
The University of Akron
IdeaExchange@UAkron
Williams Honors College, Honors Research
Projects

The Dr. Gary B. and Pamela S. Williams Honors
College

Spring 2019

Cycle Assist
Tyler Matthews
trm84@zips.uakron.edu

Please take a moment to share how this work helps you through this survey. Your feedback will be
important as we plan further development of our repository.
Follow this and additional works at: https://ideaexchange.uakron.edu/honors_research_projects

Part of the Controls and Control Theory Commons, Electrical and Electronics Commons, Power
and Energy Commons, and the Systems and Communications Commons

This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams
Honors College at IdeaExchange@UAkron, the institutional repository of The University of Akron in Akron, Ohio,
USA. It has been accepted for inclusion in Williams Honors College, Honors Research Projects by an authorized
administrator of IdeaExchange@UAkron. For more information, please contact mjon@uakron.edu,
uapress@uakron.edu.

Recommended Citation
Matthews, Tyler, "Cycle Assist" (2019). Williams Honors College, Honors Research Projects. 840.
https://ideaexchange.uakron.edu/honors_research_projects/840

https://ideaexchange.uakron.edu?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F840&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F840&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F840&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F840&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F840&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=https://ideaexchange.uakron.edu/honors_research_projects/840
https://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F840&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/269?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F840&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F840&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F840&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F840&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F840&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ideaexchange.uakron.edu/honors_research_projects/840?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F840&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu
mailto:mjon@uakron.edu,%20uapress@uakron.edu

Cycle Assist

Final Design Report

Design Team 18

Ryan Applebee

Nick Darash

Tyler Matthews

Ethan Wesel

Dr. Yilmaz Sozer

11/29/2018

i

Table of Contents:

Abstract ... 1

1. Project Statement .. 2

1.1 Need .. 2

1.2 Objective ... 2

1.3 Background ... 4

1.4 Marketing Requirements ... 10

1.5 Objective Tree ... 11

2. Design Requirement Specification ... 12

2.1 Marketing Requirements ... 13

3. Accepted Technical Design .. 14

3.1.1 Level 0 Hardware Theory of Operation ... 14

3.1.2 Level 0 Hardware Diagram .. 14

3.2.1 Level 1 Hardware Theory of Operation ... 16

3.2.2 Level 1 Hardware Diagram .. 16

3.4.1 Level 2 Embedded System Hardware Theory of Operation 20

3.4.2 Level 2 Embedded System Hardware Diagram ... 21

3.5.1 Level 2 Battery Management System Hardware Theory of Operation 23

3.5.2 Level 2 Battery Management System Hardware Diagram 23

3.6.1 Software Theory of Operation for the Embedded System 26

3.6.2 Software Diagram for the Embedded System .. 26

3.7.1 Software Theory of Operation for the Battery Management System................... 28

3.7.2 Software Diagram for the Battery Management System 28

3.8.1 Level 3 Battery Management System Hardware Theory of Operation [TRM] ... 30

3.8.2 Level 3 Battery Management System Schematic Diagrams [TRM][ELW] 34

3.8.3 Level 3 Battery Management System Software Theory of Operation [TRM] 39

3.8.4 Level 3 Battery Management System Pseudo Code [TRM][ELW] 40

3.8.5 Level 3 Battery Management System Calculations [TRM] 46

3.8.6 Level 3 Battery Management System Parts List [TRM] 50

3.9.1 Level 3 Embedded System Hardware Theory of Operation [NMD] 52

3.9.2 Level 3 Embedded System Schematic Diagrams [NMD] 52

3.9.3 Level 3 Embedded System Software Theory of Operation [NMD] 57

3.9.4 Level 3 Embedded System Pseudo Code [NMD] .. 58

3.9.5 Level 3 Embedded System Simulation [NMD][RKA] 62

3.9.6 Level 3 Embedded System Calculations [RKA] .. 89

3.9.7 Level 3 Embedded System Parts List [TRM][NMD] .. 91

3.10.1 Motor Overview [TRM][RKA][ELW] .. 93

ii

3.11.1 Heart Rate Sensor Overview [RKA][ELW]... 97

3.12.1 Wiring Overview [TRM] ... 98

4. Parts List [TRM][NMD][RKA][ELW] .. 99

5. Project Schedule [TRM][NMD][RKA][ELW] ... 103

6. Design Team Information ... 105

7. Conclusions and Recommendations [TRM][NMD][RKA][ELW] 106

8. References ... 107

9. Appendix [ELW][RKA] ... 109

iii

List of Figures:

Figure 1 - Objective Tree .. 11

Figure 2 – Level 0 Hardware Diagram ... 14

Figure 3 – Level 1 Hardware Diagram ... 16

Figure 4 – Level 2 Embedded System Hardware Diagram .. 21

Figure 5 – Level 2 Battery Management System Hardware Diagram 23

Figure 6 – Embedded System Software Diagram ... 26

Figure 7 – Battery Management System Software Diagram .. 28

Figure 8 – Voltage Measuring Circuity .. 34

Figure 9 – Current Measuring Circuitry ... 35

Figure 10 – Temperature Measuring Circuitry ... 35

Figure 11 – MCU and Power Circuitry... 36

Figure 12 – 5V Regulator and Connectors ... 37

Figure 13 – Battery Management System Pseudo Code ... 45

Figure 14 – DC Voltage Regulator Circuit ... 52

Figure 15 – Embedded System Main Controller .. 53

Figure 16 – 3 Phase Half Bridge and Driver IC.. 54

Figure 17 – Test Points and Signals .. 55

Figure 18 – Signal Indication LEDs ... 55

Figure 19 – Connector Circuits ... 55

Figure 20 – First Revision of the Embedded System Board Layout 56

Figure 21 – Embedded System Pseudo Code ... 61

Figure 22 – First BLDC Motor Simulation in Simulink ... 63

iv

Figure 23 – Trapezoidal Back-EMF Waveform at 50 RPM ... 63

Figure 24 – Electrical and Mechanical Model and Their Governing Equations 65

Figure 25 – Motor Parameters .. 66

Figure 26 – Universal Bridge Parameters ... 67

Figure 27 – Model for Current Controller with PWM and its Governing Equations 69

Figure 28 – 3 Half Bridges.. 70

Figure 29 – 3 Phase Commutation .. 70

Figure 30 – 60 Percent Duty Cycle ... 71

Figure 31 – Trapezoidal Control Matlab Code ... 73

Figure 32 – Trapezoidal Control 3 Phase Currents ... 74

Figure 33 – Entire Simulink Model for Trapezoidal Control ... 75

Figure 34 – Entire Simulink Model for Field Oriented Control 76

Figure 35 – Field Oriented Control Matlab Code ... 79

Figure 36 – Alpha and Beta Currents ... 80

Figure 37 – Direct and Quadrature Currents... 80

Figure 39 – Clarke Transform Function ... 83

Figure 40 – Park Transform Function ... 83

Figure 41 – Matlab Function to Read Motor Speed and Position 86

Figure 42 – Matlab Function for Inverse Park Transformation .. 86

Figure 43 – Matlab Function for Inverse Clarke Transform... 87

Figure 44 – Regulate Function that Drives Phase Currents .. 88

Figure 45 – Hall Effect Sensors’ Outputs ... 95

Figure 46 – Phoenix Racer II Datasheet ... 97

v

Figure 47 – Wiring Diagram ... 98

Figure 48 – Gantt Chart .. 104

vi

List of Tables:

Table 1 – Design Requirement Specifications .. 12

Table 2 – Functional Requirements of Heart Rate Based Assisting Bicycle 15

Table 3 – Level 1 Heart Rate Monitor Functional Requirements 17

Table 4 – Level 1 Battery Functional Requirements .. 17

Table 5 – Level 1 Battery Management System Functional Requirements...................... 17

Table 6 – Level 1 Motor Functional Requirements .. 18

Table 7 – Level 1 Drivetrain Functional Requirements .. 18

Table 8 – Level 1 Display Functional Requirements.. 18

Table 9 – Level 1 Controller Functional Requirements .. 19

Table 10 – Level 1 Embedded System Functional Requirements 19

Table 11 – Embedded System MCU Functional Requirements 22

Table 12 – Embedded System Motor Controller Functional Requirements 22

Table 13 – Battery Management System MCU Functional Requirements....................... 24

Table 14 – Battery Management System Buck Converter Functional Requirements 24

Table 15 – Battery Management System Power MOSFET Functional Requirements 25

Table 16 – Battery Management System Shunt Resistor Functional Requirements 25

Table 17 – Battery Management System Batteries Functional Requirements 25

Table 18 – Battery Management System Parts List .. 51

Table 19 – Order of the Hall Effect Sensors ... 84

Table 20 –Master Parts List .. 102

1

Abstract

Through thorough research on today’s exercise trends, studying both trainers and

amateurs alike, it was noticed that cycling was among the most prescribed forms of

cardiovascular exercise. The goal of this project is to modernize this ancient form of

exercise to today’s standard by utilizing heart rate monitoring and motor control

technologies that have only recently become mainstream. By measuring the user’s heart

rate it is possible to gain a thorough understanding of how hard the user is working. If it

was possible to keep the user’s heart rate constant for extended periods of time, it would

then be possible to plan workouts where the outcome (calories burned) is known to a

precise degree. This project takes the user’s heart rate and feeds it to an algorithm that

controls a motor tied to a bicycle. This motor then constantly adjusts its output torque to

force the user to work hard enough to keep their heart rate constant. This report follows

the design process that will allow for this project to come to fruition.

2

1. Project Statement

1.1 Need

Biking is one of the most common types of exercise subscribed by physical

therapists and athletic trainers. It’s considered a great way to work on one’s cardio,

increase the strength in their lower body muscles, and burn substantial amounts of

calories. It manages to do all of this while minimizing the chance of injuries that the user

cold incur by limiting the amount of impact their joints receive. When riding a bike

trainers typically want to keep the trainee’s heart rate in a specific area, or intensity zone.

This allows the exercise to be sustained longer and maximizes the consistency and

productivity of the workout. In order to do this, someone has to continuously monitor

their heart rate and manually adjust the resistance on the bike, causing them to lose focus

on their workout. This means that someone else has to always be there, typically a

personal trainer, or the trainee has to manage this themselves which causes them to lose

the focus required to sustain a productive workout. This loss of focus, along with the cost

of a personal trainer and gym membership, mean that many people do not have the means

to obtain the highly productive workouts that they want. There is a need to autonomously

adjust one’s workout so that they can maintain a selected workout intensity for an

extended period of time, thus maximizing the gains that are sustained from their workout.

1.2 Objective

The objective of this project is to provide customers with an easy-to-use bicycle

that allows them to select a workout intensity and keeps them working within a given

range of intensities centered around the one selected. Users will be riding a bicycle that

will vary intensity autonomously based on their heart rate. As the user becomes more

exhausted the bike will adjust pedal resistance, thus allowing the user to regain stamina

3

and keep them in the selected intensity zone. By adjusting pedal resistance

automatically, the user is free to work at their own pace and be assured that they are still

getting the workout they desire. Also, if the user isn’t getting enough of a workout, the

bike’s electric motor can be oriented as a generator, creating an extra load for the user to

drive (causing them to work harder and increase their heart rate) while recharging the

batteries.

4

1.3 Background

 The intent of this device is to make a continuously variable resistance bicycle that

will keep the user within a specific range of workout intensity without the user having to

intervene. The resistance will be entirely continuous, always correcting for the users

level of fatigue, and keep them from going outside their selected zone of intensity. To

accomplish this there will be a DC motor assisting, or hindering, the user’s pedaling

causing the intensity of the workout to increase, or decrease, as necessary. The DC motor

will be able to assist the user by adding torque to the drive wheel when they are getting

over fatigued or adding the resistance to the drive wheel when the user is not working

hard enough. When the motor is adding resistance it will act as a generator, recharging

the battery pack that is being used to run the motor when it is assisting the user.

 In September 1997 Saturo Kumagai and the Yazaki Corp patented an idea for a

regenerative braking system for an electric bicycle. “A regenerative braking device 2

provided on an electric power-assisted motor fitted to a bicycle 1 controls the

regenerative braking action by a regenerative braking means A fitted to a brake lever

supporting point, and the regenerative braking is performed with the motor connected to a

rear wheel in the regenerative charging mode. The regenerative braking device 2 is

operated only in the traveling condition where the braking or deceleration is required by

turning on/turning off a switch, and a bicycle driver feels no sense of incompatibility in

the inertia traveling.”[7] This is similar to the design that will be utilized to create the

device described within this paper. The difference being that instead of switching to

regenerative braking through the use of a switch, the change will be done autonomously

based on the user’s heart rate. If the user’s heart rate is starting to slow down, that means

5

they require more resistance and the bike will begin to impede the user’s pedaling

causing the motor to act as a generator and the energy they are producing to charge a

battery. Vijyalakshmi, S. Sandhiya and C. Bhuvaneswari have an article that showcases

the current design parameters of electric bikes with regenerative braking induced by a DC

motor [4]. In this article they speak about utilizing a microcontroller to not only run the

motor, but to also control the other vital features of the bike. The idea of utilizing a

microcontroller to run the various functions of the bike will be vital to this design

because it will limit the complexities of the system to a manageable amount (no need to

deal with cross-board communications).

