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The goal of the Automatic Range Finding Bow Sight project is to integrate a rangefinder into the 

sight system of a compound bow and autonomously adjust a single sight pin based on the calculated 

arrow trajectory to assist an archer in striking the bullseye of their target.  To do this, the user inserts the 

average projectile speed of their bow, aims at their target, and presses a button to initiate the range finding 

sequence.  The anticipated location of impact at the measured distance is then calculated.  The sight pin 

then adjusts to the corresponding location.  The user then uses it to aim the bow and assist them in 

striking the bullseye of their target.  My primary roles in this senior design project have been to design 

and program the range finding system, determining the arrow trajectory at varying speeds, and assisting in 

calculating the necessary sight pin movements to compensate for the arrow trajectory.  

 The major component that is used to measure the distance between the user and the target is the 

TeraRanger Evo 60m time of flight sensor.  This sensor operates by emitting a focused beam of light from 

an LED and measuring the time that it takes for the beam to project out to the target and reflect back to 

the sensor.  This measured length of time is then divided by two and multiplied by the speed of light to 

determine the distance from the user to the target in millimeters.  Being that the sensor is a “free running” 

device, it continually executes this function until it receives a trigger reading command from the master 

device.  In this case, the master device is a PIC microcontroller and data is transferred between the 

microcontroller and sensor via I2C communication protocol.  Once the user presses the corresponding 

button, the microcontroller sends a trigger reading command to the sensor to which the sensor sends three 

data bytes back.  These three data bytes include the distance measurement in millimeters and the 

checksum.  The distance bytes are then stored in a single variable and then converted to yards to be 

displayed and used to determine the sight pin location.  

 The arrow trajectory calculations were developed through the use of an online ballistics 

calculator, and then tested and verified by shooting multiple bows of different speeds at varying distances 

and comparing the results to the calculations.  Using these results and measurements taken from a 

presighted in bow, my group member and I were able to calculate the resolution at which the sight pin is 

required to adjust per yard the user is away from the target.   

 Along with these roles, I also assisted my fellow group members with various aspects of their 

responsibilities such as drawing wiring blueprints, assisting in the design of the case, and general program 

troubleshooting. 

- Dillon Denny 

Student# 2899285 
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My design contributions for the project Automatic Range Finding Bow Sight were the user 

interface for operator control and 3D design/printing. The goal of our project was to allow a user to enter 

the speed that their bow shoots their chosen arrow weight, then allow them to obtain the range to their 

target using an onboard rangefinder. Once both the speed and range were obtained the data was used to 

adjust the sight pin to the appropriate bullseye location.  

The user interface of our design consisted of a 16x2 LCD display and four push-buttons. 

Communication with the screen was performed using Parallel Master Port and the four buttons were 

wired to the processor so that when they were pressed, they tied the input to ground and performed the 

necessary action. Four screens were programmed for the LCD one that displayed speed, one that 

displayed the last range obtained by the rangefinder, a “main” or home screen and one that displayed the 

new range and drop when the rangefinder was triggered. The push-buttons operations consisted of raising 

and lowering the speed in increments of 10 (2 buttons), toggling between the displays and triggering the 

rangefinder. 

 The 3D design of the case and mounting components was done using an open source CAD 

software designed for creating 3D printable STL files. The components that were printed consisted of the 

case that housed all of the components, the mounting plate for the motor and cable guides and all of the 

components necessary to attach the project to a compound bow. The case dimensions specified for the 

project were 5”x5”x5”, both the length and height are right at the 5” mark but the width was reduced to 

~2”. All of the hardware to mount the sight to a bow was designed to match the dimensions of a store-

bought sight and allows it to be universally used on a wide range of compound bows. When shooting the 

bow using the sight, zeroing the bow was quick and easy with three screws for adjustment and should 

hold zero once mounted. 

 My final contributions to this project were the organization of written elements and helping with 

necessary testing.  

- Garrett Gill 

Student# 2735113 
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 My design contributions for the Automatic Range Finding Bow Sight project were writing up the 

code to handle the linear interpolation of data from the table of ranges, speed, and pin sight movement, as 

well as consolidating everyone’s individual together into one working code. I also designed the 

schematics and routed the PCB, as well as soldered all the components onto the board. The goal of our 

project was to allow a user to enter the speed that their bow shoots their chosen arrow weight, then allow 

them to obtain the range to their target using an onboard rangefinder. Once both the speed and range were 

obtained, the data was used to adjust the sight pin to the appropriate bullseye location.  

 The lookup table was handled using arrays. One array contained six values at increments of 10 

starting at 0. This was used for the distance in yards for our lookup table. Nine arrays were needed to 

cover the nine different bow speed options that we had obtained data for. These arrays contained the data 

on how far the arrow would drop in inches, depending on the distance. The last group of nine arrays were 

needed to reflect how many microseconds were needed in the PWM signal to step the motor the correct 

amount. As for the actual linear interpolation code, the speed of the arrow set is used to assign the correct 

pin sight array and motor position array through the use of case statements. Then, the code runs through 

the distance array comparing the distance measured from the range finder to main distance array to what 

values in the group of arrays to use. The code then runs a standard linear interpolation to obtain the arrow 

drop based on the pin sight location array and how far to step the motor based on the motor position array. 

As for consolidating the codes, it was mostly just making sure variables matched up, but also creating 

functions to call for each button press to make reading the code easier. 

 The schematics were done in EAGLE. Any parts not found in the library were typically obtained 

via Mouser. The circuit boards were printed from OSH Park. All of the surface mount parts were soldered 

using solder paste and then heating them in a reflow oven. The through hole parts were soldered by hand. 

A few errors were made visible only after populating the board. Some were just components being one 

package size off of the part available, which was an easy fix, while other errors were only resolvable via 

sky wiring and cutting traces. All troubleshooting of PCB errors was done entirely by me and I was the 

sole person to verify that any of the systems on the PCB worked as intended. 

- Cory Verba 

Student# 3014329 
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Abstract: 

 With the growing popularity of archery, a system designed to help an archer achieve the 

best shot possible becomes necessary. The Automatic Range Finding Bow Sight is a system that 

consists of a single pin sight controlled by a servo motor. The servo motor controls the sight pin 

by rotating a drive wheel that will move the pin up or down. The sight pin movement is based on 

a reading obtained by a built-in rangefinder and speed data input by the user. This data will then 

be compared to programmed lookup tables in order to find the appropriate pin position. After the 

sight pin has been adjusted, the user should be confident they will hit their target. 

 Rangefinder will quickly obtain distance when triggered 

 The servo motor will accurately adjust the sight pin up or down 

 Interpolation between lookup table rows will ensure accurate movements 

Authors: DD, GG, DK, CV 

Needs Statement: 

According to Randy Ulmer, an author for Peterson’s Bow Hunting Magazine, the use of 

laser rangefinders is becoming more commonly used in order to position and gauge distances as 

a guideline for when a target comes into sight. In the article, Ulmer describes the difficulties of 

sighting a bow through the use of the human eye, increases at distance, elevation change, aiming 

cross ravines or canyons, and aiming in low light situations. The above situations could provide 

the difference between a kill shot and unnecessarily injuring an animal. A solution that could 

automatically position the sight upon receiving the input signal from the rangefinder would be 

helpful at ensuring a more accurate sight without the use of multiple devices or worrying about 

errors due to distance, elevation, or low light [1]. 

Authors: DD, GG, DK, CV 
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Objective Paragraph: 

The objective of this project is to design and prototype a bow sight that will automatically 

account for the distance of a target. The device will need to be able to accurately adjust the pin 

sight within a few seconds after acquiring the distance to the target. This will prevent the need 

for multiple tools and reduce unnecessary error. The device will be weatherproof, meaning it will 

be able to withstand rain, snow and temperatures ranging from -30° F to 150°F so that it can be 

used for varying hunting seasons and in different global locations. The device will need to be 

able to withstand the shock from the shot of the arrow. The device will also need to be compact, 

no larger than 5”x5”x5” in order to not add too much weight or obstruct the user’s view.  The 

sight will also need to be able to mount to the original sight location on the bow. 

Authors: DD, GG, DK, CV 

Research Survey: 

With the growing popularity of bow hunting, the need for additional tools such as a 

rangefinder in conjunction with the mounted sighting system is becoming more common. The 

purpose of the proposed model is to provide a quick and optimal solution to the sighting system 

of a compound bow used for hunting by combining two separate tools into one device that can be 

activated before each shot. The model would allow the rangefinder to be integrated into the 

sighting system itself, therefore allowing the sight to measure the distance for the user. By 

utilizing a single pin sight, the system will have the ability to adjust the sight based on the 

measured distance. This sight system will eliminate any need to “sight in” the bow, saving the 

user a large amount of time. Having a sight that moves according to the calculated arrow flight 

path will lead to a more accurate shot placement reducing the chance of unnecessarily maiming 

the target. 
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  Limitations of current technology are that it requires the use of a manual rangefinder 

and one of several different types of optics to be “sighted in” or manually adjusted to user 

defined distances to account for the projectile drop of the arrow. According to Bob Robb, the 

three most common types of sights used for hunting are the fixed-pin, moveable-pin and 

pendulum sights. Fixed-pin sights have several pins that can be adjusted to specific distances. 

This in turn makes it easy to quickly adjust to one of the other pins if the target is moving. The 

movable-pin sight is a sight with a single pin that can be adjusted for different distances. The 

proposed concept plans to utilize this type of sight and move the pin electronically using a motor. 

The pendulum sight is best used by tree-standers because it employs the use of a hinge allowing 

the sight to swing freely to compensate for the height of the tree stand [2].  

 All three of the above sights require that the user “sight” them in to specific user defined 

distances before use.  According to Todd Kuhn from Outdoor Life, the normal process of 

“sighting in” a bow begins by, “starting at 20 yards and moving back 1 yard with each successive 

shot.” This is done until the arrow no longer strikes the target area. He then states, “Write this 

distance down. Now you have a range of yardages at which your 20-yard pin is capable of 

delivering an arrow. Repeat this process for each pin” [3]. This method requires the user to take 

multiple test shots to learn what the drop of the arrow is and then adjust the sight pins to specific 

shot distances. This takes a lot of the user’s time and requires that every test shot be perfect to 

get the pins adjusted properly.  

Another problem with the current technology is that the distance between the user and the 

target is often difficult to determine. This requires the user to either judge the distance by eye or 

use a distance measuring tool such as a rangefinder. In a hunting application, it quickly becomes 

a rather tedious task to measure the distance to the target, put down the rangefinder, pick up the 
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bow, aim, and then shoot, and often there is not enough time to go through this entire process. 

Therefore, most archers opt to judge the distance by eye which often leads to an improperly 

placed shot.  

