

Western Washington University
Western CEDAR

Salish Sea Ecosystem Conference

2018 Salish Sea Ecosystem Conference (Seattle, Wash.)

Apr 6th, 1:45 PM - 2:00 PM

Providing modeling tools on extreme events of climate change to Puget Sound managers

Andrea Copping Pacific Northwest National Lab., United States, andrea.copping@pnnl.gov

Zhaoqing Yang Pacific Northwest National Lab., United States, zhaoqing.yang@pnnl.gov

Ian Miller Washington Sea Grant, United States, immiller@uw.edu

Jude K. Apple Padilla Bay NERR, United States, japple@padillabay.gov

Guillaume Mauger Univ. of Washington, United States, gmauger@uw.edu

See next page for additional authors

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the Fresh Water Studies Commons, Marine Biology Commons, Natural Resources and Conservation Commons, and the Terrestrial and Aquatic Ecology Commons

Copping, Andrea; Yang, Zhaoqing; Miller, Ian; Apple, Jude K.; Mauger, Guillaume; Voisin, Nathalie; Fullerton, Aimee; Sun, Ning; and Freeman, Mikaela, "Providing modeling tools on extreme events of climate change to Puget Sound managers" (2018). *Salish Sea Ecosystem Conference*. 560. https://cedar.wwu.edu/ssec/2018ssec/allsessions/560

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.

Speaker

Andrea Copping, Zhaoqing Yang, Ian Miller, Jude K. Apple, Guillaume Mauger, Nathalie Voisin, Aimee Fullerton, Ning Sun, and Mikaela Freeman

Proudly Operated by Battelle Since 1965

Providing Resource Managers with Modeling Tools on Extreme Events of Climate Change

Andrea Copping

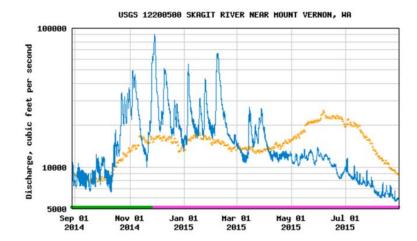
Zhaoqing Yang, Mikaela Freeman, Nathalie Voisin, Ning Sun – Pacific Northwest National Laboratory

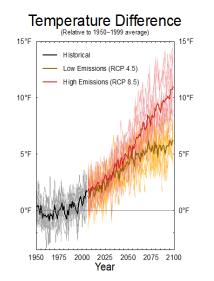
Aimee Fullerton – NOAA Fisheries

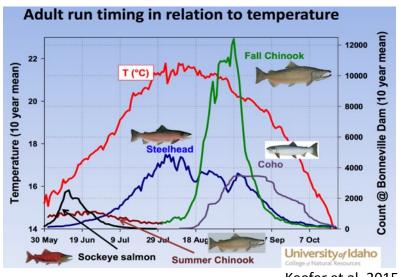
Guillaume Mauger, Ian Miller – University of Washington

Jude Apple – Padilla Bay National Estuarine Research Reserve

Salish Sea Ecosystem Conference Seattle, WA April 6, 2018






Extreme Events under Climate Change

Extreme events may be more important drivers of change than long term climate change averages, particularly for resources like fish, water supplies

Keefer et al. 2015

2

Competing Water Use in the Face of Climate Change: Integrated Analysis to Support Water Resource Planning for Extreme Events

Objective:

- Provide information to assist water resource managers and planners understand the impacts of extreme events on sustainable fish habitat and human water needs in the Puget Sound basin.
- Focus on water resource metrics based on outputs of climate, hydrologic and coastal models
 Outputs based on existing data, not new modeling runs


Themes:

- Sustainable fisheries and other human uses of water in the basin
- Process is stakeholder driven throughout
 Provide information in formats accessible for planning and management

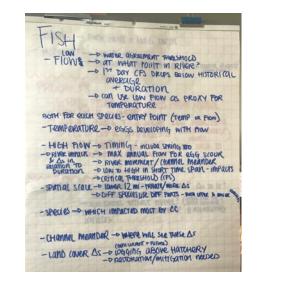
Puget Sound Sub-basins

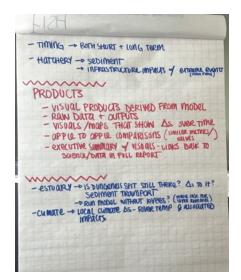
Chose two sub-basins of differing size, with different biogeophysical attributes, different stakeholder needs.

