

Western Washington University Western CEDAR

Salish Sea Ecosystem Conference

2018 Salish Sea Ecosystem Conference (Seattle, Wash.)

Apr 5th, 11:30 AM - 1:30 PM

Assessing 21st century contaminants of concern using integrative passive sampling devices to obtain more meaningful and cost effective data on impacts from stormwater runoff

Robert Johnston Space and Naval Warfare Systems Ctr. Pacific, United States, rkj.johnston@gmail.com

Michelle Aylward Puget Sound Naval Shipyard and Intermediate Maintenance Facility, United States, michelle.aylward@navy.mil

Gunther Rosen Space and Naval Warfare Systems Ctr. Pacific, United States, gunther.rosen@navy.mil

Jonathan Strivens Pacific Northwest National Lab. Marine Sciences, United States, jonathan.strivens@pnnl.com

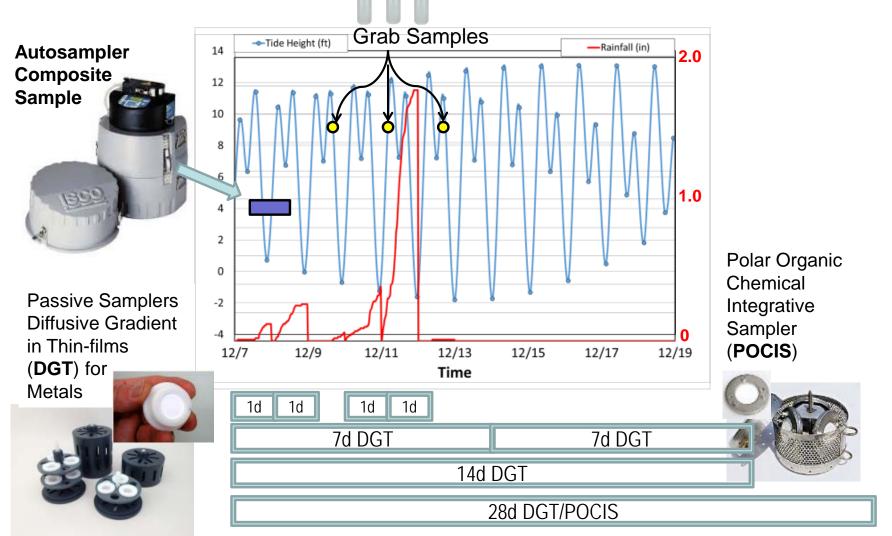
Nicholas Schlafer Pacific Northwest National Lab. Marine Sciences, United States, nicholas.schlafer@navy.mil

Follow this and additional works at: https://cedar.wwu.edu/ssec

Some state for the forestal the forestal the sources and Conservation Commons, and the Terrestrial and Aquatic Ecology Commons

Johnston, Robert; Aylward, Michelle; Rosen, Gunther; Strivens, Jonathan; Schlafer, Nicholas; Brandenberger, Jill M.; Hayman, Nicholas; Belden, Jason; Colvin, Marienne; Jennings, Heather; Jabloner, Matt; and Caswell, Paul, "Assessing 21st century contaminants of concern using integrative passive sampling devices to obtain more meaningful and cost effective data on impacts from stormwater runoff" (2018). Salish Sea Ecosystem Conference. 229. https://cedar.wwu.edu/ssec/2018ssec/allsessions/229

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.


Speaker

Robert Johnston, Michelle Aylward, Gunther Rosen, Jonathan Strivens, Nicholas Schlafer, Jill M. Brandenberger, Nicholas Hayman, Jason Belden, Marienne Colvin, Heather Jennings, Matt Jabloner, and Paul Caswell

INTRODUCTION

SPAWAR

Systems Center PACIFIC

Pacific

NATIONAL

Northwest

- Grab (and composite) stormwater samples may not be representative of stormwater impacts to the receiving environment, as they may miss the 'pulse' of contaminants.¹
- Total recoverable metal concentrations used in compliance monitoring are not biologically meaningful for ecological effects
- Composite autosampling has limitations (reliability, cost)
- Integrative passive sampling with Diffusive Gradients in Thin film (DGT) and Polar Organic Chemical Integrative Samplers (POCIS) can provide cost-effective continuous monitoring
- DGTs are being evaluated for end-of-pipe monitoring and value towards assessment of best management practices (BMP) at Naval Base San Diego (NBSD)
- DGTs and POCIS were deployed during ambient monitoring at nearshore locations at Puget Sound Naval Shipyard & Intermediate Maintenance Facility (PSNS&IMF), Naval Base Kitsap (NBK) and reference locations.