An existing technology that allows the rangefinder to be mounted directly to the sight 

system is the Dead-On Range Finder. This device attaches a manual rangefinder into the outer 

hoop of the multi-pin sight eliminating the need for a separate rangefinder.  While reducing the 

time to find the range of your shot, the Dead-On Rangefinder still requires that the sight be 

“sighted in” prior to use. The use of this device also requires the user to be able to line up a 

“belly line” and a “back line” in order to measure the distance to the target which could be 

difficult if the target is not broadside or if the target is moving. Manual measurement means 

increased chance of error due to relying on the user’s judgement [4].  

While plenty of technology exists today that uses parts of our concept, none have 

managed to do everything proposed. Most sight systems use multiple pin sights to determine 

where to aim depending on distances. One example of this is patent US6634111B2 filed by Paul 

M. Lorroco for “Multiple pin sight for an archery bow” [5]. This patent is for ranged sights 

having at least two pin sights to assist in aiming. The proposed concept will have a single pin, 

which will be adjusted through the use of a servo motor based on the data read back from the 

rangefinder. The pin sight adjusting automatically sets this concept apart from others. As 

mentioned previously, the Dead-On Range Finder is a rangefinder made to go on a sight, but the 

user still has to “sight in” beforehand and it does not adjust the pin sights depending on the 

distance.  

Another system that was designed was the Auto-Correcting Bow Sight [6]. This system 

was designed by Timothy M. Gorsuch and James A. Buckley and had the ability to “perform 
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situation-specific aim evaluations and corrections to correct or compensate for situation-specific 

shooting and environmental factors, at a given time and on a per-shot basis” [6]. This system 

utilized multiple measurement devices, such as a rangefinder, an inclinometer, and an 

anemometer to calculate the arrow’s flight path. An electronic, translucent display would then 

illuminate with an LED dot to be used as the sight indicator. The dot would then be adjusted to 

compensate for the distance of the target, angle of the shot, and windage. Unfortunately, the 

product was abandoned in 2012 before being marketed. This system operates in a very similar 

manner to the proposed model with one major difference. The model proposed will utilize a 

mechanical sight system that will be programmed to adjust the single pin sight on the y-axis to 

compensate for the calculated arrow flight path rather than using an electronic displayed sight.  

“Laser bow sight apparatus” filed by Blair J. Zykan and Jeremy G. Dunne is one of the 

closest patents to the proposed design, except it utilizes a multiple pin sight. The “Laser bow 

sight apparatus” has a rangefinder that utilizes a laser to determine the distance to the target by 

reading the light reflected from the laser. This information is then processed by a central 

processing unit to determine which sight pin LEDs the system will light up [7]. The design will 

use similar technology to determine distance but instead will use the processed information to 

power a motor and adjust the single pin sight accordingly. 

Another system that measures distance electronically and adjusts where to aim is the 

ArcAid system which is intended to aid an amateur archer in hitting their target with each shot. 

“The Arc Aid interface shows you how to shoot to hit the target by providing continuous 

feedback on your actions. In this way, the user will be able to learn how to master the bow in a 

step-by-step way.” This system uses multiple sensors to monitor the angle of the bow, the 

tension on the string and the distance to the target. By combining the feedback from these 
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sensors, the ArcAid is able to display “two arcade style bars indicate the angle of the bow and 

the force on the string. Both bars and the bullseye on the smartphone are divided in color zones 

to give the user visual feedback of where the arrow will probably hit. As with other (arcade) 

games you have to try to get everything into the green zone when launching for a perfect shot” 

[8]. Similarly, to the ArcAid, the proposed device will also have to be programmable so that the 

bow’s arrow speed and arrow weight can be entered so that the projectile drop can be accurately 

accounted for based on the distance to the target. Where this device will differ is it will be 

purposed as a hunting device and not as a training device. Use as a hunting device will mean the 

proposed device will need to be rugged as well as capable of mounting to a variety of compound 

bows. The ability to be universally mounted will require the device to contain all of the 

necessary sensors and the sight in a compact design that will remain as unobtrusive to the overall 

use of the bow as possible.  

Despite being thousands of years old, bow hunting is still extremely popular and 

continues to see growth today. This growth realizes the need for additional equipment and tools 

and as such complex and user-friendly sighting systems are becoming more and more popular 

while traditional multi pin sighting systems are becoming outdated. The designed system 

employs the use of existing technology to not only save time in sighting in the bow but also to 

help hunters shoot more accurately in the field to help prevent maiming the target. The system 

consists of a rangefinder integrated into a single pin sight that will automatically adjust the 

position of the pin based on data received from the rangefinder. Technology similar to the 

proposed system exists but none have successfully done what this system intends to do. Other 

technology is limited in various ways. Robustness, the need to sight in and the continued use of 
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multi pin sights are all areas where other systems have failed. This design intends to not only 

solve these problems, but also become a marketable and reliable system.   

Authors: DD, GG, DK, CV 

Marketing Requirements: 

 Must be easily programmable to the user’s settings. 

 Mounting must be convenient and non-obstructive. 

 Must be robust and durable. 

 Must have a power storage device capable of multiple uses. 

 Must quickly and accurately measure distance and adjust sight position 

 Sight must be easily seen in low light conditions.  

Authors: DD, GG, DK, CV 
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Objective Tree: 

 

 

Figure 1: Objective Tree 
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The Objective Tree shows that the three main objectives that need to be accomplished are 

ease of use, accuracy of the rangefinder and sight adjustment, and overall reliability. Under easy 

to use, some minor objectives would be making sure the rangefinder has limited controls, 

requires minimal user input, utilizes the existing stock mounting location on the bow, and is 

compact. The focus on compactness would be the rangefinder being lightweight and not be 

obtrusive to the user’s line of sight. Under accurate, the minor objectives would be minimizing 

the error in the sight adjustment, the error in distance calculation and the error in the arrow’s 

flight path, as well as making sure the rangefinder still has a quick operating time. Under 

reliable, the minor objectives would be making sure the rangefinder can have a long battery life, 

is visible in low light, and can withstand the environment, such as remaining operable despite 

extreme temperatures and any kind of weather. 

Authors: DD, GG, DK, CV 
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Engineering Requirements: 

 

Engineering Requirements 

Requirement Justification Marketing 

Requirement 

Rangefinder must be accurate 

within ±2.5 yards of target 

distance. 

This is necessary to accurately predict 

the trajectory of the arrow. 5 

The rangefinder should be 

accurate between 10 and 50 

yards. 

This is the range necessary to ensure 

that the rangefinder is accurate for the 

entire range of sight pin adjustment. 

5 

The sight pin should adjust 

between 15 to 45 yards. 

This is the standard range an archer 

may shoot from. 
5 

Sight pin needs to display to the 

user the position to hit the target 

within ±6 inches. 

This will give the user the best chance 

of accurately hitting the target. 5 

The sight movement will be 

divided into a minimum of 50 

increments. 

This will allow the sight pin to be 

adjusted by 1 mm with each position. 5 

The sight must utilize the stock 

bow sight mounting location. 

This allows the sight to be mounted to a 

variety of bows as an aftermarket 

attachment. 

2 

User interface must be backlit. This will allow for use in low light 

conditions like dusk or dawn. 
6 

User interface must be easy to 

use and intuitive 

Limited user interface will provide 

minimal error from the user. 
1 

Must hold enough power to be 

used for 3 hours including sleep 

time. 

This will allow it to last the duration of 

a typical hunting trip. 4 

Rangefinder and sight pin need 

to complete their operations 

within 10 seconds. 

This will allow the user to line up the 

sight right before taking the shot and 

reduce the chance of the target moving. 

5 

The sight must be durable 

enough to withstand the adverse 

conditions that can be 

experienced while hunting. 

Will need to be able to withstand 

weather changes and being bumped 

against other items. 
3 

Marketing Requirements: 

 Must be easily programmable to the user’s settings. 

 Mounting must be convenient and non-obstructive. 

 Must be robust and durable. 

 Must have a power storage device capable of multiple uses. 

 Must quickly and accurately measure distance and adjust sight position 

 Sight must be easily seen in low light conditions. 

 

Authors: DD, GG, DK, CV 
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Engineering Analysis: 

 

Speed of the Bow: The speed of the bow will be calculated with the use of a 

chronometer. This device will measure the time that it took the arrow to pass between 

two sensors at a specific distance and calculate the speed of the arrow. Using a 

chronometer will ensure that we are not relying on the average speed given by the bow 

manufacturer, but instead using the actual speed with the users desired arrow weight. 

Distance to Target: For the engineering requirement of ±2.5 yards of target distance, a 

range finding sensor will be used that will provide input to the processor for further 

calculations. 

Range of Sight Pin Movement: The range of the sight pin will be the distance from the 

bottom of the sight ring to the top of the sight ring. Assume this distance is variable D, 

which for this design will be 2 inches or 50.8 mm.  

Sight Pin Resolution: The variation in sight pin position was found by measuring the 

sight pin positions of a currently sighted in compound bow. The measured bow shot 

arrows at 340 feet per second and contained 3 sight pins that were sighted in at distances 

of 20, 30, and 40 yards. An arrow being shot from this bow was found to drop 9 inches 

from 20 yards to 30 yards. From 30 to 40 yards, the arrow was found to drop 11 inches. 

Therefore, the average drop of an arrow can be found to be about 10 inches per 10 yards 

equating to a drop of about 1 inch per yard. Thus, a linear approximation of the sight pin 

position can be used to maintain ±6” accuracy out to 45 yards. The vertical distance 

between the 20 and 30 yard pins was measured and found to be approximately 8.7 mm 

and the distance between the 30 and 40 yard pins was found to be approximately 10.3 

mm. The average between these two measurements equates to roughly 9.5 mm. 

Therefore, the change in vertical position of the sight pin equates to approximately 0.95 

mm per yard. This value can be considered the pin movement resolution factor and is 

represented as variable X. This computation will be repeated to find the pin movement 

resolution factor for various bow speeds. 

Resolution of Servo Required: The number of positions the motor needs to have in 

order to travel the whole range of the sight pins movement can be calculated as shown in 

Eq.1 assuming N is the variable for number of locations necessary within 180 degrees of 

rotation. 