 For this design, the user’s heart rate will be used to keep track of their current

zone of intensity. To do this a heart rate sensor is needed: N. Constant, T. Wang, and K.

Mankodiya came up with a unique design for a simplistic heart rate sensor: “The

technique places a light and photodetector on the surface of the skin. The light transmits

through the skin and blood but is largely reflected by the bone thereby traveling back to

the photodetector. As the light journeys through the skin, the photodetector monitors

fluctuations in light absorption caused by the variations in blood volume passing through

the arteries. This allows us to calculate the duration of the cardiac cycle.”[3] The key

principle of the design of their heart rate monitor is to monitor the change in light being

absorbed, and thus emitted, from the skin which is directly proportional to the volume of

blood being passed through the arteries. This is the same idea that will be utilized in the

design of the heart rate monitor for this project.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5910449&isnumber=5910416
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5910449&isnumber=5910416

6

The design of the bike is intended to utilize a heart rate monitor to read and

control the fatigue level of the user. The most efficient way to do this is to have the user

put on a heart rate monitor when riding the bike that will wirelessly transmit information

about the user’s heart rate back to the control system. Modern heart rate sensors use a

light source pointed at the skin and measure the feedback of how much light is being

absorbed in the skin from the presence of blood, which changes when the heart pumps.

“The present invention relates to heart rate monitor for measuring a heart rate of a user,

including at least one artificial light source for emitting light into skin of the user, a first

sensor for sensing light reflected through the skin of the user and for generating a first

sensor-signal in response to sensed light, and an optical high-pass filter for filtering out

infrared light, wherein the optical high-pass filter is arranged in an optical path before the

first sensor for filtering out infrared light from light travelling to the first sensor.”[8] This

basic design of a heart rate monitor as described here will be a good simple design for the

concept of the bike. The information will be relayed back to the bike and the information

will be used to apply a torque on the drive wheel. This can either assist the user in

strenuous situations or make it harder for the user in less strenuous situations.

Currently there are a few common ways bikes are used to convert mechanical

energy into electrical energy. One particular approach that can be used as a model for

this project was that taken by Hudson Harr, founder of ReRev based out of Clearwater,

Florida. He purchased many elliptical machines and began tearing the equipment apart.

What he found was that some of these machines used DC generators to vary the

resistance the user feels while pedaling. “The current generated creates a magnetic force

7

that opposes the motion that creates this current. By adjusting the amount of current

created, the user can vary the resistance he or she feels.”[2] Normally the generators use

a bank of resistors to dissipate the extra energy, but Harr decided to remove the internal

resistance of the DC generator and instead hook it up to an external load. Using an

inverter, the next step was to transform the DC power generated into AC and finally

feeding it into the electrical grid.[2] For this project, the implementation of a generator

that can create pedal resistance will be approached in a similar way. Applying this

method of power generation to power an external source will be utilized for an actual

bicycle. It will create more resistance when the user has a light load and assist the user

when the load is strenuous. A control system that alters a variable resistance to

autonomously control the current being sent to the motor or drawn from it will be

implemented to realize this design, depending upon the users heart rate and specified

range in which they wish to operate.[2]

To keep the user in the desired heart rate range the control system will need to

obtain certain inputs from the bicycle and the user. For this particular application one of

the inputs will be the users heart rate which is obviously proportional to their fatigue

level. Other inputs may be the torque created, the frequency of peddling, the slope of the

riding surface, or the bike speed. Depending upon these values the control system will

determine the assisted torque that needs generated from the motor.[1] To electrically-

assist the rider, implementation of a constant proportion-assisted power controller

(PAPC) could be used in which the assistance provided by the motor is proportional to

the provided torque and speed of the bike. Another implementation could be a fuzzy

8

logic controller (FLC) which instead of the torque, it takes the peddle frequency as an

input to determine the amount of assistance needed.

 Another integral part of the bike will be the batteries that will be

charged/discharged during use. “Battery management systems are of paramount

importance to ensure safe functioning and optimal usage of the battery pack.”[6] In order

to keep the user safe the bike will have to have a sophisticated water proof battery

management system that will allow the batteries to be charged and discharged while

ensuring that they are not damaged. It is also vital that the batteries do not overheat while

in use. Part of the battery management system will have to continuously monitor the

temperature of the batteries and adjust load if needed. Safety should be the most

important aspect of the bike and ensuring that the batteries are safe to operate is a huge

step in maintaining safe operation of the system. If the bike battery is not generating

enough energy for sufficient assistance, the use of a super capacitor could be used.

“Super-capacitor modules are used to provide the high current required during starting

and acceleration, and eventfully will help increasing lifespan of battery. A secondary

source, like regenerative braking or a small solar panel module could be availed onboard

so as to charge battery/super capacitor.”[5]

 Limitations of current designs stem from the fact that feedback to the motor

control are typically coming from the bike itself. Such inputs can be the speed of the bike

or the torque applied to the pedals. In this design the motor control system will take an

input directly from the user, in this case, the user’s heart rate. This improvement will

9

make the bike much more practical for exercise purposes, because it will be able to

directly measure the fatigue of the user and keep them in the ideal workout zone.

10

1.4 Marketing Requirements

1. Be able to vary pedal resistance autonomously

2. Assist user on inclines

3. Accurately read user’s heart rate

4. Attempt to keep user’s heart rate in a selected intensity zone

5. Be able to assist the user for the duration of a typical cycling workout

6. Utilize a portable and rechargeable energy storage device

7. Have a safe and reliable energy management system

8. Have a user activated shutdown

9. Display health and ride parameters

10. Transmit user’s heart rate to the rest of the system wirelessly

11. The additional weight of the bicycle’s electronics won’t overload the user if

they are pedaling without assistance

11

1.5 Objective Tree

Figure 1 - Objective Tree

12

2. Design Requirement Specification

Marketing Requirements Engineering Requirements Justification

1, 2 The bicycle will utilize at least a

400W DC hub motor to drive one of

the wheels.

It takes slightly less than 400W to drive a

260lbs load up a 6 degree incline without

assistance.

5, 6, 7 The bicycle will be able to assist the

user for at least one hour.

The average length of a typical

cardiovascular workout is less than one

hour and the bicycle should be able to

assist for longer than a typical workout.

3 The embedded system will take

measurements from the heart rate

sensor at least every tenth of a

second.

By taking a reading every 0.1 seconds,

the embedded system will be able to

make minor adjustments to the motor’s

assistance.

4 The bicycle will be able to keep the

user’s heartrate within ±10% of a

selected value.

A range of 10% is large enough that the

system will be able to keep the user

within it with minor adjustments, but

small enough to keep a uniform workout.

9 An LCD display and associated

controller will be used to display the

user’s heart rate, speed, and ride

duration in real time.

Heart rate, speed, and ride duration will

be the most important information for a

user and by updating it in real time the

information shown will always be

accurate.

2 The bike will be able to assist the

user up a 6 degree (10 % grade)

slope.

6 degree slopes are the largest that are

typically seen on bike paths.

7, 8 The energy management system will

interrupt power flow to, or from, the

motor in less than 0.1 seconds.

By isolating the batteries in under 0.1

seconds, the amount of damage done to

the batteries and other electronics on the

bicycle will be limited.

10 The heart rate monitor will be able to

transmit data at least 10 feet.

10 feet is an appropriate distance to

ensure the data will reach the controller.

11 The bicycle’s associated electronics

will weigh less than 60lbs.

If the electronics weight less than 60lbs,

then the bike will still be usable without

electronic assistance.

1 The motor controller must be able to

send 400W of power from the

batteries to the motor.

The assist, or resist function, of the bike

can occur at any time and the motor must

be able to transition continuously.

1 The motor controller must be able to

send power back to the batteries from

the motor.

In order to increase the load the user is

driving, thus increasing the user’s heart

rate, the motor must act like a generator

and produce power which will be routed

back to the batteries.

Table 1 – Design Requirement Specifications

13

2.1 Marketing Requirements

1. Be able to vary pedal resistance autonomously

2. Assist user on inclines

3. Accurately read user’s heart rate

4. Attempt to keep user’s heart rate in a selected intensity zone

5. Be able to assist the user for the duration of a typical cycling workout

6. Utilize a portable and rechargeable energy storage device

7. Have a safe and reliable energy management system

8. Have a user activated shutdown

9. Display health and ride parameters

10. Transmit user’s heart rate to the rest of the system wirelessly

11. The additional weight of the bicycle’s electronics won’t overload the user if they

are pedaling without assistance

14

3. Accepted Technical Design

3.1.1 Level 0 Hardware Theory of Operation

A typical electronic bicycle takes input from a throttle and a DC hub motor. The hub

motor has a controller which increases or decreases its outputted torque according to

what the throttle commands. In this system, the bike will utilize the user’s heart rate as a

throttle. This will allow the bike to adjust its output accordingly without the user having

to consciously input anything into the system.

3.1.2 Level 0 Hardware Diagram

Figure 2 – Level 0 Hardware Diagram

A heart rate based user assisting bicycle, as seen in Figure 2, will be designed and built

so that it will be able to assist a user pedaling their bicycle. It will utilize the user’s heart

rate as a throttle and attempt to keep their heart rate in a specified intensity zone. As the

user rides it will display pertinent data to them.

15

Module Heart Rate Based Assisting Bicycle

Inputs • User selected intensity zone

• User generated torque

• User heart rate

Outputs • Display heart rate, speed, and ride length

• Torque to the driveshaft

Description The user’s heart rate, intensity zone, and

generated torque will be used to decide how to

drive the motor. Various ride data will be

displayed to the user throughout the ride.

Table 2 – Functional Requirements of Heart Rate Based Assisting Bicycle

16

3.2.1 Level 1 Hardware Theory of Operation

A heart rate monitor attached to the user will be used to measure their heart rate and send

that data to the embedded system of the bicycle. The embedded system will use this data,

along with the drive train’s rotations per minute, the batteries state of charge and the

motor phase, to decide what the motor should do. The controller then produces the

corresponding control signal to send to the motor controller. Along with that control

signal the embedded system will send the data to be displayed to the display. The entire

system, excluding the heart rate monitor, will be powered by a set of batteries that are

controlled and monitored by a battery management system.

3.2.2 Level 1 Hardware Diagram

Figure 3 – Level 1 Hardware Diagram

The level 1 hardware diagram, as seen in Figure 3, encompasses the entire system that

will be required to create a heart rate based assisting bicycle. A 48V battery pack will be

utilized to power the entire system and be controlled by the battery management system.

The embedded system will collect all of the appropriate data (heart rate, rpm, state of

charge, etc.) and utilize it to route the appropriate amount of power through the motor

17

controller to the motor. The motor will then drive the drive train and assist the user the

amount needed to keep them in the specified intensity zone.

Module Heart Rate Monitor

Designer Ethan Wesel & Ryan Applebee

Inputs • User's heart rate

• Battery power (1.5V)

Outputs • Bluetooth signal that corresponds to

the user’s heart rate

Description The heart rate monitor will measure the

user’s heart rate and then convert that to a

Bluetooth signal which will be sent to the

rest of the system.

Table 3 – Level 1 Heart Rate Monitor Functional Requirements

Module Batteries

Designer Tyler Matthews

Inputs • 48V Power Signal

Outputs • 48V Power Signal

Description The batteries will either supply power to

the motor, and the rest of the bike’s

electronics, or the motor will act as a

generator and supply power to the

batteries.

Table 4 – Level 1 Battery Functional Requirements

Module Battery Management System

Designer Tyler Matthews

Inputs • 48V Power

Outputs • 48V Power

• Battery State Of Charge

Description The battery management system will

ensure the batteries are safely monitored.

While the bike is running, it will route

power to the rest of the electronics and

send the batteries SOC to the embedded

system.

Table 5 – Level 1 Battery Management System Functional Requirements

18

Module Motor

Designer Ryan Applebee, Ethan Wesel

Inputs • Power

Outputs • Torque

• Power

Description The motor will be attached to the

drivetrain and can act to assist the user by

adding torque. Alternatively, the motor

can act as a generator and send power to

charge the batteries.

Table 6 – Level 1 Motor Functional Requirements

Module Drivetrain

Inputs • Torque

Outputs • Torque

• RPM

Description The drivetrain will either use torque

provided by the motor, to assist the user,

or provide torque to the motor which will

charge the batteries. Also, it will output its

rotations per minute to the embedded

system.

