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Abstract - The objective of the project is to design and build the electrical and software systems 
for the autonomy system of a 60 lb. combat robot. The system should allow the robot to 
function autonomously. The autonomous combat robot will outperform its opponents by 
following a variety of combat algorithms. The autonomous system will follow an intercept or 
escape locomotion pattern to outperform human operators. The system will also attempt to 
keep the robot pointed in the correct orientation, facing the opponent at all times. While 
operating autonomously, the robot will use LiDAR and ultrasonic sensors to detect and attack 
opponent robots. 

[CH] 

1. Problem Statement 

The following sections define the problem being solved with the autonomous combat robot. 

[AS] 

1.1 Need 

Combat robotics is a discipline that requires much skill and a quick response time. It is often 

the case that the winner is not the best robot, but rather the best operator. Human operators 

inherently lack a consistent, fast reaction time when using a remote controlled system for combat 

robots. Human operators also have difficulty keeping up with the fast decision making necessary to 

maneuver their combat robots. It would be much faster and more effective for a combat robot to 

operate independently of human controls. Autonomous control of the operation and locomotion of a 

combat robot would outperform a manual operator. 

A fully autonomous system has the ability to make algorithmic decisions, follow a 

locomotion algorithm, and attack with more precision than a manual operator. Therefore, an 

autonomous combat robot is needed to outperform opponents in movement and weapon reaction 

time. 

[AS, FA, CH] 
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1.2 Objective 

The objective of Design Team 07A is to design a system to enable autonomous functioning 

of the combat robot. The autonomous system will outperform the manually driven robots during 

competition. 

Sensor data is used to determine whether the robot should attack or run from the enemy and 

which direction the robot needs to move to. This autonomous system should integrate with the robot 

controller system from Design The Motion and Actualization Team and the mechanical robot. The 

robot will indicate whether it is in full autonomous or manual override mode. The system will also 

be able to be armed and disarmed remotely, even while in autonomous mode. Lastly, the robot will 

incorporate an emergency shut off and braking system. 

The autonomous combat robot will outperform its human driven opponents by following a 

variety of combat algorithms. While running autonomously, it will use sensors to detect its 

environment and the opponent. While the weapon system is reaching full speed, the combat robot 

will follow an avoidance and escape algorithm. When the weapon system is ready, the robot will 

follow an intercept algorithm to attack the opponent. The autonomous system will also attempt to 

keep the robot pointed in the correct orientation, facing the opponent when possible. 

This project is a robotic system. It will have heavy reliance on electrical, software, and 

mechanical subsystems. The overall team for the combat robot consists of five electrical engineering 

students, two computer engineering students, and three mechanical engineering students. This team 

is a campus organization through Source, titled The Autonomous Combat Robotics Team. 

[FA, HL,  CH] 
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Role of Electrical/Computer Teams 

● Create the control, feedback, and sensing system to control the combat robot 

● Implement opponent facing tracking algorithm 

● Implement control intercept or escape algorithm 

● Create LiDAR sensing data interpretation and detection programming and algorithm 

● Control of electric motor system 

● Control of weapon system 

● Autonomous sensing and control 

● Create the power system to run the motors and robotic system 

  

Role of Mechanical Team  
1

● Create the robot’s chassis 

● Create the mechanical weapon system 

● Create a mechanical drive system 

[CH] 

 

 

 

 

  

1The mechanical engineering team has obtained preliminary approval to work with the electrical and computer 
engineering team from the Mechanical Engineering Department, and is in the process of receiving full approval upon the 
approval of the ECE’s final proposal. The mechanical engineering team will synchronize its deadlines with the ECE 
team’s deadlines in completion of their requirements with the project. 
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1.3 Background 

The following sections provide a background and general overview of the combat robot 

design approach. 

[TT] 

1.3.1 Research Survey 

Currently, the vast majority of combat robots operate by being remote controlled by an 

operator. Autonomy requires additional financial investments and far more work. However, the 

benefits of these investments are well worth the cost for first time contenders facing operators with 

many years of experience. 

The explicit goal of combat robotics is to immobilize the opponent robot before it can do the 

same to one’s own robot. There are many ways to accomplish this, from attacking with blunt force, 

to trying to impale key mechanisms of the robot, to lifting and getting the opponent robot stuck in an 

immobile position. The key to a successful combat robot is having both powerful offensive and 

defensive strategies. 

Table 1 below shows a trade off analysis of the typical combat robotics weapon systems. 

This was used as a research tool to determine the best combat weapon system for the autonomous 

robot. 
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Table 1: Comparison of Combat Robot Types 

Style Pros Cons 

Wedge - Structural integrity provides an excellent 
defense 
- Simple design 
- Able to get under an opponent to drive them 
into the wall or other hazards 
- Can incorporate other design features 

- Must have a skilled operator 
- Weak offense 
- Weak matchup against other 
wedges 
- Some competitions have banned 
combat bots that only use wedges 

Spinner - Weapon serves as both offense and defense 
- Low skill floor for operator 

- Potential to damage itself 
- Difficult to design 
- Difficult to upgrade with 
additional features 

Drum - High destructive potential 
- Allows for a sturdy frame 
- Room for additional features 

- Difficult to control 

Crusher - Potential to cause structural damage via 
blunt force 
- Allows for a sturdy frame 

- Requires a skilled operator to 
operate manually 
- Hard to stay within weight limits 

Flipper - Potential to flip other robots over for 
damage or immobilization 
- Room for additional features 

-Requires a skilled operator to 
operate manually 
-Weapon presents a vulnerable spot 
-Pneumatics limited by air tank size 

Hybrid - Flexibility and ability to have multiple 
weapon systems 

-Complex design 
-Hard to keep within weight 
restrictions 

 
 [TT] 
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The proposed combat robot will be operated autonomously, with an option to be controlled 

manually if desired. A major component in creating autonomous robots is sensing their surrounding 

environment. The sensors used for this project will be a LiDAR sensor, two ultrasonic sensors, an 

encoder, and a gyroscope. 

LiDAR (light detection and ranging) sensors use light in the form of pulsed lasers to detect 

an object’s distance from the sensor. When it emits a laser, the laser will hit an object and that object 

will reflect the laser back to the sensor. The sensor measures the time it takes to receive the 

reflection, and uses the speed of light to calculate the distance of the object from the sensor. LiDAR 

sensors emit approximately 150,000 pulses per second, so they can quickly build a “map” of their 

surroundings [2]. This sensor is a good fit for the combat robot, as it provides a point cloud from 

which an algorithm can identify both the opponent and the walls of the arena. The only downside to 

the LiDAR is that it does not return data at short distances, so the ultrasonic sensors must be used to 

complement it. 

The ultrasonic sensors are similar to the LiDAR sensor in the sense that they measure their 

distance from an object, but they use sound instead of light. They send out sound waves at a specific 

frequency and wait for the waves to hit an object and bounce back. Based on the time the sound 

waves take to bounce back and the speed of sound, the ultrasound sensors can determine their 

distance from the object that the sound waves hit. These sensors may not work if they hit an object 

that deflects or absorbs sound [3]. Additionally, the sound waves may not return to the sensors if 

they are reflected at an odd angle. As a result, the ultrasonic sensors will be used by the combat bot 

only for short range detection in cases where the LiDAR fails to return data. 

The encoder will be used to determine how fast the weapon system is spinning. It is made up 
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of a wheel with markers on it and a laser that returns a pulse each time a marker spins past it. As the 

weapon is spinning, it spins the encoder wheel with it and produces pulses at a rate proportional to 

the weapon rotations per minute. From there, it can be determined what the full speed of the weapon 

is in terms of pulses and from there the half capacity speed can be calculated. This information will 

later be used in the autonomous algorithm to decide whether the robot is ready to attack. 

The gyroscope will be used to determine if the robot is right side up. If the robot is upside 

down, the autonomy is not guaranteed to function properly. If this happens, the robot will give a 

signal to the driver to switch to manual mode until it is right side up again. Instructions from the 

controller are automatically inverted as long as the robot is upside down. 

[FA, TT] 

Almost all combat robots at RoboGames are manually-controlled, which means their 

effectiveness in competition is severely limited by the skill level and reaction time of their operator. 

This flaw in current designs exists because the algorithms and sensors needed to have a competitive 

combat robot are quite complex. If one were to write such an algorithm that could effectively 

perform combat maneuvers and pair it with an adequate sensor array and a robust, reliable combat 

robot, the resulting combination could yield a very competitive end product. 

This bot is similar to existing designs because it still has all of the components of a 

traditional combat bot. It will have a weapon as well as all of the required electrical engineering 

components. For example, it will have motors, actuators, controls, power supplies, programming, 

wireless communications, etc. It is also similar to other self-driving (autonomous) vehicles because 

it will use LiDAR sensors to accomplish autonomy. Note that, although LiDAR is constantly used 

for self-driven vehicles, autonomous combat bots are not the standard. Most combat bots have an 
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operator who controls the bot during a fight. Thus, making the bot autonomous is different from 

existing technologies. 

[TT] 

There are current patents on robotic systems that are similar to the one in which the team will 

create. Some interesting ideas can be drawn from these innovative patents. 

One of these was a patent on a combat robot which used a walking system instead of the 

conventional wheels. This was proposed because many combat robots fail because they lose mobility 

due to there fragile rubber wheels being destroyed. The weapon system on this robot was of the 

flipping kind [7]. 

Another patent of interest is a combat robot which uses infrared emitters to sense its 

surroundings and autonomously detect and attack the opponent robot. This robot was a wedge 

combat design. The design mitigates the weakness of external vulnerable wheels by having them 

enclosed within its chassis  [8]. 

A further patent found was on a flipping- wedge hybrid robotic combat system. This patent 

only discussed the weapon system design. The robot was of a wedge shape, and could function as a 

wedge combat robot to attack other bots by flipping them over and preventing their mobility. (If the 

wheel system was on the bottom of there robot). The more interesting weapon of this system was a 

flipping arm. The combat robot would have a arm which could reach under other robots and then lift 

at high velocity to send the opponent in the air. This system was driven by pneumatic circuits. It 

would used a compressed gas tank to drive the arm with a very large torque to flip the other robot 

[9]. 
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1.4 Proposed Design Overview 

 

For offense, the combat robot will use the drum method, which involves an upward spinning 

horizontal tube with extensions used to hit and possibly throw the opponent robot. This drum will be 

in combination with a wedge. Hybrid combat robots are often not used because of complexity of 

design but having a mechanical subteam will allow the team to make a more complex and effective 

weapon system.  Most notably, the drum method is also used by Touro Maximus, a long time 

contender and multiple time finalist in combat robotics tournaments.  The wedge method was used 

by the winning RoboGames combat robot Original Sin. By combining these two weapon systems 

and having a fully autonomous robot, it can outperform its opponents. By using autonomy, this 

method can be further enhanced to make sure the weapon system turns to face the opponent as fast 

as possible, and can follow ideal intercept and escape paths. 

On the defensive side, it is a clear advantage to have a robot that can withstand being flipped. 

Robots that can operate on their back usually recover more effectively from being tossed as well. 

However, the design should also focus on a hard outer shell that resists damage to both blunt and 

sharp attacks. Autonomy can also help defensively, by allowing the robot to sense in all directions 

where the opponent is and turn to face the opponent with the weapon system before the opponent 

can strike from behind or from the side. 

[FA] 

The team has found that LiDAR is the best sensing technology for automated driving of 

combat robots. In 3D applications, it uses a laser beam to scan the environment with very high 

accuracy, and as a result is highly suited for estimating shapes of objects [10]. The data returned by 
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LiDAR can be interpreted as a 3D point cloud, where clusters of detected points form objects. In the 

arena, this 3D point cloud will show the outline of each wall, along with an outlying cluster of points 

where the opponent is. The closest point of any wall as well as the closest point of the opponent will 

be used to autonomously decide navigation. 

Internally, LiDAR works by using a rotating mirror system to take panoramic picture data. It 

is controlled by motors and rotary encoders that determine the tilt of the mirrors used to take the 

pictures [12]. This mechanical complexity along with the large amount of data processing make this 

very expensive. Smaller, cheaper versions are used in mobile robots such as Aethon's autonomous 

TUG robots used in hospitals [13]. 
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The goal of the autonomous system is to drive the robot better than a user would. Higher 

complexity locomotion algorithms will be used to give the combat robot a significant edge above all 

manual robots. This will be done by implementing two algorithms for movement. The first being a 

intercept or escape algorithm. The second being an algorithm that utilizes the robot’s weapon design, 

which will attempt to keep the defensive wedge pointed at the opponent at all times. 

The intercept or escape algorithm will determine if the robot should be avoiding or attacking 

the opponent. This will be dependent on if the chosen drum is at a sufficient velocity, or at least will 

be at sufficient velocity by the time it reaches the opponent. If the robot’s drum weapon is at a 

acceptable speed, or the opponent is far enough away, the robot will use a simple tracking algorithm 

and traverse directly toward the opponent.. 

 
When the drum is not at full speed, and the opponent is nearby,  the combat robot will use the 

escape algorithm. This algorithm is based on an optimal escape pattern in which the trajectory vector 

is set perpendicular to the current locomotion vector of the opposing robot. This will successfully 

escape the opponents so the drum weapon can obtain optimal speed. These algorithms will 

outperform manual operators as long as the speed of the robot is near or above the opponent. The 

full algorithm is shown below in figure 1. 

The opponent facing tracking algorithm will implement a defensive strategy used by human 

wedge operators. The strategy is to keep the wedge always facing the opponent. This will cause the 

attacking  opponent to drive on top of the wedge, and potentially flip over, when attempting to 

attack. While on top of the autonomous combat robot, the attacking robot’s weapon system is less 

likely to hit the autonomous robot.  Also giving it an opening to attack using the drum weapon. 

 

19 
 



 

 

20 
 



 

Figure 1: Autonomy Locomotion Algorithm. 
[CH] 
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1.5 Marketing Requirements 

The marketing requirements for the combat robot system are as follows: 

1. The robot shall operate autonomously. 

2. The sensor system shall read environment data to be sent to the autonomy system. 

3. The autonomy system shall be able to differentiate between the arena walls and the enemy. 

4. The autonomy system shall be able locate the enemy with respect to itself. 

5. The autonomy system shall be able to make a fight or flight decision. 

6. The autonomy system shall output a recommended location where the robot should travel. 

7. The recommended location shall include the orientation to keep the enemy in front of the 

robot when possible. 

8. The autonomy system shall easily interface with the system of The Motion and Actualization 

Team. 

9. The autonomous system shall indicate if the system is still functional. 

10.The robot shall be compliant with all other RoboGames rules [15]. 

[SV, FA, CH, TT, TW, SV, HL] 
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1.6 Objective Tree 

The objective tree for the fully autonomous combat robot is shown in Figure 2 below. This 

was derived from the marketing requirements. 

  
Figure 2: Combat Robot Autonomy Objective Tree. 

[SV] 
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2.0 Design Requirements 
Table 2: Design Requirements 

Marketing 
Requirement 

Engineering Requirements Justification 

9, 8 1. The autonomous system shall visually 
report the functionality of the 
autonomous system. 

The operator of the robot must 
know when to switch to manual 
mode if the autonomous system 
fails. 

3,4 2. The autonomous system shall visually 
report if an enemy is detected. 

This should be done in order to 
verify that the movements/actions 
of the robot are due to the 
autonomous system. 

5 3. The autonomous system shall visually 
report whether it is in fight, flight, or 
search mode. 
 

This should be done in order to 
verify that the robot is following 
the correct course of action. 

11 4. The robot and autonomy system shall 
operate for three minutes without 
interruption. 

The length of a RoboGames 
match is three minutes. The robot 
must operate for the entirety of 
the match. 

1,6,7,8 5. The autonomous system shall 
continuously output the recommended 
angle and speed (to the motion and 
actualization system). 

The autonomous system should 
instruct the motor control system 
to charge or search for an 
opponent when possible (see 6). 

1,10 6. The autonomous system shall sense 
and output a signal if the robot gets 
flipped over from its original orientation 
(to the motion and actualization system). 

The autonomous system should 
stop operation if the robot has 
been flipped over. 

1,2,4 7. The autonomy system shall be able to 
detect an object up to 12 meters away 
(within the field of view). 

In order to effectively defend 
itself from an attacker and to 
effectively attack, the robot needs 
at least twelve meters to prepare. 

1,2,4 8. The system must report the location 
of a detected enemy with no more than 5 
degrees error from 20 feet away. 

In order to accurately determine 
the recommended location, the 
robot needs to know where the 
enemy is. 

1,7 9. The autonomous system shall The robot needs to be ready to 
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initialize within 60 seconds of the robot 
being powered up. 

defend/attack at the start of the 
match. 

11 10. The autonomous system shall weigh 
less than 6 pounds. 

The robot shall be classified as a 
60 lb combat bot and the rest of 
the components have been allotted 
the other 54 lbs. 

11 11. The emergency stop shall power off 
and stop the autonomous system within 
60 seconds. 

RoboGames rules state that the 
robot should be powered off 
completely within sixty seconds. 

8 12. The system shall have overcurrent 
protection on each board for 110% of 
the max current. 

In order to protect the rest of the 
robot from malfunction, the robot 
shall not be allowed to draw more 
current than the power supply can 
provide. 

8 13. The system shall operate on less 
than 144 watts. 

The power supply is to be able to 
supply 144 to the autonomous 
system. 

1,5 14. Robot shall not engage enemy unless 
the weapon ready signal has been 
received. 

In order to effectively attack an 
enemy, the weapon needs to have 
enough momentum to do damage. 

 
3.0 Accepted Technical Design 

 
The sections below show system block diagrams broken down by sections. 

[HL] 
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3.1.1 System Level 0 Block Diagram with Functional Requirement Table 

 
Figure 3: DT7A Autonomous System Block Diagram 

[HL] 
 

The level 0 functional requirement table, indicating the top-level inputs and outputs of the 
fully autonomous combat robot, as shown in Table 3 below. 

 
Table 3: Level 0 Functional Requirement Table 

Module Combat Robot 

Inputs ● LiDAR Input Signal 
● Ultrasonic Sensor Input Signal 
● Motor Encoder Input Signal 
● Gyroscope Input Signal 

Outputs ● Recommended Position for Robot Output: UART (output to the 
controller board from DT07B) 

● Functionality Output: LED Light 

Functionality Determines the recommended position for the robot using an algorithm that 
uses the data from the sensors. This system also determines and indicates 
whether the autonomous system (as a whole) is functioning. 

 
[FA, CH, HL] 
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3.1.2 Hardware Level 1 Block Diagram with Functional Requirement Table 
 

The level 1 block diagram, which is an expansion of the level 0 diagram in Figure 2, is 

shown in Figure 4. 

 

Figure 4: Level 1 Combat Robot Block Diagram. 

[CH, HL] 
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The level 1 functional requirement table, indicating the second-level inputs and outputs of the fully 

autonomous combat robot, as shown in tables 4 and 5 below. 

Table 4: Hardware Level 1 Sensor Array Functional Requirement Table. 

Module Robot Sensor System 

Inputs ● Sensor Input Signals 

Outputs ● Proximity and Orientation data 

Functionality Senses the location of the opposing robot and nearby walls. Outputs this 
information to the Navigation Center. 

[HL] 
Table 5: Hardware Level 1 Robot Control Center Functional Requirement Table. 

Module Robot Navigation Center 

Inputs ● Proximity and Orientation data 
● Orientation 
● Encoder Feedback 

Outputs ● Recommended Position 
● Autonomous Enable/Emergency Stop 

Functionality Processes data from sensor system and makes autonomous fight or flight 
decisions. Produce a recommended location and orientation signal to send to 
controller. 

 
[FA, CH ] 

 
The second level hardware diagram for the autonomous section of the combat robot is shown 

below. Items the left of the green dotted line are components of design team 7Bs system in which we 

will interact with. 
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3.1.3 Hardware Level 2 Block Diagram with Functional Requirement Table 

 

 

Figure 5 - Hardware Level 2 Block Diagram 
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[CH,HL] 

Table 6: Ultrasonic Sensor Functional Requirement Table. 

Module Ultrasonic Sensor 

Inputs ● Environmental data 

Outputs ● Varying Pulse 

Functionality The ultrasonic sensor measures distances by sending an ultrasonic pulse and 
waiting for an echo. The sensor then returns a value that reflects the time 
between the emitted pulse and the echo. 

 
[HL] 

Table 7: Gyroscope Functional Requirement Table. 

Module Gyroscope and Accelerometer Sensor 

Inputs ● Environmental data 

Outputs ● I2C axial rotation and acceleration data 

Functionality The gyroscope and accelerometer will give data feedback on the robots motion 
containing G force information and angular rate information. 

 
[CH] 

 
Table 8: Lidar Sensor Functional Requirement Table. 

Module Lidar Sensor 

Inputs ● Environmental data 
● PWM Motor Control Signal 

Outputs ● Angle and distance over UART 

Functionality The Lidar sensor measures distances using a laser and measuring the 
reflection. It uses the reflection to detects object and output an angle and 
distance of their location.  

 
[HL] 
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Table 9: Sensor System Functional Requirement Table. 

Module Sensor System Microcontroller 

Inputs ●  

Outputs ● Enemy Position and Wall Position: UART (To the Robot Navigation 
Center), 

● Gyroscope and Accelerometer data in UART 
● Ultrasonic sensor data 

Functionality   

 
[CH] 

 
Table 10: Overcurrent Protectors Functional Requirement Table. 

Module Overcurrent Protectors (One for each board) 

Inputs ● Voltage from battery 

Outputs ● Separate power supply for the navigation and sensor boards 

Functionality The overcurrent protectors break the circuit if the boards draw more than their 
allotted current. 

 
[HL] 

Table 11: Level 2 Voltage Regulators Functional Requirement Table. 

Module 3.3 V And 5 V Voltage Regulators 

Inputs ● 24 volt input 

Outputs ● 3.3 volt and 5 volt outputs 

Functionality The voltage regulators take a 24 volt input and regulate it down to 3.3 v and 5 
v to power the sensors and microcontrollers.  

 
[HL] 
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Table 12: Level 2 LED Lights Functional Requirement Table. 

Module LED Lights 

Inputs ● Microprocessor outputs 

Outputs ● LED lights 

Functionality The LED lights are used to visually indicate the autonomy status, enemy 
detection, fight or flight and missing signal. 

[HL] 
 
Table 13: Sensor System Functional Requirement Table. 

Module Navigation/Sensor System Microcontroller 

Inputs ● Sensor Input Signal: UART from Lidar, Pulse for Ultrasonic, and I2C 
Gyroscope 

● Motor Encoder Input Signal 

Outputs ● Recommended angle in UART 
● Recommended speed setting in UART 
● If the robot is right side up (Manual override is needed if the robot is 

flipped) 

Functionality The navigation/sensor system microcontroller will process the proximity data 
from the sensors. It will differentiate between the enemy and walls. The 
microcontroller will determine if high or low speed should be used and a angle 
to travel.  

[CH] 
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3.1.4 Hardware Level 3 Diagram (Schematic Design) 
 

The schematic of the sensor and navigation board is shown below. The microprocessor will 

be programed in C. 

Analysis on the clock cycle level lets us conclude that all of the Sensor and Navigation 

systems processing could be completed on one PIC32MZEF processor due to its speed and storage. 

With the speed of the processor being 252MHz, the time required for each navigation loop is 

estimated below: 

● Read from LiDAR (50ms) 

● Process LiDAR data (<1ms, 100 cycles) 

● Check gyroscope (<1ms, 100 cycles) 

● Check ultrasonics (if necessary) (1ms - 18.5ms, time hi and time low) 

● Check encoders (if necessary) (<1ms, 100 cycles) 

● Make path decision (<1ms, 100 cycles) 

● Update current path (<1ms, 100 cycles) 

 

All of these times add up to less than 50ms, with the fast speed of the processor this allows us 

to complete all of the other processes while reading from the LiDAR. Further analysis has been done 

in calculations section 3.5.4. Based on these calculations, the baud rate required of the sensors is at 

least 20 MHz, the processor will accommodate this because its equivalent speed of reading is 

63MHz. 

 

Analysis was also done on the system to choose the processor. For ease of communications 
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and programming the same processor will be used for both design team 07A and 07B. Therefore, the 

processor chosen must be capable of performing the necessary tasks for each team independently. 

The full combat robot system of both teams requires 3 UART modules (to communicate between the 

boards and to the LiDAR), a I2C module (to communicate to the accelerometer/gyroscope), 8 PWM 

capture compare modules (for the RC receiver and to drive the LiDAR motion), preferable USB 

capable (for troubleshooting), and at least 102,400 bytes of RAM flash memory (to store the sensor 

data). This is because the lidar needs to store 3200 bytes and we would like to store at least 4 

samples in order to plan a path. This is calculated from 800 bytes of distance data plus 800 bytes of 

angle data per scan, multiplied by two additional data arrays to store processed data which will 

enable the robot to locate the enemy. This results in 3200 bytes, or 25,600 bits. 

Multiple processors were found to meet these requirements. PIC32MX795F512H-80V 

appeared that it could meet our requirements, but its processors speed is only 80 MHz and its 

memory is 128 KB. The PIC32MZ2048EFH064 was chosen because for only $1.85 more the 

processor is faster, 252Mhz, and the memory is larger, 512 KB. 

LED’s 0 through 8 will be used as indicators. LED 0-4 will report if the functionality (if 

autonomy can or cannot be used), if a enemy is detected, is none of the sensors are giving 

meaningful feedback, and if the system is in fight or flight mode. LED 9 an 10 will be used to 

indicate if our board has power. 

The accelerometer outputs data in I2C to the processor. This will be interpreted and used to 

determine how the robot will need to move it's motors to navigate. If the robot is upside down the 

motor directions will need flipped. The LiDAR, which communicates in UART, will be used to 

determine the enemies location. The ultrasonic sensor, which returns a hi to low time ratio, will be 
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used as a redundancy to determine the enemies location. The signal from the ultrasonic sensor will 

be interpreted using the input compare module and a timer to calculate the ratio between hi and low 

time. This will let us determine the distance measured to the detected object. 

The sensor and navigation board will communicate to The Motion and Actualization Team in 

UART. The RX of our system will connect the the TX of there system and vice versa. An external 

oscillator will be used on the processor due to the sensitivity to UART to timing and the inaccuracy 

of internal oscillator in microcontrollers. 

The Motion and Actualization Team will be providing power to the system. The power to our 

Sensor/Navigation board will be fully isolated from The Motion and Actualization Team’s system. 

There is DC/DC isolation on the power source and isolation on the signals between the 2 boards. A 

backplane/card edge system will be used to interface with the hardware of The Motion and 

Actualization Team systems. 

The sensors connections will be broken out directly to each sensor for testing purposes. In the 

final system they will be then routed through the backplane of 7B’s system to the sensors to decrease 

noise and save space from less wiring needed.  

All motion will cease within a minute after the emergency stop is pressed on The Motion and 

Actualization Team’s system. This was tested by powering the lidar down while at full spin. It took 

2.5 seconds for the lidar to stop rotating when powered down at a full speed spin. A USB interface 

has been added to the board for the purpose of ease of reading date from the sensor/navigation 

microcontroller. Unused pins are labeled with their communication protocol peripheral or other 

functionality for ease of addition of other hardware to the sensor and navigation schematic. 

The minimum schematic for the microcontroller is shown below is shown below. The 
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decoupling capacitors are implemented in the circuit schematic that was designed. The suggested 

value of 0.1uF is used. This operates as a low pass filter. The trace has around 0.1 ohms, this results 

in a filter with a corner frequency of 16 MHz. 

 

Figure 6: Minimum Hardware Schematic 

 

 

[CH] 
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Figure 7: Schematic Diagram of the Sensor And Navigation System 

[CH] 
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The board file is shown below for the sensor and navigation board. 

 

 

Some specific notes about this design are, the current through the indicator LEDs are set to 

15mA to light the leds bright enough to be seen across the room. This was calculated with the 

equation below. 

6.67≃90OhmsR = ILED

V −VS LED = 0.015
3.3−2 = 8  

95≃400OhmsR = ILED

V −VS LED = 5−2
0.005 = 3  

The current for the pullup of the master clear was calculated to be 0.33mA, this is a high 

enough current for the CMOS technology of our microcontroller. 

3.1.5 Hardware Simulation 

There was a concern that the optical isolation would add too much delay to the uart 

communication. Because of this a simulation was performed on the optical isolation in order to 

optimize the circuit for low delay. This simulation is shown below. R1 sets the forward current of 
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the diode to 60mA as specified from the datasheet. A 2.2k standard pull up is used for the signal. R2 

sets the sensitivity of the phototransistor. The capacitor is added to prevent unwanted turn ons due to 

noise from outside light or electromagnetic interference. 
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Figure 8: Optoisolator simulation 

 

 

The design implemented on the eagle schematic is shown below. GND is our isolated 

systems ground and AGND is the ground from the robot power system. 

[CH] 
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Figure 9: Optical Isolator Design 

The Harmony Configurator system add on to MPLABX is a configuration system created by 

microchip in order to program the PIC32 series processors. Microchip has limited support for 

programming these series of processors using the classical coding method of configurations words 

and bitwise setting of configuration registers. To solve this problem Microchip created the Harmony 

Configuration system, which creates the configuration files for the PIC32 processors. The Harmony 

graphical user interface for the PIC32MZ2048EFH064 is show below in figure 10. This GUI allows 

the user to configure the pins with the desired internal peripherals. 

