
The University of Akron
IdeaExchange@UAkron
Williams Honors College, Honors Research
Projects

The Dr. Gary B. and Pamela S. Williams Honors
College

Spring 2019

Autonomous Combat Robot
Andrew J. Szabo II
The University of Akron, ajs262@zips.uakron.edu

Chris Heldman
The University of Akron, crh99@zips.uakron.edu

Tristin Weber
The University of Akron, trw48@zips.uakron.edu

Tanya Tebcherani
The University of Akron, tt50@zips.uakron.edu

Holden LeBlanc
The University of Akron, hcl9@zips.uakron.edu

See next page for additional authors

Please take a moment to share how this work helps you through this survey. Your feedback will be
important as we plan further development of our repository.
Follow this and additional works at: https://ideaexchange.uakron.edu/honors_research_projects

Part of the Electrical and Electronics Commons, Power and Energy Commons, Robotics
Commons, Systems and Communications Commons, and the VLSI and Circuits, Embedded and
Hardware Systems Commons

This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams
Honors College at IdeaExchange@UAkron, the institutional repository of The University of Akron in Akron, Ohio,
USA. It has been accepted for inclusion in Williams Honors College, Honors Research Projects by an authorized
administrator of IdeaExchange@UAkron. For more information, please contact mjon@uakron.edu,
uapress@uakron.edu.

Recommended Citation
Szabo, Andrew J. II; Heldman, Chris; Weber, Tristin; Tebcherani, Tanya; LeBlanc, Holden; and Ardeljan, Fabian,
"Autonomous Combat Robot" (2019). Williams Honors College, Honors Research Projects. 887.
https://ideaexchange.uakron.edu/honors_research_projects/887

https://ideaexchange.uakron.edu?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F887&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F887&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F887&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F887&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F887&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=https://ideaexchange.uakron.edu/honors_research_projects/887
https://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F887&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F887&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F887&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F887&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F887&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F887&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F887&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F887&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ideaexchange.uakron.edu/honors_research_projects/887?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F887&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu
mailto:mjon@uakron.edu,%20uapress@uakron.edu

Author
Andrew J. Szabo II, Chris Heldman, Tristin Weber, Tanya Tebcherani, Holden LeBlanc, and Fabian Ardeljan

This honors research project is available at IdeaExchange@UAkron: https://ideaexchange.uakron.edu/honors_research_projects/887

https://ideaexchange.uakron.edu/honors_research_projects/887?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F887&utm_medium=PDF&utm_campaign=PDFCoverPages

Honors Project Final Design Report

Design Project: Autonomous Combat Robot

DT07A

Fabian Ardeljan

Chris Heldman

Holden LeBlanc

Stephen Veillette

Dr. French

April 25, 2019

Table of Contents
1. Problem Statement 6
1.1 Need 6
1.2 Objective 7
1.3 Background 9
1.4 Proposed Design Overview 13
1.5 Marketing Requirements 18
1.6 Objective Tree 19
3.0 Accepted Technical Design 21
3.1.1 System Level 0 Block Diagram with Functional Requirement Table 22
3.1.2 Hardware Level 1 Block Diagram with Functional Requirement Table 23
3.1.3 Hardware Level 2 Block Diagram with Functional Requirement Table 25
3.1.4 Hardware Level 3 Diagram (Schematic Design) 29
3.1.5 Hardware Simulation 34
3.1.6 Hardware Testbench 38
3.1.7 Software Level 0 Block Diagram and Functional Requirements Table 40
3.1.8 Software Level 1 Block Diagram and Functional Requirement Tables 40
3.1.9 Level 2 Software Block Diagram 42
3.1.10 Level 3 Software Block Diagram 44
3.2.0 Sensor Block Diagrams and Pseudo Code 45
3.2.1 Main Program Pseudocode 45
3.2.2 LiDAR Sensor 48
3.2.3 Ultrasonic Sensor 50
3.2.4 Encoder 54
3.2.5 Gyroscope/Accelerometer 55
3.2.6 Communication Protocols Software 57
3.3.0 Bill of Material as Standing 59
3.3.1 Parts List 59
3.3.2 Eagle BOM 60
3.4 Mechanical Sketch of System 62
3.5 Calculations 67
3.5.1 LiDAR Calculations 67
3.5.2 Main Algorithm Simulation 70

2

3.5.3 LiDAR Simulation & Data Processing 71
3.5.3 Data Resolution Calculations 76
3.5.4 Computing Calculations 77
3.5.5 Power, Voltage and Current Calculations 79
3.5.6 Mechanical Calculations 80
4.0 Schedule 81
4.1 Calendar View 81
4.2 Gantt Chart Fall Semester 82
4.3 Gantt Chart Spring Semester 84
5. Design Team Information 85
6. Conclusion and Recommendations 86
7. References 87
Appendix 89

List Of Tables
Table 1: Comparison of Combat Robot Types 10
Table 2: Design Requirements 20
Table 3: Level 0 Functional Requirement Table 22
Table 4: Hardware Level 1 Sensor Array Functional Requirement Table. 24
Table 5: Hardware Level 1 Robot Control Center Functional Requirement Table. 24
Table 6: Ultrasonic Sensor Functional Requirement Table. 26
Table 7: Gyroscope Functional Requirement Table. 26
Table 8: Lidar Sensor Functional Requirement Table. 26
Table 9: Sensor System Functional Requirement Table. 27
Table 10: Overcurrent Protectors Functional Requirement Table. 27
Table 11: Level 2 Voltage Regulators Functional Requirement Table. 27
Table 12: Level 2 LED Lights Functional Requirement Table. 28
Table 13: Sensor System Functional Requirement Table. 28
Table 14: Software System Functional Requirement Table 40
Table 15: Read Sensor Functional Requirement Table 41
Table 16: Locate Opponent and Walls Functional Requirement Table 41
Table 17: Determine Course of Action Functional Requirement Table 41
Table 18: Initialize Sensors Requirement Table 42

3

Table 19: Read Data Functional Requirement Table 42
Table 20: Interpret Data Functional Requirement Table 43
Table 21: Calculate Fight or Flight Functional Requirement Table 43
Table 22: Update Encoded Location/Speed Functional Requirement Table 43
Table 23:LiDAR Sensor Requirements 48
Table 24: Ultrasonic Sensor Requirements 50
Table 25: Parts List/Materials Budget List 59
Table 26: Mechanical Components of System. 64
Table 27: Baud Rate for Processor Calculations 77
Table 28: Power Calculation Table 79

List Of Figures

Figure 1: Autonomy Locomotion Algorithm. 17
Figure 2: Combat Robot Autonomy Objective Tree. 19
Figure 3: DT7A Autonomous System Block Diagram 22
Figure 4: Level 1 Combat Robot Block Diagram. 23
Figure 5 - Hardware Level 2 Block Diagram 25
Figure 6: Minimum Hardware Schematic 32
Figure 7: Schematic Diagram of the Sensor And Navigation System 33
Figure 8: Optoisolator simulation 35
Figure 9: Optical Isolator Design 36
Figure 10: Harmony GUI for PIC32MZ2048EFH064 37
Figure 11: 100 pin PIM for PIC32MZEF 38
Figure 12: 60% duty cycle PWM output, 25kHz 39
Figure 13: Software Level 0 Block Diagram 40

Figure 14: Software Level 1 Block Diagram 40
Figure 15: Software Level 2 Block Diagram 42
Figure 16: Level 3 Software Block Diagram 44

Figure 17: RPLiDAR Interface Flowchart 49
Figure 18: Ultrasonic Pulses (From Datasheet) 51
Figure 19: Ultrasonic Sensor 51
Figure 20: Gyroscope Diagram 55
Figure 21: Mechanical Sketch of System. 63

4

Figure 22: Updated Mechanical Design - Isometric View. 64
Figure 23: Updated Mechanical Design - Planar View 65
Figure 24: Representation of Lidar Field of View 66
Figure 25: Lidar FOV With Enemy at Max Distance 68
Figure 26: Simulated Output of the Main Algorithm 70
Figure 27: Ideal Orientation, Full FOV 71
Figure 28 (left) Empty Room, Figure 29 (right) Opponent On Opposite Wall 72
Figure 30: Non-ideal Orientation, Half FOV 73
Figure 31 (left) Non-ideal Orientation, Empty Room. Figure 32 (right) Neighboring Sample Delta Array 74
Figure 33: Enemies Isolated From Walls, Non-ideal Orientation 75
Figure 34: RPLiDAR A3 Measurement Data 76
Figure 35: Distance Traveled Between Samples 78

5

6

Abstract - The objective of the project is to design and build the electrical and software systems
for the autonomy system of a 60 lb. combat robot. The system should allow the robot to
function autonomously. The autonomous combat robot will outperform its opponents by
following a variety of combat algorithms. The autonomous system will follow an intercept or
escape locomotion pattern to outperform human operators. The system will also attempt to
keep the robot pointed in the correct orientation, facing the opponent at all times. While
operating autonomously, the robot will use LiDAR and ultrasonic sensors to detect and attack
opponent robots.

[CH]

1. Problem Statement

The following sections define the problem being solved with the autonomous combat robot.

[AS]

1.1 Need

Combat robotics is a discipline that requires much skill and a quick response time. It is often

the case that the winner is not the best robot, but rather the best operator. Human operators

inherently lack a consistent, fast reaction time when using a remote controlled system for combat

robots. Human operators also have difficulty keeping up with the fast decision making necessary to

maneuver their combat robots. It would be much faster and more effective for a combat robot to

operate independently of human controls. Autonomous control of the operation and locomotion of a

combat robot would outperform a manual operator.

A fully autonomous system has the ability to make algorithmic decisions, follow a

locomotion algorithm, and attack with more precision than a manual operator. Therefore, an

autonomous combat robot is needed to outperform opponents in movement and weapon reaction

time.

[AS, FA, CH]

7

1.2 Objective

The objective of Design Team 07A is to design a system to enable autonomous functioning

of the combat robot. The autonomous system will outperform the manually driven robots during

competition.

Sensor data is used to determine whether the robot should attack or run from the enemy and

which direction the robot needs to move to. This autonomous system should integrate with the robot

controller system from Design The Motion and Actualization Team and the mechanical robot. The

robot will indicate whether it is in full autonomous or manual override mode. The system will also

be able to be armed and disarmed remotely, even while in autonomous mode. Lastly, the robot will

incorporate an emergency shut off and braking system.

The autonomous combat robot will outperform its human driven opponents by following a

variety of combat algorithms. While running autonomously, it will use sensors to detect its

environment and the opponent. While the weapon system is reaching full speed, the combat robot

will follow an avoidance and escape algorithm. When the weapon system is ready, the robot will

follow an intercept algorithm to attack the opponent. The autonomous system will also attempt to

keep the robot pointed in the correct orientation, facing the opponent when possible.

This project is a robotic system. It will have heavy reliance on electrical, software, and

mechanical subsystems. The overall team for the combat robot consists of five electrical engineering

students, two computer engineering students, and three mechanical engineering students. This team

is a campus organization through Source, titled The Autonomous Combat Robotics Team.

[FA, HL, CH]

8

9

Role of Electrical/Computer Teams

● Create the control, feedback, and sensing system to control the combat robot

● Implement opponent facing tracking algorithm

● Implement control intercept or escape algorithm

● Create LiDAR sensing data interpretation and detection programming and algorithm

● Control of electric motor system

● Control of weapon system

● Autonomous sensing and control

● Create the power system to run the motors and robotic system

Role of Mechanical Team
1

● Create the robot’s chassis

● Create the mechanical weapon system

● Create a mechanical drive system

[CH]

1The mechanical engineering team has obtained preliminary approval to work with the electrical and computer
engineering team from the Mechanical Engineering Department, and is in the process of receiving full approval upon the
approval of the ECE’s final proposal. The mechanical engineering team will synchronize its deadlines with the ECE
team’s deadlines in completion of their requirements with the project.

10

1.3 Background

The following sections provide a background and general overview of the combat robot

design approach.

[TT]

1.3.1 Research Survey

Currently, the vast majority of combat robots operate by being remote controlled by an

operator. Autonomy requires additional financial investments and far more work. However, the

benefits of these investments are well worth the cost for first time contenders facing operators with

many years of experience.

The explicit goal of combat robotics is to immobilize the opponent robot before it can do the

same to one’s own robot. There are many ways to accomplish this, from attacking with blunt force,

to trying to impale key mechanisms of the robot, to lifting and getting the opponent robot stuck in an

immobile position. The key to a successful combat robot is having both powerful offensive and

defensive strategies.

Table 1 below shows a trade off analysis of the typical combat robotics weapon systems.

This was used as a research tool to determine the best combat weapon system for the autonomous

robot.

11

12

Table 1: Comparison of Combat Robot Types

Style Pros Cons

Wedge - Structural integrity provides an excellent
defense
- Simple design
- Able to get under an opponent to drive them
into the wall or other hazards
- Can incorporate other design features

- Must have a skilled operator
- Weak offense
- Weak matchup against other
wedges
- Some competitions have banned
combat bots that only use wedges

Spinner - Weapon serves as both offense and defense
- Low skill floor for operator

- Potential to damage itself
- Difficult to design
- Difficult to upgrade with
additional features

Drum - High destructive potential
- Allows for a sturdy frame
- Room for additional features

- Difficult to control

Crusher - Potential to cause structural damage via
blunt force
- Allows for a sturdy frame

- Requires a skilled operator to
operate manually
- Hard to stay within weight limits

Flipper - Potential to flip other robots over for
damage or immobilization
- Room for additional features

-Requires a skilled operator to
operate manually
-Weapon presents a vulnerable spot
-Pneumatics limited by air tank size

Hybrid - Flexibility and ability to have multiple
weapon systems

-Complex design
-Hard to keep within weight
restrictions

 [TT]

13

The proposed combat robot will be operated autonomously, with an option to be controlled

manually if desired. A major component in creating autonomous robots is sensing their surrounding

environment. The sensors used for this project will be a LiDAR sensor, two ultrasonic sensors, an

encoder, and a gyroscope.

LiDAR (light detection and ranging) sensors use light in the form of pulsed lasers to detect

an object’s distance from the sensor. When it emits a laser, the laser will hit an object and that object

will reflect the laser back to the sensor. The sensor measures the time it takes to receive the

reflection, and uses the speed of light to calculate the distance of the object from the sensor. LiDAR

sensors emit approximately 150,000 pulses per second, so they can quickly build a “map” of their

surroundings [2]. This sensor is a good fit for the combat robot, as it provides a point cloud from

which an algorithm can identify both the opponent and the walls of the arena. The only downside to

the LiDAR is that it does not return data at short distances, so the ultrasonic sensors must be used to

complement it.

The ultrasonic sensors are similar to the LiDAR sensor in the sense that they measure their

distance from an object, but they use sound instead of light. They send out sound waves at a specific

frequency and wait for the waves to hit an object and bounce back. Based on the time the sound

waves take to bounce back and the speed of sound, the ultrasound sensors can determine their

distance from the object that the sound waves hit. These sensors may not work if they hit an object

that deflects or absorbs sound [3]. Additionally, the sound waves may not return to the sensors if

they are reflected at an odd angle. As a result, the ultrasonic sensors will be used by the combat bot

only for short range detection in cases where the LiDAR fails to return data.

The encoder will be used to determine how fast the weapon system is spinning. It is made up

14

of a wheel with markers on it and a laser that returns a pulse each time a marker spins past it. As the

weapon is spinning, it spins the encoder wheel with it and produces pulses at a rate proportional to

the weapon rotations per minute. From there, it can be determined what the full speed of the weapon

is in terms of pulses and from there the half capacity speed can be calculated. This information will

later be used in the autonomous algorithm to decide whether the robot is ready to attack.

The gyroscope will be used to determine if the robot is right side up. If the robot is upside

down, the autonomy is not guaranteed to function properly. If this happens, the robot will give a

signal to the driver to switch to manual mode until it is right side up again. Instructions from the

controller are automatically inverted as long as the robot is upside down.

[FA, TT]

Almost all combat robots at RoboGames are manually-controlled, which means their

effectiveness in competition is severely limited by the skill level and reaction time of their operator.

This flaw in current designs exists because the algorithms and sensors needed to have a competitive

combat robot are quite complex. If one were to write such an algorithm that could effectively

perform combat maneuvers and pair it with an adequate sensor array and a robust, reliable combat

robot, the resulting combination could yield a very competitive end product.

This bot is similar to existing designs because it still has all of the components of a

traditional combat bot. It will have a weapon as well as all of the required electrical engineering

components. For example, it will have motors, actuators, controls, power supplies, programming,

wireless communications, etc. It is also similar to other self-driving (autonomous) vehicles because

it will use LiDAR sensors to accomplish autonomy. Note that, although LiDAR is constantly used

for self-driven vehicles, autonomous combat bots are not the standard. Most combat bots have an

15

operator who controls the bot during a fight. Thus, making the bot autonomous is different from

existing technologies.

[TT]

There are current patents on robotic systems that are similar to the one in which the team will

create. Some interesting ideas can be drawn from these innovative patents.

One of these was a patent on a combat robot which used a walking system instead of the

conventional wheels. This was proposed because many combat robots fail because they lose mobility

due to there fragile rubber wheels being destroyed. The weapon system on this robot was of the

flipping kind [7].

Another patent of interest is a combat robot which uses infrared emitters to sense its

surroundings and autonomously detect and attack the opponent robot. This robot was a wedge

combat design. The design mitigates the weakness of external vulnerable wheels by having them

enclosed within its chassis [8].

A further patent found was on a flipping- wedge hybrid robotic combat system. This patent

only discussed the weapon system design. The robot was of a wedge shape, and could function as a

wedge combat robot to attack other bots by flipping them over and preventing their mobility. (If the

wheel system was on the bottom of there robot). The more interesting weapon of this system was a

flipping arm. The combat robot would have a arm which could reach under other robots and then lift

at high velocity to send the opponent in the air. This system was driven by pneumatic circuits. It

would used a compressed gas tank to drive the arm with a very large torque to flip the other robot

[9].

16

1.4 Proposed Design Overview

For offense, the combat robot will use the drum method, which involves an upward spinning

horizontal tube with extensions used to hit and possibly throw the opponent robot. This drum will be

in combination with a wedge. Hybrid combat robots are often not used because of complexity of

design but having a mechanical subteam will allow the team to make a more complex and effective

weapon system. Most notably, the drum method is also used by Touro Maximus, a long time

contender and multiple time finalist in combat robotics tournaments. The wedge method was used

by the winning RoboGames combat robot Original Sin. By combining these two weapon systems

and having a fully autonomous robot, it can outperform its opponents. By using autonomy, this

method can be further enhanced to make sure the weapon system turns to face the opponent as fast

as possible, and can follow ideal intercept and escape paths.

On the defensive side, it is a clear advantage to have a robot that can withstand being flipped.

Robots that can operate on their back usually recover more effectively from being tossed as well.

However, the design should also focus on a hard outer shell that resists damage to both blunt and

sharp attacks. Autonomy can also help defensively, by allowing the robot to sense in all directions

where the opponent is and turn to face the opponent with the weapon system before the opponent

can strike from behind or from the side.

[FA]

The team has found that LiDAR is the best sensing technology for automated driving of

combat robots. In 3D applications, it uses a laser beam to scan the environment with very high

accuracy, and as a result is highly suited for estimating shapes of objects [10]. The data returned by

17

LiDAR can be interpreted as a 3D point cloud, where clusters of detected points form objects. In the

arena, this 3D point cloud will show the outline of each wall, along with an outlying cluster of points

where the opponent is. The closest point of any wall as well as the closest point of the opponent will

be used to autonomously decide navigation.

Internally, LiDAR works by using a rotating mirror system to take panoramic picture data. It

is controlled by motors and rotary encoders that determine the tilt of the mirrors used to take the

pictures [12]. This mechanical complexity along with the large amount of data processing make this

very expensive. Smaller, cheaper versions are used in mobile robots such as Aethon's autonomous

TUG robots used in hospitals [13].

18

The goal of the autonomous system is to drive the robot better than a user would. Higher

complexity locomotion algorithms will be used to give the combat robot a significant edge above all

manual robots. This will be done by implementing two algorithms for movement. The first being a

intercept or escape algorithm. The second being an algorithm that utilizes the robot’s weapon design,

which will attempt to keep the defensive wedge pointed at the opponent at all times.

The intercept or escape algorithm will determine if the robot should be avoiding or attacking

the opponent. This will be dependent on if the chosen drum is at a sufficient velocity, or at least will

be at sufficient velocity by the time it reaches the opponent. If the robot’s drum weapon is at a

acceptable speed, or the opponent is far enough away, the robot will use a simple tracking algorithm

and traverse directly toward the opponent..

When the drum is not at full speed, and the opponent is nearby, the combat robot will use the

escape algorithm. This algorithm is based on an optimal escape pattern in which the trajectory vector

is set perpendicular to the current locomotion vector of the opposing robot. This will successfully

escape the opponents so the drum weapon can obtain optimal speed. These algorithms will

outperform manual operators as long as the speed of the robot is near or above the opponent. The

full algorithm is shown below in figure 1.

The opponent facing tracking algorithm will implement a defensive strategy used by human

wedge operators. The strategy is to keep the wedge always facing the opponent. This will cause the

attacking opponent to drive on top of the wedge, and potentially flip over, when attempting to

attack. While on top of the autonomous combat robot, the attacking robot’s weapon system is less

likely to hit the autonomous robot. Also giving it an opening to attack using the drum weapon.

19

20

Figure 1: Autonomy Locomotion Algorithm.
[CH]

21

1.5 Marketing Requirements

The marketing requirements for the combat robot system are as follows:

1. The robot shall operate autonomously.

2. The sensor system shall read environment data to be sent to the autonomy system.

3. The autonomy system shall be able to differentiate between the arena walls and the enemy.

4. The autonomy system shall be able locate the enemy with respect to itself.

5. The autonomy system shall be able to make a fight or flight decision.

6. The autonomy system shall output a recommended location where the robot should travel.

7. The recommended location shall include the orientation to keep the enemy in front of the

robot when possible.

8. The autonomy system shall easily interface with the system of The Motion and Actualization

Team.

9. The autonomous system shall indicate if the system is still functional.

10.The robot shall be compliant with all other RoboGames rules [15].

[SV, FA, CH, TT, TW, SV, HL]

22

1.6 Objective Tree

The objective tree for the fully autonomous combat robot is shown in Figure 2 below. This

was derived from the marketing requirements.

Figure 2: Combat Robot Autonomy Objective Tree.

[SV]

23

2.0 Design Requirements
Table 2: Design Requirements

Marketing
Requirement

Engineering Requirements Justification

9, 8 1. The autonomous system shall visually
report the functionality of the
autonomous system.

The operator of the robot must
know when to switch to manual
mode if the autonomous system
fails.

3,4 2. The autonomous system shall visually
report if an enemy is detected.

This should be done in order to
verify that the movements/actions
of the robot are due to the
autonomous system.

5 3. The autonomous system shall visually
report whether it is in fight, flight, or
search mode.

This should be done in order to
verify that the robot is following
the correct course of action.

11 4. The robot and autonomy system shall
operate for three minutes without
interruption.

The length of a RoboGames
match is three minutes. The robot
must operate for the entirety of
the match.

1,6,7,8 5. The autonomous system shall
continuously output the recommended
angle and speed (to the motion and
actualization system).

The autonomous system should
instruct the motor control system
to charge or search for an
opponent when possible (see 6).

1,10 6. The autonomous system shall sense
and output a signal if the robot gets
flipped over from its original orientation
(to the motion and actualization system).

The autonomous system should
stop operation if the robot has
been flipped over.

1,2,4 7. The autonomy system shall be able to
detect an object up to 12 meters away
(within the field of view).

In order to effectively defend
itself from an attacker and to
effectively attack, the robot needs
at least twelve meters to prepare.

1,2,4 8. The system must report the location
of a detected enemy with no more than 5
degrees error from 20 feet away.

In order to accurately determine
the recommended location, the
robot needs to know where the
enemy is.

1,7 9. The autonomous system shall The robot needs to be ready to

24

initialize within 60 seconds of the robot
being powered up.

defend/attack at the start of the
match.

11 10. The autonomous system shall weigh
less than 6 pounds.

The robot shall be classified as a
60 lb combat bot and the rest of
the components have been allotted
the other 54 lbs.

11 11. The emergency stop shall power off
and stop the autonomous system within
60 seconds.

RoboGames rules state that the
robot should be powered off
completely within sixty seconds.

8 12. The system shall have overcurrent
protection on each board for 110% of
the max current.

In order to protect the rest of the
robot from malfunction, the robot
shall not be allowed to draw more
current than the power supply can
provide.

8 13. The system shall operate on less
than 144 watts.

The power supply is to be able to
supply 144 to the autonomous
system.

1,5 14. Robot shall not engage enemy unless
the weapon ready signal has been
received.

In order to effectively attack an
enemy, the weapon needs to have
enough momentum to do damage.

3.0 Accepted Technical Design

The sections below show system block diagrams broken down by sections.

[HL]

25

3.1.1 System Level 0 Block Diagram with Functional Requirement Table

Figure 3: DT7A Autonomous System Block Diagram

[HL]

The level 0 functional requirement table, indicating the top-level inputs and outputs of the
fully autonomous combat robot, as shown in Table 3 below.

Table 3: Level 0 Functional Requirement Table

Module Combat Robot

Inputs ● LiDAR Input Signal
● Ultrasonic Sensor Input Signal
● Motor Encoder Input Signal
● Gyroscope Input Signal

Outputs ● Recommended Position for Robot Output: UART (output to the
controller board from DT07B)

● Functionality Output: LED Light

Functionality Determines the recommended position for the robot using an algorithm that
uses the data from the sensors. This system also determines and indicates
whether the autonomous system (as a whole) is functioning.

[FA, CH, HL]

26

3.1.2 Hardware Level 1 Block Diagram with Functional Requirement Table

The level 1 block diagram, which is an expansion of the level 0 diagram in Figure 2, is

shown in Figure 4.

Figure 4: Level 1 Combat Robot Block Diagram.

[CH, HL]

27

The level 1 functional requirement table, indicating the second-level inputs and outputs of the fully

autonomous combat robot, as shown in tables 4 and 5 below.

Table 4: Hardware Level 1 Sensor Array Functional Requirement Table.

Module Robot Sensor System

Inputs ● Sensor Input Signals

Outputs ● Proximity and Orientation data

Functionality Senses the location of the opposing robot and nearby walls. Outputs this
information to the Navigation Center.

[HL]
Table 5: Hardware Level 1 Robot Control Center Functional Requirement Table.

Module Robot Navigation Center

Inputs ● Proximity and Orientation data
● Orientation
● Encoder Feedback

Outputs ● Recommended Position
● Autonomous Enable/Emergency Stop

Functionality Processes data from sensor system and makes autonomous fight or flight
decisions. Produce a recommended location and orientation signal to send to
controller.

[FA, CH]

The second level hardware diagram for the autonomous section of the combat robot is shown

below. Items the left of the green dotted line are components of design team 7Bs system in which we

will interact with.

28

3.1.3 Hardware Level 2 Block Diagram with Functional Requirement Table

Figure 5 - Hardware Level 2 Block Diagram

29

[CH,HL]

Table 6: Ultrasonic Sensor Functional Requirement Table.

Module Ultrasonic Sensor

Inputs ● Environmental data

Outputs ● Varying Pulse

Functionality The ultrasonic sensor measures distances by sending an ultrasonic pulse and
waiting for an echo. The sensor then returns a value that reflects the time
between the emitted pulse and the echo.

[HL]

Table 7: Gyroscope Functional Requirement Table.

Module Gyroscope and Accelerometer Sensor

Inputs ● Environmental data

Outputs ● I2C axial rotation and acceleration data

Functionality The gyroscope and accelerometer will give data feedback on the robots motion
containing G force information and angular rate information.

[CH]

Table 8: Lidar Sensor Functional Requirement Table.

Module Lidar Sensor

Inputs ● Environmental data
● PWM Motor Control Signal

Outputs ● Angle and distance over UART

Functionality The Lidar sensor measures distances using a laser and measuring the
reflection. It uses the reflection to detects object and output an angle and
distance of their location.

[HL]

30

Table 9: Sensor System Functional Requirement Table.

Module Sensor System Microcontroller

Inputs ●

Outputs ● Enemy Position and Wall Position: UART (To the Robot Navigation
Center),

● Gyroscope and Accelerometer data in UART
● Ultrasonic sensor data

Functionality

[CH]

Table 10: Overcurrent Protectors Functional Requirement Table.

Module Overcurrent Protectors (One for each board)

Inputs ● Voltage from battery

Outputs ● Separate power supply for the navigation and sensor boards

Functionality The overcurrent protectors break the circuit if the boards draw more than their
allotted current.

[HL]

Table 11: Level 2 Voltage Regulators Functional Requirement Table.

Module 3.3 V And 5 V Voltage Regulators

Inputs ● 24 volt input

Outputs ● 3.3 volt and 5 volt outputs

Functionality The voltage regulators take a 24 volt input and regulate it down to 3.3 v and 5
v to power the sensors and microcontrollers.

[HL]

31

Table 12: Level 2 LED Lights Functional Requirement Table.

Module LED Lights

Inputs ● Microprocessor outputs

Outputs ● LED lights

Functionality The LED lights are used to visually indicate the autonomy status, enemy
detection, fight or flight and missing signal.

[HL]

Table 13: Sensor System Functional Requirement Table.

Module Navigation/Sensor System Microcontroller

Inputs ● Sensor Input Signal: UART from Lidar, Pulse for Ultrasonic, and I2C
Gyroscope

● Motor Encoder Input Signal

Outputs ● Recommended angle in UART
● Recommended speed setting in UART
● If the robot is right side up (Manual override is needed if the robot is

flipped)

Functionality The navigation/sensor system microcontroller will process the proximity data
from the sensors. It will differentiate between the enemy and walls. The
microcontroller will determine if high or low speed should be used and a angle
to travel.

[CH]

32

3.1.4 Hardware Level 3 Diagram (Schematic Design)

The schematic of the sensor and navigation board is shown below. The microprocessor will

be programed in C.

Analysis on the clock cycle level lets us conclude that all of the Sensor and Navigation

systems processing could be completed on one PIC32MZEF processor due to its speed and storage.