Watersheds

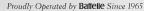
	Dungeness	Skagit
Basin type	Small (65 sq miles) mountainous. Limited lowland area.	Large (over 1,000 sq miles), mountainous with extensive floodplain and river delta
Discharge	Small and seasonal	Largest freshwater discharge to PS
Stakeholder groups	Agricultural community Municipal water management City of Sequim Tribes	Agricultural community Tribes Multiple municipalities Power producers
Salmon	Salmon runs in Dungeness, small estuary connected to Strait	Multiple salmonid runs (greatest contribution to PS salmon), large estuary, discharges to Puget Sound

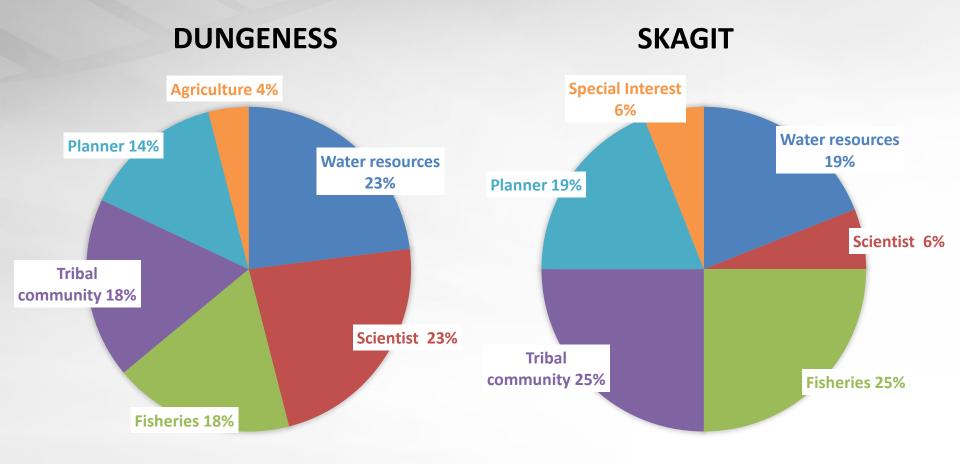
Dungeness River Center




Skagit Watershed Council

Stakeholder engagement


- Stakeholder workshops in Skagit and Dungeness
- Understand impacts on water use management
 - Specifically sustainable fish habitat and human water needs (agriculture and water supply)
 - Determine management needs or concerns for managing under climate change/extreme events
 - How modeling outputs can be best applied to each watershed
 - Most useful Information to meet management concerns, accessible format



