

Western Washington University
Western CEDAR

Salish Sea Ecosystem Conference

2014 Salish Sea Ecosystem Conference (Seattle, Wash.)

May 1st, 8:30 AM - 10:00 AM

The Whole is Greater than the Sum of Its Parts: Engaging Communities for Flood Risk Reduction, Species Recovery and Other Community Priorities

Jenny Lynn Baker Nature Conservancy (U.S.), jbaker@tnc.org

Polly Hicks United States. National Oceanic and Atmospheric Administration

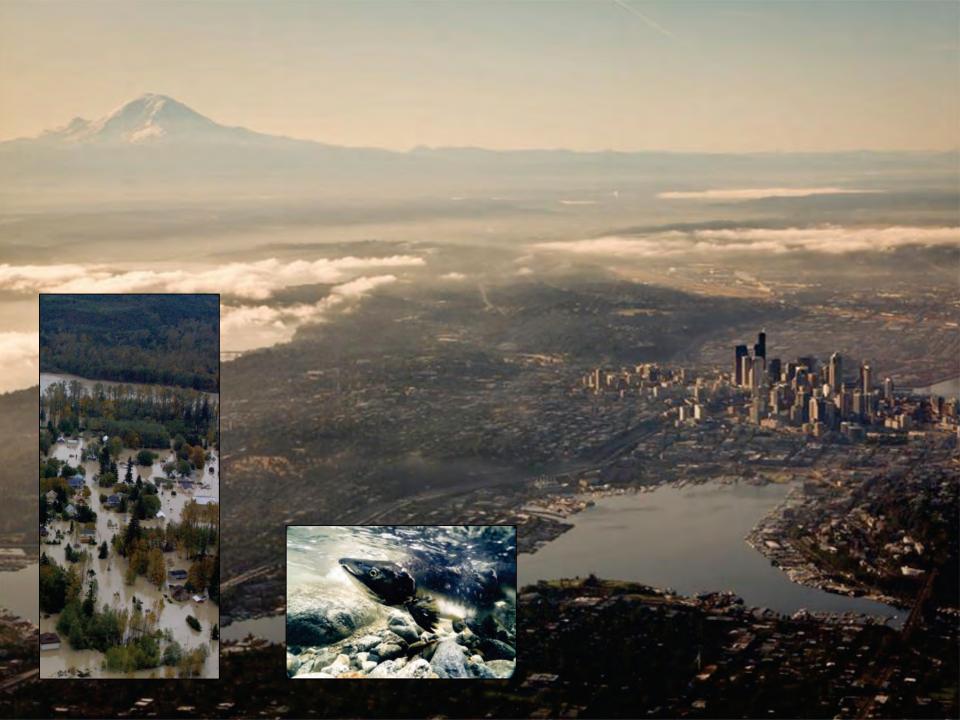
Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the Terrestrial and Aquatic Ecology Commons

Baker, Jenny Lynn and Hicks, Polly, "The Whole is Greater than the Sum of Its Parts: Engaging Communities for Flood Risk Reduction, Species Recovery and Other Community Priorities" (2014). *Salish Sea Ecosystem Conference*. 73.

https://cedar.wwu.edu/ssec/2014ssec/Day2/73

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.


The Whole is Greater Than the Sum of its Parts: Floodplain Restoration for Flood Risk Reduction, Species Recovery and Communities

Polly Hicks (NOAA) and Jenny Baker (TNC)

NA CHARDER

Fisher Slough Tidal Marsh Restoration

South Fork Skagit River

Fisher Slough restoration area

Fisher Slough Tidal Marsh Restoration

Farms, Fish and Flood Initiative

New and Expanded Project Concepts with Levee Issue Locations

OBJECTIVES	INDICATORS	tro	Neg 1	
FISH				
Restore Sufficient Estuary Habitat to Produce 1.35 Million Smolts		Data	Score	D
. Increase Area Subject to Natural Tidal and Riverine Processes.	Total project area with restored processes			
 Increase Area of Tidal and Riverine Channels Suitable To Chinook Rearing Fry. 	Total number of acre-hours suitable habitat predicted			
	Steady state predictions of channel area			
 Increase Chinook Smolt Production 	Estimated new smolts produced annually		1	
 Increase the Landscape Connectivity 	Index of connectivity summed across study area			-
5. Enhance Valued Nearshore Rearing Habitats By Reducing Sediment Impacts.	H,M,L potential for increased sediment storage		-	
6. Maintain and/or Improve Diversity of Tidal Marsh Habitats.	Diveristy metric of habitat types across elevation gradient			
Total Score				0
Rank			-	