DGT² samplers provide a time-averaged concentration of labile (biologically available) metal concentrations following diffusion through a gel layer and permanent binding to a resin layer (Chelex-100).

POCIS³ sample weakly hydrophobic (log K_{ow} ≤4) organic chemicals that bind to a polymeric (hydrophiliclipophilic-balanced; HLB) sorbent sandwiched between polyethersoulfone (PES) membranes.

Jpper Support ring pper membrane disl wer membrane disl ower support ring

Analyt

Whole POCIS

		Analyte Name	Usage	Log Kow	Sampling Rate Studies, L/d
<u>S</u>	Endocrine Disruptors	Estrone	Hormone	3.6	0.13
Target Chemicals for POCI		Octinoxate	Sunscreen	5.9	NA – to be determined
		ТСЕР	Flame Retardant	1.5	NA – to be determined
	Household Chemicals	Caffeine	Common Stimulant	-0.63	Equilibrium - 0.74 L/POCIS
		DEET	Insect repellant	2.4	0.22
		Cotinine	Nicotine metabolite	0.07	0.14
		Bisphenol a	Plasticizer	3.6	1.3
	Hydrocarbons	4-nonylphenol	Household detergents	6.1	0.12
		Fluoranthene	Aromatic Hydrocarbon	5.0	0.024
	Pharmaceuticals	Triclosan	Antimicrobial	5.3	1.7
		Ibuprofen	Anti-inflammatory	0.94	0.33
		Acetaminophen	Pain reliever	0.47	0.11
		Carbamazepine	Seizure treatment	1.9	0.328
		Metformin	Diabetes treatment	-3.25	NA – to be determined
מ'	Fragrances	Galaxolide	Soaps, perfumes	5.0	NA – to be determined
		Musk Ketone	Soaps, perfumes	2.51	NA – to be determined