Stakeholders Participating in Workshops

Workshop Outcomes

Proudly Operated by Battelle Since 1965

Dungeness

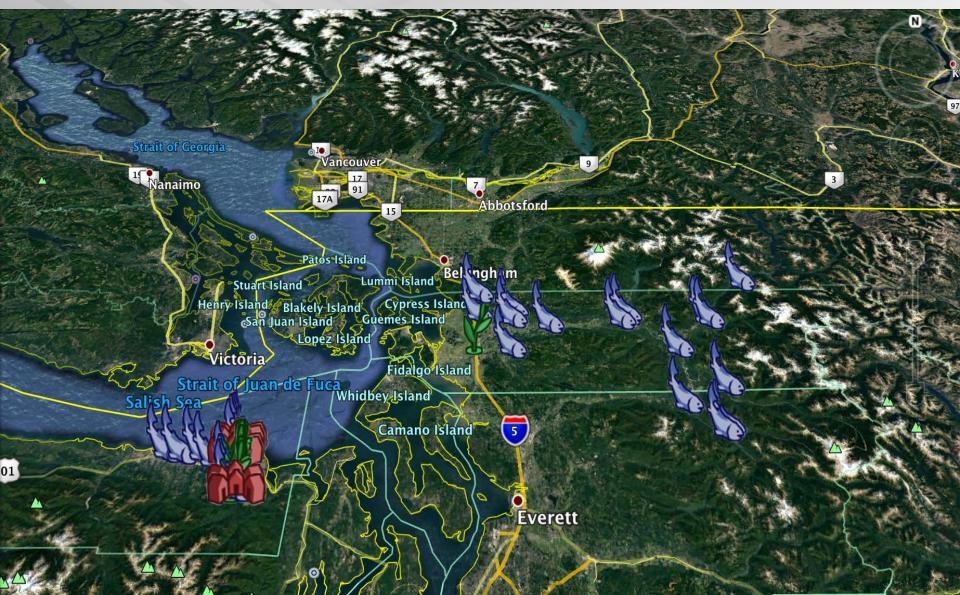
Increased
 resiliency

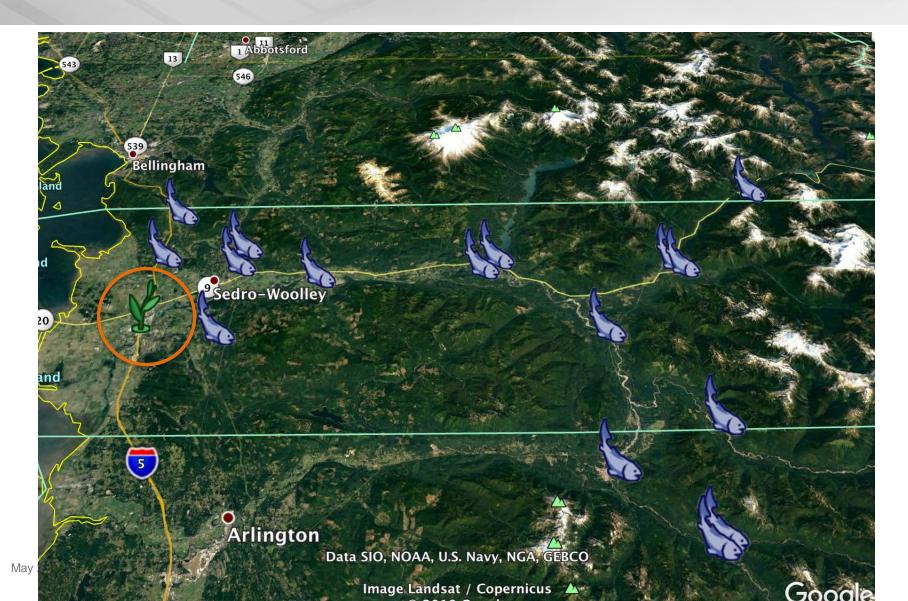
- Groundwater
- Thresholds for fish survivability: T°C, flows
- Predicting extreme events (high flows/low flows)
- Flooding (stormwater etc.)
- Managing irrigation withdrawals
- Land cover changes: restoration and mitigation Salinity intrusion

Skagit

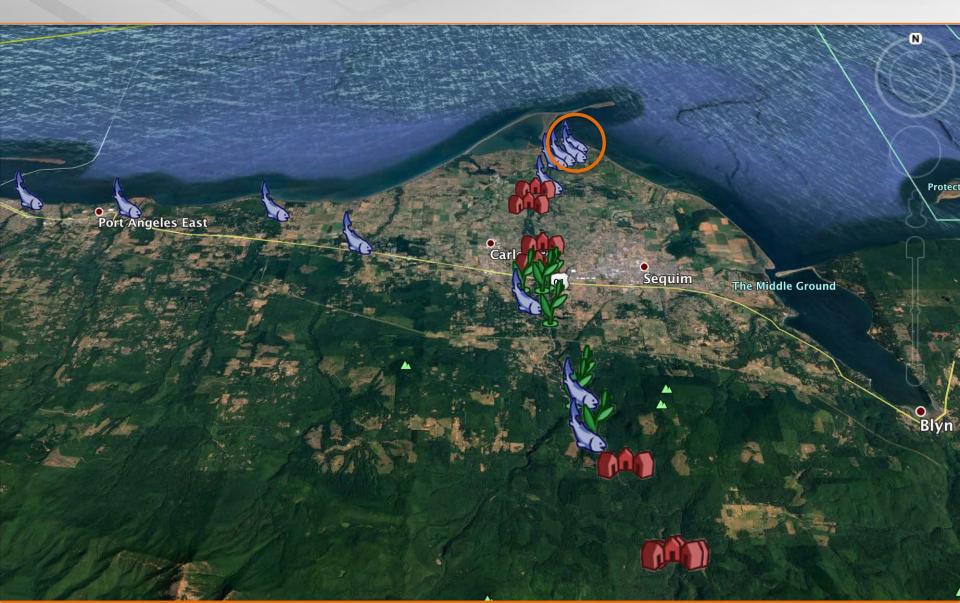
- Changes in tributaries
- Managing water use with increasing
 - population
- Shoreline
 inundation

Climate Dataset – RMJOC II (CRCC dataset)


- New projections of future hydrology includes:
 - Streamflow
 - Snow pack
 - Other elements of water balance
- Key parameters of this output:
 - Impacts of calibration
 - Hydrological model
 - Downscaling approach
 - Global climate model
 - Green house gas scenario
- Better characterization of uncertainty, improved assessment of future climate scenarios