Table 7 – Level 1 Drivetrain Functional Requirements

Module Display

Designer Nick Darash

Inputs • Power

• Battery State of Charge

• Drivetrain RPM

Outputs • Displays data to the user.

Description The display will take power from the

batteries and data from the embedded

system to display data to the user.

Table 8 – Level 1 Display Functional Requirements

19

Module Motor Controller

Designer Ryan Applebee, Ethan Wesel

Inputs • Pulse Width Modulated Control

Signal

• Regenerative Braking Power

Outputs • Motor Power

• 48V Regenerative Breaking Power

Description The Motor Controller will act as a bi-

directional power supply to either power

the motor or recharge the batteries. When

powering the motor, it will utilize a

control signal from the embedded system

to control the power flow

Table 9 – Level 1 Controller Functional Requirements

Module Embedded System

Designer Nick Darash

Inputs • Power

• Battery State Of Charge

• RPM

• Heart Rate

• Motor Position

• Phase Currents

Outputs • Display data

• Control signal to the motor

Description The Embedded System is the brains

behind the entire bike. It will take in all

the data from the other systems and decide

how the motor will operate. It will also

interact with the user by receiving the

heart rate signal and display appropriate

information on the screen.

Table 10 – Level 1 Embedded System Functional Requirements

20

3.4.1 Level 2 Embedded System Hardware Theory of Operation

The embedded system will take in signals from the batteries such as power and state of

charge. It will also use signals from the heart rate monitor and the Hall Effect sensor

from the drivetrain and feed the information to a microcontroller. The microcontroller

will then use the data gathered and an algorithm we write in software to command the

motor more or less torque. This controller will also be used as a motor controller. The

controller will need to control the switches in the inverter using six different amplified

PWM signals. The 6 PWM signals will be sent into the inverter to control the switches. In

order make the motor impede the user we need to drive a negative current into the motor.

This is done through closing and opening different switches, through the switching

operation we can cause the current to go –180 degrees out of phase and thus create the

negative current that is needed. This will apply toque on the wheel and make it more

difficult to pedal. We will be using three Hall Effect sensors to sense the phase of the

motor. The phase of the motor will be used to indicate the timings of which the switches

will be activated.

21

3.4.2 Level 2 Embedded System Hardware Diagram

Figure 4 – Level 2 Embedded System Hardware Diagram

The embedded system will receive power from the batteries along with a state of charge

signal from the battery management system. It will display state of charge on the display

along with the speed the bike is travelling. The speed of the bike is calculated by taking

in pulses from a Hall Effect sensor that pulses once for every revolution of the wheel.

Lastly the embedded system gets the users heart rate via Bluetooth. It uses this

information to the set the duty cycle and the switching speed of 6 PWM signals to send to

the motor controller.

22

Module MCU

Designer Nick Darash

Inputs • Heart Rate Signal

• Drivetrain RPM

• Battery State Of Charge Signal

• Motor position

• Motor Current

Outputs • Motor Control Signals

• Display Data

Description Reads the user’s heart rate, drivetrain rpm,

Motor Position, Motor Current, and

battery SOC and outputs different signals

accordingly. Will have an algorithm to

control the motor and display data on the

screen

Table 11 – Embedded System MCU Functional Requirements

Module Motor Controller

Designer Nick Darash

Inputs • 6 PWM Control Signals

• Back EMF from Motor

Outputs • Battery Power

• 24 Volt Regen Power

Description When the bike is assisting, the motor

controller will be controlled by the MCU

and deliver the battery power to the

motor. In regen mode power from the

motor will be used to recharge the battery.

Table 12 – Embedded System Motor Controller Functional Requirements

23

3.5.1 Level 2 Battery Management System Hardware Theory of Operation

The battery management system will read voltages from each series connection in the

battery in order to manage them properly. The system will use these voltages to calculate

an accurate state of charge of the batteries and send that signal to the embedded system.

The battery management system will also be able to detect faults on the system and shut

down the batteries in case of an emergency. If the batteries are in a safe operating range,

the system will also allow them to charge safely and use power resistors to bleed off

energy if the cells become unbalanced. The battery management system will also ensure

the batteries remain within a sustainable temperature range, and turn off power if they get

too hot. Most importantly the system will protect against overcurrent, overvoltage and

under voltage when the cells are being charged or discharged.

3.5.2 Level 2 Battery Management System Hardware Diagram

Figure 5 – Level 2 Battery Management System Hardware Diagram

The microcontroller will read voltage across a shunt resistor in order to accurately read

current. It will control power flow to the drivetrain with a power MOSFET / MOSFET

24

driver and read cell temperature directly using thermistors. All this information will be

used by an algorithm in the microcontroller to ensure the batteries are operating safely.

Then the microcontroller will send a state of charge signal to the embedded system to be

displayed on the screen.

Module MCU

Designer Tyler Matthews & Ethan Wesel

Inputs • Battery0 Voltage

• Battery Current

• Battery Temperatures

Outputs • Charge / Discharge Signal

• Battery SOC

Description The microcontroller will take in the

individual cell voltages, temperatures, and

the overall pack’s current to make

decisions regarding the battery operation.

It will also output the batteries SOC to the

embedded system.

Table 13 – Battery Management System MCU Functional Requirements

Module Buck Converter

Designer Tyler Matthews & Ethan Wesel

Inputs • 24V Battery Power

Outputs • 3.3V Power

Description The buck converter will take power from

the batteries and step it down to a

reasonable level to power the MCU.

Table 14 – Battery Management System Buck Converter Functional Requirements

25

Module Power MOSFET

Designer Tyler Matthews & Ethan Wesel

Inputs • 24V Battery Power

• Charge / Discharge Signal

Outputs • 24V Battery Power

Description The power MOSFET will be used to

control the flow of power to / from the

batteries to the motor controller. It will

need to be able to handle high voltage and

current (24V, 20A) from the batteries

while having a low impedance path from

its source to drain.

Table 15 – Battery Management System Power MOSFET Functional Requirements

Module Shunt Resistor

Designer Tyler Matthews & Ethan Wesel

Inputs • 24V Battery Power

Outputs • Voltage differential that corresponds

to the current flowing

Description The voltage drop across the shunt resistor,

will be measured by the MCU and will be

proportional to the voltage flowing

through it. It will need to be low

impedance and be able to hand high

currents (20A).

Table 16 – Battery Management System Shunt Resistor Functional Requirements

Module Batteries

Designer Tyler Matthews & Ethan Wesel

Inputs • N/A

Outputs • 24V Power

Description The batteries will be able to supply 24V

and high currents to power the rest of the

electronics.

Table 17 – Battery Management System Batteries Functional Requirements

26

3.6.1 Software Theory of Operation for the Embedded System

The embedded system will manage the operations of the entire bike and motor. It will be

required to keep track of the user’s heart rate and keep the motor operating at proper

torque and speed. It will then be required to display pertinent data on a display so that the

user can have an understanding of the system conditions. The embedded system will

look at the speed of the bike, the user’s heart rate, and the state of charge from the

battery, in order to operate correctly. Using all this data the bike will be able to operate

the motor in a safe and effective manner.

3.6.2 Software Diagram for the Embedded System

Figure 6 – Embedded System Software Diagram

27

The software diagram, as seen in Figure 6, encompasses the motor control and display.

This system should be able to take state of charge, drivetrain rpm, user heart rate and

motor position. It will then create a control signal that will tell the switches to turn either

open or close and weather the motor should start adding resistance to make it harder to

pedal, or assist the rider. Lastly, it should be able to use the collected data to create a

signal to tell the display what to show the user.

28

3.7.1 Software Theory of Operation for the Battery Management System

The battery management system will be responsible for monitoring the batteries, ensuring

the batteries are operating within safe parameters, and allow the batteries to power the

rest of the electronics. This system will take measurements of the battery voltage,

temperature, and input/output current to determine if the batteries are operating correctly.

3.7.2 Software Diagram for the Battery Management System

Figure 7 – Battery Management System Software Diagram

The level 1 software diagram, as seen in Figure 5, showcases the operation of the battery

management system. This system constantly takes measurements of the battery voltages,

temperatures, and current. If any of these values appear out of the ordinary then the

system will stop the bike from starting or, if the bike had already started, it will stop the

bike from continuing to run. If the batteries are being charged, then the battery

29

management system will allow them to continue charging as long as the batteries are

working with spec. Finally, the battery management will calculate the battery’s state of

charge and send it to the embedded system.

30

3.8.1 Level 3 Battery Management System Hardware Theory of Operation [TRM]

As previously discussed, the three main objectives of a battery management system is to

ensure that the batteries’ voltage, current, and temperatures are within a safe operating

zone. In order to do this, the battery management has three separate subsystems that each

monitor one of above parameters and sends the measured values to a central MCU. If the

MCU gets any value that’s outside of the safe operating zone, it disconnections the

batteries from the rest of the bicycle.

The first requirement for the battery management system is to monitor the battery cells’

voltages. Since the battery pack for this project is a high voltage (44.4V nominal),

connecting the voltage sense lines directly to the MCU ADCs would destroy it. One way

to get around this is to use a voltage divider circuit to minimize the voltage sampled by

the ADCs and then scaling the measured value back to what it should be in software. The

issue with this is that it constantly burns power off through the resistors and a lot of

resolution is measured when the values are scaled down. To get around these issues, a

battery monitoring IC (LTC6804) was selected to measure the voltages. It then sends the

values it measures to the central MCU through the SPI communication protocol. On top

of that, the IC has built in FET drivers that allow it to passively balance (passive

balancing keeps battery cells that are connected in series at the same voltage level by

burning off excess power through a load resistor) the battery cells.

The second requirement for the battery management system is to monitor the current

flowing into, or out of, the battery. Typically when measuring currents in a circuit, one

would use a shunt resistor (resistor with a small impedance) and then measure the voltage

31

drop across the shunt to derive the current flowing through that line (using I = V/R). In

the case of the battery management system, the peak current flowing from the batteries to

the rest of the bicycle is expected to be around 30 amps. This means that even a 0.1 ohm

shunt resistor will cause losses in excess of 90W (P = I^2 * R) which is unacceptable. To

mitigate this issue, a hall-effect based current sensor was selected. A hall-effect based

current sensor measures the magnetic field generated by the current through the

conductor and then derives the current based on that magnetic field. This allows the

current to be measured with minimal losses, since the only added resistance is the length

of conductor required to connect the sensor to the circuit. The sensor that was selected for

this application, MLX91210, is a bi-directional hall-effect based current sensor that out

puts a voltage that corresponds to the current it measures. It can handle up to 50 amps in

either direction with a resolution of 50mV outputted for every amp flowing through it.

The third requirement for the battery management system is to monitor the battery

temperature while it is being operated. Because the battery is going to be rather large

(5P12S = 60 individual cells), the temperature throughout it won’t necessarily be

uniform. To combat this, the temperature will be measured at multiple points throughout

it. Typically, when measuring temperatures, either diodes or thermistors is used. The

voltage drop across the PN junction of a diode, or transistor, has an inversely proportional

linear relationship with temperature. Meaning, that as temperatures increase, the voltage

drop across that junction decreases by a set amount (ie: 0.05V / 20 degrees C). Also by

paralleling the diodes, or transistors, only one reading needs to be taken because the

diode with the smallest voltage drop is the only one that will be “active” and that

32

corresponds to the diode with the highest temperature. Unfortunately, to get this to work,

the diodes have to be perfectly matched and the precise measuring techniques are needed

to get accurate values. Because of this, the battery management system is implementing

thermistor based temperatures sensors instead. The thermistors chosen are 10K NTC

(negative thermal coefficient), which have a nominal impedance of 10K ohms and the

impedance decreases as their temperature increases. By putting each of these in series

with a 10K resistor, whose temperature should be stable, and measuring the voltage

between them, the temperature of the NTC can be easily derived (the difference in

voltage across the NTC can be used to calculate it’s impedance, and then a lookup table

for its resistance at very temperatures can be used to find its temperature). One of the

main drawbacks of this system is that it is constantly burning power through the resistors

and NTCs. To combat this, the temperature sense circuit is fed through an N-channel

MOSFET that will only allow current to flow when the temperatures are going to be

measured.

If anything goes wrong, the MCU has to be able to disconnect the battery from the rest of

the bicycle, or charger if the batteries are being charged. Because the battery will be

delivering a lot of power, a power transistor or relay is needed to connect and disconnect

them. A relay would work, but they typically act slower than transistors and, assuming

the use of normally open non-latching relays, they would constantly be burning power to

keep the battery connected. By using a MOSFET instead, the circuit is able to switch

quickly and minimize the current draw (MOSFET draw little to no current when they are

not switching). N-Channel MOSFET’s require a voltage at its gate larger than that

33

present on its source in order to switch it on and since that battery management system

has no control on what is happening outside of its circuitry (MOSFET’s source would be

the output to the rest of the bike) it’s impossible to predict what the voltage at its source

would be. So, it was decided to use a P-Channel MOSFET since they only require the

gate voltage to be lower than the source voltage to turn them on. Unfortunately this

means, to turn it off, its gate voltage has to be almost equal to its source voltage. This is

easily remedied with a resistor tied between its source and its gate, so that whenever its

gate is not pulled to ground it’ll be forced to the same voltage as its source. To turn the

MOSFET on, its gate then needs to be pulled significantly lower than its source voltage.