N = 2 ∗ (D
X⁄ ) (1) 

Size of the Drive Wheel: The drive wheel attached to the motor will have to have a 

circumference equal to two times D. This will ensure that when the motor rotates 180 

degrees, the sight pin moves from the bottom to the top of the sight ring. The radius of 

the wheel can be found using Eq.2. 

r = D
π⁄ (2) 

  



11 
 

Interpolation Between Two Positions: A linear interpolation will need to be performed 

on the distances in the lookup table to calculate the correct pin sight location. Y is the 

calculated pin sight location. X is the distance measured from the rangefinder. X1 is the 

closest distance on the lookup table that is less than X and X2 is the closest distance on 

the lookup table that is greater than X. Y2 is the pin sight position that corresponds to the 

distance X2 and Y1 is the pin sight position that corresponds to X1 

y = y1 + (x − x1)
(y2 − y1)

(x2 − x1)
 (3) 

Torque will be assumed negligible  

Table 1: Calculations and conversions for engineering analysis 

Attribute Variable Formula Value Unit Value Unit 

RF Accuracy R ------ 2.5 yds 2.286 m 

Speed of Light C ------ 3.28E+08 yds/sec 3.00E+08 m/s 

Frequency F 1/S 6.56E+07 Hz 6.56E+01 MHz 

Distance D ------ 2 in 50.8 mm 

Resolution X ------ 0.0393701 in 1 mm 

Positions N 2*(D/X) 101.5999451 locations 101.5999451 locations 

Radius r D/pi 0.6366197731 in 16.17014224 in 

Diameter d 2*r 1.273239546 in 32.34028447 in 

 

Energy Storage Device Power: The power required of the energy storage device will be 

determined based on the max draws by the processor, rangefinding emitter and receiver, 

the motor and LCD display. The calculations related to power are shown in Table 2. 

Amp Hours: 

Ah = 3hours ∗ 0.602A = 1.806Ah (4) 

Spec over by ~20%: 

1.806A/0.8 = 2.25Ah (5) 
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Table 2: Power Calculations 

Component V 

Max I 

(A) Min I (A) 

Max P 

(W) Min P (W) 

R.F. Emitter & 

Receiver 5.25 0.33 0.09 1.7325 0.4725 

Processor 3.3 0.1 0.00000005 0.33 0.000000165 

LCD Display 2.4 0.0079 0.0038 0.01896 0.00912 

 5.5 0.0141 0.0069 0.07755 0.03795 

Servo motor 6 0.15 0.008 0.9 0.048 

MCP73830 6 0.000015 0.0000005 0.00009 0.000003 

Switching Regulator 5 0.00003 0.000001 0.00015 0.000005 

  Total:  Total:  

  0.602 A 3.05925 W 

 

Pin Position Calculation: Using data collected from a bow with a speed of 340fps and 

comparing it to an online ballistics’ calculator, to help ensure both sources are accurate, 

the drop patterns of various bow speeds were determined and collected. This data was 

then graphed to visually confirm the assumptions that bows with higher speeds would 

drop less over a given distance. This was confirmed. 

 

 
Figure 2: Arrow drop relative to bow speed and distance 

Next the data was used to calculate the appropriate pin positions for the sight system. 

Correct motor positions were calculated in the following table. Using the speed and drop 

data, the necessary angle of release to compensate for projectile drop was calculated for 

each speed and distance in 10fps and 10 yard increments. The pin sight will be physically 

zeroed at the 15 yard distance for a given bow. This, was used to calculate the height 

adjustment from the ground at the target, from the zeroed position and scaled back to 
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determine the distance the motor must move from the zeroed position. This distance was 

converted into mm and then into microsecond adjustments to be used by the motor in the 

form of a pulse width modulated signal with (M/20,000)*100% duty cycle. 

 

Table 3: Arrow drop conversion to motor positions 

 Drop 

[in] 

Dist. 

[yds] 

Dist.  

[in] 

Angle of 

Release 

Height 

Adjust 

from 

Ground 

Zero 

Height 

Comp. 

Adjusted 

Height  

Height 

Adjust 

[mm] 

Motor 

Position 

 Drop 

[in] 

Dist. 

[yds] 

Dist. 

[in] 
Θ X [in] X0 X' X'[mm] M [us] 

300 5 15 540 0.009258 0.268518 0.268518 0 0 2300 

300 8 20 720 0.011110 0.322222 0.268518 0.053703 1.364074 2252 

300 18 30 1080 0.016665 0.483333 0.268518 0.214814 5.456296 2107 

300 34 40 1440 0.023606 0.684722 0.268518 0.416203 10.57157 1925 

300 52 50 1800 0.028880 0.837777 0.268518 0.569259 14.45918 1788 
          

310 4.5 15 540 0.00833 0.241666 0.241666 0 0 2300 

310 7 20 720 0.009721 0.281944 0.241666 0.040277 1.023055 2264 

310 17 30 1080 0.015739 0.456481 0.241666 0.214814 5.456296 2107 

310 31 40 1440 0.021524 0.624305 0.241666 0.382638 9.719027 1956 

310 50 50 1800 0.027770 0.805555 0.241666 0.563888 14.32277 1793 
          

320 4.5 15 540 0.00833 0.241666 0.241666 0 0 2300 

320 7 20 720 0.009721 0.281944 0.241666 0.040277 1.023055 2264 

320 16 30 1080 0.014813 0.42962 0.241666 0.187962 4.774259 2131 

320 29 40 1440 0.020136 0.584027 0.241666 0.342361 8.695972 1992 

320 46 50 1800 0.025549 0.741111 0.241666 0.499444 12.68588 1851 
          

330 4.5 15 540 0.00833 0.241666 0.241666 0 0 2300 

330 7 20 720 0.009721 0.281944 0.241666 0.040277 1.023055 2264 

330 15 30 1080 0.013887 0.402777 0.241666 0.161111 4.092222 2155 

330 28 40 1440 0.019441 0.563888 0.241666 0.322222 8.184444 2010 

330 43 50 1800 0.023884 0.692777 0.241666 0.451111 11.45822 1894 
          

340 3.5 15 540 0.006481 0.187962 0.187962 0 0 2300 

340 6 20 720 0.00833 0.241666 0.187962 0.053703 1.364074 2252 

340 15 30 1080 0.01388 0.402777 0.187962 0.214814 5.456296 2107 

340 26 40 1440 0.018053 0.523611 0.187962 0.335648 8.525462 1998 

340 41 50 1800 0.02277 0.660555 0.187962 0.472592 12.00385 1875 
          

350 3.5 15 540 0.006481 0.187962 0.187962 0 0 2300 

350 6 20 720 0.00833 0.241666 0.187962 0.053703 1.364074 2252 
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350 14 30 1080 0.012962 0.375925 0.187962 0.187962 4.774259 2131 

350 25 40 1440 0.017359 0.503472 0.187962 0.315509 8.013935 2016 

350 39 50 1800 0.021663 0.628333 0.187962 0.44037 11.18540 1904 
          

360 3 15 540 0.005555 0.161111 0.161111 0 0 2300 

360 5 20 720 0.006944 0.201388 0.161111 0.040277 1.023055 2264 

360 13 30 1080 0.012036 0.349074 0.161111 0.187962 4.774259 2131 

360 23 40 1440 0.015970 0.463194 0.161111 0.302083 7.672916 2028 

360 37 50 1800 0.020552 0.596111 0.161111 0.435 11.049 1909 
          

370 3 15 540 0.005555 0.161111 0.161111 0 0 2300 

370 5 20 720 0.006944 0.201388 0.161111 0.040277 1.023055 2264 

370 12 30 1080 0.011110 0.322222 0.161111 0.161111 4.092222 2155 

370 22 40 1440 0.015276 0.443055 0.161111 0.281944 7.161388 2046 

370 34 50 1800 0.018886 0.547777 0.161111 0.386666 9.821333 1952 
          

380 3 15 540 0.005555 0.161111 0.161111 0 0 2300 

380 5 20 720 0.006944 0.201388 0.161111 0.040277 1.023055 2264 

380 12 30 1080 0.011110 0.322222 0.161111 0.161111 4.092222 2155 

380 21 40 1440 0.01458 0.422916 0.161111 0.261805 6.649861 2064 

380 32 50 1800 0.017775 0.515555 0.161111 0.354444 9.002888 1981 

 

Authors: DD, GG, DK, CV 

Level 0 Hardware Diagram: 

 

Figure 3: Level 0 Hardware Block Diagram 

The above figure is a basic Level 0 diagram of our concept. The main idea is that two 

inputs, distance to target, and the speed of the arrow on the users bow, will enter our proposed 

system and the output will be the sight properly adjusting for a clean shot.  

Authors: DD, GG, DK, CV 
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Level 1 Hardware Diagram: 

 

 
 

Figure 4: Level 1 Hardware Block Diagram 

The above figure shows a more detailed Level 1 block diagram used to represent the 

system being proposed. The sight will work using two inputs, one provided by the operator and 

the other by triggering the rangefinder. Once the two inputs have been gathered the processor 

will then gather the current position of the motor and run the program to calculate the appropriate 

sight adjustment. Once the appropriate sight position is calculated the sight pin will be moved by 

the motor to provide the perfect shot.  

Authors: DD, GG, DK, CV 
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Level 2 Hardware Diagram: 

 

Figure 5: Level 2 Hardware Block Diagram 

The above figure shows a more detailed Level 2 block diagram used to represent the 

system being proposed. This diagram breaks down the rangefinder, sight adjustment system and 

user interface into separate components. For the rangefinder, a trigger signal controlled by the 

user will send a signal to the processor, then the emitter projects a beam of light to the target 

which reflects and is captured by the receiver module. The time between the emission and 

reception of the signal is be calculated and then passed to the processor as the acquired distance. 

The sight adjustment system consists of three components – the motor, drive system and the 

sight pin. The motor will receive a move command (either up or down) from the processor and 

will begin to rotate the drive system as necessary. The drive system will then move the sight pin 

to the necessary location for the perfect shot. The user interface will consist of several buttons 

for user input and a backlit display. The buttons will be used to adjust the speed of the bow up or 
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down, to trigger the rangefinder and to toggle through the displays. The display will be used to 

show the speed being input to the user and also return the range obtained from the rangefinder. 

Author: GG 

Table 4: Hardware Diagram User Interface functional requirements 

Module User Interface 

Designer DT03 

Inputs - Display signal from processor 

Outputs - Bow speed increase 

- Bow speed decrease 

- Change display 

Functionality Receives inputs from the processor and displays correct speed of the 

bow. Sends outputs to the processor to modify bow speed. Must be 

durable, visible in low light conditions and have resistance to various 

weather conditions. 

 

Table 5: Hardware Diagram User Interface (Buttons) functional requirements 

Module User Interface (Buttons) 

Designer DT03 

Inputs - Increase bow speed set point 

- Decrease bow speed set point 

- Scroll Displays 

- Trigger rangefinder 

Outputs - Bow speed increase 

- Bow speed decrease 

- Cycle to next display 

- Calculate distance of target 

Functionality Receives inputs from the user to increase or decrease bow speed, or 

trigger the rangefinder to obtain a distance. Sends the input from the 

user to the processor to make the necessary adjustments.  
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Table 6: Hardware Diagram LCD Display functional requirements 

Module LCD Display 

Designer DT03 

Inputs - Speed set point from processor 

- Distance obtained from processor 

Outputs - Speed value 

- Distance value 

Functionality Receives the user inputs from the processor and displays them. 