41 
 



 

 

 

Figure 10: Harmony GUI for PIC32MZ2048EFH064 
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3.1.6  Hardware Testbench 

In order to begin Hardware test benching a 100 pim PIM with the PIC32MZEF family 

microcontroller. This PIM was plugged into the Explorer 16/32 board. The processor then was 

configured using the Harmony Configurator shown below in Figure 11. 

[CH] 

 

Figure 11: 100 pin PIM for PIC32MZEF 

 

The microcontroller and its configuration using Harmony was tested by blinking a LED. This 

was successful. The next task was to begin testing with the sensors. Configuration with the LiDAR 

was determined.  

In order to spin the lidar, it was necessary to generate a 25kHz PWM signal using the 

PIC24MZ PIM on an Explorer 16/32 board. To accomplish this, a timer was set up using a 16 

prescaler on the 252MHz clock. This gave a timer frequency of 252MHz/16= 15MHz.  This timer 
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was then used to set up a PWM with a period of 600 timer counts which is equivalent to a period of 

25kHz. An output compare pulse width of 360 timer counts yields a 60% duty cycle which is 

nominal for 10Hz rotation of the RPLiDAR A3. Figure 12 shows the PWM output of the Explorer 

16/32 board. 

 

Figure 12: 60% duty cycle PWM output, 25kHz 

[SV, HL, CH] 
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3.1.7 Software Level 0 Block Diagram and Functional Requirements Table 

The software system is described in the preceding sections. The zero level block diagram is 
shown below. 

 

Figure 13: Software Level 0 Block Diagram 

[FA] 

Table 14: Software System Functional Requirement Table 

Module Software System 

Inputs ● Environment 

Outputs ● Recommended Robot Action 

Functionality The software system must collect data from the environment and use that data to 
determine a course of action for the robot. A course of action will be a direction 
and speed for the robot to travel and will constitute a fight or flight command. 

[FA, SV] 
3.1.8 Software Level 1 Block Diagram and Functional Requirement Tables 

Figure 14: Software Level 1 Block Diagram 
 

[SV] 
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Table 15: Read Sensor Functional Requirement Table 

Module Read Sensor Data 

Inputs ● Environment 

Outputs ● Raw Sensor Data 

Functionality The software must first collect raw data from all of the sensors monitoring the 
environment around the robot 

[SV] 
Table 16: Locate Opponent and Walls Functional Requirement Table 

Module Locate Opponent and Walls 

Inputs ● Raw Sensor Data 

Outputs ● Location Data 

Functionality The software must process the raw sensor data to differentiate the opponent 
from the arena walls and thereby locate the opponent. The location of the walls 
are also determined here. 

[SV] 
Table 17: Determine Course of Action Functional Requirement Table 

Module Determine Course of Action 

Inputs ● Location Data 

Outputs ● Recommended Robot Action 

Functionality The software must make a fight or flight decision based on the location of the 
enemy and the walls in the arena. The software will output where it thinks the 
robot should move. 

[SV] 
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3.1.9 Level 2 Software Block Diagram 
 

Figure 15: Software Level 2 Block Diagram 
[FA, SV] 

Table 18: Initialize Sensors Requirement Table 

Module Initialize Sensors 

Inputs ● Machine Power Up 

Outputs ● Sensors Ready Signal 

Functionality When the machine is powered up, start up the LiDAR and ultrasonic sensors. 
Proceed once data can be reliably read from both. 

[FA, SV] 
Table 19: Read Data Functional Requirement Table 

Module Read Data 

Inputs ● Sensors Ready Signal 
● Read Sensors Signal 

Outputs ● Raw Sensor Data 

Functionality Reads data from the LiDAR and ultrasonic sensors, first when the sensors are 
started and again every time the current data has been processed. Returns raw 
data from the sensors. 

[FA, SV] 
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Table 20: Interpret Data Functional Requirement Table 

Module Interpret Data 

Inputs ● Raw Sensor Data 

Outputs ● Wall or Opponent Location 

Functionality Checks the LiDAR data for anomalies and analyzes their shape to determine if it 
is looking at a wall or an opponent. For each anomaly, the data is sent to be 
processed for decision making. 

[FA, SV] 
Table 21: Calculate Fight or Flight Functional Requirement Table 

Module Calculate Fight or Flight 

Inputs ● Wall or Opponent Location 

Outputs ● Location Data 
● Speed Data 

Functionality If an opponent is detected, makes decision to either run towards or away from it. 
If a wall is detected, makes decision to turn away from it. If nothing is detected, 
makes decision to turn until something is detected. 

[FA] 
Table 22: Update Encoded Location/Speed Functional Requirement Table 

Module Update Encoded Location/Speed 

Inputs ● Location Data 
● Speed Data 

Outputs ● Encoded Location/Speed Data 
● Read Sensors Signal 

Functionality Convert the location and speed decision to a UART data packet to be read by 
Team B. Read updated data from the sensors. 

[FA] 
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3.1.10 Level 3 Software Block Diagram 

 
Figure 16: Level 3 Software Block Diagram 

[FA] 
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3.2.0 Sensor Block Diagrams and Software 

3.2.1 Main Program Software 

main.c: controls the operation of the program 

 

#include <stddef.h>                     // Defines NULL 

#include <stdbool.h>                    // Defines true 

#include <stdlib.h>                     // Defines EXIT_FAILURE 

#include "system/common/sys_module.h"   // SYS function prototypes 

int AssertFlag; 

 

int main ( void ) 

{ 

    /* Initialize all MPLAB Harmony modules, including application(s). */ 

   // Start:  //goto jump for timer done 

    SYS_Initialize ( NULL ); 

 

    while ( true ) 

    { 

        /* Maintain state machines of all polled MPLAB Harmony modules. */ 

        SYS_Tasks ( ); 

    } 

 

    /* Execution should not come here during normal operation */ 

    return ( EXIT_FAILURE ); 

} 

 

 
app.h: header file for UART communication 

#include <stdint.h> 

#include <stdbool.h> 

#include <stddef.h> 
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#include <stdlib.h> 

#include "system_config.h" 

#include "system_definitions.h" 

#include "system_config/default/system_config.h" 

 

#include "autonomy.h" 

#include "lidar.h" 

#include "led.h" 

#include "ultrasonic.h" 

#include "gyroscope.h" 

#include "timers.h" 

 

typedef enum 

{ 

/* Application's state machine's initial state. */ 

APP_STATE_INIT=0, 

APP_STATE_SERVICE_TASKS, 

 

/* TODO: Define states used by the application state machine. */ 

 

} APP_STATES; 

typedef struct 

{ 

    /* The application's current state */ 

    APP_STATES state; 

 

    /* TODO: Define any additional data used by the application. */ 

 

} APP_DATA; 

 

void APP_Initialize ( void ); 

 

void APP_Tasks( void ); 
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app.c: source file for UART communication 

 

#include "app.h" 

 

APP_DATA appData; 

lidarData lData; 

short uartAngle; 

short uartDrive; 

DRV_HANDLE teraHandle; 

DRV_HANDLE teraHandle1; 

DRV_USART_TRANSFER_STATUS status; 

DRV_USART_TRANSFER_STATUS status1; 

size_t count; 

size_t count1; 

 

char send[100]; 

short sendB[2] = {1,0}; 

char receive[100]; 

timers_t ms100; 

int sample = 0; 

void APP_Initialize ( void ) 

{ 

    /* Place the App state machine in its initial state. */ 

   

    SYS_INT_Enable(); 

    DRV_IC0_Start(); 

    DRV_IC1_Start(); 

    DRV_IC2_Start(); 

    DRV_TMR0_Start(); 

    DRV_TMR1_Start(); 

    DRV_TMR2_Start(); 

    DRV_OC0_Start(); 
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    DRV_OC1_Start(); 

    DRV_OC2_Start(); 

    setTimerInterval(&ms100, 256); 

    ledAllOn(); 

    delay(1000); 

    DRV_USART_Initialize; 

    ledAllOff(); 

    initLidar(); 

    initUltras(); 

    initGyro(); 

   

   

    appData.state = APP_STATE_INIT; 

   

} 

void APP_Tasks ( void ) 

{ 

 

    /* Check the application's current state. */ 

    switch ( appData.state ) 

    { 

        /* Application's initial state. */ 

        case APP_STATE_INIT: 

        { 

            bool appInitialized = true; 

   

            if (appInitialized) 

            { 

                appData.state = APP_STATE_SERVICE_TASKS; 

            } 

            break; 

        } 
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        case APP_STATE_SERVICE_TASKS: 

        { 

   

           // while (1) { 

                int counter = millis();   

   

                //send[0] = readAngleX(); 

   

                //Gets information about opponent and walls via LiDAR 

   

                statusOn(); 

                //LED_debug1On(); 

                lData = getLidarData(); 

                statusOff(); 

                //LED_debug1Off(); 

   

                //Autonomous path decision 

   

                path dir = getPath(lData); 

   

                if (dir.angle == 0) { 

                    uartAngle = 183; 

                } else { 

                    uartAngle = dir.angle; 

                } 

                uartDrive = dir.drive; 

   

   

                //BSP_Initialize(); 

   

               // LED_debug2On(); 

                int num1=getUltrasData(0); 

                int num2=getUltrasData(1); 
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                //LED_debug2Off(); 

                //LED_debug3On(); 

                int num3=976562.5*0.5/(Get_Encoder_Data ()); 

                //LED_debug3Off(); 

                //LED_debug4On(); 

                int num4 = readAngleX(); 

                //LED_debug4Off(); 

                //int num4 = 0; 

                //lData = getLidarData(); 

                int num5 = lData.opponentDistance; 

                int num6 = lData.opponentAngle; 

                sendB[0] = dir.angle; 

   

                //int num7 = (int)dir.angle;  

                //int num8 = (int)dir.drive; 

               // PORTE = ~lData.opponentDistance>>5; 

   

                /* 

                if(sendB[0]>=179) 

                { 

                    sendB[0] = 1; 

                } 

                if(sample >= 10) 

                { 

                  sendB[0]+=1; 

                  sample = 0; 

                } 

   

                sample++; 

                 * */ 

                //sendB[0]=183;//dir.angle;  //num7; 

                sendB[1]=dir.drive; //num8; 
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                sprintf(send,"Ultrasonic Right = %i Ultrasonic Left = %i Encoder = %i RPM Gyroscope = 

%i Lidar = %i Counter = %i UARTB = %i %i\n\r",num1,num2,num3,num4,num6,counter,sendB[0],sendB[1]);   

   

                teraHandle = DRV_USART_Open(DRV_USART_INDEX_0, DRV_IO_INTENT_WRITE); //open tera 

usart channel 

                count = DRV_USART_Write(teraHandle, send, strlen(send)); //write to tera 

                DRV_USART_Close(teraHandle); //discard tera handle 

                /* 

                teraHandle=DRV_USART_Open(DRV_USART_INDEX_0,DRV_IO_INTENT_READWRITE); 

                count = DRV_USART_Read(teraHandle, receive, 1); //write to tera 

                DRV_USART_Close(teraHandle); //discard tera handle 

                // Encodes UART 

                // Software patch for errors caused by sending 0 over UART 

                */ 

   

                teraHandle1 = DRV_USART_Open(DRV_USART_INDEX_2, DRV_IO_INTENT_WRITE); //open tera 

usart channel 

                count1 = DRV_USART_Write(teraHandle1, sendB, 4); //write to tera 

                DRV_USART_Close(teraHandle1); //discard tera handle 

                //ledAllOff(); 

   

         //   } 

            break; 

        } 

 

        /* TODO: implement your application state machine.*/ 

   

        /* The default state should never be executed. */ 

        default: 

        { 

            SYS_RESET_SoftwareReset(); 

            /* TODO: Handle error in application's state machine. */ 

            break; 
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        } 

    } 

} 

 

autonomy.h: header file for fight or flight decision 

 

#include "lidar.h" 

#include "system_config.h" 

#include <stdint.h> 

#include <stdbool.h> 

#include "system_config/default/system_config.h" 

 

typedef struct { 

    short angle; 

    short drive; 

} path; 

 

path getPath(lidarData lData); 

 

autonomy.c: source file for fight or flight decision 

 

#include "app.h" 

#include "autonomy.h" 

#include "gyroscope.h" 

#include "ultrasonic.h" 

#include "encoder.h" 

#include "led.h" 

#include "system_config/default/system_config.h" 

#include "system_config.h" 
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// Keeps track of where to search if LiDAR goes missing 

unsigned short lastKnownAngle; 

unsigned short lastKnownDistance; 

unsigned short forwardCounter; 

 

path getPath(lidarData lData){ 

   

    path dir; 

   

    // Sends designated signal to indicate upside down 

    if (isUpsideDown() == true) { 

        dir.angle = 183; //Manual 

        dir.drive = 183; 

        return dir; 

    }   

   

    ///Preprocessing LiDAR data 

    // Converts angles 0-90 to 90-180 

    lData.opponentAngle += 90; 

    // Converts angles 270-359 to 0-89 

    if (lData.opponentAngle >= 360) lData.opponentAngle -= 360; 

    // Contrains angles between 1-179 to avoid complications 

    if (lData.opponentAngle == 0) lData.opponentAngle = 1; 

    if (lData.opponentAngle >= 180) lData.opponentAngle = 179; 

   

    // If the enemy could not be spotted with LiDAR 

    if (lData.opponentDistance == 0) { 

        forwardCounter += 1; 

        //flightOff(); 

        // If the enemy is spotted by ultrasonics, go straight forward 

        if (isUltraClose() || 

                ((lastKnownDistance < 1000) && (forwardCounter < 10) && 

                ((lastKnownAngle >= 80) || (lastKnownAngle <= 100)))) { 
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            enemyOn(); 

            missingOff(); 

            dir.angle = 90; 

            dir.drive = 182; //Forward 

            return dir; 

        } else {    // If nothing is detected, go into search mode 

            flightOn(); 

            enemyOff(); 

            missingOn(); 

            dir.drive = 181; //Search 

            if (lastKnownAngle < 90) dir.angle = 1; 

            else dir.angle = 179; 

            flightOff(); 

        } 

    } else { 

        // If the enemy is found, go into fight or flight mode 

        forwardCounter = 0; 

        enemyOn(); 

        missingOff();   

        // Fight logic 

        if ((isWeaponReady()) || (lData.opponentDistance > 10000)) { 

            flightOff(); 

            dir.angle = lData.opponentAngle; 

            dir.drive = 182;   

        // Flight logic 

        } else { 

            flightOn(); 

            dir.drive = 184; 

            dir.angle = 90; 

            // Make an 80 degree turn away from opponent 

            //if (lData.opponentAngle < 90) { 

            //    dir.angle = lData.opponentAngle + 80; 

            //} else { 
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            //    dir.angle = lData.opponentAngle - 80; 

            //} 

        } 

    } 

    lastKnownAngle = dir.angle; 

    if (lData.opponentDistance != 0) { 

        lastKnownDistance = lData.opponentDistance; 

    } 

    return dir; 

} 

 

timers.h: header file for internal clocks and timers 

 

#include <stdbool.h> 

#include <stdlib.h> 

 

 typedef struct { 

        unsigned long timerInterval; 

        unsigned long lastMillis; 

    } timers_t; 

   

bool timerDone(timers_t * t); 

void setTimerInterval(timers_t * t, unsigned long interval); 

void resetTimer(timers_t * t); 

void globalTimerTracker( ); 

unsigned long millis(void); 

void delay(unsigned int val); 

void isTimedOut(void); 

 
timers.c: source file for internal clocks and timers 
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#include "timers.h" 

 

unsigned long globalTime; 

timers_t timeOut; 

 

unsigned long millis(void) 

{ 

    return globalTime; 

} 

 

bool timerDone(timers_t * t) 

{ 

 

    if(abs(millis() - t->lastMillis) > t->timerInterval) 

    { 

        t->lastMillis=millis(); 

        return true; 

    } 

    else 

    { 

        return false; 

    } 

} 

 

void setTimerInterval(timers_t * t, unsigned long interval) 

{ 

    t->timerInterval= interval; 

} 

 

void resetTimer(timers_t * t) 

{ 

    t->lastMillis=millis(); 

} 

61 
 



//Call this function in your timer interupt that fires at 1ms 

void globalTimerTracker( ) 

{ 

    globalTime++; 

} 

 

timers_t time; 

void delay(unsigned int val) 

{ 

    setTimerInterval(&time,val); 

    int i; 

    while(!timerDone(&time)) 

    { 

        i++; 

    } 

} 

 

 // Triggers if the component fails to connect 

void isTimedOut() { 

    setTimerInterval(&timeOut,100); 

    while(!timerDone(&timeOut)) 

        missingOn(); 

    missingOff(); 

} 

 

led.h: header file for enabling and disabling LEDs 

 

void ledAllOff(void); 

void ledAllOn(void); 

void binaryOutput(unsigned short input); 

void enemyOn(void); 

void flightOn(void); 
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void missingOn(void); 

void statusOn(void); 

void debug1On(void); 

void debug2On(void); 

void debug3On(void); 

void debug4On(void); 

 

led.c: source file for enabling and disabling LEDs 

 

#include "led.h" 

#include "app.h" 

#include "system_config.h" 

 

void ledAllOn(void) 

{ 

    LED_EnemyOn(); 

    LED_FlightOn(); 

    LED_MissingOn(); 

    LED_StatusOn(); 

    LED_debug1On(); 

    LED_debug2On(); 

    LED_debug3On(); 

    LED_debug4On(); 

} 

void ledAllOff(void) 

{ 

    LED_EnemyOff(); 

    LED_FlightOff(); 

    LED_MissingOff(); 

    LED_StatusOff(); 

    LED_debug1Off(); 
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    LED_debug2Off(); 

    LED_debug3Off(); 

    LED_debug4Off(); 

} 

void binaryOutput(unsigned short input) 

{ 

    if (input & 0b0001) 

    { 

        LED_debug1On(); 

    } 

    if (input & 0b0010) 

    { 

         LED_debug2On(); 

    } 

    if (input & 0b0100) 

    { 

        LED_debug3On(); 

    } 

    if (input & 0b1000) 

    { 

        LED_debug4On(); 

    } 

} 

void enemyOn(void) 

{ 

    LED_EnemyOn(); 

} 

void enemyOff(void) 

{ 

    LED_EnemyOff(); 

} 

void flightOn(void) 

{ 
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    LED_FlightOn(); 

} 

void flightOff(void) 

{ 

    LED_FlightOff(); 

} 

void missingOn(void) 

{ 

    LED_MissingOn(); 

} 

void missingOff(void) 

{ 

    LED_MissingOff(); 

} 

void statusOn() 

{ 

    LED_StatusOn(); 

} 

void statusOff() 

{ 

    LED_StatusOff(); 

} 

void debug1On(void) 

{ 

    LED_debug1On(); 

} 

void debug1Off(void) 

{ 

    LED_debug1Off(); 

} 

void debug2On(void) 

{ 

    LED_debug2On(); 
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} 

void debug2Off(void) 

{ 

    LED_debug2Off(); 

} 

void debug3On(void) 

{ 

    LED_debug3On(); 

}   

void debug3Off(void) 

{ 

    LED_debug3Off(); 

}   

void debug4On(void) 

{ 

    LED_debug4On(); 

} 

void debug4Off(void) 

{ 

    LED_debug4Off(); 

} 
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3.2.2 LiDAR Sensor 

A LiDAR emits an infrared laser which bounces off of the nearest object to measure the 

distance to the nearest object. The robot will use a rotating LiDAR sensor to locate objects in the 

arena, specifically the enemy. The requirements for the LiDAR are listed in Table 23, and are based 

on the simulations detailed in 3.5.1 and 3.5.2 below 

 

Table 23:LiDAR Sensor Requirements 

 Desired RPLiDAR A3 

Maximum sensing distance 17m 20m 

Minimum sensing distance 3m 1m 

Sample Rate 8kHz 16kHz 

Cost As small as possible $600 

 
 
Table 23 shows that the RPLiDAR A3 fulfills the basic requirements for resolution and 

sensing distance. It was selected because it was the cheapest available option that fulfilled the 

minimum requirements. 

As the RPLiDAR A3 spins, it returns ordered pairs consisting of the distance to the nearest 

object, as well as the angle to that object. The robot will be programmed to process this data to 

search for anomalies consistent with an opponent in the arena. Figure 17 shows a flow chart 

representing the LiDAR interface process. 

[SV] 
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[SV] 

Figure 17: RPLiDAR Interface Flowchart 

 
Below, the software is shown for the LiDAR sensor. The software shows the process for reading 

values and determining an opponent angle and distance. 
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lidar.h: header file for the LiDAR sensor 

 

#include "system_config.h" 

#include "system_config/default/system_config.h" 

 

// Return the closest point of the opponent and the wall 

// If none detected, return 0 

typedef struct { 

    unsigned short opponentAngle; 

    unsigned short opponentDistance; 

    unsigned short wallAngle; 

    unsigned short wallDistance; 

} lidarData; 

 

void firstFilter(int sampleSpace); 

void secondFilter(); 

void thirdFilter(int sampleSpace); 

void isLidarTimedOut(); 

lidarData getLidarData(void); 

void setLidarData(short oppAng, short oppDist, short wallAng, short wallDist); 

void initLidar(void); 

 

lidar.c: source file for the LiDAR sensor 

 

#include "lidar.h" 

#include "app.h" 

#include "led.h" 

 

// Example data 

lidarData lidar = {0, 0, 0, 0}; 
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//global variables 

DRV_HANDLE lidarHandle; 

DRV_HANDLE teraHandle2; 

 

DRV_USART_TRANSFER_STATUS status; 

 

timers_t timeOut; 

 

unsigned char readBuffer[1852]; 

unsigned char writeBuffer[2]; 

size_t count_1, total; 

int count1, corner_index, front_corner_index; 

unsigned short extractAngle[369]; 

unsigned short extractDistance[369]; 

unsigned short firstDifference[369]; 

unsigned short secondDifference[5]; 

unsigned short outputAngleDistance[4] = {0,0,0,0}; 

unsigned short wallDistance = 0, wallAngle = 0; 

 

unsigned short startArray = 0xa520; 

 

int start = 0,found_A_Quality_Index = 0, n_samples_apart; 

 

 

int sample_threshold[10] = {600, 600, 300, 400, 500, 600, 900, 1000, 1300, 600}; 

/*int sample_threshold_2 = 600; 

int sample_threshold_3 = 300; 

int sample_threshold_4 = 400; 

int sample_threshold_5 = 500; 

int sample_threshold_6 = 600; 

int sample_threshold_7 = 900; 

int sample_threshold_8 = 1000; 

int sample_threshold_9 = 1300; 
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int sample_threshold_10 = 600;*/ 

int Found_Enemy = 0; 

 

int j; 

void firstFilter(int sampleSpace) { 

    for(j = sampleSpace + 4; j < 360; j++) 

    { 

        //we suspect a zeroed value is why we returned zero 

        if(extractDistance[j]>extractDistance[j-sampleSpace] && extractDistance[j-sampleSpace]!=0 ) 

        { 

 

            firstDifference[j] = extractDistance[j]-extractDistance[j-sampleSpace]; 

 

            //secondDifference[j] = extractDistance[j-1]-extractDistance[j-2]; 

            if(firstDifference[j]>sample_threshold[sampleSpace - 1] ) 

            { 

                outputAngleDistance[0] = extractAngle[j]; 

                outputAngleDistance[1] = extractDistance[j-sampleSpace]; 

                corner_index = j; 

                n_samples_apart = sampleSpace; 

            } 

 

        } 

 

    } 

} 

 

void secondFilter(){ 

    secondDifference[0] = extractDistance[corner_index - n_samples_apart] - 

extractDistance[corner_index - (n_samples_apart+1)]; 

    secondDifference[1] = extractDistance[corner_index - n_samples_apart] - 

extractDistance[corner_index - (n_samples_apart+2)]; 

    secondDifference[2] = extractDistance[corner_index - n_samples_apart] - 
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extractDistance[corner_index - (n_samples_apart+3)]; 

    secondDifference[3] = extractDistance[corner_index - n_samples_apart] - 

extractDistance[corner_index - (n_samples_apart+4)]; 

    secondDifference[4] = extractDistance[corner_index - n_samples_apart] - 

extractDistance[corner_index - (n_samples_apart+5)]; 

    if(secondDifference[0]<50||secondDifference[0]>65435  

            || secondDifference[1]<100||secondDifference[1]>65435 

            || secondDifference[2]<100||secondDifference[2]>65435 

            || secondDifference[3]<100||secondDifference[3]>65435 

            || secondDifference[4]<100||secondDifference[4]>65435) 

    { 

        Found_Enemy = 1; 

    } 

} 

/* 

void thirdFilter(int sampleSpace){ 

    for(j = corner_index; j > sampleSpace + 1; j--) 

    { 

        if(extractDistance[j]>extractDistance[j + sampleSpace] && 

                extractDistance[j + sampleSpace] != 0) 

        { 

 

            firstDifference[j] = extractDistance[j] - 

                    extractDistance[j + sampleSpace]; 

 

            if(firstDifference[j]>sample_threshold[sampleSpace - 1]) 

            { 

                outputAngleDistance[2] = extractAngle[j]; 

                outputAngleDistance[3] = extractDistance[j + sampleSpace]; 

                front_corner_index = j; 

            } 

        } 
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    } 

} 

*/ 

// Triggers if the gyroscope fails to connect 

void isLidarTimedOut() { 

    size_t count_L; 

    char send_L[100]; 

    DRV_HANDLE teraHandle_L; 

    setTimerInterval(&timeOut,100); 

    while(!timerDone(&timeOut)) { 

        missingOn(); 

        sprintf(send_L,"Lidar Communication Timeout Inside While Loop");   

        teraHandle_L = DRV_USART_Open(DRV_USART_INDEX_0, DRV_IO_INTENT_WRITE); //open tera usart 

channel 

        count_L = DRV_USART_Write(teraHandle_L, send_L, strlen(send_L)); //write to tera 

        DRV_USART_Close(teraHandle_L); //discard tera handle 

    } 

    missingOff(); 

    sprintf(send_L,"Lidar Communication Timeout Outside While Loop");   

    teraHandle_L = DRV_USART_Open(DRV_USART_INDEX_0, DRV_IO_INTENT_WRITE); //open tera usart channel 

    count_L = DRV_USART_Write(teraHandle_L, send_L, strlen(send_L)); //write to tera 

    DRV_USART_Close(teraHandle_L); //discard tera handle 

} 

 

// Temporary simulation until LiDAR is integrated   

lidarData getLidarData(void) { 

   

    int i,j,k,look,start_index;//,corner_index,front_corner_index; 

   

     lidar.opponentAngle = 0; 

     lidar.opponentDistance = 0;  

  

    lidarHandle = DRV_USART_Open(DRV_USART_INDEX_1, DRV_IO_INTENT_READWRITE); 
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    if (start == 0)   

    { 

        start = 1; 

        writeBuffer[0] = 0xA5;//scan request 

        writeBuffer[1] = 0x20; 

   

        count_1 = DRV_USART_Write(lidarHandle, writeBuffer, 2); 

   

    }  

   

    count_1 = DRV_USART_Read(lidarHandle, readBuffer, 1842);//store scan data 

    //this would be where we make sure count = 1842 to verify a good write 

   

    while(DRV_USART_TransferStatus(lidarHandle)==DRV_USART_TRANSFER_STATUS_RECEIVER_EMPTY); 

 

    DRV_USART_Close(lidarHandle);//discard lidar handle 

    //this for loop searches for a "quality type" byte by searching for even numbers 

    for(i=1;i<1840-95;i++) 

    { 

   

        if(readBuffer[i]%2 == 0 && readBuffer[i+1]%2 == 1 && 

           readBuffer[i+5]%2 == 0 && readBuffer[i+6]%2 == 1 && 

           readBuffer[i+10]%2 == 0 && readBuffer[i+11]%2 == 1 && 

           readBuffer[i+15]%2 == 0 && readBuffer[i+16]%2 == 1 && 

           readBuffer[i+20]%2 == 0 && readBuffer[i+21]%2 == 1 && 

           readBuffer[i+25]%2 == 0 && readBuffer[i+26]%2 == 1 && 

           readBuffer[i+30]%2 == 0 && readBuffer[i+31]%2 == 1 && 

           readBuffer[i+35]%2 == 0 && readBuffer[i+36]%2 == 1 && 

           readBuffer[i+40]%2 == 0 && readBuffer[i+41]%2 == 1 && 

           readBuffer[i+45]%2 == 0 && readBuffer[i+46]%2 == 1 && 

           readBuffer[i+50]%2 == 0 && readBuffer[i+51]%2 == 1  

           ) 
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        { 

            found_A_Quality_Index = i; 

            break; 

        } 

    } 

 

    start_index = (found_A_Quality_Index%5)+1; 

    j = 0; 

    k = 0; 

 

    //****************************************************************************// 

    //****************************************************************************// 

    //****                            First Filter                            ****// 

    //****************************************************************************// 

    //****************************************************************************// 

 

    //The first filter takes the difference between two neighboring samples. This  

    //difference is compared to a threshold value. If the difference is greater  

    //than the threshold value, an anomaly has been detected in the room which could  

    //be an enemy robot. The threshold value is adjusted based on the number of  

    //samples between the the two neighboring samples of interest.  

