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Executive Summary

• This report describes the results from the 2012/2013 Lake Whatcom moni-

toring program. The major objectives were to continue long-term baseline

water quality monitoring in Lake Whatcom and selected tributary streams;

collect storm runoff water quality data from Anderson, Austin, and Bran-

nian Creeks; and continue collection of hydrologic data from Austin and

Smith Creeks.

• This report is part of an on-going series of annual reports and special project

reports that provide a complete documentation of the monitoring program

over time. A summary of the Institute for Watershed Studies Lake What-

com reports, including special project reports, is included in Section 5.2,

beginning on page 85.

• During the summer the lake stratified into a warm surface layer (the epil-

imnion) and a cool bottom layer (the hypolimnion). The surface water tem-

peratures were slightly warmer than historic medians during most of the

spring and early summer, but cooled rapidly in the fall.

• The levels of hypolimnetic oxygen have declined over time at Site 1, causing

the lake to be listed by the Department of Ecology on the 1998 303d list of

impaired waterbodies in the State of Washington. Following the onset of

stratification, the hypolimnetic oxygen concentrations dropped rapidly. By

August 8, 2013, the oxygen concentration was <1 mg/L from 12 meters

to the bottom. Temporary stratification resulted in atypically low dissolved

oxygen near the bottom at the Intake during August 2013, but the water

column was well-mixed at this site by September.

• Nitrate depletion was evident at all sites in the photosynthetic zone during

the summer due to algal uptake of this essential nutrient. Low nitrate in the

photosynthetic zone favors the growth of Cyanobacteria. Nitrate depletion

also occurred in the hypolimnion at Sites 1 and 2 due to nitrate reduction by

bacteria. Anaerobic conditions in the hypolimnion at Sites 1 and 2 resulted

in elevated concentrations of ammonium by the end of the summer.

• The summer near-surface total phosphorus and chlorophyll concentrations

have increased significantly over time at most sites. The patterns continue

to be somewhat variable, but it appears that the chlorophyll concentrations

xiii



have stabilized since 2004, with medians ranging from 3.8–6.7 µg/L at Site

1 and 2.9–4.6 µg/L at Sites 2–4.

• The concentrations of trihalomethanes in Bellingham’s treated drinking wa-

ter have been increasing over time, particularly during the late summer/fall

(third quarter). The total THMS and HAAS remained below the recom-

mended maximum contaminant levels of 0.080 mg/L and 0.060 mg/L, re-

spectively.

• All of the mid-basin fecal coliforms counts were less than 10 cfu/100 mL.

The coliform counts at the Bloedel-Donovan recreational area (collected

offshore from the swimming area) were slightly higher than mid-basin

counts, but passed the freshwater Extraordinary Primary Contact Recre-

ational bacteria standard for Washington State.

• Hydrograph data were collected at Austin and Smith Creeks using stage-

discharge rating curves developed using Aquarius software. Prior to this

year, stage-discharge rating curves were developed using Excel. A com-

parison between Austin Creek and Smith Creek rating curves using both

Excel and Aquarius software showed that the hydrographs matched each

other closely.

• Eight storm events were monitored in Anderson, Austin, and Brannian

Creeks using automated samplers to collect flow-paced or time-paced dis-

crete samples. The storm runoff contained elevated levels of total suspended

solids, total phosphorus, and soluble phosphate that were significantly cor-

related with stage height. In addition, total suspended solids and total phos-

phorus concentrations were highly correlated with each other.

xiv
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1 Introduction

This report is part of an on-going series of annual reports and special project re-

ports that document the Lake Whatcom monitoring program over time. Many

of the reports are available online at http://www.wwu.edu/iws. Older reports are

available in the Institute for Watershed Studies (IWS) library and through the City

of Bellingham Public Works Department. A summary of the Lake Whatcom re-

ports, including special project reports, is included in Section 5.2, beginning on

page 85.

Lake Whatcom is the primary drinking water source for the City of Bellingham

and parts of Whatcom County, including Sudden Valley. Lake Whatcom also

serves as a water source for the Puget Sound Energy Co-Generation Plant, which

is located at the former Georgia-Pacific Corporation site on Bellingham Bay.1

The lake and parts of the watershed provide recreational opportunities, as well

as providing important habitats for fish and wildlife. The lake is used as a stor-

age reservoir to buffer peak storm water flows in Whatcom Creek. Much of the

watershed is zoned for forestry and is managed by state or private timber compa-

nies. Because of its aesthetic appeal, much of the watershed is highly valued for

residential development.

The City of Bellingham and Western Washington University have collaborated on

investigations of the water quality in Lake Whatcom since the early 1960s. Begin-

ning in 1981, a monitoring program was initiated by the City and WWU that was

designed to provide long-term data for Lake Whatcom for basic parameters such

as temperature, pH, dissolved oxygen, conductivity, turbidity, nutrients (nitrogen

and phosphorus), and other representative water quality measurements. The major

goal of the long-term monitoring effort is to provide a record of Lake Whatcom’s

water quality over time.

The major objectives of the 2012/2013 Lake Whatcom monitoring program were

to continue long-term baseline water quality monitoring in Lake Whatcom; collect

storm runoff water quality data from Anderson, Austin, and Brannian Creeks; and

continue collection of hydrologic data from Austin and Smith Creeks.

1The Georgia-Pacific Corporation closed its Bellingham pulp mill operations in 2001, reducing

its water requirements from 30–35 MGD to 7–12 MGD. By 2007 the water requirements had been

reduced to 0.6–3.88 MGD; the mill closed its operations in December 2007.
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Detailed site descriptions can be found in Appendix A. The historic lake data

are plotted in Appendix B. The current quality control results can be found in

Appendix C. The monitoring data are available online at http://www.wwu.edu/iws

as described in Appendix D (page 269). Table 1 (page 16) lists abbreviations and

units used to describe water quality analyses in this document.

2 Lake Whatcom Monitoring

2.1 Site Descriptions

Water quality samples were collected at five long-term monitoring sites in Lake

Whatcom (Figure A1, page 91 in Appendix A.1). Sites 1–2 are located at the

deepest points in their respective basins. The Intake site is located adjacent to

the underwater intake point where the City of Bellingham withdraws lake water

from basin 2. Site 3 is located at the deepest point in the northern sub-basin of

basin 3 (north of the Sunnyside sill), and Site 4 is located at the deepest point in

the southern sub-basin of basin 3 (south of the Sunnyside sill). Water samples

were also collected at the City of Bellingham Lake Whatcom Gatehouse, which

is located onshore and west of the Intake site.

2.2 Field Sampling and Analytical Methods

The lake was sampled on October 9 & 11, November 6 & 15, and December 6 &

12 2012; and February 7 & 14, April 9 & 11, May 7 & 9, June 4 & 6, July 9 &

11, August 6 & 8, and September 3 & 4 2013. Each sampling event is a multi-day

task; all samples were collected during daylight hours, typically between 10:00

am and 3:00 pm.

A YSI multiparameter field meter2 was used to measure temperature, pH, dis-

solved oxygen, and conductivity. Raw water samples were collected using a Van-

Dorn sampler. All water samples (including bacteriological samples) collected in

the field were stored on ice and in the dark until they reached the laboratory, and

were analyzed as described in Table 1 (page 16). Total organic carbon analyses

2YSI Inc., Yellow Springs, Ohio
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were done by AmTest.3 Plankton samples were placed in a cooler and returned to

the laboratory unpreserved. The plankton sample volumes were measured in the

laboratory and the samples were preserved with Lugol’s solution. The bacteria

samples were analyzed by the City of Bellingham.

2.3 Results and Discussion

The lake monitoring data include monthly field measurements (conductivity, dis-

solved oxygen, pH, Secchi depth, and water temperature); laboratory analyses for

ambient water quality parameters (ammonium4, nitrate/nitrite, total nitrogen, sol-

uble phosphate, total phosphorus, alkalinity, turbidity, chlorophyll); plankton and

bacteria counts; and total organic carbon measurements.

Tables 2–6 (pages 17–21) summarize the current field measurements, ambi-

ent water quality, and coliform data. The raw data are available online at

http://www.wwu.edu/iws as described in Appendix D (page 269). The monthly

profiles for temperature, dissolved oxygen, conductivity, and pH are plotted in

Figures B1–B50 (pages 95–144).

The 2012/2013 lake data are plotted with historic lake data in Figures B51–B130

(pages 146–226). These figures are scaled to plot the full range of Lake Whatcom

water quality data including minimum, maximum, and outlier values, and do not

provide the best illustration of trends that occur in the lake. Separate tables and

figures are provided to show trends and illustrate specific patterns in the data.

2.3.1 Water temperature

The mid-winter temperature profiles (e.g., Figures B16–B20, pages 110–114) and

the multi-year temperature profiles (Figures B51–B55, pages 146–150) show that

the water column mixes during the fall, winter, and early spring. During this time,

water temperatures, dissolved oxygen concentrations, pH levels, and conductivi-

3AmTest, 13600 Northeast 126th Place, Suite C, Kirkland, WA, 98034–8720.
4Ammonium (NH+

4 ) is ionized ammonia (NH3). Nearly all ammonia is ionized in surface

water. Earlier IWS reports used the term ammonia and ammonium interchangeably to describe

ammonium concentrations because it is generally understood that ammonia is usually ionized. To

improve clarity, IWS has switched to the term “ammonium” to indicate that we are reporting the

concentration of ionized ammonia. This does not represent any change in analytical methods.
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ties are fairly uniform from the surface to the bottom of the lake, even at Site 4,

which is over 300 ft (100 m) deep.

The summer temperature profiles (e.g., Figures B46–B50, pages 140–144) show

how the lake stratifies into a warm surface layer (epilimnion), and cool bottom

layer (hypolimnion). The transition zone between the epilimnion and hypolimnion

(the metalimnion), is a region of rapidly changing water temperature. When strat-

ified, the profiles show distinct differences between surface and bottom tempera-

tures.

Stratification develops gradually, and once stable, persists until fall or winter, de-

pending on location in the lake. Seasonal weather differences alter the timing of

lake stratification; if the spring is cool, cloudy, and windy, the lake may stratify

later than when it has been hot and sunny.

In Lake Whatcom, all sites except the Intake are usually stratified by late spring

or early summer. (The Intake is too shallow to develop a stable stratification.)

Stratification may begin as early as April, but is often not stable until May or June.

The stability of stratification is determined in part by the temperature differences

in the water column, but also by water circulation and local weather patterns. Once

the water column temperature differs by at least 5◦ C (∆T ≥5◦C), it is unlikely

that the lake will destratify.5

The lake cools as the weather becomes colder and days shorten. As the lake cools,

the surface and bottom water temperatures become more similar, and eventually

the lake will destratify and the water column will mix from the surface to the

bottom. Although destratification is relatively abrupt, the process is not instan-

taneous. In addition, when the lake begins to destratify, water temperatures may

be uniform from the surface to the bottom, but the rate of water circulation may

not be sufficient to replenish hypolimnetic oxygen concentrations (see Novem-

ber 2006 temperature and oxygen profiles from Sites 1–2: Figures B6 and B7 in

Matthews, et al., 2008). Basins 1 and 2 (Sites 1–2) usually destratify by the end

of October but basin 3 (Sites 3–4) is often still stratified in November or early

December. Complete destratification of basin 3 usually occurs in December or

early January, so by February the temperatures are relatively uniform throughout

the water column at all sites.

5The ∆T is the difference between the epilimnion and hypolimnion temperatures.



2012/2013 Lake Whatcom Report Page 5

Historic data reveal that water temperatures in basin 3 are generally cooler than in

basins 1 and 2, but the two shallow basins experience more extreme temperature

variations. The lowest and highest temperatures measured in the lake since 1988

were at Site 1 (4.2◦ C on February 1, 1988 and February 26, 1989; 24.1◦ C on

August 4, 2009). The large water volume in basin 3 moderates temperature fluc-

tuations, so water temperatures in basin 3 change slower in response to weather

conditions compared to the shallow basins.

The surface water temperatures during 2013 were slightly warmer than the historic

median values during most of the spring and early summer, but cooled rapidly in

the fall. As a result, by October 2013 the surface temperatures were slightly cooler

than historic medians (Figure 1, page 24).

All sites except the Intake were stratified during the October 2012 sampling pe-

riod (Figures B1–B5, pages 95–99). Sites 1–2 were destratified on November

15, 2012 (Figures B6 and B7, pages 100 and 101) and the dissolved oxygen con-

centrations were homogeneous throughout the water column at Site 1. At Site 2

the dissolved oxygen concentrations were homogeneous at all depths except 20

meters, indicating that the water column was not yet completely mixed.

Sites 3–4 were still stratified on November 6, 2012 and very weakly stratified

on December 12, 2012 (Figures B9, B10, B14, and B15; pages 103, B10, 108,

and 109). The entire lake was destratified by the February 2013 sampling period

(Figures B16–B20, pages 110–B20).

The lake had not developed stable stratification by the April 2013 sampling period,

but all sites (except the Intake) were stratified by early May (Figures B21–B30,

pages 115–124). Although the Intake does not develop stable (persistent) stratifi-

cation, the water column can form temporary stratification during periods of calm

weather, which is characterized by incomplete mixing. This condition was present

on August 8, 2013, as can be seen by the low oxygen concentrations and pH levels

at 10 meters (Figure B43, page 137). By the following month, although the other

sites were still stratified, the water column at the Intake was well mixed (Figure

B48, page 142).
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2.3.2 Dissolved oxygen

Low oxygen conditions are associated with a number of unappealing water qual-

ity problems in lakes, including loss of aquatic habitat; release of phosphorus

from the sediments; increased rates of algal production due to release of phospho-

rus; unpleasant odors during lake destratification; fish kills, particularly during

lake destratification; release of metals and organics from the sediments; increased

mercury methylation; increased drinking water treatment costs; increased taste

and odor problems in drinking water; and increased risks associated with disin-

fection by-products created during the drinking water treatment process.