With the speed of the processor being 252MHz, the time required for each navigation loop is

estimated below:

● Read from LiDAR (50ms)

● Process LiDAR data (<1ms, 100 cycles)

● Check gyroscope (<1ms, 100 cycles)

● Check ultrasonics (if necessary) (1ms - 18.5ms, time hi and time low)

● Check encoders (if necessary) (<1ms, 100 cycles)

● Make path decision (<1ms, 100 cycles)

● Update current path (<1ms, 100 cycles)

All of these times add up to less than 50ms, with the fast speed of the processor this allows us

to complete all of the other processes while reading from the LiDAR. Further analysis has been done

in calculations section 3.5.4. Based on these calculations, the baud rate required of the sensors is at

least 20 MHz, the processor will accommodate this because its equivalent speed of reading is

63MHz.

Analysis was also done on the system to choose the processor. For ease of communications

33

and programming the same processor will be used for both design team 07A and 07B. Therefore, the

processor chosen must be capable of performing the necessary tasks for each team independently.

The full combat robot system of both teams requires 3 UART modules (to communicate between the

boards and to the LiDAR), a I2C module (to communicate to the accelerometer/gyroscope), 8 PWM

capture compare modules (for the RC receiver and to drive the LiDAR motion), preferable USB

capable (for troubleshooting), and at least 102,400 bytes of RAM flash memory (to store the sensor

data). This is because the lidar needs to store 3200 bytes and we would like to store at least 4

samples in order to plan a path. This is calculated from 800 bytes of distance data plus 800 bytes of

angle data per scan, multiplied by two additional data arrays to store processed data which will

enable the robot to locate the enemy. This results in 3200 bytes, or 25,600 bits.

Multiple processors were found to meet these requirements. PIC32MX795F512H-80V

appeared that it could meet our requirements, but its processors speed is only 80 MHz and its

memory is 128 KB. The PIC32MZ2048EFH064 was chosen because for only $1.85 more the

processor is faster, 252Mhz, and the memory is larger, 512 KB.

LED’s 0 through 8 will be used as indicators. LED 0-4 will report if the functionality (if

autonomy can or cannot be used), if a enemy is detected, is none of the sensors are giving

meaningful feedback, and if the system is in fight or flight mode. LED 9 an 10 will be used to

indicate if our board has power.

The accelerometer outputs data in I2C to the processor. This will be interpreted and used to

determine how the robot will need to move it's motors to navigate. If the robot is upside down the

motor directions will need flipped. The LiDAR, which communicates in UART, will be used to

determine the enemies location. The ultrasonic sensor, which returns a hi to low time ratio, will be

34

used as a redundancy to determine the enemies location. The signal from the ultrasonic sensor will

be interpreted using the input compare module and a timer to calculate the ratio between hi and low

time. This will let us determine the distance measured to the detected object.

The sensor and navigation board will communicate to The Motion and Actualization Team in

UART. The RX of our system will connect the the TX of there system and vice versa. An external

oscillator will be used on the processor due to the sensitivity to UART to timing and the inaccuracy

of internal oscillator in microcontrollers.

The Motion and Actualization Team will be providing power to the system. The power to our

Sensor/Navigation board will be fully isolated from The Motion and Actualization Team’s system.

There is DC/DC isolation on the power source and isolation on the signals between the 2 boards. A

backplane/card edge system will be used to interface with the hardware of The Motion and

Actualization Team systems.

The sensors connections will be broken out directly to each sensor for testing purposes. In the

final system they will be then routed through the backplane of 7B’s system to the sensors to decrease

noise and save space from less wiring needed.

All motion will cease within a minute after the emergency stop is pressed on The Motion and

Actualization Team’s system. This was tested by powering the lidar down while at full spin. It took

2.5 seconds for the lidar to stop rotating when powered down at a full speed spin. A USB interface

has been added to the board for the purpose of ease of reading date from the sensor/navigation

microcontroller. Unused pins are labeled with their communication protocol peripheral or other

functionality for ease of addition of other hardware to the sensor and navigation schematic.

The minimum schematic for the microcontroller is shown below is shown below. The

35

decoupling capacitors are implemented in the circuit schematic that was designed. The suggested

value of 0.1uF is used. This operates as a low pass filter. The trace has around 0.1 ohms, this results

in a filter with a corner frequency of 16 MHz.

Figure 6: Minimum Hardware Schematic

[CH]

36

Figure 7: Schematic Diagram of the Sensor And Navigation System

[CH]

37

The board file is shown below for the sensor and navigation board.

Some specific notes about this design are, the current through the indicator LEDs are set to

15mA to light the leds bright enough to be seen across the room. This was calculated with the

equation below.

6.67≃90OhmsR = ILED

V −VS LED = 0.015
3.3−2 = 8

95≃400OhmsR = ILED

V −VS LED = 5−2
0.005 = 3

The current for the pullup of the master clear was calculated to be 0.33mA, this is a high

enough current for the CMOS technology of our microcontroller.

3.1.5 Hardware Simulation

There was a concern that the optical isolation would add too much delay to the uart

communication. Because of this a simulation was performed on the optical isolation in order to

optimize the circuit for low delay. This simulation is shown below. R1 sets the forward current of

38

the diode to 60mA as specified from the datasheet. A 2.2k standard pull up is used for the signal. R2

sets the sensitivity of the phototransistor. The capacitor is added to prevent unwanted turn ons due to

noise from outside light or electromagnetic interference.

39

Figure 8: Optoisolator simulation

The design implemented on the eagle schematic is shown below. GND is our isolated

systems ground and AGND is the ground from the robot power system.

[CH]

40

Figure 9: Optical Isolator Design

The Harmony Configurator system add on to MPLABX is a configuration system created by

microchip in order to program the PIC32 series processors. Microchip has limited support for

programming these series of processors using the classical coding method of configurations words

and bitwise setting of configuration registers. To solve this problem Microchip created the Harmony

Configuration system, which creates the configuration files for the PIC32 processors. The Harmony

graphical user interface for the PIC32MZ2048EFH064 is show below in figure 10. This GUI allows

the user to configure the pins with the desired internal peripherals.

41

Figure 10: Harmony GUI for PIC32MZ2048EFH064

42

3.1.6 Hardware Testbench

In order to begin Hardware test benching a 100 pim PIM with the PIC32MZEF family

microcontroller. This PIM was plugged into the Explorer 16/32 board. The processor then was

configured using the Harmony Configurator shown below in Figure 11.

[CH]

Figure 11: 100 pin PIM for PIC32MZEF

The microcontroller and its configuration using Harmony was tested by blinking a LED. This

was successful. The next task was to begin testing with the sensors. Configuration with the LiDAR

was determined.

In order to spin the lidar, it was necessary to generate a 25kHz PWM signal using the

PIC24MZ PIM on an Explorer 16/32 board. To accomplish this, a timer was set up using a 16

prescaler on the 252MHz clock. This gave a timer frequency of 252MHz/16= 15MHz. This timer

43

was then used to set up a PWM with a period of 600 timer counts which is equivalent to a period of

25kHz. An output compare pulse width of 360 timer counts yields a 60% duty cycle which is

nominal for 10Hz rotation of the RPLiDAR A3. Figure 12 shows the PWM output of the Explorer

16/32 board.

Figure 12: 60% duty cycle PWM output, 25kHz

[SV, HL, CH]

44

3.1.7 Software Level 0 Block Diagram and Functional Requirements Table

The software system is described in the preceding sections. The zero level block diagram is
shown below.

Figure 13: Software Level 0 Block Diagram

[FA]

Table 14: Software System Functional Requirement Table

Module Software System

Inputs ● Environment

Outputs ● Recommended Robot Action

Functionality The software system must collect data from the environment and use that data to
determine a course of action for the robot. A course of action will be a direction
and speed for the robot to travel and will constitute a fight or flight command.

[FA, SV]
3.1.8 Software Level 1 Block Diagram and Functional Requirement Tables

Figure 14: Software Level 1 Block Diagram

[SV]

45

Table 15: Read Sensor Functional Requirement Table

Module Read Sensor Data

Inputs ● Environment

Outputs ● Raw Sensor Data

Functionality The software must first collect raw data from all of the sensors monitoring the
environment around the robot

[SV]
Table 16: Locate Opponent and Walls Functional Requirement Table

Module Locate Opponent and Walls

Inputs ● Raw Sensor Data

Outputs ● Location Data

Functionality The software must process the raw sensor data to differentiate the opponent
from the arena walls and thereby locate the opponent. The location of the walls
are also determined here.

[SV]
Table 17: Determine Course of Action Functional Requirement Table

Module Determine Course of Action

Inputs ● Location Data

Outputs ● Recommended Robot Action

Functionality The software must make a fight or flight decision based on the location of the
enemy and the walls in the arena. The software will output where it thinks the
robot should move.

[SV]

46

3.1.9 Level 2 Software Block Diagram

Figure 15: Software Level 2 Block Diagram
[FA, SV]

Table 18: Initialize Sensors Requirement Table

Module Initialize Sensors

Inputs ● Machine Power Up

Outputs ● Sensors Ready Signal

Functionality When the machine is powered up, start up the LiDAR and ultrasonic sensors.
Proceed once data can be reliably read from both.

[FA, SV]
Table 19: Read Data Functional Requirement Table

Module Read Data

Inputs ● Sensors Ready Signal
● Read Sensors Signal

Outputs ● Raw Sensor Data

Functionality Reads data from the LiDAR and ultrasonic sensors, first when the sensors are
started and again every time the current data has been processed. Returns raw
data from the sensors.

[FA, SV]

47

Table 20: Interpret Data Functional Requirement Table

Module Interpret Data

Inputs ● Raw Sensor Data

Outputs ● Wall or Opponent Location

Functionality Checks the LiDAR data for anomalies and analyzes their shape to determine if it
is looking at a wall or an opponent. For each anomaly, the data is sent to be
processed for decision making.

[FA, SV]
Table 21: Calculate Fight or Flight Functional Requirement Table

Module Calculate Fight or Flight

Inputs ● Wall or Opponent Location

Outputs ● Location Data
● Speed Data

Functionality If an opponent is detected, makes decision to either run towards or away from it.
If a wall is detected, makes decision to turn away from it. If nothing is detected,
makes decision to turn until something is detected.

[FA]
Table 22: Update Encoded Location/Speed Functional Requirement Table

Module Update Encoded Location/Speed

Inputs ● Location Data
● Speed Data

Outputs ● Encoded Location/Speed Data
● Read Sensors Signal

Functionality Convert the location and speed decision to a UART data packet to be read by
Team B. Read updated data from the sensors.

[FA]

48

3.1.10 Level 3 Software Block Diagram

Figure 16: Level 3 Software Block Diagram

[FA]

49

3.2.0 Sensor Block Diagrams and Software

3.2.1 Main Program Software

main.c: controls the operation of the program

#include <stddef.h> // Defines NULL

#include <stdbool.h> // Defines true

#include <stdlib.h> // Defines EXIT_FAILURE

#include "system/common/sys_module.h" // SYS function prototypes

int AssertFlag;

int main (void)

{

 /* Initialize all MPLAB Harmony modules, including application(s). */

 // Start: //goto jump for timer done

 SYS_Initialize (NULL);

 while (true)

 {

 /* Maintain state machines of all polled MPLAB Harmony modules. */

 SYS_Tasks ();

 }

 /* Execution should not come here during normal operation */

 return (EXIT_FAILURE);

}

app.h: header file for UART communication

#include <stdint.h>

#include <stdbool.h>

#include <stddef.h>

50

#include <stdlib.h>

#include "system_config.h"

#include "system_definitions.h"

#include "system_config/default/system_config.h"

#include "autonomy.h"

#include "lidar.h"

#include "led.h"

#include "ultrasonic.h"

#include "gyroscope.h"

#include "timers.h"

typedef enum

{

/* Application's state machine's initial state. */

APP_STATE_INIT=0,

APP_STATE_SERVICE_TASKS,

/* TODO: Define states used by the application state machine. */

} APP_STATES;

typedef struct

{

 /* The application's current state */

 APP_STATES state;

 /* TODO: Define any additional data used by the application. */

} APP_DATA;

void APP_Initialize (void);

void APP_Tasks(void);

51

app.c: source file for UART communication

#include "app.h"

APP_DATA appData;

lidarData lData;

short uartAngle;

short uartDrive;

DRV_HANDLE teraHandle;

DRV_HANDLE teraHandle1;

DRV_USART_TRANSFER_STATUS status;

DRV_USART_TRANSFER_STATUS status1;

size_t count;

size_t count1;

char send[100];

short sendB[2] = {1,0};

char receive[100];

timers_t ms100;

int sample = 0;

void APP_Initialize (void)

{

 /* Place the App state machine in its initial state. */

 SYS_INT_Enable();

 DRV_IC0_Start();

 DRV_IC1_Start();

 DRV_IC2_Start();

 DRV_TMR0_Start();

 DRV_TMR1_Start();

 DRV_TMR2_Start();

 DRV_OC0_Start();

52

 DRV_OC1_Start();

 DRV_OC2_Start();

 setTimerInterval(&ms100, 256);

 ledAllOn();

 delay(1000);

 DRV_USART_Initialize;

 ledAllOff();

 initLidar();

 initUltras();

 initGyro();

 appData.state = APP_STATE_INIT;

}

void APP_Tasks (void)

{

 /* Check the application's current state. */

 switch (appData.state)

 {

 /* Application's initial state. */

 case APP_STATE_INIT:

 {

 bool appInitialized = true;

 if (appInitialized)

 {

 appData.state = APP_STATE_SERVICE_TASKS;

 }

 break;

 }

53

 case APP_STATE_SERVICE_TASKS:

 {

 // while (1) {

 int counter = millis();

 //send[0] = readAngleX();

 //Gets information about opponent and walls via LiDAR

 statusOn();

 //LED_debug1On();

 lData = getLidarData();

 statusOff();

 //LED_debug1Off();

 //Autonomous path decision

 path dir = getPath(lData);

 if (dir.angle == 0) {

 uartAngle = 183;

 } else {

 uartAngle = dir.angle;

 }

 uartDrive = dir.drive;

 //BSP_Initialize();

 // LED_debug2On();

 int num1=getUltrasData(0);

 int num2=getUltrasData(1);

54

 //LED_debug2Off();

 //LED_debug3On();

 int num3=976562.5*0.5/(Get_Encoder_Data ());

 //LED_debug3Off();

 //LED_debug4On();

 int num4 = readAngleX();

 //LED_debug4Off();

 //int num4 = 0;

 //lData = getLidarData();

 int num5 = lData.opponentDistance;

 int num6 = lData.opponentAngle;

 sendB[0] = dir.angle;

 //int num7 = (int)dir.angle;

 //int num8 = (int)dir.drive;

 // PORTE = ~lData.opponentDistance>>5;

 /*

 if(sendB[0]>=179)

 {

 sendB[0] = 1;

 }

 if(sample >= 10)

 {

 sendB[0]+=1;

 sample = 0;

 }

 sample++;

 * */

 //sendB[0]=183;//dir.angle; //num7;

 sendB[1]=dir.drive; //num8;

55

 sprintf(send,"Ultrasonic Right = %i Ultrasonic Left = %i Encoder = %i RPM Gyroscope =

%i Lidar = %i Counter = %i UARTB = %i %i\n\r",num1,num2,num3,num4,num6,counter,sendB[0],sendB[1]);

 teraHandle = DRV_USART_Open(DRV_USART_INDEX_0, DRV_IO_INTENT_WRITE); //open tera

usart channel

 count = DRV_USART_Write(teraHandle, send, strlen(send)); //write to tera

 DRV_USART_Close(teraHandle); //discard tera handle

 /*

 teraHandle=DRV_USART_Open(DRV_USART_INDEX_0,DRV_IO_INTENT_READWRITE);

 count = DRV_USART_Read(teraHandle, receive, 1); //write to tera

 DRV_USART_Close(teraHandle); //discard tera handle

 // Encodes UART

 // Software patch for errors caused by sending 0 over UART

 */

 teraHandle1 = DRV_USART_Open(DRV_USART_INDEX_2, DRV_IO_INTENT_WRITE); //open tera

usart channel

 count1 = DRV_USART_Write(teraHandle1, sendB, 4); //write to tera

 DRV_USART_Close(teraHandle1); //discard tera handle

 //ledAllOff();

 // }

 break;

 }

 /* TODO: implement your application state machine.*/

 /* The default state should never be executed. */

 default:

 {

 SYS_RESET_SoftwareReset();

 /* TODO: Handle error in application's state machine. */

 break;

56

 }

 }

}

autonomy.h: header file for fight or flight decision

#include "lidar.h"

#include "system_config.h"

#include <stdint.h>

#include <stdbool.h>

#include "system_config/default/system_config.h"

typedef struct {

 short angle;

 short drive;

} path;

path getPath(lidarData lData);

autonomy.c: source file for fight or flight decision

#include "app.h"

#include "autonomy.h"

#include "gyroscope.h"

#include "ultrasonic.h"

#include "encoder.h"

#include "led.h"

#include "system_config/default/system_config.h"

#include "system_config.h"

57

// Keeps track of where to search if LiDAR goes missing

unsigned short lastKnownAngle;

unsigned short lastKnownDistance;

unsigned short forwardCounter;

path getPath(lidarData lData){

 path dir;

 // Sends designated signal to indicate upside down

 if (isUpsideDown() == true) {

 dir.angle = 183; //Manual

 dir.drive = 183;

 return dir;

 }

 ///Preprocessing LiDAR data

 // Converts angles 0-90 to 90-180

 lData.opponentAngle += 90;

 // Converts angles 270-359 to 0-89

 if (lData.opponentAngle >= 360) lData.opponentAngle -= 360;

 // Contrains angles between 1-179 to avoid complications

 if (lData.opponentAngle == 0) lData.opponentAngle = 1;

 if (lData.opponentAngle >= 180) lData.opponentAngle = 179;

 // If the enemy could not be spotted with LiDAR

 if (lData.opponentDistance == 0) {

 forwardCounter += 1;

 //flightOff();

 // If the enemy is spotted by ultrasonics, go straight forward

 if (isUltraClose() ||

 ((lastKnownDistance < 1000) && (forwardCounter < 10) &&

 ((lastKnownAngle >= 80) || (lastKnownAngle <= 100)))) {

58

 enemyOn();

 missingOff();

 dir.angle = 90;

 dir.drive = 182; //Forward

 return dir;

 } else { // If nothing is detected, go into search mode

 flightOn();

 enemyOff();

 missingOn();

 dir.drive = 181; //Search

 if (lastKnownAngle < 90) dir.angle = 1;

 else dir.angle = 179;

 flightOff();

 }

 } else {

 // If the enemy is found, go into fight or flight mode

 forwardCounter = 0;

 enemyOn();

 missingOff();

 // Fight logic

 if ((isWeaponReady()) || (lData.opponentDistance > 10000)) {

 flightOff();

 dir.angle = lData.opponentAngle;

 dir.drive = 182;

 // Flight logic

 } else {

 flightOn();

 dir.drive = 184;

 dir.angle = 90;

 // Make an 80 degree turn away from opponent

 //if (lData.opponentAngle < 90) {

 // dir.angle = lData.opponentAngle + 80;

 //} else {

59

 // dir.angle = lData.opponentAngle - 80;

 //}

 }

 }

 lastKnownAngle = dir.angle;

 if (lData.opponentDistance != 0) {

 lastKnownDistance = lData.opponentDistance;

 }

 return dir;

}

timers.h: header file for internal clocks and timers

#include <stdbool.h>

#include <stdlib.h>

 typedef struct {

 unsigned long timerInterval;

 unsigned long lastMillis;

 } timers_t;

bool timerDone(timers_t * t);

void setTimerInterval(timers_t * t, unsigned long interval);

void resetTimer(timers_t * t);

void globalTimerTracker();

unsigned long millis(void);

void delay(unsigned int val);

void isTimedOut(void);

timers.c: source file for internal clocks and timers

60

#include "timers.h"

unsigned long globalTime;

timers_t timeOut;

unsigned long millis(void)

{

 return globalTime;

}

bool timerDone(timers_t * t)

{

 if(abs(millis() - t->lastMillis) > t->timerInterval)

 {

 t->lastMillis=millis();

 return true;

 }

 else

 {

 return false;

 }

}

void setTimerInterval(timers_t * t, unsigned long interval)

{

 t->timerInterval= interval;

}

void resetTimer(timers_t * t)

{

 t->lastMillis=millis();

}

61

//Call this function in your timer interupt that fires at 1ms

void globalTimerTracker()

{

 globalTime++;

}

timers_t time;

void delay(unsigned int val)

{

 setTimerInterval(&time,val);

 int i;

 while(!timerDone(&time))

 {

 i++;

 }

}

 // Triggers if the component fails to connect

void isTimedOut() {

 setTimerInterval(&timeOut,100);

 while(!timerDone(&timeOut))

 missingOn();

 missingOff();

}

led.h: header file for enabling and disabling LEDs

void ledAllOff(void);

void ledAllOn(void);

void binaryOutput(unsigned short input);

void enemyOn(void);

void flightOn(void);

62

void missingOn(void);

void statusOn(void);

void debug1On(void);

void debug2On(void);

void debug3On(void);

void debug4On(void);

led.c: source file for enabling and disabling LEDs

#include "led.h"

#include "app.h"

#include "system_config.h"

void ledAllOn(void)

{

 LED_EnemyOn();

 LED_FlightOn();

 LED_MissingOn();

 LED_StatusOn();

 LED_debug1On();

 LED_debug2On();

 LED_debug3On();

 LED_debug4On();

}

void ledAllOff(void)

{

 LED_EnemyOff();

 LED_FlightOff();

 LED_MissingOff();

 LED_StatusOff();

 LED_debug1Off();

63

 LED_debug2Off();

 LED_debug3Off();

 LED_debug4Off();

}

void binaryOutput(unsigned short input)

{

 if (input & 0b0001)

 {

 LED_debug1On();

 }

 if (input & 0b0010)

 {

 LED_debug2On();

 }

 if (input & 0b0100)

 {

 LED_debug3On();

 }

 if (input & 0b1000)

 {

 LED_debug4On();

 }

}

void enemyOn(void)

{

 LED_EnemyOn();

}

void enemyOff(void)

{

 LED_EnemyOff();

}

void flightOn(void)

{

64

 LED_FlightOn();

}

void flightOff(void)

{

 LED_FlightOff();

}

void missingOn(void)

{

 LED_MissingOn();

}

void missingOff(void)

{

 LED_MissingOff();

}

void statusOn()

{

 LED_StatusOn();

}

void statusOff()

{

 LED_StatusOff();

}

void debug1On(void)

{

 LED_debug1On();

}

void debug1Off(void)

{

 LED_debug1Off();

}

void debug2On(void)

{

 LED_debug2On();

65

}

void debug2Off(void)

{

 LED_debug2Off();

}

void debug3On(void)

{

 LED_debug3On();

}

void debug3Off(void)

{

 LED_debug3Off();

}

void debug4On(void)

{

 LED_debug4On();

}

void debug4Off(void)

{

 LED_debug4Off();

}

66

3.2.2 LiDAR Sensor

A LiDAR emits an infrared laser which bounces off of the nearest object to measure the

distance to the nearest object. The robot will use a rotating LiDAR sensor to locate objects in the

arena, specifically the enemy. The requirements for the LiDAR are listed in Table 23, and are based

on the simulations detailed in 3.5.1 and 3.5.2 below

Table 23:LiDAR Sensor Requirements

 Desired RPLiDAR A3

Maximum sensing distance 17m 20m

Minimum sensing distance 3m 1m

Sample Rate 8kHz 16kHz

Cost As small as possible $600

Table 23 shows that the RPLiDAR A3 fulfills the basic requirements for resolution and

sensing distance. It was selected because it was the cheapest available option that fulfilled the

minimum requirements.

As the RPLiDAR A3 spins, it returns ordered pairs consisting of the distance to the nearest

object, as well as the angle to that object. The robot will be programmed to process this data to

search for anomalies consistent with an opponent in the arena. Figure 17 shows a flow chart

representing the LiDAR interface process.

[SV]

67

[SV]

Figure 17: RPLiDAR Interface Flowchart

Below, the software is shown for the LiDAR sensor. The software shows the process for reading

values and determining an opponent angle and distance.

68

lidar.h: header file for the LiDAR sensor

#include "system_config.h"

#include "system_config/default/system_config.h"

// Return the closest point of the opponent and the wall

// If none detected, return 0

typedef struct {

 unsigned short opponentAngle;

 unsigned short opponentDistance;

 unsigned short wallAngle;

 unsigned short wallDistance;

} lidarData;

void firstFilter(int sampleSpace);

void secondFilter();

void thirdFilter(int sampleSpace);

void isLidarTimedOut();

lidarData getLidarData(void);

void setLidarData(short oppAng, short oppDist, short wallAng, short wallDist);

void initLidar(void);

lidar.c: source file for the LiDAR sensor

#include "lidar.h"

#include "app.h"

#include "led.h"

// Example data

lidarData lidar = {0, 0, 0, 0};

69

//global variables

DRV_HANDLE lidarHandle;

DRV_HANDLE teraHandle2;

DRV_USART_TRANSFER_STATUS status;

timers_t timeOut;

unsigned char readBuffer[1852];

unsigned char writeBuffer[2];

size_t count_1, total;

int count1, corner_index, front_corner_index;

unsigned short extractAngle[369];

unsigned short extractDistance[369];

unsigned short firstDifference[369];

unsigned short secondDifference[5];

unsigned short outputAngleDistance[4] = {0,0,0,0};

unsigned short wallDistance = 0, wallAngle = 0;

unsigned short startArray = 0xa520;

int start = 0,found_A_Quality_Index = 0, n_samples_apart;

int sample_threshold[10] = {600, 600, 300, 400, 500, 600, 900, 1000, 1300, 600};

/*int sample_threshold_2 = 600;

int sample_threshold_3 = 300;

int sample_threshold_4 = 400;

int sample_threshold_5 = 500;

int sample_threshold_6 = 600;

int sample_threshold_7 = 900;

int sample_threshold_8 = 1000;

int sample_threshold_9 = 1300;

70

int sample_threshold_10 = 600;*/

int Found_Enemy = 0;

int j;

void firstFilter(int sampleSpace) {

 for(j = sampleSpace + 4; j < 360; j++)

 {

 //we suspect a zeroed value is why we returned zero

 if(extractDistance[j]>extractDistance[j-sampleSpace] && extractDistance[j-sampleSpace]!=0)

 {

 firstDifference[j] = extractDistance[j]-extractDistance[j-sampleSpace];

 //secondDifference[j] = extractDistance[j-1]-extractDistance[j-2];

 if(firstDifference[j]>sample_threshold[sampleSpace - 1])

 {

 outputAngleDistance[0] = extractAngle[j];

 outputAngleDistance[1] = extractDistance[j-sampleSpace];

 corner_index = j;

 n_samples_apart = sampleSpace;

 }

 }

 }

}

void secondFilter(){

 secondDifference[0] = extractDistance[corner_index - n_samples_apart] -

extractDistance[corner_index - (n_samples_apart+1)];

 secondDifference[1] = extractDistance[corner_index - n_samples_apart] -

extractDistance[corner_index - (n_samples_apart+2)];

 secondDifference[2] = extractDistance[corner_index - n_samples_apart] -

71

extractDistance[corner_index - (n_samples_apart+3)];

 secondDifference[3] = extractDistance[corner_index - n_samples_apart] -

extractDistance[corner_index - (n_samples_apart+4)];

 secondDifference[4] = extractDistance[corner_index - n_samples_apart] -

extractDistance[corner_index - (n_samples_apart+5)];

 if(secondDifference[0]<50||secondDifference[0]>65435

 || secondDifference[1]<100||secondDifference[1]>65435

 || secondDifference[2]<100||secondDifference[2]>65435

 || secondDifference[3]<100||secondDifference[3]>65435

 || secondDifference[4]<100||secondDifference[4]>65435)

 {

 Found_Enemy = 1;

 }

}

/*

void thirdFilter(int sampleSpace){

 for(j = corner_index; j > sampleSpace + 1; j--)

 {

 if(extractDistance[j]>extractDistance[j + sampleSpace] &&

 extractDistance[j + sampleSpace] != 0)

 {

 firstDifference[j] = extractDistance[j] -

 extractDistance[j + sampleSpace];

 if(firstDifference[j]>sample_threshold[sampleSpace - 1])

 {

 outputAngleDistance[2] = extractAngle[j];

 outputAngleDistance[3] = extractDistance[j + sampleSpace];

 front_corner_index = j;

 }

 }

72

 }

}

*/

// Triggers if the gyroscope fails to connect

void isLidarTimedOut() {

 size_t count_L;

 char send_L[100];

 DRV_HANDLE teraHandle_L;

 setTimerInterval(&timeOut,100);

 while(!timerDone(&timeOut)) {

 missingOn();

 sprintf(send_L,"Lidar Communication Timeout Inside While Loop");

 teraHandle_L = DRV_USART_Open(DRV_USART_INDEX_0, DRV_IO_INTENT_WRITE); //open tera usart

channel

 count_L = DRV_USART_Write(teraHandle_L, send_L, strlen(send_L)); //write to tera

 DRV_USART_Close(teraHandle_L); //discard tera handle

 }

 missingOff();

 sprintf(send_L,"Lidar Communication Timeout Outside While Loop");

 teraHandle_L = DRV_USART_Open(DRV_USART_INDEX_0, DRV_IO_INTENT_WRITE); //open tera usart channel

 count_L = DRV_USART_Write(teraHandle_L, send_L, strlen(send_L)); //write to tera

 DRV_USART_Close(teraHandle_L); //discard tera handle

}

// Temporary simulation until LiDAR is integrated

lidarData getLidarData(void) {

 int i,j,k,look,start_index;//,corner_index,front_corner_index;

 lidar.opponentAngle = 0;

 lidar.opponentDistance = 0;

 lidarHandle = DRV_USART_Open(DRV_USART_INDEX_1, DRV_IO_INTENT_READWRITE);

73

 if (start == 0)

 {

 start = 1;

 writeBuffer[0] = 0xA5;//scan request

 writeBuffer[1] = 0x20;

 count_1 = DRV_USART_Write(lidarHandle, writeBuffer, 2);

 }

 count_1 = DRV_USART_Read(lidarHandle, readBuffer, 1842);//store scan data

 //this would be where we make sure count = 1842 to verify a good write

 while(DRV_USART_TransferStatus(lidarHandle)==DRV_USART_TRANSFER_STATUS_RECEIVER_EMPTY);

 DRV_USART_Close(lidarHandle);//discard lidar handle

 //this for loop searches for a "quality type" byte by searching for even numbers

 for(i=1;i<1840-95;i++)

 {

 if(readBuffer[i]%2 == 0 && readBuffer[i+1]%2 == 1 &&

 readBuffer[i+5]%2 == 0 && readBuffer[i+6]%2 == 1 &&

 readBuffer[i+10]%2 == 0 && readBuffer[i+11]%2 == 1 &&

 readBuffer[i+15]%2 == 0 && readBuffer[i+16]%2 == 1 &&

 readBuffer[i+20]%2 == 0 && readBuffer[i+21]%2 == 1 &&

 readBuffer[i+25]%2 == 0 && readBuffer[i+26]%2 == 1 &&

 readBuffer[i+30]%2 == 0 && readBuffer[i+31]%2 == 1 &&

 readBuffer[i+35]%2 == 0 && readBuffer[i+36]%2 == 1 &&

 readBuffer[i+40]%2 == 0 && readBuffer[i+41]%2 == 1 &&

 readBuffer[i+45]%2 == 0 && readBuffer[i+46]%2 == 1 &&

 readBuffer[i+50]%2 == 0 && readBuffer[i+51]%2 == 1

)

74

 {

 found_A_Quality_Index = i;

 break;

 }

 }

 start_index = (found_A_Quality_Index%5)+1;

 j = 0;

 k = 0;

 //**//

 //**//

 //**** First Filter ****//

 //**//

 //**//

 //The first filter takes the difference between two neighboring samples. This

 //difference is compared to a threshold value. If the difference is greater

 //than the threshold value, an anomaly has been detected in the room which could

 //be an enemy robot. The threshold value is adjusted based on the number of

 //samples between the the two neighboring samples of interest.