 

    //high certainty sweep. checks for enemies with strictest criteria 

    for(i=start_index;i<1840;i+=5) 

    { 

 

        extractAngle[j] = ((readBuffer[i+1]<<8) | readBuffer[i])>>7;//combine 2 bytes of angle data 

from lidar 

        extractDistance[j] = ((readBuffer[i+3]<<8) | readBuffer[i+2])>>2;//combine 2 bytes of 

distance data from lidar 

 

        if(extractAngle[j]>90 && extractAngle[j] < 270) 

        { 
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            extractDistance[j] = 0; 

        } 

   

        if(j>=8 && extractDistance[j] != 0)//ignore first four samples 

        { 

                if(extractDistance[j]>extractDistance[j-4] && extractDistance[j-4]!=0  ) 

                { 

                    firstDifference[j] = extractDistance[j]-extractDistance[j-4]; 

 

                    //secondDifference[j] = extractDistance[j-1]-extractDistance[j-2]; 

                    if(firstDifference[j]>sample_threshold[3]) 

                    { 

                        outputAngleDistance[0] = extractAngle[j]; 

                        outputAngleDistance[1] = extractDistance[j-4]; 

                        corner_index = j; 

                        n_samples_apart = 4; 

                    } 

                } 

        } 

 

        j++; 

        k+=2; 

 

    } 

 

     j = 0; 

    k = 0; 

 

    int sampleSpace = 3; 

    while(outputAngleDistance[1] == 0 && sampleSpace <= 9){ 

        firstFilter(sampleSpace); 

        sampleSpace += 1; 

    } 
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    /* 

    if(outputAngleDistance[1] == 0) 

    { 

            for(j=9;j<360;j++) 

            { 

                if(extractDistance[j]>extractDistance[j-5] && extractDistance[j-5]!=0 )//we suspect a 

zeroed value is why we returned zero 

                { 

 

                    firstDifference[j] = extractDistance[j]-extractDistance[j-5]; 

 

                    //secondDifference[j] = extractDistance[j-1]-extractDistance[j-2]; 

                    if(firstDifference[j]>sample_threshold_5 ) 

                    { 

                        outputAngleDistance[0] = extractAngle[j]; 

                        outputAngleDistance[1] = extractDistance[j-5]; 

                        corner_index = j; 

                        n_samples_apart = 5; 

                    } 

 

                } 

 

            } 

 

    } 

    if(outputAngleDistance[1] == 0) 

    { 

            for(j=9;j<360;j++) 

            { 

                if(extractDistance[j]>extractDistance[j-3] && extractDistance[j-3]!=0 )//we suspect a 

zeroed value is why we returned zero 

                { 
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                    firstDifference[j] = extractDistance[j]-extractDistance[j-3]; 

 

                    //secondDifference[j] = extractDistance[j-1]-extractDistance[j-2]; 

                    if(firstDifference[j]>sample_threshold_3 ) 

                    { 

                        outputAngleDistance[0] = extractAngle[j]; 

                        outputAngleDistance[1] = extractDistance[j-3]; 

                        corner_index = j; 

                        n_samples_apart = 3; 

                    } 

 

                } 

 

            } 

 

    } 

    if(outputAngleDistance[1] == 0) 

    { 

            for(j=10;j<360;j++) 

            { 

                if(extractDistance[j]>extractDistance[j-6] && extractDistance[j-6]!=0 )//we suspect a 

zeroed value is why we returned zero 

                { 

 

                    firstDifference[j] = extractDistance[j]-extractDistance[j-6]; 

 

                    //secondDifference[j] = extractDistance[j-1]-extractDistance[j-2]; 

                    if(firstDifference[j]>sample_threshold_6 ) 

                    { 

                        outputAngleDistance[0] = extractAngle[j]; 

                        outputAngleDistance[1] = extractDistance[j-6]; 

                        corner_index = j; 

                        n_samples_apart = 6; 

78 
 



                    } 

 

                } 

 

            } 

 

    } 

 

    if(outputAngleDistance[1] == 0) 

    { 

            for(j=11;j<360;j++) 

            { 

                if(extractDistance[j]>extractDistance[j-7] && extractDistance[j-7]!=0 )//we suspect a 

zeroed value is why we returned zero 

                { 

 

                    firstDifference[j] = extractDistance[j]-extractDistance[j-7]; 

 

                    //secondDifference[j] = extractDistance[j-1]-extractDistance[j-2]; 

                    if(firstDifference[j]>sample_threshold_7 ) 

                    { 

                        outputAngleDistance[0] = extractAngle[j]; 

                        outputAngleDistance[1] = extractDistance[j-7]; 

                        corner_index = j; 

                        n_samples_apart = 7; 

                    } 

 

                } 

 

            } 

 

    } 
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    if(outputAngleDistance[1] == 0) 

    { 

            for(j=12;j<360;j++) 

            { 

                if(extractDistance[j]>extractDistance[j-8] && extractDistance[j-8]!=0 )//we suspect a 

zeroed value is why we returned zero 

                { 

 

                    firstDifference[j] = extractDistance[j]-extractDistance[j-8]; 

 

                    //secondDifference[j] = extractDistance[j-1]-extractDistance[j-2]; 

                    if(firstDifference[j]>sample_threshold_8 ) 

                    { 

                        outputAngleDistance[0] = extractAngle[j]; 

                        outputAngleDistance[1] = extractDistance[j-8]; 

                        corner_index = j; 

                        n_samples_apart = 8; 

                    } 

 

                } 

 

            } 

 

    } 

   

    //close enemy sweep. values for lidar tend to return more zero when very close. this sweep checks 

for this scenario 

    if(outputAngleDistance[1] == 0) 

    { 

            for(j=13;j<360;j++) 

            { 

                if(extractDistance[j]>extractDistance[j-9] && extractDistance[j-9]!=0 )//we suspect a 

zeroed value is why we returned zero 
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                { 

 

                    firstDifference[j] = extractDistance[j]-extractDistance[j-9]; 

 

                    //secondDifference[j] = extractDistance[j-1]-extractDistance[j-2]; 

                    if(firstDifference[j]>sample_threshold[8] ) 

                    { 

                        outputAngleDistance[0] = extractAngle[j]; 

                        outputAngleDistance[1] = extractDistance[j-9]; 

                        corner_index = j; 

                        n_samples_apart = 9; 

                    } 

 

                } 

 

            } 

 

    } 

     */ 

    //****************************************************************************// 

    //****************************************************************************// 

    //****                            Second Filter                           ****// 

    //****************************************************************************// 

    //****************************************************************************//  

 

    //The second filter is used to make sure a point of interest found by the first 

    //filter is, indeed, an enemy robot. This is useful when the lidar is close to  

    //a wall and two adjacent data points may have a large delta, giving a false  

    //positive for an enemy robot. The filter takes the sample of interest from the  

    //first filter and subtracts it from the preceding samples. If the preceeding  

    //sample is on an opponent, we expect this delta to be smaller than if if were  

    //on a wall   

 

81 
 



    if(outputAngleDistance[1] != 0)//one corner has been found, lets make sure it's the enemy, not 

the wall 

    { 

        secondFilter(); 

    } 

 

 

    //****************************************************************************// 

    //****************************************************************************// 

    //****                            Third Filter                            ****// 

    //****************************************************************************// 

    //****************************************************************************//   

    /*Here's where we check for the other corner of the enemy.  

    *This is necessary to find out the full FOV that the enemy takes up. 

    *We can then use this information to locate our robot within the arena, 

    *specifically to find the nearest wall*/ 

    /* 

    sampleSpace = 3; 

    while(outputAngleDistance[1] == 0 && sampleSpace <= 9){ 

        thirdFilter(sampleSpace); 

        sampleSpace += 1; 

    } 

    */ 

    if(outputAngleDistance[1] != 0)//one corner has been found, lets find the other one 

    { 

        for(j = corner_index;j>4;j--) 

        { 

            if(extractDistance[j]>extractDistance[j+3] && extractDistance[j+3]!=0 ) 

            { 

 

                firstDifference[j] = extractDistance[j]-extractDistance[j+3]; 

 

                //secondDifference[j] = extractDistance[j-1]-extractDistance[j-2]; 
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                if(firstDifference[j]>sample_threshold[2] ) 

                { 

                    outputAngleDistance[2] = extractAngle[j]; 

                    outputAngleDistance[3] = extractDistance[j+3]; 

                    front_corner_index = j; 

                } 

            } 

 

        } 

    }   

    if(outputAngleDistance[1] != 0)//one corner has been found, lets find the other one 

    { 

        for(j = corner_index;j>5;j--) 

        { 

            if(extractDistance[j]>extractDistance[j+4] && extractDistance[j+4]!=0 ) 

            { 

 

                firstDifference[j] = extractDistance[j]-extractDistance[j+4]; 

 

                //secondDifference[j] = extractDistance[j-1]-extractDistance[j-2]; 

                if(firstDifference[j]>sample_threshold[3] ) 

                { 

                    outputAngleDistance[2] = extractAngle[j]; 

                    outputAngleDistance[3] = extractDistance[j+4]; 

                    front_corner_index = j; 

                } 

            } 

 

        } 

    }   

    if(outputAngleDistance[1] != 0)//one corner has been found, lets find the other one 

    { 

        for(j = corner_index;j>6;j--) 
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        { 

            if(extractDistance[j]>extractDistance[j+5] && extractDistance[j+5]!=0 ) 

            { 

 

                firstDifference[j] = extractDistance[j]-extractDistance[j+5]; 

 

                //secondDifference[j] = extractDistance[j-1]-extractDistance[j-2]; 

                if(firstDifference[j]>sample_threshold[4] ) 

                { 

                    outputAngleDistance[2] = extractAngle[j]; 

                    outputAngleDistance[3] = extractDistance[j+5]; 

                    front_corner_index = j; 

                } 

            } 

 

        } 

    } 

    if(outputAngleDistance[1] != 0)//one corner has been found, lets find the other one 

    { 

        for(j = corner_index;j>7;j--) 

        { 

            if(extractDistance[j]>extractDistance[j+6] && extractDistance[j+6]!=0 ) 

            { 

 

                firstDifference[j] = extractDistance[j]-extractDistance[j+6]; 

 

                //secondDifference[j] = extractDistance[j-1]-extractDistance[j-2]; 

                if(firstDifference[j]>sample_threshold[5] ) 

                { 

                    outputAngleDistance[2] = extractAngle[j]; 

                    outputAngleDistance[3] = extractDistance[j+6]; 

                    front_corner_index = j; 

                } 
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            } 

 

        } 

    } 

 

    //sort for min value if we found both ends of the robot 

    if(outputAngleDistance[1] != 0 && outputAngleDistance[3]!= 0) 

    { 

        for (j=8; j<360;j++) 

        { 

 

            if(j > front_corner_index && j < corner_index) 

            { 

                //extractDistance[j]=0; 

                extractDistance[j]=extractDistance[j-1]; 

                extractAngle[j]=extractAngle[j-1]; 

            }   

            else if(extractDistance[j] == 0) 

            { 

                extractDistance[j] = extractDistance[j-1]; 

                extractAngle[j]=extractAngle[j-1];   

            } 

            else if(extractDistance[j]>extractDistance[j-1]) 

            { 

                extractDistance[j]=extractDistance[j-1]; 

                extractAngle[j]=extractAngle[j-1]; 

 

            } 

 

            wallDistance = extractDistance[j]; 

            wallAngle = extractAngle[j]; 

 

        } 
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        //wallDistance = extractDistance[j]; 

        //wallAngle = extractAngle[j]; 

 

    } 

 

 

    look = 1;  

    //PORTE = ~wallAngle;//outputAngleDistance[2];//>>5; 

    if(Found_Enemy == 1) 

    { 

        enemyOn(); 

        lidar.opponentAngle = outputAngleDistance[0]; 

        if(outputAngleDistance[3] != 0) 

        { 

           lidar.opponentAngle = (outputAngleDistance[2] + outputAngleDistance[0])>>1;  

        } 

        lidar.opponentDistance = outputAngleDistance[1];  

      //PORTE = ~outputAngleDistance[1]>>5; 

    } 

    else 

    { 

        enemyOff(); 

       //PORTE = 0xff; 

    } 

 

    //outputAngleDistance[0] = angle of enemy's back corner 

    //outputAngleDistance[1] = distance of enemy's back corner 

    //outputAngleDistance[2] = angle of enemy's front corner 

    //outputAngleDistance[3] = distance of enemy's front corner 

 

    /* 

    teraHandle2 = DRV_USART_Open(DRV_USART_INDEX_0, DRV_IO_INTENT_WRITE);//open tera usart channel 

    count_1 = DRV_USART_Write(teraHandle2, extractAngle, 738);//write to tera 
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    DRV_USART_Close(teraHandle2);//discard tera handle 

*/ 

/* 

    teraHandle = DRV_USART_Open(DRV_USART_INDEX_1, DRV_IO_INTENT_WRITE);//open tera usart channel 

    count = DRV_USART_Write(teraHandle, extractDistance, 738);//write to tera 

    DRV_USART_Close(teraHandle);//discard tera handle 

 

    teraHandle = DRV_USART_Open(DRV_USART_INDEX_1, DRV_IO_INTENT_WRITE);//open tera usart channel 

    count = DRV_USART_Write(teraHandle, outputAngleDistance, 4);//write to tera 

    DRV_USART_Close(teraHandle);//discard tera handle 

    */ 

    outputAngleDistance[0] = 0; // reset output 

    outputAngleDistance[1] = 0; 

    outputAngleDistance[2] = 0;  

    outputAngleDistance[3] = 0; 

    wallDistance = 0; 

    wallAngle = 0; 

    corner_index = 0; 

    front_corner_index = 0; 

    n_samples_apart = 0; 

    Found_Enemy = 0; 

 

    return lidar; 

} 

 

// Function to write LiDAR data 

void setLidarData(short oppAng, short oppDist, short wallAng, short wallDist) { 

    lidar.opponentAngle = oppAng; 

    lidar.opponentDistance = oppDist; 

    lidar.wallAngle = wallAng; 

    lidar.wallDistance = wallDist; 

} 
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// Initial simulated LiDAR data 

void initLidar(void) { 

    setLidarData(lidar.opponentAngle, lidar.opponentDistance, 

                 lidar.wallAngle, lidar.wallDistance); 

} 
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3.2.3 Ultrasonic Sensor 

The ultrasonic sensors use time propagation of acoustic waves in atmosphere to determine 

distance. It does this by sending out a pulse and listening for its echo, then determining the time 

difference between the pulse and echo. The time is then converted to a distance. The requirements 

for the ultrasonic sensors in our application are as follows 

 

Table 24: Ultrasonic Sensor Requirements 

 Desired Parallax Ping 

Maximum distance 40 cm 3 m 

Minimum distance As small as possible 2 cm 

 
 

The Parallax Ping Sensor was chosen over the other options due to price, simplicity of 

integration and meeting all of our requirements. The 40 cm maximum distance requirement was due 

to the fact that the chosen LiDAR sensor had limited reliability in this range. Due to this fact, it was 

also required that the ultrasonic sensor have as small a minimum range as possible. The other 

choices for ultrasonic sensors were not able to integrate with our microprocessor or were not 

accurate at very close range. 

 

The ultrasonic sensors are necessary as a backup for the LiDAR sensor in close proximity. 

They will only be used when the LiDAR sensor data is inconclusive in determining whether there is 

an enemy in front of the robot. The measurement of distance is not as important as knowing that 

there is an enemy in view. When the robot makes decisions, it will try to use the LiDAR data before 
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it uses the ultrasonic data. 

 

The chosen ultrasonic sensors are simple, robust and cost efficient sensors. They require one 

power connection and one signal connection. The trigger pulse or chirp and the echo pulse are both 

sent/received over the signal pin. The sensor communicates using only a varying width pulse. The 

width of the pulse varies with a minimum width of 2 microseconds and a typical width of 5 

microseconds. Using the output compare module of the microcontroller, a trigger pulse is sent. Then 

using an input compare module, the width of the echo pulse is measured and that is converted to a 

distance using an equation that will be found experimentally. Figure 19 shows the ultrasonic sensor 

and the pulses that are sent and received. Figure 18 shows the pulses that are received and the trigger 

pulse that is sent, this comes from the datasheet for the sensor. 

 
 

  
Figure 18: Ultrasonic Pulses (From Datasheet) 

 

 
Figure 19: Ultrasonic Sensor 
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Below, the software is shown for the ultrasonic sensor. The software shows the process for converting 
the signal from the ultrasonic sensor, to a distance. 
 

ultrasonic.h: header file for the ultrasonic sensors 

 

#include <stdbool.h> 

 

// Distance to opponent if detected 

// Otherwise return 0 

unsigned short getUltrasData(short select); 

bool isUltraClose(); 

void setUltrasData(short data); 

void initUltras(void); 

 

ultrasonic.c: source file for the ultrasonic sensors 

 

#include "ultrasonic.h" 

unsigned short Thiu, Thiu2; 

unsigned short Tru, Tru2; 

unsigned short Tfu, Tfu2; 

short ultras = 0; 

 

unsigned short getUltrasData(short select) { 

    if (select)  

    { 

        Tru2 = DRV_IC2_Capture16BitDataRead(); 

        Tfu2 = DRV_IC2_Capture16BitDataRead(); 

        if (Tfu2>Tru2) 

        { 

            Thiu2 = Tfu2 - Tru2; 

        } 
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        return Thiu2; 

    }  

    else  

    { 

        Tru = DRV_IC1_Capture16BitDataRead(); 

        Tfu = DRV_IC1_Capture16BitDataRead();  

        if (Tfu>Tru) 

        { 

            Thiu = Tfu - Tru; 

        } 

   

        return Thiu; 

    }   

} 

 

bool isUltraClose() { 

    if (((getUltrasData(0) > 0) && (getUltrasData(0) < 1500)) || 

        ((getUltrasData(1) > 0) && (getUltrasData(1) < 1500)))  

        return true; 

    else 

        return false; 

} 

 

void setUltrasData(short data) { 

    ultras = data; 

} 

 

void initUltras(void) { 

    ultras = 0; 

} 
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3.2.4 Encoder 

The encoder sensor is necessary to measure the rotational speed of the weapon which 

determines whether the robot is in fight or flight mode. The encoder must be attached to the shaft of 

the weapon motor so that it rotates at the same speed as the weapon. It will then generate pulses at a 

frequency proportional to the speed of the motor shaft.  The CUI AMT103-V encoder was chosen 

because it operates at 5V and is lightweight. When it spins, it generates 2048 pulses per revolution 

(PPR). Per section 3.5.6, the threshold RPM to enter fight-mode is 825 RPM, thus the threshold 

pulse frequency for fight-mode is: 2048 PPR*825 RPM/60s = 28,160 Hz. This will be measured 

using an input compare module. 

 

encoder.h: header file for the encoder that reads weapon speed 

 

#include <stdbool.h> 

 

bool isWeaponReady(void); 

unsigned short Get_Encoder_Data (void); 

 

encoder.c: source file for the encoder that reads weapon speed 

 

#include "encoder.h" 

#include "system/common/sys_common.h" 

#include "app.h" 

#include "system_definitions.h" 

 

//int interruptNum = 1; 

unsigned short Thie; 
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unsigned short Tre; 

unsigned short Tfe; 

 

unsigned short Get_Encoder_Data (void) 

{ 

    Tre = DRV_IC0_Capture16BitDataRead(); 

    Tfe = DRV_IC0_Capture16BitDataRead(); 

    if (Tfe>Tre) 

    { 

        Thie = Tfe - Tre; 

    } 

    else  

    { 

        Thie=(65535-Tre)+Tfe; 

    } 

   

    return Thie;   

} 

 

 

bool isWeaponReady(void)  

{ 

    if(Thie < 40000) 

    {   flightOff(); 

        return true; 

   

    } 

    else 

    {   //flightOn(); 

        return false; // CHANGE TO FALSE FOR DEMO 

   

    } 

} 
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[HL] 

3.2.5 Gyroscope/Accelerometer 

The gyroscope is necessary in order to tell if the robot has been flipped over. This will be 

used by the Autonomous system and the control system (The Motion and Actualization Team). The 

sensor that was chosen communicates using the I2C protocol. It will let the microprocessor know 

whether gravity is up or down. If the robot has been flipped over, the motors will need to operate in 

reverse and the autonomous system will be deactivated because it would not operate with the LiDAR 

on the bottom. The accelerometer portion of the sensor is going to be used to assist the robot in 

knowing if it has hit an opponent. This information can be incorporated in the fight or flight 

algorithm as a double check in determining whether the robot should engage an enemy. 

 

Figure 20: Gyroscope Diagram 

 

[CH] 
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gyroscope.h: header file for the gyroscope 

 

#define MPU6050_REG_ACCEL_XOFFS_H     (0x06) 

#define MPU6050_REG_ACCEL_XOFFS_L     (0x07) 

#define MPU6050_REG_ACCEL_YOFFS_H     (0x08) 

#define MPU6050_REG_ACCEL_YOFFS_L     (0x09) 

#define MPU6050_REG_ACCEL_ZOFFS_H     (0x0A) 

#define MPU6050_REG_ACCEL_ZOFFS_L     (0x0B) 

#define MPU6050_REG_GYRO_XOFFS_H      (0x13) 

#define MPU6050_REG_GYRO_XOFFS_L      (0x14) 

#define MPU6050_REG_GYRO_YOFFS_H      (0x15) 

#define MPU6050_REG_GYRO_YOFFS_L      (0x16) 

#define MPU6050_REG_GYRO_ZOFFS_H      (0x17) 

#define MPU6050_REG_GYRO_ZOFFS_L      (0x18) 

#define MPU6050_SAMPLE_RATE_DIVIDER   (0x19) 

#define MPU6050_REG_CONFIG            (0x1A) 

#define MPU6050_REG_GYRO_CONFIG       (0x1B) // Gyroscope Configuration 

#define MPU6050_REG_ACCEL_CONFIG      (0x1C) // Accelerometer Configuration 

#define MPU6050_REG_FF_THRESHOLD      (0x1D) 

#define MPU6050_REG_FF_DURATION       (0x1E) 

#define MPU6050_REG_MOT_THRESHOLD     (0x1F) 

#define MPU6050_REG_MOT_DURATION      (0x20) 

#define MPU6050_REG_ZMOT_THRESHOLD    (0x21) 

#define MPU6050_REG_ZMOT_DURATION     (0x22) 

#define MPU6050_REG_INT_PIN_CFG       (0x37) // INT Pin. Bypass Enable Configuration 

#define MPU6050_REG_INT_ENABLE        (0x38) // INT Enable 

#define MPU6050_REG_INT_STATUS        (0x3A) 

#define MPU6050_REG_ACCEL_XOUT_H      (0x3B) 

#define MPU6050_REG_ACCEL_XOUT_L      (0x3C) 

#define MPU6050_REG_ACCEL_YOUT_H      (0x3D) 

#define MPU6050_REG_ACCEL_YOUT_L      (0x3E) 

#define MPU6050_REG_ACCEL_ZOUT_H      (0x3F) 
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#define MPU6050_REG_ACCEL_ZOUT_L      (0x40) 

#define MPU6050_REG_TEMP_OUT_H        (0x41) 

#define MPU6050_REG_TEMP_OUT_L        (0x42) 

#define MPU6050_REG_GYRO_XOUT_H       (0x43) 

#define MPU6050_REG_GYRO_XOUT_L       (0x44) 

#define MPU6050_REG_GYRO_YOUT_H       (0x45) 

#define MPU6050_REG_GYRO_YOUT_L       (0x46) 

#define MPU6050_REG_GYRO_ZOUT_H       (0x47) 

#define MPU6050_REG_GYRO_ZOUT_L       (0x48) 

#define MPU6050_REG_MOT_DETECT_STATUS (0x61) 

#define MPU6050_REG_MOT_DETECT_CTRL   (0x69) 

#define MPU6050_REG_USER_CTRL         (0x6A) // User Control 

#define MPU6050_REG_PWR_MGMT_1        (0x6B) // Power Management 1 

#define MPU6050_REG_WHO_AM_I          (0x75) // Who Am I 

 

#include <math.h> 

#include <stdio.h> 

#include <stdint.h> 

#include <stdbool.h> 

#include "system_config/default/framework/driver/i2c/drv_i2c_static_buffer_model.h" 

 

typedef struct  

{ 

    float XAxis; 

    float YAxis; 

    float ZAxis; 

} Vector; 

 

typedef struct  

{ 

    bool isOverflow; 

    bool isFreeFall; 

    bool isInactivity; 
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    bool isActivity; 

    bool isPosActivityOnX; 

    bool isPosActivityOnY; 

    bool isPosActivityOnZ; 

    bool isNegActivityOnX; 

    bool isNegActivityOnY; 

    bool isNegActivityOnZ; 

    bool isDataReady; 

}Activites; 

 

typedef enum 

{ 

    MPU6050_CLOCK_KEEP_RESET      = 0b111, 

    MPU6050_CLOCK_EXTERNAL_19MHZ  = 0b101, 

    MPU6050_CLOCK_EXTERNAL_32KHZ  = 0b100, 

    MPU6050_CLOCK_PLL_ZGYRO       = 0b011, 

    MPU6050_CLOCK_PLL_YGYRO       = 0b010, 

    MPU6050_CLOCK_PLL_XGYRO       = 0b001, 

    MPU6050_CLOCK_INTERNAL_8MHZ   = 0b000 

} mpu6050_clockSource_t; 

 

typedef enum 

{ 

    MPU6050_SCALE_2000DPS         = 0b11, 

    MPU6050_SCALE_1000DPS         = 0b10, 

    MPU6050_SCALE_500DPS          = 0b01, 

    MPU6050_SCALE_250DPS          = 0b00 

} mpu6050_dps_t; 

 

typedef enum 

{ 

    MPU6050_RANGE_16G             = 0b11, 

    MPU6050_RANGE_8G              = 0b10, 
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    MPU6050_RANGE_4G              = 0b01, 

    MPU6050_RANGE_2G              = 0b00, 

} mpu6050_range_t; 

 

typedef enum 

{ 

    MPU6050_DELAY_3MS             = 0b11, 

    MPU6050_DELAY_2MS             = 0b10, 

    MPU6050_DELAY_1MS             = 0b01, 

    MPU6050_NO_DELAY              = 0b00, 

} mpu6050_onDelay_t; 

 

typedef enum 

{ 

    MPU6050_DHPF_HOLD             = 0b111, 

    MPU6050_DHPF_0_63HZ           = 0b100, 

    MPU6050_DHPF_1_25HZ           = 0b011, 

    MPU6050_DHPF_2_5HZ            = 0b010, 

    MPU6050_DHPF_5HZ              = 0b001, 

    MPU6050_DHPF_RESET            = 0b000, 

} mpu6050_dhpf_t; 

 

typedef enum 

{ 

    MPU6050_DLPF_6                = 0b110, 

    MPU6050_DLPF_5                = 0b101, 

    MPU6050_DLPF_4                = 0b100, 

    MPU6050_DLPF_3                = 0b011, 

    MPU6050_DLPF_2                = 0b010, 

    MPU6050_DLPF_1                = 0b001, 

    MPU6050_DLPF_0                = 0b000, 

} mpu6050_dlpf_t; 
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typedef enum{ 

    MPU6050_Address_1 = (0xD0), 

    MPU6050_Address_2 = (0xD2) 

}MPU6050_ADDRESS; 

 

typedef struct{ 

    //private: 

    Vector ra, rg; // Raw vectors 

    Vector na, ng; // Normalized vectors 

    Vector tg, dg; // Threshold and Delta for Gyro 

    Vector th;     // Threshold 

    Activites a;   // Activities 

 

    float dpsPerDigit, rangePerDigit; 

    float actualThreshold; 

    bool useCalibrate; 

    MPU6050_ADDRESS Address; 

}MPU_6050_t; 

MPU_6050_t MPU_1; 

 

void isGyroTimedOut(); 

bool initGyro(); 

void setClockSource(MPU6050_ADDRESS address, mpu6050_clockSource_t source); 

mpu6050_clockSource_t getClockSource(MPU6050_ADDRESS address); 

void setScale(MPU_6050_t *mpu,mpu6050_dps_t scale); 

mpu6050_dps_t getScale(MPU6050_ADDRESS address); 

void setRange(MPU_6050_t *mpu,mpu6050_range_t range); 

mpu6050_range_t getRange(MPU6050_ADDRESS address); 

void setSleepEnabled(MPU6050_ADDRESS address, bool state); 

bool getSleepEnabled(MPU6050_ADDRESS address); 

int8_t readRegister8(MPU6050_ADDRESS address,uint8_t reg); 

void writeRegister8(MPU6050_ADDRESS address,uint8_t reg, uint8_t value); 

bool readRegisterBit(MPU6050_ADDRESS address,uint8_t reg, uint8_t pos); 
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void writeRegisterBit(MPU6050_ADDRESS address,uint8_t reg, 

    uint8_t pos, bool state); 

Vector readRawAccel(void); 

Vector readScaledAccel(void); 

double readAngleX(void); 

bool isUpsideDown(void); 

 

gyroscope.c: source file for the gyroscope 

 

#include "gyroscope.h" 

#include "timers.h" 

 

timers_t sec, ms10, ledTimeout;  

timers_t printTimer; 

timers_t IMU_UpdateTimer; 

timers_t timeOut; 

 

