

Western Washington University
Western CEDAR

Salish Sea Ecosystem Conference

2014 Salish Sea Ecosystem Conference (Seattle, Wash.)

Apr 30th, 1:30 PM - 3:00 PM

Brominated Flame Retardants: Spatial and Temporal Patterns and Trends in Seabird eggs from the Nearshore Pacific Coast of Canada

Aroha Miller University of Britsh Columbia, aroha.miller@ubc.ca

John E. (John Edward) Elliott *Canada. Enviroment Canada*

Kyle Elliott University of Manitoba

Sandi Lee Canada. Environment Canada

Melanie Guigueno University of Western Ontario

See next page for additional authors

Follow this and additional works at: https://cedar.wwu.edu/ssec

🔮 Part of the Terrestrial and Aquatic Ecology Commons

Miller, Aroha; Elliott, John E. (John Edward); Elliott, Kyle; Lee, Sandi; Guigueno, Melanie; and Idrissez, Abde, "Brominated Flame Retardants: Spatial and Temporal Patterns and Trends in Seabird eggs from the Nearshore Pacific Coast of Canada" (2014). *Salish Sea Ecosystem Conference*. 15. https://cedar.wwu.edu/ssec/2014ssec/Day1/15

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.

Speaker

Aroha Miller, John E. (John Edward) Elliott, Kyle Elliott, Sandi Lee, Melanie Guigueno, and Abde Idrissez

Brominated Flame Retardants: Spatial and Temporal Patterns and Trends in Seabird eggs from the Nearshore Pacific Coast of Canada

Aroha Miller, John Elliott, Kyle Elliot, Mélanie Guigueno, Laurie Wilson, Sandi Lee, Abde Idrissi

H COL

a place of mind

Outline

- The culprit brominated flame retardants (BFR)
 - The birds 4 species, offshore & coastal
 - Study design
 - Results
 - Summary

AIMS

- Compare and contrast BFR temporal trends between two offshore feeding/breeding seabirds and two coastal breeding birds from British Columbia, Canada.
- 2. Use **stable isotopes** to examine whether contaminant changes are due to diet or regulations

Brominated Flame Retardants

Polybrominated diphenyl ethers (PBDEs)

- Textiles, plastics, furnishings, carpets
- Penta, octa and deca

Hexabromocyclododecane (HBCD)

- Primarily construction materials
- α , β and γ

- Ubiquitous in environment
- Persistent, bioaccumulate, lipophilic
- Regulations and restrictions, penta, octa

Monitor: BFRs seabird eggs

Coastal

Double-crested Cormorant (*Phalacrocorax auritus*)

Widely distributed across North America

Coastal near shore habitat

Sub-surface pursuit diver

Piscivorous: variety of benthic & mid-water schooling fish diet

Great-blue Heron (Ardea herodias)

Widely distributed across North America

Estuarine habitat

Stealth wading in shallow water

Townsend's Vole

Mostly fish, but also amphibians, invertebrates, mammals

Offshore

Rhinoceros Auklet (Cerorhinca monocerata)

Subsurface feeder

Juvenile Rockfish

Piscivorous: Midwater schooling fish

Temperate waters of the N. Pacific

Continental shelf habitat

North Atlantic and Pacific distribution

Offshore/Oceanic habitat

Surface dabbling

Lanternfish

Copepod

Amphipod

Omnivorous: Pelagic plankton & myctophid fish

Monitoring Sites

Sampling Design

- Bird eggs collected offshore sp every 4 years, coastal sp usually more frequent
- Offshore, approx 15 eggs p/yr =
- Coastal, ranged yr to yr

- herons 1 pool 5 eggs since mid-90s, >#s earlier yrs
- cormorants 5x3 most recent yrs, earlier varied

Retrospectively:

- 1.5 g ww homogenized egg sent for chemical analysis
- 1 mg samples, same eggs, sent for SIA

Biology

Moisture and lipid content \pm SEM for each species at each site over time.

Species and Site	Moisture (%)	Lipid (%)	
Rhinoceros auklet, Cleland Island	69.4 ± 0.4	10.3 ± 1.5	
Rhinoceros auklet, Lucy Island	68.1 ± 1.3	11.2 ± 0.4	
Leach's storm-petrel, Cleland Island	71.7 ± 0.3	10.0 ± 1.4	
Leach's storm-petrel, Hippa Island	71.4 ± 0.6	11.0 ± 0.5	
Double crested cormorant	83.8 ± 0.1	4.6 ± 0.3	p<0.0
Great blue heron	81.5 ± 0.2	6.1 ± 0.1	

No significant changes over time except...

Dominant Congeners

Offshore

Coastal

- Pentas > BDE154/BB153
- HBCD

Pentas > BDE154/BB153> 153

Temporal – ΣPBDE, HBCD

Multiple linear regression – no significant relationship between PBDEs and δ^{13} C or δ^{15} N on individual sp/site basis

Summary

- ΣPBDEs increase/decrease offshore & coastal in line with phase outs and regulations on PBDEs
 – HBCD increasing offshore sp., trace conc coastal sp.
- Offshore sp lower conc. cf. coastal sp
- No influence of $\delta^{15}N$ on $\Sigma PBDE$ or dominant congeners

PBDEs local sources HBCD offshore/Asian sources

Regulations worked – HBCD?

THANKYOU • Co-authors Environment Canada and

some NSERC fundingToday's audience