 //high certainty sweep. checks for enemies with strictest criteria

 for(i=start_index;i<1840;i+=5)

 {

 extractAngle[j] = ((readBuffer[i+1]<<8) | readBuffer[i])>>7;//combine 2 bytes of angle data

from lidar

 extractDistance[j] = ((readBuffer[i+3]<<8) | readBuffer[i+2])>>2;//combine 2 bytes of

distance data from lidar

 if(extractAngle[j]>90 && extractAngle[j] < 270)

 {

75

 extractDistance[j] = 0;

 }

 if(j>=8 && extractDistance[j] != 0)//ignore first four samples

 {

 if(extractDistance[j]>extractDistance[j-4] && extractDistance[j-4]!=0)

 {

 firstDifference[j] = extractDistance[j]-extractDistance[j-4];

 //secondDifference[j] = extractDistance[j-1]-extractDistance[j-2];

 if(firstDifference[j]>sample_threshold[3])

 {

 outputAngleDistance[0] = extractAngle[j];

 outputAngleDistance[1] = extractDistance[j-4];

 corner_index = j;

 n_samples_apart = 4;

 }

 }

 }

 j++;

 k+=2;

 }

 j = 0;

 k = 0;

 int sampleSpace = 3;

 while(outputAngleDistance[1] == 0 && sampleSpace <= 9){

 firstFilter(sampleSpace);

 sampleSpace += 1;

 }

76

 /*

 if(outputAngleDistance[1] == 0)

 {

 for(j=9;j<360;j++)

 {

 if(extractDistance[j]>extractDistance[j-5] && extractDistance[j-5]!=0)//we suspect a

zeroed value is why we returned zero

 {

 firstDifference[j] = extractDistance[j]-extractDistance[j-5];

 //secondDifference[j] = extractDistance[j-1]-extractDistance[j-2];

 if(firstDifference[j]>sample_threshold_5)

 {

 outputAngleDistance[0] = extractAngle[j];

 outputAngleDistance[1] = extractDistance[j-5];

 corner_index = j;

 n_samples_apart = 5;

 }

 }

 }

 }

 if(outputAngleDistance[1] == 0)

 {

 for(j=9;j<360;j++)

 {

 if(extractDistance[j]>extractDistance[j-3] && extractDistance[j-3]!=0)//we suspect a

zeroed value is why we returned zero

 {

77

 firstDifference[j] = extractDistance[j]-extractDistance[j-3];

 //secondDifference[j] = extractDistance[j-1]-extractDistance[j-2];

 if(firstDifference[j]>sample_threshold_3)

 {

 outputAngleDistance[0] = extractAngle[j];

 outputAngleDistance[1] = extractDistance[j-3];

 corner_index = j;

 n_samples_apart = 3;

 }

 }

 }

 }

 if(outputAngleDistance[1] == 0)

 {

 for(j=10;j<360;j++)

 {

 if(extractDistance[j]>extractDistance[j-6] && extractDistance[j-6]!=0)//we suspect a

zeroed value is why we returned zero

 {

 firstDifference[j] = extractDistance[j]-extractDistance[j-6];

 //secondDifference[j] = extractDistance[j-1]-extractDistance[j-2];

 if(firstDifference[j]>sample_threshold_6)

 {

 outputAngleDistance[0] = extractAngle[j];

 outputAngleDistance[1] = extractDistance[j-6];

 corner_index = j;

 n_samples_apart = 6;

78

 }

 }

 }

 }

 if(outputAngleDistance[1] == 0)

 {

 for(j=11;j<360;j++)

 {

 if(extractDistance[j]>extractDistance[j-7] && extractDistance[j-7]!=0)//we suspect a

zeroed value is why we returned zero

 {

 firstDifference[j] = extractDistance[j]-extractDistance[j-7];

 //secondDifference[j] = extractDistance[j-1]-extractDistance[j-2];

 if(firstDifference[j]>sample_threshold_7)

 {

 outputAngleDistance[0] = extractAngle[j];

 outputAngleDistance[1] = extractDistance[j-7];

 corner_index = j;

 n_samples_apart = 7;

 }

 }

 }

 }

79

 if(outputAngleDistance[1] == 0)

 {

 for(j=12;j<360;j++)

 {

 if(extractDistance[j]>extractDistance[j-8] && extractDistance[j-8]!=0)//we suspect a

zeroed value is why we returned zero

 {

 firstDifference[j] = extractDistance[j]-extractDistance[j-8];

 //secondDifference[j] = extractDistance[j-1]-extractDistance[j-2];

 if(firstDifference[j]>sample_threshold_8)

 {

 outputAngleDistance[0] = extractAngle[j];

 outputAngleDistance[1] = extractDistance[j-8];

 corner_index = j;

 n_samples_apart = 8;

 }

 }

 }

 }

 //close enemy sweep. values for lidar tend to return more zero when very close. this sweep checks

for this scenario

 if(outputAngleDistance[1] == 0)

 {

 for(j=13;j<360;j++)

 {

 if(extractDistance[j]>extractDistance[j-9] && extractDistance[j-9]!=0)//we suspect a

zeroed value is why we returned zero

80

 {

 firstDifference[j] = extractDistance[j]-extractDistance[j-9];

 //secondDifference[j] = extractDistance[j-1]-extractDistance[j-2];

 if(firstDifference[j]>sample_threshold[8])

 {

 outputAngleDistance[0] = extractAngle[j];

 outputAngleDistance[1] = extractDistance[j-9];

 corner_index = j;

 n_samples_apart = 9;

 }

 }

 }

 }

 */

 //**//

 //**//

 //**** Second Filter ****//

 //**//

 //**//

 //The second filter is used to make sure a point of interest found by the first

 //filter is, indeed, an enemy robot. This is useful when the lidar is close to

 //a wall and two adjacent data points may have a large delta, giving a false

 //positive for an enemy robot. The filter takes the sample of interest from the

 //first filter and subtracts it from the preceding samples. If the preceeding

 //sample is on an opponent, we expect this delta to be smaller than if if were

 //on a wall

81

 if(outputAngleDistance[1] != 0)//one corner has been found, lets make sure it's the enemy, not

the wall

 {

 secondFilter();

 }

 //**//

 //**//

 //**** Third Filter ****//

 //**//

 //**//

 /*Here's where we check for the other corner of the enemy.

 *This is necessary to find out the full FOV that the enemy takes up.

 *We can then use this information to locate our robot within the arena,

 specifically to find the nearest wall/

 /*

 sampleSpace = 3;

 while(outputAngleDistance[1] == 0 && sampleSpace <= 9){

 thirdFilter(sampleSpace);

 sampleSpace += 1;

 }

 */

 if(outputAngleDistance[1] != 0)//one corner has been found, lets find the other one

 {

 for(j = corner_index;j>4;j--)

 {

 if(extractDistance[j]>extractDistance[j+3] && extractDistance[j+3]!=0)

 {

 firstDifference[j] = extractDistance[j]-extractDistance[j+3];

 //secondDifference[j] = extractDistance[j-1]-extractDistance[j-2];

82

 if(firstDifference[j]>sample_threshold[2])

 {

 outputAngleDistance[2] = extractAngle[j];

 outputAngleDistance[3] = extractDistance[j+3];

 front_corner_index = j;

 }

 }

 }

 }

 if(outputAngleDistance[1] != 0)//one corner has been found, lets find the other one

 {

 for(j = corner_index;j>5;j--)

 {

 if(extractDistance[j]>extractDistance[j+4] && extractDistance[j+4]!=0)

 {

 firstDifference[j] = extractDistance[j]-extractDistance[j+4];

 //secondDifference[j] = extractDistance[j-1]-extractDistance[j-2];

 if(firstDifference[j]>sample_threshold[3])

 {

 outputAngleDistance[2] = extractAngle[j];

 outputAngleDistance[3] = extractDistance[j+4];

 front_corner_index = j;

 }

 }

 }

 }

 if(outputAngleDistance[1] != 0)//one corner has been found, lets find the other one

 {

 for(j = corner_index;j>6;j--)

83

 {

 if(extractDistance[j]>extractDistance[j+5] && extractDistance[j+5]!=0)

 {

 firstDifference[j] = extractDistance[j]-extractDistance[j+5];

 //secondDifference[j] = extractDistance[j-1]-extractDistance[j-2];

 if(firstDifference[j]>sample_threshold[4])

 {

 outputAngleDistance[2] = extractAngle[j];

 outputAngleDistance[3] = extractDistance[j+5];

 front_corner_index = j;

 }

 }

 }

 }

 if(outputAngleDistance[1] != 0)//one corner has been found, lets find the other one

 {

 for(j = corner_index;j>7;j--)

 {

 if(extractDistance[j]>extractDistance[j+6] && extractDistance[j+6]!=0)

 {

 firstDifference[j] = extractDistance[j]-extractDistance[j+6];

 //secondDifference[j] = extractDistance[j-1]-extractDistance[j-2];

 if(firstDifference[j]>sample_threshold[5])

 {

 outputAngleDistance[2] = extractAngle[j];

 outputAngleDistance[3] = extractDistance[j+6];

 front_corner_index = j;

 }

84

 }

 }

 }

 //sort for min value if we found both ends of the robot

 if(outputAngleDistance[1] != 0 && outputAngleDistance[3]!= 0)

 {

 for (j=8; j<360;j++)

 {

 if(j > front_corner_index && j < corner_index)

 {

 //extractDistance[j]=0;

 extractDistance[j]=extractDistance[j-1];

 extractAngle[j]=extractAngle[j-1];

 }

 else if(extractDistance[j] == 0)

 {

 extractDistance[j] = extractDistance[j-1];

 extractAngle[j]=extractAngle[j-1];

 }

 else if(extractDistance[j]>extractDistance[j-1])

 {

 extractDistance[j]=extractDistance[j-1];

 extractAngle[j]=extractAngle[j-1];

 }

 wallDistance = extractDistance[j];

 wallAngle = extractAngle[j];

 }

85

 //wallDistance = extractDistance[j];

 //wallAngle = extractAngle[j];

 }

 look = 1;

 //PORTE = ~wallAngle;//outputAngleDistance[2];//>>5;

 if(Found_Enemy == 1)

 {

 enemyOn();

 lidar.opponentAngle = outputAngleDistance[0];

 if(outputAngleDistance[3] != 0)

 {

 lidar.opponentAngle = (outputAngleDistance[2] + outputAngleDistance[0])>>1;

 }

 lidar.opponentDistance = outputAngleDistance[1];

 //PORTE = ~outputAngleDistance[1]>>5;

 }

 else

 {

 enemyOff();

 //PORTE = 0xff;

 }

 //outputAngleDistance[0] = angle of enemy's back corner

 //outputAngleDistance[1] = distance of enemy's back corner

 //outputAngleDistance[2] = angle of enemy's front corner

 //outputAngleDistance[3] = distance of enemy's front corner

 /*

 teraHandle2 = DRV_USART_Open(DRV_USART_INDEX_0, DRV_IO_INTENT_WRITE);//open tera usart channel

 count_1 = DRV_USART_Write(teraHandle2, extractAngle, 738);//write to tera

86

 DRV_USART_Close(teraHandle2);//discard tera handle

*/

/*

 teraHandle = DRV_USART_Open(DRV_USART_INDEX_1, DRV_IO_INTENT_WRITE);//open tera usart channel

 count = DRV_USART_Write(teraHandle, extractDistance, 738);//write to tera

 DRV_USART_Close(teraHandle);//discard tera handle

 teraHandle = DRV_USART_Open(DRV_USART_INDEX_1, DRV_IO_INTENT_WRITE);//open tera usart channel

 count = DRV_USART_Write(teraHandle, outputAngleDistance, 4);//write to tera

 DRV_USART_Close(teraHandle);//discard tera handle

 */

 outputAngleDistance[0] = 0; // reset output

 outputAngleDistance[1] = 0;

 outputAngleDistance[2] = 0;

 outputAngleDistance[3] = 0;

 wallDistance = 0;

 wallAngle = 0;

 corner_index = 0;

 front_corner_index = 0;

 n_samples_apart = 0;

 Found_Enemy = 0;

 return lidar;

}

// Function to write LiDAR data

void setLidarData(short oppAng, short oppDist, short wallAng, short wallDist) {

 lidar.opponentAngle = oppAng;

 lidar.opponentDistance = oppDist;

 lidar.wallAngle = wallAng;

 lidar.wallDistance = wallDist;

}

87

// Initial simulated LiDAR data

void initLidar(void) {

 setLidarData(lidar.opponentAngle, lidar.opponentDistance,

 lidar.wallAngle, lidar.wallDistance);

}

88

3.2.3 Ultrasonic Sensor

The ultrasonic sensors use time propagation of acoustic waves in atmosphere to determine

distance. It does this by sending out a pulse and listening for its echo, then determining the time

difference between the pulse and echo. The time is then converted to a distance. The requirements

for the ultrasonic sensors in our application are as follows

Table 24: Ultrasonic Sensor Requirements

 Desired Parallax Ping

Maximum distance 40 cm 3 m

Minimum distance As small as possible 2 cm

The Parallax Ping Sensor was chosen over the other options due to price, simplicity of

integration and meeting all of our requirements. The 40 cm maximum distance requirement was due

to the fact that the chosen LiDAR sensor had limited reliability in this range. Due to this fact, it was

also required that the ultrasonic sensor have as small a minimum range as possible. The other

choices for ultrasonic sensors were not able to integrate with our microprocessor or were not

accurate at very close range.

The ultrasonic sensors are necessary as a backup for the LiDAR sensor in close proximity.

They will only be used when the LiDAR sensor data is inconclusive in determining whether there is

an enemy in front of the robot. The measurement of distance is not as important as knowing that

there is an enemy in view. When the robot makes decisions, it will try to use the LiDAR data before

89

it uses the ultrasonic data.

The chosen ultrasonic sensors are simple, robust and cost efficient sensors. They require one

power connection and one signal connection. The trigger pulse or chirp and the echo pulse are both

sent/received over the signal pin. The sensor communicates using only a varying width pulse. The

width of the pulse varies with a minimum width of 2 microseconds and a typical width of 5

microseconds. Using the output compare module of the microcontroller, a trigger pulse is sent. Then

using an input compare module, the width of the echo pulse is measured and that is converted to a

distance using an equation that will be found experimentally. Figure 19 shows the ultrasonic sensor

and the pulses that are sent and received. Figure 18 shows the pulses that are received and the trigger

pulse that is sent, this comes from the datasheet for the sensor.

Figure 18: Ultrasonic Pulses (From Datasheet)

Figure 19: Ultrasonic Sensor

90

Below, the software is shown for the ultrasonic sensor. The software shows the process for converting
the signal from the ultrasonic sensor, to a distance.

ultrasonic.h: header file for the ultrasonic sensors

#include <stdbool.h>

// Distance to opponent if detected

// Otherwise return 0

unsigned short getUltrasData(short select);

bool isUltraClose();

void setUltrasData(short data);

void initUltras(void);

ultrasonic.c: source file for the ultrasonic sensors

#include "ultrasonic.h"

unsigned short Thiu, Thiu2;

unsigned short Tru, Tru2;

unsigned short Tfu, Tfu2;

short ultras = 0;

unsigned short getUltrasData(short select) {

 if (select)

 {

 Tru2 = DRV_IC2_Capture16BitDataRead();

 Tfu2 = DRV_IC2_Capture16BitDataRead();

 if (Tfu2>Tru2)

 {

 Thiu2 = Tfu2 - Tru2;

 }

91

 return Thiu2;

 }

 else

 {

 Tru = DRV_IC1_Capture16BitDataRead();

 Tfu = DRV_IC1_Capture16BitDataRead();

 if (Tfu>Tru)

 {

 Thiu = Tfu - Tru;

 }

 return Thiu;

 }

}

bool isUltraClose() {

 if (((getUltrasData(0) > 0) && (getUltrasData(0) < 1500)) ||

 ((getUltrasData(1) > 0) && (getUltrasData(1) < 1500)))

 return true;

 else

 return false;

}

void setUltrasData(short data) {

 ultras = data;

}

void initUltras(void) {

 ultras = 0;

}

92

3.2.4 Encoder

The encoder sensor is necessary to measure the rotational speed of the weapon which

determines whether the robot is in fight or flight mode. The encoder must be attached to the shaft of

the weapon motor so that it rotates at the same speed as the weapon. It will then generate pulses at a

frequency proportional to the speed of the motor shaft. The CUI AMT103-V encoder was chosen

because it operates at 5V and is lightweight. When it spins, it generates 2048 pulses per revolution

(PPR). Per section 3.5.6, the threshold RPM to enter fight-mode is 825 RPM, thus the threshold

pulse frequency for fight-mode is: 2048 PPR*825 RPM/60s = 28,160 Hz. This will be measured

using an input compare module.

encoder.h: header file for the encoder that reads weapon speed

#include <stdbool.h>

bool isWeaponReady(void);

unsigned short Get_Encoder_Data (void);

encoder.c: source file for the encoder that reads weapon speed

#include "encoder.h"

#include "system/common/sys_common.h"

#include "app.h"

#include "system_definitions.h"

//int interruptNum = 1;

unsigned short Thie;

93

unsigned short Tre;

unsigned short Tfe;

unsigned short Get_Encoder_Data (void)

{

 Tre = DRV_IC0_Capture16BitDataRead();

 Tfe = DRV_IC0_Capture16BitDataRead();

 if (Tfe>Tre)

 {

 Thie = Tfe - Tre;

 }

 else

 {

 Thie=(65535-Tre)+Tfe;

 }

 return Thie;

}

bool isWeaponReady(void)

{

 if(Thie < 40000)

 { flightOff();

 return true;

 }

 else

 { //flightOn();

 return false; // CHANGE TO FALSE FOR DEMO

 }

}

94

[HL]

3.2.5 Gyroscope/Accelerometer

The gyroscope is necessary in order to tell if the robot has been flipped over. This will be

used by the Autonomous system and the control system (The Motion and Actualization Team). The

sensor that was chosen communicates using the I2C protocol. It will let the microprocessor know

whether gravity is up or down. If the robot has been flipped over, the motors will need to operate in

reverse and the autonomous system will be deactivated because it would not operate with the LiDAR

on the bottom. The accelerometer portion of the sensor is going to be used to assist the robot in

knowing if it has hit an opponent. This information can be incorporated in the fight or flight

algorithm as a double check in determining whether the robot should engage an enemy.

Figure 20: Gyroscope Diagram

[CH]

95

gyroscope.h: header file for the gyroscope

#define MPU6050_REG_ACCEL_XOFFS_H (0x06)

#define MPU6050_REG_ACCEL_XOFFS_L (0x07)

#define MPU6050_REG_ACCEL_YOFFS_H (0x08)

#define MPU6050_REG_ACCEL_YOFFS_L (0x09)

#define MPU6050_REG_ACCEL_ZOFFS_H (0x0A)

#define MPU6050_REG_ACCEL_ZOFFS_L (0x0B)

#define MPU6050_REG_GYRO_XOFFS_H (0x13)

#define MPU6050_REG_GYRO_XOFFS_L (0x14)

#define MPU6050_REG_GYRO_YOFFS_H (0x15)

#define MPU6050_REG_GYRO_YOFFS_L (0x16)

#define MPU6050_REG_GYRO_ZOFFS_H (0x17)

#define MPU6050_REG_GYRO_ZOFFS_L (0x18)

#define MPU6050_SAMPLE_RATE_DIVIDER (0x19)

#define MPU6050_REG_CONFIG (0x1A)

#define MPU6050_REG_GYRO_CONFIG (0x1B) // Gyroscope Configuration

#define MPU6050_REG_ACCEL_CONFIG (0x1C) // Accelerometer Configuration

#define MPU6050_REG_FF_THRESHOLD (0x1D)

#define MPU6050_REG_FF_DURATION (0x1E)

#define MPU6050_REG_MOT_THRESHOLD (0x1F)

#define MPU6050_REG_MOT_DURATION (0x20)

#define MPU6050_REG_ZMOT_THRESHOLD (0x21)

#define MPU6050_REG_ZMOT_DURATION (0x22)

#define MPU6050_REG_INT_PIN_CFG (0x37) // INT Pin. Bypass Enable Configuration

#define MPU6050_REG_INT_ENABLE (0x38) // INT Enable

#define MPU6050_REG_INT_STATUS (0x3A)

#define MPU6050_REG_ACCEL_XOUT_H (0x3B)

#define MPU6050_REG_ACCEL_XOUT_L (0x3C)

#define MPU6050_REG_ACCEL_YOUT_H (0x3D)

#define MPU6050_REG_ACCEL_YOUT_L (0x3E)

#define MPU6050_REG_ACCEL_ZOUT_H (0x3F)

96

#define MPU6050_REG_ACCEL_ZOUT_L (0x40)

#define MPU6050_REG_TEMP_OUT_H (0x41)

#define MPU6050_REG_TEMP_OUT_L (0x42)

#define MPU6050_REG_GYRO_XOUT_H (0x43)

#define MPU6050_REG_GYRO_XOUT_L (0x44)

#define MPU6050_REG_GYRO_YOUT_H (0x45)

#define MPU6050_REG_GYRO_YOUT_L (0x46)

#define MPU6050_REG_GYRO_ZOUT_H (0x47)

#define MPU6050_REG_GYRO_ZOUT_L (0x48)

#define MPU6050_REG_MOT_DETECT_STATUS (0x61)

#define MPU6050_REG_MOT_DETECT_CTRL (0x69)

#define MPU6050_REG_USER_CTRL (0x6A) // User Control

#define MPU6050_REG_PWR_MGMT_1 (0x6B) // Power Management 1

#define MPU6050_REG_WHO_AM_I (0x75) // Who Am I

#include <math.h>

#include <stdio.h>

#include <stdint.h>

#include <stdbool.h>

#include "system_config/default/framework/driver/i2c/drv_i2c_static_buffer_model.h"

typedef struct

{

 float XAxis;

 float YAxis;

 float ZAxis;

} Vector;

typedef struct

{

 bool isOverflow;

 bool isFreeFall;

 bool isInactivity;

97

 bool isActivity;

 bool isPosActivityOnX;

 bool isPosActivityOnY;

 bool isPosActivityOnZ;

 bool isNegActivityOnX;

 bool isNegActivityOnY;

 bool isNegActivityOnZ;

 bool isDataReady;

}Activites;

typedef enum

{

 MPU6050_CLOCK_KEEP_RESET = 0b111,

 MPU6050_CLOCK_EXTERNAL_19MHZ = 0b101,

 MPU6050_CLOCK_EXTERNAL_32KHZ = 0b100,

 MPU6050_CLOCK_PLL_ZGYRO = 0b011,

 MPU6050_CLOCK_PLL_YGYRO = 0b010,

 MPU6050_CLOCK_PLL_XGYRO = 0b001,

 MPU6050_CLOCK_INTERNAL_8MHZ = 0b000

} mpu6050_clockSource_t;

typedef enum

{

 MPU6050_SCALE_2000DPS = 0b11,

 MPU6050_SCALE_1000DPS = 0b10,

 MPU6050_SCALE_500DPS = 0b01,

 MPU6050_SCALE_250DPS = 0b00

} mpu6050_dps_t;

typedef enum

{

 MPU6050_RANGE_16G = 0b11,

 MPU6050_RANGE_8G = 0b10,

98

 MPU6050_RANGE_4G = 0b01,

 MPU6050_RANGE_2G = 0b00,

} mpu6050_range_t;

typedef enum

{

 MPU6050_DELAY_3MS = 0b11,

 MPU6050_DELAY_2MS = 0b10,

 MPU6050_DELAY_1MS = 0b01,

 MPU6050_NO_DELAY = 0b00,

} mpu6050_onDelay_t;

typedef enum

{

 MPU6050_DHPF_HOLD = 0b111,

 MPU6050_DHPF_0_63HZ = 0b100,

 MPU6050_DHPF_1_25HZ = 0b011,

 MPU6050_DHPF_2_5HZ = 0b010,

 MPU6050_DHPF_5HZ = 0b001,

 MPU6050_DHPF_RESET = 0b000,

} mpu6050_dhpf_t;

typedef enum

{

 MPU6050_DLPF_6 = 0b110,

 MPU6050_DLPF_5 = 0b101,

 MPU6050_DLPF_4 = 0b100,

 MPU6050_DLPF_3 = 0b011,

 MPU6050_DLPF_2 = 0b010,

 MPU6050_DLPF_1 = 0b001,

 MPU6050_DLPF_0 = 0b000,

} mpu6050_dlpf_t;

99

typedef enum{

 MPU6050_Address_1 = (0xD0),

 MPU6050_Address_2 = (0xD2)

}MPU6050_ADDRESS;

typedef struct{

 //private:

 Vector ra, rg; // Raw vectors

 Vector na, ng; // Normalized vectors

 Vector tg, dg; // Threshold and Delta for Gyro

 Vector th; // Threshold

 Activites a; // Activities

 float dpsPerDigit, rangePerDigit;

 float actualThreshold;

 bool useCalibrate;

 MPU6050_ADDRESS Address;

}MPU_6050_t;

MPU_6050_t MPU_1;

void isGyroTimedOut();

bool initGyro();

void setClockSource(MPU6050_ADDRESS address, mpu6050_clockSource_t source);

mpu6050_clockSource_t getClockSource(MPU6050_ADDRESS address);

void setScale(MPU_6050_t *mpu,mpu6050_dps_t scale);

mpu6050_dps_t getScale(MPU6050_ADDRESS address);

void setRange(MPU_6050_t *mpu,mpu6050_range_t range);

mpu6050_range_t getRange(MPU6050_ADDRESS address);

void setSleepEnabled(MPU6050_ADDRESS address, bool state);

bool getSleepEnabled(MPU6050_ADDRESS address);

int8_t readRegister8(MPU6050_ADDRESS address,uint8_t reg);

void writeRegister8(MPU6050_ADDRESS address,uint8_t reg, uint8_t value);

bool readRegisterBit(MPU6050_ADDRESS address,uint8_t reg, uint8_t pos);

100

void writeRegisterBit(MPU6050_ADDRESS address,uint8_t reg,

 uint8_t pos, bool state);

Vector readRawAccel(void);

Vector readScaledAccel(void);

double readAngleX(void);

bool isUpsideDown(void);

gyroscope.c: source file for the gyroscope

#include "gyroscope.h"

#include "timers.h"

timers_t sec, ms10, ledTimeout;

timers_t printTimer;

timers_t IMU_UpdateTimer;

timers_t timeOut;

// Starts up the gyroscope and tests an initial reading

bool initGyro() {

 // Use chosen scale enum, chosen range enum,

 // and MPU6050_ADDRESS for parameters

 MPU_6050_t *mpu = &MPU_1;

 mpu6050_dps_t scale = MPU6050_SCALE_250DPS;

 mpu6050_range_t range = MPU6050_RANGE_2G;

 MPU6050_ADDRESS mpua = MPU6050_Address_1;

 setTimerInterval(&ledTimeout,100);

 setTimerInterval(&printTimer,100);

 setTimerInterval(&IMU_UpdateTimer,10);

 setTimerInterval(&timeOut,500);

 // Set Address

 mpu->Address = mpua;

101

 // Reset calibrate values

 mpu->dg.XAxis = 0;

 mpu->dg.YAxis = 0;

 mpu->dg.ZAxis = 0;

 mpu->useCalibrate = false;

 // Reset threshold values

 mpu->tg.XAxis = 0;

 mpu->tg.YAxis = 0;

 mpu->tg.ZAxis = 0;

 mpu->actualThreshold = 0;

 // Set Clock Source

 setClockSource(mpu->Address,MPU6050_CLOCK_PLL_XGYRO);

 // Set Scale & Range

 setScale(mpu,scale);

 setRange(mpu,range);

 //SET THE SAMPLE RATE

 writeRegister8(mpu->Address, MPU6050_SAMPLE_RATE_DIVIDER, 9);

 //Config DLPF

 writeRegister8(mpu->Address, MPU6050_REG_CONFIG, 1);

 // Disable Sleep Mode

 setSleepEnabled(mpu->Address,false);

 // Tests the first reading of the accelerometer

 readRawAccel();

 return true;

}

102

// Sets the clock source of the MPU at initialization

void setClockSource(MPU6050_ADDRESS address, mpu6050_clockSource_t source) {

 uint8_t value;

 value = readRegister8(address,MPU6050_REG_PWR_MGMT_1);

 value &= 0b11111000;

 value |= source;

 writeRegister8(address,MPU6050_REG_PWR_MGMT_1, value);