 

Table 7: Hardware Diagram Rangefinder functional requirements 

Module Rangefinder 

Designer DT03 

Inputs - Pulse/Control signal 

- Receive light beam return time 

Outputs - Distance based on laser return time 

Functionality Receives inputs from the processor and emits and receives a beam of 

light. Transmits light received information to the processor. System 

must be capable of at least a minimum of 15 yards and maximum of 45 

yards. 

 

Table 8: Hardware Diagram Rangefinder Emitter functional requirements 

Module Rangefinder Emitter 

Designer DT03 

Inputs - Signal from user trigger 

Outputs - Focused LED light signal  

Functionality Receives inputs from the user and sends light signal out towards target. 

Emitter must be capable of at least a minimum of 15 yards and 

maximum of 45 yards. 

 

Table 9: Hardware Diagram Rangefinder Receiver functional requirements 

Module Rangefinder Receiver 

Designer DT03 

Inputs - Reflected infrared light signal 

Outputs - Distance based on signal return time 

Functionality Receives reflected light signal that has returned from the target. 

Determines distance based on the time between the signal being sent 

and the signal being received. 
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Table 10: Hardware Diagram Motor and Sight functional requirements 

Module Motor and Sight 

Designer DT03 

Inputs - Motor control signal (Steps or Location) 

Outputs - Motor position to processor 

- Drive wheel to adjust pin sight position 

Functionality Receives inputs from the processor and moves motor accordingly and 

through use of a drive wheel, moves the pin sight into the correct 

position. Processor stores the last position the motor was sent to for 

reference during next position change. 

 

Table 11: Hardware Diagram Servo Motor functional requirements 

Module Servo Motor 

Designer DT03 

Inputs - Motor control signal (Steps or Location) 

Outputs - Drive wheel to adjust pin sight position 

Functionality Receives inputs from the processor and moves motor accordingly and 

through use of a drive wheel, moves the pin sight into the correct 

position. 

 

Table 12: Hardware Diagram Drive System functional requirements 

Module Drive System 

Designer DT03 

Inputs - Motor turning output 

Outputs - Sight pin adjustment 

Functionality Converts the motor’s turns into vertical movement to adjust the sight 

pin up or down. 
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Table 13: Hardware Diagram Processor functional requirements 

Module Processor 

Designer DT03 

Inputs - Bow speed increase (UI) 

- Bow speed decrease (UI) 

- Bow speed save/enter (UI) 

- Laser received signal (Rangefinder) 

- Motor feedback (Motor) 

- Power (Undecided DC voltage) 

Outputs - UI display 

- Motor adjustments 

- Laser control/pulse 

Functionality Receive inputs from various parts of the system, perform calculations 

on said systems and deliver the appropriate output signals to the UI 

and motor. Must function quickly enough to utilize the rangefinder 

signal to calculate distance to target within ± 1 yard. 

 

Table 14: Hardware Diagram Power Supply functional requirements 

Module Power Supply 

Designer DT03 

Inputs - Power Switch 

- 3.7 V Lithium Ion Battery  

- DC-DC Converter 

Outputs - 5 V with at least 1.8Ah of charge 

Functionality Provide power to various components and step the voltage up to 5 V 
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Level 1 Software Diagram: 

 

 

Figure 6: Level 1 Software Block Diagram 

The above figure shows a more detailed Level 1 block diagram used to represent the 

software being proposed. This system will use a Distance Processing system to gather the 

distance data from the laser rangefinder before sending the distance signal to the Comparison 

Processor. The Comparison Processing system will then analyze the speed input and the distance 

to find the appropriate sight pin location in the lookup table. Next, the position found by the 

Comparison Processor will be passed to the Motor Control which will adjust the pin sight to the 

appropriate position.  

Authors: DK, CV 
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Level 2 Software Diagram: 

 

Figure 7: Level 2 Software Diagram 

The above figure shows a more detailed Level 2 State diagram used to represent the 

software being proposed. The program starts by initializing all of the variables and functions. 

The program will then sit idle until one of two things occur. If the operator presses a button to 

adjust the speed of the bow, the program will have to process that change and update the variable 

used for speed. Then, it goes back to idling until either the speed is changed again, or the 

operator presses the button to trigger the rangefinder. The program will send a LED light signal 
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out and wait for it to return. When the signal returns, it is processed into useable data that is 

stored as the distance parameter. Then, the program looks at a distance vs pin sight lookup table 

that is relevant to the speed programmed. The pin sight position is determined by interpolating 

between the two closest table entries for pin sight distance. The program will signal to the motors 

to move the correct number of steps that correspond to the pin sight distance calculated. Finally, 

the system goes back to idle until either the operator presses the button again or changes the 

speed of the bow.  

Authors: CV 

Table 15: Software Diagram Comparison Processing functional requirements 

Module Comparison Processing 

Designer DT03 

Inputs -Distance 

-Speed 

-Data pulls from Lookup Table 

Outputs -Position 

Functionality Compares inputs to data table and averages information as needed to 

calculate an accurate position.  

 

Table 16: Software Diagram Distance Processing functional requirements 

Module Distance Processing 

Designer DT03 

Inputs -Distance Data 

Outputs -Distance 

Functionality Interprets distance data and outputs the information as data which can 

be read. 
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Table 17: Software Diagram Motor Control functional requirements 

Module Motor Control 

Designer DT03 

Inputs -Position 

Outputs -Motor Movement 

Functionality Moves motor to correct position. 

 

User Interface: 

The user interface of the Automatic Rangefinding Bow Sight consists of a 16x2 LCD 

display, 4 pushbuttons and a power on/off switch. The LCD display is used to display to the user 

the speed setpoint they have entered and the distance returned by the rangefinder. The 4 

pushbuttons will be used to increase speed, decrease speed, toggle through the displays and 

trigger the rangefinder. The buttons that increase and decrease speed allow the user to raise or 

lower the bow speed at set increments of 5. This increment was chosen because standard speeds 

given for bows are given in increments of 5 and when the user measures the speed of their bow 

and arrow combination, the speed obtained should be in a similar increment. The rangefinder 

trigger button will be used to collect a distance reading and will be mounted near the shooters 

hand. The last button that will be a part of the user interface is the button that will be used to 

toggle through the various displays. This will allow the user to view their current speed setting 

and distance the pin sight is set at. The last component of the user interface is a master on/off 

switch that will allow the user to power the system on or off when necessary. 

Authors: GG 

Drive System:  

The drive system will consist of a servo motor, drive wheel, cable system, free spinning 

top wheel, and a single pin sight. The servo motor will function as the driving force behind the 

system. It will be bidirectional and should be accurate to 1mm increment changes. The servo 
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motor will be controlled through the processor and powered by the high and low voltage rails. To 

accomplish the accuracy needed, a motor with many positions should be utilized. The difference 

in the sight pin’s minimum and maximum positions should be roughly 2 inches. To achieve this, 

the motor will need a minimum of about 100 positions in 180 degrees of rotation (or half of a 

rotation). To ensure that the system will maintain accuracy and hold the correct position during 

movement, the drive cable will be attached to the drive wheel. This means only half of the drive 

wheel will actually be used, hence the need for 100 positions per half rotation. Once the motor 

receives a movement signal from the processor, the motor will apply movement to the drive 

wheel, which will rotate the cable about the free spinning wheel and move the pin into the 

correct position. The motor will then shut down and have a certain amount of holding torque to 

help prevent unintentional movement.  

Authors: DK 

Rangefinder: 

The rangefinding system of the Automatic Rangefinding Bow Sight is a crucial aspect of 

the project. Without an accurate distance measurement, the sight system would be unable to dictate 

the proper location to set the pin sight up for a precise shot placement. Therefore, the basic 

operation of the rangefinder is to measure the distance from the user to the target. To accomplish 

this task, a time of flight sensor is utilized. A time of flight sensor operates by emitting a beam of 

light, capturing the reflected light, and measuring the time it took for the beam to travel from the 

sensor to the target, and back. The beam of light is projected over a linearly increasing area to 

allow the sensor to more accurately determine the distance in the event that something slightly 

obstructs the target. The distance of the target is then calculated by dividing the total time by two 

and then multiplying the resulting value by the speed of light in yards per second. This data is then 
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sent to the processor to be utilized.   

The specific model of time of flight sensor chosen for this project is the TeraRanger Evo 

60m sensor. This sensor uses focused LEDs to project a beam of light to the target and an optic 

system to capture the reflected beam. To initiate the range finding sequence, a button mounted to 

the handle of the bow and is pressed by the user. The button press signal will be sent to the 

processor. The processor then communicates with the sensor to begin the distance measurement. 

The range finding function within the TeraRanger is then executed multiple times. Any bad 

readings or outlying data is ignored, and an average of the most pertinent data is calculated. This 

is be done to reduce the likelihood of encountering an error in the distance measurement. Once 

the distance of the target has been found, the processor then begins calculating the necessary 

location of the pin sight.  

The I2C communication protocol is used to send data between the PIC and the 

TeraRanger sensor and proves to be the most difficult aspect of the rangefinder design. In order 

for the sensor to send data to microcontroller, the I2C communication protocol must be 

initialized and started. Once initiated the PIC sends two bytes to the sensor to begin the data 

transfer. The first byte sent (0x62), is the 7-bit address followed by the write bit ‘0’ initializing 

the “Trigger Reading” command. Immediately following, the actual “Trigger Reading” 

command (0x00) is sent to the sensor. The I2C communication is then stopped and after a wait of 

400 microseconds is restarted. The byte (0x63) is then sent to the sensor. This byte includes the 

7-bit address followed by the write bit ‘1’, thus telling the sensor to begin transmitting data back 

to the microcontroller. Immediately, the microprocessor executes three “Get Byte” commands, 

reading the two distance bytes and the checksum byte sent back from the sensor. The I2C 

communication is then stopped after the data transfer is complete.  



27 
 

During the design process, issues arose with the transmission of data between the 

TeraRanger and the PIC. To alleviate these issues, the Saleae Logic analyzer was connected to 

an Arduino microcontroller that operated properly. The first byte of the communication 

waveform from the Arduino simulation was then captured and can be seen below in Figure 8.   

 
Figure 8: Arduino Simulation – First Byte 

After analyzing the Arduino’s waveform, it was found that the delay between commands 

in the PIC microcontroller were too short. Being too short, this did not allow the data from each 

command to clear out of the processor before the next command was executed, thus leading to 

corrupted data. Once the delays were set properly through a series of trial and error, the first data 

byte was able to be sent properly from the PIC to the sensor and seen below in Figure 9. 
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Figure 9: PIC Simulation – First Byte 

Once the delays were set properly, the entire sequence as described above was able to be 

executed. This was verified by connecting the Saleae Logic Analyzer between the PIC and 

TeraRanger and viewing the send byte command followed by the three byte reads. Looking at 

Figure 10, one can verify that the first byte is the “Trigger Reading” command (0x63) being sent 

to the TeraRanger. The second and third bytes, are the distance data bytes that are sent from the 

TeraRanger back to the PIC and equates to the distance measured by the sensor from the desktop 

to the ceiling. This was found to be 2040 millimeters (0x07F8). The fourth byte shown below is 

the CRC8 checksum byte (0x8D) sent from the sensor to the microcontroller.  
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Figure 10: PIC Simulation – Trigger Reading Followed by Three Byte Reads  

Once the communication issues between the PIC and TeraRanger were resolved, the 

distance data was formatted and converted to yards so that is could be referenced by the lookup 

tables. 