// Starts up the gyroscope and tests an initial reading 

bool initGyro() { 

    // Use chosen scale enum, chosen range enum, 

    // and MPU6050_ADDRESS for parameters 

    MPU_6050_t *mpu = &MPU_1; 

    mpu6050_dps_t scale = MPU6050_SCALE_250DPS; 

    mpu6050_range_t range = MPU6050_RANGE_2G; 

    MPU6050_ADDRESS mpua = MPU6050_Address_1; 

   

    setTimerInterval(&ledTimeout,100); 

    setTimerInterval(&printTimer,100); 

    setTimerInterval(&IMU_UpdateTimer,10); 

    setTimerInterval(&timeOut,500); 

    // Set Address 

    mpu->Address = mpua; 
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    // Reset calibrate values 

    mpu->dg.XAxis = 0; 

    mpu->dg.YAxis = 0; 

    mpu->dg.ZAxis = 0; 

    mpu->useCalibrate = false; 

 

    // Reset threshold values 

    mpu->tg.XAxis = 0; 

    mpu->tg.YAxis = 0; 

    mpu->tg.ZAxis = 0; 

    mpu->actualThreshold = 0;   

 

    // Set Clock Source 

    setClockSource(mpu->Address,MPU6050_CLOCK_PLL_XGYRO); 

    // Set Scale & Range 

    setScale(mpu,scale); 

 

    setRange(mpu,range); 

 

    //SET THE SAMPLE RATE 

    writeRegister8(mpu->Address, MPU6050_SAMPLE_RATE_DIVIDER, 9); 

   

    //Config DLPF 

    writeRegister8(mpu->Address, MPU6050_REG_CONFIG, 1); 

   

    // Disable Sleep Mode 

    setSleepEnabled(mpu->Address,false); 

 

    // Tests the first reading of the accelerometer 

    readRawAccel(); 

    return true; 

} 
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// Sets the clock source of the MPU at initialization 

void setClockSource(MPU6050_ADDRESS address, mpu6050_clockSource_t source) { 

    uint8_t value; 

    value = readRegister8(address,MPU6050_REG_PWR_MGMT_1); 

    value &= 0b11111000; 

    value |= source; 

    writeRegister8(address,MPU6050_REG_PWR_MGMT_1, value); 

} 

 

// Gets the clock source of the MPU at initialization 

mpu6050_clockSource_t getClockSource(MPU6050_ADDRESS address) { 

    uint8_t value; 

    value = readRegister8(address, MPU6050_REG_PWR_MGMT_1); 

    value &= 0b00000111; 

    return (mpu6050_clockSource_t)value; 

} 

 

// Sets the scale of the MPU at initialization 

void setScale(MPU_6050_t *mpu,mpu6050_dps_t scale) { 

    uint8_t value; 

 

    switch (scale) 

    { 

case MPU6050_SCALE_250DPS: 

    mpu->dpsPerDigit = .007633f; 

    break; 

case MPU6050_SCALE_500DPS: 

    mpu->dpsPerDigit = .015267f; 

    break; 

case MPU6050_SCALE_1000DPS: 

    mpu->dpsPerDigit = .030487f; 

    break; 
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case MPU6050_SCALE_2000DPS: 

    mpu->dpsPerDigit = .060975f; 

    break; 

default: 

    break; 

    } 

 

    value = readRegister8(mpu->Address, MPU6050_REG_GYRO_CONFIG); 

    value &= 0b11100111; 

    value |= (scale << 3); 

    writeRegister8(mpu->Address,MPU6050_REG_GYRO_CONFIG, value); 

} 

 

// Gets the scale of the MPU at initialization 

mpu6050_dps_t getScale(MPU6050_ADDRESS address) { 

    uint8_t value; 

    value = readRegister8(address,MPU6050_REG_GYRO_CONFIG); 

    value &= 0b00011000; 

    value >>= 3; 

    return (mpu6050_dps_t)value; 

} 

 

// Sets the range of the MPU at initialization 

void setRange(MPU_6050_t *mpu,mpu6050_range_t range) { 

    uint8_t value; 

 

    switch (range) { 

        case MPU6050_RANGE_2G: 

            mpu->rangePerDigit = .000061f; 

            break; 

        case MPU6050_RANGE_4G: 

            mpu->rangePerDigit = .000122f; 

            break; 
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        case MPU6050_RANGE_8G: 

            mpu->rangePerDigit = .000244f; 

            break; 

        case MPU6050_RANGE_16G: 

            mpu->rangePerDigit = .0004882f; 

            break; 

        default: 

            break; 

    } 

 

    value = readRegister8(mpu->Address, MPU6050_REG_ACCEL_CONFIG); 

    value &= 0b11100111; 

    value |= (range << 3); 

    writeRegister8(mpu->Address, MPU6050_REG_ACCEL_CONFIG, value); 

} 

 

// Gets the range of the MPU at initialization 

mpu6050_range_t getRange(MPU6050_ADDRESS address) { 

    uint8_t value; 

    value = readRegister8(address,MPU6050_REG_ACCEL_CONFIG); 

    value &= 0b00011000; 

    value >>= 3; 

    return (mpu6050_range_t)value; 

} 

// Disables sleep mode at initialization 

void setSleepEnabled(MPU6050_ADDRESS address, bool state) { 

    writeRegisterBit(address,MPU6050_REG_PWR_MGMT_1, 6, state); 

} 

 

// Gets sleep mode at initialization 

bool getSleepEnabled(MPU6050_ADDRESS address) { 

    return readRegisterBit(address,MPU6050_REG_PWR_MGMT_1, 6); 

} 
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// Read 8-bit from register 

int8_t readRegister8(MPU6050_ADDRESS address,uint8_t reg) { 

    resetTimer(&timeOut); 

    char value; 

    int8_t addr = reg; 

    DRV_I2C_BUFFER_HANDLE handle = DRV_I2C0_Transmit(address,&addr,1,NULL); 

    while(!(DRV_I2C0_TransferStatusGet(handle)==DRV_I2C_BUFFER_EVENT_COMPLETE || 

            DRV_I2C0_TransferStatusGet(handle)==DRV_I2C_BUFFER_EVENT_ERROR || 

            timerDone(&timeOut))); 

 

    handle = DRV_I2C0_Receive(address,&value,1,NULL); 

    while(!(DRV_I2C0_TransferStatusGet(handle)==DRV_I2C_BUFFER_EVENT_COMPLETE || 

            DRV_I2C0_TransferStatusGet(handle)==DRV_I2C_BUFFER_EVENT_ERROR || 

            timerDone(&timeOut))); 

 

    return value; 

} 

 

// Write 8-bit to register 

void writeRegister8(MPU6050_ADDRESS address,uint8_t reg, uint8_t value) { 

    resetTimer(&timeOut); 

    char byte[] = {reg, value}; 

    DRV_I2C_BUFFER_HANDLE handle = DRV_I2C0_Transmit (address,byte,2,NULL); 

    while(!(DRV_I2C0_TransferStatusGet(handle)==DRV_I2C_BUFFER_EVENT_COMPLETE || 

            DRV_I2C0_TransferStatusGet(handle)==DRV_I2C_BUFFER_EVENT_ERROR || 

            timerDone(&timeOut))); 

} 

 

// Read register bit 

bool readRegisterBit(MPU6050_ADDRESS address,uint8_t reg, uint8_t pos) { 

    int8_t value; 

    value = readRegister8(address,reg); 
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    return ((value >> pos) & 1); 

} 

 

// Write register bit 

void writeRegisterBit(MPU6050_ADDRESS address,uint8_t reg, uint8_t pos, 

        bool state) { 

    int8_t value; 

    value = readRegister8(address,reg); 

 

    if (state) 

        value |= (1 << pos); 

    else  

        value &= ~(1 << pos); 

 

    writeRegister8(address,reg, value); 

} 

 

// Reads the raw accelerometer values from the gyro 

Vector readRawAccel(void) { 

   

    resetTimer(&timeOut); 

   

    // Should only need to transmit the address of the first registers 

unsigned char bytesTX = {MPU6050_REG_ACCEL_XOUT_H}; 

unsigned char bytesRX[6]; 

   

    DRV_I2C_BUFFER_HANDLE handle = 

            DRV_I2C0_Transmit((&MPU_1)->Address,&bytesTX,1,NULL); 

    while(!( DRV_I2C0_TransferStatusGet(handle) == DRV_I2C_BUFFER_EVENT_COMPLETE 

          || DRV_I2C0_TransferStatusGet(handle) == DRV_I2C_BUFFER_EVENT_ERROR 

          || timerDone(&timeOut))); 

 

    handle = DRV_I2C0_Receive((&MPU_1)->Address,&bytesRX,6,NULL); 
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    while(!( DRV_I2C0_TransferStatusGet(handle) == DRV_I2C_BUFFER_EVENT_COMPLETE 

          || DRV_I2C0_TransferStatusGet(handle) == DRV_I2C_BUFFER_EVENT_ERROR 

          || timerDone(&timeOut))); 

   

    (&MPU_1)->ra.XAxis = bytesRX[0] << 8 | bytesRX[1]; 

    (&MPU_1)->ra.YAxis = bytesRX[2] << 8 | bytesRX[3]; 

    (&MPU_1)->ra.ZAxis = bytesRX[4] << 8 | bytesRX[5]; 

 

    return (&MPU_1)->ra; 

} 

 

// Applies the scale to the raw accelerometer value 

Vector readScaledAccel(void) { 

    readRawAccel(); 

 

    (&MPU_1)->na.XAxis = (&MPU_1)->ra.XAxis * (&MPU_1)->rangePerDigit; 

    (&MPU_1)->na.YAxis = (&MPU_1)->ra.YAxis * (&MPU_1)->rangePerDigit; 

    (&MPU_1)->na.ZAxis = (&MPU_1)->ra.ZAxis * (&MPU_1)->rangePerDigit; 

 

    return (&MPU_1)->na; 

} 

 

// Read the X angle from the accelerometer 

double readAngleX(void) { 

    Vector radians = readScaledAccel(); 

    return (180/3.141592) * radians.XAxis; 

} 

 

int gyroBuffer[10];     // Stores the last 10 accelerometer readings 

int bufferTracker = 0;  // Looping iterator for gyroBuffer 

double xValue = 0;      // Stores the X angle 

double threshold = 90.0;// Maximum angle to consider robot upside down 

// Read whether the gyro is upside down or not 
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bool isUpsideDown(void) { 

    // Reads the accelerometer Z angle 

    xValue = readAngleX(); 

    // Tests if the robot is upside down based on the threshold angle 

    if (xValue > threshold) { 

        gyroBuffer[bufferTracker] = 1; 

    } else { 

        gyroBuffer[bufferTracker] = 0; 

    } 

   

    // Counts how many of the last 10 readings were upside down 

    int i, upsideDownCount = 0; 

    for (i = 0; i < 10; i++){ 

        if (gyroBuffer[i] == 1) { 

            upsideDownCount++; 

        } 

    } 

    // Updates the iterator 

    if (bufferTracker < 9) { 

        bufferTracker++; 

    } else { 

        bufferTracker = 0; 

    } 

    // If at least half the readings show upside down, return true 

    if (upsideDownCount == 10){ 

        return true; 

    } 

    // Otherwise return false 

    return false; 

} 

 

[HL, CH] 
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3.2.6 Communication Protocols Software 

For the four sensors, four different communication protocols are necessary. For the LiDAR, 

UART and PWM are required. For the Gyroscope, I2C is required. Lastly, a standard digital pulse 

signal is required for the Ultrasonic sensor and the encoder. MPlab Harmony simplifies the process 

of assigning pins and using the communications protocols. Drivers for all the necessary protocols are 

included with the configuration files. 

For the communication protocol between the boards of the Autonomy System and the 

Controls Actualization system, UART is used. UART is used because of its simplicity, speed and 

because it is asynchronous. It is important that it is asynchronous because that simplifies the 

connection between the two systems, and only requires two wires. In addition, it is also the protocol 

that the LiDAR uses to send its data to the microprocessor. That helps with the design process 

because the same skeleton UART program can be used for both parts of the system. The 

microprocessor needs to have one UART input and one UART output. 

Using an Explorer 16/32 board, preliminary bench tests have already been done. Using the 

MPlab software with MPlab Harmony Configurator, key signals have already been simulated. The 

first thing that was done was to use the UART functions to send and receive a message with the 

processor. A simple program was found on the Microchip Developers Website that would accept a 

character over UART and send back the next character. For our testing, we used the build in UART 

to USB controller on the Explorer 16/32 board. This communicated with a laptop with Putty 

installed on it. This program was not configured to use the  PIC32MZEF100 so a custom 

configuration file was made using the MPlab Harmony Configurator, allowing the program to 

function correctly. This program was modified to do some other things as well, including flashing 
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LEDs and require buttons to do certain things. 

[HL] 
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3.3.0 Bill of Material as Standing 

3.3.1 Parts List 

 

The parts list included shows all the parts required for the Autonomous System. This includes the 

sensors and all the necessary components for the microcontroller board.  

 

Table 25: Parts List/Materials Budget List 

Qty
. Part Num. Description 

Suggested 
Vendor 

Vendor Part 
Num. 

Catalog 
#/Page 
#/Webs
ite System 

Unit 
Cost 

Total 
Cost 

1 RPLIDARA3 Lidar DFRobot DFR0583 Link Software 
$ 
599.00 

$ 
599.00 

2 28015 Ultrasonic Parallax 28015-ND Link Software 
$ 
29.99 

$ 
59.98 

1 SEN0142 
6 DOF SENSOR - 
MPU6050 Digi-Key 

1738-1070-N
D Link Electrical 

$ 
10.20 

$ 
10.20 

1 AMT103-V 
Encoders Axial Encoder Kit 
9 sleeve, base, cover Mouser 

490-AMT103
-V Link Electrical 

$ 
23.62 

$ 
23.62 

1 MA320019 

PIC32MZ2048EFH100 - 
Plug-In Module (PIM) (For 
explorer 16/32 board) Digikey 

MA320019-N
D Link Software 

$ 
25.75 

$ 
25.75 

1 N/A Boards 5X5 OSH Park  Link Electrical 
$ 
120.00 

$ 
120.00 

1 
PIC32MZ204
8EFH064 Microcontroller Digikey 

PIC32MZ204
8EFH064-I/P
T-ND Link Electrical 

$ 
12.23 

$ 
12.23 

1 N/A 

Passive Components- 
Resistors, Capacitors, etc. 
(See Eagle Parts List) 

ECE 
Stock/Misc   Electrical 

$ 
65.00 

$ 
65.00 

       Total 
$ 
915.78 
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https://www.dfrobot.com/product-1772.html
https://www.digikey.com/products/en/sensors-transducers/ultrasonic-receivers-transmitters/527?k=parallax%20ping
https://www.digikey.com/product-detail/en/dfrobot/SEN0142/1738-1070-ND/6588492
https://www.mouser.com/ProductDetail/CUI/AMT103-V?qs=sGAEpiMZZMvy8cVzszrmR8e0mUKZ7grDxypjjs%252bX2F6mEdlA4v%2fGBw%3d%3d
https://www.digikey.com/product-detail/en/microchip-technology/MA320019/MA320019-ND/5401241
https://www.digikey.com/product-detail/en/microchip-technology/MA320019/MA320019-ND/5401241
https://www.digikey.com/product-detail/en/microchip-technology/PIC32MZ2048EFH064-I-PT/PIC32MZ2048EFH064-I-PT-ND/5323563


 
[HL,CH, SV, FA] 

3.3.2 Eagle BOM 
 

Qty Value Device Package Parts 

3  CONN_02 1X02 J2, J6, J9 

1  CONN_03LOCK 1X03_LOCK J4 

3  CONN_05LOCK 1X05_LOCK J1, J3, J5 

10  LEDCHIP-LED0805 CHIP-LED0805 LED1, LED2, 
LED3, LED4, 
LED5, LED6, 
LED7, LED8, 
LED9, LED10 

1  PCIFEMALE PCI-CONNECTOR LED 

10 0.1uF Ceramic CAP0805 805 C5, C8, C35, C36, 
C37, C38, C39, 
C40, C41, C42 

1 100 5% R-US_R0805 R0805 R12 

1 10k 5% R-US_R0805 R0805 R13 

2 10nF Ceramic CAP0805 805 C4, C9 

2 120k, 5% R-US_R0805 R0805 R8, R16 

2 1uF Ceramic CAP0805 805 C3, C7 

4 2.2k R-US_R0805 R0805 R6, R7, R10, R11 

1 270 R-US_R0805 R0805 R31 

1 400 R-US_R0805 R0805 R14 

2 470pF, 5% 
Ceramic 

CAP0805 805 C1, C2 
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2 4N27 4N27 DIP880W50P254L780H400
Q6B 

U4-ISO3, 
U4-ISO4 

2 55, 5% R-US_R0805 R0805 R9, R15 

8 90 R-US_R0805 R0805 R1, R2, R3, R4, 
R5, R32, R66, R67 

2 DC//DC-ISO DC//DC-ISO 8-SMD_5-LEADS U4-ISO1, 
U4-ISO2 

1 KC2520B KC2520B KC2520B U$9 

1 PIC32MZ2048EF
H064 

PIC32MZ2048EFH06
4 

TQFP64 U$5 

1 Prog M05LOCK_LONGPA
DS 

1X05_LOCK_LONGPADS PIC_PROG1 

1 SWITCH-MOME
NTARY-2SMD-4 

SWITCH-MOMENTA
RY-2SMD-4 

TACTILE_SWITCH_TALL S2 

1 USB-MINIB-5PI
N 

USB-MINIB-5PIN USB-MINIB U$11 
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3.4 Mechanical Sketch of System 

Through research trade studies (see Appendix) and video research of various combat robotics 

competitions, the team has decided to incorporate a hybrid wedge drum weapons system. This is 

different than the original idea of a spinner. The team is currently still developing this design, and 

researching other weapon design ideas. Wedge bots have a advantage over many because they can 

get under the opponent robot and avoid the opponent's weapon or disabling them by flipping them. 

The drawback of a wedge alone is if the enemy robot is designed to drive on both top and bottom the 

wedge is not likely to disable the robot. Wedges alone generally do not inflict critical damage. 

The proposed design will add a drum weapon mechanism to the wedge design. This will 

allow the robot to inflict critical damage to the underside of the opponent’s robot. The team’s hybrid 

design will have the robustness and defensive capabilities of a wedge, but have the damaging 

capabilities of a drum weapon system.  This is because, as mentioned previously, the wedge is good 

primarily for avoiding the opponent's weapons and flipping the opponent but not inflicting damage to 

destroy the opponent. 

Using a wedge-drum hybrid will allow for all of the benefits of the wedge, but will also 

provide a mechanism which will be able to actually disable or destroy the opposing robot.  This 

hybrid design will support the implementation of the intercept or escape algorithms. Figure 21 shows 

is the original rough mechanical sketch of the system for the autonomous robot. In essence, this 

automatic autonomous combat robot which will be fully autonomous will be a combination of a 

drum weapon and a wedge weapon. Further explanation of the diagram can be found in table 3. 

[CH] 
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Figure 21: Mechanical Sketch of System. 
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Table 26: Mechanical Components of System. 

Label Component and Purpose 

A LiDAR Sensor to enable the autonomous 
combat robot to sense opposing robot and walls 
of arena. 

B Wedge. Serves as armor, defensive system, and 
secondary weapon during combat. 

C Drum. Serves as primary weapon for the 
combat robot. 

D Wheels. Currently a subject being further 
investigated. The team may implement 360 
degree wheels to keep the robot facing the 
opponent at all times.  

 
Figure 22 and 23 below shows the second rendition of the mechanical design. The team plans 

on moving the LiDAR sensors into the chassis to protect them. The drum spinner has been made a 

small width to enable fast speed up times and increase impact delivery force by minimizing the 

distribution of the impact. 
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Figure 22: Updated Mechanical Design - Isometric View. 

 

 

Figure 23: Updated Mechanical Design - Planar View 

[FA, CH, AS, TT, TW] 
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Figure 24: Representation of Lidar Field of View 

[SV] 
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3.5 Calculations 

3.5.1 LiDAR Calculations 

The size of the arena and the Lidar range. The RoboGames arena is 40 feet squared for a 

maximum distance from opponent 56.56 feet. 

ongestdistance 6.56f tl = 402 + 402 = 5  
[HL] 

The range of the Lidar sensor that we have chosen has a range of 25 meters or 82 feet for 

white objects. The range of the sensor is lower (around 10 meters or 32 feet) for black objects. With 

an average range of 20 meters, the enemy should always be in range. 

ange 0meters 5feet 6.56f tR = 2 = 6 > 5  
[HL] 
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Lidar’s ability to detect the opponent 

 

Figure 25: Lidar FOV With Enemy at Max Distance 

 

[SV] 
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Based on Figure 25, in a situation where the opponent is as far away in the arena as possible and is 2 

feet wide: 

an⁻¹( ) .023ºӨ = t 1
56 = 1  
 

= 2.046  = minimum field of view occupied by enemy 2 * Ө  º  

 

Lidar sample rate = 16kHz 

 

Lidar spin rate = 10Hz = 3600 Degrees/second 

 

Therefore, 9 samples is the fewest number of Lidar samples per revolution that will see the 

enemy, assuming the opponent is in field of view. Sample rate and spin rate of the Lidar are based 

on the RPLIDAR A3 which was selected based on sample rate, working distance, and low cost. [16] 

[SV] 
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3.5.2 Main Algorithm Simulation 

In order to test the functionality of the main algorithm and the autonomous decision making 

of the robot, all the sensor inputs have been replaced with simulated data. In Figure 26, the opponent 

is “moving” in front of the robot until it is at a 90 degree angle. The robot’s decision making 

responds accordingly: 

 

Figure 26: Simulated Output of the Main Algorithm 

 

This simulation demonstrates that the robot can appropriately follow the opponent at every 

iteration of the loop. It also demonstrates a quick processing time, which is crucial in real combat as 

most of the processing time will be consumed by reading sensors. 
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3.5.3 LiDAR Simulation & Data Processing 

Figure 27 shows the robot in the arena in an ideal scenario: 

  

Figure 27: Ideal Orientation, Full FOV 

 

In Figure 27 the robot has it’s back to the wall, is in the middle of the wall, and can use its 

full field of view to scan the empty arena. In this instance, the LiDAR will return the symmetrical 

data array shown in Figure 28. Figure 29 shows this same scenario except with a 2’x2’ opponent 

located in the middle of the opposite wall.  Together, these two graphs show how an opponent will 

be discernible from the arena walls. This can be done simply by subtracting one sample from its 

neighboring sample. The largest delta in neighboring samples will be due to the enemy robot in the 

ideal orientation. 
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Figure 28 (left) Empty Room, Figure 29 (right) Opponent On Opposite Wall 

[SV] 

Figure 29 shows the robot in the arena in a non-ideal orientation. Here, only half of the total field of 

view can be utilized. 
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Figure 30: Non-ideal Orientation, Half FOV 

[SV] 

The data array resulting from the Figure 30 orientation is shown in Figure 31. Figure 32 

shows the array that results from subtracting each sample in Figure 31 from it’s neighbor. Since 

Figure 29 shows that there are delta values larger than two feet, it would not be possible to locate a 

2’x2’ enemy when the robot is in this non-ideal orientation. More data processing must be performed 

to locate the enemy. 
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Figure 31 (left) Non-ideal Orientation, Empty Room. Figure 32 (right) Neighboring Sample Delta Array  

[SV] 

In order to isolate the enemy, a logical test can be performed on each data point whose delta 

was greater than 2 feet from its neighbor. Since an enemy is on average 2 feet wide, when a sample 

has a delta greater than two feet, the next two samples should have deltas less than two feet.  If this 

is not the case, then the LiDAR is not measuring the enemy. Figure 31 shows the resulting data array 

when this algorithm is applied to the array from Figure 32,with three enemies added to the arena. 

127 
 



 

 

Figure 33: Enemies Isolated From Walls, Non-ideal Orientation 

  [SV] 

 

Figure 33 shows three positive matches found, which correspond to the three simulated 

enemies placed in the arena. This indicates that an enemy can be located anywhere in the arena even 

when the LiDAR can only use half of its field of view. 

 

Preliminary testing has begun with the RPLiDAR A3. Using the manufacturer's demo 

application, raw data was collected, processed and displayed. The resulting chart, shown in Figure 

34, is the LiDAR’s 360 degree output when it is spun on the top shelf in ASEC North 525. The 

outlier  samples on the 120 degree heading represent the samples taken through the open door. 
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Figure 34: RPLiDAR A3 Measurement Data 

[SV] 

3.5.3 Data Resolution Calculations 

The output of the navigation board will be UART. The maximum amount of data that can be 

transmitted in a single UART packet is 9 bits. In order for packets to be self-contained, both the 

speed and direction angle should be incorporated in those 9 bits. Allocating one bit for speed (run or 

turn in place), the remaining 8 bits will provide an angular resolution of: 

 possible options.5628 = 2  

Given that the LiDAR will have a 90o range of vision in each direction, 181 of the 256 

possible options will be dedicated to provide an angle, from -90o to 90o, rounded to the nearest 

degree. The angle data will be encoded in two’s complement binary notation. 

[FA] 
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3.5.4 Computing Calculations 

The processor needs to accommodate for the sampling frequency of each of the sensors. The 

baud rates for the sensors are as follows. 

 

Table 27: Baud Rate for Processor Calculations 

Sensor Baud Rates 

Lidar 256 kHz 

Ultrasonic 500 kHz 

Gyroscopic 1 MHz 

 
The minimum processor speed that can be used is 

= 20 MHzinimumprocessorspeed 0×max(baudrates)m = 2  

The PIC32MZEF has a processor speed of 252MHz. The equivalent rate of reading data from a 

sensor is one fourth of the processor speed. This is due to the architecture of the processor and the 

cycles required to read data in machine code. This results in our processor able to read a 

baud/sample rate up to 63 MHz. 

[CH, HL] 

 

The Lidar sensor rotates at a frequency of 10 Hz. This means that it passes every degree once 

every 100 milliseconds. The average enemy robot might be moving at a speed of 10 miles per hour 

or 14 feet per second. That means that the enemy could have moved 1.4 feet in between samples 

from the lidar. This means that the autonomous system needs to be able to account for this time. The 

change in angle can be calculated using Pythagorean theorem. 
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Figure 35: Distance Traveled Between Samples 

 

If the enemy were to move 1.4 feet in between samples, at a distance of 5 feet the combat robot 

would see a change in angle of 15.6 degrees. 

[CH] 
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3.5.5 Power, Voltage and Current Calculations 

 

The table below shows the current, voltage, and power for the components of the autonomy 

system. The maximum power allowed for this system is 144W. As can be seen, the power of the 

system is within acceptable range. 

 

Table 28: Power Calculation Table 

Device Voltage Current Power 

Lidar 5 1.5 7.5 

Ultrasonic Sensor 3.3 0.035 0.1155 

Gyroscope and Accelerometer 3.3 0.004 0.0132 

Microcontroller 3.3 0.3 0.99 

LEDs 3.3 0.18 0.594 

Supporting IC estimate 5 0.16 0.8 

    Total 10.0127 

 
From the equation . The total power is 10.01 watts.I  P = V  

The efficiency of most regulators are around 85%, this gives us 11.78 watts. 

[CH] 
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3.5.6 Mechanical Calculations 

 

In order to determine whether the weapon motor is running at half of its maximum RPM, an 

encoder will be used. The weapon motor is going to be run at 70% the stall torque. The stall torque 

for the motor is going to be around 3.521 newton meters. This came from the performance chart of 

the motor. The maximum speed of the weapon will be 1650 rpm. For our algorithm we enter fight 

mode when the rpm of the motor has reached 825 rpm. 

 

The moment of inertia of the weapon can be estimated as a disk. The radius of the disk is 2.5 

inches or 0.064 meters. The weight is 18 pounds or 8.165 kilograms. Therefore 

omentof inertiaof theweapon≈ ass .165 .0167m 2
1 * m * r2 = 2

1 * 8 * 0.0642 = 0  
 

The torque supplied by the motor then equals the moment of inertia times the angular acceleration. 

ngularacceleration 10.84a = α = I
τ = 3.521

0.0167 = 2 rad
sec2  

 

The threshold weapon speed to enter fight mode is 824 rpm. That is equivalent to 86.39 rad/sec. 

Therefore it will take 409.7 milliseconds to get to full speed. 

imehalfofmaximumspeed 09.7millisecondst = α
2

(maxspeed)

= 2
86.39

210.84 = 4  
[HL, CH] 
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4.0 Schedule 
4.1 Calendar View 
September 

● Weekly meetings will be established at a date and time that is convenient for the majority of 
members. Items that will be discussed include administration, project progress, barriers to 
progress and action items to be completed by the next weekly meeting. 

● Alternate “work days” will be established where members will work on the design or 
construction of the robot as a group. 