}

// Gets the clock source of the MPU at initialization

mpu6050_clockSource_t getClockSource(MPU6050_ADDRESS address) {

 uint8_t value;

 value = readRegister8(address, MPU6050_REG_PWR_MGMT_1);

 value &= 0b00000111;

 return (mpu6050_clockSource_t)value;

}

// Sets the scale of the MPU at initialization

void setScale(MPU_6050_t *mpu,mpu6050_dps_t scale) {

 uint8_t value;

 switch (scale)

 {

case MPU6050_SCALE_250DPS:

 mpu->dpsPerDigit = .007633f;

 break;

case MPU6050_SCALE_500DPS:

 mpu->dpsPerDigit = .015267f;

 break;

case MPU6050_SCALE_1000DPS:

 mpu->dpsPerDigit = .030487f;

 break;

103

case MPU6050_SCALE_2000DPS:

 mpu->dpsPerDigit = .060975f;

 break;

default:

 break;

 }

 value = readRegister8(mpu->Address, MPU6050_REG_GYRO_CONFIG);

 value &= 0b11100111;

 value |= (scale << 3);

 writeRegister8(mpu->Address,MPU6050_REG_GYRO_CONFIG, value);

}

// Gets the scale of the MPU at initialization

mpu6050_dps_t getScale(MPU6050_ADDRESS address) {

 uint8_t value;

 value = readRegister8(address,MPU6050_REG_GYRO_CONFIG);

 value &= 0b00011000;

 value >>= 3;

 return (mpu6050_dps_t)value;

}

// Sets the range of the MPU at initialization

void setRange(MPU_6050_t *mpu,mpu6050_range_t range) {

 uint8_t value;

 switch (range) {

 case MPU6050_RANGE_2G:

 mpu->rangePerDigit = .000061f;

 break;

 case MPU6050_RANGE_4G:

 mpu->rangePerDigit = .000122f;

 break;

104

 case MPU6050_RANGE_8G:

 mpu->rangePerDigit = .000244f;

 break;

 case MPU6050_RANGE_16G:

 mpu->rangePerDigit = .0004882f;

 break;

 default:

 break;

 }

 value = readRegister8(mpu->Address, MPU6050_REG_ACCEL_CONFIG);

 value &= 0b11100111;

 value |= (range << 3);

 writeRegister8(mpu->Address, MPU6050_REG_ACCEL_CONFIG, value);

}

// Gets the range of the MPU at initialization

mpu6050_range_t getRange(MPU6050_ADDRESS address) {

 uint8_t value;

 value = readRegister8(address,MPU6050_REG_ACCEL_CONFIG);

 value &= 0b00011000;

 value >>= 3;

 return (mpu6050_range_t)value;

}

// Disables sleep mode at initialization

void setSleepEnabled(MPU6050_ADDRESS address, bool state) {

 writeRegisterBit(address,MPU6050_REG_PWR_MGMT_1, 6, state);

}

// Gets sleep mode at initialization

bool getSleepEnabled(MPU6050_ADDRESS address) {

 return readRegisterBit(address,MPU6050_REG_PWR_MGMT_1, 6);

}

105

// Read 8-bit from register

int8_t readRegister8(MPU6050_ADDRESS address,uint8_t reg) {

 resetTimer(&timeOut);

 char value;

 int8_t addr = reg;

 DRV_I2C_BUFFER_HANDLE handle = DRV_I2C0_Transmit(address,&addr,1,NULL);

 while(!(DRV_I2C0_TransferStatusGet(handle)==DRV_I2C_BUFFER_EVENT_COMPLETE ||

 DRV_I2C0_TransferStatusGet(handle)==DRV_I2C_BUFFER_EVENT_ERROR ||

 timerDone(&timeOut)));

 handle = DRV_I2C0_Receive(address,&value,1,NULL);

 while(!(DRV_I2C0_TransferStatusGet(handle)==DRV_I2C_BUFFER_EVENT_COMPLETE ||

 DRV_I2C0_TransferStatusGet(handle)==DRV_I2C_BUFFER_EVENT_ERROR ||

 timerDone(&timeOut)));

 return value;

}

// Write 8-bit to register

void writeRegister8(MPU6050_ADDRESS address,uint8_t reg, uint8_t value) {

 resetTimer(&timeOut);

 char byte[] = {reg, value};

 DRV_I2C_BUFFER_HANDLE handle = DRV_I2C0_Transmit (address,byte,2,NULL);

 while(!(DRV_I2C0_TransferStatusGet(handle)==DRV_I2C_BUFFER_EVENT_COMPLETE ||

 DRV_I2C0_TransferStatusGet(handle)==DRV_I2C_BUFFER_EVENT_ERROR ||

 timerDone(&timeOut)));

}

// Read register bit

bool readRegisterBit(MPU6050_ADDRESS address,uint8_t reg, uint8_t pos) {

 int8_t value;

 value = readRegister8(address,reg);

106

 return ((value >> pos) & 1);

}

// Write register bit

void writeRegisterBit(MPU6050_ADDRESS address,uint8_t reg, uint8_t pos,

 bool state) {

 int8_t value;

 value = readRegister8(address,reg);

 if (state)

 value |= (1 << pos);

 else

 value &= ~(1 << pos);

 writeRegister8(address,reg, value);

}

// Reads the raw accelerometer values from the gyro

Vector readRawAccel(void) {

 resetTimer(&timeOut);

 // Should only need to transmit the address of the first registers

unsigned char bytesTX = {MPU6050_REG_ACCEL_XOUT_H};

unsigned char bytesRX[6];

 DRV_I2C_BUFFER_HANDLE handle =

 DRV_I2C0_Transmit((&MPU_1)->Address,&bytesTX,1,NULL);

 while(!(DRV_I2C0_TransferStatusGet(handle) == DRV_I2C_BUFFER_EVENT_COMPLETE

 || DRV_I2C0_TransferStatusGet(handle) == DRV_I2C_BUFFER_EVENT_ERROR

 || timerDone(&timeOut)));

 handle = DRV_I2C0_Receive((&MPU_1)->Address,&bytesRX,6,NULL);

107

 while(!(DRV_I2C0_TransferStatusGet(handle) == DRV_I2C_BUFFER_EVENT_COMPLETE

 || DRV_I2C0_TransferStatusGet(handle) == DRV_I2C_BUFFER_EVENT_ERROR

 || timerDone(&timeOut)));

 (&MPU_1)->ra.XAxis = bytesRX[0] << 8 | bytesRX[1];

 (&MPU_1)->ra.YAxis = bytesRX[2] << 8 | bytesRX[3];

 (&MPU_1)->ra.ZAxis = bytesRX[4] << 8 | bytesRX[5];

 return (&MPU_1)->ra;

}

// Applies the scale to the raw accelerometer value

Vector readScaledAccel(void) {

 readRawAccel();

 (&MPU_1)->na.XAxis = (&MPU_1)->ra.XAxis * (&MPU_1)->rangePerDigit;

 (&MPU_1)->na.YAxis = (&MPU_1)->ra.YAxis * (&MPU_1)->rangePerDigit;

 (&MPU_1)->na.ZAxis = (&MPU_1)->ra.ZAxis * (&MPU_1)->rangePerDigit;

 return (&MPU_1)->na;

}

// Read the X angle from the accelerometer

double readAngleX(void) {

 Vector radians = readScaledAccel();

 return (180/3.141592) * radians.XAxis;

}

int gyroBuffer[10]; // Stores the last 10 accelerometer readings

int bufferTracker = 0; // Looping iterator for gyroBuffer

double xValue = 0; // Stores the X angle

double threshold = 90.0;// Maximum angle to consider robot upside down

// Read whether the gyro is upside down or not

108

bool isUpsideDown(void) {

 // Reads the accelerometer Z angle

 xValue = readAngleX();

 // Tests if the robot is upside down based on the threshold angle

 if (xValue > threshold) {

 gyroBuffer[bufferTracker] = 1;

 } else {

 gyroBuffer[bufferTracker] = 0;

 }

 // Counts how many of the last 10 readings were upside down

 int i, upsideDownCount = 0;

 for (i = 0; i < 10; i++){

 if (gyroBuffer[i] == 1) {

 upsideDownCount++;

 }

 }

 // Updates the iterator

 if (bufferTracker < 9) {

 bufferTracker++;

 } else {

 bufferTracker = 0;

 }

 // If at least half the readings show upside down, return true

 if (upsideDownCount == 10){

 return true;

 }

 // Otherwise return false

 return false;

}

[HL, CH]

109

3.2.6 Communication Protocols Software

For the four sensors, four different communication protocols are necessary. For the LiDAR,

UART and PWM are required. For the Gyroscope, I2C is required. Lastly, a standard digital pulse

signal is required for the Ultrasonic sensor and the encoder. MPlab Harmony simplifies the process

of assigning pins and using the communications protocols. Drivers for all the necessary protocols are

included with the configuration files.

For the communication protocol between the boards of the Autonomy System and the

Controls Actualization system, UART is used. UART is used because of its simplicity, speed and

because it is asynchronous. It is important that it is asynchronous because that simplifies the

connection between the two systems, and only requires two wires. In addition, it is also the protocol

that the LiDAR uses to send its data to the microprocessor. That helps with the design process

because the same skeleton UART program can be used for both parts of the system. The

microprocessor needs to have one UART input and one UART output.

Using an Explorer 16/32 board, preliminary bench tests have already been done. Using the

MPlab software with MPlab Harmony Configurator, key signals have already been simulated. The

first thing that was done was to use the UART functions to send and receive a message with the

processor. A simple program was found on the Microchip Developers Website that would accept a

character over UART and send back the next character. For our testing, we used the build in UART

to USB controller on the Explorer 16/32 board. This communicated with a laptop with Putty

installed on it. This program was not configured to use the PIC32MZEF100 so a custom

configuration file was made using the MPlab Harmony Configurator, allowing the program to

function correctly. This program was modified to do some other things as well, including flashing

110

LEDs and require buttons to do certain things.

[HL]

111

3.3.0 Bill of Material as Standing

3.3.1 Parts List

The parts list included shows all the parts required for the Autonomous System. This includes the

sensors and all the necessary components for the microcontroller board.

Table 25: Parts List/Materials Budget List

Qty
. Part Num. Description

Suggested
Vendor

Vendor Part
Num.

Catalog
#/Page
#/Webs
ite System

Unit
Cost

Total
Cost

1 RPLIDARA3 Lidar DFRobot DFR0583 Link Software
$
599.00

$
599.00

2 28015 Ultrasonic Parallax 28015-ND Link Software
$
29.99

$
59.98

1 SEN0142
6 DOF SENSOR -
MPU6050 Digi-Key

1738-1070-N
D Link Electrical

$
10.20

$
10.20

1 AMT103-V
Encoders Axial Encoder Kit
9 sleeve, base, cover Mouser

490-AMT103
-V Link Electrical

$
23.62

$
23.62

1 MA320019

PIC32MZ2048EFH100 -
Plug-In Module (PIM) (For
explorer 16/32 board) Digikey

MA320019-N
D Link Software

$
25.75

$
25.75

1 N/A Boards 5X5 OSH Park Link Electrical
$
120.00

$
120.00

1
PIC32MZ204
8EFH064 Microcontroller Digikey

PIC32MZ204
8EFH064-I/P
T-ND Link Electrical

$
12.23

$
12.23

1 N/A

Passive Components-
Resistors, Capacitors, etc.
(See Eagle Parts List)

ECE
Stock/Misc Electrical

$
65.00

$
65.00

 Total
$
915.78

112

https://www.dfrobot.com/product-1772.html
https://www.digikey.com/products/en/sensors-transducers/ultrasonic-receivers-transmitters/527?k=parallax%20ping
https://www.digikey.com/product-detail/en/dfrobot/SEN0142/1738-1070-ND/6588492
https://www.mouser.com/ProductDetail/CUI/AMT103-V?qs=sGAEpiMZZMvy8cVzszrmR8e0mUKZ7grDxypjjs%252bX2F6mEdlA4v%2fGBw%3d%3d
https://www.digikey.com/product-detail/en/microchip-technology/MA320019/MA320019-ND/5401241
https://www.digikey.com/product-detail/en/microchip-technology/MA320019/MA320019-ND/5401241
https://www.digikey.com/product-detail/en/microchip-technology/PIC32MZ2048EFH064-I-PT/PIC32MZ2048EFH064-I-PT-ND/5323563

[HL,CH, SV, FA]

3.3.2 Eagle BOM

Qty Value Device Package Parts

3 CONN_02 1X02 J2, J6, J9

1 CONN_03LOCK 1X03_LOCK J4

3 CONN_05LOCK 1X05_LOCK J1, J3, J5

10 LEDCHIP-LED0805 CHIP-LED0805 LED1, LED2,
LED3, LED4,
LED5, LED6,
LED7, LED8,
LED9, LED10

1 PCIFEMALE PCI-CONNECTOR LED

10 0.1uF Ceramic CAP0805 805 C5, C8, C35, C36,
C37, C38, C39,
C40, C41, C42

1 100 5% R-US_R0805 R0805 R12

1 10k 5% R-US_R0805 R0805 R13

2 10nF Ceramic CAP0805 805 C4, C9

2 120k, 5% R-US_R0805 R0805 R8, R16

2 1uF Ceramic CAP0805 805 C3, C7

4 2.2k R-US_R0805 R0805 R6, R7, R10, R11

1 270 R-US_R0805 R0805 R31

1 400 R-US_R0805 R0805 R14

2 470pF, 5%
Ceramic

CAP0805 805 C1, C2

113

2 4N27 4N27 DIP880W50P254L780H400
Q6B

U4-ISO3,
U4-ISO4

2 55, 5% R-US_R0805 R0805 R9, R15

8 90 R-US_R0805 R0805 R1, R2, R3, R4,
R5, R32, R66, R67

2 DC//DC-ISO DC//DC-ISO 8-SMD_5-LEADS U4-ISO1,
U4-ISO2

1 KC2520B KC2520B KC2520B U$9

1 PIC32MZ2048EF
H064

PIC32MZ2048EFH06
4

TQFP64 U$5

1 Prog M05LOCK_LONGPA
DS

1X05_LOCK_LONGPADS PIC_PROG1

1 SWITCH-MOME
NTARY-2SMD-4

SWITCH-MOMENTA
RY-2SMD-4

TACTILE_SWITCH_TALL S2

1 USB-MINIB-5PI
N

USB-MINIB-5PIN USB-MINIB U$11

114

3.4 Mechanical Sketch of System

Through research trade studies (see Appendix) and video research of various combat robotics

competitions, the team has decided to incorporate a hybrid wedge drum weapons system. This is

different than the original idea of a spinner. The team is currently still developing this design, and

researching other weapon design ideas. Wedge bots have a advantage over many because they can

get under the opponent robot and avoid the opponent's weapon or disabling them by flipping them.

The drawback of a wedge alone is if the enemy robot is designed to drive on both top and bottom the

wedge is not likely to disable the robot. Wedges alone generally do not inflict critical damage.

The proposed design will add a drum weapon mechanism to the wedge design. This will

allow the robot to inflict critical damage to the underside of the opponent’s robot. The team’s hybrid

design will have the robustness and defensive capabilities of a wedge, but have the damaging

capabilities of a drum weapon system. This is because, as mentioned previously, the wedge is good

primarily for avoiding the opponent's weapons and flipping the opponent but not inflicting damage to

destroy the opponent.

Using a wedge-drum hybrid will allow for all of the benefits of the wedge, but will also

provide a mechanism which will be able to actually disable or destroy the opposing robot. This

hybrid design will support the implementation of the intercept or escape algorithms. Figure 21 shows

is the original rough mechanical sketch of the system for the autonomous robot. In essence, this

automatic autonomous combat robot which will be fully autonomous will be a combination of a

drum weapon and a wedge weapon. Further explanation of the diagram can be found in table 3.

[CH]

115

Figure 21: Mechanical Sketch of System.

116

Table 26: Mechanical Components of System.

Label Component and Purpose

A LiDAR Sensor to enable the autonomous
combat robot to sense opposing robot and walls
of arena.

B Wedge. Serves as armor, defensive system, and
secondary weapon during combat.

C Drum. Serves as primary weapon for the
combat robot.

D Wheels. Currently a subject being further
investigated. The team may implement 360
degree wheels to keep the robot facing the
opponent at all times.

Figure 22 and 23 below shows the second rendition of the mechanical design. The team plans

on moving the LiDAR sensors into the chassis to protect them. The drum spinner has been made a

small width to enable fast speed up times and increase impact delivery force by minimizing the

distribution of the impact.

117

Figure 22: Updated Mechanical Design - Isometric View.

Figure 23: Updated Mechanical Design - Planar View

[FA, CH, AS, TT, TW]

118

Figure 24: Representation of Lidar Field of View

[SV]

119

3.5 Calculations

3.5.1 LiDAR Calculations

The size of the arena and the Lidar range. The RoboGames arena is 40 feet squared for a

maximum distance from opponent 56.56 feet.

ongestdistance 6.56f tl = 402 + 402 = 5
[HL]

The range of the Lidar sensor that we have chosen has a range of 25 meters or 82 feet for

white objects. The range of the sensor is lower (around 10 meters or 32 feet) for black objects. With

an average range of 20 meters, the enemy should always be in range.

ange 0meters 5feet 6.56f tR = 2 = 6 > 5
[HL]

120

Lidar’s ability to detect the opponent

Figure 25: Lidar FOV With Enemy at Max Distance

[SV]

121

Based on Figure 25, in a situation where the opponent is as far away in the arena as possible and is 2

feet wide:

an⁻¹() .023ºӨ = t 1
56 = 1

= 2.046 = minimum field of view occupied by enemy 2 * Ө º

Lidar sample rate = 16kHz

Lidar spin rate = 10Hz = 3600 Degrees/second

Therefore, 9 samples is the fewest number of Lidar samples per revolution that will see the

enemy, assuming the opponent is in field of view. Sample rate and spin rate of the Lidar are based

on the RPLIDAR A3 which was selected based on sample rate, working distance, and low cost. [16]

[SV]

122

3.5.2 Main Algorithm Simulation

In order to test the functionality of the main algorithm and the autonomous decision making

of the robot, all the sensor inputs have been replaced with simulated data. In Figure 26, the opponent

is “moving” in front of the robot until it is at a 90 degree angle. The robot’s decision making

responds accordingly:

Figure 26: Simulated Output of the Main Algorithm

This simulation demonstrates that the robot can appropriately follow the opponent at every

iteration of the loop. It also demonstrates a quick processing time, which is crucial in real combat as

most of the processing time will be consumed by reading sensors.

123

3.5.3 LiDAR Simulation & Data Processing

Figure 27 shows the robot in the arena in an ideal scenario:

Figure 27: Ideal Orientation, Full FOV

In Figure 27 the robot has it’s back to the wall, is in the middle of the wall, and can use its

full field of view to scan the empty arena. In this instance, the LiDAR will return the symmetrical

data array shown in Figure 28. Figure 29 shows this same scenario except with a 2’x2’ opponent

located in the middle of the opposite wall. Together, these two graphs show how an opponent will

be discernible from the arena walls. This can be done simply by subtracting one sample from its

neighboring sample. The largest delta in neighboring samples will be due to the enemy robot in the

ideal orientation.

124

Figure 28 (left) Empty Room, Figure 29 (right) Opponent On Opposite Wall

[SV]

Figure 29 shows the robot in the arena in a non-ideal orientation. Here, only half of the total field of

view can be utilized.

125

Figure 30: Non-ideal Orientation, Half FOV

[SV]

The data array resulting from the Figure 30 orientation is shown in Figure 31. Figure 32

shows the array that results from subtracting each sample in Figure 31 from it’s neighbor. Since

Figure 29 shows that there are delta values larger than two feet, it would not be possible to locate a

2’x2’ enemy when the robot is in this non-ideal orientation. More data processing must be performed

to locate the enemy.

126

Figure 31 (left) Non-ideal Orientation, Empty Room. Figure 32 (right) Neighboring Sample Delta Array

[SV]

In order to isolate the enemy, a logical test can be performed on each data point whose delta

was greater than 2 feet from its neighbor. Since an enemy is on average 2 feet wide, when a sample

has a delta greater than two feet, the next two samples should have deltas less than two feet. If this

is not the case, then the LiDAR is not measuring the enemy. Figure 31 shows the resulting data array

when this algorithm is applied to the array from Figure 32,with three enemies added to the arena.

127

Figure 33: Enemies Isolated From Walls, Non-ideal Orientation

 [SV]

Figure 33 shows three positive matches found, which correspond to the three simulated

enemies placed in the arena. This indicates that an enemy can be located anywhere in the arena even

when the LiDAR can only use half of its field of view.

Preliminary testing has begun with the RPLiDAR A3. Using the manufacturer's demo

application, raw data was collected, processed and displayed. The resulting chart, shown in Figure

34, is the LiDAR’s 360 degree output when it is spun on the top shelf in ASEC North 525. The

outlier samples on the 120 degree heading represent the samples taken through the open door.

128

Figure 34: RPLiDAR A3 Measurement Data

[SV]

3.5.3 Data Resolution Calculations

The output of the navigation board will be UART. The maximum amount of data that can be

transmitted in a single UART packet is 9 bits. In order for packets to be self-contained, both the

speed and direction angle should be incorporated in those 9 bits. Allocating one bit for speed (run or

turn in place), the remaining 8 bits will provide an angular resolution of:

 possible options.5628 = 2

Given that the LiDAR will have a 90o range of vision in each direction, 181 of the 256

possible options will be dedicated to provide an angle, from -90o to 90o, rounded to the nearest

degree. The angle data will be encoded in two’s complement binary notation.

[FA]

129

130

3.5.4 Computing Calculations

The processor needs to accommodate for the sampling frequency of each of the sensors. The

baud rates for the sensors are as follows.

Table 27: Baud Rate for Processor Calculations

Sensor Baud Rates

Lidar 256 kHz

Ultrasonic 500 kHz

Gyroscopic 1 MHz

The minimum processor speed that can be used is

= 20 MHzinimumprocessorspeed 0×max(baudrates)m = 2

The PIC32MZEF has a processor speed of 252MHz. The equivalent rate of reading data from a

sensor is one fourth of the processor speed. This is due to the architecture of the processor and the

cycles required to read data in machine code. This results in our processor able to read a

baud/sample rate up to 63 MHz.

[CH, HL]

The Lidar sensor rotates at a frequency of 10 Hz. This means that it passes every degree once

every 100 milliseconds. The average enemy robot might be moving at a speed of 10 miles per hour

or 14 feet per second. That means that the enemy could have moved 1.4 feet in between samples

from the lidar. This means that the autonomous system needs to be able to account for this time. The

change in angle can be calculated using Pythagorean theorem.

131

Figure 35: Distance Traveled Between Samples

If the enemy were to move 1.4 feet in between samples, at a distance of 5 feet the combat robot

would see a change in angle of 15.6 degrees.

[CH]

132

3.5.5 Power, Voltage and Current Calculations

The table below shows the current, voltage, and power for the components of the autonomy

system. The maximum power allowed for this system is 144W. As can be seen, the power of the

system is within acceptable range.

Table 28: Power Calculation Table

Device Voltage Current Power

Lidar 5 1.5 7.5

Ultrasonic Sensor 3.3 0.035 0.1155

Gyroscope and Accelerometer 3.3 0.004 0.0132

Microcontroller 3.3 0.3 0.99

LEDs 3.3 0.18 0.594

Supporting IC estimate 5 0.16 0.8

 Total 10.0127

From the equation . The total power is 10.01 watts.I P = V

The efficiency of most regulators are around 85%, this gives us 11.78 watts.

[CH]

133

3.5.6 Mechanical Calculations

In order to determine whether the weapon motor is running at half of its maximum RPM, an

encoder will be used. The weapon motor is going to be run at 70% the stall torque. The stall torque

for the motor is going to be around 3.521 newton meters. This came from the performance chart of

the motor. The maximum speed of the weapon will be 1650 rpm. For our algorithm we enter fight

mode when the rpm of the motor has reached 825 rpm.

The moment of inertia of the weapon can be estimated as a disk. The radius of the disk is 2.5

inches or 0.064 meters. The weight is 18 pounds or 8.165 kilograms. Therefore

omentof inertiaof theweapon≈ ass .165 .0167m 2
1 * m * r2 = 2

1 * 8 * 0.0642 = 0

The torque supplied by the motor then equals the moment of inertia times the angular acceleration.

ngularacceleration 10.84a = α = I
τ = 3.521

0.0167 = 2 rad
sec2

The threshold weapon speed to enter fight mode is 824 rpm. That is equivalent to 86.39 rad/sec.

Therefore it will take 409.7 milliseconds to get to full speed.

imehalfofmaximumspeed 09.7millisecondst = α
2

(maxspeed)

= 2
86.39

210.84 = 4
[HL, CH]

134

4.0 Schedule
4.1 Calendar View
September

● Weekly meetings will be established at a date and time that is convenient for the majority of
members. Items that will be discussed include administration, project progress, barriers to
progress and action items to be completed by the next weekly meeting.

● Alternate “work days” will be established where members will work on the design or
construction of the robot as a group.

● Reserve room space to store the robot and materials (most likely the design center).
● Have timeline planned out for the project.
● System architecture determined (hardware, mechanical, software)

October
● Preliminary design review.
● Design Calculations
● Electrical
● Mechanical

November
● Critical design review.
● Order all critical components for the robot.
● Hardware design and mechanical design complete
● Software Pseudocode design
● Present Design to department

December
● Fabrication begins
● Software design complete

January
● Preliminary testing
● Control integration

February
● Robot fabrication ends
● Finalize competition travel plans

March
● Final testing
● Code revisions

April
● Compete in the RoboGames

May
● Review and revise results from the competition
● Begin brainstorming ideas for the next year [CH,AS]

135

4.2 Gantt Chart Fall Semester

Task Name Duration Start Finish Resource Names
SDP1 Fall 2018
 Project Design

 Preliminary report 11 days Thu 9/6/18 Sun
9/16/18

Christopher Heldman,Fabian Ardeljan,Holden
LeBlanc,Stephen Veillette

 Cover page 11 days Thu 9/6/18 Sun
9/16/18

Christopher Heldman,Fabian Ardeljan,Holden
LeBlanc,Stephen Veillette

 T of C, L of T, L of F 11 days Thu 9/6/18 Sun
9/16/18

Christopher Heldman,Fabian Ardeljan,Holden
LeBlanc,Stephen Veillette

 Need 11 days Thu 9/6/18 Sun
9/16/18

Christopher Heldman,Fabian Ardeljan,Holden
LeBlanc,Stephen Veillette

 Objective 11 days Thu 9/6/18 Sun
9/16/18

Christopher Heldman,Fabian Ardeljan,Holden
LeBlanc,Stephen Veillette

 Background 11 days Thu 9/6/18 Sun
9/16/18

Christopher Heldman,Fabian Ardeljan,Holden
LeBlanc,Stephen Veillette

 Marketing Requirements 11 days Thu 9/6/18 Sun
9/16/18

Christopher Heldman,Fabian Ardeljan,Holden
LeBlanc,Stephen Veillette

 Objective Tree 11 days Thu 9/6/18 Sun
9/16/18

Christopher Heldman,Fabian Ardeljan,Holden
LeBlanc,Stephen Veillette

 Block Diagrams Level 0, 1, ... w/ FR tables 11 days Thu 9/6/18 Sun
9/16/18

Christopher Heldman,Fabian Ardeljan,Holden
LeBlanc,Stephen Veillette

 Hardware modules (identify designer) 11 days Thu 9/6/18 Sun
9/16/18

Christopher Heldman,Fabian Ardeljan,Holden
LeBlanc,Stephen Veillette

 Software modules (identify designer) 11 days Thu 9/6/18 Sun
9/16/18

Christopher Heldman,Fabian Ardeljan,Holden
LeBlanc,Stephen Veillette

 Mechanical Sketch 11 days Thu 9/6/18 Sun
9/16/18

Christopher Heldman,Fabian Ardeljan,Holden
LeBlanc,Stephen Veillette

 Team information 11 days Thu 9/6/18 Sun
9/16/18

Christopher Heldman,Fabian Ardeljan,Holden
LeBlanc,Stephen Veillette

 References 11 days Thu 9/6/18 Sun
9/16/18

Christopher Heldman,Fabian Ardeljan,Holden
LeBlanc,Stephen Veillette

 Preliminary Parts Request Form 11 days Thu 9/6/18 Sun
9/16/18

Christopher Heldman,Fabian Ardeljan,Holden
LeBlanc,Stephen Veillette

 Midterm Report 35 days Thu 9/6/18 Wed
10/10/18

 Design Requirements Specification 14 days Mon
9/17/18

Sun
9/30/18

Christopher Heldman,Fabian Ardeljan,Holden
LeBlanc,Stephen Veillette

 Midterm Design Gantt Chart 14 days Mon
9/17/18

Sun
9/30/18 Holden LeBlanc

 Design Calculations 24 days Mon
9/17/18

Wed
10/10/18

 Electrical Calculations 24 days Mon
9/17/18

Wed
10/10/18

 Communication 24 days Mon
9/17/18

Wed
10/10/18 Holden LeBlanc

 Computing 24 days Mon
9/17/18

Wed
10/10/18 Christopher Heldman,Holden LeBlanc

 Control Systems 24 days Mon
9/17/18

Wed
10/10/18

Christopher Heldman,Fabian Ardeljan,Holden
LeBlanc,Stephen Veillette

 Power, Voltage, Current 24 days Mon
9/17/18

Wed
10/10/18 Christopher Heldman

 Mechanical Calculations 24 days Mon
9/17/18

Wed
10/10/18

 Weight Requirements 24 days Mon
9/17/18

Wed
10/10/18 Christopher Heldman

 Block Diagrams Level 2 w/ FR tables &
ToO 7 days Mon

9/17/18
Sun
9/23/18

 Hardware modules (identify designer) 7 days Mon
9/17/18

Sun
9/23/18 Christopher Heldman,Holden LeBlanc

 Software modules (identify designer) 7 days Mon
9/17/18

Sun
9/23/18 Fabian Ardeljan,Stephen Veillette

136

 Block Diagrams Level 3 w/ FR tables &
ToO 7 days Mon

9/24/18
Sun
9/30/18

 Hardware modules (identify designer) 7 days Mon
9/24/18

Sun
9/30/18 Christopher Heldman,Holden LeBlanc

 Software modules (identify designer) 7 days Mon
9/24/18

Sun
9/30/18 Fabian Ardeljan,Stephen Veillette

 Midterm Design Presentations Part 1 1 day Thu
10/11/18

Thu
10/11/18

Christopher Heldman,Fabian Ardeljan,Holden
LeBlanc,Stephen Veillette

 Midterm Design Presentations Part 2 1 day Thu
10/18/18

Thu
10/18/18

Christopher Heldman,Fabian Ardeljan,Holden
LeBlanc,Stephen Veillette

 Project Poster 14 days Mon
10/8/18

Sun
10/21/18

Christopher Heldman,Fabian Ardeljan,Holden
LeBlanc,Stephen Veillette

 Secondary Parts Request Form 21 days Mon
9/17/18

Sun
10/7/18

Christopher Heldman,Fabian Ardeljan,Holden
LeBlanc,Stephen Veillette

 Final Design Report 52 days Mon
10/8/18

Wed
11/28/18

Christopher Heldman,Fabian Ardeljan,Holden
LeBlanc,Stephen Veillette

 Abstract 52 days Mon
10/8/18

Wed
11/28/18

Christopher Heldman,Fabian Ardeljan,Holden
LeBlanc,Stephen Veillette

 Software Design 31 days Mon
10/8/18

Wed
11/7/18

 General Communication Psuedocode 31 days Mon
10/8/18

Wed
11/7/18 Holden LeBlanc

 Algorithm Psuedocode 31 days Mon
10/8/18

Wed
11/7/18 Fabian Ardeljan

 Sensor Psuedocode 31 days Mon
10/8/18

Wed
11/7/18

 Lidar Psuedocode 31 days Mon
10/8/18

Wed
11/7/18 Stephen Veillette

 Gyroscope/Acellerometer Psuedocode 31 days Mon
10/8/18

Wed
11/7/18 Christopher Heldman

 Ultrasonic Psuedocode 31 days Mon
10/8/18

Wed
11/7/18 Holden LeBlanc

 Hardware Design 31 days Mon
10/8/18

Wed
11/7/18

 Sensor Board 31 days Mon
10/8/18

Wed
11/7/18

 Schematic 31 days Mon
10/8/18

Wed
11/7/18 Stephen Veillette

 Simulation 31 days Mon
10/8/18

Wed
11/7/18 Stephen Veillette

 Navigation Board 31 days Mon
10/8/18

Wed
11/7/18

 Schematic 31 days Mon
10/8/18

Wed
11/7/18 Christopher Heldman

 Simulation 31 days Mon
10/8/18

Wed
11/7/18 Christopher Heldman

 Parts Lists 52 days Mon
10/8/18

Wed
11/28/18

 Parts list(s) for Schematics 52 days Mon
10/8/18

Wed
11/28/18

Christopher Heldman,Fabian Ardeljan,Holden
LeBlanc,Stephen Veillette

 Materials Budget list 52 days Mon
10/8/18

Wed
11/28/18

Christopher Heldman,Fabian Ardeljan,Holden
LeBlanc,Stephen Veillette

 Proposed Implementation Gantt Chart 52 days Mon
10/8/18

Wed
11/28/18 Holden LeBlanc

 Conclusions and Recommendations 52 days Mon
10/8/18

Wed
11/28/18

Christopher Heldman,Fabian Ardeljan,Holden
LeBlanc,Stephen Veillette

 Final Design Presentations Part 1 1 day Thu
11/8/18

Thu
11/8/18

Christopher Heldman,Fabian Ardeljan,Holden
LeBlanc,Stephen Veillette

 Final Design Presentations Part 2 1 day Thu
11/15/18

Thu
11/15/18

Christopher Heldman,Fabian Ardeljan,Holden
LeBlanc,Stephen Veillette

 Secondary Parts Request Form 14 days Thu
10/4/18

Wed
10/17/18

Christopher Heldman,Fabian Ardeljan,Holden
LeBlanc,Stephen Veillette

 Final Parts Request Form 56 days Mon Sun Christopher Heldman,Fabian Ardeljan,Holden