As in previous years, Sites 1 and 2 developed severe hypolimnetic oxygen deficits

by mid-summer (Figures B41–B42 and B56–B57, pages 135–136 and 151–152).

Hypolimnetic oxygen depletion only becomes apparent after stratification, when

the lower waters of the basin are isolated from the lake’s surface and biologi-

cal respiration consumes the oxygen dissolved in the water. Biological respiration

usually increases when there is an abundant supply of organic matter (e.g., decom-

posing algae). In basin 3, which has a very large, well-oxygenated hypolimnion,

biological respiration has relatively little influence on hypolimnetic oxygen con-

centrations except, occasionally, in the deepest sample from Site 3 (Figures B49–

B50 and B59–B60, pages 143–144 and 154–155).

In contrast, there is rapid depletion of the hypolimnetic oxygen concentrations at

Sites 1–2 (Figures B46–B47, and B56–B57, pages 140–141 and 151–152). These

two sites are in shallow basins that have small hypolimnions compared to their

photic zones, so decomposition of algae and other organic matter causes a mea-

surable drop in hypolimnetic oxygen over the summer.6

As discussed on page 5, temporary stratification resulted in an atypically low dis-

solved oxygen concentration at 10 meters at the Intake site on August 8, 2013

(Figure B43, page137). This was probably due to slow water column circulation,

which can occur during periods of calm weather, even at sites that do not develop

stable stratification. By the following month, although the other sites were still

stratified, the water column at the Intake was well mixed (Figure B48, page 142)

6The photic zone is the portion of the lake with enough light to support algal photosynthesis.

In Lake Whatcom, peak chlorophyll levels are usually at 5–10 meters, so photic zone volumes will

be defined as the percent volume ≤10 meters. Using this definition, the photic zones for basins 1,

2, and 3 occupy 75%, 70%, and 17%, respectively (Mitchell, et al., 2010).
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The levels of hypolimnetic oxygen have declined over time at Site 1, causing the

lake to be listed by the Department of Ecology as an “impaired” waterbody (Pel-

letier, 1998).7 The increasing rate of oxygen loss is most apparent during July and

August, after the lake develops a stable thermal stratification but before oxygen

levels drops near zero. To illustrate this trend we fitted the July and August data

using an exponential function (see discussion by Matthews, et al., 2004). As in-

dicated in Figures 2–5 (pages 25–28), there were significant negative correlations

between dissolved oxygen and time for all hypolimnetic samples collected during

July and August.8 By August 8, 2013 the oxygen concentrations were <1 mg/L

from 12 meters to the bottom.

A region of supersaturated oxygen was evident in the metalimnion at Site 1 in

July (Figure B36, page 130). This was caused by the accumulation of phy-

toplankton along the density gradient between the epilimnion and hypolimnion

where light and nutrients are sufficient to support very high levels of photosyn-

thesis. Chlorophyll concentrations within the metalimnetic oxygen peak may be

4–5 times higher than those measured near the surface of the lake (Matthews and

DeLuna, 2008).

Site 3 developed an oxygen sag near the bottom prior to destratification (e.g.,

September 2013; Figure B49, page 143). This is fairly common at Site 3, as

illustrated in the historic data (Figure B59, page 154). Sites 3 and 4 developed

small oxygen sags near the thermocline (e.g., Figures B4 and B5, pages 98 and

99), which are caused by respiration of heterotrophic bacteria that accumulate

along the density gradient between the epilimnion and hypolimnion (Matthews

and DeLuna, 2008).

Hypolimnetic hydrogen sulfide: Bacteria require an energy source (e.g., or-

ganic carbon) and an electron acceptor (e.g., oxygen) for basic growth and

metabolism. Under anaerobic conditions, when oxygen is not available, there

is a predictable sequence whereby different types of anaerobic bacteria use alter-

nate electron acceptors.9 First, bacteria will use nitrate as an alternate to oxygen,

converting nitrate to ammonium or nitrogen gas. Next, bacteria use manganese

7http://www.ecy.wa.gov/programs/wq/303d.
8Correlation analyses examine the relationships between two variables. The test statistic ranges

from –1 to +1; the closer to ±1, the stronger the correlation. The significance is measured using

the p-value; significant correlations have p-values <0.05.
9For a more complete discussion of anaerobic decomposition in lakes, see Wetzel, 2001.
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and ferrous ions. When these compounds are exhausted, bacteria use sulfate, con-

verting it to hydrogen sulfide, a colorless gas with a strong, rotten-egg smell. If

the all of the above electron acceptors are unavailable, bacteria can use carbon

dioxide, converting it to methane.

Hydrogen sulfide is commonly present in anaerobic lake sediments, but if the

overlying water contains oxygen, the sulfide will be converted into sulfates or

other compounds. If the overlying water is anaerobic, hydrogen sulfide can build

up to detectable levels during stratification. Hydrogen sulfide is an indirect in-

dicator of the degree of anoxia in the hypolimnion because it will not persist in

oxygenated waters and is formed after the nitrate, manganese, and ferrous ions are

exhausted.

The hypolimnion at Sites 1–2 usually contain detectable concentrations of hydro-

gen sulfide by October (Table 7, page 22). Hydrogen sulfide concentrations are

measured in October because that is the latest month that is consistently stratified

at Sites 1–2, so the hydrogen sulfide concentrations should be at their highest lev-

els. When the lake stratifies late or is unusually cool, the October hydrogen sulfide

levels will not be as high as in warmer years.

2.3.3 Conductivity and pH

The pH and conductivity data followed trends that were typical for Lake What-

com (Figures B1–B50 and B61–B70, pages 95–144 and 156–165). Surface pH

values increased during the summer due to photosynthetic activity. Hypolimnetic

pH values decreased and conductivities increased due to decomposition and the

release of dissolved compounds from the sediments.

There was a significant long-term trend in the conductivity data that was caused

by using increasingly sensitive equipment during the past three decades and does

not indicate any actual change in the conductivity in the lake (Matthews, et al.,

2004).
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2.3.4 Alkalinity and turbidity

Because Lake Whatcom is a soft water lake, the alkalinity values were fairly low

at most sites and depths (Figures B71–B75, pages 167–171). During the summer

the alkalinity values at the bottom of Sites 1–2, and occasionally Site 3, increased

due to decomposition and the release of dissolved compounds in the lower waters.

Turbidity values in the lake were usually low (1–3 NTU) except during late sum-

mer in samples from the bottom of the lake. The high turbidity levels during this

time are an indication of increasing turbulence in the lower hypolimnion as the

lake begins to destratify. The highest turbidity peaks were measured at Sites 1–2

(Figures B76–B80, pages 172–176).

Suspended sediments from storm events can also cause elevated turbidity levels

in the lake. Major storm events usually occur during winter or early spring when

the lake is destratified, so the turbidity levels will be high throughout the water

column. Storm-related turbidity peaks are easier to see in samples from the Intake

and basin 3 because there are fewer distracting late summer hypolimnetic turbidity

peaks (see February 2009 storm-related turbidity peaks in Figures B78 and B79–

B80).

2.3.5 Nitrogen and phosphorus

Figures B81–B105 (pages 177–201) show the nitrogen and phosphorus data for

Lake Whatcom. Nitrogen and phosphorus are important nutrients that influence

the amount and type of microbiota (e.g., algae) that grow in the lake. We mea-

sured inorganic forms of nitrogen and phosphorus (nitrite, nitrate, ammonium, and

soluble phosphate) as well as total nitrogen and total phosphorus, which includes

inorganic and organic compounds.10

Nitrogen: Most algae require inorganic nitrogen in the form of nitrate or am-

monium for growth, but some types of algae can use organic nitrogen or even

dissolved nitrogen gas.11 Nitrate depletion was evident at all sites in the photo-

synthetic zone during the summer (Figures B86–B90, pages 182–186), particu-

10Organic nitrogen and phosphorus comes from living or decomposing plants and animals, and

may include bacteria, algae, leaf fragments, and other organic particles.
11Only Cyanobacteria and a few uncommon species of diatoms can use nitrogen gas.
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larly at Site 1, where the epilimnetic nitrate concentrations often drop below 20

µg-N/L by the end of the summer. Epilimnetic nitrogen depletion is an indirect

measure of phytoplankton productivity, and because algal densities have been in-

creasing throughout the lake, epilimnetic dissolved inorganic nitrogen concentra-

tions (DIN)12 have been declining over time (Figure 6, page 29). Low epilimnetic

DIN concentrations favor the growth of Cyanobacteria because many types of

Cyanobacteria can use dissolved N2 gas as a nitrogen source.

Hypolimnetic nitrate concentrations dropped below 20 µg-N/L at Sites 1 and 2

(Figures B86–B87, pages 182–B87). In anaerobic environments, bacteria reduce

nitrate (NO−
3 ) to nitrite (NO−

2 ) and nitrogen gas (N2). The historic data indicate

that nitrate reduction has been common in the hypolimnion at Site 1, but was not

common at Site 2 until the summer of 1999. At Site 2 the hypolimnetic nitrate

concentrations dropped below 20 µg-N/L from 1999–2006 and 2008–2013, but

not in 2007. Matthews, et al. (2008) hypothesized that the higher levels in 2007

were the result of late stratification, which shortened the period of anoxia in the

hypolimnion and resulted in less nitrate reduction. The onset of stratification is

only one factor involved in hypolimnetic nitrate depletion; the duration of strati-

fication is also important. In 2007, not only did the lake stratify late, Site 2 was

nearly destratified by early October and completely mixed by November. The

entire period of anoxia was short compared to most years.

Ammonium, along with hydrogen sulfide, is often an indicator of hypolimnetic

anoxia.13 Ammonium is readily taken up by plants as a growth nutrient. In oxy-

genated environments, ammonium is rarely present in high concentrations because

it is rapidly converted to nitrite and nitrate through biological and chemical pro-

cesses. In low oxygen environments, ammonium accumulates until the lake de-

stratifies. High levels of ammonium (and hydrogen sulfide) are often detected in

the hypolimnion at Sites 1 and 2 just before destratification (Figures B81 & B82,

pages 177 & 178). Elevated hypolimnetic ammonium concentrations have been

common at both sites throughout the monitoring period, but beginning in 1999 the

concentrations increased noticeably at Site 2 (Figure B82, page 178).

12Dissolved inorganic nitrogen includes ammonium, nitrate, and nitrite. Under most conditions,

epilimnetic concentrations of ammonium and nitrite are very low, so epilimnetic DIN is nearly

equivalent to nitrate.
13Ammonium is produced during decomposition of organic matter; hydrogen sulfide is pro-

duced by bacteria that use sulfate (SO2−
4 ) instead of oxygen, creating sulfide (S2−) that reacts

with hydrogen ions to form hydrogen sulfide (H2S). See hydrogen sulfide discussion on page 7.
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Sites 3 and 4 often have slightly elevated ammonium concentrations at 20 m (met-

alimnion) or near the bottom at 80–90 m (Figures B84–B85, pages 180–181).

This is caused by bacterial decomposition of organic matter, but the concentra-

tions never approach the levels found in the hypolimnion at Sites 1–2.

Phosphorus: Although the Lake Whatcom microbiota require nitrogen, phos-

phorus is usually what limits microbial growth (Bittner, 1993; Liang, 1994;

Matthews, et al., 2002a; McDonald, 1994). The total phosphorus concentration

in the water column is a complex mixture of soluble and insoluble phosphorus

compounds, only some of which can be used by algae to sustain growth. Solu-

ble forms of phosphorus (e.g., orthophosphate) are easily taken up by algae and

other microbiota, and, as a result, are rarely found in high concentrations in the

water column. Insoluble phosphorus can be present in the water column bound

to the surface of tiny particles or as suspended organic matter (e.g., live or dead

algae). Because competition for phosphorus is so intense, microbiota have de-

veloped many mechanisms for obtaining phosphorus from the surface of particles

or from decomposing organic matter. Liang (1994) and Groce (2011) found that

∼50% of the total phosphorus in soils in the Lake Whatcom watershed was po-

tentially “bioavailable” for algal growth.

When hypolimnetic oxygen concentrations are low, sediment-bound phosphorus

becomes soluble and leaches into the overlying water. Prior to destratification,

hypolimnetic phosphorus may be taken up by microbiota in the hypolimnion or

metalimnion (see Section 2.3.2 and Matthews and DeLuna, 2008). When the

lake mixes in the fall, the hypolimnetic phosphorus will be mixed throughout the

water column. As oxygen concentrations increase during mixing, any soluble

phosphorus that has not been taken up by biota will usually be converted back

into insoluble phosphorus. Because phosphorus moves back and forth between

soluble and insoluble forms and between organic and inorganic compounds, it

can be difficult to interpret total phosphorus trends. For example, when algal

densities increase, their growth usually results in the reduction of soluble and

bioavailable fractions of phosphorus in the epilimnion, similar to the epilimnetic

DIN reduction that was described for nitrogen. But, since this uptake simply

moves the phosphorus into the “live-algae” fraction of organic phosphorus, total

phosphorus concentrations may actually increase in the epilimnion.
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In Lake Whatcom, total phosphorus and soluble phosphate concentrations were

usually low except in the hypolimnion at Sites 1 and 2 just prior to destrati-

fication (Figures B96–B100, pages 192–196 and B101–B105, pages 197–201).

