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ABSTRACT

An expression for the drag transresistivity in a graphene double layer system ex-

hibiting potential fluctuations modelled as a periodic oscillation in electron density

is derived. Our model starts from the Coulombic interaction and we derive the cor-

relation between a sinusoidal fluctuation in electron density in the first layer and

the induced electron density in the second layer. Previous models in the literature

have employed an arbitrary correlation between each layer’s electron density, and the

model presented is the first attempt in the literature to explicitly derive this cor-

relation. Recent experiments have found that the drag transresistivity in graphene

double layers systems exhibit a sign change as the electron density in the first layer is

increased from zero. Our model is able to reproduce this sign change, and is in agree-

ment with experiment. As the amplitude of the fluctuations approaches zero, the

model reproduces the result of the uniform case. The model qualitatively agrees with

experimental results, but it needs to be further refined to more accurately take into

account how electron density fluctuations actually occur in experimental samples.
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CHAPTER I

INTRODUCTION

In general, Coulomb drag is a phenomenon in which long range Coulombic

interactions between isolated conductors induce a current in one conductor when an

electrical current is applied in the other (Figure 1.1). This phenomenon has been

widely studied both theoretically and experimentally for two dimensional electron

gasses (an electron gas that is free to move in two dimensions, but narrowly restricted

in the third). Layered systems of two dimensional electron gasses are of particular

interest. The study of graphene has seen a surge of research in recent years, including

layered 2d systems of graphene, which can be modelled as a layered system of 2d

electron gasses. The curious result of previous experiments on layered 2d graphene

sheets have found that as the electron density in either sheet increases form zero, there

exists a point where the induced current, and as a result the drag transresistivity ρdrag,

reverses sign [2, 3, 4]. The drag transresistivity ρdrag, defined as a ratio of the induced

voltage in the non-driven layer to the applied current in the driven layer, is relatively

simple to measure, making it the probe of choice for experiments. As such, ρdrag

is the clear parameter to build theories on to relate to experiment. The authors

theorized that this reversal of sign may be caused by inhomogeneities within the

sample, motivating an investigation of the nature these inhomogeneities. Previous
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Figure 1.1: The induced voltage V2 induced by the current in the driven layer, I1.
The ratio of V2 to I2 is defined to be ρdrag. From (Narozhny & Levchenko, 2016, p.
2)[1]

theoretical works have confirmed that inhomogeneities in graphene do contribute to

the total drag transresistivity [5, 6], but the exact mechanism through which this

happens is unclear. The mathematical formulation of these inhomogeneities has not

been well studied, and the aim of this work is elucidate the mechanism by which they

contribute to the drag transresistivity.

In this work, we develop a theory of Coulomb drag in inhomogeneous 2D

graphene modelled as periodic oscillations in the electron density of the driving layer.

We start from the simple case where oscillations can be modelled as a sine wave, and

2



we derive an expression in chapter two that relates the amplitude of oscillation in the

driven layer to the external potential that it induces. Previous theoretical models

have employed an arbitrary correlation between the fluctuations in electron density

to the potential that they induce [6], whereas in our model this correlation is derived

from the interlayer Coulomb interactions. Our theory does not apply in the presence

of external fields, such as magnetic or other electric fields.

3



CHAPTER II

MODEL FOR ELECTRON DENSITY OSCILLATION

2.1 External Potential Calculation

First, we model potential fluctuations in graphene as a periodic oscillation in electron

density in layer one, with a constant electron density in layer two, as shown in Figure

2.1. Figure 2.2 qualitatively shows how the charge density in the second layer, n2,

shifts due to the charge density fluctuation in the first.

n1(~r2d) = n1 + δn1e
i~q·~r2d (2.1)

Where n1 is the uniform charge density, and δn1 is the amplitude of oscillation. The

induced potential in the second plate can then be written as

φ1(~r2d, d) =
1

4πε0

∫
n(~r′)

|~r′ − ~r2d − dẑ|
d~r′ =

δn1e
i~q·~r2d

4πε0

∫
ei~q·(

~r′−~r2d)

|~r′ − ~r2d − dẑ|
d~r′ (2.2)

