

Western Washington University Western CEDAR

Salish Sea Ecosystem Conference

2018 Salish Sea Ecosystem Conference (Seattle, Wash.)

Apr 5th, 3:45 PM - 4:00 PM

#### Exploration of microplastics in the lower Puyallup River watershed

Julie Masura Univ. of Washington Tacoma, United States, jmasura@uw.edu

Shannon Black Univ. of Washington Tacoma, United States, blacks8@uw.edu

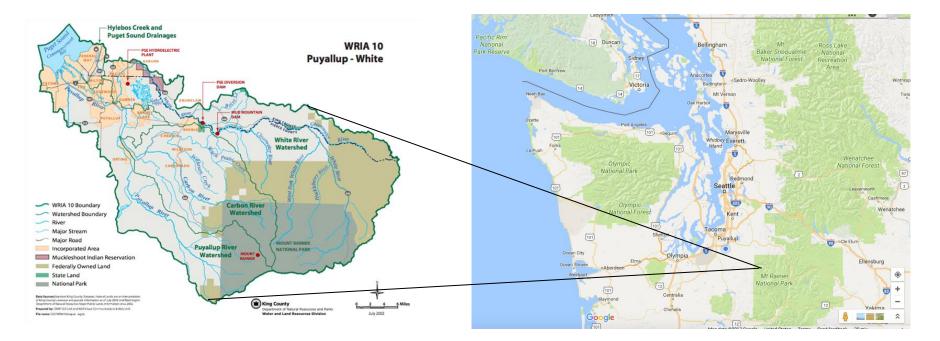
Jessica Kelsey Univ. of Washington Tacoma, United States, jkelsey@uw.edu

Mary Eldridge Univ. of Washington Tacoma, United States, mre6@uw.edu

Follow this and additional works at: https://cedar.wwu.edu/ssec

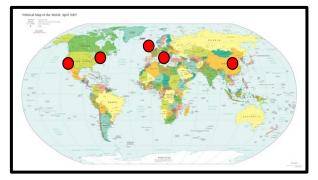
Part of the Fresh Water Studies Commons, Marine Biology Commons, Natural Resources and Conservation Commons, and the Terrestrial and Aquatic Ecology Commons

Masura, Julie; Black, Shannon; Kelsey, Jessica; and Eldridge, Mary, "Exploration of microplastics in the lower Puyallup River watershed" (2018). *Salish Sea Ecosystem Conference*. 386. https://cedar.wwu.edu/ssec/2018ssec/allsessions/386


This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.



## **EXPLORATION** OF **MICROPLASTICS IN THE LOWER PUYALLUP RIVER** WATERSHED


Shannon Black, Jessica Kelsey, Mary Eldridge, and Julie Masura

### **Puyallup River Watershed**



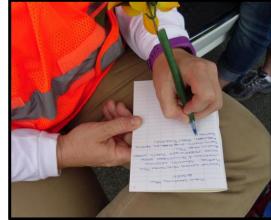
## Previous freshwater riverine microplastic


| Year Site                                 | Sampling Method      | Identification Method                      | Units 🔽                 | Reference          |
|-------------------------------------------|----------------------|--------------------------------------------|-------------------------|--------------------|
| 2011 Los Angeles River (CA)               | Manta net & Hand net | Visual inspection                          | Particles L^-1          | C.J. Moore, et al. |
| 2011 San Gabriel River (CA)               | Manta net & Hand net | Visual inspection                          | Particles L^-1          | C.J. Moore, et al. |
| 2011 Coyote Creek (CA)                    | Hand net             | Visual inspection                          | Particles L^-1          | C.J. Moore, et al. |
| 2014 Thames River (UK)                    | Eel nets             | Visual inspection                          | Number of items sampled | D. Morritt, et al. |
| 2014 Danube River (Germany, Austria etc.  | Stationary driftnets | Density separation and visual inspection   | Particles 1000 m^-3     | A. Lechner, et al. |
| 2014 Seine River (France)                 | Floating booms       | Fourier-transform infrared spectroscopy    | Mg plastic              | J. Gasperi, et al. |
| 2014 4 Estuarine rivers in Chesapeake Bay | Manta trawl          | Density separation and visual inspection   | g km^-2                 | Yonkos, et al.     |
| 2015 Seine and Maine River (France)       | Manta trawl          | Visual inspection                          | Particles m^-3          | Dris, et al.       |
| 2015 Rhine River (Europe)                 | Manta net            | Fourier-transform infrared spectroscopy    | Particles 1000 m^-3     | T. Mani, et al.    |
| 2014 North Shore Channel (IL)             | Neuston net          | Visual inspection with electron microscope | Particles m^-3          | McCormick, et al.  |
| 2014 Tamar Estuary (Southwest England)    | Manta net            | Fourier-transform infrared spectroscopy    | Number of items sampled | Sadri and Thompson |
| 2015 Three Gorges Dam (China)             | Manta trawl          | Fourier-transform infrared spectroscopy    | 10 counts km^-2         | Zhang, et al.      |



## Hypothesis

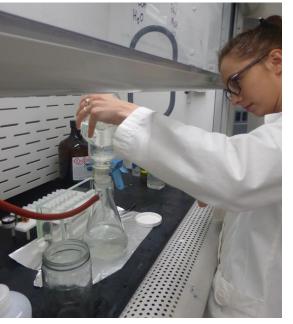
We expect to find a higher concentration of microplastics downstream of the wastewater treatment facilities.