Epilimnetic total phosphorus concentrations are usually lower than late-summer

hypolimnetic peaks. Prior to 2000, the median epilimnetic phosphorus concentra-

tions were <5 µg-P/L at Sites 2–4 and approximately 5–8 µg-P/L at Site 1 (Fig-

ure 7, page 30). The epilimnetic phosphorus levels have increased significantly

at most sites (Figure 7, page 30); however, the pattern is quite erratic, reflecting

the complicated nature of phosphorus movement in the water column. It is im-

portant to note that low water column phosphorus concentrations do not always

predict low algal densities, and may instead indicate rapid and efficient cycling of

phosphorus among the lake biota.

2.3.6 Chlorophyll, plankton, and Secchi depth

Site 1 continued to have the highest chlorophyll concentrations of all the sites (Fig-

ures B106–B110, pages 202–206). Peak chlorophyll concentrations were usually

collected at 0–15 m, while samples from 20 m had relatively low chlorophyll con-

centrations because light levels are not optimal for algal growth at this depth.

The Lake Whatcom plankton counts were usually dominated by Chrysophyta,

consisting primarily Dinobryon, Mallomonas, and diatoms (Figures B121–B130,

pages 217–226). Substantial blooms of bluegreen bacteria (Cyanobacteria) and

green algae (Chlorophyta) were also measured at all sites during summer and late

fall. Previous analyses of algal biomass in Lake Whatcom indicated that although

Chrysophyta dominate the numerical plankton counts, Cyanobacteria and Chloro-

phyta often dominate the plankton biomass, particularly in late summer and early

fall (Ashurst, 2003; Matthews, et al., 2002b). In addition, most of the Cyanobac-

teria in these samples are counted by colony rather than as individual cells because

of the tiny cell size. When the Cyanobacteria density is estimated using settled

algae counts (Matthews, et al. 2012), the plankton counts are dominated by tiny

Cyanobacteria.

Secchi depths (Figures B111–B115, pages 207–211) showed no clear seasonal

pattern because transparency in Lake Whatcom is affected by particulates from

storm events and the Nooksack River diversion as well as algal blooms.
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Indications of eutrophication: Eutrophication is the term used to describe a

lake that is becoming more biologically productive. It can apply to an unpro-

ductive lake that is becoming slightly more eutrophic, or a productive lake that

is becoming extremely eutrophic (see Wetzel, 2001, for more about eutrophica-

tion and Matthews, et al., 2005, for a description of the chemical and biological

indicators of eutrophication in Lake Whatcom).

The median near-surface summer chlorophyll concentrations have increased sig-

nificantly at all sites since 1994 (Figure 8, page 31). Site 1 has shown the least

amount of change and Sites 3–4 have shown greatest change. In 2013, the median

near-surface summer chlorophyll concentrations at Sites 1 and 4 were nearly iden-

tical (4.07 and 4.04 µg/L, respectively). Although the annual chlorophyll concen-

trations are quite variable, they seem to have stabilized since 2004, ranging from

3.8–6.7 µg/L at Site 1 and 2.9–4.6 µg/L at Sites 2–4.

Chlorophyll is a direct measure of algal biomass and is best used to evaluate

trophic changes in the lake (e.g., is the lake becoming more biologically pro-

ductive?). We used algal counts rather than chlorophyll to look for trends within

the same type of algae (e.g., are the numbers of Cyanobacteria increasing?). The

actual relationship between chlorophyll concentration and the algae cell count is

complex. The amount of chlorophyll in an algal cell is influenced by the phys-

iological age and condition of the cell, light intensity, nutrient availability, and

many other factors. In addition, while most types of algae are counted by indi-

vidual cells, a few types must be counted by colonies because the cells are too

difficult to see. Even if the amount of chlorophyll was constant in each cell, it

would take many tiny cells to equal the chlorophyll biomass in one large colony.

Except for the dinoflagellates14 the algae counts have also increased significantly

since 1994 (Figure 9, page 32). Similarly, there has been a steady increase in the

numbers of Cyanobacteria at all sites (Figure 10, page 33). As with the chloro-

phyll concentrations, the algae and Cyanobacteria counts appear to have stabilized

around 2004.

14Dinoflagellates are small single-cell algae that are common in Lake Whatcom, but rarely have

high densities in the plankton counts.
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2.3.7 Coliform bacteria

The current surface water standards are based on “designated use” categories,

which for Lake Whatcom is “Extraordinary Primary Contact Recreation.” The

standard for bacteria is described in Chapter 173–201A–200 of the Washington

Administrative Code, Water Quality Standards for Surface Waters of the State of

Washington:

Fecal coliform organism levels must not exceed a geometric mean

value of 50 colonies/100 mL, with not more than 10 percent of all

samples (or any single sample when less than ten sample points ex-

ist) obtained for calculating the geometric mean value exceeding 100

colonies/100 mL.

All of the mid-basin (Sites 1–4) and Intake values for fecal coliforms were less

than 10 cfu15/100 mL (Figures B116–B120, pages 212–216) and passed the fresh-

water Extraordinary Primary Contact Recreation bacteria standard.

Coliform samples collected offshore from the Bloedel-Donovan swimming area

had slightly higher counts than at Site 1 (mid-basin). None of the Bloedel-

Donovan counts exceeded 100 cfu/100 mL and the geometric mean was 5 cfu/100

mL, so this site passed both parts of the freshwater Extraordinary Primary Con-

tact Recreation bacteria standard.

2.3.8 Total organic carbon and disinfection by-products

Total organic carbon concentrations, along with plankton and chlorophyll data,

are used to help assess the likelihood of developing potentially harmful disinfec-

tion by-products through the reaction of chlorine with organic compounds during

the drinking water treatment process. Algae excrete dissolved organic carbon into

water, which can react with chlorine to form disinfection by-products, predomi-

nately chloroform and other trihalomethanes (THMs).

The 2012/2013 total organic carbon concentrations ranged from 1.4–5.0 mg/L,

and were higher in the February samples than in August (Table 8, page 23). The

long-term data show that the median total organic carbon concentrations have

increased over time (Figure 11, page 34).

15Colony forming unit/100 mL; cfu/100 mL is sometimes labeled “colonies/100 mL.”
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When algal densities or total organic carbon concentrations increase, we expect to

see an increase in THMs. To minimize risk, limits are set on the levels of disin-

fection by-products allowed in treated drinking water through the Safe Drinking

Water Act’s Disinfection Byproduct Rule. This Rule was adopted in 1979 and has

undergone two major revisions (Phase I in 1998; Phase II in 2005). The sampling

requirement doubled under Phase II; currently the City samples eight locations in

the water distribution system.16.

The THMs have been increasing in Bellingham’s treated drinking water, particu-

larly during the late summer/fall (third quarter; Figure 12, page 35). Haloacetic

acids, another disinfection by-product, are not as closely linked to algal concen-

trations and chlorine dose (Sung, et al., 2000). The Jan-Dec HAAs results were

marginally correlated with time due to the large sample size, but the third quarter

data were not correlated with time. The total THMs and HAAs remained below

the recommended maximum contaminant levels of 0.080 mg/L and 0.060 mg/L,

respectively, described in Chapter 246–290–310 of Washington Administrative

Code, Water Quality Standards for Public Water Supplies.

16P. Wendling, pers. comm., City of Bellingham Public Works Dept.
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Historic 2012/2013 Sensitivity or

Abbrev. Parameter Method DL† MDL† Confidence limit

IWS field measurements:

cond Conductivity Hydrolab (1997) or YSI (2010) – – ± 2 µS/cm

do Dissolved oxygen Hydrolab (1997) or YSI (2010) – – ± 0.1 mg/L

ph pH Hydrolab (1997) or YSI (2010) – – ± 0.1 pH unit

temp Temperature Hydrolab (1997) or YSI (2010) – – ± 0.1◦ C

disch Discharge Rantz et al. (1982); SOP-IWS-6 – – –

secchi Secchi depth Lind (1985) – – ± 0.1 m

IWS laboratory analyses:

alk Alkalinity APHA (2012) #2320; SOP-IWS-8 – – ± 0.9 mg/L

cond Conductivity APHA (2012) #2510; SOP-IWS-8 – – ± 1.4 µS/cm

do Dissolved oxygen APHA (2012) #4500-O.C.; SOP-IWS-8 – – ± 0.1 mg/L

ph pH-lab APHA (2012) #4500-H+; SOP-IWS-8 – – ± 0.1 pH unit

tss T. suspended solids APHA (2012) #2540 D; SOP-IWS-13 2 mg/L 0.9 mg/L ± 2.5 mg/L

turb Turbidity APHA (2012) #2130; SOP-IWS-8 – – ± 0.2 NTU

nh4 Ammonium (auto) APHA (2012) #4500-NH3 H; SOP-IWS-19 10 µg-N/L 7.2 µg-N/L ± 5.0 µg-N/L

no3 Nitrite/nitrate (auto) APHA (2012) #4500-NO3 I; SOP-IWS-19 20 µg-N/L 6.1 µg-N/L ± 8.9 µg-N/L

tn T. nitrogen (auto) APHA (2012) #4500-N C; SOP-IWS-19 100 µg-N/L 35.9 µg-N/L ± 39.1 µg-N/L

srp Sol. phosphate (auto) APHA (2012) #4500-P G; SOP-IWS-19 5 µg-P/L 1.4 µg-P/L ± 2.0 µg-P/L

tp T. phosphorus (auto) APHA (2012) #4500-P J; SOP-IWS-19 5 µg-P/L 0.7 µg-P/L ± 1.5 µg-P/L

IWS plankton analyses:

chl Chlorophyll APHA (2012) #10200 H; SOP-LW-16 – – ± 0.1 µg/L

chlo Chlorophyta Lind (1985), Schindler trap – – –

cyan Cyanobacteria Lind (1985), Schindler trap – – –

chry Chrysophyta Lind (1985), Schindler trap – – –

pyrr Pyrrophyta Lind (1985), Schindler trap – – –

City coliform analyses:

fc Fecal coliform APHA (2012) #9222 D 1 cfu/100 mL 1 cfu/100 mL –

Edge Analytical analyses:

H2S Hydrogen sulfide APHA (2012) #4500-S2 – 0.100 mg/L –

AmTest analyses:‡

TOC T. organic carbon APHA (2012) #5310 B 1.0 mg/L 0.5 mg/L –
† Historic detection limits (DL) are usually higher than current method detection limits (MDL).
‡Changes reflect recalculation of detection limits or change in methods.

Table 1: Summary of IWS, AmTest, Edge Analytical, and City of Bellingham

analytical methods and parameter abbreviations.
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Variable Min. Med. Mean† Max.

Alkalinity (mg/L CaCO3) 18.5 20.0 20.4 26.4

Conductivity (µS/cm) 58.0 60.0 61.0 76.0

Dissolved oxygen (mg/L) 0.0 9.7 8.3 12.0

pH 6.2 7.3 7.3 8.9

Temperature (◦C) 5.5 10.3 11.6 22.9

Turbidity (NTU) 0.5 0.8 1.3 10.8

Nitrogen ammonium (µg-N/L) <10 <10 23.8 274.6

Nitrogen nitrate/nitrite (µg-N/L) <20 172.5 174.5 361.6

Nitrogen total (µg-N/L) 180.3 378.0 360.2 560.1

Phosphorus soluble (µg-P/L) <5 <5 <5 <5

Phosphorus total (µg-P/L) <5 7.4 9.6 46.2

Chlorophyll (µg/L) 0.5 3.3 4.2 17.0

Secchi depth (m) 3.2 4.9 4.9 7.0

Coliforms fecal (cfu/100 mL)‡ <1 1 1 8
†Uncensored arithmetic means except coliforms (geometric mean);
‡Censored values replaced with closest integer (i.e., <1 ⇒ 1).

Table 2: Summary of Site 1 water quality data, Oct. 2012 – Sept. 2013.
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Variable Min. Med. Mean† Max.

Alkalinity (mg/L CaCO3) 18.1 19.0 19.1 20.3

Conductivity (µS/cm) 57.0 58.5 58.5 60.0

Dissolved oxygen (mg/L) 0.7 10.3 10.4 11.8

pH 7.1 7.7 7.9 8.6

Temperature (◦C) 6.3 14.5 14.4 22.0

Turbidity (NTU) 0.4 0.5 0.5 0.7

Nitrogen ammonium (µg-N/L) <10 <10 <10 14.1

Nitrogen nitrate/nitrite (µg-N/L) 86.3 216.1 217.6 377.6

Nitrogen total (µg-N/L) 239.3 352.6 365.0 522.5

Phosphorus soluble (µg-P/L) <5 <5 <5 <5

Phosphorus total (µg-P/L) <5 <5 <5 7.8

Chlorophyll (µg/L) 1.4 3.2 3.1 3.9

Secchi depth (m) 4.9 5.7 5.7 6.6

Coliforms fecal (cfu/100 mL)‡ <1 1 1 3
†Uncensored arithmetic means except coliforms (geometric mean);
‡Censored values replaced with closest integer (i.e., <1 ⇒ 1).

Table 3: Summary of Intake water quality data, Oct. 2012– Sept. 2013.
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Variable Min. Med. Mean† Max.