● Reserve room space to store the robot and materials (most likely the design center). 
● Have timeline planned out for the project. 
● System architecture determined (hardware, mechanical, software) 

October 
● Preliminary design review. 
● Design Calculations 
● Electrical 
● Mechanical 

November 
● Critical design review. 
● Order all critical components for the robot. 
● Hardware design and mechanical design complete 
● Software Pseudocode design 
● Present Design to department 

December 
● Fabrication begins 
● Software design complete 

January 
● Preliminary testing 
● Control integration 

February 
● Robot fabrication ends 
● Finalize competition travel plans 

March 
● Final testing 
● Code revisions 

April 
● Compete in the RoboGames 

May 
● Review and revise results from the competition 
● Begin brainstorming ideas for the next year [CH,AS] 
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4.2 Gantt Chart Fall Semester 

Task Name Duration Start Finish Resource Names 
SDP1 Fall 2018     
   Project Design     

      Preliminary report 11 days Thu 9/6/18 Sun 
9/16/18 

Christopher Heldman,Fabian Ardeljan,Holden 
LeBlanc,Stephen Veillette 

         Cover page 11 days Thu 9/6/18 Sun 
9/16/18 

Christopher Heldman,Fabian Ardeljan,Holden 
LeBlanc,Stephen Veillette 

         T of C, L of T, L of F 11 days Thu 9/6/18 Sun 
9/16/18 

Christopher Heldman,Fabian Ardeljan,Holden 
LeBlanc,Stephen Veillette 

         Need 11 days Thu 9/6/18 Sun 
9/16/18 

Christopher Heldman,Fabian Ardeljan,Holden 
LeBlanc,Stephen Veillette 

         Objective 11 days Thu 9/6/18 Sun 
9/16/18 

Christopher Heldman,Fabian Ardeljan,Holden 
LeBlanc,Stephen Veillette 

         Background 11 days Thu 9/6/18 Sun 
9/16/18 

Christopher Heldman,Fabian Ardeljan,Holden 
LeBlanc,Stephen Veillette 

         Marketing Requirements 11 days Thu 9/6/18 Sun 
9/16/18 

Christopher Heldman,Fabian Ardeljan,Holden 
LeBlanc,Stephen Veillette 

         Objective Tree 11 days Thu 9/6/18 Sun 
9/16/18 

Christopher Heldman,Fabian Ardeljan,Holden 
LeBlanc,Stephen Veillette 

         Block Diagrams Level 0, 1, ... w/ FR tables 11 days Thu 9/6/18 Sun 
9/16/18 

Christopher Heldman,Fabian Ardeljan,Holden 
LeBlanc,Stephen Veillette 

            Hardware modules (identify designer) 11 days Thu 9/6/18 Sun 
9/16/18 

Christopher Heldman,Fabian Ardeljan,Holden 
LeBlanc,Stephen Veillette 

            Software modules (identify designer) 11 days Thu 9/6/18 Sun 
9/16/18 

Christopher Heldman,Fabian Ardeljan,Holden 
LeBlanc,Stephen Veillette 

         Mechanical Sketch 11 days Thu 9/6/18 Sun 
9/16/18 

Christopher Heldman,Fabian Ardeljan,Holden 
LeBlanc,Stephen Veillette 

         Team information 11 days Thu 9/6/18 Sun 
9/16/18 

Christopher Heldman,Fabian Ardeljan,Holden 
LeBlanc,Stephen Veillette 

         References 11 days Thu 9/6/18 Sun 
9/16/18 

Christopher Heldman,Fabian Ardeljan,Holden 
LeBlanc,Stephen Veillette 

      Preliminary Parts Request Form 11 days Thu 9/6/18 Sun 
9/16/18 

Christopher Heldman,Fabian Ardeljan,Holden 
LeBlanc,Stephen Veillette 

      Midterm Report 35 days Thu 9/6/18 Wed 
10/10/18  

         Design Requirements Specification 14 days Mon 
9/17/18 

Sun 
9/30/18 

Christopher Heldman,Fabian Ardeljan,Holden 
LeBlanc,Stephen Veillette 

         Midterm Design Gantt Chart 14 days Mon 
9/17/18 

Sun 
9/30/18 Holden LeBlanc 

         Design Calculations 24 days Mon 
9/17/18 

Wed 
10/10/18  

            Electrical Calculations 24 days Mon 
9/17/18 

Wed 
10/10/18  

               Communication 24 days Mon 
9/17/18 

Wed 
10/10/18 Holden LeBlanc 

               Computing 24 days Mon 
9/17/18 

Wed 
10/10/18 Christopher Heldman,Holden LeBlanc 

               Control Systems 24 days Mon 
9/17/18 

Wed 
10/10/18 

Christopher Heldman,Fabian Ardeljan,Holden 
LeBlanc,Stephen Veillette 

               Power, Voltage, Current 24 days Mon 
9/17/18 

Wed 
10/10/18 Christopher Heldman 

            Mechanical Calculations 24 days Mon 
9/17/18 

Wed 
10/10/18  

               Weight Requirements 24 days Mon 
9/17/18 

Wed 
10/10/18 Christopher Heldman 

         Block Diagrams Level 2 w/ FR tables & 
ToO 7 days Mon 

9/17/18 
Sun 
9/23/18  

            Hardware modules (identify designer) 7 days Mon 
9/17/18 

Sun 
9/23/18 Christopher Heldman,Holden LeBlanc 

            Software modules (identify designer) 7 days Mon 
9/17/18 

Sun 
9/23/18 Fabian Ardeljan,Stephen Veillette 
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         Block Diagrams Level 3 w/ FR tables & 
ToO 7 days Mon 

9/24/18 
Sun 
9/30/18  

            Hardware modules (identify designer) 7 days Mon 
9/24/18 

Sun 
9/30/18 Christopher Heldman,Holden LeBlanc 

            Software modules (identify designer) 7 days Mon 
9/24/18 

Sun 
9/30/18 Fabian Ardeljan,Stephen Veillette 

      Midterm Design Presentations Part 1 1 day Thu 
10/11/18 

Thu 
10/11/18 

Christopher Heldman,Fabian Ardeljan,Holden 
LeBlanc,Stephen Veillette 

      Midterm Design Presentations Part 2 1 day Thu 
10/18/18 

Thu 
10/18/18 

Christopher Heldman,Fabian Ardeljan,Holden 
LeBlanc,Stephen Veillette 

      Project Poster 14 days Mon 
10/8/18 

Sun 
10/21/18 

Christopher Heldman,Fabian Ardeljan,Holden 
LeBlanc,Stephen Veillette 

      Secondary Parts Request Form 21 days Mon 
9/17/18 

Sun 
10/7/18 

Christopher Heldman,Fabian Ardeljan,Holden 
LeBlanc,Stephen Veillette 

      Final Design Report 52 days Mon 
10/8/18 

Wed 
11/28/18 

Christopher Heldman,Fabian Ardeljan,Holden 
LeBlanc,Stephen Veillette 

         Abstract 52 days Mon 
10/8/18 

Wed 
11/28/18 

Christopher Heldman,Fabian Ardeljan,Holden 
LeBlanc,Stephen Veillette 

         Software Design 31 days Mon 
10/8/18 

Wed 
11/7/18  

            General Communication Psuedocode 31 days Mon 
10/8/18 

Wed 
11/7/18 Holden LeBlanc 

            Algorithm Psuedocode 31 days Mon 
10/8/18 

Wed 
11/7/18 Fabian Ardeljan 

            Sensor Psuedocode 31 days Mon 
10/8/18 

Wed 
11/7/18  

               Lidar Psuedocode 31 days Mon 
10/8/18 

Wed 
11/7/18 Stephen Veillette 

               Gyroscope/Acellerometer Psuedocode 31 days Mon 
10/8/18 

Wed 
11/7/18 Christopher Heldman 

               Ultrasonic Psuedocode 31 days Mon 
10/8/18 

Wed 
11/7/18 Holden LeBlanc 

         Hardware Design 31 days Mon 
10/8/18 

Wed 
11/7/18  

            Sensor Board 31 days Mon 
10/8/18 

Wed 
11/7/18  

               Schematic 31 days Mon 
10/8/18 

Wed 
11/7/18 Stephen Veillette 

               Simulation 31 days Mon 
10/8/18 

Wed 
11/7/18 Stephen Veillette 

            Navigation Board 31 days Mon 
10/8/18 

Wed 
11/7/18  

               Schematic 31 days Mon 
10/8/18 

Wed 
11/7/18 Christopher Heldman 

               Simulation 31 days Mon 
10/8/18 

Wed 
11/7/18 Christopher Heldman 

         Parts Lists 52 days Mon 
10/8/18 

Wed 
11/28/18  

             Parts list(s) for Schematics 52 days Mon 
10/8/18 

Wed 
11/28/18 

Christopher Heldman,Fabian Ardeljan,Holden 
LeBlanc,Stephen Veillette 

            Materials Budget list 52 days Mon 
10/8/18 

Wed 
11/28/18 

Christopher Heldman,Fabian Ardeljan,Holden 
LeBlanc,Stephen Veillette 

         Proposed Implementation Gantt Chart 52 days Mon 
10/8/18 

Wed 
11/28/18 Holden LeBlanc 

         Conclusions and Recommendations 52 days Mon 
10/8/18 

Wed 
11/28/18 

Christopher Heldman,Fabian Ardeljan,Holden 
LeBlanc,Stephen Veillette 

      Final Design Presentations Part 1 1 day Thu 
11/8/18 

Thu 
11/8/18 

Christopher Heldman,Fabian Ardeljan,Holden 
LeBlanc,Stephen Veillette 

      Final Design Presentations Part 2 1 day Thu 
11/15/18 

Thu 
11/15/18 

Christopher Heldman,Fabian Ardeljan,Holden 
LeBlanc,Stephen Veillette 

      Secondary Parts Request Form 14 days Thu 
10/4/18 

Wed 
10/17/18 

Christopher Heldman,Fabian Ardeljan,Holden 
LeBlanc,Stephen Veillette 

      Final Parts Request Form 56 days Mon Sun Christopher Heldman,Fabian Ardeljan,Holden 
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10/8/18 12/2/18 LeBlanc,Stephen Veillette 
[HL] 

4.3 Gantt Chart Spring Semester 
Task Name Duration Start Finish Predecessors Resource Names 
SDPII Implementation 2018 103 

days 
Mon 
1/14/19 

Fri 
4/26/19   

   Revise Gantt Chart 14 
days 

Mon 
1/14/19 

Sun 
1/27/19   

   Implement Project Design 96 
days 

Mon 
1/14/19 

Fri 
4/19/19   

      Hardware Implementation 56 
days 

Mon 
1/14/19 

Sun 
3/10/19   

         Breadboarding 13 
days 

Mon 
1/14/19 

Sat 
1/26/19   

            LiDAR Breadboard 13 
days 

Mon 
1/14/19 

Sat 
1/26/19  Steve Veillette 

            Ultrasonic Breadboard 13 
days 

Mon 
1/14/19 

Sat 
1/26/19  Holden LeBlanc 

            Gyroscope/Acellerometer 
Breadboard 

13 
days 

Mon 
1/14/19 

Sat 
1/26/19  Holden LeBlanc 

         Layout and Generate PCB(s) 14 
days 

Sun 
1/27/19 Sat 2/9/19 6 Chris Heldman 

         Assemble Hardware 7 
days 

Sun 
2/10/19 

Sat 
2/16/19 9 Chris Heldman,Fabian 

Ardeljan,Holden LeBlanc 
         Test Hardware 14 

days 
Sun 
2/17/19 Sat 3/2/19 10 Chris Heldman,Holden 

LeBlanc,Steve Veillette 
         Revise Hardware 14 

days 
Sun 
2/17/19 Sat 3/2/19 10 Chris Heldman,Holden 

LeBlanc,Steve Veillette 
         MIDTERM: Demonstrate 
Hardware 

5 
days 

Sun 
3/3/19 

Thu 
3/7/19 11 

Chris Heldman,Fabian 
Ardeljan,Holden LeBlanc,Steve 
Veillette 

         SDC & FA Hardware Approval 0 
days 

Fri 
3/8/19 Fri 3/8/19 13  

      Software Implementation 56 
days 

Mon 
1/14/19 

Sun 
3/10/19 14  

         Develop Software 27 
days 

Mon 
1/14/19 Sat 2/9/19   

            Autonomy Software 27 
days 

Mon 
1/14/19 Sat 2/9/19  Fabian Ardeljan 

            LiDAR Software 27 
days 

Mon 
1/14/19 Sat 2/9/19 17 Steve Veillette 

            Ultrasonic Software 27 
days 

Mon 
1/14/19 Sat 2/9/19 18 Holden LeBlanc 

            Gyroscope/Acellerometer 
Software 

27 
days 

Mon 
1/14/19 Sat 2/9/19 19 Holden LeBlanc 

         Test Software 21 
days 

Sun 
2/10/19 Sat 3/2/19 20 Fabian Ardeljan,Holden 

LeBlanc,Steve Veillette 
         Revise Software 21 

days 
Sun 
2/10/19 Sat 3/2/19 17 Fabian Ardeljan,Holden 

LeBlanc,Steve Veillette 
         MIDTERM: Demonstrate 
Software 

5 
days 

Sun 
3/3/19 

Thu 
3/7/19 22 

Chris Heldman,Fabian 
Ardeljan,Holden LeBlanc,Steve 
Veillette 

         SDC & FA Software Approval 0 
days 

Fri 
3/8/19 Fri 3/8/19 23  

      System Integration 42 
days 

Sat 
3/9/19 

Fri 
4/19/19  

Chris Heldman,Fabian 
Ardeljan,Holden LeBlanc,Steve 
Veillette 

         Assemble Complete System 14 Sat Fri  Chris Heldman,Fabian 
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days 3/9/19 3/22/19 Ardeljan,Holden LeBlanc,Steve 
Veillette 

         Test Complete System 21 
days 

Sat 
3/23/19 

Fri 
4/12/19 26 

Chris Heldman,Fabian 
Ardeljan,Holden LeBlanc,Steve 
Veillette 

         Revise Complete System 21 
days 

Sat 
3/23/19 

Fri 
4/12/19 26 

Chris Heldman,Fabian 
Ardeljan,Holden LeBlanc,Steve 
Veillette 

         Demonstration of Complete 
System 

7 
days 

Sat 
4/13/19 

Fri 
4/19/19 28 

Chris Heldman,Fabian 
Ardeljan,Holden LeBlanc,Steve 
Veillette 

   Develop Final Report 99 
days 

Mon 
1/14/19 

Mon 
4/22/19   

      Write Final Report 99 
days 

Mon 
1/14/19 

Mon 
4/22/19  

Chris Heldman,Fabian 
Ardeljan,Holden LeBlanc,Steve 
Veillette 

      Submit Final Report 0 
days 

Mon 
4/22/19 

Mon 
4/22/19 31 

Chris Heldman,Fabian 
Ardeljan,Holden LeBlanc,Steve 
Veillette 

   Spring Recess 7 
days 

Mon 
3/25/19 

Sun 
3/31/19   

   Combat Robotics Competition      
   Project Demonstration and 
Presentation 

0 
days 

Fri 
4/26/19 

Fri 
4/26/19   

[HL] 
5. Design Team Information 
 
Fabian Ardeljan, Computer Engineer, Software Lead 

 
Chris Heldman, Electrical Engineer, Team Lead 
 
Holden LeBlanc, Electrical Engineer, Archivist 
 
Stephen Veillette, Electrical Engineer, Hardware Lead 
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6. Conclusion and Recommendations 

The robot design process is well on its way. Most of the components have been chosen and 

the basic outlines of software have been written. A PIC32 board, a sample ultrasonic sensor, and a 

LiDAR sensor have been provided for testing. At this point, most of the design has involved rough 

estimations of values using datasheets, hand calculations, and simulation. The schematic for the 

sensor and navigation system has been completed. With the pace of the project, the robot is on track 

to be fully assembled by the end of April. 

From this point on, the culmination work of the software and hardware can commence. The 

hardware system has been designed by creating a Eagle schematic with a single PIC32MZEF 

microcontroller. It was determined that one microcontroller could handle the operations of our 

software due to its advanced speed and storage. The schematic includes the connections and support 

circuits for each sensor, as well as isolation from DT07B’s system. LED indicators, a USB interface, 

and a cardedge system have also been designed. 

The base software for the autonomous algorithm has been completed. Some software has 

already been tested on the Explorer Board, including software that creates a PWM signal and 

software that communicates over UART. The software for the sensors has yet to be written. 

However, the LiDAR and current ultrasonic sensor can now be used, and the PIC32 board can be 

programmed to read and process data from them. Once the gyroscope and encoders arrive, they can 

be programmed and merged into the project. After all the sensors have software written for them on 

the Explorer 16/32 board, the custom board with the microprocessor can be programmed using that 

software.  The final task is then to establish UART communications with The Motion and 

Actualization Team. 
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Abstract 

The purpose of this project is to design and build a 60 lb. weight class autonomous 

combat robot that will participate in the international RoboGames competition. Being 

autonomous will allow the combat robot to outperform manually driven robots during 

competition. The chosen design is a dual wedge robot which has a parallelogram shape. There is 

a wedge on the front of the robot as well as another wedge on the back. In the case the robot is 

flipped upside down, it can still fight due to the wedge on the back of the robot. In order to be in 

compliance with RoboGames rules, the robot must be able to be controlled manually. 

[AS] 
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1. Problem Statement 

1.1 Need 

Combat robotics is a discipline that requires much skill and a quick response time. It is 

often the case that the winner is not the best robot, but rather the best operator. Human operators 

inherently lack a consistent, fast reaction time when using a remote controlled system for combat 

robots. Human operators also have difficulty keeping up with the fast decision making necessary 

to maneuver their combat robots. It would be much faster and more effective for a combat robot 

to operate independently of human controls. Autonomous control of the operation and 

locomotion of a combat robot would outperform a manual operator.  

A fully autonomous system has the ability to make algorithmic decisions, follow a 

locomotion algorithm, and attack with more precision than a manual operator. Therefore, an 

autonomous combat robot is needed to outperform opponents in movement and weapon reaction 

time. 

[AS, FA, CH] 

1.2 Objective 

The objective of this project is to design and build a 60 lb weight class combat robot that 

will function autonomously and outperform the manually driven robots during competition.  

While running autonomously, the robot will use LiDAR sensors to detect its environment 

and the opponent, and will attack the opponent when possible. This robot will also be able to be 

remote controlled in manual mode. This will mitigate the risk in case the autonomy or sensors 

fail. LED lights on the robot will indicate whether it is in full autonomous or manual override 
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mode. The system will also be able to be armed and disarmed remotely, even while in 

autonomous mode. Lastly, the robot will incorporate an emergency shut off and braking system.  

The autonomous combat robot will outperform its human driven opponents by following 

a variety of combat algorithms. The autonomous system will follow an intercept or escape 

locomotion pattern to outperform the human operators. While the weapon systems are reaching 

full speed, the combat robot will follow a avoidance and escape algorithm. When the weapon 

system is ready the robot will follow an intercept algorithm to attack the opponent. The 

autonomous system will also attempt to keep the robot pointed in the correct orientation, facing 

the opponent at all times.  

This project is a robotic system. It will have heavy reliance on electrical, software, and 

mechanical subsystems. The design team for this project consists of five electrical engineering 

students, two computer engineering students, and three mechanical engineering students. These 

students will be split into three teams - sensing and autonomy (ECE Team 7A), motion and 

actualization (ECE Team 7B), and mechanical and structural (ME Team). While these teams will 

have separate deliverables and responsibilities, they will coordinate closely with each other to 

maintain a coherent end project. A brief breakdown of the teams and their roles is given below. 

[TW, CH] 

 

 

 

 

 

9 



 

Role of Electrical and Computer Team 7A 

● Create the control, feedback, and sensing system to control the combat robot 

● Implement opponent facing tracking algorithm  

● Implement control intercept or escape algorithm 

● Create LiDAR sensing data interpretation and detection programming and algorithm 

● Autonomous sensing and control 

 

Role of Electrical and Computer Team 7B 

● Convert signal from Team 7A’s control algorithms into movement instructions 

● Control of electric motor system 

● Control of weapon system 

● Create the power system to run the motors and robotic system 

● Meet Robogames electrical safety standards (emergency stop, manual control, etc.) 

 

Role of Mechanical Team  1

● Create the robot’s chassis 

● Create the mechanical weapon system 

● Create a mechanical drive system 

[CH, TW] 

1 The mechanical engineering team has obtained preliminary approval to work with the electrical and computer 
engineering team from the Mechanical Engineering Department, and is in the process of receiving full approval 
upon the approval of the ECE’s final proposal. The mechanical engineering team will synchronize its deadlines with 
the ECE team’s deadlines in completion of their requirements with the project. 
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This document will focus on ECE Team 7B, which is the motion and actualization team. 

The role of this team will be to design an embedded system, embedded system, control system, 

and general electrical system that can turn the processed sensing data from ECE Team 7A and 

translate it into motion via a decision algorithm, power supply, and motor controller interfaces. 

Team 7B will also be responsible for implementing manual control via interfacing with an RC 

controller and meeting various other Robogames regulations such as emergency stops, visual 

status indicators, and electrical safety.  

[TW] 

1.3 Background 

The following sections provide a background and general overview of the combat robot 

design approach. 

[TT] 

1.3.1 Research Survey 

Currently, the vast majority of combat robots operate by being remote controlled by a 

operator. Autonomy requires additional financial investments and far more work. However, the 

benefits of these investments are well worth the cost for first time contenders facing operators 

with many years of experience. 

The explicit goal of combat robotics is to immobilize the opponent robot before it can do 

the same to one’s own robot. There are many ways to accomplish this, from attacking with blunt 

force, to trying to impale key mechanisms of the robot, to lifting and getting the opponent robot 

stuck in an immobile position. The key to a successful combat robot is having both powerful 

offensive and defensive strategies. 
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Table 1 below shows a trade off analysis of the typical combat robotics weapon systems. 

This was used as a research tool to determine the best combat weapon system for the 

autonomous robot.  

Style Pros Cons 

Wedge - Structural integrity provides an excellent 
defense 
- Simple design 
- Able to get under an opponent to drive them 
into the wall or other hazards 
- Can incorporate other design features 

- Must have a skilled operator 
- Weak offense 
- Weak matchup against other 
wedges 
- Some competitions have banned 
combat bots that only use wedges 

Spinner - Weapon serves as both offense and defense 
- Low skill floor for operator 

- Potential to damage itself 
- Difficult to design 
- Difficult to upgrade with 
additional features 

Drum - High destructive potential 
- Allows for a sturdy frame 
- Room for additional features 

- Difficult to control 

Crusher - Potential to cause structural damage via 
blunt force 
- Allows for a sturdy frame 

- Requires a skilled operator to 
operate manually 
- Hard to stay within weight limits 

Flipper - Potential to flip other robots over for 
damage or immobilization 
- Room for additional features 

-Requires a skilled operator to 
operate manually 
-Weapon presents a vulnerable spot 
-Pneumatics limited by air tank size 

Hybrid - Flexibility and ability to have multiple 
weapon systems 

-Complex design 
-Hard to keep within weight 
restrictions 

Table 1: Comparison of Combat Robot Types [1] 

 [TT] 
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The proposed combat robot will be operated autonomously, with an option to be 

controlled manually if desired. A major component in creating autonomous robots is sensing 

their surrounding environment. Although the sensor(s) that will be used for this project has yet to 

be selected, the combat bot will most likely use existing sensors for automation purposes. Three 

sensors will be discussed for this project: LiDAR sensors, ultrasound sensors, and photoelectric 

sensors. 

LiDAR (light detection and ranging) sensors use light in the form of pulsed lasers to 

detect an object’s distance from the sensor. When it shoots a laser out, the laser will hit an object 

and that object will reflect the laser back to the sensor. The sensor measures the time it takes to 

receive the reflection and by using the speed of light, it then calculates the distance of the object 

is from the sensor. LiDAR sensors shoot out approximately 150,000 pulses per second, so they 

can quickly build a “map” of their surroundings [2]. This seems like the ideal sensor for the 

combat robot because it can provide a map of the area and it will easily identify the opponent 

from the point cloud data.  

An ultrasound sensor is similar to a LiDAR sensor in that it measures its distance from an 

object, but uses sound instead of light. It sends out a sound wave at a specific frequency and 

waits for the wave to hit an object and bounce back. Based on the time the sound wave takes to 

bounce back and the speed of sound, the ultrasound sensor can determine its distance from the 

object the sound wave hit. This sensor would not work if it were to hit an object that deflects the 

sound wave instead of returning it to the sensor, or if it hit something that was made of a material 

that absorbs sound instead of reflecting it [3]. This is why it would not be a good choice.  
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Photoelectric sensors are used extensively in the field of automation. They can detect 

objects as small as 1mm in diameter, and objects as far as 60m away [4]. There are many 

different types of photoelectric sensors, but all of them use a light transmitter, often infrared, and 

receiver. Depending on the type of sensor used, one of two things will happen. 1) When the 

infrared signal hits an object, it is reflected back to the signal and is received by a photoelectric 

receiver. 2) When the infrared signal hits an object, the object breaks the light beam, and an 

object can be sensed in that way instead of by its reflection. Photoelectric sensors can be used to 

not only detect the object’s distance from the sensor, but also the object’s color, size, shape, 

presence, among other features [5, 6]. The drawback of these sensors is they are used in a yes or 

no configuration. They are generally used to tell if a object is directly in front of the sensor, not 

to 3d map or sense the environment.  

[TT] 

Another potential sensor would be the Microsoft’s Kinect sensor, which used infrared 

sensors.  Infrared sensors are good for detection between 1-5 meters or 3-15 feet. The arena is 40 

feet by 40 feet. Therefore, infrared sensors will not be sufficient for the competition. Microsoft’s 

Kinect system uses infrared so the system being used will need a more novel sensor design. After 

further research a LiDAR system seems to be the best choice due to its high range and accurate 

position sensing capabilities, while still being cost effective.  

[AS] 

Almost all combat robots at robogames are manually-controlled, which means their 

effectiveness in competition is severely limited by the skill level and reaction time of their 

operator. This flaw in current designs exists because the algorithms and sensors needed to have a 
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competitive combat robot are quite complex. If one were to write such an algorithm that could 

effectively perform combat maneuvers and pair it with an adequate sensor array and a robust, 

reliable combat robot, the resulting combination could yield a very competitive end product. 

While there was a senior design team during the 2017-2018 school year that constructed 

an autonomous combat robot, it was a very complex and heavy (220 lb) design, and thus 

encountered issues with reliability. In addition, this contributes to limited autonomous 

capabilities, which are restricted to simple fight or flight. While their design was excellent, there 

is room for further improvement. With a lighter, simpler design, the proposed combat robot 

could autonomously perform more advanced maneuvers such as, intercept and escape 

maneuvers, attacking with the wedge and drum, and keeping the robots wedge always facing the 

opponent to defend against their weapon.  

This bot is similar to existing designs because it still has all of the components of a 

traditional combat bot. It will have a weapon as well as all of the required electrical engineering 

components. For example, it will have motors, actuators, controls, power supplies, programming, 

wireless communications, etc. It is also similar to other self-driving (autonomous) vehicles 

because it will use LiDAR sensors to accomplish autonomy. Note that, although LiDAR is 

constantly used for self-driven vehicles, autonomous combat bots are not the standard. Most 

combat bots have an operator who controls the bot during a fight. Thus, making the bot 

autonomous is different from existing technologies. 

[TT] 

There are current patents on robotic systems that are similar to the one in which the team 

will create. Some interesting ideas can be drawn from these innovative patents.  
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One of these was a patent on a combat robot which used a walking system instead of the 

conventional wheels. This was proposed because many combat robots fail because they lose 

mobility due to there fragile rubber wheels being destroyed. The weapon system on this robot 

was of the flipping kind [7]. 

Another patent of interest is a combat robot which uses infrared emitters to sense its 

surroundings and autonomously detect and attack the opponent robot. This robot was a wedge 

combat design. The design mitigates the weakness of external vulnerable wheels by having them 

enclosed within its chassis  [8]. 

A further patent found was on a flipping- wedge hybrid robotic combat system. This 

patent only discussed the weapon system design. The robot was of a wedge shape, and could 

function as a wedge combat robot to attack other bots by flipping them over and preventing their 

mobility. (If the wheel system was on the bottom of there robot). The more interesting weapon of 

this system was a flipping arm. The combat robot would have a arm which could reach under 

other robots and then lift at high velocity to send the opponent in the air. This system was driven 

by pneumatic circuits. It would used a compressed gas tank to drive the arm with a very large 

torque to flip the other robot [9]. 

[CH] 
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1.3.2 Proposed Design Overview 

For offense, the combat robot will use drum method, which involves an upward spinning 

horizontal drum with extensions used to hit and possibly throw the opponent robot. This drum 

will be in combination with a wedge. Hybrid combat robots are often not used because of 

complexity of design but having a mechanical subteam will allow the team to make a more 

complex and effective weapon system.  Most notably, the drum method is also used by Touro 

Maximus, a long time contender and multiple time finalist in combat robotics tournaments.  The 

wedge method was used by the winning robogames combat robot Original Sin. By combining 

these two weapon systems and having a fully autonomous robot, it can outperform its opponents. 

By using autonomy, this method can be further enhanced to make sure the weapon system turns 

to face the opponent as fast as possible, and can follow ideal intercept and escape paths.  

On the defensive side, it is a clear advantage to have a robot that can withstand being 

flipped. Robots that can operate on their back usually recover more effectively from being tossed 

as well. However, the design should also focus on a hard outer shell that resists damage to both 

blunt and sharp attacks. Autonomy can also help defensively, by allowing the robot to sense in 

all directions where the opponent is and turn to face the opponent with the weapon system before 

the opponent can strike from behind or from the side. 