137

10/8/18 12/2/18 LeBlanc,Stephen Veillette
[HL]

4.3 Gantt Chart Spring Semester
Task Name Duration Start Finish Predecessors Resource Names
SDPII Implementation 2018 103

days
Mon
1/14/19

Fri
4/26/19

 Revise Gantt Chart 14
days

Mon
1/14/19

Sun
1/27/19

 Implement Project Design 96
days

Mon
1/14/19

Fri
4/19/19

 Hardware Implementation 56
days

Mon
1/14/19

Sun
3/10/19

 Breadboarding 13
days

Mon
1/14/19

Sat
1/26/19

 LiDAR Breadboard 13
days

Mon
1/14/19

Sat
1/26/19 Steve Veillette

 Ultrasonic Breadboard 13
days

Mon
1/14/19

Sat
1/26/19 Holden LeBlanc

 Gyroscope/Acellerometer
Breadboard

13
days

Mon
1/14/19

Sat
1/26/19 Holden LeBlanc

 Layout and Generate PCB(s) 14
days

Sun
1/27/19 Sat 2/9/19 6 Chris Heldman

 Assemble Hardware 7
days

Sun
2/10/19

Sat
2/16/19 9 Chris Heldman,Fabian

Ardeljan,Holden LeBlanc
 Test Hardware 14

days
Sun
2/17/19 Sat 3/2/19 10 Chris Heldman,Holden

LeBlanc,Steve Veillette
 Revise Hardware 14

days
Sun
2/17/19 Sat 3/2/19 10 Chris Heldman,Holden

LeBlanc,Steve Veillette
 MIDTERM: Demonstrate
Hardware

5
days

Sun
3/3/19

Thu
3/7/19 11

Chris Heldman,Fabian
Ardeljan,Holden LeBlanc,Steve
Veillette

 SDC & FA Hardware Approval 0
days

Fri
3/8/19 Fri 3/8/19 13

 Software Implementation 56
days

Mon
1/14/19

Sun
3/10/19 14

 Develop Software 27
days

Mon
1/14/19 Sat 2/9/19

 Autonomy Software 27
days

Mon
1/14/19 Sat 2/9/19 Fabian Ardeljan

 LiDAR Software 27
days

Mon
1/14/19 Sat 2/9/19 17 Steve Veillette

 Ultrasonic Software 27
days

Mon
1/14/19 Sat 2/9/19 18 Holden LeBlanc

 Gyroscope/Acellerometer
Software

27
days

Mon
1/14/19 Sat 2/9/19 19 Holden LeBlanc

 Test Software 21
days

Sun
2/10/19 Sat 3/2/19 20 Fabian Ardeljan,Holden

LeBlanc,Steve Veillette
 Revise Software 21

days
Sun
2/10/19 Sat 3/2/19 17 Fabian Ardeljan,Holden

LeBlanc,Steve Veillette
 MIDTERM: Demonstrate
Software

5
days

Sun
3/3/19

Thu
3/7/19 22

Chris Heldman,Fabian
Ardeljan,Holden LeBlanc,Steve
Veillette

 SDC & FA Software Approval 0
days

Fri
3/8/19 Fri 3/8/19 23

 System Integration 42
days

Sat
3/9/19

Fri
4/19/19

Chris Heldman,Fabian
Ardeljan,Holden LeBlanc,Steve
Veillette

 Assemble Complete System 14 Sat Fri Chris Heldman,Fabian

138

days 3/9/19 3/22/19 Ardeljan,Holden LeBlanc,Steve
Veillette

 Test Complete System 21
days

Sat
3/23/19

Fri
4/12/19 26

Chris Heldman,Fabian
Ardeljan,Holden LeBlanc,Steve
Veillette

 Revise Complete System 21
days

Sat
3/23/19

Fri
4/12/19 26

Chris Heldman,Fabian
Ardeljan,Holden LeBlanc,Steve
Veillette

 Demonstration of Complete
System

7
days

Sat
4/13/19

Fri
4/19/19 28

Chris Heldman,Fabian
Ardeljan,Holden LeBlanc,Steve
Veillette

 Develop Final Report 99
days

Mon
1/14/19

Mon
4/22/19

 Write Final Report 99
days

Mon
1/14/19

Mon
4/22/19

Chris Heldman,Fabian
Ardeljan,Holden LeBlanc,Steve
Veillette

 Submit Final Report 0
days

Mon
4/22/19

Mon
4/22/19 31

Chris Heldman,Fabian
Ardeljan,Holden LeBlanc,Steve
Veillette

 Spring Recess 7
days

Mon
3/25/19

Sun
3/31/19

 Combat Robotics Competition
 Project Demonstration and
Presentation

0
days

Fri
4/26/19

Fri
4/26/19

[HL]
5. Design Team Information

Fabian Ardeljan, Computer Engineer, Software Lead

Chris Heldman, Electrical Engineer, Team Lead

Holden LeBlanc, Electrical Engineer, Archivist

Stephen Veillette, Electrical Engineer, Hardware Lead

139

6. Conclusion and Recommendations

The robot design process is well on its way. Most of the components have been chosen and

the basic outlines of software have been written. A PIC32 board, a sample ultrasonic sensor, and a

LiDAR sensor have been provided for testing. At this point, most of the design has involved rough

estimations of values using datasheets, hand calculations, and simulation. The schematic for the

sensor and navigation system has been completed. With the pace of the project, the robot is on track

to be fully assembled by the end of April.

From this point on, the culmination work of the software and hardware can commence. The

hardware system has been designed by creating a Eagle schematic with a single PIC32MZEF

microcontroller. It was determined that one microcontroller could handle the operations of our

software due to its advanced speed and storage. The schematic includes the connections and support

circuits for each sensor, as well as isolation from DT07B’s system. LED indicators, a USB interface,

and a cardedge system have also been designed.

The base software for the autonomous algorithm has been completed. Some software has

already been tested on the Explorer Board, including software that creates a PWM signal and

software that communicates over UART. The software for the sensors has yet to be written.

However, the LiDAR and current ultrasonic sensor can now be used, and the PIC32 board can be

programmed to read and process data from them. Once the gyroscope and encoders arrive, they can

be programmed and merged into the project. After all the sensors have software written for them on

the Explorer 16/32 board, the custom board with the microprocessor can be programmed using that

software. The final task is then to establish UART communications with The Motion and

Actualization Team.

140

 [FA,HL,CH]

7. References

[1] S. Bachand-Amirault, Types of Battlebots. [Online]. Available:
https://sbainvent.com/battlebot-design/battlebot-types.php. [Accessed: 20-Apr-2018].

[2] lidar-uk.com. [Online]. Available: http://www.lidar-uk.com/how-lidar-works/. [Accessed:
20-Apr-2018].

[3] “What is an Ultrasonic Sensor?,” Ultrasonic Sensor | What is an Ultrasonic Sensor?[Online].
Available: http://education.rec.ri.cmu.edu/content/electronics/boe/ultrasonic_sensor/1.html.
[Accessed: 20-Apr-2018].

[4] T. A. Kinney and Baumer Electric, “Proximity Sensors Compared: Inductive, Capacitive,
Photoelectric, and Ultrasonic,” Machine Design, 13-Mar-2017. [Online]. Available:
http://www.machinedesign.com/sensors/proximity-sensors-compared-inductive-capacitive-photoelec
tric-and-ultrasonic. [Accessed: 20-Apr-2018].

[5] W. by AZoSensors, “What is a Photoelectric Sensor?,” AZoSensors.com, 15-Jun-2015. [Online].
Available: https://www.azosensors.com/article.aspx?ArticleID=311. [Accessed: 20-Apr-2018].

[6] “Photoelectric sensors,” Balluff. [Online]. Available:
https://www.balluff.com/local/us/products/sensors/photoelectric-sensors/. [Accessed: 20-Apr-2018].

[7] “CN107140047A - Competitive foot combat robot,” Google Patents. [Online]. Available:
https://patents.google.com/patent/CN107140047A/en?q=competition&oq=combat+robot+competitio
n. [Accessed: 20-Apr-2018].

[8] “WO2017143567A1 - Fighting robot,” Google Patents. [Online]. Available:
https://patents.google.com/patent/WO2017143567A1/en?q=competition&oq=combat+robot+compet
ition. [Accessed: 20-Apr-2018].

[9] “KR20050055822A - The weapon system of a battlebot using pneumatic circuit,” Google
Patents. [Online]. Available:
https://patents.google.com/patent/KR20050055822A/en?q=robot&oq=competition+combat+robot&
page=2. [Accessed: 20-Apr-2018].

141

https://sbainvent.com/battlebot-design/battlebot-types.php
http://www.lidar-uk.com/how-lidar-works/
http://education.rec.ri.cmu.edu/content/electronics/boe/ultrasonic_sensor/1.html
http://www.machinedesign.com/sensors/proximity-sensors-compared-inductive-capacitive-photoelectric-and-ultrasonic
http://www.machinedesign.com/sensors/proximity-sensors-compared-inductive-capacitive-photoelectric-and-ultrasonic
https://www.azosensors.com/article.aspx?ArticleID=311
https://www.balluff.com/local/us/products/sensors/photoelectric-sensors/
https://patents.google.com/patent/CN107140047A/en?q=competition&oq=combat+robot+competition
https://patents.google.com/patent/CN107140047A/en?q=competition&oq=combat+robot+competition
https://patents.google.com/patent/WO2017143567A1/en?q=competition&oq=combat+robot+competition
https://patents.google.com/patent/WO2017143567A1/en?q=competition&oq=combat+robot+competition
https://patents.google.com/patent/KR20050055822A/en?q=robot&oq=competition+combat+robot&page=2
https://patents.google.com/patent/KR20050055822A/en?q=robot&oq=competition+combat+robot&page=2

[10] V. Magnier, D. Gruyer and J. Godelle, "Automotive LIDAR objects detection and classification
algorithm using the belief theory," 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles,
CA, 2017, pp. 746-751.https://ieeexplore.ieee.org/document/7995806/

[11] A. Börcs, B. Nagy and C. Benedek, "Instant Object Detection in Lidar Point Clouds," in IEEE
Geoscience and Remote Sensing Letters, vol. 14, no. 7, pp. 992-996, July 2017.. Available:
https://ieeexplore.ieee.org/document/7927715/

[12] Renishaw. (2018). Renishaw: Application note: Optical encoders and LiDAR scanning.
[Online] Available: http://www.renishaw.com/en/optical-encoders-and-lidar-scanning--39244
[Accessed 25 May 2018].

[13] Wong, W. (2018). Safe Robots Rely On Sensors. [Online] Electronic Design. Available:
http://www.electronicdesign.com/embedded/safe-robots-rely-sensors [Accessed 25 May 2018].

[14] P. Agharkar and F. Bullo, "Vehicle routing algorithms to intercept escaping targets," 2014
American Control Conference, Portland, OR, 2014, pp. 952-957.
Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6858759

[15] Combat Robot Rules. [Online]. Available: http://robogames.net/rules/combat.php. [Accessed:
20-Apr-2018].

[16] SLAMTEC RPLIDAR A3 data sheet. [Online]. Available:
http://bucket.download.slamtec.com/aaf96dddba2f6a9baa03261628c01af9fc2f866c/LD310_SLAMT
EC_rplidar_datasheet_A3M1_v1.0_en.pdf
[Accessed: 10-October-2018].

142

https://ieeexplore.ieee.org/document/7995806/
https://ieeexplore.ieee.org/document/7927715/
http://www.renishaw.com/en/optical-encoders-and-lidar-scanning--39244
http://www.electronicdesign.com/embedded/safe-robots-rely-sensors
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6858759
http://robogames.net/rules/combat.php
http://bucket.download.slamtec.com/aaf96dddba2f6a9baa03261628c01af9fc2f866c/LD310_SLAMTEC_rplidar_datasheet_A3M1_v1.0_en.pdf
http://bucket.download.slamtec.com/aaf96dddba2f6a9baa03261628c01af9fc2f866c/LD310_SLAMTEC_rplidar_datasheet_A3M1_v1.0_en.pdf

Appendix

LiDAR Datasheet
http://bucket.download.slamtec.com/aaf96dddba2f6a9baa03261628c01af9fc2f866c/LD310_SLAMT
EC_rplidar_datasheet_A3M1_v1.0_en.pdf

Gyroscope Datasheets
https://www.invensense.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf

Ultrasonic Datasheet
https://www.parallax.com/sites/default/files/downloads/28015-PING-Sensor-Product-Guide-v2.0.pdf

PIC32MZEFH100
http://ww1.microchip.com/downloads/en/DeviceDoc/60001320E.pdf

143

http://bucket.download.slamtec.com/aaf96dddba2f6a9baa03261628c01af9fc2f866c/LD310_SLAMTEC_rplidar_datasheet_A3M1_v1.0_en.pdf
http://bucket.download.slamtec.com/aaf96dddba2f6a9baa03261628c01af9fc2f866c/LD310_SLAMTEC_rplidar_datasheet_A3M1_v1.0_en.pdf
https://www.invensense.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
https://www.parallax.com/sites/default/files/downloads/28015-PING-Sensor-Product-Guide-v2.0.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/60001320E.pdf

Honors Project Final Design Report

Design Project: Autonomous Combat Robot

DT07B

Andrew Szabo

Tanya Tebcherani

Tristin Weber

Dr. French

April 25, 2019

Table of Contents

Abstract 7

1. Problem Statement 8

1.1 Need 8

1.2 Objective 8

1.3 Background 11

1.3.1 Research Survey 11

1.3.2 Proposed Design Overview 17

1.4 Marketing Requirements 20

1.5 Objective Tree 21

2. Design Requirements Specification 22

3. Accepted Technical Design 23

3.1 Design Calculations 23

3.2 System Overview 25

3.2.1 Hardware Overview 25

3.2.1.1 Hardware Block Diagrams 26

3.2.1.1.1 Level 0 Hardware Block Diagram with Functional Requirement Table 26

3.2.1.1.2 Level 1 Hardware Block Diagram with Functional Requirement Table 27

3.2.1.1.3 Level 2 Hardware Block Diagram with Functional Requirement Table 29

3.2.1.2 Hardware Overview and Schematics 35

3.2.2 Software Overview 45

3.2.2.1 Software Flowcharts 46

3.2.2.1.1 Level 0 Software Flowchart 46

3.2.2.1.2 Level 1 Software Flowchart 47

2

3.2.2.2 Pseudocode 50

3.2.3 Mechanical Overview 60

4. Parts List 62

5. Project Schedules 65

6. Design Team Information 69

7. Conclusion and Recommendations 70

8. References 71

9. Appendices 74

9.1 Software Code 74

9.1.1 Header Files 74

9.1.1.1 config.h 74

9.1.1.2 defines.h 75

9.1.1.3 functions.h 76

9.1.2 Source Files 78

9.1.2.1 Auto_Mode.c 78

9.1.2.2 IC1_y.c 80

9.1.2.3 IC2_x.c 82

9.1.2.4 IC3_w.c 85

9.1.2.5 IC4_estop.c 87

9.1.2.6 IC5_am.c 89

9.1.2.7 IC_Misc.c 91

9.1.2.8 LEDs.c 92

9.1.2.9 Man_Mode.c 93

9.1.2.10 Misc.c 94

3

9.1.2.11 newmain1.c 96

9.1.2.12 OC1_RDM_PWM.c 102

9.1.2.13 OC2_LDM_PWM.c 104

9.1.2.14 OC3_WM_PWM.c 106

9.1.2.15 UART4.c 108

9.2 Board schematics 109

9.2.1 Control Board schematics 109

9.2.2 Power Board schematics 111

9.3 Useful links 112

9.4 Pictures 113

4

List of Figures

Figure 1: Combat Robot Objective Tree 20

Figure 2: Level 0 Hardware Block Diagram 25

Figure 3: Level 1 Hardware Block Diagram 26

Figure 4: Level 2 Hardware Block Diagram for Control System 28

Figure 5: Level 2 Hardware Block Diagram for Power System 30

Figure 6: Level 3 Hardware Block Diagram for Control System 33

Figure 7: Control System Hardware Schematic - Backplane Connector 35

Figure 8: Control System Hardware Schematic - Microprocessor 36

Figure 9: Power System and Backplane Schematic - Voltage Regulators 38

Figure 10: Power System and Backplane Schematic - Connector 39

Figure 11: Backplane Connector Layout 42

Figure 12: Level 0 Software Flowchart 45

Figure 13: Level 1 Software Flowchart 46

Figure 14: Level 1 Weapon Control Flowchart 47

Figure 15: Level 1 Motion Control Flowchart 48

Figure 16: Mechanical Design - Isometric View 60

Figure 17: Mechanical Design - Planar View 60

Figure 18: Gantt Chart Fall 2018 64

Figure 19: Gantt Chart Spring 2019 65

5

List of Tables

Table 1: Comparison of Combat Robot Types 11

Table 2: Design Requirements Specification Table 21

Table 3: Level 0 Functional Requirement Table 26

Table 4: Level 1 Robot Control Center Functional Requirement Table 27

Table 5: Level 1 RGB LED Status Indicator Functional Requirement Table 27

Table 6: Level 1 Combat Robot Chassis and Weapon System Functional Requirement Table 27

Table 7: Level 2 RC Receiver Board Functional Requirement Table 29

Table 8: Level 2 Microcontroller Hardware Functional Requirement Table 29

Table 9: Level 2 Motor Controller Hardware Functional Requirement Table 29

Table 10: Level 2 LED Status Indicators Functional Requirement Table 30

Table 11: Level 2 Battery and Charger System Functional Requirement Table 31

Table 12: Level 2 Central Power Board Functional Requirement Table 31

Table 13: Level 2 Weapon and Drive Motor Controllers Functional Requirement Table 31

Table 14: Level 2 Motor Functional Requirement Table 32

Table 15: LED Indicators 34

Table 16: Control System Signals 37

Table 17: Control Board BOM 61

Table 18: Power Board/Backplane BOM 62

Table 19: General Electrical System BOM 63

Table 20: Week by Week Updates (9/23 - 11/20) 67

6

Abstract

The purpose of this project is to design and build a 60 lb. weight class autonomous

combat robot that will participate in the international RoboGames competition. Being

autonomous will allow the combat robot to outperform manually driven robots during

competition. The chosen design is a dual wedge robot which has a parallelogram shape. There is

a wedge on the front of the robot as well as another wedge on the back. In the case the robot is

flipped upside down, it can still fight due to the wedge on the back of the robot. In order to be in

compliance with RoboGames rules, the robot must be able to be controlled manually.

[AS]

7

1. Problem Statement

1.1 Need

Combat robotics is a discipline that requires much skill and a quick response time. It is

often the case that the winner is not the best robot, but rather the best operator. Human operators

inherently lack a consistent, fast reaction time when using a remote controlled system for combat

robots. Human operators also have difficulty keeping up with the fast decision making necessary

to maneuver their combat robots. It would be much faster and more effective for a combat robot

to operate independently of human controls. Autonomous control of the operation and

locomotion of a combat robot would outperform a manual operator.

A fully autonomous system has the ability to make algorithmic decisions, follow a

locomotion algorithm, and attack with more precision than a manual operator. Therefore, an

autonomous combat robot is needed to outperform opponents in movement and weapon reaction

time.

[AS, FA, CH]

1.2 Objective

The objective of this project is to design and build a 60 lb weight class combat robot that

will function autonomously and outperform the manually driven robots during competition.

While running autonomously, the robot will use LiDAR sensors to detect its environment

and the opponent, and will attack the opponent when possible. This robot will also be able to be

remote controlled in manual mode. This will mitigate the risk in case the autonomy or sensors

fail. LED lights on the robot will indicate whether it is in full autonomous or manual override

8

mode. The system will also be able to be armed and disarmed remotely, even while in

autonomous mode. Lastly, the robot will incorporate an emergency shut off and braking system.

The autonomous combat robot will outperform its human driven opponents by following

a variety of combat algorithms. The autonomous system will follow an intercept or escape

locomotion pattern to outperform the human operators. While the weapon systems are reaching

full speed, the combat robot will follow a avoidance and escape algorithm. When the weapon

system is ready the robot will follow an intercept algorithm to attack the opponent. The

autonomous system will also attempt to keep the robot pointed in the correct orientation, facing

the opponent at all times.

This project is a robotic system. It will have heavy reliance on electrical, software, and

mechanical subsystems. The design team for this project consists of five electrical engineering

students, two computer engineering students, and three mechanical engineering students. These

students will be split into three teams - sensing and autonomy (ECE Team 7A), motion and

actualization (ECE Team 7B), and mechanical and structural (ME Team). While these teams will

have separate deliverables and responsibilities, they will coordinate closely with each other to

maintain a coherent end project. A brief breakdown of the teams and their roles is given below.

[TW, CH]

9

Role of Electrical and Computer Team 7A

● Create the control, feedback, and sensing system to control the combat robot

● Implement opponent facing tracking algorithm

● Implement control intercept or escape algorithm

● Create LiDAR sensing data interpretation and detection programming and algorithm

● Autonomous sensing and control

Role of Electrical and Computer Team 7B

● Convert signal from Team 7A’s control algorithms into movement instructions

● Control of electric motor system

● Control of weapon system

● Create the power system to run the motors and robotic system

● Meet Robogames electrical safety standards (emergency stop, manual control, etc.)

Role of Mechanical Team 1

● Create the robot’s chassis

● Create the mechanical weapon system

● Create a mechanical drive system

[CH, TW]

1 The mechanical engineering team has obtained preliminary approval to work with the electrical and computer
engineering team from the Mechanical Engineering Department, and is in the process of receiving full approval
upon the approval of the ECE’s final proposal. The mechanical engineering team will synchronize its deadlines with
the ECE team’s deadlines in completion of their requirements with the project.

10

This document will focus on ECE Team 7B, which is the motion and actualization team.

The role of this team will be to design an embedded system, embedded system, control system,

and general electrical system that can turn the processed sensing data from ECE Team 7A and

translate it into motion via a decision algorithm, power supply, and motor controller interfaces.

Team 7B will also be responsible for implementing manual control via interfacing with an RC

controller and meeting various other Robogames regulations such as emergency stops, visual

status indicators, and electrical safety.

[TW]

1.3 Background

The following sections provide a background and general overview of the combat robot

design approach.

[TT]

1.3.1 Research Survey

Currently, the vast majority of combat robots operate by being remote controlled by a

operator. Autonomy requires additional financial investments and far more work. However, the

benefits of these investments are well worth the cost for first time contenders facing operators

with many years of experience.

The explicit goal of combat robotics is to immobilize the opponent robot before it can do

the same to one’s own robot. There are many ways to accomplish this, from attacking with blunt

force, to trying to impale key mechanisms of the robot, to lifting and getting the opponent robot

stuck in an immobile position. The key to a successful combat robot is having both powerful

offensive and defensive strategies.

11

Table 1 below shows a trade off analysis of the typical combat robotics weapon systems.

This was used as a research tool to determine the best combat weapon system for the

autonomous robot.

Style Pros Cons

Wedge - Structural integrity provides an excellent
defense
- Simple design
- Able to get under an opponent to drive them
into the wall or other hazards
- Can incorporate other design features

- Must have a skilled operator
- Weak offense
- Weak matchup against other
wedges
- Some competitions have banned
combat bots that only use wedges

Spinner - Weapon serves as both offense and defense
- Low skill floor for operator

- Potential to damage itself
- Difficult to design
- Difficult to upgrade with
additional features

Drum - High destructive potential
- Allows for a sturdy frame
- Room for additional features

- Difficult to control

Crusher - Potential to cause structural damage via
blunt force
- Allows for a sturdy frame

- Requires a skilled operator to
operate manually
- Hard to stay within weight limits

Flipper - Potential to flip other robots over for
damage or immobilization
- Room for additional features

-Requires a skilled operator to
operate manually
-Weapon presents a vulnerable spot
-Pneumatics limited by air tank size

Hybrid - Flexibility and ability to have multiple
weapon systems

-Complex design
-Hard to keep within weight
restrictions

Table 1: Comparison of Combat Robot Types [1]

 [TT]

12

The proposed combat robot will be operated autonomously, with an option to be

controlled manually if desired. A major component in creating autonomous robots is sensing

their surrounding environment. Although the sensor(s) that will be used for this project has yet to

be selected, the combat bot will most likely use existing sensors for automation purposes. Three

sensors will be discussed for this project: LiDAR sensors, ultrasound sensors, and photoelectric

sensors.

LiDAR (light detection and ranging) sensors use light in the form of pulsed lasers to

detect an object’s distance from the sensor. When it shoots a laser out, the laser will hit an object

and that object will reflect the laser back to the sensor. The sensor measures the time it takes to

receive the reflection and by using the speed of light, it then calculates the distance of the object

is from the sensor. LiDAR sensors shoot out approximately 150,000 pulses per second, so they

can quickly build a “map” of their surroundings [2]. This seems like the ideal sensor for the

combat robot because it can provide a map of the area and it will easily identify the opponent

from the point cloud data.

An ultrasound sensor is similar to a LiDAR sensor in that it measures its distance from an

object, but uses sound instead of light. It sends out a sound wave at a specific frequency and

waits for the wave to hit an object and bounce back. Based on the time the sound wave takes to

bounce back and the speed of sound, the ultrasound sensor can determine its distance from the

object the sound wave hit. This sensor would not work if it were to hit an object that deflects the

sound wave instead of returning it to the sensor, or if it hit something that was made of a material

that absorbs sound instead of reflecting it [3]. This is why it would not be a good choice.

13

Photoelectric sensors are used extensively in the field of automation. They can detect

objects as small as 1mm in diameter, and objects as far as 60m away [4]. There are many

different types of photoelectric sensors, but all of them use a light transmitter, often infrared, and

receiver. Depending on the type of sensor used, one of two things will happen. 1) When the

infrared signal hits an object, it is reflected back to the signal and is received by a photoelectric

receiver. 2) When the infrared signal hits an object, the object breaks the light beam, and an

object can be sensed in that way instead of by its reflection. Photoelectric sensors can be used to

not only detect the object’s distance from the sensor, but also the object’s color, size, shape,

presence, among other features [5, 6]. The drawback of these sensors is they are used in a yes or

no configuration. They are generally used to tell if a object is directly in front of the sensor, not

to 3d map or sense the environment.

[TT]

Another potential sensor would be the Microsoft’s Kinect sensor, which used infrared

sensors. Infrared sensors are good for detection between 1-5 meters or 3-15 feet. The arena is 40

feet by 40 feet. Therefore, infrared sensors will not be sufficient for the competition. Microsoft’s

Kinect system uses infrared so the system being used will need a more novel sensor design. After

further research a LiDAR system seems to be the best choice due to its high range and accurate

position sensing capabilities, while still being cost effective.