To do this, an N-Channel MOSFET is trigger by the MCU and then it pulls the gate of

the P-Channel closer to ground. The gate of the P-Channel is not pulled directly to

ground, because it can only handle a given difference (about 20V) between its gate and

its source before it fails. Also, the MCU cannot directly pulled the P-Channel to ground

because it lacks the current sinking capabilities required to do so.

34

3.8.2 Level 3 Battery Management System Schematic Diagrams [TRM][ELW]

Figure 8 – Voltage Measuring Circuity

Shown in Figure 8 is the schematic for the voltage sensing circuitry. As can be

seen all 12 battery cells that are in series have a voltage sense line coming from

them. They get sent to the LTC6804 “C” pins through a 100 ohm resistor. Then, if

the IC senses that the voltage of any one of the cells is too high, it turns on the

balancing circuitry with the corresponding “S” pin and the excess power is burned

off through the 33 ohm load resistors (the other resistor and led attached to the

FETs is just for visual verification that balancing is occurring). Also, the SPI

communication lines (MOSI, MISO, CLK, and CS_1) are connected to the IC so

that it can send the measured voltages to the central MCU.

35

Figure 9 – Current Measuring Circuitry

Shown in Figure 9 is the schematic for the current sensing circuitry. The battery

power comes in from the connector on the left and is then immediately routed to

the current monitor (MLX91210). This monitor measures the power following

from IP+ to IP- and outputs a corresponding voltage (40mV / A) through the

VOUT pin. The C_SENSE net (connected to the VOUT pin) is then routed to the

MCU so that it can make sure that a safe amount of current pushed to, or pulled

from, the battery.

Figure 10 – Temperature Measuring Circuitry

Shown in Figure 10 is the schematic for the temperature measuring circuitry.

This circuitry consists of the in-series 10k resistors, that create the voltage divider

with the 10k NTCs mounted on the battery, and the N-Channel MOSFET that

controls whether or not this circuit has power. The TEMP1 through TEMP5 nets

36

get routed back to the MCU so it can cut off power if the temperatures are no

longer within safe operating parameters. The TEMP_FET net gets routed back to

the MCU so that it can turn the temperature measurement circuitry on and off.

Figure 11 – MCU and Power Circuitry

Shown in Figure 11 is the schematic for the MCU and the circuits that enable

charging, and discharging, of the batteries. On the left of the MCU is the circuitry

required to program it using a PIC KIT and a reset button. Attached to that

circuitry are the I2C lines (ICSP_CLK, ICSP_DATA) that will be used to send

the battery SOC to the embedded system. On the top is the circuitry that allows

the MCU to communicate using UART (using a UART to USB adapter data can

be sent to a computer and viewed with a terminal, allowing for an easier way to

debug the software). Around the MCU inputs for temperature measuring (TEMP1

– TEMP5), current measuring (C_SENSE), the SPI communication lines for

voltage measuring (MOSI, MISO, CLK, CS_1), and the general purpose pins

(GPIO_ 1 – GPIO_5) which will be used for the kill switch, start switch, and

charge switch can all be seen. The two pins that will be used to enable charging,

and discharging, of the batteries can be seen on the top left of the MCU. To the

37

right are the corresponding circuits that will actually connect the batteries to the

charger or the other electronics on the bicycle. Each of these circuits consist of a

power P-Channel MOSFET that has their gate tied to their source through a 10k

resistor. Then, when the N-Channel MOSFETS have their gates pushed to 4.95V

(5 ∗
10000

10000+1000
), the P-Channel gates are pulled to 2/3 of their source voltages

using a simple voltage divider (𝑉𝐺𝑎𝑡𝑒 = 𝑉𝑆𝑜𝑢𝑟𝑐𝑒 ∗ [
20000

20000+10000
]). This connects the

P-Channel MOSFET’s source and drain thus allowing power to flow to, or from,

the battery.

Figure 12 – 5V Regulator and Connectors

Shown in Figure 12 is the schematic for the 5V switching regulator needed to

power the battery management circuitry along with all of the connectors that are

on the board. This 5V regulator (SRH05S05) is capable of taking a range of 9-

72V and output a constant 5V for up to 500mA. This high input range means this

can take the battery voltage directly, without needing to step it down. And it being

able to output 500mA, means that it will be able to easily power all of the battery

management electronics as well any external electronics that might need a 5V rail

that are not currently accounted for. On the input of this regulator is a PTC

38

(positive thermal coefficient) rated for the battery pack voltage. If a short circuit

occurs somewhere and too much current is being pulled, the temperature of the

PTC will rise and limit the current draw until the short is fixed (essentially acting

as a resettable fuse).

39

3.8.3 Level 3 Battery Management System Software Theory of Operation [TRM]

As discussed above, the battery management system has three subsystems for measuring

the various values needed to understand if the battery is operating safely or not. So, the

software needs to be set up so that the MCU can interact with each of these subsystems in

a timely manner. To do this, timers will be setup so that the MCU can take measurements

at constant time intervals. The temperature and voltage measurements will be tracked by

one timer, while the current measurement will be tracked by another. The current is

tracked by itself because to accurately implement coulomb counting, for SOC

calculations, the time interval between current measurements has to be precise. And the

amount of time needed to take voltage and current measurements will be enough to make

the coulomb counting SOC calculation inaccurate.

The battery management system also needs to be able to calculate the battery’s SOC

(state-of-charge) and send it to the embedded system whenever it is requested. To

calculate a battery’s SOC a few values need to be known: the most recent battery no-load

voltage and the amount of charge it’s given/received since the most recent no-load

voltage measurement. The battery management takes the last known no load voltage and

converts that to a percentage of battery charge, and then multiplies that by the total

ampacity of the battery. This gives the amount of charge that the battery had left when

the no-load voltage measurement was taken. Then, at a given time interval, the current

flowing out of the battery is measured and subtracted from the total previous calculated.

Finally, by dividing this value by the total battery ampacity, the battery’s SOC can be

calculated and sent to the embedded system. This technique for calculating battery SOC

is known as coulomb counting and is the industry standard.

40

3.8.4 Level 3 Battery Management System Pseudo Code [TRM][ELW]
//Pseudo Code -- Tyler Matthews 11/16/2018

//Configuration Bits will be set in a config.h file

//Global Variables

boolean batteries_are_safe = FALSE;

boolean battery_is_charging = FALSE; //This will be changed to

true based on interrupts caused by the GPIO pins (charging button

pressed / connection made)

boolean battery_is_discharging = FALSE; //This will be changed to

true based on interrupts caused by the GPIO pins (start button

pressed / connection made)

float voltage_array[];

float temperature_array[];

float battery_SOC;

float max_ampacity = ; //will be intialized as the batteries

ampacity at full charge in Amps-time_between_measurements (ie:

amp-seconds or amp-milliseconds)

float current_value; //the most recent current value (in Amps)

//End Of Global Variables

**

//Main Function

**

main(){

 system_initialize();

 initial_measurement();

 while(1){

 if(batteries_are_safe == TRUE){

 if(battery_is_discharging == True{

 start_discharging();

 if(Timer1 interrupt is thrown){

 measure_temperatures();

 read_voltages();

 }

41

 if(Timer2 interrupt is thrown){

 measure_current();

 calculate_soc();

 }

 if(embedded system requests data){

 send_soc();

 }

 battery_check();

 }

 else if(battery_is_charging == TRUE){

 start_charging();

 if(Timer1 interrupt is thrown){

 measure_temperatures();

 read_voltages();

 }

 if(Timer2 interrupt is thrown){

 measure_current();

 calculate_soc();

 }

 battery_check();

 }

 else if(batteries_are_safe == FALSE){

 //Set RD4 and RD5 to 0, turning off the

Charging/Discharging Circuits

 //Blink the LED connected to RA5

 //Do nothing else -- requiring a manual reset before the

system will run again

 //This ensures that the system is checked before trying

to run again

 }

 }

}

//End Of Main Function

42

//Custom Functions

//Initializing functions

void system_initialize(){

 i2c_setup();

 spi_setup();

 uart_setup();

 timer_setup();

 adc_setup();

 pin_setup();

}

void inital_measurement(){

 read_voltages();

 inital_soc();

 measure_temperatures();

 initial_battery_check();

}

void inital_soc(){

 //Loop through the individual cell voltages array and add them

all together

 //Divide the value calculated above by the maximum pack voltage

(50.4 V) to get current SOC

 //Save this value as batter_SOC()

}

void initial_battery_check(){

 //Checks voltage and temperature arrays to ensure that all

measured values are within spec

 //If they are within spec, set batteries_are_safe equal to

TRUE, allowing the battery to charge / discharge

 //If they are not within spec, set batteries_are_safe equal to

FALSE, not allowing the battery to charge / discharge

}

//End Of Initializing Functions

43

//Charge / Discharge Functions

void start_discharging(){

 //Set RD5 high, causing the FET connecting the batteries to the

rest of the bike to close (allowing the batteries to discharge)

 //Set RD4 low, should already be low but this ensures that only

discharging circuit is on

}

void start_charging(){

 //Set RD4 high, causing the FET connecting the batteries to the

charger to close (allowing the batteries to charge)

 //Set RD5 low, should already be low but this ensures that only

charging circuit is on

}

//End Of Charge / Discharge Functions

//Measurement Functions

void read_voltages(){

 //Send a command to the LTC6804 to intiate a measurement of the

battery cell voltages

 //Wait until SPI_interrupt is thrown and cell voltages can be

read from the SPI buffer

 //Put cell voltages into the array voltage_array[]

}

void measure_temperatures(){

 //Set RB5 high to enable temperature measurements

 //Read Temperatures using ADCs on RB0, RB1, RB2, RB3, and RB4

 //Put temperatures into the array temperature_array[]

}

void measure_currents(){

 //Measures the current value (in Amps) at the instant this

function is called

 //Samples ADC on RD1 and then converts that value from volts to

Amps based on the current sensor's relationship

}

void battery_check(){

44

 //Checks the voltage_array, temperature_array, and

current_value to ensure all measured values are within spec

 //If they are within spec, set batteries_are_safe = TRUE;

 //If they are not within spec, set batteries_are_safe = FALSE;

}

//End Of Measurement Functions

//State-Of-Charge Functions

void calculate_soc(){

 //Calculates the batteries current SOC with the formula below:

 //battery_soc = battery_soc - (current_value / max_ampacity)

}

void send_SOC(){

 //Sends battery_soc to the embedded system using i2c

}

//End Of State-Of-Charge Functions

//SETUP FUNCTIONS

i2c_setup(){

 //Setup I2C module to use RB6 & RB7 as data and clock lines,

respectively

 //Setup I2C module to be used as Slave (Embbeded system's MCU

is the master)

 //Setup I2C interrupt to be thrown when data is requested from

the embedded system MCU

}

spi_setup(){

 //Pull RD2 low -- this is the slave select pin and only one

device is ever being communicated with

 //Setup SPI module to use RC5 as MOSI, RC4 as MISO, and RD3 as

the clock

 //Setup SPI module to be active low (all connections have

pullup resistors)

45

 //Setup SPI module to be the master device (LTC6804-2 is the

slave device)

 //Setup SPI interrupt to be thrown when data is recieved

}

uart_setup(){

//NOTE: UART module is only for testing -- allows data to be sent

and viewed on PC terminal

//Setup UART module to use RC7 as RX and RC8 a TX

//Setup UART module to use a baud rate of 9600 (not much data

being sent -- this is more than sufficient)

}

timer_setup(){

 //Timer's will be used to measure battery data at certain time

intervals (ie: 0.1ms)

 //Timer1 will be used to poll battery voltage and temperatures

 //Timer2 will be used to poll current (current is used for SOC

calculation and will be on a different interval)

}

adc_setup(){

 //ADC's will be used to measure temperatures (RB0, RB1, RB2,

RB3, RB4), current (RD1), and the GPIO pins (RA0, RA1, RA2, RA3,

RA4)

 //NOTE: GPIO pins will be used on an "as needed basis" --

things like the start switch, kill switch, etc...

}

pin_setup(){

 //RC7, RD4, RB5, and RA4 will be set as digital outputs

 //RC7 and RD4 will be used to enable/disable battery charging

and discharging

 //RB5 enables temperature measuring (enabling and disabling

this saves power)

 //RA5 is an LED indicator for testing purposes

}

//END OF SETUP FUNCTIONS

//End Of Custom Functions

**

Figure 13 – Battery Management System Pseudo Code

46

3.8.5 Level 3 Battery Management System Calculations [TRM]

Current Measurements:

 The MLX91210 has a resolution of 40mV/A. So, for the maximum current

expected to be pulled from the battery (30A) the MCU should get a reading of 1.2V (30A

* 40mV/A = 1.2V).