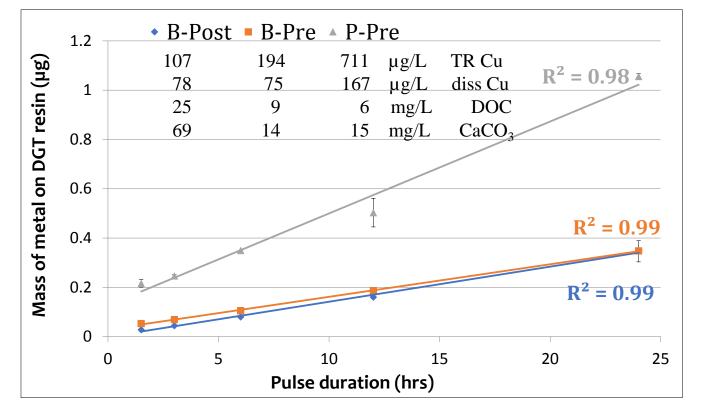
Caffeine Cotinine DEET Bisphenol a

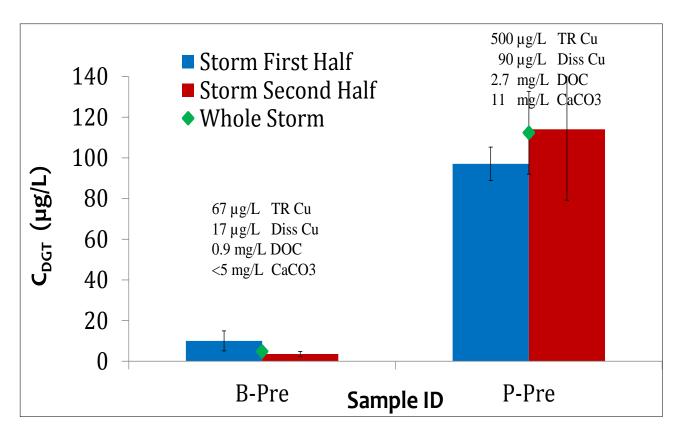
Estrone

TCEP

Octinoxate

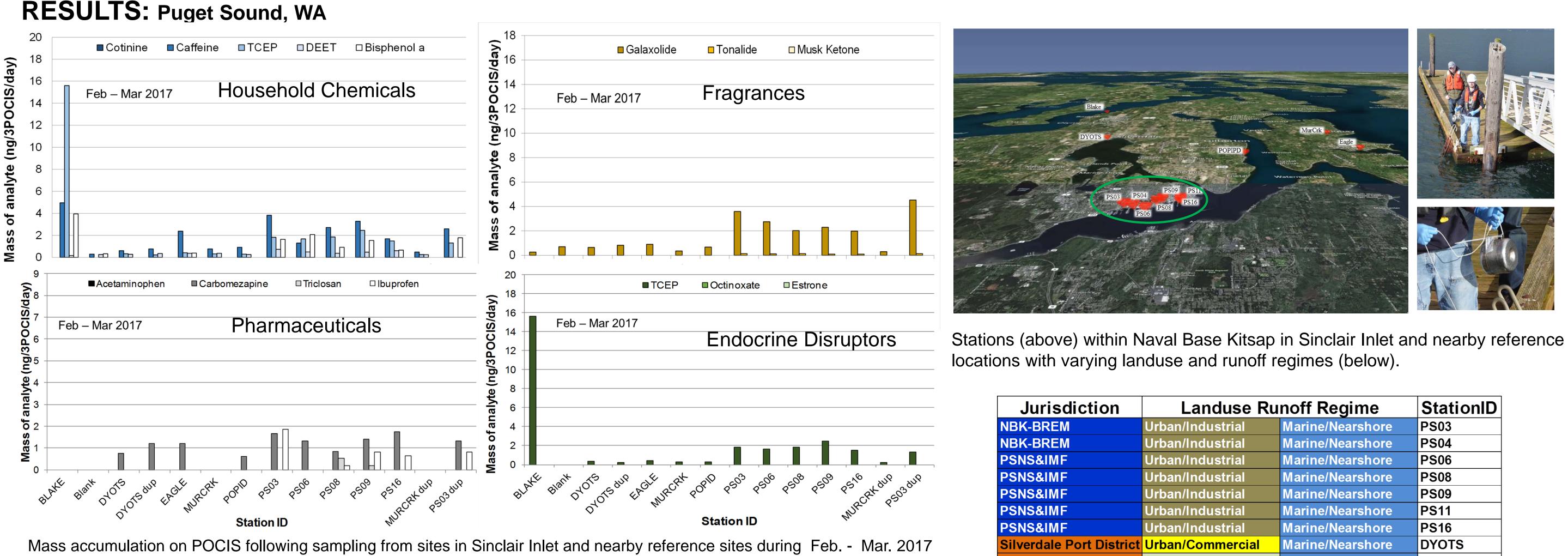
Nonylphenol Fluoranthene Triclosan Acetaminophe Ibuprofen Metformin Carbomezapir Galaxolide


Musk Ketone Tonalide


Assessing 21st Century contaminants of concern using integrative passive sampling devices to obtain more meaningful and cost effective data on impacts from stormwater runoff

G. Rosen¹, R.K. Johnston¹, J. Strivens², N. Schlafer², J. Brandenberger², N. Hayman¹, M. Colvin¹, C. Katz¹, E. Arias¹, J. Belden³, M. Aylward⁴, R. Lee⁴, H. Jennings⁵, M. Jabloner⁵

¹Space and Naval Warfare Systems Center Pacific, San Diego, CA; ²Pacific Northwest National Laboratory, Sequim, WA; ³Oklahoma State University, Stillwater, OK; ⁴Puget Sound Naval Shipyard & Intermediate Maintenance Facility, Bremerton, WA; ⁵Naval Facilities Engineering Command Northwest, Bangor, WA

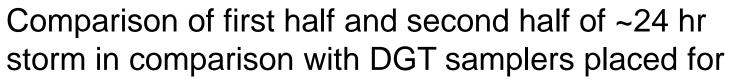

RESULTS: San Diego Bay, CA

Linear loading of copper on to DGT Chelex-100 resin between 1.5-24 h durations in copper solutions. Shows detectable metal loading during short pulses.

full storm.

for household chemicals, pharmaceuticals, fragrances, and endocrine disrupting compounds.