    [FA] 

The team has found that LiDAR is the best sensing technology for automated driving of 

combat robots. In 3D applications, it uses a laser beam to scan the environment with very high 

accuracy, and as a result is highly suited for estimating shapes of objects [10]. The data returned 

by LiDAR can be interpreted as a 3D point cloud, where clusters of detected points form objects. 
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The robot’s algorithm will accept this 3D point cloud and divide it into foreground and 

background layers [11]. To determine if the opponent robot is in range, it will analyze the surface 

of the foreground layer and determine if it is a flat wall or an opponent based on the curvature of 

the point cloud. This method has already been tested using Microsoft XBox Kinect sensors by 

the former University of Akron Combat Robotics team, and has shown promising results. 

Internally, LiDAR works by using a rotating mirror system to take panoramic picture data. It is 

controlled by motors and rotary encoders that determine the tilt of the mirrors used to take the 

pictures [12]. This mechanical complexity along with the large amount of data processing make 

this very expensive. Smaller, cheaper versions are used in mobile robots such as Aethon's 

autonomous TUG robots used in hospitals [13]. 

The goal of the autonomous system is to drive the robot better than a user would. Higher 

complexity locomotion algorithms will be used to give the combat robot a significant edge above 

all manual robots. This will be done by implementing two algorithms for movement. The first 

being a intercept or escape algorithm. The second being an algorithm that utilizes the robot’s 

weapon design, which will attempt to keep the defensive wedge pointed at the opponent at all 

times.  

The intercept or escape algorithm will determine if the robot should be avoiding or 

attacking the opponent. This will be dependent on if the chosen drum is at a optimal velocity and 

the robot is in optimal health. If the robot’s drum weapon is at a acceptable speed the team will 

enter the intercept dynamics of the robot, and if the drum is still speeding up the robot will enter 

escape. During intercept the robot will use the current and previous position of the enemy to 

determine its direction and position. It can then use the intercept algorithm to attack the 
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opponent. Instead of using a simple tracking algorithm and traversing directly toward the 

opponent, the robot will use a algorithm based on vector mathematics. The algorithm will 

command the robot to travel to where the opponent will be, not where the opponent is. This 

similar to a predator catching prey to quickly intercept the opponent. This algorithm will succeed 

against a manual operator of an opposing robot attempting to flee [14]. 

The opponent facing tracking algorithm will implement a defensive strategy used by 

human wedge operators. The strategy is to keep the wedge always facing the opponent. This will 

cause the attacking  opponent to drive on top of the wedge, and potentially flip over, when 

attempting to attack. When driving on top of the autonomous combat robot, the attacking robot’s 

weapon system will miss the autonomous robot and give it a opening to attack using the drum 

weapon. 

[CH] 

Team 7B will receive an angle from Team 7A as well as an intercept/escape signal. This 

information and the information from the RC controllers will be used to determine if the combat 

bot should operate in manual or autonomy mode. Once the mode of operation is determined, the 

data from Team 7A or the data from the RC controller will be used to determine what to do to 

the motors to achieve those instructions. This will involve a control system design to achieve 

motion of the motors specific to angles, directions, and intercept/escape.  

[TT]  
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1.4 Marketing Requirements 

The marketing requirements for team 7B’s part of the the combat robot system are as 

follows: 

1. The robot shall have an internal, rechargeable power system for motor control and sensor 

operation. 

2. The robot shall indicate when it is in autonomous mode. 

3. The robot shall operate for the duration of the match. 

4. The robot shall have a manual control mode as per robogames rules. 

5. The robot shall have an emergency stop for all weapon and movement systems 

6. The robot shall accept autonomous algorithm output signals from team 7A’s system and 

turn them into motion. 

[AS, TT, TW] 

 

 

 

 

 

 

 

 

20 



 

1.5 Objective Tree 

The objective tree for the fully autonomous combat robot is shown in Figure 1 below. 

This was derived from the marketing requirements.  

 

Figure 1: Combat Robot Objective Tree 

[AS, TT] 
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2. Design Requirements Specification 

Table 2 contains the engineering requirements along with the marketing requirement(s) 

they correspond to and the justification for why each engineering requirement is necessary. 

Marketing 
Requirements 

Engineering Requirements Justification 

1 ,3 1. Internal power system should be able to 
run the robot for at least 4 minutes under full 
load. 

Duration of the match is 3 minutes. 

1, 5 2. The power system shall have overcurrent 
protection that trips at 110% of the battery’s 
maximum impulse amp rate. 

Exceeding current limits of the battery 
could be an electrical hazard and cause 
catastrophic failure. 

1 3. The weight of the battery and electronic 
components designed and used shall not 
exceed 10 lbs. 

Contributes to weight requirement of 60lbs. 

1, 3 4. The power system shall be able to provide 
the motors and microcontrollers with enough 
power to all run simultaneously at top speed. 

Needed to run the robot. 

2 5. The robot shall indicate when it is in 
autonomous mode with a visual indicator. 

This is a requirement of RoboGames. 

4, 5 6. An emergency stop signal from the RC 
controller shall be used to stop all motion of 
the robot within 60 seconds. 

This is a requirement of RoboGames. It 
will also ensure safety when testing. 

4 7. The robot shall have a manual control 
mode, operated with an RC controller. 

This is a requirement of RoboGames. 

4 8. The robot shall not start in autonomous 
mode when first powered on. 

Safety 

6 9. Team 7B’s embedded system shall be be 
able to communicate with team 7A’s 
microcontroller(s). 

This is necessary for the robot to be able to 
move autonomously. 

6 10. The weapon motor shall be able to reach 
a rotation speed of 2500 rpm. 

This is needed in order for the robot to do 
damage to an opposing robot. 

Table 2: Design Requirements Specification Table 

[AS, TT, TW] 
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3. Accepted Technical Design 

The sections below describe the system design. 

[TT] 

3.1 Design Calculations 

The following equations govern the  basic design of the power system: 

V = I*R 

P = V*I = (I^2)*R = (V^2)/R 

AH = A*Hours 

WH = W*Hours 

Selecting an appropriate capacity battery package is appropriate for the system. A set of 

cells should have enough AH to run the system for at least 4 minutes to meet the established 

design requirements. The capacity needed can be calculated from the following equations: 

Total Current Draw = Sum of All Currents 

H  (T otal Current Draw) 4 minutes)A =  * ( *
(1 hour)

(60 minutes)  

where AH is the desired battery capacity in Amp-Hours. 

Making some approximations, it is noted that roughly ~39A will be needed to run the 

system at full-speed. This means that a capacity of just over 2.5 AH is needed to run for four 

minutes.  
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The following calculations were used to determine the selection of the motors for the 

robot: 

To begin with, required speed for the motors were found using this formula: 

obot Speed [Mph] R = (Gearbox Gear Ratio)
(Distance P er W heel Rotation) (Motor T op Speed)*  

After conversion factors were accounted for, it was determined that in order to travel at a speed 

of 10mph, the drive motors had  to turn at about 5000 rpm.  

The next step was to consider acceleration of the robot. The following equations were 

used: 

orce on W heels ∑
 

 
F =  (Gearbox Gear Ratio)

2 (Motor T orque) (Motor Speed) (Conversion of  Units)* * *  

obot Acceleration [f t/s ] ( orce on W heels) Mass of  Robot) Conversion F actor)R 2 =  ∑
 

 
F * ( * (  

Assuming a potential motor torque of 85 oz-in (motor decided later), the robot could reach top 

speed in about 4 seconds from a standstill. This was deemed acceptable. 

Using these calculations, it was deemed necessary to find drive motors with a nominal 

speed of at least 5000 rpm and torque of 85 oz-in. 

Lastly, in order to control the speed of these motors, a DC voltage of variable amplitude 

had to be applied to their terminals. This is achieved by generating a PWM with a motor 

controller. For all intents and purposes, the DC voltage across a motors terminals is equal to the 

average voltage across the terminals. The average voltage across a motor is determined by the 

following equation: 

 (P W M  Duty Cycle) maxV Avg =  * V  
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In this case, the amplitude of the PWM from the motor controller, Vmax = 24V (the rail). 

A motor controller had to be selected that could achieve a duty cycle from 0% - 100% to allow 

for variable speed control. The motor controller would also have to be able to output a maximum 

amplitude of 24V  to allow the motors to run at top speed. Note that this PWM being output by 

the motor controller will have the same frequency and duty cycle (D) as the PWM being sent 

into the motor controller, but it will have a much higher amplitude. Using this principle, the 

speed of a motor can be varied by varying the duty cycle of the PWM signal being sent to the 

motor controller. 

[TW] 

3.2 System Overview 

The sections below present an overview to the hardware, software, and mechanical 

systems of the combat bot. 

[TT] 

3.2.1 Hardware Overview 

RoboGames competitions put a heavy strain on the electrical systems of any combat 

robot, especially the motors. Due to the sensitivity of the electronics needed to support 

autonomy, a robust, reliable, and interference-free electrical system is required to ensure peak 

performance and continued operation even when damage is sustained throughout the 

competition. 

  The hardware system shall include a set of batteries with enough capacity to run the 

robot under a heavy load for the entirety of an intense 3 minute round of combat. The system 

will also contain 24V, 5V, and 3.3V rails to supply power to both Team 7B and Team 7A’s 

25 



 

electronics. There will also be proper overcurrent protection in place to prevent critical failure. 

The below block diagrams represent an overview of the hardware design of the combat bot. 

[TW] 

3.2.1.1 Hardware Block Diagrams 

The below sections show the block diagrams of the hardware system. 

[TT] 

3.2.1.1.1 Level 0 Hardware Block Diagram with Functional Requirement Table 

The level 0 block diagram indicates the top-level inputs and outputs of the fully 

autonomous combat robot. Figure 2 shows the level 0 diagram for DT07B’s part of the 

autonomous combat robot. 

[CH] 

 

Figure 2: Level 0 Hardware Block Diagram 

[TT, TW] 
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The level 0 functional requirement table, indicating the top-level inputs and outputs of the 

fully autonomous combat robot, as shown in Table 3 below. 

Module Combat Robot 

Inputs ● Autonomous control algorithm signals from DT07A’s system 
● Manual Control Signal 
● Emergency Stop 

Outputs ● Motion Motor Control Signals 
● Weapon Motor Control Signals 
● LED Status indicators 
● Power 

Functionality Accepts a signal from DT07A’s autonomous control algorithm and translates it 
into motor control for motion and weapon motors. Also accepts manual control 
signal from handheld controller, should autonomous mode fail. Will use LEDs 
to indicate manual or autonomous mode. Supplies power to DT07A. 

Table 3: Level 0 Functional Requirement Table 

[FA, CH, AS, TT, TW] 

3.2.1.1.2 Level 1 Hardware Block Diagram with Functional Requirement Table 

The level 1 block diagram is an expansion of the level 0 diagram. Figure 3 shows the 

level 1 diagram for DT07B’s part of the autonomous combat robot. 

[TW] 

 

Figure 3: Level 1 Hardware Block Diagram 

[AS] 
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The level 1 functional requirement table, indicating the second-level inputs and outputs 

of the fully autonomous combat robot, as shown in Tables 4, 5, and 6 below. 

Module Robot Control Center 

Inputs ● Fight or Flight Signal 
● Autonomous Enable/Emergency Stop 

Outputs ● Operating Status 
● Motion Motor Control 
● Weapon Motor Control 

Functionality Controls motor movement. 

Table 4: Level 1 Robot Control Center Functional Requirement Table 

Module RGB LED Status Indicator 

Inputs ● Operating Status 

Outputs ● LED light 

Functionality LED indicates robot operation status by color. 

Table 5: Level 1 RGB LED Status Indicator Functional Requirement Table 

Module Combat Robot Chassis and Weapon System 

Inputs ● Motion Motor Control 
● Weapon Motor Control 

Outputs ● Chassis/Weapon Feedback 

Functionality Controls start up, shut down, and movement of weapon. 

Table 6: Level 1 Combat Robot Chassis and Weapon System Functional Requirement Table 

[AS, TT] 
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3.2.1.1.3 Level 2 Hardware Block Diagram with Functional Requirement Table 

The level 2 block diagrams are an expansion of the level 1 diagram. Figure 4 shows the 

level 2 hardware block diagram for the embedded system of the autonomous combat robot. 

 

Figure 4: Level 2 Hardware Block Diagram for Control System 

[TW] 
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The level 2 functional requirement table, indicating the third-level inputs and outputs of 

the fully autonomous combat robot, are shown in Tables 7, 8, 9, and 10 below. 

Module RC Receiver Board 

Inputs ● Wireless Signal 

Outputs ● PWM Signal 

Functionality Transfers the RC signal to the microcontroller. 

Table 7: Level 2 RC Receiver Board Functional Requirement Table 

Module Team 7B Micro-controller 

Inputs ● Team 7A Autonomous Signal 
● RC control signal (manual) 
● 3.3V (power) 

Outputs ● GPIO (for status LEDs) 
● PWM (for motor control) 
● LED Control 

Functionality Accepts inputs from Team 7A’s autonomous signal and the manual control 
signal from the RC receiver and translates them into motor control signals and 
LED status indicators.. 

Table 8: Level 2 Microcontroller Hardware Functional Requirement Table 

Module Weapon and Drive Motor Controller 

Inputs ● PWM Signal 
● Forward/Reverse bit (hi/lo) 
● 24V (power) 

Outputs ● Variable motor speed and torque. 

Functionality Converts PWM signals into variable motor speed control via voltage averaging 
and duty cycles. 

Table 9: Level 2 Motor Controller Hardware Functional Requirement Table 
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Module LED Status Indicators 

Inputs ● GPIO 

Outputs ● Visual Indication 

Functionality Accepts GPIO from microcontroller and gives a visual indication of various 
functions (power on, emergency stop, manual/autonomous mode). 

Table 10: Level 2 LED Status Indicators Functional Requirement Table 

[AS] 

Figure 5 shows the level 2 hardware block diagram for the power system of the 

autonomous combat robot. 

 

 

Figure 5: Level 2 Hardware Block Diagram for Power System 
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The level 2 functional requirement table, indicating the third-level inputs and outputs of 

the fully autonomous combat robot, are shown in Tables 11, 12, 13, and 14 below. 

Module Battery and Charger System 

Inputs ● Wall Outlet 

Outputs ● 24V DC Rail Output 

Functionality Charges the Battery Cells. Feeds 24V to the Power Distribution System. 
Includes Proper Fusing to Avoid Short Circuit Hazard 

Table 11: Level 2 Battery and Charger System Functional Requirement Table 

Module Central Power Board 

Inputs ● 24V DC Rail 

Outputs ● 24V DC 
● 5V DC 
● 3.3V DC 

Functionality Efficiently converts 24V DC to 5V and 3.5V DC to supply the various sensors 
and controllers of the robot. 

Table 12: Level 2 Central Power Board Functional Requirement Table 

Module Weapon and Drive Motor Controllers 

Inputs ● 24V DC 
● Control Signal from Microcontroller 

Outputs ● Variable power input to motors 

Functionality Supplies power to the motors. 
Varies motor speeds depending on microcontroller input. 

Table 13: Level 2 Weapon and Drive Motor Controllers Functional Requirement Table 
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Module Motors 

Inputs ● Variable power inputs from motor controllers 

Outputs ● Torque 
● Speed (RPM) 

Functionality Moves the robot (drive motors) 
Moves the weapon (weapon motors) 

Table 14: Level 2 Motors Functional Requirement Table 

[TW] 
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Figure 6 shows the level 3 hardware block diagram for the control system of the 

autonomous combat robot. Note that each motor has a DIO and  PWM signal. This is a 

requirement of the motor controllers. The PWM signal sets the speed of the motors and the DIO 

sets the direction (forward or reverse). Table 15 shows what the four LEDs are for. 

 

Figure 6: Level 3 Hardware Block Diagram for Control System 
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LED Signal Name Purpose 

Power LED Lights if the combat bot is receiving power. 

Aut. LED Lights if the combat bot is in autonomy mode. 

E-Stop LED Lights if the e-stop button is pressed. 

Attack LED Lights if the robot is in autonomy mode and is in motion to 
attack an opponent. 

Table 15: LED Indicators 

[TT] 

3.2.1.2 Hardware Overview and Schematics 

Figures 7 and 8 show the schematic for the control system of the combat robot. The same 

microprocessor (PIC32MZ2048EFH064) and backplane connector as Team 7A were chosen for 

system compatibility and ease of integration. Opto-isolators (TCMT1103-OPTO) were placed in 

between the microprocessor and the motor controllers. The remainder of the circuitry includes 

necessary signal connections between the rest of the circuitry of the control system and the 

microprocessor, as well as the suggested microcontroller set-up from the datasheet. Table 16 

shows the explanation for each signal name. 
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Figure 7: Control System Hardware Schematic - Backplane Connector 
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Figure 8: Control System Hardware Schematic - Microprocessor 
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Signal Name Purpose 

DIO_LDM DIO output from PIC for left drive motor controller. Indicates direction of motor 
(forward or reverse). 

DIO_RDM DIO output from PIC for right drive motor controller. Indicates direction of motor 
(forward or reverse). 

DIO_WM DIO output from PIC for weapon motor controller. Indicates direction of motor 
(forward or reverse). 

OC2_LDM PWM output from PIC for left drive motor, done through the second output compare 
module. Indicates speed of motor. 

OC1_RDM PWM output from PIC for right drive motor, done through the first output compare 
module. Indicates speed of motor. 

OC3_WM PWM output from PIC for weapon motor, done through the third output compare 
module. Indicates speed of motor. 

LED_PWR DIO output from PIC for the power LED. Lights if the combat bot is receiving 
power. 

LED_AUT DIO output from PIC for the autonomy LED. Lights if the combat bot is in 
autonomy mode. 

LED_ESTOP DIO output from PIC for the e-stop LED. Lights if the e-stop button is pressed. 

LED_ATTACK DIO output from PIC for the attack LED. Lights if the robot is in autonomy mode 
and is in motion to  attack an opponent. 

IC1 PWM input to PIC from RC controller receiver. 

IC2 PWM input to PIC from RC controller receiver. 

IC3 PWM input to PIC from RC controller receiver. 

IC4 PWM input to PIC from RC controller receiver. 

IC5 PWM input to PIC from RC controller receiver. 

IC6 PWM input to PIC from RC controller receiver. 

UART_RX UART input (receiving module) to PIC from team 7A. Will give autonomy 
instructions such as angle, drive mode, orientation, etc. 

Table 16: Control System Signals 

[TT] 
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Figures 9 and 10 are the hardware schematic for the power system and backplane. This 

board is responsible for supplying Team 7B’s control system board, Team 7A’s control system 

board, the LEDs, the RC receiver, and the sensor array with power. In addition, this is where all 

of the routing and connectors will be implemented to maintain a compact, efficient, and 

noise-free electrical system. This is all one board, but it is broken into two parts for readability. 

 

Figure 9: Power System and Backplane Schematic - Voltage Regulators 
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Figure 10: Power System and Backplane Schematic - Connectors 
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The voltage regulator portion of this board called for the design of DC/DC converters that 

could meet the following requirements: 

1) Maintain 3.3V and 5V outputs as the battery rail varies from 20V-30V. This is due to the 

expected changes in battery voltage as the battery system charges and discharges. 

2) Pass a minimal amount of noise to the sensitive electronics such as sensors and 

microcontrollers. 

3) Regulate voltage efficiently. 

4) Output enough current to supply all the electronics of Team 7A and Team 7B. 

To achieve these requirements, the Texas Instruments LMZ13610TZ switching regulator 

was selected. While three-terminal devices were suggested for simplicity, their inefficient nature 

and the requirement of being able to run on battery power for 4 minutes at full load made them a 

poor choice. A big advantage of the TI regulators is their ability take a variable voltage input and 

maintain a constant voltage output with very low switching losses. 

After opting for switching regulators, it was decided that three should be used - 1 3.3V 

regulator and 2 5V regulators. This was done due to the high anticipated current draw of the 

Lidar sensor from Team 7A. 

Next, a resistive and capacitive network had to be designed based on the datasheet of the 

switching regulators in order to achieve the appropriate voltage output, voltage output rise time 

(power on cycle), and voltage output ripple. A sufficiently chosen feedback resistor network to 

pin 7 of these devices was crucial in deciding the output voltage, as the device is 

feedback-dependant. In addition, a biasing resistor between pins 1 and 2 and pin 4 had to be 

chosen to keep the device switching properly under varying loads. 
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Finally, in order to meet noise requirements, two 330uF output capacitors were chosen, 

and placeholders for a pi-filter were added. The output capacitors smooth the output voltage to 

avoid damaging electronics downstream, but they also act as low-pass filters. The pi filter on the 

output of the switching regulators is a placeholder that gives the ability to implement LR, RC, or 

LRC filters easily. While initial analysis has deemed additional filters unnecessary, further 

experimentation may call for them once the board is constructed. For that reason, the footprints 

are there. 

Moving on to the connector schematic, the purpose of these connectors is to efficiently 

route power, io, and control, and communication signals where they need to go. While there is 

not much electrical analysis to be done on the connectors themselves, this segment of the board 

required a fair amount of thought to lay it out efficiently, and will require further geometric 

analysis and knowledge of IEEE standards when routing the board in the build and test phase of 

the project. 

Figure 11 below shows the basic layout of the connector with pins labelled with their 

corresponding signals. 
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Figure 11: Backplane Connector Layout 
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Note that pins across from each other will be connected when soldered onto the board (ex. pin 

120 and pin 60). 

With the board design out of the way, the motors and motor controllers were to be 

selected. After considering a few different options for motors, the Ampflow E30-150 motor was 

selected for the weapon motors. This motor has been selected because it produces 85 oz-in of 

torque nominally, and over 700 oz-in of torque in a stall (note that the stall condition is not likely 

to be reached, but it IS capable of producing far more torque than acceleration calculations 

accounted for). This motor is  also capable of a top speed of 5600 rpm when given a 24V signal. 

This meets our requirements of 5000 rpm for the desired top speed of 10 mph. This motor has 

also been selected for the weapon for simplicity’s sake. Ideally, a higher torque motor could be 

used for the weapon for more force (f=m*a where acceleration is based on torque), but for 

budgetary reasons, a higher torque motor may not be possible to use. 

After selecting the motors, the motor controller had to be selected. Motor torque is based 

directly off of current while motor speed is based directly off of voltage. Looking at the motor 

datasheets, it was determined that the nominal current draw of the motors could be 10A, but the 

stall current could be as high as 60A. To accommodate this, any motor controller selected had to 

be able to pass enough current to achieve a good torque rating (roughly ~30A maximum) and 

able to pass or limit the full draw of the motor. In addition, a motor controller has to be able to 

withstand the full rail voltage (nominally 24V). For these reasons, the Cytron MD30C was 

selected. This motor controller can pass up to 30A and will current limit to safe levels (30A) if 

the motor attempts to draw more current. It is also capable of accepting a 30V input, which will 

allow it to handle the rail voltage without failure. In addition, the motor controller is easy to 
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interface with - taking only a PWM signal (speed control) and a 3.3V logic “hi” or “lo” signal 

(for forward or reverse) from a microchip. The MD30C is also relatively inexpensive ($31).  

[TT] 

3.2.2 Software Overview 

The software includes choosing between autonomous or manual modes, which was 

decided for safety reasons. Once chosen, the software must translate autonomous/manual mode 

signals into motion commands. Autonomous mode signals will be provided by the Sensing and 

Navigation Team in the form of UART. They will go through a look-up table and then be 

converted into appropriate signals for motor control. Manual mode signals will be provided by 

the RC controller in the form of PWM. They will be measured, scaled and ultimately converted 

into pwm signals for motor control. Furthermore, the software is responsible for accounting for 

emergency stop, visual status indicators, and robot orientation. The below flowcharts represent 

an overview of the software design of the combat bot. 

[AS, TT, TW] 

 

 

 

 

 

 

 

45 



 

3.2.2.1 Software Flowcharts 

The below sections show the software flowcharts for the system. 

[TT] 

3.2.2.1.1 Level 0 Software Flowchart 

The level 0 software flowchart indicates the top-level inputs and outputs of the fully 

autonomous combat robot. Figure 12 shows the level 0 flowchart for DT07B’s part of the 

autonomous combat robot. 

 

 

Figure 12: Level 0 Software Flowchart 

[AS] 
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3.2.2.1.2 Level 1 Software Flowchart 

The level 1 block diagram is an expansion of the level 0 diagram. Figures 13, 14, and 15 

show the level 1 flowcharts for DT07B’s part of the autonomous combat robot. 

 

Figure 13: Level 1 Software Flowchart 

[AS, TT] 
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Figure 14: Level 1 Weapon Control Flowchart 
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Figure 15: Level 1 Motion Control Flowchart 

[TT] 
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3.2.2.2 Pseudocode 
 

Below shows the pseudocode for the decision and actualization algorithms.  

[TT] 

//receive/accept 3 UART signals from DT07A 

//signal 1: angle theta 

//signal 2: speed 

//signal 3: are we upside down or not? 

//receive/accept 1 PWM signal from the RC Controller receiver 

//Decide Autonomous or Manual mode 

// Manual mode function 

// Use Manual mode if: 

// 1: Robot is upside down 

// OR 

// 2: RC controller toggle switch is flipped to manual mode 

// OR 

// 3: RC controller toggle switch is flipped to autonomous mode BUT a manual 

signal is received (Manual Override) 

// if both Autonomous and Manual signals are received, then listen to the 

manual signal 

//Insert Manual mode function here 

// Autonomous mode function 

// Use Autonomous mode if: 
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// 1: Robot is not upside down 

// AND 

// 2: RC controller toggle switch is flipped to autonomous mode 

// AND 

// 3: No manual signal is received 

 

//Insert Autonomous mode function here 

//Insert Weapon Activation function here 

//Insert Drive Instructions function here 

//----------------------------------------------------------------------------------------------- 

//Main Function 

//Initialize variables  

// if in autonomous mode: 

// 1: Turn on Autonomous mode LED indicator 

// 2: Call Weapon Activation function 

// 3: Call Drive Instructions function 

// elseif in manual mode: 

// 1: Call Weapon Activation function 

// 2: Call Drive Instructions function 

// else 

// Activate Watchdog reset 

// 
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//Turn on LEDs 

// if in autonomous mode: 

// Turn on autonomous mode LED 

// if robot is on: 

// Turn on robot power LED (Manual mode enabled) 

// if robot detects enemy: 

// Turn on enemy detected LED 

// if robot loses communication: 

// Turn on E-stop LED 

//  

//Create a PWM signal to send to the Drive and Weapon motors 

//Insert main function here 

//Interrupts 

// Watchdog reset 

// Emergency stop (from RC controller) if: 

// Connection between robot and controller is lost 

[AS] 

#include <iostream> 

using namespace std; 

 

// Initialize functions 

bool decideMode(bool, bool); 
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void command_drive_motors(bool, bool, bool, bool, double, int); 

void command_weapon_motor(bool, bool, bool, bool); 

 

int main(){ 

    // Initialize variables 

    bool aut_mode = 0; // Indicates if autonomy mode is in use 

    bool man_toggle = 1; // Indicates if manual mode toggle button was pressed 

    bool man_signal = 1; // Indicates if receiving a manual mode signal 

    bool e_stop = 0; // Indicates if e-stop activated 

    bool upside_down = 0; // Indicates if bot is upside down 

    bool weapon_off_toggle = 0; // Indicates if weapon is turned off 

    bool oc_weapon = 0; // Indicates if weapon motor is in overcurrent mode 

    bool oc_left_motor = 0; // Indicates if left drive motor is in overcurrent mode 

    bool oc_right_motor = 0; // Indicates if right drive motor is in overcurrent mode 

 

    // Global variables 

    double angle; 

    int motion_type; 

 

    // Set power LED 

 

    while (1) { 
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        // Read angle, speed, orientation, and other errors from autonomy (DT07A) 

            // Set variables 

                // upside_down; 

        // Read data from RC controller 

            // Set variables 

                // e_stop 

                // LED for status of RC controller 

 

        // Decide between manual and autonomy mode 

        aut_mode = decideMode(man_toggle, man_signal); 

 

        // Data conversion so that autonomy and PWM can be fed into the same calculations/table, 

and edit BD 

        // Command drive motors 

        command_drive_motors(e_stop, upside_down, oc_left_motor, oc_right_motor, angle, 

motion_type); 

 

        // Turn weapon motor on or off 

        command_weapon_motor(e_stop, upside_down, weapon_off_toggle, oc_weapon); 

    } 

    return 0; 

} 
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// Decide between manual and autonomy mode 

bool decideMode(bool man_toggle_1, bool man_signal_1) { 

    // Initialize variables 

    bool aut_mode_1 = 0; 

    bool aut_LED = 0; 

 

    // If RC manual mode toggle button is pressed, set manual mode 

    if (man_toggle_1 == 1) { 

        aut_mode_1 = 0; 

    } 

    // Otherwise, if receiving a manual signal, set manual mode 

    else if (man_signal_1 == 1) { 

        aut_mode_1 = 0; 

    } 

    // Otherwise, set autonomous mode 

    else { 

        aut_mode_1 = 1; 

    } 

 

    // Convert autonomy/manual mode into angle and motion type that can be processed the same 

way for both cases 
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    // Set angle 

    // Set motion_type 

 

    // Set mode LED pin to indicate if in autonomy mode 

    aut_LED = aut_mode_1; 

 

    // Turn autonomy LED on/off 

    // Turn attacking LED on/off 

 

    return aut_mode_1; 

} 

 

// Command drive motors 

void command_drive_motors(bool e_stop_1, bool upside_down_1, bool oc_left_motor_1, bool 

oc_right_motor_1, double angle_1, int motion_type_1) { 

    // Initialize variables 

    double left_motor_speed = 0;    // Duty cycle 

    int left_motor_dir = 1;         // Forward 

    double right_motor_speed = 0;   // Duty cycle 

    int right_motor_dir = 1;        // Forward 

    double temp_1 = 0;              // For flipping robot directions 

    double temp_2 = 0;              // For flipping robot directions 
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    // If e-stop button is pressed, turn motors off 

    if (e_stop_1 == 1) { 

        left_motor_speed = 0; 

        right_motor_speed = 0; 

    } 

    // Otherwise... 

    else { 

        // Put angle_1 and motion_type_1 through lookup table to set motor speed and directions 

        // Set left_motor_speed 

        // Set right_motor_speed 

 

        // If over current protection needed, run motor at 70% of full speed 

        if (oc_left_motor == 1) { 

            left_motor_speed = 0.7 * left_motor_speed; 

        } 

        else if (oc_right_motor == 1) { 

            right_motor_speed = 0.7 * right_motor_speed; 

        } 

 

        // If upside down, flip motor direction 

        if (upside_down_1 == 1) { 
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            // Flip left and right directions 

            temp_1 = left_motor_speed; 

            left_motor_speed = right_motor_speed; 

            right_motor_speed = temp_1; 

 

            // Flip forward and reverse directions 

            temp_2 = left_motor_dir; 

            left_motor_dir = right_motor_dir; 

            right_motor_dir = temp_2; 

        } 

    } 

 

    // Send direction and PWM to motor controller for left and right motors 

    return; 

} 

// Turn weapon motor on or off 

void command_weapon_motor(bool e_stop_1, bool upside_down_1, bool weapon_off_toggle_1, 

bool oc_weapon_1) { 

    // Initialize variables 

    bool direction = 1;     // Forward 

    int motor_speed = 0;    // Duty cycle 
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    // If e-stop button is pressed, turn motor off 

    if (e_stop_1 == 1) { 

        motor_speed = 0; 

    } 

    // Otherwise, if upside down, turn motor off 

    else if (upside_down_1 == 1) { 

        motor_speed = 0; 

    } 

    // Otherwise, if RC weapon off toggle button is pressed, turn motor off 

    else if (weapon_off_toggle_1 == 1) { 

        motor_speed = 0; 

    } 

    // Otherwise, if over current protection needed, run motor at 70% of full speed 

    else if (oc_weapon_1 == 1) { 

        motor_speed = 0.7; 

    } 

    // Otherwise, run motor at full speed 

    else { 

        motor_speed = 1; 

    } 

 

    // Send direction and PWM to motor controller 

59 



 

 

    return; 

} 

[TT] 

3.2.3 Mechanical Overview 

Through research trade studies (see Appendix) and video research of various combat 

robotics competitions, the team has decided to design a hybrid between the  wedge and drum 

weapon systems. The decision to use a wedge in addition to a drum was made primarily because 

wedge bots have an advantage over many because they can get under the opponent robot and 

avoid the opponent's weapon or disabling them by flipping them. The drawback of a wedge alone 

is if the enemy robot is designed to drive on both top and bottom the wedge is not likely to 

disable the robot. Wedges alone generally do not inflict critical damage.  