Watershed Modeling Points: Fish, Ag, and Municipal Water

Proudly Operated by Battelle Since 1965


Skagit Watershed: Mostly Fish, some Agriculture

Proudly Operated by Battelle Since 1965

Dungeness Watershed: Fish, Agriculture, Municipal Water

Metrics

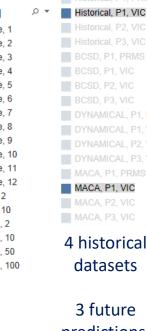
Variable	Possible to Estimate?	Dungeness	Skagit	Fish	Agriculture	Municipal	Time Step / Duration	Metric	Units	Abs or % change?
Groundwater flux into river / puget sound (esp. during drought)	N	Y	Y			Y				
Groundwater flux into tributaries	N		Y			Y				
Peak Flow Statistics (magnitude)	Y	Y	Y		Y	Y	1-day	100-yr	CFS	%
Peak Flow Statistics (magnitude)	Y	Y	Y		?	Y	1-day	25-yr	CFS	%
Peak Flow Statistics (magnitude)	Y	Y	Y	?			1-day	10-yr	CFS	%
Peak Flow Statistics (magnitude)	Y	Y	Y	Y			1-day	2-yr	CFS	%
Peak Flow Statistics (magnitude)	Y		Y	Y			1-day	cms, quantile	CFS	%
Peak Flow Statistics (duration)	Y	Y	Y			Y	x days	days	Days	Days?
Peak Flow Statistics (timing)	Y	Y				Y	1-day	Annual Max	Day of	Days
Peak Flow Statistics (timing)	Y		Y	Y		Y	1-day	Spring Max	Day of	Days
Peak Flow Statistics (timing of change)	Y	Y	Y			Y	1-year	days	Year	Year
Low Flow Statistics (magnitude)	Y	Y	Y			Y	1-day	10-yr	CFS	%
Low Flow Statistics (magnitude)	Y	Y	Y			Y	1-day	2-yr	CFS	%
Low Flow Statistics (magnitude)	Y	Y	Y	Y	Y		1-day	cms	CFS	%
Low Flow Statistics (duration)	Y	Y	Y	?	Y	?	x days	days	Days	Days?
Low Flow Statistics (timing)	Y	Y	Y		Y	Y	1-day	Annual 7-day Min	Day of	Days
Drought	Y	Y		Y	Y		x days/mont hs	cms, quantile		
Snowpack (Apr 1)	Y	Y					1-day	Apr 1st SWE	mm	%
Snowpack (melt timing)	Y	Y	Y			Y	1-day	Date of 10mm	Day of	Days
Snow/Rain Dominance (abs change)	Y	Y					1-year	Ratio of Apr 1 SWE to Oct-Mar	Unitless	Abs. Change
Snow/Rain Dominance (timing of change)	Y	Y		Y	Y	Y	1-year	Ratio of Apr 1 SWE to Oct-Mar	Year	
Coastal Flooding: depth and extent	N		Y							
Extreme Precipitation Statistics	Y	Y	Y				day	mm, quantile	mm, quantile	% change
rrigation withdrawals	N	Y	Y	Y	Y	Y				
Off-channel storage/detention	N	Y	Ŷ							
Groundwater recharge	N	Y	Y							
Groundwater storage / optimization	N	Y	Y							
/egetation (best suited for future	N	Y								
Vegetation (projected change)	N	Y								
Vegetation (invasive species)	N		Y							
Sediment transport/deposition in	N	Y	Ŷ							

Tableau tool - Skagit

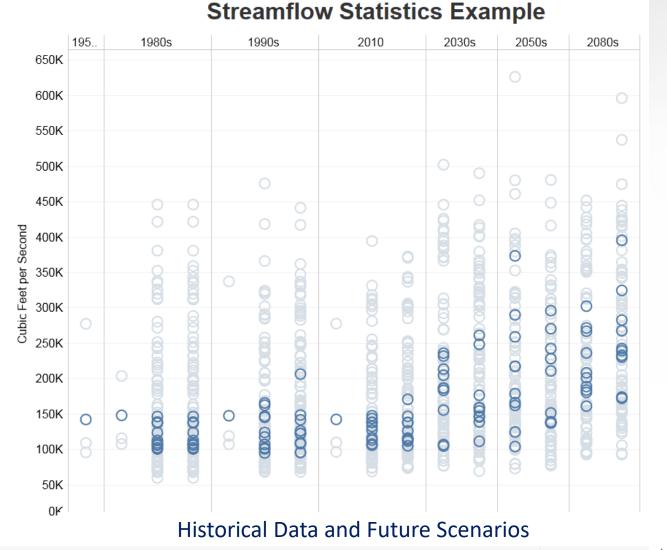
Downscaling.

