

Western Washington University
Western CEDAR

Salish Sea Ecosystem Conference

2014 Salish Sea Ecosystem Conference (Seattle, Wash.)

May 1st, 10:30 AM - 12:00 PM

Symptoms of adult coho salmon pre-spawn mortality are not produced by exposures to artificial mixtures of metals and PAHs.

David Hugh Baldwin United States. National Marine Fisheries Service, David.Baldwin@noaa.gov

Julann Spromberg United States. National Marine Fisheries Service

Jay W. Davis U.S. Fish and Wildlife Service

Steven Damm U.S. Fish & Wildlife Service

Jenifer K. McIntyre Washington State University

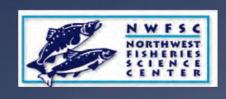
See next page for additional authors

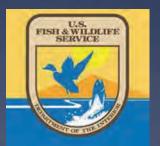
Follow this and additional works at: https://cedar.wwu.edu/ssec

C Part of the Terrestrial and Aquatic Ecology Commons

Baldwin, David Hugh; Spromberg, Julann; Davis, Jay W.; Damm, Steven; McIntyre, Jenifer K.; and Scholz, Nathaniel L., "Symptoms of adult coho salmon pre-spawn mortality are not produced by exposures to artificial mixtures of metals and PAHs." (2014). *Salish Sea Ecosystem Conference*. 118. https://cedar.wwu.edu/ssec/2014ssec/Day2/118

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.


Speaker


David Hugh Baldwin, Julann Spromberg, Jay W. Davis, Steven Damm, Jenifer K. McIntyre, and Nathaniel L. Scholz

Symptoms of adult coho salmon pre-spawn mortality are not produced by exposure to artificial mixtures of metals and PAHs

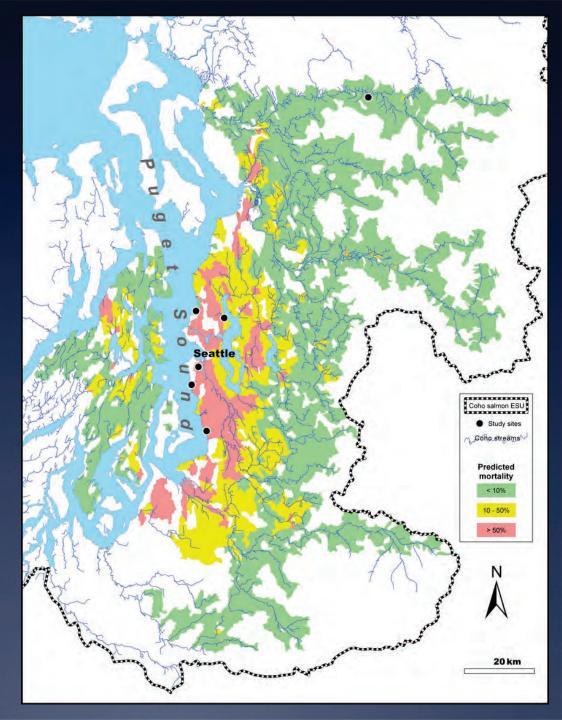
David Baldwin, Julann Spromberg, Steve Damm, Jenifer McIntyre, Jay Davis, Nat Scholz

Coho pre-spawn mortality (PSM) is widespread and recurrent in urban streams

Longfellow Creek 2003

Des Moines Creek 2004

Coho PSM rates measured in Seattle-area urban streams have ranged from ~ 40 – 90% of the total run (2002-2009, 2012)


Longfellow Creek 2005

Previous PSM forensics results

- Conventional water quality parameters (temperature, dissolved oxygen, sediment, etc) do not appear to be causal.
- Chemical contaminants are present in urban stormwater, but at levels lower than those expected to cause acute mortality.
- There is no evidence of disease or pathology, and dying fish appear to be in good physical condition (ocean bright, good condition index).
- * All affected fish exhibit consistent symptomology before they die.

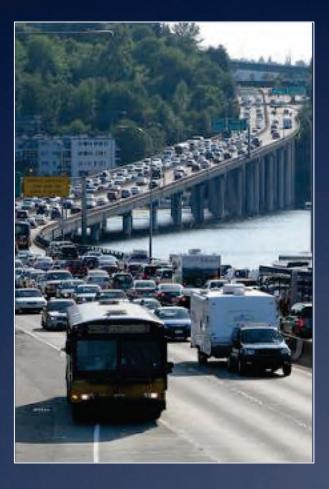
Predictive Model of Pre-spawn Mortality

Land Use drivers: Impervious surface Roads Commercial Land Use

Feist et al., 2011

Urban Stormwater Runoff: an important source of contaminants

Contaminants include:


- Petroleum products (PAHs)
- Metals (e.g. zinc, copper, lead)
- Pesticides
- PCBs
- Soaps
- Fertilizers
- Cyanide
- Others...