The proposed design will add a drum weapon mechanism to the wedge design. This will 

allow the robot to inflict critical damage to the underside of the opponent’s robot. The team’s 

hybrid design will have the robustness and defensive capabilities of a wedge, but have the 

damaging capabilities of a drum weapon system.  This is because, as mentioned previously, the 

wedge is good primarily for avoiding the opponent's weapons and flipping the opponent but not 

inflicting the damage needed to destroy or disable the opponent.  

Using a wedge-drum hybrid will allow for all of the benefits of the wedge, but will also 

provide a mechanism which will be able to actually disable or destroy the opposing robot.  This 

hybrid design will support the implementation of the intercept or escape algorithms.  

         [CH, TT, TW] 
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Figure 16 and 17 below shows a rendition of the mechanical design. The team plans on 

moving much of the body of the LiDAR sensor into the chassis to protect them. The drum 

spinner has been made a small width to enable fast speed up times and increase impact delivery 

force by minimizing the distribution of the impact.  

 

Figure 16: Mechanical Design - Isometric View 

 

Figure 17: Mechanical Design - Planar View 

[FA, CH, AS, TT, TW] 

61 



 

4. Parts List 

Qty Value Device Parts Description 

8 0.1uF CAP0805 C1, C35, C37, C38, C39, C40, C41, C42 Capacitor 

1  PCIMALE J1 Card Edge Connector 

1  Pic_Prog

1 
Header 5 Pic Programming Header 

1 100 R-US_R0

805 
R12 Resistor 

1 10k R-US_R0

805 
R13 Resistor 

1 10 R-US_R0

805 
R59 Resistor 

3  TCMT11

03-OPTO 
U$1, U$2, U$3 Optoisolator- NPN output 

1  PIC32MZ

2048EFH

064 

U$5 Microprocessor, TQFP64 

1  SWCH-11

966 
S2 Switch 

1  KC2520B U$9 KC2520B 

1  USB-MIN

IM-5PIN 
U$11 Mini-USB “B” connector with 5th pin 

broken 

Table 17: Control Board BOM 

[TT] 
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Qty Value Device Parts Description 

4  M03 LMOTOR, RMOTOR, ULTRASONIC, 

WMOTOR 
AMP QUICK CONNECTOR 

2  M05 GYRO, LIDAR AMP QUICK CONNECTOR 

1  M08 RC_RECIEVER AMP QUICK CONNECTOR 

1  M09 LED_BOARD AMP QUICK CONNECTOR 

2  PCIFEMA

LE 
J1, J2 Card Edge Connector 

3 0.47uF CAP0805 CSS_VR1, CSS_VR2, CSS_VR3 Capacitor 

9 10uF CAP0805 CIN1_VR1, CIN1_VR2, CIN1_VR3, 

CIN2_VR1, CIN2_VR2, CIN2_VR3, 

CIN3_VR1, CIN3_VR2, CIN3_VR3 

Capacitor 

6 1k R-US_R0

805 
RF1_VR1, RF1_VR2, RF1_VR3, 

RF2_VR1, RF2_VR2, RF2_VR3 
RESISTOR, American symbol 

6 330uF CAP0805 COUT1_VR1, COUT1_VR2, 

COUT1_VR3, COUT2_VR1, 

COUT2_VR2, COUT2_VR3 

Capacitor 

1 350759-

4 
350759-

4 
BATTERYCONNECTOR Universal MATE-N-LOK .250 Centerline, 600 

V, 19 - 36 A max" 

3 LMZ136

10TZ/N

OPB 

LMZ1361

0TZ/NOP

B 

VREG1, VREG2, VREG3 BUCK, SYNC, ADJ, 10A, TO-PMOD-11 

3 1k R-US_R0

805 
REN_VR1, REN_VR2, REN_VR3 RESISTOR, American symbol 

6 0.047uF CAP0805 CIN1_VRFLTR1, CIN1_VRFLTR2, 

CIN1_VRFLTR3, CIN2_VRFLTR1, 

CIN2_VRFLTR2, CIN2_VRFLTR3 

Capacitor 

3 0.001uH INDUCT

OR-0805

-3.3UH 

LIN_VRFILTR1, LIN_VRFILTR2, 

LIN_VRFILTR3 
Inductors 

6 1K R-US_R0

805 
RIN1_VRFLTR1, RIN1_VRFLTR2, 

RIN1_VRFLTR3, RIN2_VRFLTR1, 

RIN2_VRFLTR2, RIN2_VRFLTR3 

RESISTOR, American symbol 

Table 18: Power Board/Backplane BOM [TW] 
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Qty Suggested Vendor Vendor Part Number Description 

3 AmpFlow E30-150 Weapon and Drive Motors 

2 Cytron MDS40B Motor Controllers - Drive 

1 Cytron MD30C Motor Controllers - Weapon 

2 Revolectrix B435 YS5000-6S-XP Batteries 

2 Turnigy 9466000015-0 Charger 

Table 19: General Electrical System BOM 

[AS, TT] 
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5. Project Schedules 

 
Figure 18: Gantt Chart Fall 2018 
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Figure 19: Gantt Chart Spring 2019 

[AS] 
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 AJ Szabo Tanya Tebcherani Tristin Weber 

9/23 - Researched lidars and found a few 
possible lidars we could use 
* Scanse lidar 
* rplidar 
- Discussed motor control with Tristin 
- Edited preliminary report, defining 
team B 
- Brainstorming on software block 
diagrams 
- Looking into how to make (or buy if 
possible) a watchdog board 
- Worked with SOuRCe to create an on 
campus student organization 
* We are officially a student 
organization as of Tuesday, 9/25/18, and 
we have an orgsync page 
* In the process of requesting funding 
for travel, parts, etc. 

- Previously worked on sensor selection 
(lidar and proximity) 
- Edited preliminary report’s marketing 
requirements and block diagrams with the 
team 
- Brainstorming on further hardware block 
diagram breakdown 
* Level 2 and level 3, to be completed 
when able to discuss as a team 
* Preliminary list of pins/features 
necessary in MCU, and what parts are 
needed to interface with the various 
devices -- will be continued to the point 
where parts can be chosen and 
calculations can be performed 
- Very low-level brainstorming of some 
software needed in the form of state 
machine diagrams 

- Selected potential batteries to supply the 
robot with power. Created excel sheet to 
estimate runtime and risk of overcurrent. 
Found several batteries that meet 
requirements 
- Working with mechanical team to find 
motors that meet their torque requirements 
but stay within power limitations of 
batteries 
- Researching motor controller for weapon 
motor. Drive motors have controllers built 
into them. 

9/30 - Met on Saturday with Tristin and 
Tanya to work on the Midterm Design 
Report 
* Completed Software and Hardware 
Block diagrams and Functional 
Requirement Tables 
* Completed Design Requirements 
- Created a software diagram 
(pseudocode) rough draft showing the 
structure of what I will be coding 

- Met with Team 7B to work on midterm 
design report 
- Assisted in software block diagram 
- Split up team tasks 
- Began reformatting of report 
- Created rough draft of software block 
diagram for drive/weapon motor 
algorithms 
- Brainstormed/noted actual code 
implementation idea for drive/weapon 
motor algorithms 
 

- Met with Dr. Elbuluk to learn more 
about DC-DC converters for the power 
system 
- Produced power system block diagram 
and pondered electrical safety 
implementation 
- Assisted in software block diagram 
- Met with Team 7A to finalize their 
“power budget” for how many watts their 
system is allowed to produce 
- Formulated power system design 
requirements 

10/7 - Edited the decision algorithm 
pseudocode block diagram based on 
changes from Team 7A 
- Helped make changes to decision 
algorithm 
- Worked on midterm report and 
PowerPoint presentation 

- Recreated weapon and motion control 
algorithms based on changes from Team 
7A 
- Helped make changes to decision 
algorithm 
- Worked on midterm report and 
presentation 

-Discussed software algorithms 
-Revisited motor selection 

10/14 - Helped create poster 
- Practiced midterm presentation 
- Helped with the midterm Report 
- Created a software flowchart (used in 
the Midterm report and presentation) 

- Helped create poster (specifically, wrote 
software theory of operation) 
- Practiced for presentation 
- Worked on how the software algorithm 
will actually be implemented in code 
(potentially using binary code and case 
statements with interrupts as needed) 
- Researched encoders and how to pick 
one 

- Picked Batteries 
- Hardware Diagrams 
- Midpoint Presentation/Report 
- EE Rep. To COE budget Presentation 
- Greg’s  powerpoint 

10/21 - Worked on Project poster 
- Prepared for midterm presentation 

- Worked on Project poster 
- Prepared for midterm presentation 

- Worked on Project poster 
- Prepared for midterm presentation 

10/28 - RC Controller Research - Updated software theory of operation on - Design Requirements 
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- Software “Skeleton” Code 
- Familiarize with UART 

poster 
- Researched encoders/how they work 
- Researched designing a filter to convert 
PWM to DC voltage - to the point where 
it can be designed 

- Switching Converter Lookup 
- Found Power MOSFETS 
- Selected Microcontroller 
- Drive Motor Controllers 

11/4 - RC Controller Research 
- Software “Skeleton” Code 
- Familiarize with UART 

- Created control system schematic block 
diagram 
- Began schematic for control system 
- Updated and formatted midterm report 
- Confirmed team member roles 

- Design Requirements 
- Switching Converter Lookup 
- Found Power MOSFETS 
- Selected Microcontroller 
- Drive Motor Controllers 

11/11 - RC Controller Research 
- Software “Skeleton” Code 
- Familiarize with UART 

- Working on finalizing control system 
schematic and connectors 
- Test! 

-  Design Requirements 
- Switching Converter Simulations 
- Power System Schematics 
- Backplane layout 
- Drive Motor Controller Interfacing 
 

11/20 - Worked on the Final Written Report - Worked on the Final Written Report - Worked on the Final Written Report 

Table 20: Week by Week Updates (9/23 - 11/20) 
 

[AS, TT, TW] 
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6. Design Team Information 

Andrew Szabo, Computer Engineer -  Software Lead. 

● LED software 

● Decision algorithm software 

● RC controller interface hardware and software 

Tanya Tebcherani, Electrical Engineer - Team Lead, Archivist. 

● Control algorithm software 

● E-stop software 

● Embedded controller system hardware 

Tristin Weber, Electrical Engineer - Hardware Lead. 

● LED hardware 

● Overcurrent protection hardware (and other safety features) 

● Power supply design 

● Motor controller interface design 

● Motor and battery selection 

[AS, TT, TW] 
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7. Conclusion and Recommendations 

In conclusion, the majority of the design of the combat robot has been completed. The 

team has created various hardware and software block diagrams showing the theory behind the 

team’s plan of implementation. Parts have been chosen and parts request forms have been 

submitted. Schematics and pseudocode have also been created. For the final semester of senior 

design, Team 7B is ready to move on to physically building the robot in terms of hardware, and 

programming the PIC in terms of software. Finally, Team 7B must also merge their work with 

Team 7A and the mechanical team to create a functioning combat robot. 

[AS, TT] 
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9. Appendices 

9.1 Software Code 

9.1.1 Header Files 

9.1.1.1 config.h  

// Configuration Bits 
 
// DEVCFG3 
#pragma config USERID = 0xFFFF          // Enter Hexadecimal value (Enter Hexadecimal value) 
#pragma config FMIIEN = ON              // Ethernet RMII/MII Enable (MII Enabled) 
#pragma config FETHIO = ON              // Ethernet I/O Pin Select (Default Ethernet I/O) 
#pragma config PGL1WAY = ON             // Permission Group Lock One Way Configuration (Allow only one reconfiguration) 
#pragma config PMDL1WAY = ON            // Peripheral Module Disable Configuration (Allow only one reconfiguration) 
#pragma config IOL1WAY = ON             // Peripheral Pin Select Configuration (Allow only one reconfiguration) 
#pragma config FUSBIDIO = ON            // USB USBID Selection (Controlled by the USB Module) 
 
// DEVCFG2 
#pragma config FPLLIDIV = DIV_2         // System PLL Input Divider (2x Divider) 
#pragma config FPLLRNG = RANGE_8_16_MHZ // System PLL Input Range (8-16 MHz Input) 
#pragma config FPLLICLK = PLL_FRC       // System PLL Input Clock Selection (FRC is input to the System PLL) 
#pragma config FPLLMULT = MUL_4 //128   // System PLL Multiplier (PLL Multiply by 128) 
#pragma config FPLLODIV = DIV_2         // System PLL Output Clock Divider (2x Divider) 
#pragma config UPLLFSEL = FREQ_24MHZ    // USB PLL Input Frequency Selection (USB PLL input is 24 MHz) 
 
// DEVCFG1 
#pragma config FNOSC = FRCDIV           // Oscillator Selection Bits (Fast RC Osc w/Div-by-N (FRCDIV)) 
#pragma config DMTINTV = WIN_127_128    // DMT Count Window Interval (Window/Interval value is 127/128 counter value) 
#pragma config FSOSCEN = ON             // Secondary Oscillator Enable (Enable SOSC) 
#pragma config IESO = ON                // Internal/External Switch Over (Enabled) 
#pragma config POSCMOD = HS             // Primary Oscillator Configuration (HS osc mode) 
#pragma config OSCIOFNC = OFF             // CLKO Output Signal Active on the OSCO Pin (Disabled) 
#pragma config FCKSM = CSDCMD           // Clock Switching and Monitor Selection (Clock Switch Enabled, FSCM Enabled) 
#pragma config WDTPS = PS1048576       // Watchdog Timer Postscaler (1:1048576) 
#pragma config WDTSPGM = STOP          // Watchdog Timer Stop During Flash Programming (WDT stops during Flash  

        programming) 
#pragma config WINDIS = NORMAL          // Watchdog Timer Window Mode (Watchdog Timer is in non-Window mode) 
#pragma config FWDTEN = ON                 // Watchdog Timer Enable (WDT Enabled) 
#pragma config FWDTWINSZ = WINSZ_25     // Watchdog Timer Window Size (Window size is 25%) 
#pragma config DMTCNT = DMT31           // Deadman Timer Count Selection (2^31 (2147483648)) 
#pragma config FDMTEN = ON                 // Deadman Timer Enable (Deadman Timer is enabled) 
 
// DEVCFG0 
#pragma config DEBUG = OFF                // Background Debugger Enable (Debugger is disabled) 
#pragma config JTAGEN = ON                 // JTAG Enable (JTAG Port Enabled) 
#pragma config ICESEL = ICS_PGx1      // ICE/ICD Comm Channel Select (Communicate on PGEC1/PGED1) 
#pragma config TRCEN = ON                  // Trace Enable (Trace features in the CPU are enabled) 
#pragma config BOOTISA = MIPS32       // Boot ISA Selection (Boot code and Exception code is MIPS32) 
#pragma config FECCCON = OFF_UNLOCKED   // Dynamic Flash ECC Configuration (ECC and Dynamic ECC are disabled  

(ECCCON bits are writable)) 
#pragma config FSLEEP = OFF                  // Flash Sleep Mode (Flash is powered down when the device is in Sleep mode) 
#pragma config DBGPER = PG_ALL          // Debug Mode CPU Access Permission (Allow CPU access to all permission regions) 
#pragma config SMCLR = MCLR_NORM   // Soft Master Clear Enable bit (MCLR pin generates a normal system Reset) 
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#pragma config SOSCGAIN = GAIN_2X    // Secondary Oscillator Gain Control bits (2x gain setting) 
#pragma config SOSCBOOST = ON          // Secondary Oscillator Boost Kick Start Enable bit (Boost the kick start of the oscillator) 
#pragma config POSCGAIN = GAIN_2X    // Primary Oscillator Gain Control bits (2x gain setting) 
#pragma config POSCBOOST = ON          // Primary Oscillator Boost Kick Start Enable bit (Boost the kick start of the oscillator) 
#pragma config EJTAGBEN = NORMAL    // EJTAG Boot (Normal EJTAG functionality) 
 
// DEVCP0 
#pragma config CP = OFF                          // Code Protect (Protection Disabled) 
 
// SEQ3 
#pragma config TSEQ = 0xFFFF               // Boot Flash True Sequence Number (Enter Hexadecimal value) 
#pragma config CSEQ = 0xFFFF              // Boot Flash Complement Sequence Number (Enter Hexadecimal value) 
 
// DEVADC0 
#pragma config ADCFG = 0x0FFFFFFF   // Enter Hexadecimal value (Enter Hexadecimal value) 
 
// DEVSN0 
#pragma config SN = 0x0FFFFFFF          // Enter Hexadecimal value (Enter Hexadecimal value) 
 
// #pragma config statements should precede project file includes. 
// Use project enums instead of #define for ON and OFF. 

 
9.1.1.2 defines.h 

#define SYS_CLK 8000000L 
#define PWM_FREQ    20000 
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9.1.1.3 functions.h 

// UART4 
void init_UART4(void); 
char rx4(void); 
 
// IC1_y 
void init_IC1(void); 
float read_buf_IC1(void); 
float calc_perc_IC1(float); 
float y_out(void); 
 
// IC2_x 
void init_IC2(void); 
float read_buf_IC2(void); 
float calc_perc_IC2(float); 
float x_out(void); 
 
// IC3_w 
void init_IC3(void); 
float read_buf_IC3(void); 
float w_out(void); 
 
// IC4_estop 
void init_IC4(void); 
float read_buf_IC4(void); 
float estop_out(void); 
 
// IC5_am 
void init_IC5(void); 
float read_buf_IC5(void); 
float aut_out(void); 
 
// IC_Misc 
void init_IC(void); 
float calc_ms(float); 
 
// OC1_RDM_PWM 
void init_rdm_pwm(void); 
void dc_rdm_pwm(float); 
void dig_rdm_pwm(int); 
 
// OC2_LDM_PWM 

76 



 

void init_ldm_pwm(void); 
void dc_ldm_pwm(float); 
void dig_ldm_pwm(int); 
 
// OC3_WM_PWM 
void init_wm_pwm(void); 
void dc_wm_pwm(float); 
void dig_wm_pwm(int); 
 
// Auto_Mode 
void autonomous_control(short int, short int); 
 
// Man_Mode 
void manual_RC_control(float, float); 
 
// Misc 
void init_osc(void); 
void delay(int); 
void estop(void); 
 
// LEDs 
void init_LEDs(void); 
void LED_attack(int); 
void LED_estop(int); 
void LED_autonomy(int); 
void LED_power(int); 
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9.1.2 Source Files 

9.1.2.1 Auto_Mode.c 

// Include Header Files 
#include <stdlib.h> 
#include <math.h>       //for fabs, sin, cos functions 
#include "functions.h" 
#include "defines.h" 
 
void autonomous_control(short int th, short int dr) { 
    float theta = th; 
    float drive = dr; 
    float rad; 
  
    float A = 0; 
    float B = 0; 
    float R = 0; 
    float L = 0; 
  
    float X; 
    float Y; 
  
    float rm_speed; 
    float lm_speed; 
  
    // Convert theta to radians 
    rad = ((M_PI/180) * theta) - M_PI/2; 
  
    // Calculate X & Y from angle 
    // if (theta < -90 || theta > 90) { 
    if (theta < 0 || theta > 180) { 
        X = 0; 
        Y = 0; 
    } 
    //else if (theta >= -90 && theta <= -45) { 
    else if (theta >= 0 && theta <= 45) { 
        X = -100; 
        Y = 100 * tan(M_PI/2 + rad); 
    } 
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    //else if (theta > -45 && theta < 0) { 
    else if (theta > 45 && theta < 90) { 
        X = -100 * tan(-1 * rad); 
        Y = 100; 
    } 
    //else if (theta >= 0 && theta <= 45) { 
    else if (theta >= 90 && theta <= 135) { 
        X = 100 * tan(rad); 
        Y = 100; 
    } 
 
    //else if (theta > 45 && theta <= 90) { 
    else if (theta > 135 && theta <= 180) { 
        X = 100; 
        Y = 100 * tan(M_PI/2 - rad); 
    } 
 
    //NEED TO ADD A FEW STEPS FOR SCALING IN HERE 
    X = (X)*(-1); 
  
    // If going backwards, flip y-axis 
    if (drive == 180) { 
        Y = (Y)*(-1); 
    } 
  
    A = (100-fabs(X)) * (Y/100) + Y; //intermittent calculations 
    B = (100-fabs(Y)) * (X/100) + X; 
    R = (A + B) / 2;                //% Left and % Right Found Here 
    L = (A - B) / 2; 
  
    //Determine motor speeds and output to global variable 
    rm_speed = (R * 0.01); 
    lm_speed = (L * 0.01); 
 
    // Output PWM 
    dc_rdm_pwm(rm_speed); 
    dc_ldm_pwm(lm_speed); 
}  
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9.1.2.2 IC1_y.c 

#include <p32xxxx.h> 
#include "functions.h" 
 
// Initialize IC1 
void init_IC1(void) {  
    // Initialize RPD1 for IC1 
    TRISDbits.TRISD1 = 1;       // Input 
    IC1Rbits.IC1R = 0b0000;     // IC1 on RPD1 (P51), elevator 
  
    // Initialize IC1 
    IC1CONbits.SIDL = 0; 
    IC1CONbits.FEDGE = 1; 
    IC1CONbits.C32 = 0; 
    IC1CONbits.ICTMR = 0; 
    IC1CONbits.ICI = 0b01;    //  
    IC1CONbits.ICM = 0b110;   // change to 001 for not simple mode // Capture every rising and  

     falling edge 
    IC1CONbits.ON = 1; 
  
    IFS0CLR = _IFS0_IC1IF_MASK; 
    IPC1bits.IC1IP = 6;     // Priority (highest?) 
    IPC1bits.IC1IS = 0;     // Sub priority? 
    IEC0bits.IC1IE = 1;     // Enable IC1 interrupts 
} 
 
// Read IC1 buffer 
float read_buf_IC1(void) { 
    float ic1_1; 
    float ic1_2; 
    float ic1_t; 
  
    // Read timer value at rising edge 
    ic1_1 = IC1BUF; 
    // Read timer value at falling edge 
    ic1_2 = IC1BUF; 
    // Clear interrupt flag 
    IFS0CLR = _IFS0_IC1IF_MASK; 
    // Calculate time high 
    ic1_t = ic1_2 - ic1_1; 
  
    return ic1_t; 
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} 
 
// Convert time high (ms) to percent (range from -100 to 100%) 
float calc_perc_IC1(float ms_val_IC1) { 
    float perc_IC1; 
  
    // (ms value - center value) / [(highest ms value - center ms value) / 100] 
    // Only one equation is needed because lowest and highest ms values from the center are the  
       same (symmetric) 
    perc_IC1 = (ms_val_IC1-1.5)/0.006; 
  
    if (perc_IC1 < 1 && perc_IC1 > -1) { 
        perc_IC1 = 0.001; 
    } 
  
    return perc_IC1; 
} 
 
// Output percent for y-axis on RC controller 
float y_out(void) { 
    float tmr_val_IC1; 
    float tmr_val_ms_IC1; 
    float y_output; 
  
    // If flag is high 
    if (IFS0bits.IC1IF == 1) { 
        // Read buffer for time high 
        tmr_val_IC1 = read_buf_IC1(); 
 
        // If timer didn't overflow 
        if (tmr_val_IC1 > 0) { 
            // Convert time high (timer value) to ms 
            tmr_val_ms_IC1 = calc_ms(tmr_val_IC1); 
            // Convert ms to % 
            y_output = (calc_perc_IC1(tmr_val_ms_IC1)); 
  
            return y_output; 
        } 
    } 
} 
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9.1.2.3 IC2_x.c 

#include <p32xxxx.h> 
#include "functions.h" 
 
// Initialize IC2 
void init_IC2(void) {  
    // Initialize RPD4 for IC2 
    TRISDbits.TRISD4 = 1;       // Input 
    IC2Rbits.IC2R = 0b0100;     // IC2 on RPD4 (P40), aileron  
 
    // Initialize IC1 
    IC2CONbits.SIDL = 0; 
    IC2CONbits.FEDGE = 1; 
    IC2CONbits.C32 = 0; 
    IC2CONbits.ICTMR = 0; 
    IC2CONbits.ICI = 0b01;    //  
    IC2CONbits.ICM = 0b110;   // change to 001 for not simple mode // Capture every rising and 
falling edge 
    IC2CONbits.ON = 1; 
 
    IFS0CLR = _IFS0_IC2IF_MASK; 
    IPC2bits.IC2IP = 5;     // Priority (highest?) 
    IPC2bits.IC2IS = 0;     // Sub priority? 
    IEC0bits.IC2IE = 1;     // Enable IC2 interrupts 
} 
 
// Read IC2 buffer 
float read_buf_IC2(void) { 
    float ic2_1; 
    float ic2_2; 
    float ic2_t; 
  
    // Read timer value at rising edge 
    ic2_1 = IC2BUF; 
    // Read timer value at falling edge 
    ic2_2 = IC2BUF; 
    // Clear interrupt flag 
    IFS0CLR = _IFS0_IC2IF_MASK; 
    // Calculate time high 
    ic2_t = ic2_2 - ic2_1; 
  
    return ic2_t; 
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} 
 
// Convert time high (ms) to percent (range from -100 to 100%) 
float calc_perc_IC2(float ms_val_IC2) { 
    float perc_IC2; 
  
    // If joystick above center 
    if (ms_val_IC2 > 1.55) { 
        // (ms value - center value) / [(highest ms value - center ms value) / 100] 
        perc_IC2 = (ms_val_IC2-1.55)/0.0055; 
    } 
    // If joystick below center 
    else { 
        // (ms value - center value) / [(lowest ms value - center ms value) / 100] 
        perc_IC2 = (ms_val_IC2-1.55)/0.0066; 
    } 
  
    if (perc_IC2 < 1 && perc_IC2 > -1) { 
        perc_IC2 = 0.001; 
    } 
  
    return perc_IC2; 
} 
 
// Output percent for y-axis on RC controller 
float x_out(void) { 
    float tmr_val_IC2; 
    float tmr_val_ms_IC2; 
    float x_output; 
  
