Variable marsh resilience to stress offers clues to climate change adaptive management

The same plot, one year apart

Roger Fuller Western Washington University Katrina Poppe, WWU John Rybczyk, WWU Eric Grossman, USGS Chad Stellern, WWU

The Take-Home Messages

- 1. Climate change interacts with existing sources of stress, and changes the rules and the timeline of response.
- 2. Resilience to stress differs spatially across the estuary. *(and each estuary is different)*
- 3. Understanding why resilience varies, allows you to identify strategies to enhance resilience now.

The Stillaguamish Estuary

2012 Restoration

Marsh retreat

Marsh expansion

Habitat Drivers (resilience factors)

Climate change stress

Salinity 2050's Projection for 2-year low flow: 30-40% decline

Summer 2015: same as 2050's average condition

Climate Change Stress Sea level rise and Accretion

Elevation Change (cm/yr)

plenty ... of sediment for the marshes

Sediment delivery in future?

2080s, Skagit River

50,000

Suspended sediment

Hamlet et al. (2016)

Other sources of stress that interact with climate change

- Biotic changes: herbivores, bioturbators and insects
- Waves
- Legacy stresses...levee configuration effects on delivery of freshwater and sediment

Disturbance - herbivory

Goose herbivory – overgrazing results in erosion and marsh loss

Herbivory interacts with Wave Exposure

Insect-mediated Marsh Dieback 2015: Stress + Insect = 50 acre dieback

Preliminary ID: *Bactra* sp. (Tortricidae)

Bore holes

Highest elevation marsh

Interacting stresses kill marsh

2014

Plot 21006, south end of Zone 2

2015

Lowest elevation marsh

Biophysical Interactions: Vegetation structure

Summer: Range of Conditions

Scta-Boma-Scam

Bofl-Boma-Scam

Biophysical Interactions and Disturbance Resilience

Effects of high salinity on vegetation

- early senescence
- decreased biomass
- reproductive failure

2015 % Reduction in vegetation height

	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Average
High Marsh	17		17	108		47
Middle Marsh	-27	-56	-40	-15	-34	-34
Low Marsh	-20		-41	-44	-67	-43

Marsh retreat...multiple interacting stressors

Summary

- Varied sources of stress, expect more in the future
- Climate changes effects interact with existing stresses
- Salinity is likely an earlier and bigger threat than SLR
- Understanding the biophysical interactions driving resilience allows spatially targeted strategies

Adaptation Action Examples

Salinity – earliest big threat from climate change

- 1. Restoration focus: freshwater and sediment delivery
 - higher in estuary, close to river mouth, distributaries
- 2. Maximize hydroconnectivity between restoration site and system
- 3. Fill and grade subsided restoration sites, target elevations and particle size to support resilient plant species
 - e.g. Bolboschoenus fluviatilis, river bulrush
- 4. Dredged sediment beneficial reuse
- 5. Engineered LWD jams: channel stabilizing, sediment capture, wave attenuation
- 6. Snow goose management, behavior modification

Monitoring Metrics to Understand Biophysical Interactions

- Pore water salinity (especially the next dry summer)
- Vegetation height and density (summer, winter)
- Common plant species
- Accretion (feldspar and grid horizons)
- Elevation change (Sediment Elevation Tables)
- Soil particle size distribution
- Disturbance index

Thanks!

Roger Fuller Western Washington University

Acknowledgements <u>Colleagues</u>: Katrina Poppe, John Rybczyk, Eric Grossman <u>Grad Students</u>: Brittany Jones, Chad Stellern <u>Field crew members</u>: James McArdle, Sarah Thomas, Abe Lloyd, Adam Schnellbaecher, Christian Aguilar, Devin Debono, Andy Cortese, Alec Barber, Katy Hancock, Kaylee Guetle.

Funding: The Nature Conservancy, ESRP, NOAA