[AS]

Almost all combat robots at robogames are manually-controlled, which means their

effectiveness in competition is severely limited by the skill level and reaction time of their

operator. This flaw in current designs exists because the algorithms and sensors needed to have a

14

competitive combat robot are quite complex. If one were to write such an algorithm that could

effectively perform combat maneuvers and pair it with an adequate sensor array and a robust,

reliable combat robot, the resulting combination could yield a very competitive end product.

While there was a senior design team during the 2017-2018 school year that constructed

an autonomous combat robot, it was a very complex and heavy (220 lb) design, and thus

encountered issues with reliability. In addition, this contributes to limited autonomous

capabilities, which are restricted to simple fight or flight. While their design was excellent, there

is room for further improvement. With a lighter, simpler design, the proposed combat robot

could autonomously perform more advanced maneuvers such as, intercept and escape

maneuvers, attacking with the wedge and drum, and keeping the robots wedge always facing the

opponent to defend against their weapon.

This bot is similar to existing designs because it still has all of the components of a

traditional combat bot. It will have a weapon as well as all of the required electrical engineering

components. For example, it will have motors, actuators, controls, power supplies, programming,

wireless communications, etc. It is also similar to other self-driving (autonomous) vehicles

because it will use LiDAR sensors to accomplish autonomy. Note that, although LiDAR is

constantly used for self-driven vehicles, autonomous combat bots are not the standard. Most

combat bots have an operator who controls the bot during a fight. Thus, making the bot

autonomous is different from existing technologies.

[TT]

There are current patents on robotic systems that are similar to the one in which the team

will create. Some interesting ideas can be drawn from these innovative patents.

15

One of these was a patent on a combat robot which used a walking system instead of the

conventional wheels. This was proposed because many combat robots fail because they lose

mobility due to there fragile rubber wheels being destroyed. The weapon system on this robot

was of the flipping kind [7].

Another patent of interest is a combat robot which uses infrared emitters to sense its

surroundings and autonomously detect and attack the opponent robot. This robot was a wedge

combat design. The design mitigates the weakness of external vulnerable wheels by having them

enclosed within its chassis [8].

A further patent found was on a flipping- wedge hybrid robotic combat system. This

patent only discussed the weapon system design. The robot was of a wedge shape, and could

function as a wedge combat robot to attack other bots by flipping them over and preventing their

mobility. (If the wheel system was on the bottom of there robot). The more interesting weapon of

this system was a flipping arm. The combat robot would have a arm which could reach under

other robots and then lift at high velocity to send the opponent in the air. This system was driven

by pneumatic circuits. It would used a compressed gas tank to drive the arm with a very large

torque to flip the other robot [9].

[CH]

16

1.3.2 Proposed Design Overview

For offense, the combat robot will use drum method, which involves an upward spinning

horizontal drum with extensions used to hit and possibly throw the opponent robot. This drum

will be in combination with a wedge. Hybrid combat robots are often not used because of

complexity of design but having a mechanical subteam will allow the team to make a more

complex and effective weapon system. Most notably, the drum method is also used by Touro

Maximus, a long time contender and multiple time finalist in combat robotics tournaments. The

wedge method was used by the winning robogames combat robot Original Sin. By combining

these two weapon systems and having a fully autonomous robot, it can outperform its opponents.

By using autonomy, this method can be further enhanced to make sure the weapon system turns

to face the opponent as fast as possible, and can follow ideal intercept and escape paths.

On the defensive side, it is a clear advantage to have a robot that can withstand being

flipped. Robots that can operate on their back usually recover more effectively from being tossed

as well. However, the design should also focus on a hard outer shell that resists damage to both

blunt and sharp attacks. Autonomy can also help defensively, by allowing the robot to sense in

all directions where the opponent is and turn to face the opponent with the weapon system before

the opponent can strike from behind or from the side.

 [FA]

The team has found that LiDAR is the best sensing technology for automated driving of

combat robots. In 3D applications, it uses a laser beam to scan the environment with very high

accuracy, and as a result is highly suited for estimating shapes of objects [10]. The data returned

by LiDAR can be interpreted as a 3D point cloud, where clusters of detected points form objects.

17

The robot’s algorithm will accept this 3D point cloud and divide it into foreground and

background layers [11]. To determine if the opponent robot is in range, it will analyze the surface

of the foreground layer and determine if it is a flat wall or an opponent based on the curvature of

the point cloud. This method has already been tested using Microsoft XBox Kinect sensors by

the former University of Akron Combat Robotics team, and has shown promising results.

Internally, LiDAR works by using a rotating mirror system to take panoramic picture data. It is

controlled by motors and rotary encoders that determine the tilt of the mirrors used to take the

pictures [12]. This mechanical complexity along with the large amount of data processing make

this very expensive. Smaller, cheaper versions are used in mobile robots such as Aethon's

autonomous TUG robots used in hospitals [13].

The goal of the autonomous system is to drive the robot better than a user would. Higher

complexity locomotion algorithms will be used to give the combat robot a significant edge above

all manual robots. This will be done by implementing two algorithms for movement. The first

being a intercept or escape algorithm. The second being an algorithm that utilizes the robot’s

weapon design, which will attempt to keep the defensive wedge pointed at the opponent at all

times.

The intercept or escape algorithm will determine if the robot should be avoiding or

attacking the opponent. This will be dependent on if the chosen drum is at a optimal velocity and

the robot is in optimal health. If the robot’s drum weapon is at a acceptable speed the team will

enter the intercept dynamics of the robot, and if the drum is still speeding up the robot will enter

escape. During intercept the robot will use the current and previous position of the enemy to

determine its direction and position. It can then use the intercept algorithm to attack the

18

opponent. Instead of using a simple tracking algorithm and traversing directly toward the

opponent, the robot will use a algorithm based on vector mathematics. The algorithm will

command the robot to travel to where the opponent will be, not where the opponent is. This

similar to a predator catching prey to quickly intercept the opponent. This algorithm will succeed

against a manual operator of an opposing robot attempting to flee [14].

The opponent facing tracking algorithm will implement a defensive strategy used by

human wedge operators. The strategy is to keep the wedge always facing the opponent. This will

cause the attacking opponent to drive on top of the wedge, and potentially flip over, when

attempting to attack. When driving on top of the autonomous combat robot, the attacking robot’s

weapon system will miss the autonomous robot and give it a opening to attack using the drum

weapon.

[CH]

Team 7B will receive an angle from Team 7A as well as an intercept/escape signal. This

information and the information from the RC controllers will be used to determine if the combat

bot should operate in manual or autonomy mode. Once the mode of operation is determined, the

data from Team 7A or the data from the RC controller will be used to determine what to do to

the motors to achieve those instructions. This will involve a control system design to achieve

motion of the motors specific to angles, directions, and intercept/escape.

[TT]

19

1.4 Marketing Requirements

The marketing requirements for team 7B’s part of the the combat robot system are as

follows:

1. The robot shall have an internal, rechargeable power system for motor control and sensor

operation.

2. The robot shall indicate when it is in autonomous mode.

3. The robot shall operate for the duration of the match.

4. The robot shall have a manual control mode as per robogames rules.

5. The robot shall have an emergency stop for all weapon and movement systems

6. The robot shall accept autonomous algorithm output signals from team 7A’s system and

turn them into motion.

[AS, TT, TW]

20

1.5 Objective Tree

The objective tree for the fully autonomous combat robot is shown in Figure 1 below.

This was derived from the marketing requirements.

Figure 1: Combat Robot Objective Tree

[AS, TT]

21

2. Design Requirements Specification

Table 2 contains the engineering requirements along with the marketing requirement(s)

they correspond to and the justification for why each engineering requirement is necessary.

Marketing
Requirements

Engineering Requirements Justification

1 ,3 1. Internal power system should be able to
run the robot for at least 4 minutes under full
load.

Duration of the match is 3 minutes.

1, 5 2. The power system shall have overcurrent
protection that trips at 110% of the battery’s
maximum impulse amp rate.

Exceeding current limits of the battery
could be an electrical hazard and cause
catastrophic failure.

1 3. The weight of the battery and electronic
components designed and used shall not
exceed 10 lbs.

Contributes to weight requirement of 60lbs.

1, 3 4. The power system shall be able to provide
the motors and microcontrollers with enough
power to all run simultaneously at top speed.

Needed to run the robot.

2 5. The robot shall indicate when it is in
autonomous mode with a visual indicator.

This is a requirement of RoboGames.

4, 5 6. An emergency stop signal from the RC
controller shall be used to stop all motion of
the robot within 60 seconds.

This is a requirement of RoboGames. It
will also ensure safety when testing.

4 7. The robot shall have a manual control
mode, operated with an RC controller.

This is a requirement of RoboGames.

4 8. The robot shall not start in autonomous
mode when first powered on.

Safety

6 9. Team 7B’s embedded system shall be be
able to communicate with team 7A’s
microcontroller(s).

This is necessary for the robot to be able to
move autonomously.

6 10. The weapon motor shall be able to reach
a rotation speed of 2500 rpm.

This is needed in order for the robot to do
damage to an opposing robot.

Table 2: Design Requirements Specification Table

[AS, TT, TW]

22

3. Accepted Technical Design

The sections below describe the system design.

[TT]

3.1 Design Calculations

The following equations govern the basic design of the power system:

V = I*R

P = V*I = (I^2)*R = (V^2)/R

AH = A*Hours

WH = W*Hours

Selecting an appropriate capacity battery package is appropriate for the system. A set of

cells should have enough AH to run the system for at least 4 minutes to meet the established

design requirements. The capacity needed can be calculated from the following equations:

Total Current Draw = Sum of All Currents

H (T otal Current Draw) 4 minutes)A = * (*
(1 hour)

(60 minutes)

where AH is the desired battery capacity in Amp-Hours.

Making some approximations, it is noted that roughly ~39A will be needed to run the

system at full-speed. This means that a capacity of just over 2.5 AH is needed to run for four

minutes.

23

The following calculations were used to determine the selection of the motors for the

robot:

To begin with, required speed for the motors were found using this formula:

obot Speed [Mph] R = (Gearbox Gear Ratio)
(Distance P er W heel Rotation) (Motor T op Speed)*

After conversion factors were accounted for, it was determined that in order to travel at a speed

of 10mph, the drive motors had to turn at about 5000 rpm.

The next step was to consider acceleration of the robot. The following equations were

used:

orce on W heels ∑

F = (Gearbox Gear Ratio)

2 (Motor T orque) (Motor Speed) (Conversion of Units)* * *

obot Acceleration [f t/s] (orce on W heels) Mass of Robot) Conversion F actor)R 2 = ∑

F * (* (

Assuming a potential motor torque of 85 oz-in (motor decided later), the robot could reach top

speed in about 4 seconds from a standstill. This was deemed acceptable.

Using these calculations, it was deemed necessary to find drive motors with a nominal

speed of at least 5000 rpm and torque of 85 oz-in.

Lastly, in order to control the speed of these motors, a DC voltage of variable amplitude

had to be applied to their terminals. This is achieved by generating a PWM with a motor

controller. For all intents and purposes, the DC voltage across a motors terminals is equal to the

average voltage across the terminals. The average voltage across a motor is determined by the

following equation:

 (P W M Duty Cycle) maxV Avg = * V

24

In this case, the amplitude of the PWM from the motor controller, Vmax = 24V (the rail).

A motor controller had to be selected that could achieve a duty cycle from 0% - 100% to allow

for variable speed control. The motor controller would also have to be able to output a maximum

amplitude of 24V to allow the motors to run at top speed. Note that this PWM being output by

the motor controller will have the same frequency and duty cycle (D) as the PWM being sent

into the motor controller, but it will have a much higher amplitude. Using this principle, the

speed of a motor can be varied by varying the duty cycle of the PWM signal being sent to the

motor controller.

[TW]

3.2 System Overview

The sections below present an overview to the hardware, software, and mechanical

systems of the combat bot.

[TT]

3.2.1 Hardware Overview

RoboGames competitions put a heavy strain on the electrical systems of any combat

robot, especially the motors. Due to the sensitivity of the electronics needed to support

autonomy, a robust, reliable, and interference-free electrical system is required to ensure peak

performance and continued operation even when damage is sustained throughout the

competition.

 The hardware system shall include a set of batteries with enough capacity to run the

robot under a heavy load for the entirety of an intense 3 minute round of combat. The system

will also contain 24V, 5V, and 3.3V rails to supply power to both Team 7B and Team 7A’s

25

electronics. There will also be proper overcurrent protection in place to prevent critical failure.

The below block diagrams represent an overview of the hardware design of the combat bot.

[TW]

3.2.1.1 Hardware Block Diagrams

The below sections show the block diagrams of the hardware system.

[TT]

3.2.1.1.1 Level 0 Hardware Block Diagram with Functional Requirement Table

The level 0 block diagram indicates the top-level inputs and outputs of the fully

autonomous combat robot. Figure 2 shows the level 0 diagram for DT07B’s part of the

autonomous combat robot.

[CH]

Figure 2: Level 0 Hardware Block Diagram

[TT, TW]

26

The level 0 functional requirement table, indicating the top-level inputs and outputs of the

fully autonomous combat robot, as shown in Table 3 below.

Module Combat Robot

Inputs ● Autonomous control algorithm signals from DT07A’s system
● Manual Control Signal
● Emergency Stop

Outputs ● Motion Motor Control Signals
● Weapon Motor Control Signals
● LED Status indicators
● Power

Functionality Accepts a signal from DT07A’s autonomous control algorithm and translates it
into motor control for motion and weapon motors. Also accepts manual control
signal from handheld controller, should autonomous mode fail. Will use LEDs
to indicate manual or autonomous mode. Supplies power to DT07A.

Table 3: Level 0 Functional Requirement Table

[FA, CH, AS, TT, TW]

3.2.1.1.2 Level 1 Hardware Block Diagram with Functional Requirement Table

The level 1 block diagram is an expansion of the level 0 diagram. Figure 3 shows the

level 1 diagram for DT07B’s part of the autonomous combat robot.

[TW]

Figure 3: Level 1 Hardware Block Diagram

[AS]

27

The level 1 functional requirement table, indicating the second-level inputs and outputs

of the fully autonomous combat robot, as shown in Tables 4, 5, and 6 below.

Module Robot Control Center

Inputs ● Fight or Flight Signal
● Autonomous Enable/Emergency Stop

Outputs ● Operating Status
● Motion Motor Control
● Weapon Motor Control

Functionality Controls motor movement.

Table 4: Level 1 Robot Control Center Functional Requirement Table

Module RGB LED Status Indicator

Inputs ● Operating Status

Outputs ● LED light

Functionality LED indicates robot operation status by color.

Table 5: Level 1 RGB LED Status Indicator Functional Requirement Table

Module Combat Robot Chassis and Weapon System

Inputs ● Motion Motor Control
● Weapon Motor Control

Outputs ● Chassis/Weapon Feedback

Functionality Controls start up, shut down, and movement of weapon.

Table 6: Level 1 Combat Robot Chassis and Weapon System Functional Requirement Table

[AS, TT]

28

3.2.1.1.3 Level 2 Hardware Block Diagram with Functional Requirement Table

The level 2 block diagrams are an expansion of the level 1 diagram. Figure 4 shows the

level 2 hardware block diagram for the embedded system of the autonomous combat robot.

Figure 4: Level 2 Hardware Block Diagram for Control System

[TW]

29

The level 2 functional requirement table, indicating the third-level inputs and outputs of

the fully autonomous combat robot, are shown in Tables 7, 8, 9, and 10 below.

Module RC Receiver Board

Inputs ● Wireless Signal

Outputs ● PWM Signal

Functionality Transfers the RC signal to the microcontroller.

Table 7: Level 2 RC Receiver Board Functional Requirement Table

Module Team 7B Micro-controller

Inputs ● Team 7A Autonomous Signal
● RC control signal (manual)
● 3.3V (power)

Outputs ● GPIO (for status LEDs)
● PWM (for motor control)
● LED Control

Functionality Accepts inputs from Team 7A’s autonomous signal and the manual control
signal from the RC receiver and translates them into motor control signals and
LED status indicators..

Table 8: Level 2 Microcontroller Hardware Functional Requirement Table

Module Weapon and Drive Motor Controller

Inputs ● PWM Signal
● Forward/Reverse bit (hi/lo)
● 24V (power)

Outputs ● Variable motor speed and torque.

Functionality Converts PWM signals into variable motor speed control via voltage averaging
and duty cycles.

Table 9: Level 2 Motor Controller Hardware Functional Requirement Table

30

Module LED Status Indicators

Inputs ● GPIO

Outputs ● Visual Indication

Functionality Accepts GPIO from microcontroller and gives a visual indication of various
functions (power on, emergency stop, manual/autonomous mode).

Table 10: Level 2 LED Status Indicators Functional Requirement Table

[AS]

Figure 5 shows the level 2 hardware block diagram for the power system of the

autonomous combat robot.

Figure 5: Level 2 Hardware Block Diagram for Power System

31

The level 2 functional requirement table, indicating the third-level inputs and outputs of

the fully autonomous combat robot, are shown in Tables 11, 12, 13, and 14 below.

Module Battery and Charger System

Inputs ● Wall Outlet

Outputs ● 24V DC Rail Output

Functionality Charges the Battery Cells. Feeds 24V to the Power Distribution System.
Includes Proper Fusing to Avoid Short Circuit Hazard

Table 11: Level 2 Battery and Charger System Functional Requirement Table

Module Central Power Board

Inputs ● 24V DC Rail

Outputs ● 24V DC
● 5V DC
● 3.3V DC

Functionality Efficiently converts 24V DC to 5V and 3.5V DC to supply the various sensors
and controllers of the robot.

Table 12: Level 2 Central Power Board Functional Requirement Table

Module Weapon and Drive Motor Controllers

Inputs ● 24V DC
● Control Signal from Microcontroller

Outputs ● Variable power input to motors

Functionality Supplies power to the motors.
Varies motor speeds depending on microcontroller input.

Table 13: Level 2 Weapon and Drive Motor Controllers Functional Requirement Table

32

Module Motors

Inputs ● Variable power inputs from motor controllers

Outputs ● Torque
● Speed (RPM)

Functionality Moves the robot (drive motors)
Moves the weapon (weapon motors)

Table 14: Level 2 Motors Functional Requirement Table

[TW]

33

Figure 6 shows the level 3 hardware block diagram for the control system of the

autonomous combat robot. Note that each motor has a DIO and PWM signal. This is a

requirement of the motor controllers. The PWM signal sets the speed of the motors and the DIO

sets the direction (forward or reverse). Table 15 shows what the four LEDs are for.

Figure 6: Level 3 Hardware Block Diagram for Control System

34

LED Signal Name Purpose

Power LED Lights if the combat bot is receiving power.

Aut. LED Lights if the combat bot is in autonomy mode.

E-Stop LED Lights if the e-stop button is pressed.

Attack LED Lights if the robot is in autonomy mode and is in motion to
attack an opponent.

Table 15: LED Indicators

[TT]

3.2.1.2 Hardware Overview and Schematics

Figures 7 and 8 show the schematic for the control system of the combat robot. The same

microprocessor (PIC32MZ2048EFH064) and backplane connector as Team 7A were chosen for

system compatibility and ease of integration. Opto-isolators (TCMT1103-OPTO) were placed in

between the microprocessor and the motor controllers. The remainder of the circuitry includes

necessary signal connections between the rest of the circuitry of the control system and the

microprocessor, as well as the suggested microcontroller set-up from the datasheet. Table 16

shows the explanation for each signal name.

35

Figure 7: Control System Hardware Schematic - Backplane Connector

36

Figure 8: Control System Hardware Schematic - Microprocessor

37

Signal Name Purpose

DIO_LDM DIO output from PIC for left drive motor controller. Indicates direction of motor
(forward or reverse).

DIO_RDM DIO output from PIC for right drive motor controller. Indicates direction of motor
(forward or reverse).

DIO_WM DIO output from PIC for weapon motor controller. Indicates direction of motor
(forward or reverse).

OC2_LDM PWM output from PIC for left drive motor, done through the second output compare
module. Indicates speed of motor.

OC1_RDM PWM output from PIC for right drive motor, done through the first output compare
module. Indicates speed of motor.

OC3_WM PWM output from PIC for weapon motor, done through the third output compare
module. Indicates speed of motor.

LED_PWR DIO output from PIC for the power LED. Lights if the combat bot is receiving
power.

LED_AUT DIO output from PIC for the autonomy LED. Lights if the combat bot is in
autonomy mode.

LED_ESTOP DIO output from PIC for the e-stop LED. Lights if the e-stop button is pressed.

LED_ATTACK DIO output from PIC for the attack LED. Lights if the robot is in autonomy mode
and is in motion to attack an opponent.

IC1 PWM input to PIC from RC controller receiver.

IC2 PWM input to PIC from RC controller receiver.

IC3 PWM input to PIC from RC controller receiver.

IC4 PWM input to PIC from RC controller receiver.

IC5 PWM input to PIC from RC controller receiver.

IC6 PWM input to PIC from RC controller receiver.

UART_RX UART input (receiving module) to PIC from team 7A. Will give autonomy
instructions such as angle, drive mode, orientation, etc.

Table 16: Control System Signals

[TT]

38

Figures 9 and 10 are the hardware schematic for the power system and backplane. This

board is responsible for supplying Team 7B’s control system board, Team 7A’s control system

board, the LEDs, the RC receiver, and the sensor array with power. In addition, this is where all

of the routing and connectors will be implemented to maintain a compact, efficient, and

noise-free electrical system. This is all one board, but it is broken into two parts for readability.

Figure 9: Power System and Backplane Schematic - Voltage Regulators

39

Figure 10: Power System and Backplane Schematic - Connectors

40

The voltage regulator portion of this board called for the design of DC/DC converters that

could meet the following requirements:

1) Maintain 3.3V and 5V outputs as the battery rail varies from 20V-30V. This is due to the

expected changes in battery voltage as the battery system charges and discharges.

2) Pass a minimal amount of noise to the sensitive electronics such as sensors and

microcontrollers.

3) Regulate voltage efficiently.

4) Output enough current to supply all the electronics of Team 7A and Team 7B.

To achieve these requirements, the Texas Instruments LMZ13610TZ switching regulator

was selected. While three-terminal devices were suggested for simplicity, their inefficient nature

and the requirement of being able to run on battery power for 4 minutes at full load made them a

poor choice. A big advantage of the TI regulators is their ability take a variable voltage input and

maintain a constant voltage output with very low switching losses.

After opting for switching regulators, it was decided that three should be used - 1 3.3V

regulator and 2 5V regulators. This was done due to the high anticipated current draw of the

Lidar sensor from Team 7A.

Next, a resistive and capacitive network had to be designed based on the datasheet of the

switching regulators in order to achieve the appropriate voltage output, voltage output rise time

(power on cycle), and voltage output ripple. A sufficiently chosen feedback resistor network to

pin 7 of these devices was crucial in deciding the output voltage, as the device is

feedback-dependant. In addition, a biasing resistor between pins 1 and 2 and pin 4 had to be

chosen to keep the device switching properly under varying loads.

41

Finally, in order to meet noise requirements, two 330uF output capacitors were chosen,

and placeholders for a pi-filter were added. The output capacitors smooth the output voltage to

avoid damaging electronics downstream, but they also act as low-pass filters. The pi filter on the

output of the switching regulators is a placeholder that gives the ability to implement LR, RC, or

LRC filters easily. While initial analysis has deemed additional filters unnecessary, further

experimentation may call for them once the board is constructed. For that reason, the footprints

are there.

Moving on to the connector schematic, the purpose of these connectors is to efficiently

route power, io, and control, and communication signals where they need to go. While there is

not much electrical analysis to be done on the connectors themselves, this segment of the board

required a fair amount of thought to lay it out efficiently, and will require further geometric

analysis and knowledge of IEEE standards when routing the board in the build and test phase of

the project.

Figure 11 below shows the basic layout of the connector with pins labelled with their

corresponding signals.

42

Figure 11: Backplane Connector Layout

43

Note that pins across from each other will be connected when soldered onto the board (ex. pin

120 and pin 60).

With the board design out of the way, the motors and motor controllers were to be

selected. After considering a few different options for motors, the Ampflow E30-150 motor was

selected for the weapon motors. This motor has been selected because it produces 85 oz-in of

torque nominally, and over 700 oz-in of torque in a stall (note that the stall condition is not likely

to be reached, but it IS capable of producing far more torque than acceleration calculations

accounted for). This motor is also capable of a top speed of 5600 rpm when given a 24V signal.

This meets our requirements of 5000 rpm for the desired top speed of 10 mph. This motor has

also been selected for the weapon for simplicity’s sake. Ideally, a higher torque motor could be

used for the weapon for more force (f=m*a where acceleration is based on torque), but for

budgetary reasons, a higher torque motor may not be possible to use.

After selecting the motors, the motor controller had to be selected. Motor torque is based

directly off of current while motor speed is based directly off of voltage. Looking at the motor

datasheets, it was determined that the nominal current draw of the motors could be 10A, but the

stall current could be as high as 60A. To accommodate this, any motor controller selected had to

be able to pass enough current to achieve a good torque rating (roughly ~30A maximum) and

able to pass or limit the full draw of the motor. In addition, a motor controller has to be able to

withstand the full rail voltage (nominally 24V). For these reasons, the Cytron MD30C was

selected. This motor controller can pass up to 30A and will current limit to safe levels (30A) if

the motor attempts to draw more current. It is also capable of accepting a 30V input, which will

allow it to handle the rail voltage without failure. In addition, the motor controller is easy to

44

interface with - taking only a PWM signal (speed control) and a 3.3V logic “hi” or “lo” signal

(for forward or reverse) from a microchip. The MD30C is also relatively inexpensive ($31).

[TT]

3.2.2 Software Overview

The software includes choosing between autonomous or manual modes, which was

decided for safety reasons. Once chosen, the software must translate autonomous/manual mode

signals into motion commands. Autonomous mode signals will be provided by the Sensing and

Navigation Team in the form of UART. They will go through a look-up table and then be

converted into appropriate signals for motor control. Manual mode signals will be provided by

the RC controller in the form of PWM. They will be measured, scaled and ultimately converted

into pwm signals for motor control. Furthermore, the software is responsible for accounting for

emergency stop, visual status indicators, and robot orientation. The below flowcharts represent

an overview of the software design of the combat bot.

[AS, TT, TW]

45

3.2.2.1 Software Flowcharts

The below sections show the software flowcharts for the system.

[TT]

3.2.2.1.1 Level 0 Software Flowchart

The level 0 software flowchart indicates the top-level inputs and outputs of the fully

autonomous combat robot. Figure 12 shows the level 0 flowchart for DT07B’s part of the

autonomous combat robot.

Figure 12: Level 0 Software Flowchart

[AS]

46

3.2.2.1.2 Level 1 Software Flowchart

The level 1 block diagram is an expansion of the level 0 diagram. Figures 13, 14, and 15

show the level 1 flowcharts for DT07B’s part of the autonomous combat robot.

Figure 13: Level 1 Software Flowchart

[AS, TT]

47

Figure 14: Level 1 Weapon Control Flowchart

48

Figure 15: Level 1 Motion Control Flowchart

[TT]

49

3.2.2.2 Pseudocode

Below shows the pseudocode for the decision and actualization algorithms.

[TT]

//receive/accept 3 UART signals from DT07A

//signal 1: angle theta

//signal 2: speed

//signal 3: are we upside down or not?