We have omitted n1 from equation (2.2), as it only serves to offset the result, and

does not contribute in a significant way. Making the substitution ~R = |~r′−~r2d| yields

φ1(~r2d, d) =
δn1e

i~q·~r2d

4πε0

∫
ei~q·

~R

|~R− dẑ|
d~R (2.3)

To make progress, the integral above must be taken into polar coordinates (s is the

radial component)

φ1(~r2d, d) =
δn1e

i~q·~r2d

4πε0

∫ 2π

0

dθ

∫ ∞
0

seiqscos(θ)√
s2 + d2

ds (2.4)

4



Figure 2.1: Model of oscillating charge density n1, and initially a constant charge den-
sity n2. The oscillation depicted in the contour above represents a spatial oscillation
in electron density in the first layer.
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Figure 2.2: Model of oscillating charge density n1, with a charge density n2 that has
been created due to the electric potential caused by the charge density fluctuation
in the first layer. The oscillations depicted in the contour above represent spatial
oscillations in electron densities of each layer.
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Integrating with respect with θ first yields a Bessel function

φ1(~r2d, d) =
δn1e

i~q·~r2d

2ε0

∫ ∞
0

sJ0(qs)√
s2 + d2

ds (2.5)

The result of this integral is 1
qeqd

. The resulting potential is then

φ1(~r2d, d) =
δn1e

(i~q·~r2d−qd)

2ε0q
(2.6)

2.2 External Potential and Induced Charge Density Relation

To relate the change in electron density in the second layer, δn2, due to the electron

density fluctuation in the first, δn1, we first must introduce another potential: one

that is due to the electron density fluctuation δn2 in layer 2, φ2. Then we also define

the total potential

φtot = φ1 + φ2 (2.7)

φ2(~r) must obey Poisson’s equation.

−52 φ2(~r) =
δn2

ε0
(2.8)

φtot(~r) and φ1(~r) are related by the dielectric function εr(~r−~r′) through the following

integral

φ1(~r) =

∫
d~r′εr(~r − ~r′)φtot(~r′) (2.9)

The integral above requires a convolution integral making it difficult to work with.

To simplifiy the situation, we will take the Fourier transform of the integral, which is

given as

φ1(~q) = εr(~q)φtot(~q) (2.10)

7



We then introduce χq which is defined as

δn2 = χqφtot(~q) (2.11)

We must also take the Fourier transforms of the Poisson’s equations to make progress,

and in two dimensions the Poisson equation for the second layer becomes

φ2(~q) =
δn2

2qε0
(2.12)

For details about this Fourier transform, see the appendix. Rearraging equation

(2.12) and combining with equation (2.7) yields

δn2 = 2qε0(φtot(~q)− φ1(~q)) (2.13)

And combining with equation (2.11) yields

δn2 = 2qε0(
δn2

χ2

− φ1(~q)) (2.14)

δn2 = φ1(~q)
χ2

1− χ2

2qε0

(2.15)

The final step is to relate δn2 to δn1 through the potential created by the first layer

found in equation (2.6) which gives

δn2 = δn1
e−qd

2ε0q

χ2

1− χ2

2qε0

(2.16)

= δn1
χ2

2ε0q − χ2

e−qd (2.17)

The ei~q·~r2d term from equation (2.6) has been neglected here, as the spatial dependence

that ei~q·~r2d brings is already implied within Fourier space.