Authors: DD 

Battery Management: 

The battery management system will consist of three primary parts. A lithium battery to 

power the system, a charging circuit to charge the lithium battery, and a DC to DC boost 

converter to step the low voltage of the battery up to a usable 5V for the rest of the system. 

The battery chosen is a 3.7V lithium ion battery that is capable of 2Ah. This battery was 

chosen because it has the capability to run the system at full load for the specified 3-hour 

duration. The total draw of the system will be approximately 1.806Ah. This allows the battery to 

power the system while never fully draining the battery, avoiding the potential of ruining the 

cell. 

The charge circuit for this system will be designed around a Microchip MCP73830 

battery management controller. This device will provide the necessary charge algorithms for the 
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single cell lithium ion battery and will also regulate the charge voltage to 4.2V ±0.75%. The 

charge circuit designed will be used in conjunction with a 500mA micro-USB wall charger.  

Most components in the system are powered off of 5 volts, therefore, in order to use the 

3.7V battery in this system, a DC to DC boost converter is required to step the voltage up to the 

required voltage. A DC switching regulator will be used to step the voltage up and a voltage 

regulator circuit will then be added after the converter to ensure that the output voltage remains 

at a constant 5VDC. 

Authors: DK, GG 

Processor: 

 The processor that was selected was the PIC24FJ128GA010 General Purpose 128 KB 

Flash Microcontroller. This is the same processor used in ESI labs. Already having experience 

using it made it a great choice when having to choose processors. This PIC24 has all the features 

needed – UART, PWM, flash memory, sleep mode, and plenty of I/O pins, further solidifying 

the choice to pick this processor. The Integrated Development Environment that will be used will 

be MPLAB X IDE. This is Microchip’s own IDE to be used on their microcontrollers. It has 

plenty of features to help debug any code related problems encountered during 

design.  Ultimately, the only requirements for the processor was to have all of the specifications 

we needed and since this PIC24 managed to cover everything, it turned out to be the best option 

to use. 

Authors: CV 
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Microcontroller Code: 

#include "config.h" 

#include "buttons.h" 

#include <stdio.h> 

#include "xc.h" 

  

  

char SPDchar[8], DISTchar[8], ARRchar[8]; // Create an array for 8 characters 

int displaycount = 1; // Display Number for switch statement 

double speed = 340; 

int speed1 = 340; 

float distance = 40; 

unsigned int distancemm; 

float distancearray[] = { 0, 10, 20, 30, 40, 50 }; 

float pinsightlocation[6]; 

float motorposition[6]; 

float dx, dy,dy2, arrowdrop, motorsteps; 

  

    unsigned int Byte1;  

    unsigned int Byte2; 

    unsigned int Byte3; 

    unsigned int HighByteDist; 

    unsigned int LowByteDist; 

    unsigned int CheckSumByte; 

  

  

float case300[6] = { 0, -2, -8, -18, -34, -52 }; 

float case310[6] = { 0, -2, -7, -17, -31, -50 }; 

float case320[6] = { 0, -2, -7, -16, -29, -46 }; 

float case330[6] = { 0, -2, -7, -15, -28, -43 }; 

float case340[6] = { 0, -1, -6, -15, -26, -41}; 

float case350[6] = { 0, -1, -6, -14, -25, -39}; 

float case360[6] = { 0, -1, -5, -13, -23, -37}; 

float case370[6] = { 0, -1, -5, -12, -22, -34}; 

float case380[6] = { 0, -1, -5, -12, -21, -32}; 

  

float case300steps[6]= { 2300 , 2300 , 2251, 2106, 1925, 1787}; 

float case310steps[6]= { 2300 , 2300 , 2263, 2106, 1955, 1792}; 

float case320steps[6]= { 2300 , 2300 , 2263, 2130, 1991, 1850}; 

float case330steps[6]= { 2300 , 2300 , 2263, 2155, 2010, 1894}; 

float case340steps[6]= { 2300 , 2300 , 2251, 2106, 1997, 1874}; 

float case350steps[6]= { 2300 , 2300 , 2251, 2130, 2016, 1903}; 

float case360steps[6]= { 2300 , 2300 , 2263, 2130, 2028, 1908}; 

float case370steps[6]= { 2300 , 2300 , 2263, 2155, 2046, 1952}; 

float case380steps[6]= { 2300 , 2300 , 2263, 2155, 2064, 1981}; 
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void ms_delay(int N) { 

    T1CON = 0x8030; // Timer Enabled with prescale of 256 

    TMR1 = 0; //CLR Timer1 

    while (TMR1 < 62.5 * N) //Timer1 incrementing 

    { 

    } 

} 

  

void us_delay(int us){ 

    T1CON = 0x8010; 

    TMR1 = 0;                   // Clear Timer 1 

    while(TMR1<(2*us)){}        // 2 TMR1 counts per ? 

         

} 

  

void InitPMP(void) { 

    // PMP initialization. See my notes in Sec 13 PMP of Fam. Ref. Manual 

    PMCON = 0x8303; // Following Fig. 13-34. Text says 0x83BF (it works) * 

    PMMODE = 0x03FF; // Master Mode 1. 8-bit data, long waits. 

    PMAEN = 0x0001; // PMA0 enabled 

} 

  

void InitLCD(void) {     

    // PMP is in Master Mode 1, simply by writing to PMDIN1 the PMP takes care 

    // of the 3 control signals so as to write to the LCD. 

    PMADDR = 0; // PMA0 physically connected to RS, 0 select Control register 

    PMDIN1 = 0b00111000; // 8-bit, 2 lines, 5X7. See Table 9.1 of text Function set 

    ms_delay(1); // 1ms > 40us 

    PMDIN1 = 0b00001100; // ON, cursor off, blink off 

    ms_delay(1); // 1ms > 40us 

    PMDIN1 = 0b00000001; // clear display 

    ms_delay(2); // 2ms > 1.64ms 

    PMDIN1 = 0b00000110; // increment cursor, no shift 

    ms_delay(2); // 2ms > 1.64ms 

} // InitLCD 

  

char ReadLCD(int addr) { 

    // As for dummy read, see 13.4.2, the first read has previous value in PMDIN1 

    int dummy; 

    while (PMMODEbits.BUSY); // wait for PMP to be available 

    PMADDR = addr; // select the command address 

    dummy = PMDIN1; // initiate a read cycle, dummy 

    while (PMMODEbits.BUSY); // wait for PMP to be available 
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    return ( PMDIN1); // read the status register 

} // ReadLCD 

// In the following, addr = 0 -> access Control, addr = 1 -> access Data 

#define BusyLCD() ReadLCD( 0) & 0x80 // D<7> = Busy Flag 

#define AddrLCD() ReadLCD( 0) & 0x7F // Not actually used here 

#define getLCD() ReadLCD( 1) // Not actually used here. 

  

void WriteLCD(int addr, char c) { 

    while (BusyLCD()); 

    while (PMMODEbits.BUSY); // wait for PMP to be available 

    PMADDR = addr; 

    PMDIN1 = c; 

} // WriteLCD 

// In the following, addr = 0 -> access Control, addr = 1 -> access Data 

#define putLCD( d) WriteLCD( 1, (d)) 

#define CmdLCD( c) WriteLCD( 0, (c)) 

#define HomeLCD() WriteLCD( 0, 2) // See HD44780 instruction set in 

#define ClrLCD() WriteLCD( 0, 1) // Table 9.1 of text book 

  

void I2Cinit(int BRG) { 

    I2C1BRG = BRG;              // See data sheet, Table 16.1 pg. 139 

    while (I2C1STATbits.P);     // Check buss idle, see 5.1 of I2C document 

                                // It works, not sure its needed. 

    I2C1CONbits.A10M = 0;       // 7-bit address mode (Added 8-14-17) 

    I2C1CONbits.I2CEN = 1;      // enable module 

} 

  

void I2CStart(void) { 

    //us_delay(10);               // delay to be safe 

    I2C1CONbits.SEN = 1;        // Initiate Start condition pg. 21 of I2C man  

    while (I2C1CONbits.SEN);    // wait for Start condition complete sec. 5.1 

    //us_delay(10);               // delay to be safe 

} 

  

void I2CStop(void) { 

    //us_delay(12);               // delay to be safe 

    I2C1CONbits.PEN = 1;        // see 5.5 pg. 27 of Microchip I2C manual 

    while (I2C1CONbits.PEN);    // This is at hardware level, I suspect fast 

    //us_delay(10);               // delay to be safe 

} 

  

void I2Csendbyte(char data) { 

    while (I2C1STATbits.TBF);   // wait if buffer is full 

    I2C1TRN = data;             // pass data to transmission register 

    us_delay(23);               // delay to be safe 

} 
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char I2Cgetbyte(void) { 

    I2C1CONbits.RCEN = 1;       // Set RCEN, Enables I2C Receive mode 

    while (!I2C1STATbits.RBF);  // wait for byte to shift into I2C1RCV register 

    I2C1CONbits.ACKEN = 1;      // Master sends Acknowledge 

    us_delay(2);               // delay to be safe 

    return (I2C1RCV); 

} 

  

  

void putsLCD(char *s) { 

    while (*s) putLCD(*s++); // See paragraph starting at bottom, pg. 87 text 

} //putsLCD 

  

  

void SetCursorAtLine(int i) { 

    int a; 

    if (i == 1) { 

        CmdLCD(0x80); //Sets DRAM Address for HD44780 instruction set 

        //To enable DRAM, hex 0x80 is translated to binary: 1000 0000 

     

} else if (i == 2) { 

    CmdLCD(0xC0);//Sets DRAM Address for HD44780 instruction set 

    //To enable DRAM, hex 0xC0 is translated to binary: 1100 0000 

} else { 

    TRISA = 0x00; // hex for zero, sets PORTA<0:7> for output 

    for (a = 1; a < 20; a++) //Loop to flash LEDs for 5 seconds at 2Hz 

    { 

        PORTA = 0xFF; //Turns LEDs on 

        ms_delay(2000); //Delays half of the cycle // On For 2 Seconds 

        PORTA = 0x00; //Turns LEDs off 

        ms_delay(1000); //Delays half of the cycle // Off For 1 Seconds 

    } 

  } 

} 

  

void servoRotate() 

{ 

    unsigned int i; 

    for (i = 0; i < 50; i++) {  // 50Hz 

        PORTAbits.RA4 = 1;      // RA4 High 

        us_delay(motorsteps);            // Desired Position 

        PORTAbits.RA4 = 0;    

        us_delay(20000- motorsteps);  

    } 

} 
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void button1press(void){ 

    switch(displaycount) 

    { 

        case 1: 

            ClrLCD(); // clear display 

            ms_delay(5); // 2ms > 1.64ms 

            SetCursorAtLine(1); 

            putsLCD(" Auto Bow Sight "); // Puts message on first line of LCD 

            SetCursorAtLine(2); 

            putsLCD("  DD GG  DK CV  "); // Puts message on second line of LCD 

            displaycount++; 

            break; 

     

        case 3:  

            ClrLCD(); // clear display 

            ms_delay(5); // 2ms > 1.64ms 

            sprintf(DISTchar, "%0.1f", distance); 

            ms_delay(32); 

            SetCursorAtLine(1); //Set to first line.             

            putsLCD("RANGE:"); //Floating Point Temperature on First line. 