//receive/accept 1 PWM signal from the RC Controller receiver

//Decide Autonomous or Manual mode

// Manual mode function

// Use Manual mode if:

// 1: Robot is upside down

// OR

// 2: RC controller toggle switch is flipped to manual mode

// OR

// 3: RC controller toggle switch is flipped to autonomous mode BUT a manual

signal is received (Manual Override)

// if both Autonomous and Manual signals are received, then listen to the

manual signal

//Insert Manual mode function here

// Autonomous mode function

// Use Autonomous mode if:

50

// 1: Robot is not upside down

// AND

// 2: RC controller toggle switch is flipped to autonomous mode

// AND

// 3: No manual signal is received

//Insert Autonomous mode function here

//Insert Weapon Activation function here

//Insert Drive Instructions function here

//---

//Main Function

//Initialize variables

// if in autonomous mode:

// 1: Turn on Autonomous mode LED indicator

// 2: Call Weapon Activation function

// 3: Call Drive Instructions function

// elseif in manual mode:

// 1: Call Weapon Activation function

// 2: Call Drive Instructions function

// else

// Activate Watchdog reset

//

51

//Turn on LEDs

// if in autonomous mode:

// Turn on autonomous mode LED

// if robot is on:

// Turn on robot power LED (Manual mode enabled)

// if robot detects enemy:

// Turn on enemy detected LED

// if robot loses communication:

// Turn on E-stop LED

//

//Create a PWM signal to send to the Drive and Weapon motors

//Insert main function here

//Interrupts

// Watchdog reset

// Emergency stop (from RC controller) if:

// Connection between robot and controller is lost

[AS]

#include <iostream>

using namespace std;

// Initialize functions

bool decideMode(bool, bool);

52

void command_drive_motors(bool, bool, bool, bool, double, int);

void command_weapon_motor(bool, bool, bool, bool);

int main(){

 // Initialize variables

 bool aut_mode = 0; // Indicates if autonomy mode is in use

 bool man_toggle = 1; // Indicates if manual mode toggle button was pressed

 bool man_signal = 1; // Indicates if receiving a manual mode signal

 bool e_stop = 0; // Indicates if e-stop activated

 bool upside_down = 0; // Indicates if bot is upside down

 bool weapon_off_toggle = 0; // Indicates if weapon is turned off

 bool oc_weapon = 0; // Indicates if weapon motor is in overcurrent mode

 bool oc_left_motor = 0; // Indicates if left drive motor is in overcurrent mode

 bool oc_right_motor = 0; // Indicates if right drive motor is in overcurrent mode

 // Global variables

 double angle;

 int motion_type;

 // Set power LED

 while (1) {

53

 // Read angle, speed, orientation, and other errors from autonomy (DT07A)

 // Set variables

 // upside_down;

 // Read data from RC controller

 // Set variables

 // e_stop

 // LED for status of RC controller

 // Decide between manual and autonomy mode

 aut_mode = decideMode(man_toggle, man_signal);

 // Data conversion so that autonomy and PWM can be fed into the same calculations/table,

and edit BD

 // Command drive motors

 command_drive_motors(e_stop, upside_down, oc_left_motor, oc_right_motor, angle,

motion_type);

 // Turn weapon motor on or off

 command_weapon_motor(e_stop, upside_down, weapon_off_toggle, oc_weapon);

 }

 return 0;

}

54

// Decide between manual and autonomy mode

bool decideMode(bool man_toggle_1, bool man_signal_1) {

 // Initialize variables

 bool aut_mode_1 = 0;

 bool aut_LED = 0;

 // If RC manual mode toggle button is pressed, set manual mode

 if (man_toggle_1 == 1) {

 aut_mode_1 = 0;

 }

 // Otherwise, if receiving a manual signal, set manual mode

 else if (man_signal_1 == 1) {

 aut_mode_1 = 0;

 }

 // Otherwise, set autonomous mode

 else {

 aut_mode_1 = 1;

 }

 // Convert autonomy/manual mode into angle and motion type that can be processed the same

way for both cases

55

 // Set angle

 // Set motion_type

 // Set mode LED pin to indicate if in autonomy mode

 aut_LED = aut_mode_1;

 // Turn autonomy LED on/off

 // Turn attacking LED on/off

 return aut_mode_1;

}

// Command drive motors

void command_drive_motors(bool e_stop_1, bool upside_down_1, bool oc_left_motor_1, bool

oc_right_motor_1, double angle_1, int motion_type_1) {

 // Initialize variables

 double left_motor_speed = 0; // Duty cycle

 int left_motor_dir = 1; // Forward

 double right_motor_speed = 0; // Duty cycle

 int right_motor_dir = 1; // Forward

 double temp_1 = 0; // For flipping robot directions

 double temp_2 = 0; // For flipping robot directions

56

 // If e-stop button is pressed, turn motors off

 if (e_stop_1 == 1) {

 left_motor_speed = 0;

 right_motor_speed = 0;

 }

 // Otherwise...

 else {

 // Put angle_1 and motion_type_1 through lookup table to set motor speed and directions

 // Set left_motor_speed

 // Set right_motor_speed

 // If over current protection needed, run motor at 70% of full speed

 if (oc_left_motor == 1) {

 left_motor_speed = 0.7 * left_motor_speed;

 }

 else if (oc_right_motor == 1) {

 right_motor_speed = 0.7 * right_motor_speed;

 }

 // If upside down, flip motor direction

 if (upside_down_1 == 1) {

57

 // Flip left and right directions

 temp_1 = left_motor_speed;

 left_motor_speed = right_motor_speed;

 right_motor_speed = temp_1;

 // Flip forward and reverse directions

 temp_2 = left_motor_dir;

 left_motor_dir = right_motor_dir;

 right_motor_dir = temp_2;

 }

 }

 // Send direction and PWM to motor controller for left and right motors

 return;

}

// Turn weapon motor on or off

void command_weapon_motor(bool e_stop_1, bool upside_down_1, bool weapon_off_toggle_1,

bool oc_weapon_1) {

 // Initialize variables

 bool direction = 1; // Forward

 int motor_speed = 0; // Duty cycle

58

 // If e-stop button is pressed, turn motor off

 if (e_stop_1 == 1) {

 motor_speed = 0;

 }

 // Otherwise, if upside down, turn motor off

 else if (upside_down_1 == 1) {

 motor_speed = 0;

 }

 // Otherwise, if RC weapon off toggle button is pressed, turn motor off

 else if (weapon_off_toggle_1 == 1) {

 motor_speed = 0;

 }

 // Otherwise, if over current protection needed, run motor at 70% of full speed

 else if (oc_weapon_1 == 1) {

 motor_speed = 0.7;

 }

 // Otherwise, run motor at full speed

 else {

 motor_speed = 1;

 }

 // Send direction and PWM to motor controller

59

 return;

}

[TT]

3.2.3 Mechanical Overview

Through research trade studies (see Appendix) and video research of various combat

robotics competitions, the team has decided to design a hybrid between the wedge and drum

weapon systems. The decision to use a wedge in addition to a drum was made primarily because

wedge bots have an advantage over many because they can get under the opponent robot and

avoid the opponent's weapon or disabling them by flipping them. The drawback of a wedge alone

is if the enemy robot is designed to drive on both top and bottom the wedge is not likely to

disable the robot. Wedges alone generally do not inflict critical damage.

The proposed design will add a drum weapon mechanism to the wedge design. This will

allow the robot to inflict critical damage to the underside of the opponent’s robot. The team’s

hybrid design will have the robustness and defensive capabilities of a wedge, but have the

damaging capabilities of a drum weapon system. This is because, as mentioned previously, the

wedge is good primarily for avoiding the opponent's weapons and flipping the opponent but not

inflicting the damage needed to destroy or disable the opponent.

Using a wedge-drum hybrid will allow for all of the benefits of the wedge, but will also

provide a mechanism which will be able to actually disable or destroy the opposing robot. This

hybrid design will support the implementation of the intercept or escape algorithms.

 [CH, TT, TW]

60

Figure 16 and 17 below shows a rendition of the mechanical design. The team plans on

moving much of the body of the LiDAR sensor into the chassis to protect them. The drum

spinner has been made a small width to enable fast speed up times and increase impact delivery

force by minimizing the distribution of the impact.

Figure 16: Mechanical Design - Isometric View

Figure 17: Mechanical Design - Planar View

[FA, CH, AS, TT, TW]

61

4. Parts List

Qty Value Device Parts Description

8 0.1uF CAP0805 C1, C35, C37, C38, C39, C40, C41, C42 Capacitor

1 PCIMALE J1 Card Edge Connector

1 Pic_Prog

1
Header 5 Pic Programming Header

1 100 R-US_R0

805
R12 Resistor

1 10k R-US_R0

805
R13 Resistor

1 10 R-US_R0

805
R59 Resistor

3 TCMT11

03-OPTO
U$1, U$2, U$3 Optoisolator- NPN output

1 PIC32MZ

2048EFH

064

U$5 Microprocessor, TQFP64

1 SWCH-11

966
S2 Switch

1 KC2520B U$9 KC2520B

1 USB-MIN

IM-5PIN
U$11 Mini-USB “B” connector with 5th pin

broken

Table 17: Control Board BOM

[TT]

62

Qty Value Device Parts Description

4 M03 LMOTOR, RMOTOR, ULTRASONIC,

WMOTOR
AMP QUICK CONNECTOR

2 M05 GYRO, LIDAR AMP QUICK CONNECTOR

1 M08 RC_RECIEVER AMP QUICK CONNECTOR

1 M09 LED_BOARD AMP QUICK CONNECTOR

2 PCIFEMA

LE
J1, J2 Card Edge Connector

3 0.47uF CAP0805 CSS_VR1, CSS_VR2, CSS_VR3 Capacitor

9 10uF CAP0805 CIN1_VR1, CIN1_VR2, CIN1_VR3,

CIN2_VR1, CIN2_VR2, CIN2_VR3,

CIN3_VR1, CIN3_VR2, CIN3_VR3

Capacitor

6 1k R-US_R0

805
RF1_VR1, RF1_VR2, RF1_VR3,

RF2_VR1, RF2_VR2, RF2_VR3
RESISTOR, American symbol

6 330uF CAP0805 COUT1_VR1, COUT1_VR2,

COUT1_VR3, COUT2_VR1,

COUT2_VR2, COUT2_VR3

Capacitor

1 350759-

4
350759-

4
BATTERYCONNECTOR Universal MATE-N-LOK .250 Centerline, 600

V, 19 - 36 A max"

3 LMZ136

10TZ/N

OPB

LMZ1361

0TZ/NOP

B

VREG1, VREG2, VREG3 BUCK, SYNC, ADJ, 10A, TO-PMOD-11

3 1k R-US_R0

805
REN_VR1, REN_VR2, REN_VR3 RESISTOR, American symbol

6 0.047uF CAP0805 CIN1_VRFLTR1, CIN1_VRFLTR2,

CIN1_VRFLTR3, CIN2_VRFLTR1,

CIN2_VRFLTR2, CIN2_VRFLTR3

Capacitor

3 0.001uH INDUCT

OR-0805

-3.3UH

LIN_VRFILTR1, LIN_VRFILTR2,

LIN_VRFILTR3
Inductors

6 1K R-US_R0

805
RIN1_VRFLTR1, RIN1_VRFLTR2,

RIN1_VRFLTR3, RIN2_VRFLTR1,

RIN2_VRFLTR2, RIN2_VRFLTR3

RESISTOR, American symbol

Table 18: Power Board/Backplane BOM [TW]

63

Qty Suggested Vendor Vendor Part Number Description

3 AmpFlow E30-150 Weapon and Drive Motors

2 Cytron MDS40B Motor Controllers - Drive

1 Cytron MD30C Motor Controllers - Weapon

2 Revolectrix B435 YS5000-6S-XP Batteries

2 Turnigy 9466000015-0 Charger

Table 19: General Electrical System BOM

[AS, TT]

64

5. Project Schedules

Figure 18: Gantt Chart Fall 2018

65

Figure 19: Gantt Chart Spring 2019

[AS]

66

 AJ Szabo Tanya Tebcherani Tristin Weber

9/23 - Researched lidars and found a few
possible lidars we could use
* Scanse lidar
* rplidar
- Discussed motor control with Tristin
- Edited preliminary report, defining
team B
- Brainstorming on software block
diagrams
- Looking into how to make (or buy if
possible) a watchdog board
- Worked with SOuRCe to create an on
campus student organization
* We are officially a student
organization as of Tuesday, 9/25/18, and
we have an orgsync page
* In the process of requesting funding
for travel, parts, etc.

- Previously worked on sensor selection
(lidar and proximity)
- Edited preliminary report’s marketing
requirements and block diagrams with the
team
- Brainstorming on further hardware block
diagram breakdown
* Level 2 and level 3, to be completed
when able to discuss as a team
* Preliminary list of pins/features
necessary in MCU, and what parts are
needed to interface with the various
devices -- will be continued to the point
where parts can be chosen and
calculations can be performed
- Very low-level brainstorming of some
software needed in the form of state
machine diagrams

- Selected potential batteries to supply the
robot with power. Created excel sheet to
estimate runtime and risk of overcurrent.
Found several batteries that meet
requirements
- Working with mechanical team to find
motors that meet their torque requirements
but stay within power limitations of
batteries
- Researching motor controller for weapon
motor. Drive motors have controllers built
into them.

9/30 - Met on Saturday with Tristin and
Tanya to work on the Midterm Design
Report
* Completed Software and Hardware
Block diagrams and Functional
Requirement Tables
* Completed Design Requirements
- Created a software diagram
(pseudocode) rough draft showing the
structure of what I will be coding

- Met with Team 7B to work on midterm
design report
- Assisted in software block diagram
- Split up team tasks
- Began reformatting of report
- Created rough draft of software block
diagram for drive/weapon motor
algorithms
- Brainstormed/noted actual code
implementation idea for drive/weapon
motor algorithms

- Met with Dr. Elbuluk to learn more
about DC-DC converters for the power
system
- Produced power system block diagram
and pondered electrical safety
implementation
- Assisted in software block diagram
- Met with Team 7A to finalize their
“power budget” for how many watts their
system is allowed to produce
- Formulated power system design
requirements

10/7 - Edited the decision algorithm
pseudocode block diagram based on
changes from Team 7A
- Helped make changes to decision
algorithm
- Worked on midterm report and
PowerPoint presentation

- Recreated weapon and motion control
algorithms based on changes from Team
7A
- Helped make changes to decision
algorithm
- Worked on midterm report and
presentation

-Discussed software algorithms
-Revisited motor selection

10/14 - Helped create poster
- Practiced midterm presentation
- Helped with the midterm Report
- Created a software flowchart (used in
the Midterm report and presentation)

- Helped create poster (specifically, wrote
software theory of operation)
- Practiced for presentation
- Worked on how the software algorithm
will actually be implemented in code
(potentially using binary code and case
statements with interrupts as needed)
- Researched encoders and how to pick
one

- Picked Batteries
- Hardware Diagrams
- Midpoint Presentation/Report
- EE Rep. To COE budget Presentation
- Greg’s powerpoint

10/21 - Worked on Project poster
- Prepared for midterm presentation

- Worked on Project poster
- Prepared for midterm presentation

- Worked on Project poster
- Prepared for midterm presentation

10/28 - RC Controller Research - Updated software theory of operation on - Design Requirements

67

- Software “Skeleton” Code
- Familiarize with UART

poster
- Researched encoders/how they work
- Researched designing a filter to convert
PWM to DC voltage - to the point where
it can be designed

- Switching Converter Lookup
- Found Power MOSFETS
- Selected Microcontroller
- Drive Motor Controllers

11/4 - RC Controller Research
- Software “Skeleton” Code
- Familiarize with UART

- Created control system schematic block
diagram
- Began schematic for control system
- Updated and formatted midterm report
- Confirmed team member roles

- Design Requirements
- Switching Converter Lookup
- Found Power MOSFETS
- Selected Microcontroller
- Drive Motor Controllers

11/11 - RC Controller Research
- Software “Skeleton” Code
- Familiarize with UART

- Working on finalizing control system
schematic and connectors
- Test!

- Design Requirements
- Switching Converter Simulations
- Power System Schematics
- Backplane layout
- Drive Motor Controller Interfacing

11/20 - Worked on the Final Written Report - Worked on the Final Written Report - Worked on the Final Written Report

Table 20: Week by Week Updates (9/23 - 11/20)

[AS, TT, TW]

68

6. Design Team Information

Andrew Szabo, Computer Engineer - Software Lead.

● LED software

● Decision algorithm software

● RC controller interface hardware and software

Tanya Tebcherani, Electrical Engineer - Team Lead, Archivist.

● Control algorithm software

● E-stop software

● Embedded controller system hardware

Tristin Weber, Electrical Engineer - Hardware Lead.

● LED hardware

● Overcurrent protection hardware (and other safety features)

● Power supply design

● Motor controller interface design

● Motor and battery selection

[AS, TT, TW]

69

7. Conclusion and Recommendations

In conclusion, the majority of the design of the combat robot has been completed. The

team has created various hardware and software block diagrams showing the theory behind the

team’s plan of implementation. Parts have been chosen and parts request forms have been

submitted. Schematics and pseudocode have also been created. For the final semester of senior

design, Team 7B is ready to move on to physically building the robot in terms of hardware, and

programming the PIC in terms of software. Finally, Team 7B must also merge their work with

Team 7A and the mechanical team to create a functioning combat robot.

[AS, TT]

70

8. References

[1] S. Bachand-Amirault, Types of Battlebots. [Online]. Available:

https://sbainvent.com/battlebot-design/battlebot-types.php. [Accessed: 20-Apr-2018].

[2] lidar-uk.com. [Online]. Available: http://www.lidar-uk.com/how-lidar-works/. [Accessed:

20-Apr-2018].

[3] “What is an Ultrasonic Sensor?,” Ultrasonic Sensor | What is an Ultrasonic Sensor?[Online].

Available: http://education.rec.ri.cmu.edu/content/electronics/boe/ultrasonic_sensor/1.html.

[Accessed: 20-Apr-2018].

[4] T. A. Kinney and Baumer Electric, “Proximity Sensors Compared: Inductive, Capacitive,

Photoelectric, and Ultrasonic,” Machine Design, 13-Mar-2017. [Online]. Available:

http://www.machinedesign.com/sensors/proximity-sensors-compared-inductive-capacitive-photo

electric-and-ultrasonic. [Accessed: 20-Apr-2018].

[5] W. by AZoSensors, “What is a Photoelectric Sensor?,” AZoSensors.com, 15-Jun-2015.

[Online]. Available: https://www.azosensors.com/article.aspx?ArticleID=311. [Accessed:

20-Apr-2018].

71

https://sbainvent.com/battlebot-design/battlebot-types.php
http://www.lidar-uk.com/how-lidar-works/
http://education.rec.ri.cmu.edu/content/electronics/boe/ultrasonic_sensor/1.html
http://www.machinedesign.com/sensors/proximity-sensors-compared-inductive-capacitive-photoelectric-and-ultrasonic
http://www.machinedesign.com/sensors/proximity-sensors-compared-inductive-capacitive-photoelectric-and-ultrasonic
https://www.azosensors.com/article.aspx?ArticleID=311

[6] “Photoelectric sensors,” Balluff. [Online]. Available:

https://www.balluff.com/local/us/products/sensors/photoelectric-sensors/. [Accessed:

20-Apr-2018].

[7] “CN107140047A - Competitive foot combat robot,” Google Patents. [Online]. Available:

https://patents.google.com/patent/CN107140047A/en?q=competition&oq=combat+robot+compe

tition. [Accessed: 20-Apr-2018].

[8] “WO2017143567A1 - Fighting robot,” Google Patents. [Online]. Available:

https://patents.google.com/patent/WO2017143567A1/en?q=competition&oq=combat+robot+co

mpetition. [Accessed: 20-Apr-2018].

[9] “KR20050055822A - The weapon system of a battlebot using pneumatic circuit,” Google

Patents. [Online]. Available:

https://patents.google.com/patent/KR20050055822A/en?q=robot&oq=competition+combat+rob

ot&page=2. [Accessed: 20-Apr-2018].

[10] V. Magnier, D. Gruyer and J. Godelle, "Automotive LIDAR objects detection and

classification algorithm using the belief theory," 2017 IEEE Intelligent Vehicles Symposium (IV),

Los Angeles, CA, 2017, pp. 746-751.https://ieeexplore.ieee.org/document/7995806/

72

https://www.balluff.com/local/us/products/sensors/photoelectric-sensors/
https://patents.google.com/patent/CN107140047A/en?q=competition&oq=combat+robot+competition
https://patents.google.com/patent/CN107140047A/en?q=competition&oq=combat+robot+competition
https://patents.google.com/patent/WO2017143567A1/en?q=competition&oq=combat+robot+competition
https://patents.google.com/patent/WO2017143567A1/en?q=competition&oq=combat+robot+competition
https://patents.google.com/patent/KR20050055822A/en?q=robot&oq=competition+combat+robot&page=2
https://patents.google.com/patent/KR20050055822A/en?q=robot&oq=competition+combat+robot&page=2
https://ieeexplore.ieee.org/document/7995806/

[11] A. Börcs, B. Nagy and C. Benedek, "Instant Object Detection in Lidar Point Clouds," in

IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 7, pp. 992-996, July 2017.. Available:

https://ieeexplore.ieee.org/document/7927715/

[12] Renishaw. (2018). Renishaw: Application note: Optical encoders and LiDAR scanning.

[Online] Available: http://www.renishaw.com/en/optical-encoders-and-lidar-scanning--39244

[Accessed 25 May 2018].

[13] Wong, W. (2018). Safe Robots Rely On Sensors. [Online] Electronic Design. Available:

http://www.electronicdesign.com/embedded/safe-robots-rely-sensors [Accessed 25 May 2018].

[14] P. Agharkar and F. Bullo, "Vehicle routing algorithms to intercept escaping targets," 2014

American Control Conference, Portland, OR, 2014, pp. 952-957.

Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6858759

[15] Combat Robot Rules. [Online]. Available: http://robogames.net/rules/combat.php.

[Accessed: 20-Apr-2018].

73

https://ieeexplore.ieee.org/document/7927715/
http://www.renishaw.com/en/optical-encoders-and-lidar-scanning--39244
http://www.electronicdesign.com/embedded/safe-robots-rely-sensors
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6858759
http://robogames.net/rules/combat.php

9. Appendices

9.1 Software Code

9.1.1 Header Files

9.1.1.1 config.h

// Configuration Bits

// DEVCFG3
#pragma config USERID = 0xFFFF // Enter Hexadecimal value (Enter Hexadecimal value)
#pragma config FMIIEN = ON // Ethernet RMII/MII Enable (MII Enabled)
#pragma config FETHIO = ON // Ethernet I/O Pin Select (Default Ethernet I/O)
#pragma config PGL1WAY = ON // Permission Group Lock One Way Configuration (Allow only one reconfiguration)
#pragma config PMDL1WAY = ON // Peripheral Module Disable Configuration (Allow only one reconfiguration)
#pragma config IOL1WAY = ON // Peripheral Pin Select Configuration (Allow only one reconfiguration)
#pragma config FUSBIDIO = ON // USB USBID Selection (Controlled by the USB Module)

// DEVCFG2
#pragma config FPLLIDIV = DIV_2 // System PLL Input Divider (2x Divider)
#pragma config FPLLRNG = RANGE_8_16_MHZ // System PLL Input Range (8-16 MHz Input)
#pragma config FPLLICLK = PLL_FRC // System PLL Input Clock Selection (FRC is input to the System PLL)
#pragma config FPLLMULT = MUL_4 //128 // System PLL Multiplier (PLL Multiply by 128)
#pragma config FPLLODIV = DIV_2 // System PLL Output Clock Divider (2x Divider)
#pragma config UPLLFSEL = FREQ_24MHZ // USB PLL Input Frequency Selection (USB PLL input is 24 MHz)

// DEVCFG1
#pragma config FNOSC = FRCDIV // Oscillator Selection Bits (Fast RC Osc w/Div-by-N (FRCDIV))
#pragma config DMTINTV = WIN_127_128 // DMT Count Window Interval (Window/Interval value is 127/128 counter value)
#pragma config FSOSCEN = ON // Secondary Oscillator Enable (Enable SOSC)
#pragma config IESO = ON // Internal/External Switch Over (Enabled)
#pragma config POSCMOD = HS // Primary Oscillator Configuration (HS osc mode)
#pragma config OSCIOFNC = OFF // CLKO Output Signal Active on the OSCO Pin (Disabled)
#pragma config FCKSM = CSDCMD // Clock Switching and Monitor Selection (Clock Switch Enabled, FSCM Enabled)
#pragma config WDTPS = PS1048576 // Watchdog Timer Postscaler (1:1048576)
#pragma config WDTSPGM = STOP // Watchdog Timer Stop During Flash Programming (WDT stops during Flash

 programming)
#pragma config WINDIS = NORMAL // Watchdog Timer Window Mode (Watchdog Timer is in non-Window mode)
#pragma config FWDTEN = ON // Watchdog Timer Enable (WDT Enabled)
#pragma config FWDTWINSZ = WINSZ_25 // Watchdog Timer Window Size (Window size is 25%)
#pragma config DMTCNT = DMT31 // Deadman Timer Count Selection (2^31 (2147483648))
#pragma config FDMTEN = ON // Deadman Timer Enable (Deadman Timer is enabled)

// DEVCFG0
#pragma config DEBUG = OFF // Background Debugger Enable (Debugger is disabled)
#pragma config JTAGEN = ON // JTAG Enable (JTAG Port Enabled)
#pragma config ICESEL = ICS_PGx1 // ICE/ICD Comm Channel Select (Communicate on PGEC1/PGED1)
#pragma config TRCEN = ON // Trace Enable (Trace features in the CPU are enabled)
#pragma config BOOTISA = MIPS32 // Boot ISA Selection (Boot code and Exception code is MIPS32)
#pragma config FECCCON = OFF_UNLOCKED // Dynamic Flash ECC Configuration (ECC and Dynamic ECC are disabled

(ECCCON bits are writable))
#pragma config FSLEEP = OFF // Flash Sleep Mode (Flash is powered down when the device is in Sleep mode)
#pragma config DBGPER = PG_ALL // Debug Mode CPU Access Permission (Allow CPU access to all permission regions)
#pragma config SMCLR = MCLR_NORM // Soft Master Clear Enable bit (MCLR pin generates a normal system Reset)

74

#pragma config SOSCGAIN = GAIN_2X // Secondary Oscillator Gain Control bits (2x gain setting)
#pragma config SOSCBOOST = ON // Secondary Oscillator Boost Kick Start Enable bit (Boost the kick start of the oscillator)
#pragma config POSCGAIN = GAIN_2X // Primary Oscillator Gain Control bits (2x gain setting)
#pragma config POSCBOOST = ON // Primary Oscillator Boost Kick Start Enable bit (Boost the kick start of the oscillator)
#pragma config EJTAGBEN = NORMAL // EJTAG Boot (Normal EJTAG functionality)

// DEVCP0
#pragma config CP = OFF // Code Protect (Protection Disabled)

// SEQ3
#pragma config TSEQ = 0xFFFF // Boot Flash True Sequence Number (Enter Hexadecimal value)
#pragma config CSEQ = 0xFFFF // Boot Flash Complement Sequence Number (Enter Hexadecimal value)

// DEVADC0
#pragma config ADCFG = 0x0FFFFFFF // Enter Hexadecimal value (Enter Hexadecimal value)

// DEVSN0
#pragma config SN = 0x0FFFFFFF // Enter Hexadecimal value (Enter Hexadecimal value)

// #pragma config statements should precede project file includes.
// Use project enums instead of #define for ON and OFF.

9.1.1.2 defines.h

#define SYS_CLK 8000000L
#define PWM_FREQ 20000

75

9.1.1.3 functions.h

// UART4
void init_UART4(void);
char rx4(void);

// IC1_y
void init_IC1(void);
float read_buf_IC1(void);
float calc_perc_IC1(float);
float y_out(void);

// IC2_x
void init_IC2(void);
float read_buf_IC2(void);
float calc_perc_IC2(float);
float x_out(void);

// IC3_w
void init_IC3(void);
float read_buf_IC3(void);
float w_out(void);

// IC4_estop
void init_IC4(void);
float read_buf_IC4(void);
float estop_out(void);

// IC5_am
void init_IC5(void);
float read_buf_IC5(void);
float aut_out(void);

// IC_Misc
void init_IC(void);
float calc_ms(float);

// OC1_RDM_PWM
void init_rdm_pwm(void);
void dc_rdm_pwm(float);
void dig_rdm_pwm(int);

// OC2_LDM_PWM

76

void init_ldm_pwm(void);
void dc_ldm_pwm(float);
void dig_ldm_pwm(int);

// OC3_WM_PWM
void init_wm_pwm(void);
void dc_wm_pwm(float);
void dig_wm_pwm(int);

// Auto_Mode
void autonomous_control(short int, short int);

// Man_Mode
void manual_RC_control(float, float);

// Misc
void init_osc(void);
void delay(int);
void estop(void);

// LEDs
void init_LEDs(void);
void LED_attack(int);
void LED_estop(int);
void LED_autonomy(int);
void LED_power(int);

77

9.1.2 Source Files

9.1.2.1 Auto_Mode.c

// Include Header Files
#include <stdlib.h>
#include <math.h> //for fabs, sin, cos functions
#include "functions.h"
#include "defines.h"

void autonomous_control(short int th, short int dr) {
 float theta = th;
 float drive = dr;
 float rad;

 float A = 0;
 float B = 0;
 float R = 0;
 float L = 0;

 float X;
 float Y;

 float rm_speed;
 float lm_speed;

 // Convert theta to radians
 rad = ((M_PI/180) * theta) - M_PI/2;

 // Calculate X & Y from angle
 // if (theta < -90 || theta > 90) {
 if (theta < 0 || theta > 180) {
 X = 0;
 Y = 0;
 }
 //else if (theta >= -90 && theta <= -45) {
 else if (theta >= 0 && theta <= 45) {
 X = -100;
 Y = 100 * tan(M_PI/2 + rad);
 }

78

 //else if (theta > -45 && theta < 0) {
 else if (theta > 45 && theta < 90) {
 X = -100 * tan(-1 * rad);
 Y = 100;
 }
 //else if (theta >= 0 && theta <= 45) {
 else if (theta >= 90 && theta <= 135) {
 X = 100 * tan(rad);
 Y = 100;
 }

 //else if (theta > 45 && theta <= 90) {
 else if (theta > 135 && theta <= 180) {
 X = 100;
 Y = 100 * tan(M_PI/2 - rad);
 }

 //NEED TO ADD A FEW STEPS FOR SCALING IN HERE
 X = (X)*(-1);

 // If going backwards, flip y-axis
 if (drive == 180) {
 Y = (Y)*(-1);
 }

 A = (100-fabs(X)) * (Y/100) + Y; //intermittent calculations
 B = (100-fabs(Y)) * (X/100) + X;
 R = (A + B) / 2; //% Left and % Right Found Here
 L = (A - B) / 2;

 //Determine motor speeds and output to global variable
 rm_speed = (R * 0.01);
 lm_speed = (L * 0.01);

 // Output PWM
 dc_rdm_pwm(rm_speed);
 dc_ldm_pwm(lm_speed);
}

79

9.1.2.2 IC1_y.c

#include <p32xxxx.h>
#include "functions.h"

// Initialize IC1
void init_IC1(void) {
 // Initialize RPD1 for IC1
 TRISDbits.TRISD1 = 1; // Input
 IC1Rbits.IC1R = 0b0000; // IC1 on RPD1 (P51), elevator

 // Initialize IC1
 IC1CONbits.SIDL = 0;
 IC1CONbits.FEDGE = 1;
 IC1CONbits.C32 = 0;
 IC1CONbits.ICTMR = 0;
 IC1CONbits.ICI = 0b01; //
 IC1CONbits.ICM = 0b110; // change to 001 for not simple mode // Capture every rising and

 falling edge
 IC1CONbits.ON = 1;

 IFS0CLR = _IFS0_IC1IF_MASK;
 IPC1bits.IC1IP = 6; // Priority (highest?)
 IPC1bits.IC1IS = 0; // Sub priority?
 IEC0bits.IC1IE = 1; // Enable IC1 interrupts
}

// Read IC1 buffer
float read_buf_IC1(void) {
 float ic1_1;
 float ic1_2;
 float ic1_t;

 // Read timer value at rising edge
 ic1_1 = IC1BUF;
 // Read timer value at falling edge
 ic1_2 = IC1BUF;
 // Clear interrupt flag
 IFS0CLR = _IFS0_IC1IF_MASK;
 // Calculate time high
 ic1_t = ic1_2 - ic1_1;

 return ic1_t;

80

}

// Convert time high (ms) to percent (range from -100 to 100%)
float calc_perc_IC1(float ms_val_IC1) {
 float perc_IC1;