### **Sampling Locations**





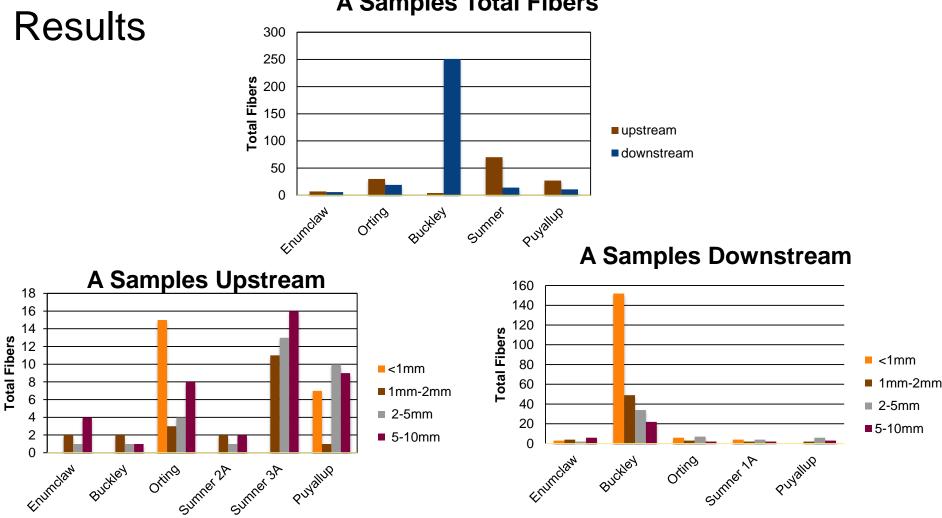

#### The Puyallup River Watershed


- Enumclaw
- Buckley
- Orting
- Sumner
- Puyallup

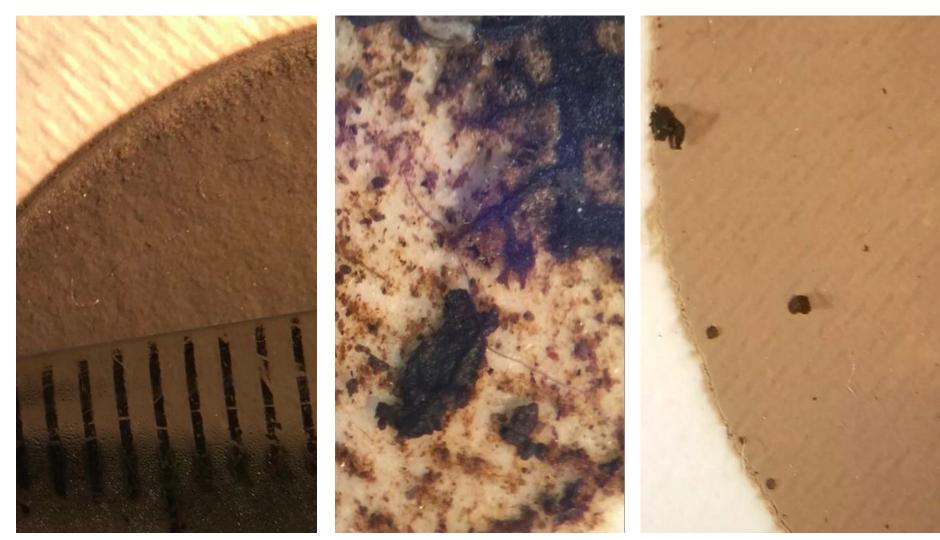











#### **Laboratory Methods**

- Set up treated vacuum flask that was treated with methanol and baked in furnace at 450 degrees for 4 hours
- Set up Passive Collectors
- Inspect and remove any fibers from filter
- Triple Rinse DI Water Bottle and run through filtration to ensure no contamination
- Filter Blank & Samples through Vacuum flask
- Triple Rinse collection cup on vacuum filter between samples
- View filter under microscope at 40x magnification and record and measure fibers
- Archive filters



#### **A Samples Total Fibers**



## **Comparing Results to Literature**

| Year/ Site                                | Sampling<br>Method | Identification<br>Method | Results                    | Reference             |
|-------------------------------------------|--------------------|--------------------------|----------------------------|-----------------------|
| 2011 Los<br>Angeles River<br>(CA)         | Hand net           | Visual inspection        | 6.06x10^-3<br>particles/L  | C.J. moore, et<br>al. |
| 2011 San<br>Gabriel River<br>(CA)         | Hand net           | Visual inspection        | 4.39x10^-3<br>particles/L  | C.J. moore, et<br>al. |
| 2011 Coyote<br>Creek (CA)                 | Hand net           | Visual inspection        | 4.34x10^-3<br>particles/L  | C.J. moore, et<br>al. |
| 2015 Seine and<br>Maine River<br>(France) | Manta trawl        | Visual<br>Inspection     | 0.003 to 0.106 particles/L | Dris, et al.          |

# In Closing

### Microfibers are ubiquitous