8



2.3 Drag Transresistivity Calculation

Now that we have derived an expression relating the induced charge density to the

external potential, we will shift our attention towards calculating the drag transre-

sistivity, ρdrag(n1, n2). Because the variation in charge density is periodic, we can

average over one period. Therefore, we define the average drag transresistivity over

one period, ρdrag, to be

ρdrag =
q

2π

∫ 2π
q

0

ρdrag(n1 + δn1 cos(qx), n2 + δn2 cos(qx))dx (2.18)

Taylor expanding around n1 and n2 yields

ρdrag =
q

2π

∫ 2π
q

0

[
ρdrag(n1, n2) +

∂2ρdrag
∂n1∂n2

cos2(qx)δn1δn2

+
1

2

∂2ρdrag
∂n1

2
cos2(qx)δn1

2 +
1

2

∂2ρdrag
∂n2

2
cos2(qx)δn2

2
]
dx

(2.19)

= ρdrag(n1, n2)
q

2π

(∫ 2π
q

0

dx
)

+
[ ∫ 2π

q

0

cos2(qx)dx
]( ∂2ρdrag
∂n1∂n2

δn1δn2

+
1

2

∂2ρdrag
∂n1

2
δn1

2 +
1

2

∂2ρdrag
∂n2

2
δn2

2
) (2.20)

But now we notice that
∫ 2π

q

0 cos2(qx)dx = π
q

and q
2π

∫ 2π
q

0 dx = 1. Also, δn1 is related

to δn2 through equation (2.17). Using these results, we simplify equation (2.20) as

ρdrag = ρdrag(n1, n2) +
1

2
(δn1

2)

[
∂2ρdrag
∂n1∂n2

χ2e
−qd

2ε0q − χ2

+
1

2

∂ρdrag
2

∂n2
2

χ2
2e
−2qd

(2ε0q − χ2)2
+

1

2

∂2ρdrag
∂n1

2

]

(2.21)

To simplify even further, we will let

χsep ≡
χ2e

−qd

2ε0q − χ2

(2.22)
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which is dimensionless. This leads to

ρdrag =
q

2π

∫ 2π
q

0

ρdrag(n1, n2)dx+
1

2
(δn1

2)

[
∂2ρdrag
∂n1∂n2

χsep +
1

2

∂2ρdrag
∂n2

2
χsep

2 +
1

2

∂2ρdrag
∂n1

2

]

(2.23)

2.4 Test with model of drag transresistivity

The next step is to see how equation (2.23) performs, given a model of ρdrag. In the

case where the interlayer distance, d, is much larger than the average distance between

electrons in each layer and the Fermi energy εF > kBT , Tse et. al [7] demonstrates

that drag transresistivity at low temperatures is given as

ρdrag = − h
e2
πζ(3)

32

(kBT )2

εF1εF2

1

(qTF1d)(qTF2d)

1

(kF1d)(kF2d)
(2.24)

Where qTF = 4e2 kF
v

is the Thomas-Fermi wave number for extrinsic graphene, εF =

v~kF is the Fermi energy with respect to the dirac point and ζ is the Riemann zeta

function [8]. In both εF and qTF, v is the electron velocity in graphene and kF =
√

2πn

is the Fermi wavevector for each respective sheet. We are interested in an expression

that depends on the electron densities in the two sheets so that the expression can be

used with equation (2.23). Using the expressions for qTF, εF and kF we can rewrite

equation (2.24) as

ρdrag = − hζ(3)

e6 · 1024

(kBT )2

d4
1

n
3/2
1 n

3/2
2

(2.25)

However, this expression, which was derived under the assumption that εF > kBT ,

leads to unphysical behavior as n1 or n2 approach 0. Experimental studies have shown

that when n1 or n2 approaches zero, ρdrag also approaches zero [2, 4, 3]. To account

10



for this, we introduce a correction factor n0(T ) such that

1

n3/2
→ n

(n5/2 + n
5/2
0 )

(2.26)

With this modification, equation (2.25) becomes

ρdrag = − hζ(3)

e6 · 1024

(kBT )2

d4
n1n2

(n
5/2
1 + n

5/2
0 )(n

5/2
2 + n

5/2
0 )

(2.27)

The expression for ρdrag is now in a form that leads to physical behavior, that qual-

itatively agrees with experiment, and is compatible with equation (2.23). As such,

the next step is to substitute it into equation (2.23) which leads to a complicated

expression given as

ρdrag = −C0
n1n2

(n
5/2
1 + n

5/2
0 )(n

5/2
2 + n

5/2
0 )
− C0

2
(δn1

2)