Rapidly being acknowledged as major source of habitat degradation in coastal areas (PEW Oceans Commission. 2003. Report to U.S. Congress)

Are major components of urban stormwater runoff sufficient to cause coho pre-spawn mortality?

Approach:

Expose adult coho spawners recently returned to freshwater to urban stormwater or chemical mixtures in a controlled setting.

Endpoints:

PSM symptomology or mortality.

Adult coho spawner exposures

Performed at Grover's Creek Salmon Hatchery

Exposures:

Static, recirculated, aerated Overnight duration (some 4 hr or 48 hr) Two tanks (4 fish per), control and one exposure Three different exposures: PAH/metal mixture, metal mixture, or stormwater

Adult coho spawner exposures

Measurements:

Mortality: number alive following exposure Behavior: observe any symptomatic behavior Tissue Analysis: samples of gill, bile, and liver Water Analysis: metals, PAHs, and conventionals

PAHs/Metals Mixture

* Concentrations starting at high values from in-stream monitoring for 24-48 hours.

*** PAHs** (petro- and pyrogenic): Water accommodated fraction (WAF) of ANSCO e.g. Phenanthrene $(0.240 - 0.384 \mu g/L)$ Pyrene (0.365 – 0.584 µg/L) Fluoranthene $(0.365 - 0.584 \mu g/L)$ * Metals: Cadmium (0.3 – 1.8 μ g/L) Copper $(7.0 - 42.0 \ \mu g/L)$ Lead $(1.0 - 6.0 \mu g/L)$

Nickel (2.0 – 12.0 µg/L) Zinc (9.0 – 54.0 µg/L)

Metals Only Exposures

* 24-hour exposures to concentrations of 5 metals approximating 5X and 10X higher values than those observed in stream monitoring

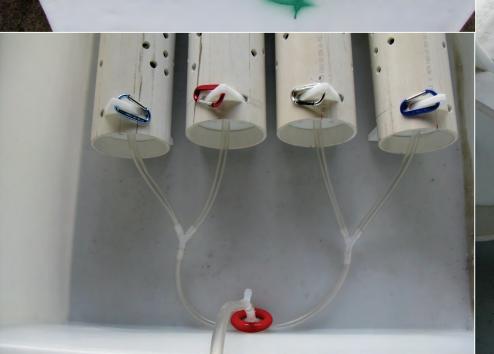
	5X	10X			
	Nominal	Nominal			
metal	Conc (ug/L)	Conc (ug/L)			
Cd	1.5	3			
Cu	50	100			
Pb	10	20			
Ni	20	40			
Zn	150	300			

Stormwater Runoff Collection

Collection devices placed at bottom of downspouts from an elevated highway. Water was collected in glass carboys wrapped in black plastic or a stainless steel tank.



Grover's Creek Salmon Hatchery


Grover's Creek Salmon Hatchery

Grover's Creek Salmon Hatchery Hatchery Pond

Photo: NOAA

Salmon holding tubes in exposure tanks showing flow hoses.