Alkalinity (mg/L CaCO3) 17.9 18.8 19.3 26.1

Conductivity (µS/cm) 57.0 58.5 59.1 76.0

Dissolved oxygen (mg/L) 0.1 9.9 9.4 12.0

pH 6.2 7.4 7.5 8.6

Temperature (◦C) 6.3 11.4 12.5 21.9

Turbidity (NTU) 0.4 0.5 0.6 2.4

Nitrogen ammonium (µg-N/L) <10 <10 14.5 267.3

Nitrogen nitrate/nitrite (µg-N/L) <20 230.9 233.9 380.3

Nitrogen total (µg-N/L) 243.7 413.5 391.4 541.7

Phosphorus soluble (µg-P/L) <5 <5 <5 5.5

Phosphorus total (µg-P/L) <5 5.4 6.5 21.8

Chlorophyll (µg/L) 0.5 3.2 2.9 5.6

Secchi depth (m) 5.1 5.7 5.7 7.2

Coliforms fecal (cfu/100 mL)‡ <1 1 1 2
†Uncensored arithmetic means except coliforms (geometric mean);
‡Censored values replaced with closest integer (i.e., <1 ⇒ 1).

Table 4: Summary of Site 2 water quality data, Oct. 2012 – Sept. 2013.
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Variable Min. Med. Mean† Max.

Alkalinity (mg/L CaCO3) 17.8 18.3 18.6 21.2

Conductivity (µS/cm) 57.0 59.0 59.3 78.0

Dissolved oxygen (mg/L) 0.3 9.9 9.9 12.1

pH 6.5 7.3 7.4 8.5

Temperature (◦C) 6.3 7.4 10.2 21.6

Turbidity (NTU) 0.2 0.4 0.5 2.5

Nitrogen ammonium (µg-N/L) <10 <10 <10 31.4

Nitrogen nitrate/nitrite (µg-N/L) 114.8 360.8 316.3 416.0

Nitrogen total (µg-N/L) 259.1 464.0 431.9 519.1

Phosphorus soluble (µg-P/L) <5 <5 <5 <5

Phosphorus total (µg-P/L) <5 <5 <5 9.3

Chlorophyll (µg/L) 1.2 3.0 2.7 4.7

Secchi depth (m) 5.0 5.8 6.3 8.1

Coliforms fecal (cfu/100 mL)‡ <1 1 1 2
†Uncensored arithmetic means except coliforms (geometric mean);
‡Censored values replaced with closest integer (i.e., <1 ⇒ 1).

Table 5: Summary of Site 3 water quality data, Oct. 2012 – Sept. 2013.
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Variable Min. Med. Mean† Max.

Alkalinity (mg/L CaCO3) 17.3 18.3 18.4 20.1

Conductivity (µS/cm) 57.0 59.0 58.9 62.0

Dissolved oxygen (mg/L) 8.3 9.8 9.9 11.6

pH 6.4 7.2 7.3 8.5

Temperature (◦C) 6.3 6.9 9.9 21.2

Turbidity (NTU) 0.2 0.4 0.4 0.7

Nitrogen ammonium (µg-N/L) <10 <10 <10 14.1

Nitrogen nitrate/nitrite (µg-N/L) 117.6 377.2 332.5 447.9

Nitrogen total (µg-N/L) 261.6 474.5 443.0 512.2

Phosphorus soluble (µg-P/L) <5 <5 <5 <5

Phosphorus total (µg-P/L) <5 <5 <5 6.8

Chlorophyll (µg/L) 0.7 2.5 2.6 5.7

Secchi depth (m) 5.5 6.3 6.4 8.5

Coliforms fecal (cfu/100 mL)‡ <1 1 1 1
†Uncensored arithmetic means except coliforms (geometric mean);
‡Censored values replaced with closest integer (i.e., <1 ⇒ 1).

Table 6: Summary of Site 4 water quality data, Oct. 2012 – Sept. 2013.
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H2S (mg/L) H2S (mg/L)

Year Site 1 Site 2 Year Site 1 Site 2

1999† 0.03–0.04 0.40 2006 0.20 0.42

2000† 0.27 0.53 2007 0.40 0.20

2001† 0.42 0.76 2008 0.28 0.38

2002† 0.09 0.32 2009 0.15 0.47

2003† 0.05 0.05 2010 0.38 0.40

2004† 0.25 0.25 2011 0.12 0.16

2005‡ 0.13 0.25 2012 na na

2005‡ 0.12 0.42 2013 0.20 0.16
†H2S samples analyzed by HACH test kit.
‡HACH (first value) vs. Edge Analytical (second value)

Table 7: October hypolimnetic hydrogen sulfide concentrations at Sites 1 and 2

(20 m). The H2S samples have been analyzed by Edge Analytical since 2005.

Earlier samples were analyzed using a HACH field test kit. The 2012 samples

were lost during processing.



2012/2013 Lake Whatcom Report Page 23

Depth TOC Depth TOC

Site Date (m) (mg/L) Date (m) (mg/L)

Site 1 Feb 7, 2013 0 5.0 Aug 8, 2013 0 2.2

Feb 7, 2013 20 5.3 Aug 8, 2013 20 1.9

Intake Feb 7, 2013 0 4.6 Aug 8, 2013 0 1.9

Feb 7, 2013 10 4.4 Aug 8, 2013 10 1.9

Site 2 Feb 7, 2013 0 4.5 Aug 8, 2013 0 1.9

Feb 7, 2013 20 4.8 Aug 8, 2013 20 2.0

Site 3 Feb 14, 2013 0 NA Aug 6, 2013 0 2.1

Feb 14, 2013 80 5.1 Aug 6, 2013 80 1.5

Site 4 Feb 14, 2013 0 4.8 Aug 6, 2013 0 4.9

Feb 14, 2013 90 4.5 Aug 6, 2013 90 1.4

Table 8: Lake Whatcom 2012/2013 total organic carbon data. February 7, 2013

Site 3 surface sample was lost during processing.
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Figure 1: Boxplots showing 1988–2013 surface water temperatures (depth <1

m, all sites and years) with monthly 2013 data (•). Boxplots show medians and

upper/lower quartiles; whiskers extend to maximum/minimum values.
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Figure 2: Relationship between dissolved oxygen and time at Site 1, 12 m.

Kendall’s τ correlations were used because the data were not monotonic-linear;

all correlations were significant.
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Figure 3: Relationship between dissolved oxygen and time at Site 1, 14 m.

Kendall’s τ correlations were used because the data were not monotonic-linear;

all correlations were significant.
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Figure 4: Relationship between dissolved oxygen and time at Site 1, 16 m.

Kendall’s τ correlations were used because the data were not monotonic-linear;

all correlations were significant.
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Figure 5: Relationship between dissolved oxygen and time at Site 1, 18 m.

Kendall’s τ correlations were used because the data were not monotonic-linear;

all correlations were significant.
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Figure 6: Minimum summer, near-surface dissolved inorganic nitrogen concen-

trations (1994–2013, June-Oct, depths ≤5 m). Uncensored (raw) data were used

to illustrate that minimum values are dropping below analytical detection limits

(dashed red line). Kendall’s τ correlations were used because the data were not

monotonic-linear; all correlations were significant.
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Figure 7: Median summer, near-surface total phosphorus concentrations (1994–

2013, June-Oct, depths ≤5 m). Uncensored (raw) data were used to illustrate that

median values are increasingly above analytical detection limits (dashed red line).

Kendall’s τ correlations were used because the data were not monotonic-linear;

the correlations were significant at Sites 1, 2, and 4.
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Figure 8: Median summer near-surface chlorophyll concentrations (1994–2013,

June-October, depths ≤5 m). Kendall’s τ correlations were used because the data

were not monotonic-linear; all correlations were significant.
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Figure 9: Log10 plots of median summer, near-surface algae counts (1994-2013,

June-October, all sites and depths). Kendall’s τ correlations were used because

the data were not monotonic-linear; all correlations except Dinoflagellates were

significant.
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Figure 10: Log10 plots of median summer, near-surface Cyanobacteria counts

(1994–2013, June-October, depths ≤5 m). Kendall’s τ correlations were used

because the data were not monotonic-linear; all correlations were significant.
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Figure 11: Median annual total organic carbon concentrations (surface/bottom,

winter/summer, 1996–2013). Kendall’s τ correlations were used because the data

were not monotonic-linear; all correlations were significant.
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Figure 12: Quarterly average total trihalomethanes (TTHMs) and haloacetic

acids (HAAs) concentrations in the Bellingham water distribution system, 1992–

2013. Data were provided by the City of Bellingham Public Works Department.

Kendall’s τ correlations were used because the data were not monotonic-linear;

correlations for THMS (Jan-Dec and Qtr 3) and Jan-Dec HAAs were significant.

The number of sites used to calculate the quarterly averages increased from four

to eight in the fourth quarter of 2012 (vertical red line).
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3 Hydrograph Data

Recording hydrographs are installed in Austin Creek and Smith Creek; the data

are plotted in Figures 14–15 (pages 41–42). The location of each hydrograph is

described in Appendix A.2. All hydrograph data, including data from previous

years, are online at http://www.wwu.edu/iws. Field notes and rating curves for

each water year are available from the Institute for Watershed Studies. All results

are reported as Pacific Standard Time, without Daylight Saving Time adjustment.

At the Austin Creek site, there was a discrepancy between the sensor stage and

staff gauge height at high flows (Figure 13, page 40). The problem may be due

to a leak in the system, which will be corrected if possible. For the 2013 water

year, stage readings above 1.42 ft were adjusted using the following equation to

provide a better match with the observed staff height:

adjusted stage (ft) = 1.3975 × recorded stage – 0.5

The Austin Creek and Smith Creek discharge values presented in this report were

calculated from the original staff heights (≤1.4 ft) or adjusted staff heights (>1.4

ft) using the Aquarius rating curve software (Aquatic Informatics, 2013). Prior to

this year, stage-discharge rating curves were developed and applied using Excel.

A comparison of the two methods is provided below.

3.1 Rating Curves Comparison

Rating curves were developed for Austin and Smith Creeks using both Excel and

Aquarius software and were used to calculate discharge for the period of Octo-

ber 1, 2012–May 31, 2013. For the Excel rating curves, stage measurements

were plotted against either the logarithm or the square root of measured discharge

(Figures 16–18, pages 43–45). One rating curve was generated for Austin Creek

(Figure 16, page 43), and two rating curves (low and high flows) were developed

for Smith Creek (Figures 17–18, pages 44–45). The Aquarius curves were plotted

on a logarithmic scale using multiple stage height segments (Tables 9–10, pages

38–39; Figures 19–20, pages 46–47).

The two methods produced similar results (Figures 21–22, pages 48–49). The

most noticeable difference was that the Aquarius rating curves predicted higher

discharges than Excel during the highest flows at Smith Creek (Figure 22). For
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Austin Creek, the Aquarius curves produced lower values than Excel for many of

the moderate peaks (50–100 cfs; Figure 21). In general, however, the hydrographs

matched each other closely. The Nash-Sutcliffe (1970) efficiency (E) was 0.995

for Austin Creek and 0.994 for Smith Creek, and the coefficient of determination

(r2; Krause, et al., 2005) was 0.996 for both creeks.

There are advantages with both rating curve methods. The advantages of the Ex-

cel method include simplicity and transparency. The Excel software can be pro-

grammed to update rating curves and hydrographs automatically when new data

are added to the spreadsheet, and the rating curves can be communicated in one or

two equations. The benefit of using the Aquarius software is that the rating curves

can easily be set up to include many discharge segments, accounting for varia-

tions in the stage-discharge relationship at different levels of flow. In addition, the

Aquarius software is used by USGS, so the IWS results are more comparable to

other streams in the Lake Whatcom watershed that are monitored by USGS.
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Aquarius Rating Curves

Stage Height (ft) Discharge Equations

0.27–0.32 discharge = 36.836 × stage 3.674

0.32–0.37 discharge = 38.507 × stage 3.713

0.37–0.49 discharge = 18.656 × stage 2.984

0.49–0.72 discharge = 16.870 × stage 2.843

0.72–1.00 discharge = 15.690 × stage 2.622

1.00–1.39 discharge = 15.691 × stage 2.661

1.39–2.06 discharge = 17.035 × stage 2.411

2.06–2.64 discharge = 21.449 × stage 2.092

2.64–3.17 discharge = 23.159 × stage 2.013

3.17–3.91 discharge = 25.020 × stage 1.946

Excel Rating Curve

stage = 0.1871 × sqrt(discharge) + 0.2245

Table 9: Austin Creek rating curves, October 1, 2012–May 31, 2013. The Aquar-

ius and Excel rating curves were applied to the original (≤1.42 ft) or adjusted

(>1.42 ft) stage heights to calculate discharge as described on page 36.
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Aquarius Rating Curves

Stage Height (ft) Discharge Equations

1.46–1.49 discharge = 0.004 × stage 9.546

1.49–1.51 discharge = 0.006 × stage 8.342

1.51–1.57 discharge = 0.003 × stage 9.951

1.57–1.64 discharge = 0.003 × stage 10.362

1.64–1.70 discharge = 0.003 × stage 10.428

1.70–1.77 discharge = 0.003 × stage 10.305

1.77–1.84 discharge = 0.003 × stage 10.187

1.84–1.92 discharge = 0.003 × stage 10.171

1.92–1.99 discharge = 0.003 × stage 10.298

1.99–2.05 discharge = 0.012 × stage 8.156

2.05–2.07 discharge = 0.001 × stage 16.487

2.07–2.25 discharge = 0.043 × stage 6.481

2.25–2.57 discharge = 0.059 × stage 6.098

2.57–2.98 discharge = 0.140 × stage 5.176

2.98–3.40 discharge = 0.616 × stage 3.820

3.40–3.81 discharge = 0.511 × stage 3.973

3.81–4.33 discharge = 0.328 × stage 4.303

4.33–4.60 discharge = 0.209 × stage 4.612

Excel Rating Curves

stage (<2.3 ft) = 0.4352 × log(discharge) + 1.8185

stage (≥2.3 ft) = 0.1983 × sqrt(discharge) + 1.7373

Table 10: Smith Creek rating curves, October 1, 2012–May 31, 2013.
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Figure 13: Comparison between observed staff heights and sensor stage readings

at Austin Creek. The gray line represents equal staff height and sensor stage.