            SetCursorAtLine(2); //Set to start of second line 

            putsLCD(DISTchar); 

            putsLCD(" yards"); 

            displaycount=1; 

            break; 

             

        case 2:  

            ClrLCD(); // clear display 

            ms_delay(5); // 2ms > 1.64ms 

            sprintf(SPDchar, "%0.1f", speed); 

            ms_delay(32); 

            SetCursorAtLine(1); //Set to first line.             

            putsLCD("SPEED:"); //Floating Point Temperature on First line. 

            SetCursorAtLine(2); //Set to start of second line 

            ms_delay(5); 

            sprintf(SPDchar, "%0.1f", speed); 

            ms_delay(32); 

            putsLCD(SPDchar); 

            putsLCD(" FPS"); 

            displaycount++; 

            break; 
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    } 

} 

  

void button3press (void) 

{ 

    switch(displaycount-1) 

    { 

        case 2: 

            if ((speed <=380) & (speed >=310)) 

                { 

                    speed = speed - 10; 

                    speed1=speed; 

                    ms_delay(32); 

                    ClrLCD(); 

                    ms_delay(5); // 2ms > 1.64ms 

                    sprintf(SPDchar, "%0.1f", speed); 

                    ms_delay(32); 

                    SetCursorAtLine(1); 

                    putsLCD("SPEED:"); // Puts message on first line of LCD 

                    SetCursorAtLine(2); 

                    putsLCD(SPDchar); 

                    putsLCD(" FPS"); 

                } 

                else 

                { 

                    ClrLCD(); 

                    ms_delay(32); 

                    SetCursorAtLine(1); 

                    putsLCD("SPEED:"); // Puts message on first line of LCD 

                    SetCursorAtLine(2); 

                    putsLCD("Error: Minimum"); 

                    ms_delay(1000); 

                    ClrLCD(); 

                    ms_delay(32); 

                    SetCursorAtLine(1); 

                    putsLCD("SPEED:"); // Puts message on first line of LCD 

                    SetCursorAtLine(2); 

                    putsLCD(SPDchar); 

                    putsLCD(" FPS"); 

                } 

            break; 

  

        case 0:          

                ClrLCD(); 

                ms_delay(32); 

                SetCursorAtLine(1); 
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                putsLCD("Distance:"); // Puts message on first line of LCD 

                SetCursorAtLine(2); 

                putsLCD("Error"); 

                ms_delay(1000); 

                ClrLCD(); 

                ms_delay(32); 

                SetCursorAtLine(1); 

                putsLCD("Distance:"); // Puts message on first line of LCD 

                SetCursorAtLine(2); 

                putsLCD(DISTchar); 

                putsLCD(" yards"); 

             

            break;                 

         

         

        case 1:                      

            ClrLCD(); 

            ms_delay(32); 

            SetCursorAtLine(1); 

            putsLCD(" Auto Bow Sight "); // Puts message on first line of LCD 

            SetCursorAtLine(2); 

            putsLCD("Error"); 

            ms_delay(1000); 

            ClrLCD(); 

            ms_delay(32); 

            SetCursorAtLine(1); 

            putsLCD(" Auto Bow Sight "); // Puts message on first line of LCD 

            SetCursorAtLine(2); 

            putsLCD("  DD GG  DK CV  "); 

            break; 

    } 

} 

  

void button2press (void) 

{ 

    switch(displaycount-1) 

    { 

        case 2: 

            if ((speed <=370) & (speed >=300)) 

                { 

                    speed = speed + 10; 

                    speed1=speed; 

                    ms_delay(32); 

                    ClrLCD(); 

                    ms_delay(5); // 2ms > 1.64ms 

                    sprintf(SPDchar, "%0.1f", speed); 
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                    ms_delay(32); 

                    SetCursorAtLine(1); 

                    putsLCD("SPEED:"); // Puts message on first line of LCD 

                    SetCursorAtLine(2); 

                    putsLCD(SPDchar); 

                    putsLCD(" FPS"); 

                } 

                else 

                { 

                    ClrLCD(); 

                    ms_delay(32); 

                    SetCursorAtLine(1); 

                    putsLCD("SPEED:"); // Puts message on first line of LCD 

                    SetCursorAtLine(2); 

                    putsLCD("Error: Maximum"); 

                    ms_delay(1000); 

                    ClrLCD(); 

                    ms_delay(32); 

                    SetCursorAtLine(1); 

                    putsLCD("SPEED:"); // Puts message on first line of LCD 

                    SetCursorAtLine(2); 

                    putsLCD(SPDchar); 

                    putsLCD(" FPS"); 

                } 

            break; 

        case 0:          

             

            { 

                    ClrLCD(); 

                    ms_delay(32); 

                    SetCursorAtLine(1); 

                    putsLCD("Distance:"); // Puts message on first line of LCD 

                    SetCursorAtLine(2); 

                    putsLCD("Error"); 

                    ms_delay(1000); 

                    ClrLCD(); 

                    ms_delay(32); 

                    SetCursorAtLine(1); 

                    putsLCD("Distance:"); // Puts message on first line of LCD 

                    SetCursorAtLine(2); 

                    putsLCD(DISTchar); 

                    putsLCD(" yards"); 

            } 

                break;             

         

        case 1:                      
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            ClrLCD(); 

            ms_delay(32); 

            SetCursorAtLine(1); 

            putsLCD(" Auto Bow Sight "); // Puts message on first line of LCD 

            SetCursorAtLine(2); 

            putsLCD("Error"); 

            ms_delay(1000); 

            ClrLCD(); 

            ms_delay(32); 

            SetCursorAtLine(1); 

            putsLCD(" Auto Bow Sight "); // Puts message on first line of LCD 

            SetCursorAtLine(2); 

            putsLCD("  DD GG  DK CV  "); 

            break; 

    } 

} 

  

void button4press (void) 

{ 

    int i; 

      switch (speed1) 

    { 

  

        case 300: 

          for (i = 0; i < 6 - 1; i++) 

          { 

          pinsightlocation[i]=case300[i];    

          motorposition[i] = case300steps[i]; 

          } 

          break; 

           

        case 310: 

          for (i = 0; i < 6 - 1; i++) 

          { 

          pinsightlocation[i]=case310[i]; 

          motorposition[i] = case310steps[i]; 

           

          } 

          break; 

           

        case 320: 

          for (i = 0; i < 6 - 1; i++) 

          { 

          pinsightlocation[i]=case320[i];        

          motorposition[i] = case320steps[i]; 

          } 
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          break; 

  

        case 330:            

             

          for (i = 0; i < 6 - 1; i++) 

          { 

          pinsightlocation[i]=case330[i];         

          motorposition[i] = case330steps[i]; 

          } 

        break; 

           

  

        case 340: 

          for (i = 0; i < 6 - 1; i++) 

          { 

          pinsightlocation[i]=case340[i];       

          motorposition[i] = case340steps[i]; 

          } 

          break; 

  

        case 350: 

          for (i = 0; i < 6 - 1; i++) 

          { 

          pinsightlocation[i]=case350[i];        

          motorposition[i] = case350steps[i]; 

          } 

          break; 

  

        case 360: 

          for (i = 0; i < 6 - 1; i++) 

          { 

          pinsightlocation[i]=case360[i];         

          motorposition[i] = case360steps[i]; 

          } 

          break; 

  

        case 370: 

          for (i = 0; i < 6 - 1; i++) 

          { 

          pinsightlocation[i]=case370[i];         

          motorposition[i] = case370steps[i]; 

          } 

          break; 

  

        case 380: 

          for (i = 0; i < 6 - 1; i++) 
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          { 

          pinsightlocation[i]=case380[i];         

          motorposition[i] = case380steps[i]; 

          } 

          break; 

  

    } 

  

       

       

        I2CStart();             // place module into start condition - send slave device address 

        I2Csendbyte(0x62);      // Initiate Write Command via address 

        I2Csendbyte(0x00);      // Initiate Write Command via address 

        I2CStop(); 

       

        us_delay(400); 

         

        I2CStart(); 

        I2Csendbyte(0x63);      // Trigger Reading Command 

        Byte1 = I2Cgetbyte();   // Get Data Byte 1 - First Byte of Distance 

        Byte2 = I2Cgetbyte();   // Get Data Byte 2 - Second Byte of Distance 

        Byte3 = I2Cgetbyte();   // Get Data Byte 3 - Checksum Byte 

        I2CStop();              // place module into stop condition 

  

        ms_delay(50);           // 50 ms Delay 

         

        I2CStart();             // place module into start condition - send slave device address 

        I2Csendbyte(0x62);      // Initiate Write Command via address 

        I2Csendbyte(0x00);      // Initiate Write Command via address 

        I2CStop(); 

       

        us_delay(400); 

         

         

        I2CStart(); 

        I2Csendbyte(0x63);      // Trigger Reading Command 

        HighByteDist = I2Cgetbyte();   // Get Data Byte 1 - First Byte of Distance 

        LowByteDist = I2Cgetbyte();   // Get Data Byte 2 - Second Byte of Distance 

        CheckSumByte = I2Cgetbyte();   // Get Data Byte 3 - Checksum Byte 

        I2CStop();              // place module into stop condition 

         

         

        HighByteDist=0x008E; 

        LowByteDist=0x00D0; 

        distancemm = 256 * HighByteDist + LowByteDist; 
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        distance = distancemm/914.4; 

  

        ms_delay(50);           // 50 ms Delay 

       

  

       

  /* number of elements in the array */ 

  static const int count = sizeof (distancearray) / sizeof (distancearray[0]); 

  

  

  

  /* find i, such that distancearray[i] <= x < distancearray[i+1] */ 

  for (i = 0; i < count - 1; i++) 