Flow rate: 4L/min

Photos: NOAA

PAH/Metal Mixture

-

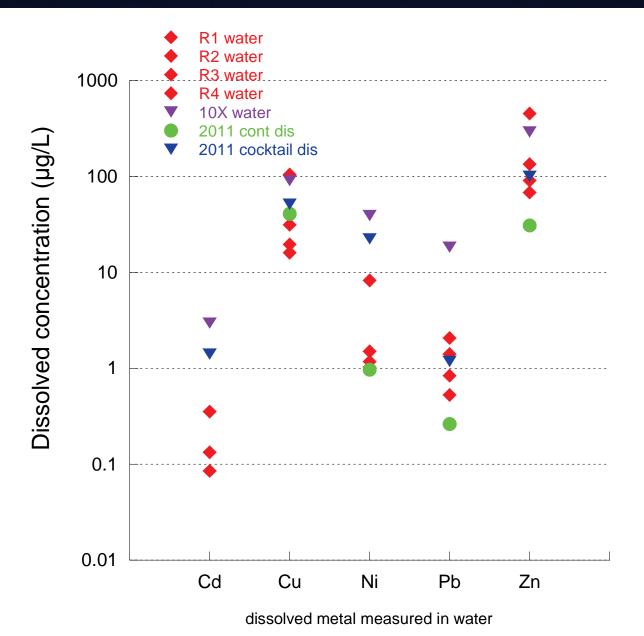
5

Stormwater Runoff Exposures

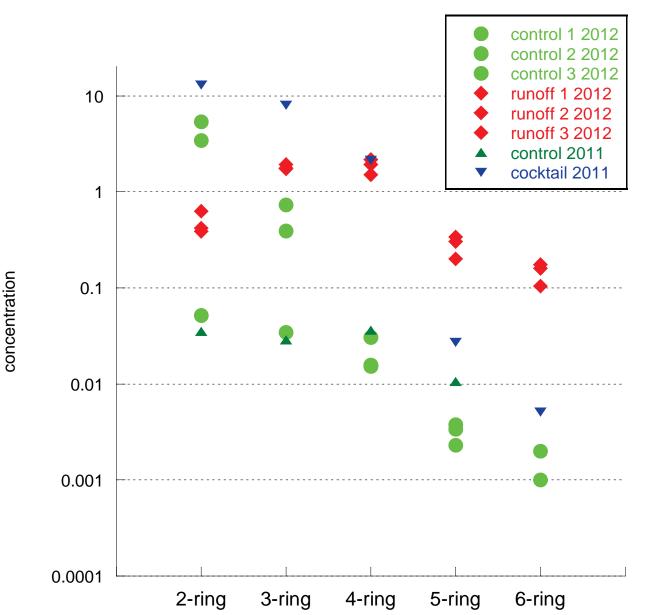
2012-2013: 7 trials

Oct 15, 2012	Collection: Oct 12-14
Oct 29, 2012	Collection: Oct 27
Nov 2, 2012	Collection: Oct 31-Nov 2
Nov 14, 2012	Collection: Nov 11-13
Nov 8, 2013	Collection: Nov 7
Nov 18, 2013	Collection: Nov 15
Dec 2, 2013	Collection: Nov 29-Dec 1

All Control fish were alive and behaving normally following exposure.


All Exposed fish were symptomatic or dead by end of exposure.

Cocktail Exposures


PAHs/Metals Mixture 2011: 8 trials (2 for 48 hours) Metals only mixture 2012: 4 trials

Results: Behavior No symptoms of PSM Mortality No different than controls Bile FACs and Gill Metal Analyses Demonstrated uptake of both PAHs and metals Tissue levels similar to field collected PSM fish

Results – Water Metals

Results – Water PAHs

Adult Exposure Summary

* Stormwater runoff contains contaminants sufficient to cause PSM symptomology.

* The metal cocktail (Cd, Cu, Ni, Pb, Zn) was not sufficient to cause PSM symptomology.

The tested PAH and metal cocktail was not sufficient to cause PSM symptomology.

Important Caveats

* Stormwater runoff is a complex mixture of contaminants.

* Untested PAHs and metals are likely to be present in stormwater.

* The tested PAHs and metals may be components of stormwater necessary to cause PSM symptomology.

Acknowledgements

Suquamish Tribe Grover's Creek Hatchery Staff and Volunteers Mike Huff Jay Zischke **Bill Alexander Ben Purser Kitsap Poggie Club USFWS** Joy Evered Sharon Lutz

NOAA Allisan Aquilina-Beck Karen Peck Mark Tagal Frank Sommers Jana Labenia Kate Macneale **Bernadita Anulacion Gina Ylitalo Barb French**

Thanks!

Questions?