Voltage Measurements:

 The voltage measurements are done by the LTC6804, so there are no calculations

for it. But, the MCU will constantly make sure that the individual cells do not exceed

4.2V or drop below 3.2V.

Passive Balancing Circuit:

 The LTC6804 comes with the ability to do passive balancing of the battery. This

is where the voltages of the individual cells that are in series are constantly kept the same

by burning off excess in the cells with a higher voltage level. To do this, the LTC6804

sends a signal from one of its “S” pins to the gate of a P-Channel MOSFET, through a

3.3k resistor. When this MOSFET is completely turned on, the battery cell is shorted to

itself through a 33ohm load resistor. Knowing that the maximum voltage of any 18650

cell is 4.2V, the calculation for power dissipated through that load resistor can be

calculated as 0.5 W (𝑃 =
4.22

33
). This value is large enough to quickly balance the cells, but

not so large as to destroy components from overheating (especially since the balancing is

only ever on for very short periods of time).

Temperature Measurements:

47

The battery management system use 10K NTCs whose resistance are dictated by

the following formula:

𝑅 = 𝑅0 ∗ 𝑒
𝐵∗[

1
𝑇

 −
1
𝑇0

]

where B is 3940, R0 is 10k, T0 is 30 C (298 Kelvin), and R is the NTC resistance at

temperature T. Seeing as though the temperature of the batteries should not exceed 60 C

(333 Kelvin), the minimum resistance the NTC should have is 2494 ohms (𝑅 = 10000 ∗

𝑒3940∗[
1

333
 −

1

298
]
). From this, the voltage measured by the MCU that indicates battery

issues can be calculated via a simple voltage divider. By running the calculations, it can

be seen that any value less than 1V (𝑉𝐹𝑎𝑖𝑙𝑢𝑟𝑒 = 5 ∗ [
2949

2949+ 10000
]) indicates battery issues.

When this problem is sensed the battery discharging switch will open and stop operation.

Battery Charging and Discharging Circuits:

The circuits the enable charging and discharging of the batteries are exactly the

same, except the power P-Channel MOSFET is flipped. As such, the calculations for both

of the circuits are the same.

The P-Channel MOSFET has its gate tied to its source with a 10K resistor, when

closer the voltage at the gate and source of the MOSFET get to each other the closer to

being “off” the MOSFET is. Since the MOSFET has an internal capacitance (CISS) that

is roughly 13400pF, that resistor creates an RC time constant with it. This time constant

is 0.134s (𝜏 = 𝑅 ∗ 𝐶), which means it would take roughly 1/10 of a seconds for the

MOSFET to go from completely on to completely off. This value might seem high but as

the MOSFET transitions from one state to another, the impedance between its source and

drain changes. So, although it might take 1/10 of a second to completely cutoff current

48

flow, it’ll take significantly less to start limiting it. When the N-Channel MOSFET turns

on, grounding the gate of the P-Channel through a 20K resistor, the voltage at the gate of

the P-Channel is set to 2/3 of the source voltage through a voltage divider (𝑉𝐺𝑎𝑡𝑒 =

𝑉𝑆𝑜𝑢𝑟𝑐𝑒 ∗ [
20000

20000+10000
]). This ensures that the gate is sufficiently biased to turn on the P-

Channel MOSFET completely, while not destroying the MOSFET by having an overly

large voltage difference between the source and gate.

The N-Channel MOSET works by pulling its gate high than its source. So, when

the MCU puts 0V on its gate, through the 100 ohm resistor, the value at the gate is

essentially the same as that on the source (0V). When the N-Channel needs to turn on, the

MCU puts 5V on the gate, through the 100 ohm resistor, and the voltage divider network

sets the gate to 4.95V (𝑉𝐺𝑎𝑡𝑒 = 5 ∗ [
10000

10000+100
]). This is more than sufficient to turn on

the MOSFET completely.

State of Charge Estimation:

 To understand how much capacity a battery pack has left, it is necessary to

estimate its SOC, or State-Of-Charge. To estimate this, the following formula is used:

𝑆𝑂𝐶% = (
(((

𝑉𝑁𝐿
𝑉𝑇𝑜𝑡𝑎𝑙

)∗𝐼𝑇𝑜𝑡𝑎𝑙)−∫ 𝐼𝑡)

𝐼𝑇𝑜𝑡𝑎𝑙
) ∗ 100

where SOC% is the percentage of battery life left, VNL is the last no-load voltage

measurement that was taken, VTotal is the battery voltage at full charge (50.4V), ITotal is

the total ampacity of the battery pack (12500mAH), and It is the battery current at time

“t”. By taking the no-load voltage as a fraction of the total battery voltage and then

multiplying it by the total pack ampacity, it is possible to find the ampacity the pack had

49

left when the no-load measurement was taken. By then taking the integral of the current

over a set period of time, one can calculate what percentage of the battery has been used

during that period of time. Finally, by subtracting the amount used during the period of

time since no-load measurement was taken from the no-load amount that was measured,

the ampacity of the pack at any time “t” can be solved for. If this value is divided by the

total ampacity of the pack, and multiplied by 100, then the percentage of battery life left

is calculated.

50

3.8.6 Level 3 Battery Management System Parts List [TRM]

Qty Value Package Parts Description

1 TACTILE-SWITCH TACTILE-SWITCH S1 PIC Reset Switch

17 1k R0805

R38, R39, R40,

R41, R42, R43,

R44, R45, R46,

R47, R48, R49,

R50, R57, R63,

R73, R74

Resistors

8 1uF C0805

C16, C17, C18,

C19, C22, C23,

C25, C26

Capacitors

1 SSM3J328RLFTR-NO SOT23-3 Q13 P-Channel MOSFET

12 3.3k R0805

R4, R6, R9,

R12, R15, R18,

R21, R24, R27,

R30, R33, R36

Resistors

1 3.3uF C0805 C15 Capacitor

1 8MHz HC49UP XT1 Oscillator

12 10k R0805

R51, R52, R53,

R54, R55, R60,

R61, R64, R66,

R68, R70, R72

Resistors

1 10n C0805 C20 Capacitor

12 10nF C0805

C1, C2, C3,

C4, C5, C6,

C7, C8, C9,

C10, C11, C12

Capacitors

2 20k R0805 R65, R69 Resistors

12 33 R0805

R3, R7, R10,

R13, R16, R19,

R22, R25, R28,

R31, R34, R37

Resistors

16 100 R0805

R1, R2, R5,

R8, R11, R14,

R17, R20, R23,

R26, R29, R32,

R35, R56, R67,

R71

Resistors

1 100n C0805 C21 Capacitor

1 100nF C0805 C13 Capacitor

1 100uF C0805 C24 Capacitor

1 B59707A0120A062 1210 F2 PTC

51

2 BMS3004 TO218V U$1, U$2
Power P-Channel

MOSFETS

12 DMP2305U SOT-23

Q1, Q2, Q3,

Q4, Q5, Q6,

Q7, Q8, Q9,

Q10, Q11, Q12

P-Channel MOSFET

2 FK3306010L SSSMINI3-F2-B U2, U6 N-Channel MOSFET

1 FTDI_Header 1X05 J1 FTDI Header

14 Green LED-0603

D1, D2, D3,

D4, D5, D6,

D7, D8, D9,

D10, D11,

D12, D14, D15

LEDs

1 ICSP Header 1X05 J2 ICSP Header

1 LTC6804 SSOP48 U1 Battery Monitoring IC

1 MLX91210 SOIC-8 U4 Current Sensor

2 MOLEX_42840-2224 MOLEX_42820-2224 X2, X4 Connector

2 MOLEX_105314-1114
MOLEX_105314-

1114
X1, X5 Connector

1
PIC16F1789-

I/PTTQFP44_MC-L
TQFP44_MC-L U7 MCU

2 RED LED-0603 D13, D16 LEDs

1 SRH05S05 SIP3 U5 5V Regulator

8 TP5015 TP5015

TP1, TP2, TP3,

TP6, TP7, TP8,

TP9, TP13

Test Points

5 NXRT15XV103FA1B040 Through Hole
Not On

Schematics
10k NTC

Table 18 – Battery Management System Parts List

52

3.9.1 Level 3 Embedded System Hardware Theory of Operation [NMD]

The level 3 hardware diagram is an actual schematic of the system itself. While

the schematic relatively close to the final product with the possibility of changes only

occurring after testing has proved that changes to the design are needed. The final

schematic will be split into six main parts each serving its own function in the final

product.

3.9.2 Level 3 Embedded System Schematic Diagrams [NMD]

This first main portion of the schematic shows how each component on the board

is powered. There are three main power rails on this board that takes the 48-Volt battery

power as an input and delivers 3.3-Volts, 5-Volts, and 12-Volts to the appropriate

portions of the circuit. The schematic for this circuit is shown below in Figure X and

utilizes a simple switching regulator to provide appropriate voltages. Only 1 circuit is

shown in Figure 14 but the each voltage rail is very similar to this circuit. The only

difference being that the switching regulator device is a different model that creates

another voltage value.

Figure 14 – DC Voltage Regulator Circuit

53

After power can now be properly distributed throughout the system, the next main

part of the system to be discussed is the main controller. The design block for the main

controller can be seen in Figure 15 below and shows that the main microcontroller is a

dsPIC33F that will be running at a speed of 40MIPS. Certain associated passive devices

can be seen in this block as well that the microcontroller requires to run properly. Finally

the main purpose of the microcontroller is to control the functionality of the entire

system. Nets for each input and output signal can be seen that will send PWM signals to

the motor driver IC, read the values of the Hall effect sensors of the motor, and read the

currents in each phase of the motor. Another aspect of these signals is the

communication signals that are going to be used to read heart rate, throttle input, and

state of charge from the battery management system along with fault data. An I2C bus is

implemented for communication with each of these peripherals because it allows for

quick communication with a large number of devices while only requiring two lines for

communication. This will later allow for the addition of a display, and if time permits, a

Wi-Fi module which will then allow for the creation of a simple website.

Figure 15 – Embedded System Main Controller

54

The last main portion of the embedded system is the motor driver IC and 3-Phase

H-bridge design. The design block can be seen below in Figure 16 and shows both the

driver IC which is used to help drive the gates of the large power MOSFETs in the bridge

and then the 3-Phase half bridge. The driver IC utilizes three bootstrap capacitors that are

charged during the off time of each top FET in the bridge which help drive the gate of the

FET high when the source is floating. This allows for quick and reliable switching of the

FET as needed.

Figure 16 – 3 Phase Half Bridge and Driver IC

The last three blocks of the schematic shown are simple blocks depicting a series

of test points that will be placed on the board in Figure 17 below. The purpose of these

test points is to help with testing and debugging the final prototype. The following block

depicts a series of LEDs that will be used for indication of the signals being transmitted

on the board, such as power, power FET gates, Hall sensors, and communications among

55

others. The very last design block shown is the connectors that will transfer signals from

this board to the BMS, peripheral boards and finally the motor.

Figure 17 – Test Points and Signals

Figure 18 – Signal Indication LEDs

Figure 19 – Connector Circuits

The next step taken after creating these schematics is to layout the individual parts

onto a PCB to have printed. The first revision of this board can be seen in Figure 20

56

below and depicts the PCB that will be created to control the bicycle. The board itself is

subject to change however it suffices as a good model for future board layouts.

Figure 20 – First Revision of the Embedded System Board Layout

57

3.9.3 Level 3 Embedded System Software Theory of Operation [NMD]

After the hardware has been simulated and schematics have been made the next step is to

write the actual code that will control all the hardware shown above. Seen below is a

simplified version of pseudo code that will be implemented on the dsPIC. The code

running on the dsPIC will have similar functionality to the code running in MATLAB

however it will also have to keep track of all sensor data and communicate frequently

with other devices on the bike. Another key difference will be how the sine and cosine of

the motor angle will be calculated. In MATLAB the sine and cosine are calculated

directly using Taylor series expansion, while this method can give a very accurate value

of these two functions it is far to computationally demanding to occur in real time.

Therefore lookup tables will be implemented in software to help extrapolate values for

these functions that are not as precise but done much more quickly. All pseudo code can

be seen below in Figure 21.