[
χsep

(2n
5/2
0 − 3n

5/2
1 )

4(n
5/2
0 + n

5/2
1 )2

(2n
5/2
0 − 3n

5/2
2 )

(n
5/2
0 + n

5/2
2 )2

+
1

2
χ2
sep

( 25n4
2

2(n
5/2
0 + n

5/2
2 )3

− 35n4
2

4(n
5/2
0 + n

5/2
2 )2

) n1

(n
5/2
1 + n

5/2
0 )

+
1

2

( 25n4
1

2(n
5/2
0 + n

5/2
1 )3

− 35n4
1

4(n
5/2
0 + n

5/2
1 )2

) n2

(n
5/2
2 + n

5/2
0 )

]

(2.28)

where

C0 =
hζ(3)

e6 · 1024

(kBT )2

d4
(2.29)

Equation (2.28) serves as the main point of analysis for the rest of this work.
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CHAPTER III

RESULTS AND FEATURE EXTRACTION

3.1 Contribution to ρdrag when n2 = 0;

In our model, there are only two sources that can contribute to ρdrag, one, of course

being the electron density fluctuation, the other being the contribution coming from

n1 and n2. To examine solely the contribution of electron density fluctuation to ρdrag,

we set n2 = 0 to eliminate any contribution n2 might have back on ρdrag. Equation

(2.28) then becomes

ρdrag = −C0

4
(δn1

2)χsep
(2n

5/2
0 − 3n

5/2
1 )

n
5/2
0 (n

5/2
0 + n

5/2
1 )2

(3.1)

Figure 3.1 shows the behavior of equation 3.1 for a fixed χsep. The notable

feature of equation (3.1), as seen in figure 3.1, is that as n1 increases from zero, there

exists a point where ρdrag flips sign. This feature has been found in recent experiment

and theory as discussed in the introduction, and serves as a primary feature of our

model.
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Figure 3.1: Behavior of equation (3.1) when χsep = -0.5 in reduced units. χsep was
chosen arbitrarily between -1 and 0, as it is bound by these values and only acts as
a scaling factor when n2 = 0.
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3.2 Symmetry of ρdrag(n1, n2)

In the following subsections, we will closely examine χsep, and its relation to any

symmetry found between ρdrag(n1, n2) and ρdrag(n2, n1). We argue that this symmetry

and χsep act as the links between how we qualitatively expect the system to behave,

and how it quantitatively behaves. We notice that −1 < χsep < 0 for constant

intralayer distance d, through equation (2.22). It is easy to see that when q → 0,

χsep → −1, and when q →∞, χsep → 0. Thus, because q > 0, and because equation

(2.22) is monotonic for q > 0, for all values of q with constant d, χsep is bound between

−1 and 0.

3.2.1 Asymptotic regime when χsep → 0

Physically, the case when χsep → 0 corresponds to the asymptotic regime where

the wave number of density fluctuation, q, is much larger than the inverse distance

between the two sheets. For the q →∞ limit, the contribution of the oscillation in the

first layer to the potential it creates will approach zero, as layer two will experience

the first layer as being completely uniform so there will be no response from the

density fluctuation in layer two. However the density fluctuation still contributes to

ρdrag through layer one. In the χsep → 0 limit, equation (2.28) becomes

ρdrag = −C0

4
(δn1

2)

[( 25n4
1

2(n
5/2
0 + n

5/2
1 )3

− 35n
3/2
1

4(n
5/2
0 + n

5/2
1 )2

) n2

(n
5/2
2 + n

5/2
0 )

]

−C0
n1n2

(n
5/2
1 + n

5/2
0 )(n

5/2
2 + n

5/2
0 )

(3.2)
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Figures 3.2 and 3.3 show contour plots of ρdrag as a function of n1 and n2 for

various δn1

Comparing equation (3.2) to (2.28), it is clear to see that this form (where

χsep ≈ 0) minimizes symmetry between ρdrag(n1, n2) and ρdrag(n2, n1). A more com-

prehensive examination of this symmetry will be discussed in section 3.2.3.