	Data	Score	Data
Flood stage relative to existing conditions			
Linear feet of replaced or relocated levee in known risk locations			· · · · · ·
Replaced or relocated levee/sea dike in potential overtopping locations			
Includes a known scour site or site predicted by model			D
Site includes a flood flow return site identified by CDD#22 & Skagit County	-		
			2
			1
	Linear feet of replaced or relocated levee in known risk locations Replaced or relocated levee/sea dike in potential overtopping locations Includes a known scour site or site predicted by model	Flood stage relative to existing conditions Linear feet of replaced or relocated levee in known risk locations Replaced or relocated levee/sea dike in potential overtopping locations Includes a known scour site or site predicted by model	Flood stage relative to existing conditions Linear feet of replaced or relocated levee in known risk locations Replaced or relocated levee/sea dike in potential overtopping locations Includes a known scour site or site predicted by model

FARM				· · · · · · · · · · · · · · · · · · ·
Protect Short and Long Term Viability of Agriculture		Data	Score	Data
1. Minimize Conversion of Farmland By Maximizing Smolts Per Acre Restored.	Acres of converted farmland			5
2. Minimize Conversion of Farmland By Maximizing Smolts Per Acre Restored.	Predicted smolts/acre of converted farmland - Fish3/Farm1	-		2
3. Support Tidegate Maintenance Through the TFI Implementation Agreement.	Restoration acres that support TFI credits	-	1	
 Restore Public Land First. 	Landownership			
Minimize Conversion of Protected Farmland Parcels.	Yes or No whether restoration footprint overlapes esiting farmland easement		1	· · · · · ·
Total Score		-		
Rank		-		-

÷.,	MULTIPLE BENEFITS		
	Multiple Benefit Total Score		2
- 8	Multiple Benefit Total Score Rank		
	Balance Between Benefits (F:F:F or standard deviation)		2 7

Hood Canal

Humans benefit from and coexist sustainably with a healthy Hood Canal

Identifying who to engage

- Future owners
- Potentially affected neighbors
- Potential detractors
- Technical resources
- Key community leaders
- Potential beneficiaries

Big Quilcene Goals include... Improve Public Access to Resources:

- Identify key access points and linkages
- Recreation access and support facilities

When and how do you engage the appropriate people?

It depends, but generally...

- Early and often
- With an open mind to others' needs
- With a willingness to be responsive
- Using a transparent process

BIG QUILCENE PROJECT GOALS

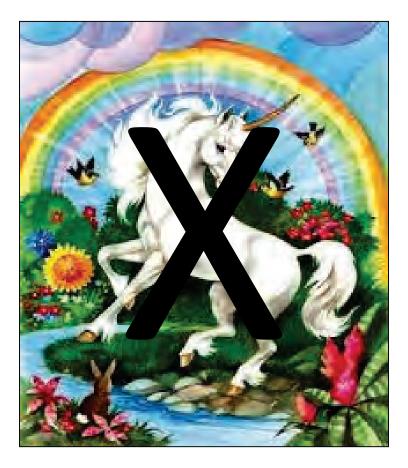
- •Benefit the Local Economy
- •Improve Public Access to Resources
- Assess Compatibility with Shellfish Resources
- •Create Educational Opportunities
- •Restore Habitat
- •Reduce Flood Risk

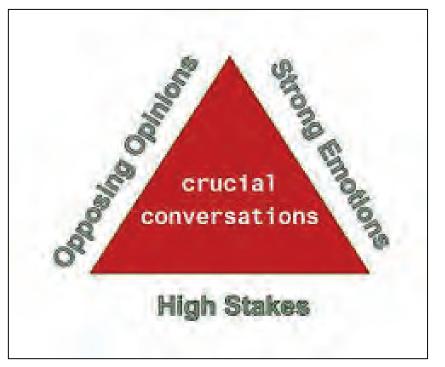
Why do people stay engaged?

Farms, Fish and Floods Goals:

- Restore Estuary Habitats and Functions in the Tidal Delta
- Reduce the Risk of Destructive Flooding
- Protect and Improve the Agricultural Land Base and Infrastructure

Fisher Slough Goals:


- restore freshwater tidal marsh
- improve fish passage
- *improve flood storage capacity*



What are the challenges of a multi-stakeholder approach?

- Time, time, time
- Maybe more expensive
- Lots of hard, but important discussions

What are the benefits of a multi-stakeholder approach?

WIN!

- More robust design
- Broader base of support
- Ability to access more funding sources
- Reduced risk and liability
- Long-term partnerships

Polly Hicks: <u>polly.hicks@noaa.gov</u> Jenny Baker: <u>jbaker@tnc.org</u>