SP	IKE: Lead	mg/l	0.001	0.026	0.025	100.
97-A013437 SP	IKE: Lead	mg/l	< 0.001	0.023	0.025	92.0
97-A013582 SP	IKE: Lead	mg/l	< 0.001	0.022	0.025	88.0
97-A013661 SP	IKE: Lead	mg/l	< 0.001	0.022	0.025	88.0
97-A013590 SP	IKE: Antimony	mg/l	< 0.02	0.92	1.00	92.0
97-A013580 SP	IKE: Selenium	mg/l	< 0.03	0.97	1.00	97.0
97-A013590 SP	IKE: Selenium	mg/l	< 0.03	1.01	1.00	101.
97-A013580 SP	IKE: Thallium	mg/l	< 0.03	1.01	1.00	101.
97-A013590 SP	IKE: Thallium	mg/l	< 0.03	1.10	1.00	110.
97-A013580 SP	IKE: Zinc	mg/l	0.013	1.07	1.00	106.
97-A013590 SP	IKE: Zinc	mg/l	0.014	1.13	1.00	112.
STANDARD REFE	RENCE MATERIALS		measured	true	Recove	тy
			value	value	8	-
Known SR	M: Total Organic Carbon	mg/l	45.	49.	91.5	i
Known SR	M: Total Organic Carbon	ng/l	44.	49.	89.4	L.
Known SR	M: Silver	mg/l	0.22	0.20	110.	
Known SP	M: Aluminum	mg/l	11.1	10.0	111.	
Known SF	M: Arsenic	ng/l	2.01	2.00	100.	
Known SF	M: Boron	mg/l	0.20	0.20	100.	
Known SF	W: Barium	mg/1	1.96	2.00	98.0)
Known SF	M: Beryllium	ng/l	1.94	2.00		
Known SF	RM: Calcium	mg/l	9.58	10.0	95.6	
Known SF	RM: Cadmium	mg/l	1.99	2.00	99.5	
Known SF	RM: Cobalt	mg/l	0.210	0.200	105.	
	RM: Chromium	mg/l	1.90	2.00	95.0	2
						-

mg/l

1.97 280 2.00

98.5

AVITEST

Quality Control Summary (continued)

QC for 9710531

BLANKS

Known	SRM: Iron	mg/l	2.06	2.00	103.
Known	SRM: Mercury	mg/l	0.980	1.00	98.0
Known	SRM: Potassium	mg/l	95.0	100.	95.0
Known	SRM: Lithium	mg/l	0.21	0.20	105.
Known	SRM: Magnesium	mg/l	9.86	10.0	98.6
Known	SRM: Manganese	mg/l	2.03	2.00	102.
Known	SRM: Molybdenum	mg/l	1.85	2.00	92.5
Known	SRM: Sodium	mg/l	19.0	20.0	95.0
Known	SRM: Nickel	mg/l	1.89	2.00	94.5
Known	SRM: Phosphorus	bg/l	11.6	10.0	116.
Known	SRM: Lead	≖g/l	0.016	0.015	107.
Known	SRM: Lead	mg/l	0.017	0.015	113.
Known	SRM: Lead	mg/l	0.017	0.015	113.
Known	SRM: Lead	mg/l	0.017	0.015	113.
Known	SRM: Lead	mg/l	0.016	0.015	107.
Known	SRM: Lead	mg/l	0.017	0.015	113.
Rnown	SRM: Sulfur	mg/l	1.9	2.0	95.0
Known	SRM: Selenium	mg/l	1.83	2.00	91.5
Known	SRM: Silicon	mg/l	8.0	10.	80.0
Known	SRM: Tin	mg/l	1.8	2.0	90.0
Known	SRM: Strontium	mg/l	2.11	2.00	106.
Known	SRM: Titanium	mg/l	1.96	2.00	98.0
Known	SRM: Thallium	mg/l	1.96	2.00	98.0
Known	SRM: Vanadium	mg/1	0.210	0.200	105.
Known	SRM: Yttrium	mg/l	0.210	0.200	105.
Known	SRM: Zinc	mg/l	2.05	2.00	102.

		Result
BLANK: Total Organic Carbon	mg/l	< 1
BLANK: Total Organic Carbon	mg/l	< 1
BLANK: Silver	mg/l	< 0.01
BLANK: Aluminum	mg/l	< 0.01
BLANK: Arsenic	mg/l	< 0.03
BLANK: Boron	mg/l	< 0.1
BLANK: Barium	mg/l	< 0.003
BLANK: Beryllium	mg/l	< 0.005
BLANK: Calcium	mg/l	< 0.1
BLANK: Cadmium	mg/l	< 0.002
BLANK: Cobalt	mg/l	< 0.003
BLANK: Chromium	ng/l	< 0.006
BLANK: Copper	mg/l	< 0.002
BLANK: Iron	ng/l	< 0.01
BLANK: Mercury	mg/l	< 0.01
BLANK: Potassium	mg/l	< 1
BLANK: Lithium	mg/l	< 0.02
BLANK: Magnesium	mg/l	< 0.1
BLANK: Manganese	mg/l	< 0.002
BLANK: Molybdenum	mg/l	< 0.01
BLANK: Sodium	mg/l	< 0.5
BLANK: Nickel	mg/1	< 0.01
BLANK: Phosphorus	¤g/1	< 0.05

AVITEST

Quality Control Summary (continued)

QC for 9710531

BLANK:	Lead	mg/l	<	0.001
BLANK:	Lead	mg/l	<	0.001
BLANK:	Lead	mg/l	<	0.001
BLANK:	Lead	æg/l	<	0.001
BLANK:	Lead	mg/l	<	0.001
BLANK:	Lead	mg/l	<	0.001
BLANK:	Sulfur	mg/l	<	0.1
BLANK:	Antimony	mg/1	<	0.02
BLANK:	Selenium	mg/l	<	0.03
BLANK:	Silicon	mg/l	<	0.1
BLANK:	Tin	mg/l	<	0.02
BLANK:	Strontium	mg/l	<	0.003
BLANK:	Titanium	mg/l	<	0.01
BLANK:	Thallium	mg/l	<	0.03
BLANK:	Vanadium	mg/l	<	0.002
BLANK:	Yttrium	mg/l	<	0.001
BLANK:	Zinc	mg/l	<	0.002