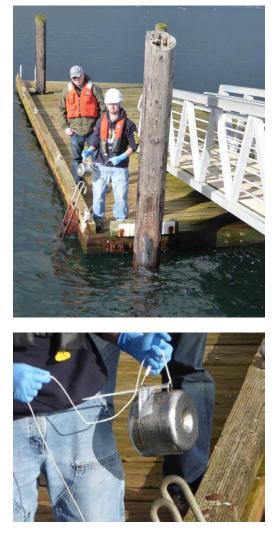
Analytical quantitation level (QL, ng extracted from 3 POCIS	s) and
relative stand deviation (RSD) of 6 replicates for analytes of in	nterest.


	<u>, , , , , , , , , , , , , , , , , , , </u>		5	
			Percent	
	Category	QL	Spiked	RSD
↓ Î	↓	*	Recove	-
	EDC - Hormone	<10	75.38%	3.63%
	EDC - Sunscreen	<5	84.63%	3.37%
	EDC Flame Retardant	<10	101.12%	6.19%
	Household	<15	92.20%	6.30%
	Household	<5	80.07%	7.99%
	Household - bug repelant	<5	98.13%	4.46%
	Household - plastic resin	<10	84.12%	9.40%
	Hydrocarbon - 1 ring	<10	84.47%	4.57%
	Hydrocarbon - PAH 4 rings	<5	81.07%	4.81%
	Medicine - Antibiotic	<10	76.48%	5.03%
n	Medicine - pain	<10	85.72%	4.45%
	Medicine - pain	<10	90.03%	3.39%
	Medicine- diabetes	<10	53.48%	20.12%
e	Medicine - seziure	<15	94.10%	8.45%
	Perfume	<5	80.22%	9.31%
	Perfume	<5	73.43%	9.98%
	Perfume	<5	72.53%	11.38%

REFERENCES

- 1. Rosen G. and Johnston RK, 2015. Passive Sampling for Stormwater Sampling and Illicit Discharge Investigations, NESDI Project #523.
- 2. Davison, W. (Ed.), (2016). Diffusive Gradients in Thin-films for Environmental Measurements. Cambridge University Press.
- 3. Alvarez DA, 2010. Guidelines for the use of the semipermeable membrane device (SPMD) and the polar organic chemical integrative sampler (POCIS) in environmental monitoring studies: U.S. Geological Survey, Techniques and Methods 1–D4, 28 p.
- 3. Katz, C., 2017. Evaluation Of Low Impact Development Implementation, NEDSI Project #497.

Funding and support for this research was provided by the Navy's Environmental Sustainability to Integration (NESDI) Program, Puget Sound Naval Shipyard & Intermediate Maintenance Facility (PSNS&IMF), and Naval Facilities Engineering Command Northwest (NAVFACNW).


Application of a unique DGT approach for real time monitoring of metals in storm drains (above left) in short term (≤ 24 h) exposures at two impervious sites at Naval Base San Diego⁴ with focus on BMPs (above right).

Jurisdiction	Landuse Ru	StationID	
NBK-BREM	Urban/Industrial	Marine/Nearshore	PS03
NBK-BREM	Urban/Industrial	Marine/Nearshore	PS04
PSNS&IMF	Urban/Industrial	Marine/Nearshore	PS06
PSNS&IMF	Urban/Industrial	Marine/Nearshore	PS08
PSNS&IMF	Urban/Industrial	Marine/Nearshore	PS09
PSNS&IMF	Urban/Industrial	Marine/Nearshore	PS11
PSNS&IMF	Urban/Industrial	Marine/Nearshore	PS16
Silverdale Port District	Urban/Commercial	Marine/Nearshore	DYOTS
Ilahee Port District	Rural/Residential	Marine/Nearshore	POPIPD
NBK-Bangor	Rural/Industrial	Freshwater/Lake	BLAKE
Bainbridge Island	Rural/Residential	Freshwater/Stream	MURCRK
Bainbridge Island	Urban/Commercial	Marine/Nearshore	EAGLE

CONCLU

- Integrative passive samplers show promi relevant exposure/assessment of stormw associated contaminants of concern in re
- Highly sensitive, reproducible results that metal availability (DGT) and weakly hydr in a marine estuary
- End of pipe sampling promising, but requires additional work to address possible issues associated with low ionic strength rainwater and highly dynamic stormwater discharges
- Passive sampling devices provide supplemental data to reduce costly traditional monitoring
- Surveillance monitoring with passive samplers can be used to finger print likely sources of contamination

nise towards biologically
water discharges and
eceiving water monitoring.
at support trace level changes ir
rophobic (POCIS) contaminants