58

3.9.4 Level 3 Embedded System Pseudo Code [NMD]

/* Pseudo code for motor controller

* Created by Nick Darash for use by DT18

* Cycle Assist

*/

////////////////////////

// Directives //

////////////////////////

#define Q1

#define Q2

#define Q3

#define Q4

#define Q5

#define Q6

enum {false,true};

enum {OFF,ON};

//////////////////////

// Global Variables //

//////////////////////

int theta; // Position of motor in radians

int w; // Speed of motor in radians per second

int delta; // Time since previous hall effect signal

int time; // Time since start of program

int delta_A; // Value of HALL A one step prior

int delta_B; // Value of HALL B one step prior

int delta_C; // Value of HALL C one step prior

int Ia,Ib,Ic; // Values of Phase A, B, and C currents

void main(){

 int integral_Q;

 int integral_D;

 int Id,Iq; // Direct and Quadrature current values

 int U_q,U_d; // Output after PI controller

 int command; // Value of torque command from user

 oscSetup(); // Set up PIC to work at 40 MIPS

 /*

 * Set up interrupts for appropriate peripherals

 */

 interruptSetup();

59

 /*

 * Set up UART peripheral for debugging purposes

 */

 UARTSetup(baudrate);

 /*

 * Set up I2C bus for add on stuff later and to communicate

 * with battery management system

 */

 I2CSetup(baudrate);

 /*

 * Set up timers for switching and for communication purposes

 */

 timerSetup();

 /*

 * Set up out put compare module for Trapezoid control

 */

 OCSetup();

 while(1){

 if(ADC done triggered a flag){

 update(); // Update all 3 phase current values

 U_q = PI(&integral_Q, command, &Iq);

 U_d = PI(&integral_D, command, &Id);

 }

 if()

 }

}

////////////////////////

// Timers //

////////////////////////

void timerSetup(){

 // Timer 1 Timer 2 will be used for switching and

communication

 // respectively Timer 3 will be used for ms_delay function

and Timer 4

 // will be used for us_delay function

}

/*

* Timer 1 ISR main timer for switching

* this timer will be used to switch gates of the power stage

*/

void T1ISR(){

60

 // Ideally set up for 20kHz switching frequency

}

/*

* Timer 2 ISR will be used to initiate comms with other

peripherals

* ie. I2C communication for heart rate, display, and BMS

*/

void T2ISR(){

}

/////////////////////////

// External Interruprs //

/////////////////////////

/*

* External interrupts will be used to read the 3 hall effect

sensors

*/

void int0ISR(){

 // Read rising and falling edge of Hall A

}

void int1ISR(){

 // Read rising and falling edge of Hall B

}

void int2ISR(){

 // Read rising and falling edge of Hall C

}

///////////////////

// I2C //

///////////////////

void I2CSetup(int baudrate){

 // setup at 10020kHz

 // master device

 // 7-bit addressing

}

void I2CStart(){

 // send start condition

}

void I2Csend(unsigned char data){

 // send byte of data

}

unsigned char I2Creceive(){

 // return data from I2CRXREG

}

void I2CISR(){

 // set flag when I2CRXbuffer is full to pull all values

61

}

//////////////////

// UART //

//////////////////

void UARTSetup(int baudrate){

 // UART is used for debugging purposes only

}

void UARTsend(unsigned char data){

}

////////////////////

// ADCs //

////////////////////

void ADCSetup(){

 // set up all four ADCs for 3 current sensors and for

throttle input

 // Should be enough

}

void ADCread(){

 // read all four ADCs at once

}

void ADCISR(){

 // interrupt when ADCs have finished sampling

}

////////////////////

// PI Control //

////////////////////

int PI(int *integral, int command, int I){

 int error = command - I;

 *integral = (*integral + error*(time since last calc))

 return((*integral << 9) + (error << 9));

}

Figure 21 – Embedded System Pseudo Code

62

3.9.5 Level 3 Embedded System Simulation [NMD][RKA]

Motor Controller

Motor control can be accomplished in many different ways depending on the

needs of the motor and the type of motor being used. When creating the circuit for a

motor controller used to run an e-bike many variables had to be taken into account. The

purpose of the bike is to change the resistance felt by the user while riding to force the

user into a specific training zone. In order to accomplish this, the controller will work

best when it is able to command torque from the motor instead of speed. This way the

bike can both assist, and resist, the user with a constant force. While many different

types of control exists for both speed and torque based control, only the two that were

studied the most will be discussed.

First Simulation

Using Simulink, simulations representing the three-phase BLDC motor operation

and control can be implemented. The first simulation can be seen below in Figure 22.

This simulation utilizes multiple blocks from the Simscape Power Systems library which

is a downloadable add-on to the Simulink program. The block labeled “Permanent

Magnet Synchronous Machine” is used to model the three-phase synchronous BLDC

motor. Trapezoidal mode is selected which means this machine will operate assuming the

flux established by the permanent magnets on the rotor produces three (one per phase)

trapezoidal back emf waveforms. Figure 23 below shows the trapezoidal back emf for a

single phase (phase A) of the motor spinning at 5.3 rad/s or about 50rpm. The total

amplitude of the signal is 8.35V, and when rotating the motor in the lab at a rate of about

63

50rpm the total amplitude of the signal was 8.20V – a small enough difference to assume

the back emf model is reliable.

Figure 22 – First BLDC Motor Simulation in Simulink

Figure 23 – Trapezoidal Back-EMF Waveform at 50 RPM

Both the electrical and mechanical parts of the machine are governed by second-

order state-space equations given in the rotor reference frame (q and d axis) and

64

quantities are referred to the stator for simplicity. Looking under the blocks mask two

other blocks can be seen; one corresponding to mechanical rotation and the other

corresponding to the electrical operation. The second-order state-space equations and a

brief description of each variable along with the electrical and mechanical block models

are shown in Figure 24. There are 12 different parameters represented at the output of the

motor block: each phase’s current (ia, ib, and ic [A]), each phase’s trapezoidal back emf

(ea, eb, and ec [V]), electromagnetic Torque (Te [N*m]), the three hall effect sensors (ha,

hb, and hc [unitless]), the corresponding rotor angle (θ[rad]) and angular speed (wm

[rad/s]).

65

Figure 24 – Electrical and Mechanical Model and Their Governing Equations

The motor also takes a mechanical input - in this case it is mechanical speed

applied to the motor shaft in rad/s and is applied using a stepped input starting from 0 and

stepping up to a final value. Now that the basic operation of this block is understood

selection of the motor parameters to reflect the actual motor are selected to create an

accurate model. These parameter values include the per phase stator resistance and

inductance, the machine constant or voltage constant defined as the line-to-line voltage

per 1000rpm, the back emf flat area (left at the default 120 degrees), the number of pole

pairs of the rotor magnets, and the initial conditions of the angular rotation, position, and

phase currents which are all set to 0. The motor was provided by the university and a data

sheet cannot be found for this motor, so measurements of the stator phase inductance,

resistance, and voltage constant were made using an LCR meter and volt meter.

The number of pole pairs was determined by observing a single hall effect sensor

on the oscilloscope and mechanically rotating the motor one rotation. The hall sensor

pulsed 12 times during this single rotation, so the motor has 12 pole pairs. To determine

the voltage constant the peak line-to-line voltage is monitored as the motor is spun one

mechanical rotation while being timed. Converting to krpm and dividing the peak line-to-

66

line voltage by this value gives the voltage constant. All motor parameters used can be

seen below in Figure 25. Setting the sample time parameter to -1 allows the block to

inherit the sample time specified in the powergui block (5µs in this application). The

powergui block must be implemented in any Simulink model that uses Simscape Power

Systems blocks as it stores the equivalent Simulink circuits that represent the state-space

equations.

Figure 25 – Motor Parameters

Each of the three phases of the motor are fed by a half bridge of MOSFETs – one

connected to the high voltage rail and one connected to the low voltage rail (6 MOSFETs

in total). Each phase will either provide current to the motor or return current from the

motor, dependent upon whether the high or low MOSFET is conducting, respectfully.

Another Simscape Power System block is utilized to simulate the operation of this three

phase converter and is labeled above in Figure 22 as “Universal Bridge”. As shown, we

connect a 48V (provided battery voltage) source across the half bridge circuit. This block

requires the following parameter inputs: Number of bridge arms (3), snubber resistance

and capacitance, power electronic device (MOSFET/Diodes), and the internal resistance

67

of the power electronic devices. The value of internal resistance is taken directly from the

data sheet for the power MOSFET devices (4.5 mΩ). The snubber resistance and

capacitance are connected in series and then connected in parallel to each MOSFET gate.

The snubber capacitor is the same as the bootstrap capacitor which was calculated to be

around 10uF. The chosen values for all input parameters of this block are shown below in

Figure 26. The block also takes 6 separate pulse values. The duration of these pulses will

determine the current flowing through each phase of the half bridge to the motor.

Figure 26 – Universal Bridge Parameters

To determine the duty cycle for the pulse widths sent to each gate we use a

Simulink block named “BLDC Current Controller With PWM Generation” which can be

seen in Figure 22 above. This block takes a reference current, the maximum value of the

phase current, a reset, three hall sensors from the motor, and a direction. The reset input

is left alone as it is not needed here, and the direction input is sent a constant value of 1

which denotes clockwise rotation. The block uses an internal PI controller and

summation blocks to calculate the error between the reference current and actual phase

68

current. Another block uses the hall effect sensors and direction input to provide the

commutation logic for switching. Using the outputs of these two blocks, a pulse width

modulation block implements the actual duty cycle and sends the pulses to the respective

gate. The equation used to determine the duty cycle with short explanation of variables,

the transfer function used by the PI controller (the Zero-cancellation block) with short

explanation of variables, and the model used to implement its operation is shown below

in Figure 27. The calculated duty cycle is multiplied by the commutation signals to give

three output values. Although for certain implementations, only three signals are needed

as the current is regulated by determining the duty cycle for only the high or low side

MOSFETs, it is more accurate for this particular model (and in general) to control both

high and low side MOSFETs. The block shown in the model below in Figure 27 labeled

“PWM” takes the three signals representing three duty cycles and creates 6 separate

output duty cycles which are then used to control each MOSFET separately.

69

Figure 27 – Model for Current Controller with PWM and its Governing Equations

Trapezoidal Control

The first type of motor control that was considered is a form of speed control

known as Trapezoidal Control. This form of control algorithm utilizes PWM signals with

a variable duty cycle that sets the voltage of all three phases. These PWM signals create

a 3-phase trapezoid shaped wave form as the motor revolves. The duty cycle sets the

voltage of the phases, but deciding which phases are supposed to be switching to high

voltage and which phases switch to ground is determined by the internal Hall effect

sensors of the motor. The controller utilizes three half bridges to switch each phase high

or low. This design can be seen in Figure 28 below where q1 through q6 are the inputs to

each gate of each power FET. PHASE_A, PHASE_B, and PHASE_C output the power

to the permanent magnet machine.

70

Figure 28 – 3 Half Bridges

The depiction of the three half bridges in Figure 28 show how each phase is either

connected to the positive terminal of the battery or ground. When controlled by a

trapezoid wave we get wave forms similar to those in Figure 29 and 30. Figure 29 shows

the overall commutation of each phase while Figure 30 shows a close up of each phase

and a trapezoid wave with a 60 percent duty cycle.

Figure 29 – 3 Phase Commutation

71

Figure 30 – 60 Percent Duty Cycle

These waveforms were simulated using Simulink with the Simscape Power Systems add

on which is able to simulate a BLDC motor as described previously. In Figure 29 the

blue and yellow waveforms represent gates q1 and q2, which switches between pulling

phase A high or low. Similarly phase B is represented by the red and green waveforms

and phase C is represented by the teal and purple waveforms. Figure 30 takes a closer

look at these waveforms to show that 60 percent of the time they are either pulled high or

low and 40 percent of the time they are left floating. This allows the voltage across each

phase to be adjusted by a program and command a certain speed from the motor.

72

Figure 31 contains the MATLAB code that is responsible for setting these inputs to the 6

gates. The MATLAB function takes the inputs of each Hall Effect sensor, and each

phase current from the motor.

function [X,Y,Z]=control(Ia,Ib,Ic,HALL_A,HALL_B,HALL_C,command)

global q1

global q2

global q3

global q4

global q5

global q6

global counter

counter = counter + 1;

if counter <= command

 if HALL_A && ~HALL_B && HALL_C

 q1 = 1;

 q2 = 0;

 q3 = 0;

 q4 = 1;

 q5 = 1;

 q6 = 0;

 elseif HALL_A && ~HALL_B && ~HALL_C

 q1 = 1;

 q2 = 0;

 q3 = 0;

 q4 = 1;

 q5 = 0;

 q6 = 1;

 elseif HALL_A && HALL_B && ~HALL_C

 q1 = 1;

 q2 = 0;

 q3 = 1;

 q4 = 0;

 q5 = 0;

 q6 = 1;

 elseif ~HALL_A && HALL_B && ~HALL_C

 q1 = 0;

 q2 = 1;

73

 q3 = 1;

 q4 = 0;

 q5 = 0;

 q6 = 1;

 elseif ~HALL_A && HALL_B && HALL_C

 q1 = 0;

 q2 = 1;

 q3 = 1;

 q4 = 0;

 q5 = 1;

 q6 = 0;

 elseif ~HALL_A && ~HALL_B && HALL_C

 q1 = 0;

 q2 = 1;

 q3 = 0;

 q4 = 1;

 q5 = 1;

 q6 = 0;

 end

else

 q1 = 0;

 q2 = 0;

 q3 = 0;

 q4 = 0;

 q5 = 0;

 q6 = 0;

end

if counter >= 100

 counter = 0;

end

Figure 31 – Trapezoidal Control Matlab Code

The MATLAB code above takes in the Hall effect sensor signals and changes the

gates of all six power FETs. Each change in the gates represents the direction the force is

applied to the motor and if done correctly allows the motor to commutate appropriately.