There is a discrepancy between the two measurements for stages above 1.42 ft

(red markers). Stage data above this level were adjusted as described on page 36.
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Figure 14: Austin Creek hydrograph, October 1, 2012–September 30, 2013. Data

were recorded at 15 minute intervals.
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Figure 15: Smith Creek hydrograph, October 1, 2012–September 30, 2013. Data

were recorded at 15 minute intervals.
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Figure 16: Austin Creek rating curve developed using Excel.
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Figure 17: Smith Creek rating curve developed for low flows (stage <2.3 ft) using

Excel.



2012/2013 Lake Whatcom Report Page 45

0 5 10 15

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

Square root of discharge (cfs)

S
ta

ge
 (

ft)

Figure 18: Smith Creek rating curve developed for high flows (stage ≥2.3 ft)

using Excel.
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Figure 19: Austin Creek rating curve developed using Aquarius.
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Figure 20: Smith Creek rating curve developed using Aquarius.
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Figure 21: Comparison between Austin Creek hydrographs generated using the

Excel (—) and Aquarius (—) rating curves, October 1, 2012 – May 31, 2013.
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Figure 22: Comparison between Smith Creek hydrographs generated using the

Excel (—) and Aquarius (—) rating curves, October 1, 2012–May 31, 2013.
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4 Storm Water Monitoring

4.1 Site Descriptions

Beginning in 2013, storm water monitoring has emphasized sampling in Ander-

son, Austin, and Brannian Creeks (Figure A2, page 92). For information about

other storm water sites that have been monitored by IWS, refer to the annual re-

ports listed in Section 5.2 (page 85).

4.2 Field Sampling and Analytical Methods

Eight storm events were sampled between January and November 2013 (Tables

11–13, pages 52–54). Flow-paced or time-paced discrete samples were collected

at the gauging sites in Anderson, Austin, and Brannian Creeks using ISCO auto-

mated samplers provided by the City of Bellingham. Seven of the eight events

(Events 1–6, 8) were sampled at Anderson Creek, six of the eight (Events 1–4,

6, 8) were sampled at Brannian Creek, and five of the eight (Events 2–4, 7–8)

were sampled at Austin Creek. With the exception of Event 2 at Austin Creek, all

events met the precipitation guidance of ≥1 cm in 24 hours and included samples

from the rising and falling legs of the hydrograph.

For Events 1–4, the ISCO samplers collected flow-paced samples. For Events 5–8

the samplers collected time-paced samples. The change to time-paced sampling

was made to provide better representation of the rising leg of the hydrograph. The

ISCO samplers recorded stream elevation (stage height) at 15 minute intervals

during each storm event and when a water sample was collected.17

The samples were analyzed for total suspended solids, total phosphorus, soluble

reactive phosphorus, total nitrogen, and nitrate/nitrite following the methods sum-

marized in Table 1 (page 16).

17The flow-paced water samples were collected at irregular intervals based on stream flow, so

the sampling time rarely coincided with the automatic 15-min stage height measurements.
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4.3 Results and Discussion

The amount and intensity of precipitation varied between storm events (Tables

11–13; Figures 23, 29, and 35, pages 55, 61, and 67). The 24-hour maximum

precipitation totals ranged from 0.6–4.2 cm. Precipitation totals recorded at the

Brannian Creek rain gauge were consistently higher than those recorded at the

North Shore station for the same events.

Total suspended solids and total phosphorus increased with stream flow for all

events (Figures 24–25,30–31, and 36–37). Soluble phosphate and total nitrogen

sometimes increased with flow, but often showed little relationship to the hydro-

graph (Figures 26–27, 32–33, and 38–39). Nitrate concentrations were usually di-

luted by precipitation, although both total nitrogen and nitrate tended to increase

with flow during Events 6 and 8 (Figures 28, 34, and 40).

Correlation analysis was used to show relationships between stream elevation

(stage height), and water quality (Figures 41–45, pages 73–77).18 Stage height

was used rather than discharge because discharge is estimated from a rating curve

and contains more uncertainty than stage height.

Total suspended solids, total phosphorus, and soluble phosphate were significantly

correlated with stage height at all three sites (Figures 41–43). Total nitrogen and

nitrate were weakly correlated with stage height at Anderson Creek and were

not correlated at Austin and Brannian Creeks (Figures 44–45). Total suspended

solids and total phosphorus were correlated at all three sites (Figure 46; τ = 0.56–

0.768). The correlation was strongest at Brannian Creek and weakest at Austin

Creek. Total phosphorus is often adsorbed to the surface of sediment particles and

is transported with sediments in storm runoff.

Part of the variability in Figures 41–45 came from within-storm differences, which

can be seen by plotting the storm events separately. For example, Figures 47–49

show the correlations between total phosphorus and stage height by event. The

results varied considerably, with correlation statistics ranging from insignificant

to highly significant (e.g., Event 1 at Anderson Creek τ = 0.854). In theory, the

“best” statistical approach would be to evaluate all data separately by storm event.

But this is not always feasible, or even desirable, especially if the goal is to develop

a simple model of pollutant transport as a function of stream flow.

18See footnote on page 7 for a short description of correlation analysis.
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Event Max. 24-hr

Event Sampling Period Duration (hr) Precip

1 01:45 Jan 23 to 18:30 Jan 24, 2013 40.75 0.74 in (1.9 cm)

2 12:30 Jan 29 to 15:30 Jan 30, 2013 27 0.77 in (2.0 cm

3 16:45 Feb 27 to 05:45 Mar 03, 2013 85 1.17 in (3.0 cm)

4 01:15 Mar 11 to 16:15 Mar 15, 2013 111 0.99 in (2.5 cm)

5 17:15 Jun 19 to 15:00 Jun 21, 2013 45.75 0.89 in (2.3 cm)

6 15:15 Nov 1 to 9:30 Nov 4 66.25 1.67 in (4.2 cm)

7 Not sampled – –

8 14:45 Nov 14 to 9:45 Nov 17 67 1.28 in (3.3 cm)

Table 11: Summary of Anderson Creek storm events and maximum 24-hr pre-

cipitation total at the Brannian Creek precipitation gauge. Precipitation data were

provided by the City of Bellingham.
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Event Max. 24-hr

Event Sampling Period Duration (hr) Precip

1 Not sampled – –

2 22:30 Jan 27 to 13:00 Jan 31, 2013 86.5 0.24 in (0.6 cm)

3 15:30 Feb 27 to 11:30 Mar 04, 2013 116 0.84 in (2.1 cm)

4 22:15 Mar 10 to 18:00 Mar 15, 2013 115.75 0.84 in (2.1 cm)

5 Not sampled – –

6 Not sampled – –

7 15:00 Nov 6 to 9:15 Nov 9 66.25 0.72 in (1.8 cm)

8 15:30 Nov 14 to 10:15 Nov 17 66.75 0.72 in (1.8 cm)

Table 12: Summary of Austin Creek storm events and maximum 24-hr precipita-

tion total at the North Shore weather station. Precipitation data were provided by

the City of Bellingham.
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Event Max. 24-hr

Event Sampling Period Duration (hr) Precip

1 00:45 Jan 23 to 18:00 Jan 24, 2013 41.25 0.74 in (1.9 cm)

2 18:00 Jan 28 to 00:45 Feb 02, 2013 102.75 0.77 in (2.0 cm)

3 23:45 Feb 26 to 05:15 Mar 03, 2013 101.5 1.17 in (3.0 cm)

4 22:30 Mar 10 to 07:30 Mar 15, 2013 105 0.99 in (2.5 cm)

5 Not sampled – –

6 0:00 Nov 2 to 9:45 Nov 4 57.75 1.67 in (4.2 cm)

7 Not sampled – –

8 15:15 Nov 14 to 9:45 Nov 17 66.5 1.28 in (3.3 cm)

Table 13: Summary of Brannian Creek storm events and maximum 24-hr precip-

itation total at the Brannian Creek precipitation gauge. Precipitation data were

provided by the City of Bellingham.
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Figure 41: Correlation between stage height and total suspended solids in An-

derson, Austin, and Brannian Creeks (Events 1–8). Austin Event 2 was excluded

because it did not meet the precipitation goal. Kendall’s τ correlations were used

because the data were not monotonic-linear; all correlations were significant.
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Figure 42: Correlation between stage height and total phosphorus in Anderson,

Austin, and Brannian Creeks (Events 1–8). Austin Event 2 was excluded because

it did not meet the precipitation goal. Kendall’s τ correlations were used because

the data were not monotonic-linear; all correlations were significant.
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Figure 43: Correlation between stage height and soluble phosphate in Anderson,

Austin, and Brannian Creeks (Events 1–8). Austin Event 2 was excluded because

it did not meet the precipitation goal. Kendall’s τ correlations were used because

the data were not monotonic-linear; all correlations were significant.
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Figure 44: Correlation between stage height and total nitrogen in Anderson,

Austin, and Brannian Creeks (Events 1–8). Austin Event 2 was excluded be-

cause it did not meet the precipitation goal. Kendall’s τ correlations were used

because the data were not monotonic-linear; the correlations for Anderson and

Austin Creeks were significant.
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Figure 45: Correlation between stage height and nitrate in Anderson, Austin, and

Brannian Creeks (Events 1–8). Austin Event 2 was excluded because it did not

meet the precipitation goal. Two low values (<200 µg-N/L) were not plotted to

improve plotting scale for the remaining points. Kendall’s τ correlations were

used because the data were not monotonic-linear; the correlation for Anderson

Creek was significant.
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Figure 46: Correlation between total suspended solids and total phosphorus in An-

derson, Austin, and Brannian Creeks (Events 1–8). Austin Event 2 was excluded

because it did not meet the precipitation goal. Kendall’s τ correlations were used

because the data were not monotonic-linear; all correlations were significant.
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Figure 47: Correlation between stage height and total phosphorus by storm event

in Anderson Creek (Events 1–6 and 8). Kendall’s τ correlations were used be-

cause the data were not monotonic-linear; correlations for Events 1, 2, 3, 5, and 6

were significant.
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Figure 48: Correlation between stage height and total phosphorus by storm event

in Austin Creek (Events 2–4 and 7–8). Kendall’s τ correlations were used be-

cause the data were not monotonic-linear; correlations for Events 3 and 8 were

significant.
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Figure 49: Correlation between stage height and total phosphorus by storm event

in Brannian Creek (Events 1–4, 6, and 8). Kendall’s τ correlations were used

because the data were not monotonic-linear; correlations for Events 3, 4, 6, and 8

were significant.
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A Site Descriptions

Figures A1 and A2 (pages 91 and 92) show the locations of the current monitor-

ing sites and Table A1 (page 90) lists the approximate GPS coordinates for the

lake and creek sites. All site descriptions, including text descriptions and GPS

coordinates, are approximate because of variability in satellite coverage, GPS unit

sensitivity, boat movement, stream bank or channel alterations, stream flow rates,

weather conditions, and other factors that affect sampling location. Text descrip-

tions contain references to local landmarks that may change over time. For de-

tailed information about exact sampling locations, contact IWS.

A.1 Lake Whatcom Monitoring Sites

Site 1 is located at 20 m in the north central portion of basin 1 along a straight line

from the Bloedel Donovan boat launch to the house located at 171 E. North Shore

Rd. The depth at Site 1 should be at least 25 meters.

Site 2 is located at 18–20 m in the south central portion of basin 2 just west of the

intersection of a line joining the boat house at 73 Strawberry Point and the point

of Geneva sill.

The Intake Site location is omitted from this report at the City’s request.

Site 3 is located in the northern portion of basin 3, mid-basin just north of a line

between the old railroad bridge and Lakewood. The depth at Site 3 should be at

least 80 m.

Site 4 is located in the southern portion of basin 3, mid-basin, and just north of

South Bay. The depth at Site 4 should be at least 90 m.

A.2 Storm Water Monitoring Sites

The 2012/2013 storm water monitoring program focused on collecting storm

runoff data from Anderson, Austin, and Brannian Creeks. For information about

other storm water sites that have been monitored by IWS, refer to the annual re-

ports listed in Section 5.2 (page 85).
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Anderson Creek samples are collected 15 m upstream from South Bay Rd. Water

samples and discharge measurements are collected upstream from the bridge. The

Anderson Creek hydrograph19 is mounted in the stilling well on the east side of

Anderson Creek, directly adjacent to the bridge over Anderson Creek (South Bay

Rd.), approximately 0.5 km from the mouth of the creek.

The Austin Creek hydrograph gauge and sampling site is located approximately

15 m downstream from Lake Whatcom Blvd. From October 2004 through

September 2006, three additional sampling sites were sampled in the Austin Creek

watershed, so for clarification, the gauged site has been renamed Lower Austin

Creek.