Results - Water

measured parameters	Runoff #1 10.15.12	Runoff #2 10.29.12	Runoff #3 11.2.12	Runoff #4 11.14.12	Runoff Controls	10X metals 10.31.12
рН	6.73	7.47	7.22	7.06	7.78	7.9
Alkalinity (mg/L CaCO3)	68.2	36.5	32.1	37.4	93.85	95.8
Carbonate (mg/L CaCO3)	<1.0 U	<1.0 U	<1.0 U	<1.0 U	<1.0 U	<1.0 U
Bicarbonate (mg/L CaCO3)	68.2	36.5	32.1	37.4	93.85	95.8
Hydroxide (mg/L CaCO3)	<1.0 U	<1.0 U	<1.0 U	<1.0 U	<1.0 U	<1.0 U
TSS (mg/L)	80.9	48.2	58.8	37.6	<1.0 U	<1.0 U
N-Ammonia (mg-N/L)	3.02	0.749	0.319	0.862	0.2925	0.264
Ortho-Phosphorus (mg-P/L)	0.066	0.037	0.246	0.014	0.24	0.011
TOC (mg/L)	106	15.1	8.84	20.8	<1.50 U	<1.50 U
DOC(mg/L)	91.6	11.8	5.41	15.4	<1.50 U	<1.50 U
Hardness (mg/L CaCO3)	130	47	35	57	70.5	61
Calcium (mg/L)	45.3	16.2	12.4	20.1	17.05	14.6
Magnesium (mg/L)	4.02	1.65	0.97	1.64	6.7625	5.91
Cadmium –total (μg/L)	0.552	0.184	0.204	0.197	ND	3.03
Cadmium -dissolved (µg/L)	0.355	ND	0.085	0.133	ND	2.98
Copper-total (µg/L)	153	54.9	66.1	61.4	0.9775	103
Copper - dissolved(µg/L)	105	19.6	16.1	31.3	0.1675	91.2
Lead -total(µg/L)	13.1	10.3	12.2	7.97	ND	19
Lead - dissolved(µg/L)	1.41	0.527	0.841	1.03	ND	18.4
Nickel -total(µg/L)	10.5	5.41	4.18	4.23	ND	40.3
Nickel - dissolved(µg/L)	8.24	1.5	1.17	2.08	ND	39.2
Zinc -total(µg/L)	589	189	204	223	1.87	302
Zinc -dissolved(µg/L)	454	68.1	91	135	1.32	292

Coho PSM Publications

FORENSICS:

Scholz, N.L., Myers, M., McCarthy, S., Labenia, J., McIntyre, J., Ylitalo, G., Rhodes, L., Laetz, C., Stehr, C., French, B., McMillan, B., Wilson, D., Reed, L., Lynch, K., Damm, S., Davis, J.W., Collier, T.K. 2011. Recurrent die-offs of adult coho salmon returning to spawn in Puget Sound lowland urban streams, *PLoS ONE*. *6*(*12*): e28013. doi:10.1371/journal.pone.0028013.

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0028013

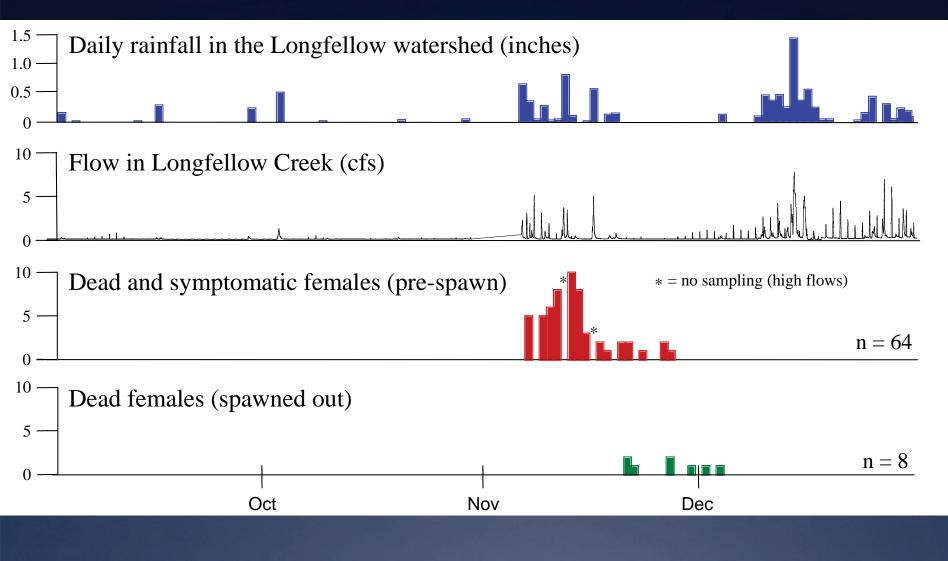
Contact: Nathaniel.Scholz@noaa.gov

POPULATION MODEL:

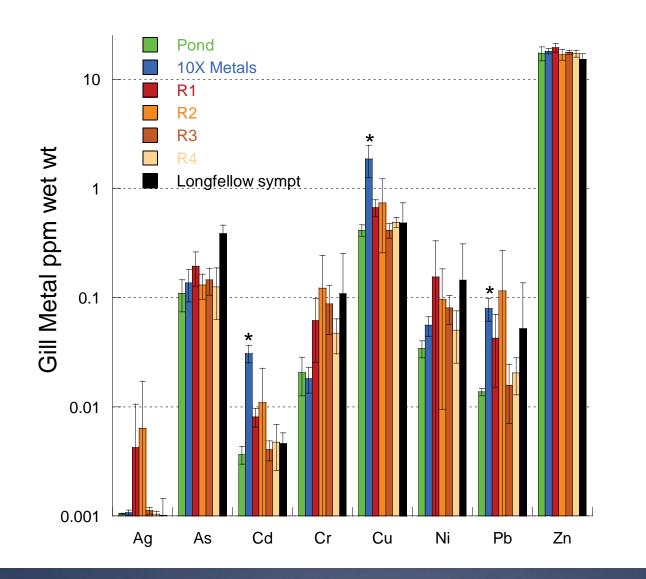
Spromberg, J.A. & Scholz, N.L. 2011. Estimating the Future Decline of Wild Coho Salmon Populations Resulting from Early Spawner Die-Offs in Urbanizing Watersheds of the Pacific Northwest, USA. *Integrated Environmental Assessment and Management* 7(4):648-656. DOI: 10.1002/ieam.219.