The program also keeps track of counters that help to implement the duty cycle of the

PWM signals which control the speed.

74

While this form of control works and is relatively easy to implement we can see from

Figure 32 that the current delivered to the motor is quite messy and shows many

harmonics which would cause the ride to be unsteady. In addition to this there is no way

to control the amount of torque being generated by the motor.

Figure 32 – Trapezoidal Control 3 Phase Currents

Now to help get an overview of the entire simulation there is Figure 33 that shows the

entirety of the model. The block on the left that looks like a MOSFET represents three

half bridges that control the motor. This block has three inputs, one positive and one

negative terminal input for the battery voltage, and then one bus input for the six gates of

the FETs. The block also has three outputs; one for phase A, phase B, and phase C.

These outputs then go to the input of the motor block along with an external torque signal

that represents another force being applied to the motor externally. The output of the

motor is a bus connection that contains many signals such as: phase currents, back EMF

voltages, speed, position, and Hall Effect sensors. Then the big block where all the

75

signals are going into is a MATLAB function block that contains the code seen in Figure

31. The powergui block sets parameters for the simulation such as the continuity of the

simulation and the time step. The remaining blocks in the simulation are either scopes to

graph the values of the signals or memory blocks that contain global variables.

Figure 33 – Entire Simulink Model for Trapezoidal Control

Field Oriented Control

A more appropriate control scheme is what is referred to as Field Oriented

Control. Field Oriented Control is a way to control the current in an electric machine

rather than the voltage. This directly correlates to controlling speed or controlling torque,

as torque is proportional to current and voltage is proportional to speed. However one

drawback of FOC is its complexity, while Trapezoidal is relatively easy to implement

FOC is quite the opposite. Requiring that the currents be monitored along with the

76

precise position of the rotor arm. With these values in hand a microcontroller is then

required to do very challenging calculations to control the current.

The Simulink model for this controller is more complex than the model for the

Trapezoidal Controller, it employs more global variables and requires more in depth

calculations. It also uses two separate PI controllers to regulate current. The current

pushed to the motor using the this Method of control is purely sinusoidal, and varies

continuously when contrasted with the current in the Trapezoidal control. 3-Phase

sinusoidal current allows for a much smoother ride and direct control of the torque. In

addition it also helps with regenerative breaking which is vital to the project to act as

resistance to the rider while also increasing the length of the workout.

Figure 34 – Entire Simulink Model for Field Oriented Control

Figure 34 above shows the Simulink model for Field Oriented Control for the

motor block. The model looks very similar to the Trapezoid model, and in many ways is,

but the code that runs the main control block is very different. Instead of looking at the

77

Hall effect sensors and a command input to change the duty cycle the, it reads the

currents from the motor using current sensors and along with the Hall effect sensors.

This control function first calculates the position of the rotor arm using the Hall effect

sensors and reads the current in each phase of the motor. Using this information it runs a

Clarke transformation which changes 3-Phase currents into 2-Phase currents while not

changing the amplitude. These two phases, assuming a balanced system, will always be

90 degrees out of phase with each other, hence one can be represented as a sine wave

while the other can be represented as a cosine wave. After this is complete the Park

transformation is used to transform from a stationary reference frame to a rotating

reference frame, that rotates in sync with the motor. This is where the angle of the rotor

arm comes into play, since the value of this angle is known the sine and cosine currents

now appear to be DC currents that can be much more easily controlled and transformed

back to the useful 3-Phase currents needed by the motor.

function [Id,Iq,A,B,C] =

control(Ia,Ib,Ic,HALL_A,HALL_B,HALL_C,command_Q,command_D)

% most of the global variables that are used throughout the

program are

% created and listed here

global counter % Counter for duty cycle

global delta % Time since previous HALL sensor

global step % Sample period

global delta_A % Value of HALL A one step prior

global delta_B % Value of HALL B one step prior

global delta_C % Value of HALL C one step prior

global w % Speed in radians per second

global theta % Angle in radians

global timer % Time since start of program

global integral_Q % Value of discrete integral for Q current

global integral_D % Value of discrete integral for D current

78

A = 0; % Sets initial value for phase A voltage

B = 0; % Sets initial value for phase B voltage

C = 0; % Sets initial value for phase C voltage

% Using current readings from the current sensors we calculate

the alpha

% and beta currents of the motor

[I_alpha,I_beta] = clarke(Ia,Ib,Ic);

% Continuously tracking the amount of time since the previous

Hall effecto

% sensor reading to keep track of speed and position of motor

delta = delta + step;

% Continuously keeps track of the time passed since the beginning

of the

% program to change when we switch from trapezpoidal to FOC

timer = timer + step;

if timer >= 0.0001 % Problem in function fix later

 read_pos(HALL_A,HALL_B,HALL_C); % Keeps track of the position

of the motor

end

delta_A = HALL_A; % Saves previous state of Hall effect sensor A

delta_B = HALL_B; % Saves previous state of Hall effect sensor B

delta_C = HALL_C; % Saves previous state of Hall effect sensor C

theta = theta + w*step; % Integrating to keep track of angle

[Id,Iq] = parke(I_alpha,I_beta,4*theta); % Calculate direct and

quadrature currents

counter = counter + 1; % Keeping track of duty cycle

% Runs trapezoidal control for .1 seconds then flips to FOC

if timer < .1

 trapezoid(command_Q,HALL_A,HALL_B,HALL_C);

% Flipping Field Oriented Control

else

 % PI control for quadrature current

 error_Q = ((command_Q/100)*30) - Iq;

 integral_Q = integral_Q + (error_Q*step);

79

 u_Q = 1000*integral_Q + 1000*error_Q;

 % PI control for direct current

 error_D = (command_D - Id);

 integral_D = integral_D + (error_D*step);

 u_D = 1000*integral_D + 1000*error_D;

 % Calculate inverse parke transformation for PI control

output

 [I_alpha,I_beta] = inverse_parke(u_D,u_Q,4*theta);

 % Calculate inverse clarke transformation for PI control

output

 [A,B,C] = inverse_clarke(I_alpha,I_beta);

 % Raises or lowers voltages based on coontrol signal

 regulate(A,B,C,Ia,Ib,Ic);

end

end

Figure 35 – Field Oriented Control Matlab Code

The code in Figure 35 above contains the main function that the control block

runs during every iteration of the simulation. First all global variables are specified

which are fairly well explained in the comments but will also be touched on as they are

used in the function. The first main function that is called is the Clarke transform

function that requires all three phase currents that are read from the current sensors and

returns and alpha current and a beta current which will always be 90 degrees out of

phase. Next the delta and timer variables are incremented which is just housekeeping for

the function. Next the read_pos function is called which uses the values given by the

Hall effect sensors to precisely keep track of the motor position and speed. Using the

motor position calculated from this function the Park transformation is started which is

moving the reference from a stationary position to a rotating one. The three phase

currents will be shown later however the alpha and beta currents are shown below in

80

Figure 36 and then the currents after the Park transformation are located in Figure 37.

These currents are named the Direct current and the Quadrature current and will referred

to as Id current and Iq from now on.

Figure 36 – Alpha and Beta Currents

Figure 37 – Direct and Quadrature Currents

81

Id and Iq shown in Figure 37 are the currents that will be commanded to the motor

where Iq, in yellow, is 90 degrees out of phase with the motor and Id, in blue is in phase

with the motor. So commanding Iq to a certain value while commanding Id to zero

provides the most efficient torque possible to the motor. However it is sometimes

necessary to command a negative Id to help slow down the motor to prevent the back emf

from getting too large. This method is referred to as flux weakening and helps to get

more stable control to the motor.

After Id and Iq are calculated from the Clarke and Park transforms, two separate

Proportional Integral controllers are used to command each current separately. The PI

controllers are implemented directly in the main function with a few simple lines of code.

First the error is found by subtracting the actual value of current from the commanded

value. Also, a simple discrete integrator is used to keep track of the integral of the error.

Then the integral and the error are multiplied by large gain values of 1000 and 500

respectively and added to give the output of the controller. One of these controllers is

used to control the current Id and one is used to control the current Iq. Using these to

values and the position of the motor in the inverse Park transform, control currents

I_alpha and I_beta are created. Then the inverse Clarke transform creates control

currents Ia, Ib, and Ic for each phase of the motor. In Figure 38 the three currents can be

seen which resemble a near perfect 3-Phase sine wave.

82

Figure 38 – Field Oriented Control 3 Phase Currents

The main function calls upon many different functions to accomplish this method

of control. Below a few of the more important functions are discussed in detail while the

code for all is given. The first function is called clarke which can be seen below and is

passed the three phase currents and returns alpha and beta currents. As discussed

previously the Clarke transform maintains the amplitude of the currents but transforms

them to be two currents instead of three that are 90 degrees out of phase. The MATLAB

function simply takes the phase A current as the alpha current and the beta current and

the difference between phase B and phase C currents multiplied by a constant. The

Clarke transformation implements the Equation X and Equation Y below to turn A phase,

B phase, and C phase currents into alpha and beta currents.

alpha = a

Equation 1

beta = (1/sqrt(3))*(b-c)

Equation 2

% This function takes in a/b/c voltages/currents

83

% and computes the alpha/beta voltages/currents

function [alpha,beta] = clarke(a,b,c)

 alpha = a;

 beta = (1/(sqrt(3))*(b-c));

End

Figure 39 – Clarke Transform Function

Next using these newly found alpha and beta currents along with the position of

the motor calculated using the function read_pos, discussed later, the Park transform

creates two DC currents Id and Iq that are much more easily controlled via PI controllers.

The Park transformation implements the Equation X1 and Equation Y1 below to turn

alpha and beta currents into direct quadrature currents.

d = cos(theta)*alpha + sin(theta)*beta

Equation 3

q = cos(theta)*beta - sin(theta)*alpha

Equation 4

% This function takes in alpha/beta voltages/currents and the

angle of the

% motor computes the direct/quadrature voltages/currents

function [d,q] = park(alpha,beta,theta)

 d = cos(theta)*alpha + sin(theta)*beta;

 q = cos(theta)*beta - sin(theta)*alpha;

End

Figure 40 – Park Transform Function

The best way to understand how the read_pos function is to look at the code and

try to follow along with how it adds or subtracts position based on Hall effect sensor

inputs. Table 19 below shows the order of the Hall effect sensors, rising and falling

edges, and whether or not the motor is moving backward or forward. That along with the

time passed since the previous change in Hall effect sensor readings the speed of the

84

motor can be calculated and with it the position. The Arrow next to the letter represents

which Hall effect sensor is changing and whether it is a rising edge of the Hall effect

signal or the falling edge. For example Event 1 is A↑ and Event 2 is B↓ meaning that the

rising edge of Hall effect sensor a occurs followed a falling edge of Hall effect sensor B.

Then the minus sign indicates if this series of sensor inputs occurs the motor is moving in

reverse.