    // If flag is high 
    if (IFS0bits.IC2IF == 1) { 
        // Read buffer for time high 
        tmr_val_IC2 = read_buf_IC2(); 
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        // If timer didn't overflow 
        if (tmr_val_IC2 > 0) { 
            // Convert time high (timer value) to ms 
            tmr_val_ms_IC2 = calc_ms(tmr_val_IC2); 
            // Convert ms to % 
            x_output = calc_perc_IC2(tmr_val_ms_IC2); 
  
            return x_output; 
        } 
    } 
} 
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9.1.2.4 IC3_w.c 

#include <p32xxxx.h> 
#include "functions.h" 
 
// Initialize IC3 
void init_IC3(void) {  
    // Initialize RPD2 for IC3 
    TRISDbits.TRISD2 = 1;       // Input 
    IC3Rbits.IC3R = 0b0000;     // IC3 on RPD2 (P6), gear 
  
    // Initialize IC3 
    IC3CONbits.SIDL = 0; 
    IC3CONbits.FEDGE = 1; 
    IC3CONbits.C32 = 0; 
    IC3CONbits.ICTMR = 0; 
    IC3CONbits.ICI = 0b01;    //  
    IC3CONbits.ICM = 0b110;   // change to 001 for not simple mode // Capture every rising and 
falling edge 
    IC3CONbits.ON = 1; 
  
    IFS0CLR = _IFS0_IC3IF_MASK; 
    IPC3bits.IC3EIP = 4;     // Priority (highest?) 
    IPC3bits.IC3EIS = 0;     // Sub priority? 
    IEC0bits.IC3IE = 1;     // Enable IC1 interrupts 
} 
 
// Read IC3 buffer 
float read_buf_IC3(void) { 
    float ic3_1; 
    float ic3_2; 
    float ic3_t; 
  
    // Read timer value at rising edge 
    ic3_1 = IC3BUF; 
    // Read timer value at falling edge 
    ic3_2 = IC3BUF; 
    // Clear interrupt flag 
    IFS0CLR = _IFS0_IC3IF_MASK; 
    // Calculate time high 
    ic3_t = ic3_2 - ic3_1; 
  
    return ic3_t; 
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} 
 
// Output percent for y-axis on RC controller 
float w_out(void) { 
    float tmr_val_IC3; 
  
    // If flag is high 
    if (IFS0bits.IC3IF == 1) { 
        // Read buffer for time high 
        tmr_val_IC3 = read_buf_IC3(); 
 
        // If timer didn't overflow 
        if (tmr_val_IC3 > 0) { 
            if (tmr_val_IC3 > 4300 && tmr_val_IC3 < 4350) { 
                return 1; 
            } 
            else if (tmr_val_IC3 > 7700 && tmr_val_IC3 < 7750) { 
                return 2; 
            }  
        } 
    } 
} 
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9.1.2.5 IC4_estop.c 

#include <p32xxxx.h> 
#include "functions.h" 
 
// Initialize IC4 
void init_IC4(void) {  
    // Initialize RPD3 for IC4 
    TRISDbits.TRISD3 = 1;       // Input 
    IC4Rbits.IC4R = 0b0000;     // IC4 on RPD3 (P67), throttle 
  
    // Initialize IC4 
    IC4CONbits.SIDL = 0; 
    IC4CONbits.FEDGE = 1; 
    IC4CONbits.C32 = 0; 
    IC4CONbits.ICTMR = 0; 
    IC4CONbits.ICI = 0b01;    //  
    IC4CONbits.ICM = 0b110;   // change to 001 for not simple mode // Capture every rising and 
falling edge 
    IC4CONbits.ON = 1; 
  
    IFS0CLR = _IFS0_IC4IF_MASK; 
    IPC5bits.IC4IP = 3;     // Priority (highest?) 
    IPC5bits.IC4IS = 0;     // Sub priority? 
    IEC0bits.IC4IE = 1;      // Enable IC4 interrupts 
} 
 
// Read IC4 buffer 
float read_buf_IC4(void) { 
    float ic4_1; 
    float ic4_2; 
    float ic4_t; 
  
    // Read timer value at rising edge 
    ic4_1 = IC4BUF; 
    // Read timer value at falling edge 
    ic4_2 = IC4BUF; 
    // Clear interrupt flag 
    IFS0CLR = _IFS0_IC4IF_MASK; 
    // Calculate time high 
    ic4_t = ic4_2 - ic4_1; 
 
    return ic4_t; 
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} 
 
// Output percent for y-axis on RC controller 
float estop_out(void) { 
    float tmr_val_IC4; 
  
    // If flag is high 
    if (IFS0bits.IC4IF == 1) { 
        // Read buffer for time high 
        tmr_val_IC4 = read_buf_IC4(); 
  
        // If timer didn't overflow 
        if (tmr_val_IC4 > 0) { 
            if (tmr_val_IC4 >= 7080) { 
                return 1; 
            } 
            else if (tmr_val_IC4 <= 4960) { 
                return 2; 
            }  
            else { 
                return 3; 
            } 
        } 
    } 
} 
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9.1.2.6 IC5_am.c 

#include <p32xxxx.h> 
#include "functions.h" 
 
// Initialize IC5 
void init_IC5(void) {  
    // Initialize RPD9 for IC5 
    TRISDbits.TRISD9 = 1;       // Input 
    IC5Rbits.IC5R = 0b0000;     // IC5 on RPD9 (P70) rutter 
  
    // Initialize IC5 
    IC5CONbits.SIDL = 0; 
    IC5CONbits.FEDGE = 1; 
    IC5CONbits.C32 = 0; 
    IC5CONbits.ICTMR = 0; 
    IC5CONbits.ICI = 0b01;    //  
    IC5CONbits.ICM = 0b110;   // change to 001 for not simple mode // Capture every rising and  

     falling edge 
    IC5CONbits.ON = 1; 
  
    IFS0CLR = _IFS0_IC5IF_MASK; 
    IPC6bits.IC5EIP = 2;     // Priority (highest?) 
    IPC6bits.IC5EIS = 0;      // Sub priority? 
    IEC0bits.IC5IE = 1;      // Enable IC4 interrupts 
} 
 
// Read IC5 buffer 
float read_buf_IC5(void) { 
    float ic5_1; 
    float ic5_2; 
    float ic5_t; 
  
    // Read timer value at rising edge 
    ic5_1 = IC5BUF; 
    // Read timer value at falling edge 
    ic5_2 = IC5BUF; 
    // Clear interrupt flag 
    IFS0CLR = _IFS0_IC5IF_MASK; 
    // Calculate time high 
    ic5_t = ic5_2 - ic5_1; 
 
    return ic5_t; 
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} 
 
// Output percent for y-axis on RC controller 
float aut_out(void) { 
    float tmr_val_IC5; 
  
    // If flag is high 
    if (IFS0bits.IC5IF == 1) { 
        // Read buffer for time high 
        tmr_val_IC5 = read_buf_IC5(); 
  
        // If timer didn't overflow 
        if (tmr_val_IC5 > 0) { 
  
            //autonomy = right on joystick 
            if (tmr_val_IC5 >= 7160) { 
                return 2; 
            } 
            //manual = left on joystick 
            else if (tmr_val_IC5 <= 4570) { 
                return 1; 
            }  
            else { 
                return 3; 
            } 
        } 
    } 
} 
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9.1.2.7 IC_Misc.c 

#include <p32xxxx.h> 
#include "defines.h" 
 
void init_IC(void) { 
    // Initialize TMR3 
    T3CONbits.SIDL = 0; 
    T3CONbits.TGATE = 0; 
    T3CONbits.TCKPS = 0b000;    // 1:1 prescale value (2 MHz / 1 = timer ticks at 2 MHz) 
    T3CONbits.ON = 1; 
 
    PR3 = 0xFFFF; 
  
    // Multi-vector interrupts 
    INTCONbits.MVEC = 1; 
  
    init_IC1(); 
    init_IC2(); 
    init_IC3(); 
    init_IC4(); 
    init_IC5(); 
} 
 
float calc_ms(float t_val) { 
    float ms_val; 
    int long tmr_clk; 
  
    tmr_clk = SYS_CLK / 2; 
    ms_val = t_val/tmr_clk * 1000; 
  
    return ms_val; 
} 
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9.1.2.8 LEDs.c 

// Include Header Files 
#include <p32xxxx.h> 
#include "functions.h" 
 
//Global Variables 
extern float wm_current_speed; 
extern float filt_aut; 
 
void init_LEDs(void) { 
    // Initialize digital output 
    TRISEbits.TRISE1 = 0;      // Output (P61) 
    TRISEbits.TRISE2 = 0;      // Output (P62) 
    TRISEbits.TRISE3 = 0;      // Output (P63) 
} 
// Turn E-stop LED on 
void LED_estop(int on){ 
    if (on == 1) { 
        PORTEbits.RE2 = 0; 
    } 
    else if (on == 0) { 
        PORTEbits.RE2 = 1; 
    } 
} 
// Turn Autonomy LED on 
void LED_autonomy(int on){ 
    if (on == 1) { 
        PORTEbits.RE3 = 0; 
    } 
    else if (on == 0) { 
        PORTEbits.RE3 = 1; 
    } 
} 
// Turn Power LED on 
void LED_power(int on){  
    if (on == 1) { 
        PORTEbits.RE1 = 0; 
    } 
    else if (on == 0) { 
        PORTEbits.RE1 = 1; 
    } 
} 
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9.1.2.9 Man_Mode.c 

// Include Header Files 
#include <stdlib.h> 
#include <math.h>       //for fabs() 
#include "functions.h" 
 
extern float upside_down; 
 
//Convert Controller Right Joystick to 2-Wheel Motion 
void manual_RC_control(float X, float Y) { 
    float A = 0; 
    float B = 0; 
    float R = 0; 
    float L = 0; 
  
    float rm_speed; 
    float lm_speed; 
  
    // If upside down, flip y-axis 
    if (upside_down == 1) { 
        Y = Y*(-1); 
    } 
 
    if (Y < -60){         //Fixes reverse turns. - Tristin 
        X = X*(-1); 
    } 
    //NEED TO ADD A FEW STEPS FOR SCALING IN HERE 
    X = (X)*(-1); 
  
    A = (100-fabs(X)) * (Y/100) + Y;  //intermittent calculations 
    B = (100-fabs(Y)) * (X/100) + X; 
    R = (A + B) / 2;  //% Left and % Right Found Here 
    L = (A - B) / 2; 
  
    //Determine motor speeds and output to global variable 
    rm_speed = (R * 0.01); 
    lm_speed = (L * 0.01); 
  
    // Output PWM 
    dc_rdm_pwm(rm_speed); 
    dc_ldm_pwm(lm_speed); 
} 
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9.1.2.10 Misc.c 

#include <p32xxxx.h> 
#include <stdlib.h> 
#include <math.h>       //for fabs() 
#include "defines.h" 
extern float rdm_current_speed; 
extern float ldm_current_speed; 
extern float wm_current_speed; 
extern float rdm_inc_val; 
extern float ldm_inc_val; 
extern float wm_inc_val; 
extern float filt_aut; 
 
// Initialize oscillator to 8MHz 
void init_osc(void) { 
    OSCCONbits.COSC = 0b111;    // 8 MHz clock, maybe? 
    OSCTUN = 0;                 // Keep it at 8 MHz, don't tune it up or down 
} 
 
// Delay of unknown time 
void delay(int num) { 
    int i = 0; 
 
    while (i < 125000 * num) { 
        i++; 
    };  
} 
 
void estop(void) { 
    float duty = 0; 
  
    LED_estop(1); 
 
    while (rdm_current_speed != 0) { 
        //added by tristin for soft start 
        if (duty < (rdm_current_speed - rdm_inc_val/100)) { 
            rdm_current_speed = rdm_current_speed - rdm_inc_val/100; 
        } 
        else if (duty > (rdm_current_speed + rdm_inc_val/100)){ 
            rdm_current_speed = rdm_current_speed + rdm_inc_val/100; 
        } 
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        else { 
            rdm_current_speed = duty; 
        } 
 
        OC1RS = (PR2 + 1) * (fabs(rdm_current_speed)); 
    } 
  
    while(ldm_current_speed != 0) { 
        //added by tristin for soft start 
        if (duty < (ldm_current_speed - ldm_inc_val/100)) { 
            ldm_current_speed = ldm_current_speed - ldm_inc_val/100; 
        } 
        else if (duty > (ldm_current_speed + ldm_inc_val/100)){ 
            ldm_current_speed = ldm_current_speed + ldm_inc_val/100; 
        } 
        else { 
            ldm_current_speed = duty; 
        } 
 
        OC2RS = (PR2 + 1) * (fabs(ldm_current_speed)); 
    } 
    OC9RS = 0; 
    /* 
    while(wm_current_speed != 0) { 
  
        //added by tristin for soft start 
        if (duty < (wm_current_speed - wm_inc_val)) { 
            wm_current_speed = wm_current_speed - wm_inc_val; 
        } 
        else if (duty > (wm_current_speed + wm_inc_val)){ 
            wm_current_speed = wm_current_speed + wm_inc_val; 
        } 
        else { 
            wm_current_speed = duty; 
        } 
 
        OC9RS = (PR2 + 1) * (fabs(wm_current_speed)); 
  
    }*/ 
} 
 
 
 

95 



 

9.1.2.11 newmain1.c 

// Include Header Files 
#include <proc/p32mz2048efh100.h> 
 
#include "config.h" 
#include "defines.h" 
#include "functions.h" 
 
//Global Variables 
float estp; 
float upside_down = 0;    // Start right-side up (0 or 1) 
float filt_aut = 1;      // Start in manual mode (1 or 2) 
float spec = 0; 
 
float rdm_current_speed = 0; 
float ldm_current_speed = 0; 
float wm_current_speed = 0; 
 
float rdm_inc_val; 
float ldm_inc_val; 
float wm_inc_val; 
 
int main(void) {  
    // RC Controller Variables 
    float RC_x; 
    float RC_y; 
    float RC_w; 
    float RC_aut = 0; 
    float RC_estop = 1;     // (1 or 2)? 
  
    // Filter variables 
    float filt_RC_x = 0; 
    float filt_RC_y = 0; 
  
    // Aut Variables 
    int i; 
    short int degree; 
    short int drive; 
  
    // Extra variables 
    float act_estop = 0;    // E-stop activation feature (DON'T TOUCH THIS!!!) 
    char rec = 'p';             // Variable that stores the character UART receives, default is stop 
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    int reci; 
  
    // Initializations 
    init_osc(); 
    init_IC(); 
    init_rdm_pwm(); 
    init_ldm_pwm(); 
    init_wm_pwm(); 
    init_LEDs(); 
  
    init_UART4(); 
  
    while(1) { 
        // Set power LED high to show PIC is functioning 
        LED_power(1); 
  
        // Read from RC Controller 
        RC_x = x_out(); 
        RC_y = y_out(); 
        RC_w = w_out(); 
        RC_aut = aut_out(); 
        RC_estop = estop_out(); 
  
        // Read UART  
        if (IFS5bits.U4RXIF == 1) {  
            reci = rx4();  
  
            if ((reci > 179) && (reci != 183)) { 
                drive = reci; 
            } 
            else { 
                degree = reci; 
            } 
 
            IFS5CLR = _IFS5_U4RXIF_MASK; 
        } 
  
        // Read UART  
        if (IFS5bits.U4RXIF == 1) {  
            reci = rx4();  
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            if ((reci > 179) && (reci != 183)) { 
                drive = reci; 
            } 
            else { 
                degree = reci; 
            } 
 
            IFS5CLR = _IFS5_U4RXIF_MASK; 
        } 
  
        /* 
        // Search mode 
        if (rec == 's') { 
            degree = 90; 
            drive = 181; 
        } 
        // Upside down 
        else if (rec == 'u') { 
            degree = -90; 
            drive = 181; 
        } 
        // Stop 
        else if (rec == 'p') { 
            degree = 0; 
            drive = 181; 
        } 
        // Full speed forward 
        else if (rec == 'f') { 
            degree = 0; 
            drive = 182; 
        } 
        // Full speed backwards (reverse) 
        else if (rec == 'b') { 
            degree = 0; 
            drive = 180; 
        } 
        // 45 degrees to the right, forward 
        else if (rec == 'r') { 
            degree = 45; 
            drive = 182; 
        } 
        // 45 degrees to the left, forward 
        else if (rec == 'l') { 
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            degree = -45; 
            drive = 182; 
        } 
        */ 
  
        // If e-stop functionality off 
        if (act_estop == 0) { 
            // Set e-stop functionality to on.  
            if (RC_estop == 2) { 
                act_estop = 1; 
  
            } 
            // No e-stop, continue with code 
            else { 
                // If upside down, manual mode 
                if (upside_down == 1) { 
                    filt_aut = 1; 
                } 
                // If right-side up, continue 
                else {  // upside_down == 0 
                    // Set autonomy or manual  
                    if(RC_aut == 1 || RC_aut == 2) { 
                        filt_aut = RC_aut;  
                    } 
                } 
  
                // Set weapon on or off 
                if ((RC_w == 1 || RC_w == 2)) { 
                    dc_wm_pwm(RC_w); 
                } 
  
                // Set soft start increments 
                if (filt_aut == 1) {    // Manual mode 
                    wm_inc_val = 0.03; 
                    rdm_inc_val = 0.03; 
                    ldm_inc_val = 0.03; 
                } 
                else {                     // Autonomous mode 
                    wm_inc_val = 0.03; 
                    rdm_inc_val = 0.03; 
                    ldm_inc_val = 0.03; 
                } 
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                // Manual mode 
                if (filt_aut == 1) {  
                    // Turn autonomy LED off 
                    LED_autonomy(0); 
  
                    // Filter x & y components 
                    if (RC_x != 0.000000) { 
                        filt_RC_x = RC_x; 
                    } 
 
                    if (RC_y != 0.000000) { 
                       filt_RC_y = RC_y; 
                    } 
  
                    // Set drive motor speeds 
                    if (filt_RC_x != 0 && filt_RC_y != 0) { 
                        manual_RC_control(filt_RC_x, filt_RC_y); 
 
                        // Reset filtering variables 
                        filt_RC_x = 0; 
                        filt_RC_y = 0; 
                    } 
                } 
                // Autonomous mode 
                else {  // filt_aut == 2 
                    // Turn autonomy LED on 
                    LED_autonomy(1); 
  
                    // Robot is upside down 
                    //if (degree == -90 && drive == 181) { 
                    if (degree == 183 && drive == 181) { 
                        spec = 1; 
                        upside_down = 1; 
                        dc_wm_pwm(1); 
                    } 
                    // Stop 
                    //else if (degree == 183 && drive == 181) { 
                    else if (degree == 90 && drive == 181) { 
                        spec = 1; 
                        dc_rdm_pwm(0); 
                        dc_ldm_pwm(1); 
                        //dc_wm_pwm(7700); 
                    } 
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                    // Search mode (turn in place) 
                    //else if (degree == 90 && drive == 181) { 
                    else if (degree == 180 && drive == 181) { 
                        spec = 1; 
                        dc_rdm_pwm(0.5); 
                        dig_rdm_pwm(0); 
                        dc_ldm_pwm(0.5); 
                        dig_ldm_pwm(0); 
                        //dc_wm_pwm(7700); 
                    } 
                    // Set autonomy speed 
                    else { 
                        if (degree != 0) { 
                            spec = 0; 
                            if (degree == 183) { 
                                degree = 0; 
                            } 
                            autonomous_control(degree, drive); 
                            //dc_wm_pwm(7700); 
                        } 
                    } 
                } 
            } 
        } 
        // If e-stop functionality on 
        else { 
            // e-stop 
            if (RC_estop != 1) { 
                estp = 2; 
                estop(); 
            } 
            // Reset e-stop functionality when e-stop turned off 
            else { 
                act_estop = 0; 
                estp = 1; 
                filt_aut = 1; //put in manual 
  
                // Turn e-stop LED off 
                LED_estop(0); 
            } 
        } 
    } 
} 
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9.1.2.12 OC1_RDM_PWM.c 

// Include Header Files 
#include <stdlib.h> 
#include <math.h>       //for fabs() 
#include <p32xxxx.h> 
#include "defines.h" 
#include "functions.h" 
 
//Global Variables 
extern float rdm_current_speed; 
extern float rdm_inc_val; 
extern float filt_aut; 
extern float spec; 
 
void init_rdm_pwm(void) { 
    // Initialize digital output 
    ANSELEbits.ANSE4 = 0;      // No analog 
    TRISEbits.TRISE4 = 0;      // Output (P64) 
  
    /* 
    ANSELBbits.ANSB13 = 0;      // No analog 
    TRISBbits.TRISB13 = 0;      // Output (P28) 
    */ 
  
    // Initialize RPB14 for OC1 
    ANSELBbits.ANSB14 = 0;      // No analog 
    TRISBbits.TRISB14 = 0;      // Output 
    RPB14Rbits.RPB14R = 0b1100; // P29 
  
    // Initialize OC1 
    OC1CONbits.SIDL = 0; 
    OC1CONbits.OC32 = 0; 
    OC1CONbits.OCTSEL = 0; 
    OC1CONbits.OCM = 0b110; 
    OC1CONbits.ON = 1; 
  
    // Set motor speed off 
    PR2 = (SYS_CLK / (2 * PWM_FREQ)) - 1; 
    OC1RS = 0; 
} 
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// Set weapon motor duty cycle 
void dc_rdm_pwm(float duty) {  
    if (duty > 0.15) { 
        duty = 0.15; 
    } 
    else if (duty < -0.15) { 
            duty = -0.15; 
    } 
 
    //added by tristin for soft start 
    if (duty < (rdm_current_speed - rdm_inc_val)) { 
        rdm_current_speed = rdm_current_speed - rdm_inc_val; 
    } 
    else if (duty > (rdm_current_speed + rdm_inc_val)){ 
        rdm_current_speed = rdm_current_speed + rdm_inc_val; 
    } 
    else { 
        rdm_current_speed = duty; 
    } 
  
    if (filt_aut == 1 || (filt_aut == 2 && spec == 0)) { 
        //Determine direction of motors "0" for reverse "1" for forward - CAN BE ALTERED IF  

NEEDED 
        if (rdm_current_speed >= 0) { 
            dig_rdm_pwm(1); 
        } 
        else { 
            dig_rdm_pwm(0); 
        } 
    } 
  
    OC1RS = (PR2 + 1) * (fabs(rdm_current_speed)); 
} 
 
// Set direction of weapon (1 = forward, 0 = backward) 
void dig_rdm_pwm(int forward) { 
    PORTEbits.RE4 = forward; 
} 
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9.1.2.13 OC2_LDM_PWM.c 

// Include Header Files 
#include <stdlib.h> 
#include <math.h>       //for fabs() 
#include <p32xxxx.h> 
#include "defines.h" 
#include "functions.h" 
 
extern float ldm_current_speed; 
extern float ldm_inc_val; 
extern float filt_aut; 
extern float spec; 
 
void init_ldm_pwm(void) { 
    // Initialize digital output 
    ANSELBbits.ANSB9 = 0;      // No analog 
    TRISBbits.TRISB9 = 0;      // Output (P28) 
  
    // Initialize RPD5 for OC2 (THIS SHOULD BE RPB6 ON CONTROL BOARD) 
    //ANSELDbits.ANSD5 = 0;      // No analog 
    TRISBbits.TRISB6 = 0;        // Output 
    RPB6Rbits.RPB6R = 0b1011;    // P17 
  
    // Initialize OC1 
    OC2CONbits.SIDL = 0; 
    OC2CONbits.OC32 = 0; 
    OC2CONbits.OCTSEL = 0; 
    OC2CONbits.OCM = 0b110; 
    OC2CONbits.ON = 1; 
  
    // Set motor speed off 
    PR2 = (SYS_CLK / (2 * PWM_FREQ)) - 1; 
    OC2RS = 0; 
} 
// Set weapon motor duty cycle 
void dc_ldm_pwm(float duty) { 
    if (duty > 0.15) { 
        duty = 0.15; 
    } 
    else if (duty < -0.15) { 
            duty = -0.15; 
    } 
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    //added by tristin for soft start 
    if (duty < (ldm_current_speed - ldm_inc_val)) { 
        ldm_current_speed = ldm_current_speed - ldm_inc_val; 
    } 
    else if (duty > (ldm_current_speed + ldm_inc_val)){ 
        ldm_current_speed = ldm_current_speed + ldm_inc_val; 
    } 
    else { 
        ldm_current_speed = duty; 
    } 
  
    if (filt_aut == 1 || (filt_aut == 2 && spec == 0)) { 
        //Determine direction of motors "0" for reverse "1" for forward - CAN BE ALTERED IF  

NEEDED 
        if (ldm_current_speed >= 0) { 
            dig_ldm_pwm(0); 
        } 
        else { 
            dig_ldm_pwm(1); 
        } 
    } 
  
    OC2RS = (PR2 + 1) * (fabs(ldm_current_speed)); 
} 
 
// Set direction of left drive motor (1 = forward, 0 = backward) 
void dig_ldm_pwm(int forward) { 
    PORTBbits.RB9 = forward; 
} 
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9.1.2.14 OC3_WM_PWM.c 

// Include Header Files 
#include <stdlib.h> 
#include <math.h>       //for fabs() 
#include <p32xxxx.h> 
#include "defines.h" 
#include "functions.h" 
 
//Global Variables 
extern float wm_current_speed; 
extern float wm_inc_val; 
extern float filt_aut; 
 
// Initialize weapon motor PWM module 
void init_wm_pwm(void) {  
    // Initialize PWM pins 
    TRISDbits.TRISD5 = 0;      // Output 
    RPD5Rbits.RPD5R = 0b1101;  // P23 
 
    // Initialize oscillator 
    OSCCONbits.COSC = 0b111;    // 8 MHz clock, maybe? 
    OSCTUN = 0;                 // Keep it at 8 MHz, don't tune it up or down 
  
    // Initialize Timer2 
    // Input to timer 2 is clock frequency / 4 (8 MHz/4 = 2 MHz) 
    T2CONbits.SIDL = 0; 
    T2CONbits.TGATE = 0; 
    T2CONbits.TCKPS = 0b000;    // 1:1 prescale value (2 MHz / 1 = timer ticks at 2 MHz) 
    T2CONbits.T32 = 0; 
    T2CONbits.ON = 1; 
  
    // Initialize OC9 
    OC9CONbits.SIDL = 0; 
    OC9CONbits.OC32 = 0; 
    OC9CONbits.OCTSEL = 0; 
    OC9CONbits.OCM = 0b110; 
    OC9CONbits.ON = 1; 
  
    // Set motor speed off 
    PR2 = (SYS_CLK / (2 * PWM_FREQ)) - 1; 
    OC9RS = 0; 
} 
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// Set weapon motor duty cycle 
void dc_wm_pwm(float on) { 
  
    float duty; 
  
    if (on == 1) { 
        duty = 0; 
    } 
    // 7700 
    // 2 
    else if ((on != 1) && (on != 0)) { 
        duty = 0.10; 
    } 
  
    /* 
    //added by tristin for soft start 
    if (duty < (wm_current_speed - wm_inc_val)) { 
        wm_current_speed = wm_current_speed - wm_inc_val; 
    } 
    else if (duty > (wm_current_speed + wm_inc_val)){ 
        wm_current_speed = wm_current_speed + wm_inc_val; 
    } 
    else { 
        wm_current_speed = duty; 
    } 
 
    OC9RS = (PR2 + 1) * (fabs(wm_current_speed)); 
     * */ 
  
    OC9RS = (PR2 + 1) * duty; 
  
} 
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9.1.2.15 UART4.c 

// Include Header Files 
#include <p32xxxx.h> 
#include "defines.h" 
 
// Initialize UART1 module 
void init_UART4(void) {  
    // Initialize pin for RX 
    U4RXRbits.U4RXR = 0b1000;    // Set UART1 RX to RPF3 
    TRISFbits.TRISF3 = 1;       // Input 
  
    //U1MODEbits.SIDL = 0; 
    int long pbClk = SYS_CLK / 2; 
    U4MODEbits.BRGH = 0; 
    U4BRG = pbClk /(16 * 9600) - 1; 
    U4STAbits.UTXEN = 1;        // Enable TX pin 
    U4STAbits.URXEN = 1;        // Enable RX pin 
    U4MODEbits.PDSEL = 0b00; 
    U4MODEbits.STSEL = 0; 
    U4MODEbits.ON = 1;          // Enable 
  
    // Enable interrupts 
    IFS5CLR = _IFS5_U4RXIF_MASK; 
    IPC42bits.U4RXIS = 1;   // Priority (highest?) 
    IPC42bits.U4RXIP = 0;   // Sub priority? 
    IEC5bits.U4RXIE = 1;     // Enable IC1 interrupts 
} 
 
int rx4(){ 
    while(!U4STAbits.URXDA); 
    return U4RXREG; 
} 
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9.2 Board schematics 

9.2.1 Control Board schematics 
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9.2.2 Power Board schematics 
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9.3 Useful links 

Link for Harmony tutorials: 

http://microchipdeveloper.com/harmony:new-harmony-project-details 

Link for the PIC32MZ datasheet: 

http://ww1.microchip.com/downloads/en/DeviceDoc/60001320E.pdf 

Link for Drive Motor Controller Datasheet: 

https://www.robotshop.com/media/files/images3/md30cusersmanual_1_.pdf 

Link for Opto-Isolator Datasheet: 

https://www.mouser.com/datasheet/2/427/tcmt1100-103040.pdf 
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