Brannian Creek samples are collected approximately 40 m downstream from

South Bay Rd. near the USGS hydrograph gauge.

Lake Sites Latitude (◦N) Longitude (◦W)

Site 1 48.4536 122.2438

Intake (GPS omitted)

Site 2 48.4436 122.2254

Site 3 48.4416 122.2009

Site 4 48.4141 122.1815

Storm Water Sites Latitude (◦N) Longitude (◦W)

Anderson 48.67335 122.26751

Austin (lower) 48.71312 122.33076

Brannian 48.66910 122.27949

Table A1: Approximate GPS coordinates for Lake Whatcom sampling sites.

19This hydrograph is no longer maintained by IWS; data are available on the USGS web site at

http://waterdata.usgs.gov/nwis/inventory?agency code=USGS&site no=12201950.
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Figure A1: Lake Whatcom lake sampling sites. Basemap created using source

files provided by G. Gabrisch and data obtained from Western Washington Uni-

versity, Skagit County, the Nooksack Tribe, and the City of Bellingham.



2012/2013 Lake Whatcom Report Page 92

1 mi

1 km

N
Anderson

Brannian

Austin (lower)

Figure A2: Lake Whatcom storm water sampling sites. Basemap created using

source files provided by G. Gabrisch and data obtained from Western Washington

University, Skagit County, the Nooksack Tribe, and the City of Bellingham.
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B Long-Term Water Quality Figures

The current and historic Lake Whatcom water quality data are plotted on the fol-

lowing pages. Detection limits and abbreviations for each parameter are listed in

Table 1 (page 16).

The historic detection limits for each parameter were estimated based on recom-

mended lower detection ranges (APHA, 1998; Hydrolab, 1997; Lind, 1985), in-

strument limitations, and analyst judgment on the lowest repeatable concentration

for each test. Over time, some analytical techniques have improved so that current

detection limits are lower than defined below (see current detection limits in Table

1, page 16). Because the Lake Whatcom data set includes long-term monitoring

data that have been collected using a variety of analytical techniques, this report

sets conservative historic detection limits to allow comparisons between all years.

In the Lake Whatcom report, unless indicated, no data substitutions are used for

below detection values (“bdl” data). Instead, we identify summary statistics that

include bdl values, and, if appropriate, discuss the implications of including these

values in the analysis.

Because of the length of the data record, many of the figures reflect trends related

to improvements in analytical techniques over time, and introduction of increas-

ingly sensitive field equipment (see, for example, Figures B66–B70, pages 161–

165, which show the effect of using increasingly sensitive conductivity probes).

These changes generally result in a reduction in analytical variability, and some-

times result in lower detection limits.
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B.1 Monthly YSI Profiles
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Figure B1: Lake Whatcom YSI profiles for Site 1, October 11, 2012.
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Figure B2: Lake Whatcom YSI profiles for Site 2, October 11, 2012.
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Figure B3: Lake Whatcom YSI profiles for the Intake, October 11, 2012.



2012/2013 Lake Whatcom Report Page 98

5 10 15 20

−
10

0
−

80
−

60
−

40
−

20
0

Temperature (C)

D
ep

th
 (

m
)

5 6 7 8 9

−
10

0
−

80
−

60
−

40
−

20
0

pH

D
ep

th
 (

m
)

40 60 80 100 120

−
10

0
−

80
−

60
−

40
−

20
0

Conductivity (uS/cm)

D
ep

th
 (

m
)

0 2 4 6 8 10 12 14

−
10

0
−

80
−

60
−

40
−

20
0

Dissolved Oxygen (mg/L)

D
ep

th
 (

m
)

Figure B4: Lake Whatcom YSI profiles for Site 3, October 9, 2012.
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Figure B5: Lake Whatcom YSI profiles for Site 4, October 9, 2012.
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Figure B6: Lake Whatcom YSI profiles for Site 1, November 15, 2012.
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Figure B7: Lake Whatcom YSI profiles for Site 2, November 15, 2012.
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Figure B8: Lake Whatcom YSI profiles for the Intake, November 15, 2012.
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Figure B9: Lake Whatcom YSI profiles for Site 3, November 6, 2012.
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Figure B10: Lake Whatcom YSI profiles for Site 4, November 6, 2012.
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Figure B11: Lake Whatcom YSI profiles for Site 1, December 6, 2012.
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Figure B12: Lake Whatcom YSI profiles for Site 2, December 6, 2012.
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Figure B13: Lake Whatcom YSI profiles for the Intake, December 6, 2012.
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Figure B14: Lake Whatcom YSI profiles for Site 3, December 12, 2012.
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Figure B15: Lake Whatcom YSI profiles for Site 4, December 12, 2012.
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Figure B16: Lake Whatcom YSI profiles for Site 1, February 7, 2013.
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Figure B17: Lake Whatcom YSI profiles for Site 2, February 7, 2013.
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Figure B18: Lake Whatcom YSI profiles for the Intake, February 7, 2013.
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Figure B19: Lake Whatcom YSI profiles for Site 3, February 14, 2013.
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Figure B20: Lake Whatcom YSI profiles for Site 4, February 14, 2013.
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Figure B21: Lake Whatcom YSI profiles for Site 1, April 11, 2013.
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Figure B22: Lake Whatcom YSI profiles for Site 2, April 11, 2013.
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Figure B23: Lake Whatcom YSI profiles for the Intake, April 11, 2013.
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Figure B24: Lake Whatcom YSI profiles for Site 3, April 9, 2013.
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Figure B25: Lake Whatcom YSI profiles for Site 4, April 9, 2013.
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Figure B26: Lake Whatcom YSI profiles for Site 1, May 9, 2013.
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Figure B27: Lake Whatcom YSI profiles for Site 2, May 9, 2013.
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Figure B28: Lake Whatcom YSI profiles for the Intake, May 9, 2013.
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Figure B29: Lake Whatcom YSI profiles for Site 3, May 7, 2013.
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Figure B30: Lake Whatcom YSI profiles for Site 4, May 7, 2013.
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Figure B31: Lake Whatcom YSI profiles for Site 1, June 6, 2013.
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Figure B32: Lake Whatcom YSI profiles for Site 2, June 6, 2013.
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Figure B33: Lake Whatcom YSI profiles for the Intake, June 6, 2013.
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Figure B34: Lake Whatcom YSI profiles for Site 3, June 4, 2013.
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Figure B35: Lake Whatcom YSI profiles for Site 4, June 4, 2013.
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Figure B36: Lake Whatcom YSI profiles for Site 1, July 11, 2013.
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Figure B37: Lake Whatcom YSI profiles for Site 2, July 11, 2013.
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Figure B38: Lake Whatcom YSI profiles for the Intake, July 11, 2013.
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Figure B39: Lake Whatcom YSI profiles for Site 3, July 9, 2013.
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Figure B40: Lake Whatcom YSI profiles for Site 4, July 9, 2013.
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Figure B41: Lake Whatcom YSI profiles for Site 1, August 8, 2013.
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Figure B42: Lake Whatcom YSI profiles for Site 2, August 8, 2013.
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Figure B43: Lake Whatcom YSI profiles for the Intake, August 8, 2013. See

discussion of low oxygen value on page 5.
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Figure B44: Lake Whatcom YSI profiles for Site 3, August 6, 2013.
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Figure B45: Lake Whatcom YSI profiles for Site 4, August 6, 2013.
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Figure B46: Lake Whatcom YSI profiles for Site 1, September 4, 2013.
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Figure B47: Lake Whatcom YSI profiles for Site 2, September 4, 2013.
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Figure B48: Lake Whatcom YSI profiles for the Intake, September 4, 2013.
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Figure B49: Lake Whatcom YSI profiles for Site 3, September 3, 2013.
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Figure B50: Lake Whatcom YSI profiles for Site 4, September 3, 2013.
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B.2 Long-term Hydrolab Data (1988-present)
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Figure B58: Lake Whatcom historic dissolved oxygen data for the Intake. See

discussion of the low dissolved oxygen value on page 5.
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Figure B66: Lake Whatcom historic conductivity data for Site 1. The decreasing

conductivity trend is the result of changing to more sensitive equipment.
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Figure B67: Lake Whatcom historic conductivity data for Site 2. The decreasing

conductivity trend is the result of changing to more sensitive equipment.
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Figure B68: Lake Whatcom historic conductivity data for the Intake. The de-

creasing conductivity trend is the result of changing to more sensitive equipment.
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Figure B69: Lake Whatcom historic conductivity data for Site 3. The decreasing

conductivity trend is the result of changing to more sensitive equipment.
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Figure B70: Lake Whatcom historic conductivity data for Site 4. The decreasing

conductivity trend is the result of changing to more sensitive equipment.
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B.3 Long-term Water Quality Data (1988-present)
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Lake Whatcom alkalinity data for Site 3, February 1988 through December 2013.
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Lake Whatcom turbidity data for Site 3, February 1988 through December 2013.
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Lake Whatcom turbidity data for Site 4, February 1988 through December 2013.
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Lake Whatcom ammonium data for Site 4, February 1988 through December 2013.
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Lake Whatcom soluble reactive phosphate data for Site 1, February 1988 through December 2013.
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Lake Whatcom soluble reactive phosphate data for Site 2, February 1988 through December 2013.
S

ol
ub

le
 R

ea
ct

iv
e 

P
ho

sp
ha

te
 (

ug
/L

)

11/91 05/97 11/02 05/08 10/13

Detection Limit

Depth 0
Depth 5
Depth 10
Depth 15
Depth 20

F
ig

u
re

B
9

7
:

L
ak

e
W

h
atco

m
so

lu
b

le
p

h
o

sp
h

ate
d

ata
fo

r
S

ite
2

.



2
0

1
2

/2
0

1
3

L
ak

e
W

h
atco

m
R

ep
o

rt
P

ag
e

1
9

4

0
10

20
30

40
50

Lake Whatcom soluble reactive phosphate data for Intake, February 1988 through December 2013.
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Lake Whatcom soluble reactive phosphate data for Site 3, February 1988 through December 2013.
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Lake Whatcom soluble reactive phosphate data for Site 4, February 1988 through December 2013.
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Lake Whatcom total phosphorus data for Site 1, February 1988 through December 2013.
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Lake Whatcom total phosphorus data for Site 2, February 1988 through December 2013.
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Lake Whatcom total phosphorus data for Intake, February 1988 through December 2013.
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Lake Whatcom total phosphorus data for Site 3, February 1988 through December 2013.
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Lake Whatcom total phosphorus data for Site 4, February 1988 through December 2013.
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Lake Whatcom chlorophyll a data for Site 1, February 1988 through December 2013.
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Lake Whatcom chlorophyll a data for Site 2, February 1988 through December 2013.
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Lake Whatcom chlorophyll a data for Site 3, February 1988 through December 2013.
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Lake Whatcom chlorophyll a data for Site 4, February 1988 through December 2013.
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Lake Whatcom Secchi data for Site 1, February 1988 through December 2013.
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Lake Whatcom Secchi data for Site 2, February 1988 through December 2013.
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Lake Whatcom Secchi data for Intake, February 1988 through December 2013.
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Lake Whatcom Secchi data for Site 3, February 1988 through December 2013.
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Lake Whatcom Secchi data for Site 4, February 1988 through December 2013.
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Lake Whatcom fecal coliform data for Site 1, February 1988 through December 2013.
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Lake Whatcom fecal coliform data for Site 2, February 1988 through December 2013.
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Lake Whatcom fecal coliform data for Intake, February 1988 through December 2013.
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Lake Whatcom fecal coliform data for Site 3, February 1988 through December 2013.
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Lake Whatcom fecal coliform data for Site 4, February 1988 through December 2013.
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Lake Whatcom plankton data for Site 2, February 1988 through December 2013.
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Lake Whatcom plankton data for Intake, February 1988 through December 2013.
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Lake Whatcom plankton data for Site 3, February 1988 through December 2013.
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Lake Whatcom plankton data for Site 4, February 1988 through December 2013.
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Lake Whatcom plankton data for Site 1, February 1988 through December 2013.
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Lake Whatcom plankton data for Site 2, February 1988 through December 2013.
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C Quality Control

C.1 Performance Evaluation Reports

In order to maintain a high degree of accuracy and confidence in the water quality

data all personnel associated with this project were trained according to standard

operating procedures for the methods listed in Table 1 (page 16). Single-blind

quality control tests were conducted as part of the IWS laboratory certification

process (Table C1).

C.2 Laboratory Duplicates, Spikes, and Check Standards

Ten percent of all samples analyzed in the laboratory were duplicated to mea-

sure analytical precision. Sample matrix spikes were analyzed during each an-

alytical run to evaluate analyte recovery for the nutrient analyses (ammonium,

nitrate/nitrite, total nitrogen, soluble reactive phosphate, and total phosphorus).

External check standards were analyzed during each analytical run to evaluate

measurement precision and accuracy.20 The quality control results for laboratory

duplicates, matrix spikes, and check standards are plotted in control charts (Fig-

ures C1–C29, pages 229–257).

C.3 Field Duplicates

Ten percent of all samples collected in the field were duplicated to measure sam-

ple replication (Figures C30–C39, pages 258–267). Samples collected using field

meters (conductivity, dissolved oxygen, and pH) were evaluated using water sam-

ples collected from the same depth as the field meter measurement.