    { 

      if (distancearray[i + 1] > distance) 

    { 

      break; 

    } 

    } 

  

  /* interpolate */ 

      dx = distancearray[i + 1] - distancearray[i]; 

      dy = pinsightlocation[i + 1] - pinsightlocation[i]; 

      dy2 = motorposition[i + 1] - motorposition[i]; 

      arrowdrop = pinsightlocation[i] + (distance - distancearray[i]) * dy / dx; 

      motorsteps = motorposition[i] + (distance - distancearray[i]) * dy2 / dx; 

       

       

         

        ClrLCD(); 

        ms_delay(32); 

        SetCursorAtLine(1); 

        putsLCD("RANGE: "); // Puts message on first line of LCD 

        sprintf(DISTchar, "%0.1f", distance); 

        putsLCD(DISTchar); 

        putsLCD(" yd"); 

        SetCursorAtLine(2); 

        putsLCD("Drop: "); // Puts message on first line of LCD 

        sprintf(ARRchar, "%0.1f", arrowdrop); 

        putsLCD(ARRchar); 

        putsLCD(" in"); // Puts message on first line of LCD 

         

         

         

        servoRotate(); 
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        ms_delay(1000); 

        ms_delay(1000); 

        ms_delay(1000); 

        button1press(); 

        button1press(); 

        button1press(); 

} 

  

  

  

  

  

main(void) { 

//    char LCDchar[8]; // Create an array for 8 characters 

//    int display = 0; // Display Number for switch statement 

//    double speed = 340, distance = 0; 

    T1CON = 0x8010;         // TMR1 on, Prescale 1:8, Tcy as clock 

    T2CON = 0x8030;         // Timer 2 on, Prescale 1:256, Tcy as clock 

    PORTAbits.RA4 = 0;      // Clear RA4 

    TRISAbits.TRISA4 = 0;   // Set RA4 to Output 

     

    I2Cinit(37);            // Initialize I2C module with 400kHz Baud Rate 

    initButtons(0x0009);   

     

    Byte1 = 1; 

    Byte2 = 2; 

    Byte3 = 3; 

    HighByteDist = 0; 

    LowByteDist = 0; 

    CheckSumByte = 0; 

     

     

     

    ms_delay(32); // At least 30ms for LCD Internal Initialization 

    InitPMP(); // Initialize the Parallel Master Port 

    InitLCD(); // Initialize the LCD 

  

    SetCursorAtLine(1); 

    putsLCD(" Auto Bow Sight "); // Puts message on first line of LCD 

    SetCursorAtLine(2); 

    putsLCD("  DD GG  DK CV  "); // Puts message on second line of LCD 
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    while (1)  

        { 

       if(getButton(0x0001)) 

       { 

           button1press(); 

           ms_delay(300); 

       } 

        

       if (getButton(0x0002)) 

       { 

           button2press(); 

           ms_delay(200); 

       } 

  

       if (getButton(0x0004)) 

       { 

           button3press(); 

           ms_delay(200); 

       } 

  

       if (getButton(0x0008)) 

       { 

           button4press(); 

           ms_delay(500); 

       } 

  

          

        } 

} // main 

 

 

The above code is currently a mix of both pseudocode and actual code. The code starts 

off by initializing all of the functions needed. This includes initializing the LCD screen, setting 

up the UART functions, and the millisecond and microsecond delays.  

Inside the main function, the initialization functions are called, and the values for the 

motor and last recorded speed are read from flash memory. The processor then instructs the LCD 

to write the speed out. If none of the buttons are pressed within 10 seconds, an interrupt sequence 

starts which puts the MPU to sleep. The device is woken up whenever another input is issued.  If 

the speed up button is pressed, the speed parameter is increased by five and then sent to the LCD 
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screen. The value stored in the flash memory is also updated so if the rangefinder is powered off, 

it can remember what speed it was last at. If the speed down button is pressed, the speed 

parameter is decreased by five and that number is sent to the LCD screen. Once again, the value 

in the flash memory is updated.  

The biggest function of the code is when the button to fire the LED is pressed. When this 

happens, the processor sends a signal via UART to the TeraRanger EVO. This causes the 

rangefinder to emit an LED signal onto a target and receive it as it bounces back. The 

rangefinder then stores that value in millimeters and must be sent back to the processor via 

UART. Once the measurement is processed, it will be divided by 1000 to convert the distance to 

meters since millimeters is too high of a resolution for use case.  

Once the distance is recorded, the lookup tables are accessed. Each speed has its own 

separate lookup table for distance and pin position. A function is called that looks up the specific 

speed’s look up table and finds the two closest distances to the distance measured. The related 

pin sight positions are then interpolated to find what position to move the pin sight. This 

information is then sent to the motor, which moves the pin sight into the correct location. 

Authors:  DK, CV 
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Lookup Table: 

Table 18: Lookup Table Example 

Bow Speed [mps/yps/fps] Distance [m/yds/ft] Pin Position [mm/cm/in] 

X 15 a 

X 25 b 

X 35 c 

X 45 d 

Y 15 A’ 

Y 25 B’ 

Y 35 C’ 

Y 45 D’ 

 

The lookup tables used to adjust the sight will consist of 3 main columns – bow speed, 

distance to the target, and appropriate pin position. To determine the values of the table, various 

tests will be performed on existing bows of different speeds to collect data on their shooting 

characteristics. The speed of each bow will be determined by using a chronograph before 

operation and then input using the user interface. Once speed has been input to the system, each 

bow being tested will be fired from various distances (found by using the rangefinder) in order to 

observe their drop before hitting the target. Observing the drop of the arrow and where it hits the 

target will allow the sight adjustments to be fine-tuned. Once the lookup tables have been 

calculated, they will be programmed into the processor. To use the tables, the processor will find 

the given user speed in the table and the measured distance before finally sending the signal for 

pin position to the drive system. In cases where values fall between two rows, the processor will 

be able to interpolate the two rows of the table to ensure the accuracy of the system.  

Authors: DK, CV 
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Mechanical Sketch: 

Mount Sketch: 

 

Figure 11: Mount Sketch of design 

A. Mounting bracket designed to fit in the stock mounting location. On the right is where the 

sight will clamp onto the mount. 

Front view of Control-Box and Sight: 

 

Figure 12: Front view of Control-Box and Sight 

C. Single sight-pin that will be mechanically adjusted, up and down based on range. 

F. Control box/Housing – contains the processor, rangefinder circuitry, drive motor and user 

interface display and buttons. 

G. Sight retaining ring - serves as a guide for the sight-pin as it is adjusted up or down. 

H. Rangefinder lens 
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Right Side View of Control-Box: 

 

Figure 13: Right Side View of Control-Box 

B. User interface display 

D. User interface pushbuttons 

E. Sight guide 

F. Control-Box/Housing 
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Rearview of Control-Box and Sight:  

 

Figure 14: Rearview of Control-Box and Sight 

A. Mount 

B. User interface display - used to program in the speed of the bow and the weight of the arrow. 

C. Pin-Sight 

D. User interface pushbuttons - one will serve to select speed, one for activating the rangefinder, 

and the other two will be to adjust the values up or down. 

E. Sight guide - attaches to the mount and allows the sight to be adjusted left or right as 

necessary. 

G. Sight retaining ring 

I. Rangefinder trigger – pushbutton that allows the user to trigger the rangefinder while aiming 

the bow. 
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 Front View of Drive System 

 

Figure 15: Front View of Drive System 

C. Pin-Sight 

J. Motor cable guide – cable guide attached to the motor spindle that the guide cable will mount 

to. 

K. Servo motor – motor that will drive the pin-sight up or down based on necessary adjustment. 

L. Sight pin guide cable – cable that the sight pin will be attached to. 

M. Top cable guide – will guide the cable as it is moved by the motor. 
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Side View of Drive System 

 

Figure 16: Side View of Drive System 

J. Motor cable guide 

K. Servo motor 

L. Sight pin guide cable 

M. Top cable guide 

N. Top cable guide mount – holds the top cable guide to the housing. 

Rendered View of Final Case Design 

 

Figure 17: Rendered View of Final Case Design 

Authors: GG, DK 
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Electrical Sketches: 

 

 

Figure 18: Electrical circuit sketch 
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Figure 19: Electrical schematic for charging and DC-DC boost 

 

 

Figure 20: Electrical schematic for processor connection 
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Figure 21: Final PCB Design 

The anticipated overall wiring sketch and schematics of the entire system are shown 

above in Figure 18. Within these schematics, the power circuitry and communication 

interconnections between the microcontroller, user interface system, time of flight sensor, and 

servo motor are shown. The entire system will be powered by a 3.7V Lithium Ion battery that 

will be stepped up to 5V through the use of a DC/DC boost converter. This circuitry can be seen 

in the upper right of the sketch and in Figure 19. A 5V, 500mA charger will be used to charge 

the system by plugging it into a Micro USB connector. This charge current will then be directed 

to the charge algorithm controller which will be used to maintain appropriate voltage and 

current, so that the battery will not be damaged. This charging system circuitry can be seen in the 

upper left corner of the sketch and in Figure 19. All of the communication wiring can be viewed 

in the lower half of the sketch and in Figure 20. The microprocessor will be connected to the 

LCD’s read/write and enable pins so that data can be written to and received from the display. 

The momentary on push buttons will be connected to the multipurpose I/O pins on the 

microprocessor. The microprocessor will also communicate with the TeraRanger time of flight 

sensor via UART connections. It will also transmit data to the servo motor via PWM signals.  