 // (ms value - center value) / [(highest ms value - center ms value) / 100]
 // Only one equation is needed because lowest and highest ms values from the center are the
 same (symmetric)
 perc_IC1 = (ms_val_IC1-1.5)/0.006;

 if (perc_IC1 < 1 && perc_IC1 > -1) {
 perc_IC1 = 0.001;
 }

 return perc_IC1;
}

// Output percent for y-axis on RC controller
float y_out(void) {
 float tmr_val_IC1;
 float tmr_val_ms_IC1;
 float y_output;

 // If flag is high
 if (IFS0bits.IC1IF == 1) {
 // Read buffer for time high
 tmr_val_IC1 = read_buf_IC1();

 // If timer didn't overflow
 if (tmr_val_IC1 > 0) {
 // Convert time high (timer value) to ms
 tmr_val_ms_IC1 = calc_ms(tmr_val_IC1);
 // Convert ms to %
 y_output = (calc_perc_IC1(tmr_val_ms_IC1));

 return y_output;
 }
 }
}

81

9.1.2.3 IC2_x.c

#include <p32xxxx.h>
#include "functions.h"

// Initialize IC2
void init_IC2(void) {
 // Initialize RPD4 for IC2
 TRISDbits.TRISD4 = 1; // Input
 IC2Rbits.IC2R = 0b0100; // IC2 on RPD4 (P40), aileron

 // Initialize IC1
 IC2CONbits.SIDL = 0;
 IC2CONbits.FEDGE = 1;
 IC2CONbits.C32 = 0;
 IC2CONbits.ICTMR = 0;
 IC2CONbits.ICI = 0b01; //
 IC2CONbits.ICM = 0b110; // change to 001 for not simple mode // Capture every rising and
falling edge
 IC2CONbits.ON = 1;

 IFS0CLR = _IFS0_IC2IF_MASK;
 IPC2bits.IC2IP = 5; // Priority (highest?)
 IPC2bits.IC2IS = 0; // Sub priority?
 IEC0bits.IC2IE = 1; // Enable IC2 interrupts
}

// Read IC2 buffer
float read_buf_IC2(void) {
 float ic2_1;
 float ic2_2;
 float ic2_t;

 // Read timer value at rising edge
 ic2_1 = IC2BUF;
 // Read timer value at falling edge
 ic2_2 = IC2BUF;
 // Clear interrupt flag
 IFS0CLR = _IFS0_IC2IF_MASK;
 // Calculate time high
 ic2_t = ic2_2 - ic2_1;

 return ic2_t;

82

}

// Convert time high (ms) to percent (range from -100 to 100%)
float calc_perc_IC2(float ms_val_IC2) {
 float perc_IC2;

 // If joystick above center
 if (ms_val_IC2 > 1.55) {
 // (ms value - center value) / [(highest ms value - center ms value) / 100]
 perc_IC2 = (ms_val_IC2-1.55)/0.0055;
 }
 // If joystick below center
 else {
 // (ms value - center value) / [(lowest ms value - center ms value) / 100]
 perc_IC2 = (ms_val_IC2-1.55)/0.0066;
 }

 if (perc_IC2 < 1 && perc_IC2 > -1) {
 perc_IC2 = 0.001;
 }

 return perc_IC2;
}

// Output percent for y-axis on RC controller
float x_out(void) {
 float tmr_val_IC2;
 float tmr_val_ms_IC2;
 float x_output;

 // If flag is high
 if (IFS0bits.IC2IF == 1) {
 // Read buffer for time high
 tmr_val_IC2 = read_buf_IC2();

83

 // If timer didn't overflow
 if (tmr_val_IC2 > 0) {
 // Convert time high (timer value) to ms
 tmr_val_ms_IC2 = calc_ms(tmr_val_IC2);
 // Convert ms to %
 x_output = calc_perc_IC2(tmr_val_ms_IC2);

 return x_output;
 }
 }
}

84

9.1.2.4 IC3_w.c

#include <p32xxxx.h>
#include "functions.h"

// Initialize IC3
void init_IC3(void) {
 // Initialize RPD2 for IC3
 TRISDbits.TRISD2 = 1; // Input
 IC3Rbits.IC3R = 0b0000; // IC3 on RPD2 (P6), gear

 // Initialize IC3
 IC3CONbits.SIDL = 0;
 IC3CONbits.FEDGE = 1;
 IC3CONbits.C32 = 0;
 IC3CONbits.ICTMR = 0;
 IC3CONbits.ICI = 0b01; //
 IC3CONbits.ICM = 0b110; // change to 001 for not simple mode // Capture every rising and
falling edge
 IC3CONbits.ON = 1;

 IFS0CLR = _IFS0_IC3IF_MASK;
 IPC3bits.IC3EIP = 4; // Priority (highest?)
 IPC3bits.IC3EIS = 0; // Sub priority?
 IEC0bits.IC3IE = 1; // Enable IC1 interrupts
}

// Read IC3 buffer
float read_buf_IC3(void) {
 float ic3_1;
 float ic3_2;
 float ic3_t;

 // Read timer value at rising edge
 ic3_1 = IC3BUF;
 // Read timer value at falling edge
 ic3_2 = IC3BUF;
 // Clear interrupt flag
 IFS0CLR = _IFS0_IC3IF_MASK;
 // Calculate time high
 ic3_t = ic3_2 - ic3_1;

 return ic3_t;

85

}

// Output percent for y-axis on RC controller
float w_out(void) {
 float tmr_val_IC3;

 // If flag is high
 if (IFS0bits.IC3IF == 1) {
 // Read buffer for time high
 tmr_val_IC3 = read_buf_IC3();

 // If timer didn't overflow
 if (tmr_val_IC3 > 0) {
 if (tmr_val_IC3 > 4300 && tmr_val_IC3 < 4350) {
 return 1;
 }
 else if (tmr_val_IC3 > 7700 && tmr_val_IC3 < 7750) {
 return 2;
 }
 }
 }
}

86

9.1.2.5 IC4_estop.c

#include <p32xxxx.h>
#include "functions.h"

// Initialize IC4
void init_IC4(void) {
 // Initialize RPD3 for IC4
 TRISDbits.TRISD3 = 1; // Input
 IC4Rbits.IC4R = 0b0000; // IC4 on RPD3 (P67), throttle

 // Initialize IC4
 IC4CONbits.SIDL = 0;
 IC4CONbits.FEDGE = 1;
 IC4CONbits.C32 = 0;
 IC4CONbits.ICTMR = 0;
 IC4CONbits.ICI = 0b01; //
 IC4CONbits.ICM = 0b110; // change to 001 for not simple mode // Capture every rising and
falling edge
 IC4CONbits.ON = 1;

 IFS0CLR = _IFS0_IC4IF_MASK;
 IPC5bits.IC4IP = 3; // Priority (highest?)
 IPC5bits.IC4IS = 0; // Sub priority?
 IEC0bits.IC4IE = 1; // Enable IC4 interrupts
}

// Read IC4 buffer
float read_buf_IC4(void) {
 float ic4_1;
 float ic4_2;
 float ic4_t;

 // Read timer value at rising edge
 ic4_1 = IC4BUF;
 // Read timer value at falling edge
 ic4_2 = IC4BUF;
 // Clear interrupt flag
 IFS0CLR = _IFS0_IC4IF_MASK;
 // Calculate time high
 ic4_t = ic4_2 - ic4_1;

 return ic4_t;

87

}

// Output percent for y-axis on RC controller
float estop_out(void) {
 float tmr_val_IC4;

 // If flag is high
 if (IFS0bits.IC4IF == 1) {
 // Read buffer for time high
 tmr_val_IC4 = read_buf_IC4();

 // If timer didn't overflow
 if (tmr_val_IC4 > 0) {
 if (tmr_val_IC4 >= 7080) {
 return 1;
 }
 else if (tmr_val_IC4 <= 4960) {
 return 2;
 }
 else {
 return 3;
 }
 }
 }
}

88

9.1.2.6 IC5_am.c

#include <p32xxxx.h>
#include "functions.h"

// Initialize IC5
void init_IC5(void) {
 // Initialize RPD9 for IC5
 TRISDbits.TRISD9 = 1; // Input
 IC5Rbits.IC5R = 0b0000; // IC5 on RPD9 (P70) rutter

 // Initialize IC5
 IC5CONbits.SIDL = 0;
 IC5CONbits.FEDGE = 1;
 IC5CONbits.C32 = 0;
 IC5CONbits.ICTMR = 0;
 IC5CONbits.ICI = 0b01; //
 IC5CONbits.ICM = 0b110; // change to 001 for not simple mode // Capture every rising and

 falling edge
 IC5CONbits.ON = 1;

 IFS0CLR = _IFS0_IC5IF_MASK;
 IPC6bits.IC5EIP = 2; // Priority (highest?)
 IPC6bits.IC5EIS = 0; // Sub priority?
 IEC0bits.IC5IE = 1; // Enable IC4 interrupts
}

// Read IC5 buffer
float read_buf_IC5(void) {
 float ic5_1;
 float ic5_2;
 float ic5_t;

 // Read timer value at rising edge
 ic5_1 = IC5BUF;
 // Read timer value at falling edge
 ic5_2 = IC5BUF;
 // Clear interrupt flag
 IFS0CLR = _IFS0_IC5IF_MASK;
 // Calculate time high
 ic5_t = ic5_2 - ic5_1;

 return ic5_t;

89

}

// Output percent for y-axis on RC controller
float aut_out(void) {
 float tmr_val_IC5;

 // If flag is high
 if (IFS0bits.IC5IF == 1) {
 // Read buffer for time high
 tmr_val_IC5 = read_buf_IC5();

 // If timer didn't overflow
 if (tmr_val_IC5 > 0) {

 //autonomy = right on joystick
 if (tmr_val_IC5 >= 7160) {
 return 2;
 }
 //manual = left on joystick
 else if (tmr_val_IC5 <= 4570) {
 return 1;
 }
 else {
 return 3;
 }
 }
 }
}

90

9.1.2.7 IC_Misc.c

#include <p32xxxx.h>
#include "defines.h"

void init_IC(void) {
 // Initialize TMR3
 T3CONbits.SIDL = 0;
 T3CONbits.TGATE = 0;
 T3CONbits.TCKPS = 0b000; // 1:1 prescale value (2 MHz / 1 = timer ticks at 2 MHz)
 T3CONbits.ON = 1;

 PR3 = 0xFFFF;

 // Multi-vector interrupts
 INTCONbits.MVEC = 1;

 init_IC1();
 init_IC2();
 init_IC3();
 init_IC4();
 init_IC5();
}

float calc_ms(float t_val) {
 float ms_val;
 int long tmr_clk;

 tmr_clk = SYS_CLK / 2;
 ms_val = t_val/tmr_clk * 1000;

 return ms_val;
}

91

9.1.2.8 LEDs.c

// Include Header Files
#include <p32xxxx.h>
#include "functions.h"

//Global Variables
extern float wm_current_speed;
extern float filt_aut;

void init_LEDs(void) {
 // Initialize digital output
 TRISEbits.TRISE1 = 0; // Output (P61)
 TRISEbits.TRISE2 = 0; // Output (P62)
 TRISEbits.TRISE3 = 0; // Output (P63)
}
// Turn E-stop LED on
void LED_estop(int on){
 if (on == 1) {
 PORTEbits.RE2 = 0;
 }
 else if (on == 0) {
 PORTEbits.RE2 = 1;
 }
}
// Turn Autonomy LED on
void LED_autonomy(int on){
 if (on == 1) {
 PORTEbits.RE3 = 0;
 }
 else if (on == 0) {
 PORTEbits.RE3 = 1;
 }
}
// Turn Power LED on
void LED_power(int on){
 if (on == 1) {
 PORTEbits.RE1 = 0;
 }
 else if (on == 0) {
 PORTEbits.RE1 = 1;
 }
}

92

9.1.2.9 Man_Mode.c

// Include Header Files
#include <stdlib.h>
#include <math.h> //for fabs()
#include "functions.h"

extern float upside_down;

//Convert Controller Right Joystick to 2-Wheel Motion
void manual_RC_control(float X, float Y) {
 float A = 0;
 float B = 0;
 float R = 0;
 float L = 0;

 float rm_speed;
 float lm_speed;

 // If upside down, flip y-axis
 if (upside_down == 1) {
 Y = Y*(-1);
 }

 if (Y < -60){ //Fixes reverse turns. - Tristin
 X = X*(-1);
 }
 //NEED TO ADD A FEW STEPS FOR SCALING IN HERE
 X = (X)*(-1);

 A = (100-fabs(X)) * (Y/100) + Y; //intermittent calculations
 B = (100-fabs(Y)) * (X/100) + X;
 R = (A + B) / 2; //% Left and % Right Found Here
 L = (A - B) / 2;

 //Determine motor speeds and output to global variable
 rm_speed = (R * 0.01);
 lm_speed = (L * 0.01);

 // Output PWM
 dc_rdm_pwm(rm_speed);
 dc_ldm_pwm(lm_speed);
}

93

9.1.2.10 Misc.c

#include <p32xxxx.h>
#include <stdlib.h>
#include <math.h> //for fabs()
#include "defines.h"
extern float rdm_current_speed;
extern float ldm_current_speed;
extern float wm_current_speed;
extern float rdm_inc_val;
extern float ldm_inc_val;
extern float wm_inc_val;
extern float filt_aut;

// Initialize oscillator to 8MHz
void init_osc(void) {
 OSCCONbits.COSC = 0b111; // 8 MHz clock, maybe?
 OSCTUN = 0; // Keep it at 8 MHz, don't tune it up or down
}

// Delay of unknown time
void delay(int num) {
 int i = 0;

 while (i < 125000 * num) {
 i++;
 };
}

void estop(void) {
 float duty = 0;

 LED_estop(1);

 while (rdm_current_speed != 0) {
 //added by tristin for soft start
 if (duty < (rdm_current_speed - rdm_inc_val/100)) {
 rdm_current_speed = rdm_current_speed - rdm_inc_val/100;
 }
 else if (duty > (rdm_current_speed + rdm_inc_val/100)){
 rdm_current_speed = rdm_current_speed + rdm_inc_val/100;
 }

94

 else {
 rdm_current_speed = duty;
 }

 OC1RS = (PR2 + 1) * (fabs(rdm_current_speed));
 }

 while(ldm_current_speed != 0) {
 //added by tristin for soft start
 if (duty < (ldm_current_speed - ldm_inc_val/100)) {
 ldm_current_speed = ldm_current_speed - ldm_inc_val/100;
 }
 else if (duty > (ldm_current_speed + ldm_inc_val/100)){
 ldm_current_speed = ldm_current_speed + ldm_inc_val/100;
 }
 else {
 ldm_current_speed = duty;
 }

 OC2RS = (PR2 + 1) * (fabs(ldm_current_speed));
 }
 OC9RS = 0;
 /*
 while(wm_current_speed != 0) {

 //added by tristin for soft start
 if (duty < (wm_current_speed - wm_inc_val)) {
 wm_current_speed = wm_current_speed - wm_inc_val;
 }
 else if (duty > (wm_current_speed + wm_inc_val)){
 wm_current_speed = wm_current_speed + wm_inc_val;
 }
 else {
 wm_current_speed = duty;
 }

 OC9RS = (PR2 + 1) * (fabs(wm_current_speed));

 }*/
}

95

9.1.2.11 newmain1.c

// Include Header Files
#include <proc/p32mz2048efh100.h>

#include "config.h"
#include "defines.h"
#include "functions.h"

//Global Variables
float estp;
float upside_down = 0; // Start right-side up (0 or 1)
float filt_aut = 1; // Start in manual mode (1 or 2)
float spec = 0;

float rdm_current_speed = 0;
float ldm_current_speed = 0;
float wm_current_speed = 0;

float rdm_inc_val;
float ldm_inc_val;
float wm_inc_val;

int main(void) {
 // RC Controller Variables
 float RC_x;
 float RC_y;
 float RC_w;
 float RC_aut = 0;
 float RC_estop = 1; // (1 or 2)?

 // Filter variables
 float filt_RC_x = 0;
 float filt_RC_y = 0;

 // Aut Variables
 int i;
 short int degree;
 short int drive;

 // Extra variables
 float act_estop = 0; // E-stop activation feature (DON'T TOUCH THIS!!!)
 char rec = 'p'; // Variable that stores the character UART receives, default is stop

96

 int reci;

 // Initializations
 init_osc();
 init_IC();
 init_rdm_pwm();
 init_ldm_pwm();
 init_wm_pwm();
 init_LEDs();

 init_UART4();

 while(1) {
 // Set power LED high to show PIC is functioning
 LED_power(1);

 // Read from RC Controller
 RC_x = x_out();
 RC_y = y_out();
 RC_w = w_out();
 RC_aut = aut_out();
 RC_estop = estop_out();

 // Read UART
 if (IFS5bits.U4RXIF == 1) {
 reci = rx4();

 if ((reci > 179) && (reci != 183)) {
 drive = reci;
 }
 else {
 degree = reci;
 }

 IFS5CLR = _IFS5_U4RXIF_MASK;
 }

 // Read UART
 if (IFS5bits.U4RXIF == 1) {
 reci = rx4();

97

 if ((reci > 179) && (reci != 183)) {
 drive = reci;
 }
 else {
 degree = reci;
 }

 IFS5CLR = _IFS5_U4RXIF_MASK;
 }

 /*
 // Search mode
 if (rec == 's') {
 degree = 90;
 drive = 181;
 }
 // Upside down
 else if (rec == 'u') {
 degree = -90;
 drive = 181;
 }
 // Stop
 else if (rec == 'p') {
 degree = 0;
 drive = 181;
 }
 // Full speed forward
 else if (rec == 'f') {
 degree = 0;
 drive = 182;
 }
 // Full speed backwards (reverse)
 else if (rec == 'b') {
 degree = 0;
 drive = 180;
 }
 // 45 degrees to the right, forward
 else if (rec == 'r') {
 degree = 45;
 drive = 182;
 }
 // 45 degrees to the left, forward
 else if (rec == 'l') {

98

 degree = -45;
 drive = 182;
 }
 */

 // If e-stop functionality off
 if (act_estop == 0) {
 // Set e-stop functionality to on.
 if (RC_estop == 2) {
 act_estop = 1;

 }
 // No e-stop, continue with code
 else {
 // If upside down, manual mode
 if (upside_down == 1) {
 filt_aut = 1;
 }
 // If right-side up, continue
 else { // upside_down == 0
 // Set autonomy or manual
 if(RC_aut == 1 || RC_aut == 2) {
 filt_aut = RC_aut;
 }
 }

 // Set weapon on or off
 if ((RC_w == 1 || RC_w == 2)) {
 dc_wm_pwm(RC_w);
 }

 // Set soft start increments
 if (filt_aut == 1) { // Manual mode
 wm_inc_val = 0.03;
 rdm_inc_val = 0.03;
 ldm_inc_val = 0.03;
 }
 else { // Autonomous mode
 wm_inc_val = 0.03;
 rdm_inc_val = 0.03;
 ldm_inc_val = 0.03;
 }

99

 // Manual mode
 if (filt_aut == 1) {
 // Turn autonomy LED off
 LED_autonomy(0);

 // Filter x & y components
 if (RC_x != 0.000000) {
 filt_RC_x = RC_x;
 }

 if (RC_y != 0.000000) {
 filt_RC_y = RC_y;
 }

 // Set drive motor speeds
 if (filt_RC_x != 0 && filt_RC_y != 0) {
 manual_RC_control(filt_RC_x, filt_RC_y);

 // Reset filtering variables
 filt_RC_x = 0;
 filt_RC_y = 0;
 }
 }
 // Autonomous mode
 else { // filt_aut == 2
 // Turn autonomy LED on
 LED_autonomy(1);

 // Robot is upside down
 //if (degree == -90 && drive == 181) {
 if (degree == 183 && drive == 181) {
 spec = 1;
 upside_down = 1;
 dc_wm_pwm(1);
 }
 // Stop
 //else if (degree == 183 && drive == 181) {
 else if (degree == 90 && drive == 181) {
 spec = 1;
 dc_rdm_pwm(0);
 dc_ldm_pwm(1);
 //dc_wm_pwm(7700);
 }

100

 // Search mode (turn in place)
 //else if (degree == 90 && drive == 181) {
 else if (degree == 180 && drive == 181) {
 spec = 1;
 dc_rdm_pwm(0.5);
 dig_rdm_pwm(0);
 dc_ldm_pwm(0.5);
 dig_ldm_pwm(0);
 //dc_wm_pwm(7700);
 }
 // Set autonomy speed
 else {
 if (degree != 0) {
 spec = 0;
 if (degree == 183) {
 degree = 0;
 }
 autonomous_control(degree, drive);
 //dc_wm_pwm(7700);
 }
 }
 }
 }
 }
 // If e-stop functionality on
 else {
 // e-stop
 if (RC_estop != 1) {
 estp = 2;
 estop();
 }
 // Reset e-stop functionality when e-stop turned off
 else {
 act_estop = 0;
 estp = 1;
 filt_aut = 1; //put in manual

 // Turn e-stop LED off
 LED_estop(0);
 }
 }
 }
}

101

9.1.2.12 OC1_RDM_PWM.c

// Include Header Files
#include <stdlib.h>
#include <math.h> //for fabs()
#include <p32xxxx.h>
#include "defines.h"
#include "functions.h"

//Global Variables
extern float rdm_current_speed;
extern float rdm_inc_val;
extern float filt_aut;
extern float spec;

void init_rdm_pwm(void) {
 // Initialize digital output
 ANSELEbits.ANSE4 = 0; // No analog
 TRISEbits.TRISE4 = 0; // Output (P64)

 /*
 ANSELBbits.ANSB13 = 0; // No analog
 TRISBbits.TRISB13 = 0; // Output (P28)
 */

 // Initialize RPB14 for OC1
 ANSELBbits.ANSB14 = 0; // No analog
 TRISBbits.TRISB14 = 0; // Output
 RPB14Rbits.RPB14R = 0b1100; // P29

 // Initialize OC1
 OC1CONbits.SIDL = 0;
 OC1CONbits.OC32 = 0;
 OC1CONbits.OCTSEL = 0;
 OC1CONbits.OCM = 0b110;
 OC1CONbits.ON = 1;

 // Set motor speed off
 PR2 = (SYS_CLK / (2 * PWM_FREQ)) - 1;
 OC1RS = 0;
}

102

// Set weapon motor duty cycle
void dc_rdm_pwm(float duty) {
 if (duty > 0.15) {
 duty = 0.15;
 }
 else if (duty < -0.15) {
 duty = -0.15;
 }

 //added by tristin for soft start
 if (duty < (rdm_current_speed - rdm_inc_val)) {
 rdm_current_speed = rdm_current_speed - rdm_inc_val;
 }
 else if (duty > (rdm_current_speed + rdm_inc_val)){
 rdm_current_speed = rdm_current_speed + rdm_inc_val;
 }
 else {
 rdm_current_speed = duty;
 }

 if (filt_aut == 1 || (filt_aut == 2 && spec == 0)) {
 //Determine direction of motors "0" for reverse "1" for forward - CAN BE ALTERED IF

NEEDED
 if (rdm_current_speed >= 0) {
 dig_rdm_pwm(1);
 }
 else {
 dig_rdm_pwm(0);
 }
 }

 OC1RS = (PR2 + 1) * (fabs(rdm_current_speed));
}

// Set direction of weapon (1 = forward, 0 = backward)
void dig_rdm_pwm(int forward) {
 PORTEbits.RE4 = forward;
}

103

9.1.2.13 OC2_LDM_PWM.c

// Include Header Files
#include <stdlib.h>
#include <math.h> //for fabs()
#include <p32xxxx.h>
#include "defines.h"
#include "functions.h"

extern float ldm_current_speed;
extern float ldm_inc_val;
extern float filt_aut;
extern float spec;

void init_ldm_pwm(void) {
 // Initialize digital output
 ANSELBbits.ANSB9 = 0; // No analog
 TRISBbits.TRISB9 = 0; // Output (P28)

 // Initialize RPD5 for OC2 (THIS SHOULD BE RPB6 ON CONTROL BOARD)
 //ANSELDbits.ANSD5 = 0; // No analog
 TRISBbits.TRISB6 = 0; // Output
 RPB6Rbits.RPB6R = 0b1011; // P17

 // Initialize OC1
 OC2CONbits.SIDL = 0;
 OC2CONbits.OC32 = 0;
 OC2CONbits.OCTSEL = 0;
 OC2CONbits.OCM = 0b110;
 OC2CONbits.ON = 1;

 // Set motor speed off
 PR2 = (SYS_CLK / (2 * PWM_FREQ)) - 1;
 OC2RS = 0;
}
// Set weapon motor duty cycle
void dc_ldm_pwm(float duty) {
 if (duty > 0.15) {
 duty = 0.15;
 }
 else if (duty < -0.15) {
 duty = -0.15;
 }

104

 //added by tristin for soft start
 if (duty < (ldm_current_speed - ldm_inc_val)) {
 ldm_current_speed = ldm_current_speed - ldm_inc_val;
 }
 else if (duty > (ldm_current_speed + ldm_inc_val)){
 ldm_current_speed = ldm_current_speed + ldm_inc_val;
 }
 else {
 ldm_current_speed = duty;
 }

 if (filt_aut == 1 || (filt_aut == 2 && spec == 0)) {
 //Determine direction of motors "0" for reverse "1" for forward - CAN BE ALTERED IF

NEEDED
 if (ldm_current_speed >= 0) {
 dig_ldm_pwm(0);
 }
 else {
 dig_ldm_pwm(1);
 }
 }

 OC2RS = (PR2 + 1) * (fabs(ldm_current_speed));
}

// Set direction of left drive motor (1 = forward, 0 = backward)
void dig_ldm_pwm(int forward) {
 PORTBbits.RB9 = forward;
}

105

9.1.2.14 OC3_WM_PWM.c

// Include Header Files
#include <stdlib.h>
#include <math.h> //for fabs()
#include <p32xxxx.h>
#include "defines.h"
#include "functions.h"

//Global Variables
extern float wm_current_speed;
extern float wm_inc_val;
extern float filt_aut;

// Initialize weapon motor PWM module
void init_wm_pwm(void) {
 // Initialize PWM pins
 TRISDbits.TRISD5 = 0; // Output
 RPD5Rbits.RPD5R = 0b1101; // P23

 // Initialize oscillator
 OSCCONbits.COSC = 0b111; // 8 MHz clock, maybe?
 OSCTUN = 0; // Keep it at 8 MHz, don't tune it up or down

 // Initialize Timer2
 // Input to timer 2 is clock frequency / 4 (8 MHz/4 = 2 MHz)
 T2CONbits.SIDL = 0;
 T2CONbits.TGATE = 0;
 T2CONbits.TCKPS = 0b000; // 1:1 prescale value (2 MHz / 1 = timer ticks at 2 MHz)
 T2CONbits.T32 = 0;
 T2CONbits.ON = 1;

 // Initialize OC9
 OC9CONbits.SIDL = 0;
 OC9CONbits.OC32 = 0;
 OC9CONbits.OCTSEL = 0;
 OC9CONbits.OCM = 0b110;
 OC9CONbits.ON = 1;

 // Set motor speed off
 PR2 = (SYS_CLK / (2 * PWM_FREQ)) - 1;
 OC9RS = 0;
}

106

// Set weapon motor duty cycle
void dc_wm_pwm(float on) {

 float duty;

 if (on == 1) {
 duty = 0;
 }
 // 7700
 // 2
 else if ((on != 1) && (on != 0)) {
 duty = 0.10;
 }

 /*
 //added by tristin for soft start
 if (duty < (wm_current_speed - wm_inc_val)) {
 wm_current_speed = wm_current_speed - wm_inc_val;
 }
 else if (duty > (wm_current_speed + wm_inc_val)){
 wm_current_speed = wm_current_speed + wm_inc_val;
 }
 else {
 wm_current_speed = duty;
 }

 OC9RS = (PR2 + 1) * (fabs(wm_current_speed));
 * */

 OC9RS = (PR2 + 1) * duty;

}

107

9.1.2.15 UART4.c

// Include Header Files
#include <p32xxxx.h>
#include "defines.h"

// Initialize UART1 module
void init_UART4(void) {
 // Initialize pin for RX
 U4RXRbits.U4RXR = 0b1000; // Set UART1 RX to RPF3
 TRISFbits.TRISF3 = 1; // Input

 //U1MODEbits.SIDL = 0;
 int long pbClk = SYS_CLK / 2;
 U4MODEbits.BRGH = 0;
 U4BRG = pbClk /(16 * 9600) - 1;
 U4STAbits.UTXEN = 1; // Enable TX pin
 U4STAbits.URXEN = 1; // Enable RX pin
 U4MODEbits.PDSEL = 0b00;
 U4MODEbits.STSEL = 0;
 U4MODEbits.ON = 1; // Enable

 // Enable interrupts
 IFS5CLR = _IFS5_U4RXIF_MASK;
 IPC42bits.U4RXIS = 1; // Priority (highest?)
 IPC42bits.U4RXIP = 0; // Sub priority?
 IEC5bits.U4RXIE = 1; // Enable IC1 interrupts
}

int rx4(){
 while(!U4STAbits.URXDA);
 return U4RXREG;
}

108

9.2 Board schematics

9.2.1 Control Board schematics

109

110

9.2.2 Power Board schematics

111

9.3 Useful links

Link for Harmony tutorials:

http://microchipdeveloper.com/harmony:new-harmony-project-details

Link for the PIC32MZ datasheet:

http://ww1.microchip.com/downloads/en/DeviceDoc/60001320E.pdf

Link for Drive Motor Controller Datasheet:

https://www.robotshop.com/media/files/images3/md30cusersmanual_1_.pdf

Link for Opto-Isolator Datasheet:

https://www.mouser.com/datasheet/2/427/tcmt1100-103040.pdf

112

http://microchipdeveloper.com/harmony:new-harmony-project-details
http://ww1.microchip.com/downloads/en/DeviceDoc/60001320E.pdf
https://www.robotshop.com/media/files/images3/md30cusersmanual_1_.pdf
https://www.mouser.com/datasheet/2/427/tcmt1100-103040.pdf

9.4 Pictures

113

114

115

116

117

118

	The University of Akron
	IdeaExchange@UAkron
	Spring 2019

	Autonomous Combat Robot
	Andrew J. Szabo II
	Chris Heldman
	Tristin Weber
	Tanya Tebcherani
	Holden LeBlanc
	See next page for additional authors
	Recommended Citation
	Author

	tmp.1556243639.pdf.AlH_t