3.2.2 Asymptotic regime when χsep → −1

The physical picture that this regime corresponds to is the case where, compared to

a constant distance between plates d, the wavenumber of oscillation, q, is extremely

small. This corresponds to the maximum response of the second layer to the oscil-

llation in the first. As q becomes small, the wavelength of oscillation becomes very

large, thus the difference between the peaks and valleys of the oscillation will be,

on average, more easily felt by the second layer. In this case, if the layers suddenly

reversed roles (the undriven layer becomes driven, and the driven layer becomes un-

driven), one should expect ρdrag to stay the same. Quantitatively, it is expected that

ρdrag(n1, n2) = ρdrag(n2, n1). Under this regime, equation (2.28) becomes,

ρdrag = −C0
n1n2

(n
5/2
1 + n

5/2
0 )(n

5/2
2 + n

5/2
0 )

+
C0

2
(δn1

2)

[
(2n

5/2
0 − 3n

5/2
1 )

4(n
5/2
0 + n

5/2
1 )2

(2n
5/2
0 − 3n

5/2
2 )

(n
5/2
0 + n

5/2
2 )2

−1

2

( 25n4
2

2(n
5/2
0 + n

5/2
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Figure 3.2: Contour plots of equation 3.2 for small δn1 in the case when χsep = 0. In
reduced units, ρdrag is shown as a function of n2, n1, and δn1 whose value changes
with each plot. Each δn1 was chosen to highlight major qualitative behaviors between
subplots. The colorbar scale does not change.
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Figure 3.3: Contour plots of equation 3.2 for large δn1in the case when χsep = 0. In
reduced units, ρdrag is shown as a function of n2, n1, and δn1 whose value changes
with each plot. Each δn1 was chosen to highlight major qualitative behaviors between
subplots. The colorbar scale does not change.
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It is easy to see the symmetry between n1 and n2 is verified in equation (3.8),

as ρdrag(n1, n2) = ρdrag(n2, n1). Figures 3.4 and 3.5 show this symmetry through

contour plots, as in all δn1 steps, n1 and n2 are symmetric about each other.

After the last subplot where δn1 = 1.22 in figure 3.3, no further major qual-

itative changes occured within ρdrag(n1, n2) with a further increasing δn1. At this

point, an increasing δn1 only serves to further increase the peaks, and decrease the

valleys found within figure 3.6, and as such we can estimate that this is the point

where the second term in equation (3.3) begins to dominate the first.

3.2.3 Regime when −1 < χsep < 0

In this regime, the degree by which ρdrag(n1, n2) is symmetric to ρdrag(n2, n1) is entirely

dependent on how the term in equation (2.28) which includes χ2
sep compares with the

term immediately following it. To draw emphasis to these terms, we rewrite equation

(2.28) as follows

ρdrag = ...+
1

2
χ2
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] (3.4)

All other terms found within equation (2.28) are symmetric about n1 and n2, so they

are ommitted from being considered. Assuming all other variables are constant, if

χsep = −1, then the two terms found in equation (3.4) are symmetric to each other.

However, as χsep begins to increase towards zero, the contribution from the first term

becomes increasingly less like the second term, thus breaking their symmetry. From
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Figure 3.4: Contour plots of equation (3.3) for small δn1in the case when χsep = −1.
In reduced units, ρdrag is shown as a function of n2, n1, and δn1 whose value changes
with each plot. Each δn1 was chosen to highlight major qualitative behaviors between
subplots. The colorbar scale does not change.
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Figure 3.5: Contour plots of equation (3.3) for large δn1in the case when χsep = −1.
In reduced units, ρdrag is shown as a function of n2, n1, and δn1 whose value changes
with each plot. Each δn1 was chosen to highlight major qualitative behaviors between
subplots. The colorbar scale does not change.
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this, we conclude that χsep acts as a measure of symmetry between ρdrag(n1, n2) and

ρdrag(n2, n1) within our model, with symmetry being maximized at χsep = −1, and

symmetry being minimized at χsep = 0.