Authors: DD, CV 
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Parts List: 

Table 19: Parts List 

Qty. Refdes Part Num. Description 

2 MTR01 Hitec HS-425BB Servo Motor 

1 DS01 

NHD-0216K1Z-

NS(RGB)-FBW-REV1 LCD Display 

3 CS01 MCP73830T-2AAI/MYY Charge Algorithm Controller 

3 VR01 TPS61240YFFR Switching Voltage Regulator 

1 Micro USB Port DX4RNW5HJ3R1000 Waterproof Micro-USB Female Connector 

1 RF01 TR-EVO-I2C TeraRanger Rangefinder (LED Emitter/Receiver) 

3 PC01 PIC24FJ128GA010-I/PF PIC24FJ128GA010-I/PF 

1   

1X18 IDC INTERFACE 

CABLE 1x18 IDC Interface Cable 

2 BAT01 2011 Adafruit 3.7V 2Ah Single Cell Battery 

1   DF13-9S-1.25C DF13 Connector 

4 

BTN01, BTN02, 

BTN03, BTN04 SB4011NOM Momentary Pushbutton 

1   CXCP242CP18 ON/OFF Power switch 

3 R01 RGT1608P-102-B-T5 1 kOhm Resistor 

3 R02 AC0603FR-102KL 2 kOhm Resistor 

9 C01, C02, C04 CL10A475MQ8NNNC 4.7 uF Capacitor 

3 C03 06036D225KAT4A 2.2 uF Capacitor 

3 L01 LQM31PN1R0M00L 1 uH Inductor 

6 

C05, C06, C07, C08, 

C09, C10 C0603T104J5RACTU 0.1 uF Capacitor 20V Ceramic 

10 

C05, C06, C07, C08, 

C09, C10 CL10B104KB8NNNC CAP CER 0.1UF 50V X7R 0603 

6 C11 CL10A106MQ8NNNC CAP CER 10UF 6.3V X5R 0603 

1 R03 RGT1608P-103-B-T5 10 kOhm Resistor 

1 R04 TNPW0603250RBEEN 250 Ohm Resistor 

1   IK - 416014 Slik Tip Points (125 Grain) 

1   CR150514E106 LED lights 

2     PIC16/32 Development Board 

2   PNM0603E5002BST5 RES SMD 50K OHM 0.1% 0.15W 0603 

1   HA-ZC5V 5V 500mA Wall Charger 

1   7P6EV4 USB to micro-USB Cable 

1   B07JJ5H3NT Screws for Assembly 

2     PIC16/32 PIC24FJ128GA010 100 Pin board 

1   AMAB011752-10 

AmazonBasics ABS 3D Printer Filament, 1.75mm, 

Black, 1 kg Spool 

1   B07DWCP38J Laser Sight Rechargeable 

1   PG164140 MPLAB PICkit 4 In-Circuit Debugger 

2   PNM0603E5002BST5 RES SMD 50K OHM 0.1% 0.15W 0603 

2   RNCF0603TKY250R RES 250 OHM 0.01% 1/10W 0603 

5   RNCP0603FTD10K0 RES 10K OHM 1% 1/8W 0603 

5   ERA-3AEB202V RES SMD 2K OHM 0.1% 1/10W 0603 

1   KIT 2221 - 3 Pk Cable Guide (guitar string) 
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Table 19 above outlines the main components to build the electrical schematic shown in 

Figure 18.  
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Materials Budget: 

Table 20: Revised Material Cost 

   Unit Total 

Qty. Part Num. Description Cost Cost 

2 Hitec HS-425BB Servo Motor $12.21 $24.42 

1 

NHD-0216K1Z-

NS(RGB)-FBW-REV1 LCD Display 14.75 14.75 

3 

MCP73830T-

2AAI/MYY Charge Algorithm Controller 0.92 2.76 

3 TPS61240YFFR Switching Voltage Regulator 1.16 3.48 

1 DX4RNW5HJ3R1000 Waterproof Micro-USB Female Connector 3.10 3.10 

1 TR-EVO-I2C TeraRanger Rangefinder (LED Emitter/Receiver) 149.00 149.00 

3 PIC24FJ128GA010-I/PF PIC24FJ128GA010-I/PF 4.58 13.74 

1 

1X18 IDC INTERFACE 

CABLE 1x18 IDC Interface Cable 11.14 11.14 

2 2011 Adafruit 3.7V 2Ah Single Cell Battery 12.50 25.00 

1 DF13-9S-1.25C DF13 Connector 0.31 0.31 

4 SB4011NOM Momentary Pushbutton 3.13 12.52 

1 CXCP242CP18 ON/OFF Power switch 7.79 7.79 

3 RGT1608P-102-B-T5 1 kOhm Resistor 0.55 1.65 

3 AC0603FR-102KL 2 kOhm Resistor 0.10 0.30 

9 CL10A475MQ8NNNC 4.7 uF Capacitor 0.10 0.90 

3 06036D225KAT4A 2.2 uF Capacitor 0.35 1.05 

3 LQM31PN1R0M00L 1 uH Inductor 0.40 1.20 

6 C0603T104J5RACTU 0.1 uF Capacitor 20V Ceramic 1.40 8.40 

10 CL10B104KB8NNNC CAP CER 0.1UF 50V X7R 0603 0.10 1.00 

6 CL10A106MQ8NNNC CAP CER 10UF 6.3V X5R 0603 0.18 1.08 

1 RGT1608P-103-B-T5 10 kOhm Resistor 0.55 0.55 

1 TNPW0603250RBEEN 250 Ohm Resistor 0.78 0.78 

1 IK - 416014 Slik Tip Points (125 Grain) 14.99 14.99 

1 CR150514E106 LED lights 6.36 6.36 

2   PIC16/32 Development Board     

2 PNM0603E5002BST5 RES SMD 50K OHM 0.1% 0.15W 0603 3.07 6.14 

1 HA-ZC5V 5V 500mA Wall Charger 10.46 10.46 

1 7P6EV4 USB to micro-USB Cable 7.99 7.99 

1 B07JJ5H3NT Screws for Assembly 12.69 12.69 

1 AMAB011752-10 

AmazonBasics ABS 3D Printer Filament, 1.75mm, 

Black, 1 kg Spool 18.99 18.99 

1 B07DWCP38J Laser Sight Rechargeable 36.99 36.99 

1 PG164140 MPLAB PICkit 4 In-Circuit Debugger 47.95 47.95 

2 PNM0603E5002BST5 RES SMD 50K OHM 0.1% 0.15W 0603 3.07 6.14 

2 RNCF0603TKY250R RES 250 OHM 0.01% 1/10W 0603 2.15 4.30 

5 RNCP0603FTD10K0 RES 10K OHM 1% 1/8W 0603 0.10 0.50 

5 ERA-3AEB202V RES SMD 2K OHM 0.1% 1/10W 0603 0.35 1.75 

1 KIT 2221 - 3 Pk Cable Guide (guitar string) 13.00 13.00 

   Total $473.17 
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Table 20 above shows the current state of the budget after choosing the components that 

will be used to build the main electrical components of the project shown in Figure 18.   
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Gantt Chart Fall 2018: 

 

Authors: DD, GG, DK, CV  
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Gantt Chart Spring 2019: 
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Authors: DD, GG, DK, CV 

Team Information: 

Dillon Denny, Electrical Engineering. ESI: Yes 

Garrett Gill, Electrical Engineering. ESI: Yes 

David King, Electrical Engineering. ESI: Yes 

Cory Verba, Electrical Engineering. ESI: Yes 

Conclusions and Recommendations: 

 The final design of the Automatic Range Finding Bow Sight met the expectations set 

forth. The system consisted of a drive system with a tethered cable system between two guide 

wheels, a four button user interface with two line LCD, and a rangefinder that operated from 15 

to 45 yards. The operator of the bow will first input the speed at which their bow shoots. Then, 

they will trigger the rangefinder to find the range of their target. Finally, the data collected from 

the user and the rangefinder is processed and compared against a lookup table that has been 

programmed into the processor in order to move the sight pin to the proper location. 

 During testing, the bow was fired at a range of 15 and 25 yards. Using these distances, it 

was possible to observe the sight pin adjust up or down, and verify that the shot would hit the 

intended target. After sighting in the bow to the minimum range of 15 yards, a bullseye was hit at 

the increased distance of 25 yards. With further testing and more time, this design could continue 

to be improved. 

Authors: DD, GG, DK, CV 
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Appendix: 

 

Hitec HS-425BB Servo Motor: 

https://cdn.sparkfun.com/datasheets/Robotics/Hitec-HS-425BB-Servo-Specsheet.pdf 

 

3.7V 2Ah Li-Polymer Battery: 

https://cdn-shop.adafruit.com/datasheets/LiIon2000mAh37V.pdf 

 

16x2 LCD Display: 

https://www.hawkusa.com/sites/hawk-dev.ent.c-

g.io/files/hawk_item/NWHVN/Series%20LCD%20Character/NHD-0216K1Z-NS%28RGB%29-

FBW-Rev1/spec/NHD-0216K1Z-NS_RGB_FBW-REV1.pdf 

 

TeraRanger Evo 60m Time of Flight Sensor: 

https://www.robotshop.com/media/files/pdf2/teraranger-evo-60m-specification-sheet.pdf 

 

TPS6124 Switching Voltage Regulator: 

https://www.digikey.com/product-detail/en/texas-instruments/TPS61241YFFR/296-24520-1-

ND/2062926 

 

Charge Algorithm Controller: 

https://www.mouser.com/datasheet/2/268/20005049D-607242.pdf 

 

Momentary Pushbutton: 

http://spec_sheets.e-switch.com/specs/29-KS01Q01.pdf 

 

Microchip Processor PIC24FJ128GA010: 

https://www.mouser.com/datasheet/2/268/39747F-254584.pdf 

 

Waterproof Micro-USB Connector: 

https://www.mouser.com/datasheet/2/206/jaeelectronics_DX4RNW5HJ3%20SJ114803-

1170919.pdf 

 

DF13 Connector: 

https://www.mouser.com/datasheet/2/185/DF13_catalog-939190.pdf 

 

https://cdn.sparkfun.com/datasheets/Robotics/Hitec-HS-425BB-Servo-Specsheet.pdf
https://cdn-shop.adafruit.com/datasheets/LiIon2000mAh37V.pdf
https://www.hawkusa.com/sites/hawk-dev.ent.c-g.io/files/hawk_item/NWHVN/Series%20LCD%20Character/NHD-0216K1Z-NS%28RGB%29-FBW-Rev1/spec/NHD-0216K1Z-NS_RGB_FBW-REV1.pdf
https://www.hawkusa.com/sites/hawk-dev.ent.c-g.io/files/hawk_item/NWHVN/Series%20LCD%20Character/NHD-0216K1Z-NS%28RGB%29-FBW-Rev1/spec/NHD-0216K1Z-NS_RGB_FBW-REV1.pdf
https://www.hawkusa.com/sites/hawk-dev.ent.c-g.io/files/hawk_item/NWHVN/Series%20LCD%20Character/NHD-0216K1Z-NS%28RGB%29-FBW-Rev1/spec/NHD-0216K1Z-NS_RGB_FBW-REV1.pdf
https://www.robotshop.com/media/files/pdf2/teraranger-evo-60m-specification-sheet.pdf
https://www.digikey.com/product-detail/en/texas-instruments/TPS61241YFFR/296-24520-1-ND/2062926
https://www.digikey.com/product-detail/en/texas-instruments/TPS61241YFFR/296-24520-1-ND/2062926
https://www.mouser.com/datasheet/2/268/20005049D-607242.pdf
http://spec_sheets.e-switch.com/specs/29-KS01Q01.pdf
https://www.mouser.com/datasheet/2/268/39747F-254584.pdf
https://www.mouser.com/datasheet/2/206/jaeelectronics_DX4RNW5HJ3%20SJ114803-1170919.pdf
https://www.mouser.com/datasheet/2/206/jaeelectronics_DX4RNW5HJ3%20SJ114803-1170919.pdf
https://www.mouser.com/datasheet/2/185/DF13_catalog-939190.pdf
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