Hydro Model

Parameter Set.


Proudly Operated by Battelle Since 1965

Peak Flow for 100 year flood


L -	41	
	cation	
-0	cution	

Dungeness River at Dunge...
 Skagit River near Mount V...

Metric & Period Monthly Average, 1 Monthly Average, 2 Monthly Average, 3 Monthly Average, 4 Monthly Average, 5 Monthly Average, 6 Monthly Average, 7 Monthly Average, 8 Monthly Average, 9 Monthly Average, 10 Monthly Average, 11 Monthly Average, 12 Low Flow Stats, 2 Low Flow Stats, 10 Peak Flow Stats, 2 Peak Flow Stats, 10 Peak Flow Stats, 50 Peak Flow Stats, 100

CLIMATE IMPACTS GROUP 4 historical datasets 3 future predictions, for two IPCC climate scenarios (w/ and w/o CO₂ mitigation)

∰ + a b | e a u

Tableau tool - Dungeness

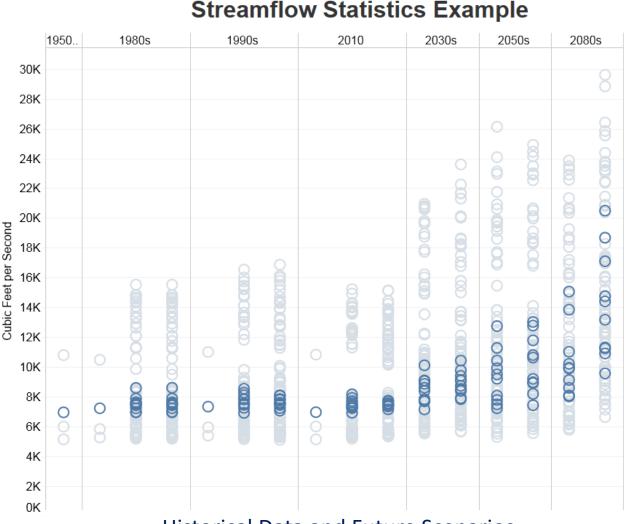
Proudly Operated by Battelle Since 1965

Peak Flow for 10 year flood

Location

Dungeness River at Dunge...
 Skagit River near Mount V...

Metric & Period

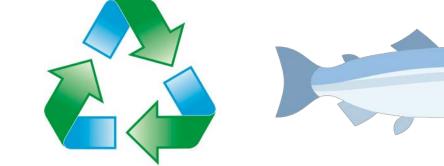

Monthly Average, 1 Monthly Average, 2 Monthly Average, 3 Monthly Average, 4 Monthly Average, 5 Monthly Average, 6 Monthly Average, 7 Monthly Average, 8 Monthly Average, 9 Monthly Average, 10 Monthly Average, 11 Monthly Average, 12 Low Flow Stats, 2 Low Flow Stats, 10 Peak Flow Stats, 2 Peak Flow Stats, 10 > Peak Flow Stats, 50 Peak Flow Stats, 100 Historical, P1, VIC Historical, P2, VIC Historical, P3, VIC BCSD, P1, PRMS BCSD, P1, VIC BCSD, P2, VIC BCSD, P3, VIC DYNAMICAL, P1, F DYNAMICAL, P1, VIC DYNAMICAL, P3, VIC DYNAMICAL, P3, VIC MACA, P1, VIC MACA, P3, VIC 4 historical datasets 3 future

Downscaling.

Hvdro Model

Parameter Set.

CLIMATE predictions, for two IPCC climate scenarios (w/ and w/o CO₂ mitigation)


Historical Data and Future Scenarios

Outcomes and Next Steps

Proudly Operated by Battelle Since 1965

- Finishing up outputs
 - Webinar for stakeholders in May/June
- Develop and test outputs
 - Likely interactive, web-based, but functionality will be decided by stakeholders

Limitations

- Metrics that this project couldn't address
- Unable to model certain outcomes due to available models and/or time limitations
- Report and paper with findings and pathway forward

Thank you!

Andrea Copping

Pacific Northwest National Laboratory andrea.copping@pnnl.gov

+1.206.528.3049

Zhaoqing Yang


Pacific Northwest National Laboratory <u>zhaoqing.yang@pnnl.gov</u> +1.206.528.3057

We gratefully acknowledge the support of the NOAA Climate Program Office and our program officer, Nancy Beller-Simms.