The absolute mean difference for the field duplicates was calculated using the

following equation:

Absolute mean difference =

∑
|Original Sample−Duplicate Sample|

number of duplicate pairs

20External check standards are not available for all analytes.
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Reported Assigned Acceptance Test

Value Value Limits Result

Specific conductivity (µS/cm at 25◦C) 372 373 333–413 accept

Total alkalinity (mg/L as CaCO3) 109 113 100–1243 accept

Ammonium nitrogen, manual (mg-N/L) 14.1 14.3 10.6–17.7 accept

Ammonium nitrogen, auto (mg-N/L) 15.1 14.3 10.6–17.7 accept

Nitrate/nitrite nitrogen, auto (mg-N/L) 38.2 39.0 31.8–45.3 accept

Nitrite nitrogen, auto (mg-N/L) 0.723 0.723 0.561–0.877 accept

Orthophosphate, manual (mg-P/L) 1.49 1.49 1.18–1.82 accept

Orthophosphate, auto (mg-P/L) 1.53 1.49 1.18–1.82 accept

Total phosphorus, manual (mg-P/L) 4.52 4.50 3.69–5.37 accept

Total phosphorus, auto (mg-P/L) 4.53 4.50 3.69–5.37 accept

pH 7.91 7.77 7.57–7.97 accept

Solids, non-filterable (mg/L), WP–195 67.5 83.0 67.9–92.3 too low

Repeat after methods revision, WP–197 93.1 86.0 70.5–95.5 accept

Turbidity (NTU) 10.2 9.78 7.92–11.6 accept

Table C1: Single-blind quality control results, WP–195 (06/05/2013) and WP–

197 (08/06/2013; total suspended solids). All results were within acceptance lim-

its except non-filterable solids, which was repeated after adopting a methodologi-

cal change to address higher turbidity levels present in the performance standards.

The repeated test was within acceptance limits.



2012/2013 Lake Whatcom Report Page 229

−1.0

−0.5

0.0

0.5

1.0

Alkalinity Laboratory Duplicates, Training Data

D
up

lic
at

e 
Q

C
1−

Q
C

2

01/11 08/11 03/12 09/12

  0.982
  0.651

  −0.01

  −0.671
  −1

−1.0

−0.5

0.0

0.5

1.0

Alkalinity Laboratory Duplicates, Test Data

D
up

lic
at

e 
Q

C
1−

Q
C

2

09/12 12/12 04/13 07/13

  0.982
  0.651

  −0.01

  −0.671
  −1

Figure C1: Alkalinity laboratory duplicates for the Lake Whatcom monitoring

program. Upper/lower acceptance limits (±2 std. dev. from mean pair difference)

and upper/lower warning limits (±3 std. dev. from mean pair difference) were

calculated based on the preceding two years of lab duplicate data.
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Figure C2: Alkalinity low-range check standards for the Lake Whatcom moni-

toring program. Upper/lower acceptance limits (±2 std. dev. from mean pair dif-

ference) and upper/lower warning limits (±3 std. dev. from mean pair difference)

were calculated based on the preceding two years of lab duplicate data.
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Figure C3: Chlorophyll laboratory duplicates for the Lake Whatcom monitoring

program (lake samples). Upper/lower acceptance limits (±2 std. dev. from mean

pair difference) and upper/lower warning limits (±3 std. dev. from mean pair dif-

ference) were calculated based on the preceding two years of lab duplicate data.
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Figure C4: Conductivity laboratory duplicates for the Lake Whatcom monitoring

program. Upper/lower acceptance limits (±2 std. dev. from mean pair difference)

and upper/lower warning limits (±3 std. dev. from mean pair difference) were

calculated based on the preceding two years of lab duplicate data.
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Figure C5: Dissolved oxygen laboratory duplicates for the Lake Whatcom moni-

toring program. Upper/lower acceptance limits (±2 std. dev. from mean pair dif-

ference) and upper/lower warning limits (±3 std. dev. from mean pair difference)

were calculated based on the preceding two years of lab duplicate data.
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Figure C6: Ammonium laboratory duplicates for the Lake Whatcom monitoring

program. Upper/lower acceptance limits (±2 std. dev. from mean pair difference)

and upper/lower warning limits (±3 std. dev. from mean pair difference) were

calculated based on the preceding two years of lab duplicate data.
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Figure C7: Ammonium spike recoveries for the Lake Whatcom monitoring pro-

gram. Upper/lower acceptance limits (±2 std. dev. from mean pair difference)

and upper/lower warning limits (±3 std. dev. from mean pair difference) were

calculated based on the preceding two years of lab duplicate data.
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Figure C8: Ammonium high-range check standards for the Lake Whatcom moni-

toring program. Upper/lower acceptance limits (±2 std. dev. from mean pair dif-

ference) and upper/lower warning limits (±3 std. dev. from mean pair difference)

were calculated based on the preceding two years of lab duplicate data.
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Figure C9: Ammonium low-range check standards for the Lake Whatcom moni-

toring program. Upper/lower acceptance limits (±2 std. dev. from mean pair dif-

ference) and upper/lower warning limits (±3 std. dev. from mean pair difference)

were calculated based on the preceding two years of lab duplicate data.
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Figure C10: Nitrate/nitrite laboratory duplicates for the Lake Whatcom monitor-

ing program. Upper/lower acceptance limits (±2 std. dev. from mean pair dif-

ference) and upper/lower warning limits (±3 std. dev. from mean pair difference)

were calculated based on the preceding two years of lab duplicate data.
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Figure C11: Nitrate/nitrite spike recoveries for the Lake Whatcom monitoring

program. Upper/lower acceptance limits (±2 std. dev. from mean pair difference)

and upper/lower warning limits (±3 std. dev. from mean pair difference) were

calculated based on the preceding two years of lab duplicate data.
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Figure C12: Nitrate/nitrite high-range check standards for the Lake Whatcom

monitoring program. Upper/lower acceptance limits (±2 std. dev. from mean pair

difference) and upper/lower warning limits (±3 std. dev. from mean pair differ-

ence) were calculated based on the preceding two years of lab duplicate data.
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Figure C13: Nitrate/nitrite low-range check standards for the Lake Whatcom

monitoring program. Upper/lower acceptance limits (±2 std. dev. from mean pair

difference) and upper/lower warning limits (±3 std. dev. from mean pair differ-

ence) were calculated based on the preceding two years of lab duplicate data.
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Figure C14: Total nitrogen laboratory duplicates for the Lake Whatcom monitor-

ing program. Upper/lower acceptance limits (±2 std. dev. from mean pair dif-

ference) and upper/lower warning limits (±3 std. dev. from mean pair difference)

were calculated based on the preceding two years of lab duplicate data.
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Figure C15: Total nitrogen spike recoveries for the Lake Whatcom monitoring

program. Upper/lower acceptance limits (±2 std. dev. from mean pair difference)

and upper/lower warning limits (±3 std. dev. from mean pair difference) were

calculated based on the preceding two years of lab duplicate data.
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Figure C16: Total nitrogen high-range check standards for the Lake Whatcom

monitoring program. Upper/lower acceptance limits (±2 std. dev. from mean pair

difference) and upper/lower warning limits (±3 std. dev. from mean pair differ-

ence) were calculated based on the preceding two years of lab duplicate data.
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Figure C17: Total nitrogen low-range check standards for the Lake Whatcom

monitoring program. Upper/lower acceptance limits (±2 std. dev. from mean pair

difference) and upper/lower warning limits (±3 std. dev. from mean pair differ-

ence) were calculated based on the preceding two years of lab duplicate data.
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Figure C18: Laboratory pH duplicates for the Lake Whatcom monitoring pro-

gram. Upper/lower acceptance limits (±2 std. dev. from mean pair difference)

and upper/lower warning limits (±3 std. dev. from mean pair difference) were

calculated based on the preceding two years of lab duplicate data.
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Figure C19: Soluble reactive phosphate laboratory duplicates for the Lake What-

com monitoring program. Upper/lower acceptance limits (±2 std. dev. from mean

pair difference) and upper/lower warning limits (±3 std. dev. from mean pair dif-

ference) were calculated based on the preceding two years of lab duplicate data.
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Figure C20: Soluble reactive phosphate spike recoveries for the Lake Whatcom

monitoring program. Upper/lower acceptance limits (±2 std. dev. from mean pair

difference) and upper/lower warning limits (±3 std. dev. from mean pair differ-

ence) were calculated based on the preceding two years of lab duplicate data.



2012/2013 Lake Whatcom Report Page 249

−4

−2

0

2

4

6

Soluble Reactive Phosphate Check Standards, Training Data

Tr
ue

 −
 M

ea
su

re
d

01/11 08/11 03/12 09/12

  5.12
  3.84

  1.28

  −1.28
  −2.56

−4

−2

0

2

4

6

Soluble Reactive Phosphate Check Standards, Test Data

Tr
ue

 −
 M

ea
su

re
d

09/12 12/12 04/13 07/13

  5.12
  3.84

  1.28

  −1.28
  −2.56

Figure C21: Soluble reactive phosphate high-range check standards for the Lake

Whatcom monitoring program. Upper/lower acceptance limits (±2 std. dev. from

mean pair difference) and upper/lower warning limits (±3 std. dev. from mean

pair difference) were calculated based on the preceding two years of lab duplicate

data.
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Figure C22: Soluble reactive phosphate low-range check standards for the Lake

Whatcom monitoring program. Upper/lower acceptance limits (±2 std. dev. from

mean pair difference) and upper/lower warning limits (±3 std. dev. from mean

pair difference) were calculated based on the preceding two years of lab duplicate

data.
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Figure C23: Total phosphorus laboratory duplicates for the Lake Whatcom moni-

toring program. Upper/lower acceptance limits (±2 std. dev. from mean pair dif-

ference) and upper/lower warning limits (±3 std. dev. from mean pair difference)

were calculated based on the preceding two years of lab duplicate data. Slight

increase in variability may be due to insufficient persulfate concentration; method

revised to increase concentration.
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Figure C24: Total phosphorus spike recoveries for the Lake Whatcom monitoring

program. Upper/lower acceptance limits (±2 std. dev. from mean pair difference)

and upper/lower warning limits (±3 std. dev. from mean pair difference) were

calculated based on the preceding two years of lab duplicate data.
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Figure C25: Total phosphorus high-range check standards for the Lake Whatcom

monitoring program. Upper/lower acceptance limits (±2 std. dev. from mean pair

difference) and upper/lower warning limits (±3 std. dev. from mean pair differ-

ence) were calculated based on the preceding two years of lab duplicate data.
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Figure C26: Total phosphorus low-range check standards for the Lake Whatcom

monitoring program. Upper/lower acceptance limits (±2 std. dev. from mean pair

difference) and upper/lower warning limits (±3 std. dev. from mean pair differ-

ence) were calculated based on the preceding two years of lab duplicate data.
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Figure C27: Total suspended solids laboratory duplicates for the Lake Whatcom

monitoring program (creek and storm water samples). Upper/lower acceptance

limits (±2 std. dev. from mean pair difference) and upper/lower warning limits

(±3 std. dev. from mean pair difference) were calculated based on the preceding

two years of lab duplicate data.
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Figure C28: Total suspended solids check standards for the Lake Whatcom mon-

itoring program (creek and storm water samples). Upper/lower acceptance lim-

its (±2 std. dev. from mean pair difference) and upper/lower warning limits (±3

std. dev. from mean pair difference) were calculated based on the preceding two

years of lab duplicate data.
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Figure C29: Turbidity laboratory duplicates for the Lake Whatcom monitoring

program. Upper/lower acceptance limits (±2 std. dev. from mean pair difference)

and upper/lower warning limits (±3 std. dev. from mean pair difference) were

calculated based on the preceding two years of lab duplicate data.
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Figure C30: Alkalinity field duplicates for the 2012/2013 Lake Whatcom Moni-

toring Project (lake samples). Diagonal reference line shows a 1:1 relationship.
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Figure C31: Chlorophyll field duplicates for the 2012/2013 Lake Whatcom Mon-

itoring Project (lake samples). Diagonal reference line shows a 1:1 relationship.

The labeled outlier was collected from the portion of the water column exhibiting

a metalimnetic oxygen maximum (see discussion on page 7).
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Figure C32: Conductivity field duplicates for the 2012/2013 Lake Whatcom Mon-

itoring Project (lake samples). Diagonal reference line shows a 1:1 relationship.

The high degree of scatter is due to the low concentration of the samples. The la-

beled outliers were collected when the lake was stratified, or recently destratified

and incompletely mixed, at depths where extreme gradients were present. Field

meter samples were collected at true depth; laboratory samples were collected

using a marked line, which is slightly shallower than true depth.
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Figure C33: Dissolved oxygen field duplicates for the 2012/2013 Lake What-

com Monitoring Project (lake samples). Diagonal reference line shows a 1:1 re-

lationship. The labeled outliers were collected when the lake was stratified, or

recently destratified and incompletely mixed, at depths where extreme gradients

were present. Field meter samples were collected at true depth; Winkler samples

were collected using a marked line, which is slightly shallower than true depth.
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Figure C34: Ammonium field duplicates for the 2012/2013 Lake Whatcom Mon-

itoring Project (lake samples). Diagonal reference line shows a 1:1 relationship;

horizontal reference line shows the current detection limits. The high degree of

scatter is due to the low concentrations of the samples.
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Figure C35: Nitrate/nitrite field duplicates for the 2012/2013 Lake Whatcom

Monitoring Project (lake samples). Diagonal reference line shows a 1:1 relation-

ship; horizontal reference line shows the current detection limits.
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Figure C36: Total nitrogen field duplicates for the 2012/2013 Lake Whatcom

Monitoring Project (lake samples). Diagonal reference line shows a 1:1 relation-

ship. All total nitrogen samples were above the detection limit.
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Figure C37: Field duplicates for pH from the 2012/2013 Lake Whatcom Monitor-

ing Project (lake samples). Diagonal reference line shows a 1:1 relationship.
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Figure C38: Total phosphorus field duplicates for the 2012/2013 Lake Whatcom

Monitoring Project (lake samples). Diagonal reference line shows a 1:1 relation-

ship; horizontal reference line shows the current detection limits. The high degree

of scatter is due to the low concentrations of the samples.
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Figure C39: Turbidity field duplicates for the 2012/2013 Lake Whatcom Monitor-

ing Project (lake samples). Diagonal reference line shows a 1:1 relationship. The

high degree of scatter is due to the low concentrations of the samples.
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D Lake Whatcom Online Data

The following readme file describes the electronic data posted at the IWS web site

and additional data available from IWS. Please contact the Director of the Institute

for Watershed Studies if you have questions or trouble accessing the online data.