http://onlinelibrary.wiley.com/doi/10.1002/ieam.219/full

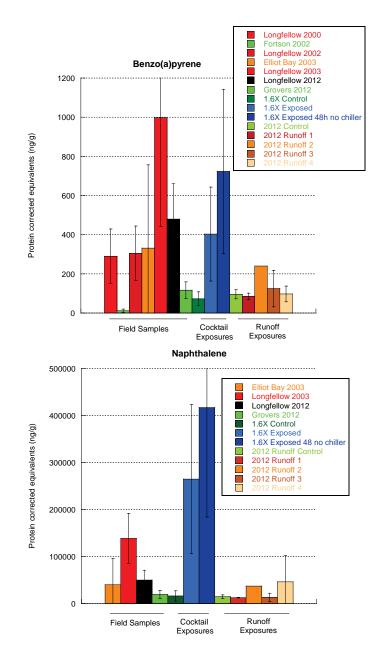
Contact: Julann.Spromberg@noaa.gov

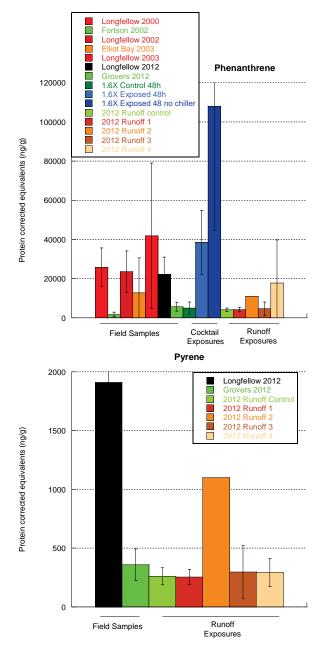

LAND USE MODEL:

Feist, B.E., Buhle, E.R., Arnold, P., Davis, J.W., & Scholz, N.L. 2011. Landscape ecotoxicology of coho salmon spawner mortality in urban streams. *PLoS ONE*. 6(8): e23424. doi:10.1371/journal.pone.0023424.


http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0023424

Contact: Blake.Feist@noaa.gov


Documented pre-spawn mortality in Longfellow Creek, Fall 2002



Results – Gill Metals

Results – Bile FACs

Loading Fish

Stormwater Runoff Exposures 2012

- October 15, 2012 Collection: October 12-14 Controls: 4 Jacks Exposed: 3 Jacks, 1 F Max exposure 4 hours, Air added
- October 29, 2012 Collection: October 27, 2012 Controls: 3 M, 1 F Exposed: 1 M, 3 F Max exposure 2 hours, Air added
- November 2, 2012 Collection: Oct 31-Nov 2 Controls: 4 F Exposed: 4 F Max exposure 4 hours, O₂ added
- November 14, 2012 Collection: November 11-13 Controls: 4 F Exposed: 4 F Max exposure 4 hours, O₂ added

All Exposed fish symptomatic by end of exposure. All Control fish lived and exhibited normal behavior at end of exposure.

Stormwater Runoff Exposures 2013

November 8, 2013 Collection: November 7, 2013 Controls: 4 F Untreated: 4 F Treated: 1 M 3 F Exposure 4 hours: C & Tr All normal Un 2d, 2symptomatic

November 18, 2013 Collection: Nov 15, 2013 Controls: 4 F Untreated: 4 F Treated: 4 F Max exposure 24 hours, C all normal, Un all dead, Tr all alive 3 normal behavior

December 2, 2013 Collection: Nov 29-Dec 1, 2013, <u>40% dilution</u> Controls: 3 F 1M Untreated: 3 F 1M Treated: 4 F Max exposure 24 hours C Normal, Un all dead, Tr lethargic

100% of fish exposed to Untreated Runoff were symptomatic or dead by end of exposure.

100% of Control and Treated fish lived