3.3 Discussion

First and foremost, the results found above confirm our intuition about how ρdrag

should behave depending on the wave number of electron density fluctuation, q, and

the distance between the two plates d. The relation between q and d is through

χsep, which we have shown in section 3.2.3 is the measure of symmetry with respect

to interchanging n1 and n2 within our model. Quantitatively, our model behaves

exactly how we would qualitatively expect it to, with ρdrag being symmetric around

n1 and n2 when the frequency of electron density fluctuation, q, is very small compared

to intralayer distance, d, and symmetry dissapearing when the frequency of electron

density fluctuation is very large compared to the intralayer distance.

The main result in section 3.1, as n1 increases from zero, with n2 = 0 there

exists an n1 where ρdrag changes sign, has been observed in both experiment and

other theory. As such, our model is in agreement with this qualitative behavior.

21



CHAPTER IV

CONCLUSION

We have derived an expression for the drag transresistivity in a graphene dou-

ble layer system exhibiting potential fluctuations modelled as a periodic oscillation

in electron density. This simple model is the first attempt in the literature to shed

light on the mechanisn by which correlations in electron density fluctuations in dou-

ble layer graphene systems affect drag transresistivity. Our model starts from the

Coulomb interaction and explicitely derives the correlation between n2 and a sinu-

soidal fluctuation in n1. The uniform case (no electron density fluctuation) emerges

from our model as the amplitude of fluctuation approaches zero. When the amplitude

of oscillation is non-zero, our model exhibits a change of sign in ρdrag as n1 increases

from zero with n2 = 0, which agrees with previous experiment[2, 3, 4] and theory

results[5, 6]. Recent previous experiments have also shown a sudden sign change in

ρdrag as temperature is decreased [4]. The link between a changing temperature and

a charge density oscillation both resulting in a sudden sign change in ρdrag in unclear,

and serves as an area of further research.

Omitted from this model is any consideration for any external magnetic or elec-

tric fields, which will be useful to consider for more complication systems of graphene

sheets, such as a triple layer system, or a system where taking into account hall
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drag is important. Further studies are also needed to more precisely determine how

inhomogeneities within graphene vary in space.
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APPENDIX

POISSON’S EQUATION IN TWO DIMENSIONS

Poisson’s Equation, written in notation consistent with chapter two, is as follows

−52 φ(~r) =
δn(~r)

ε0
(A.1)

where δn is the charge density. The fourier transform in is then given as

Q2φ( ~Q) =
δñ( ~Q)

ε0
(A.2)

Where ~Q is the 3-dimensional wave vector. We will rewrite ~Q as follows

~Q = ~q + qz ẑ (A.3)

Where ~q lies in the x−y plane. Our goal, however, is to find the relationship between

φ and ~q for z = 0. To achieve this, we inverse Fourier transform in only the z

direction.

φ(~q, z) =
1

2π

∫ ∞
−∞

φ(~q, qz)e
iqzzdqz =

1

2π

∫ ∞
−∞

δñ(~q)eiqzz

ε0(q2 + q2z)
dqz =

1

2π

δñ(~q)

ε0

∫ ∞
−∞

eiqzzdqz
q2 + q2z

(A.4)

Through Euler’s identity, the expression then becomes

φ(~q, z) =
1

2π

δñ(~q)

ε0

∫ ∞
−∞

(cos(qzz) + isin(qzz))dqz
q2 + q2z

(A.5)

25



The
isin(qzz)

q2 + q2z
term is odd, and as such once integrated will be zero. Therefore we

will omit it from equation (A.5). This leads to

φ(~q, z) =
1

2π

δñ(~q)

ε0

∫ ∞
−∞

cos(qzz)dqz
q2 + q2z

(A.6)

The integral can be solved by contour integration and is given as

∫ ∞
−∞

cos(qzz)dqz
q2 + q2z

=
π

q
e−qz (A.7)

Using this result, equation (A.6) becomes

φ(~q, z) =
δñ(~q)

2qε0
e−qz (A.8)

Equation (A.8) resembles equation (2.12) when z = 0.
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