*************************************************************

* README FILE - LAKE WHATCOM ONLINE DATA

* THIS FILE WAS UPDATED JANUARY 3, 2014

*************************************************************
Most of the Lake Whatcom water quality data are available in

electronic format at the IWS website (http://www.wwu.edu/iws) or from

the IWS Director.

The historic and current detection limits and abbreviations for each

parameter are listed in the annual reports. The historic detection

limits for each parameter were estimated based on recommended lower

detection ranges, instrument limitations, and analyst judgment on the

lowest repeatable concentration for each test. Over time, some

analytical techniques have improved so that current detection limits

are usually lower than historic detection limits. Because the Lake

Whatcom data set includes long-term monitoring data, which have been

collected using a variety of analytical techniques, this report sets

conservative detection limits to allow comparisons between years.

All files are comma-separated ascii data files. The code "NA" has

been entered into all empty cells in the ascii data files to fill in

unsampled dates and depths, missing data, etc. Questions about

missing data should be directed to the IWS Director.

Unless otherwise indicated, the electronic data files have NOT been

censored to flag or otherwise identify below detection and above

detection values. As a result, the ascii files may contain negative

values due to linear extrapolation of the standards regression curve

for below detection data. It is essential that any statistical or

analytical results that are generated using these data be reviewed by

someone familiar with statistical uncertainty associated with

uncensored data.
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*************************************************************

* ONLINE LAKE DATA FILES:

*************************************************************
Hydrolab/YSI data Water quality data Plankton data

1988_hl.csv 1988_wq.csv plankton.csv

1989_hl.csv 1989_wq.csv

1990_hl.csv 1990_wq.csv

1991_hl.csv 1991_wq.csv

1992_hl.csv 1992_wq.csv

1993_hl.csv 1993_wq.csv

1994_hl.csv 1994_wq.csv

1995_hl.csv 1995_wq.csv

1996_hl.csv 1996_wq.csv

1997_hl.csv 1997_wq.csv

1998_hl.csv 1998_wq.csv

1999_hl.csv 1999_wq.csv

2000_hl.csv 2000_wq.csv

2001_hl.csv 2001_wq.csv

2002_hl.csv 2002_wq.csv

2003_hl.csv 2003_wq.csv

2004_hl.csv 2004_wq.csv

2005_hl.csv 2005_wq.csv

2006_hl.csv 2006_wq.csv

2007_hl.csv 2007_wq.csv

2008_hl.csv 2008_wq.csv

2009_hl.csv 2009_wq.csv

2010_hl.csv 2010_wq.csv

2011_hl.csv 2011_wq.csv

2012_hl.csv 2012_wq.csv

2013_hl.csv 2013_wq.csv

The *_hl.csv files include: site, depth (m), month, day, year, temp

(temperature, C), pH, cond (conductivity, uS/cm), do (dissolved

oxygen, mg/L), lcond (lab conductivity qc, uS/cm), secchi (secchi

depth, m).

The *_wq.csv files include: site, depth (m), month, day, year, alk

(alkalinity, mg/L as CaCO3), turb (turbidity. NTU), nh3 (ammonium,

ug-N/L), tn (total persulfate nitrogen, ug-N/L), nos (nitrate/

nitrite, ug-N/L), srp (soluble reactive phosphate, ug-P/L), tp (total

persulfate phosphorus, ug-P/L), chl (chlorophyll, ug/L).

The plankton.csv file includes: site, depth (m), month, day, year,

zoop (zooplankton, #/L), chry (chrysophyta, #/L), cyan (cyano-

bacteria, #/L), chlo (chlorophyta, #/L), pyrr (pyrrophyta, #/L).
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*************************************************************

* ONLINE HYDROGRAPH DATA FILES:

*************************************************************
WY1998.csv

WY1999.csv

WY2000_rev.csv (revised March 8, 2012)

WY2001.csv

WY2002.csv

WY2003.csv

WY2004_rev.csv (revised June 21, 2006)

WY2005.csv

WY2006.csv

WY2007.csv (revised July 31, 2008)

WY2008.csv

WY2009.csv

WY2010.csv

WY2011.csv

WY2012.csv

WY2013.csv

The WY*.csv files include: month, day, year, hour, min, sec, ander.g

(anderson gage height, ft), ander.cfs(anderson discharge, cfs),

austin.g (austin gage height, ft), austin.cfs (austin discharge,

cfs), smith.g (smith gage height, ft), smith.cfs (smith discharge,

cfs). Anderson Creek hydrograph data were deleted in WY2000_rev.csv

due to uncertainty about the gage height; Anderson Creek data are

available for WY1998, WY1999, and WY2001-WY2007. Beginning with

WY2002, the variable "time" replaced "hour, min, sec," with time

reported daily on a 24-hr basis. Data are reported as Pacific

Standard Time without Daylight Saving Time adjustment.

*************************************************************

* STORM WATER AND TRIBUTARY DATA FILES

*************************************************************
The storm water and tributary data include composite and grab samples

from numerous sites in the Lake Whatcom watershed (1994--present),

representing a variety of study objectives and sampling intensities

over time. The electronic data files are not posted online, but may

be obtained by contacting the Institute for Watershed Studies.
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*************************************************************

* SITE CODES

* ALL FILES - INCLUDES DISCONTINUED SITES AND OFF-LINE DATA

*************************************************************
The site codes in the data are as follows:

11 = Lake Whatcom Site 1

21 = Lake Whatcom Intake site

22 = Lake Whatcom Site 2

31 = Lake Whatcom Site 3

32 = Lake Whatcom Site 4

33 = Strawberry Sill site S1

34 = Strawberry Sill site S2

35 = Strawberry Sill site S3

AlabamaVault inlet = Alabama canister vault inlet

AlabamaVault outlet = Alabama canister vault outlet

Brentwood inlet = Brentwood wet pond inlet

Brentwood outlet = Brentwood wet pond outlet

ParkPlace cell1 = Park Place wet pond cell 1

ParkPlace cell2 = Park Place wet pond cell 2

ParkPlace cell3 = Park Place wet pond cell 3

ParkPlace inlet = Park Place wet pond inlet

ParkPlace outlet = Park Place wet pond outlet

Parkstone_swale inlet = Parkstone grass swale inlet

Parkstone_swale outlet = Parkstone grass swale outlet

Parkstone_pond inlet = Parkstone wet pond inlet

Parkstone_pond outlet = Parkstone wet pond outlet

SouthCampus inlet = South Campus storm water facility inlet

SouthCampus outletE = South Campus storm water facility east outlet

SouthCampus outletW = South Campus storm water facility west outlet

Sylvan inlet = Sylvan storm drain inlet

Sylvan outlet = Sylvan storm drain outlet

Wetland outlet = Grace Lane wetland

CW1 = Smith Creek (see alternate code below)

CW2 = Silver Beach Creek (see alternate code below)

CW3 = Park Place drain (see alternate code below)

CW4 = Blue Canyon Creek (see alternate code below)

CW5 = Anderson Creek (see alternate code below)

CW6 = Wildwood Creek (discontinued in 2004)

CW7 = Austin Creek (see alternate code below)
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The following tributary site codes were used for the expanded 2004-2006

tributary monitoring project

AND = Anderson Creek (same location as CW5 above)

BEA1 = Austin.Beaver.confluence

AUS = Austin.lower (same location as CW7 above)

BEA2 = Austin.upper

BEA3 = Beaver.upper

BLU = BlueCanyon (same location as CW4 above)

BRA = Brannian

CAR = Carpenter

EUC = Euclid

MIL = Millwheel

OLS = Olsen

PAR = ParkPlace (same location as CW3 above)

SIL = SilverBeach (same location as CW2 above)

SMI = Smith (same location as CW1 above)

WHA = Whatcom

*************************************************************

* VERIFICATION PROCESS FOR THE LAKE WHATCOM DATA FILES

*************************************************************
During the summer of 1998 the Institute for Watershed Studies began

creating an electronic data file that would contain long term data

records for Lake Whatcom. These data were to be included with annual

Lake Whatcom monitoring reports. This was the first attempt to make a

long-term Lake Whatcom data record available to the public. Because

these data had been generated using different quality control plans

over the years, a comprehensive re-verification process was done.

The re-verification started with printing a copy of the entire data

file and checking 5% of all entries against historic laboratory bench

sheets and field notebooks. If an error was found, the entire set of

values for that analysis were reviewed for the sampling period

containing the error. Corrections were noted in the printed copy and

entered into the electronic file; all entries were dated and initialed

in the archive copy.

Next, all data were plotted and descriptive statistics (e.g., minimum,

maximum) were computed to identify outliers and unusual results. All

outliers and unusual data were verified against original bench sheets.

A summary of decisions pertaining to these data is presented below.

All verification actions were entered into the printed copy, dated,

and initialed by the IWS director.
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The following is a partial list of the changes made to the verified

Lake Whatcom data files. For detailed information refer to the data

verification archive files in the IWS library.

Specific Deletions: 1) Rows containing only missing values were

deleted. 2) All lab conductivity for February 1993 were deleted for

cause: meter inadequate for low conductivity readings (borrowed

Huxley’s student meter). 3) All Hydrolab conductivity from April -

December 1993 were deleted for cause: Hydrolab probe slowly lost

sensitivity. Probe was replaced and Hydrolab was reconditioned prior

to the February 1994 sampling. 4) All 1993 Hydrolab dissolved oxygen

data less than or equal to 2.6 mg/L were deleted for cause: Hydrolab

probe lost sensitivity at low oxygen concentrations. Probe was

replaced and Hydrolab was reconditioned prior to February 1994

sampling. 5) All srp and tp data were deleted (entered as "missing"

in 1989) from the July 10, 1989 wq data due to sample contamination in

at least three samples. 6) December 2, 1991, Site 3, 0 m conductivity

point deleted due to inconsistency with adjacent points. 7) December

15, 1993, Site 4, 80 m lab conductivity point deleted because matching

field conductivity data are absent and point is inconsistent with all

other lab conductivity points. 8) November 4, 1991, Site 2, 17-20 m,

conductivity points deleted due to evidence of equipment problems

related to depth. 9) February 2, 1990, Site 1, 20 m, soluble reactive

phosphate and total phosphorus points deleted due to evidence of

sample contamination. 10) August 6, 1990, Site 1, 0 m, soluble

reactive phosphate and total phosphorus points deleted due to evidence

of sample contamination. 11) October 5, 1992, Site 3, 80 m, all data

deleted due to evidence of sample contamination in turbidity,

ammonium, and total phosphorus results. 12) August 31, 1992, Site 3,

5 m, soluble reactive phosphate and total phosphorus data deleted due

to probable coding error. 13) All total Kjeldahl nitrogen data were

removed from the historic record. This was not due to errors with the

data but rather on-going confusion over which records contained total

persulfate nitrogen and which contained total Kjeldahl nitrogen. The

current historic record contains only total persulfate nitrogen.

Total Kjeldahl nitrogen data were retained in the IWS data base, but

not in the long-term Lake Whatcom data files.
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*************************************************************

* ROUTINE DATA VERIFICATION PROCESS

*************************************************************
1994-present: The Lake Whatcom data are verified using a four step

method: 1) The results are reviewed as they are generated. Outliers

are checked for possible analytical or computational errors. This

step is completed by the Laboratory Analyst and IWS Laboratory

Supervisor. 2) The results are reviewed monthly and sent to the City.

Unusual results are identified. This step is completed by the IWS

Director. 3) The results are reviewed on an annual basis and

discussed in the Lake Whatcom Monitoring Program Final Report.

Unusual results are identified, and explained, if possible. This step

is completed by the IWS Director, IWS Laboratory Supervisor, and

Laboratory Analyst. 4) Single-blind quality control samples,

laboratory duplicates, and field duplicates are analyzed as specified

in the Lake Whatcom Monitoring Program contract and in the IWS

Laboratory Certification requirements. Unusual results that suggest

instrumentation or analytical problems are reported to the IWS

Director and City. The results from these analyses are summarized in

the annual report.

1987-1993: The lake data were reviewed as above except that the IWS

Director’s responsibilities were delegated to the Principle

Investigator in charge of the lake monitoring contract (Dr. Robin

Matthews).

Prior to 1987: Data were informally reviewed by the Laboratory Analyst

and IWS Director. Laboratory and field duplicates were commonly

included as part of the analysis process, but no formal (i.e.,

written) quality control program was in place. Laboratory logs were

maintained for most analyses, so it is possible to verify data against

original analytical results. It is also possible to review laboratory

quality control results for some analyses.
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