Event

1

Event

2

Motor

Directio

n

Even

t1

Event

2

Motor

Directio

n

Even

t 1

Event

2

Motor

Directio

n

A↑ B↑ B↑ A↑ C↑ A↑

A↑ B↓ - B↑ A↓ + C↑ A↓ -

A↑ C↑ B↑ C↑ C↑ B↑

A↑ C↓ + B↑ C↓ - C↑ B↓ +

A↓ B↑ - B↓ A↑ + C↓ A↑ -

A↓ B↓ B↓ A↓ C↓ A↓

A↓ C↑ + B↓ C↑ - C↓ B↑ +

A↓ C↓ B↓ C↓ C↓ B↓

Table 19 – Order of the Hall Effect Sensors

% This function takes the three Hall effect sensor outputs

% along with the amount of time that has passed and integrates to

keep

% track of the position of the motor for use in the parke

transformations

% and inverse parke transformation

function read_pos(HALL_A,HALL_B,HALL_C)

 global prev_HALL

 global delta_A

 global delta_B

 global delta_C

 global delta

 global w

 if((HALL_A-delta_A ~= 0 || HALL_B-delta_B ~= 0 || HALL_C-

delta_C ~= 0))

 if HALL_A-delta_A == -1

85

 if prev_HALL == 3

 w = -1*((2*pi)/24)/delta;

 elseif prev_HALL == 2

 w = ((2*pi)/24)/delta;

 else

 w = 0;

 end

 prev_HALL = 1;

 elseif HALL_A-delta_A == 1

 if prev_HALL == 3

 w = -1*((2*pi)/24)/delta;

 elseif prev_HALL == 2

 w = ((2*pi)/24)/delta;

 else

 w = 0;

 end

 prev_HALL = 1;

 elseif HALL_B-delta_B == -1

 if prev_HALL == 1

 w = -1*((2*pi)/24)/delta;

 elseif prev_HALL == 3

 w = ((2*pi)/24)/delta;

 else

 w = 0;

 end

 prev_HALL = 2;

 elseif HALL_B-delta_B == 1

 if prev_HALL == 1

 w = -1*((2*pi)/24)/delta;

 elseif prev_HALL == 3

 w = ((2*pi)/24)/delta;

 else

 w = 0;

 end

 prev_HALL = 2;

 elseif HALL_C-delta_C == -1

 if prev_HALL == 2

 w = -1*((2*pi)/24)/delta;

 elseif prev_HALL == 1

 w = ((2*pi)/24)/delta;

 else

 w = 0;

 end

 prev_HALL = 3;

 elseif HALL_C-delta_C == 1

86

 if prev_HALL == 1

 w = ((2*pi)/24)/delta;

 elseif prev_HALL == 2

 w = -1*((2*pi)/24)/delta;

 else

 w = 0;

 end

 prev_HALL = 3;

 end

 delta = 0;

 end

end

Figure 41 – Matlab Function to Read Motor Speed and Position

Following these functions is the functions to transform the two DC currents Id and

Iq back into I_alpha and I_beta. These sinusoidal currents can then be transformed back

into 3-phase currents that will provide torque to the motor. So, in Figure 42 and Figure

43 below the MATLAB code responsible for doing these transformations can be seen.

% This function takes in direct/gaudrature voltages/currents

% and the angle of the motor and performs the reverse parke

transformation

% giving alpha/beta voltages/currents

function [alpha,beta] = inverse_parke(d,q,theta)

 alpha = d*cos(theta) - q*sin(theta);

 beta = q*cos(theta) + d*sin(theta);

end

Figure 42 – Matlab Function for Inverse Park Transformation

% This function takes in alpha/beta voltages/currents and

% performs the reverse clarke transformation and returns a/b/c

% voltages/currents

function [a,b,c] = inverse_clarke(alpha,beta)

 a = alpha;

 b = (1/2)*((-alpha) + (sqrt(3)*beta));

 c = (1/2)*((-alpha) - (sqrt(3)*beta));

end

87

Figure 43 – Matlab Function for Inverse Clarke Transform

Finally the last function that is vital to the Field Oriented Control model is the

regulate function. This function takes in the actual currents read from the three phases of

the motor and the newly found control signals from the PI controllers and tries to force

the control currents through each phase. The method for doing this is quite simple, if the

current through one phase is lower than the control current the top FET for that phase is

turned on and the bottom phase is turned off. Otherwise the bottom FET is turned on and

the top FET is turned off.

% regulate is a function that comapares the values of the

% voltages on the line and tries to raise them if they are below

% the value that the PI controller is asking for

% or lowers them if the actual value is less than what the PI

controller

% asks for

function regulate(command_A,command_B,command_C,A,B,C)

 global q1

 global q2

 global q3

 global q4

 global q5

 global q6

 if A < command_A

 q1 = 1;

 q2 = 0;

 else

 q1 = 0;

 q2 = 1;

 end

 if B < command_B

 q3 = 1;

 q4 = 0;

 else

 q3 = 0;

 q4 = 1;

88

 end

 if C < command_C

 q5 = 1;

 q6 = 0;

 else

 q5 = 0;

 q6 = 1;

 end

end

Figure 44 – Regulate Function that Drives Phase Currents

89

3.9.6 Level 3 Embedded System Calculations [RKA]

A bootstrap capacitor is needed for each MOSFET that is connected to the upper rail and

raises the gate bias of the top MOSFET so that it is always at a higher value than the

phase node (or the middle point in between the upper and lower MOSFETs on the

bridge). When the low side MOSFET is on, the IC driving circuit will charge this

capacitor up to roughly 12V (when low side MOSFET conducts, a path to the ground

node of phase A is completed to allow for this charging). When the low side MOSFET is

turned off, almost all the current provided at the gate of the high side MOSFET will be

sourced from the bootstrap capacitor. It is important to size this capacitor correctly

because it needs to be able to charge up to a sufficient value to bias the gate correctly but

also must discharge quickly to turn the gate on. An even more critical issue is that the IC

driver circuit has undervoltage lockout (a protective measure) so the ripple caused by the

charging/discharging of this capacitor must be limited to make sure this protective

measure is not triggered. The following equation is the starting point for calculation:

Where QCB is the total charge that needs delivered to bootstrap capacitor at maximum

duty cycle, QG is the total gate charge needed to turn on the MOSFET, D is the duty

cycle, and IB is the VDDA IC driver circuit pin biasing current. From the datasheet QG =

88nC, assuming a max duty cycle of 90%, tcyc = 50us, and IB = 3mA. This gives us a

value of QCB = 223nC. Next, we use the following equation:

Where CB is the bootstrap capacitor and ΔVCB is the maximum allowable ripple voltage

which we choose To be 5% of the VDD value, 12V. This gives us a value of CB ≥ 0.5uF.

90

After talking to the faculty advisor we choose to use a 10uF capacitor which is

sufficiently larger than the calculated 0.5uF.

We also place a resistor in series with the capacitor which forms an RC circuit.

The time constant of this circuit is calculated using:

With a resistance value of 10Ω, we have τ = 100us. This is the time it will take to

charge the capacitor and in this application is sufficient considering the maximum

rotations per minute and corresponding off time for a single MOSFET.

91

3.9.7 Level 3 Embedded System Parts List [TRM][NMD]

Qty Value Package Parts Description

3 2 R0805 R1, R2, R3 Resistors

3 3 R0805 R4, R6, R8 Resistors

3 10 R0805 R5, R7, R9 Resistors

2 120 R0805 R13, R24 Resistors

5 220 R0805 R15, R17, R18,

R19, R20

Resistors

2 470 R0805 R11, R14 Resistors

4 .1u C0805 C10, C11, C12,

C15

Capacitors

1 8MHz HC49UP XT1 Oscillator

3 100u CAP_ECEV_G C5, C7, C16 Capacitors

9 10k R0805 R10, R12, R16,

R21, R22, R23,

R26, R27, R28

Resistors

3 10n C0805 C6, C18, C21 Capacitors

4 10u C0805 C1, C2, C3, C9 Capacitors

2 18p C0805 C13, C14 Capacitors

5 22-27-2031-03 6410-03 J1, J2, J3, J4,

J5

Connectors

3 3.3u C0805 C17, C19, C20 Capacitors

1 330u CAP_ECEV_G C8 Capacitors

1 33n C0805 C4 Capacitors

1 4.7k R0805 R25 Resistors

3 ACS770 5CB U14, U15, U16

1 Blue 0805 LED3 LEDs

3 Green 0805 LED1, LED2,

LED8

LEDs

6 IPP045N10N3

GXKSA1

TO220 FET1, FET2,

FET3, FET4,

FET5, FET6

MOSFETs

1 MIC4607 TSSOP28 U1

1 MOLEX_4284

0-2224

MOLEX_4282

0-2224

X1 Connectors

4 RED 0805 LED4, LED5,

LED6, LED7

LEDs

92

6 RK7002B SOT23 U$1, U$2,

U$3, U$4,

U$5, U$6

3 SRH05S05 SIP3 U3, U4, U7

1 Terminal 3_TERMINAL U$7

93

3.10.1 Motor Overview [TRM][RKA][ELW]

Seeing as though this project is supposed to adjust the torque of a motor to try and

keep a person’s heartrate constant, it is important to spec out an appropriately sized

motor. The following showcases the calculations that were used to size the motor:

Definition of Terms:

1. Fh = Normal force on a hill in Lbs

2. Ff = Force of friction in Lbs

3. Wtot = Total weight in Lbs

4. ϴs = Angle of slope in degrees

5. Kf = Coefficient of static friction

6. Ftot = Total force in Lbs

7. Ttot = Total torque in Lb-in

8. Wr = Wheel Radius in Feet

9. Mp = Motor Power in Kilowatts

10. Srpm = Speed in RPM

11. Smph = Speed in MPH

12. Battnum = Number of batteries

13. BattVoltage = Nominal battery voltage in volts

14. BattAmpacity = Battery ampacity in amp-hours

15. Motorvoltage = Motor voltage in volts

16. BattType = Type Of Battery Used

Assumptions:

1. Wtot = 235.90 Lbs

2. ϴs = 6°

3. Kf = 0.004

4. Wr = 1 ft

5. Smph = 7.5 mph

6. Motorvoltage = 24 V

7. Ride Duration = 1 hour

8. BattType = Lithium Ions

a. BattVoltage = 3.7 V

b. BattAmpacity = 2500 Ah

Equations:

1. Ff = WTot * Cos(Θs) * Kf

2. Fh = Wtot * Sin(Θs)

3. FTot = Fh + Ff

4. TTot = FTot * 12 * Wr

5. MP = ((TTot * Srpm) / 63025) * 0.75

6. Srpm = ((Smph/60)*5280) / (2 * PI * Wr)

7. BattType = Li-Ion Batteries

94

Calculations

1. Srpm = ((7.5/60)*5280) / (2 * PI * Wr) = 105

2. Ff = 235.90 * Cos(6*PI/180) * 0.004 = 0.938
3. Fh = 235.9 * Sin(6*PI/180) = 24.658

4. FTot = 24.658 + 0.938 = 25.6

5. TTot = 25.6 * 12 * 1 = 307.16

6. MP = ((307.16 * Srpm) / 63025) * 0.75 = 0.384

Following the above calculations it can be seen that, at a minimum, a 384W motor

capable of delivering 307 lb-in of torque is needed to drive the expected load (235.9 lbs)

up a 6 degree incline. After realizing this, a motor that the university already had was

found and the specs for it more that met the above requirements. This motor is a Phoenix

Racer II BLDC hub motor, capable of handling more than 3000W of power with more

than 1000 lb-in of torque. Because the motor is a lot larger than necessary for this

application, it will never have to be run at its maximum capacity. This ensures that this

project will never over duty the motor and cause it to fail.

Sensing Motor Position:

To adequately derive the position of the motor at any time “t”, Hall Effect sensors that

are placed inside of the motor are constantly being measured. Hall effect sensors work

based on the principles of magnetic fields. As a permanent magnets move pass the

sensors, a voltage is induced across the sensors which can then be measured. By knowing

what sensors have a voltage induced on them at any given time, the position of the motor

can be derived. A graph of the outputs of the Hall Effect sensors can be seen below:

95

Figure 45 – Hall Effect Sensors’ Outputs

Motor Datasheet:

After calculating the values that were required from a motor to successfully complete this

project, the motor that the university had was analyzed. In order to analyze the motor, the

datasheet from the manufacturing company was acquired. By acquiring this datasheet

from the manufacturer, less time was needed to be spent analyzing the motor and there

were less inaccuracies in the measurements. Below is the datasheet that was supplied

from the motor manufacturer.

96

97

Figure 46 – Phoenix Racer II Datasheet

3.11.1 Heart Rate Sensor Overview [RKA][ELW]

The user will be wearing a heart rate sensor that will represent a heartbeat with an

electrical pulse. This pulsed signal will be transmitted wirelessly over Bluetooth to the

embedded system. Integrating these pulses over time will allow us to calculate beats per

minute. Communication will be done with a Bluetooth module hooked up to a DsPIC-33.

The heart rate sensor is powered by coin cell battery.

98

3.12.1 Wiring Overview [TRM]

This project has multiple subsystem, that all have to interact in order to work reliably. In

order to ensure this happens, multiple wires and buses will need to be used to

interconnect the system. Below is a diagram showcasing the wiring of this system:

Figure 47 – Wiring Diagram

99

4. Parts List [TRM][NMD][RKA][ELW]

Qty Value Package Parts Total Price

1 TACTILE-SWITCH TACTILE-SWITCH S1 $0.33

17 1k R0805

R38, R39, R40,

R41, R42, R43,

R44, R45, R46,

R47, R48, R49,

R50, R57, R63,

R73, R74

$1.70

8 1uF C0805

C16, C17, C18,

C19, C22, C23,

C25, C26

$1.60

1 SSM3J328RLFTR-NO SOT23-3 Q13 $0.52

12 3.3k R0805

R4, R6, R9,

R12, R15, R18,

R21, R24, R27,

R30, R33, R36

$1.20

1 3.3uF C0805 C15 $0.20

1 8MHz HC49UP XT1 $0.33

12 10k R0805

R51, R52, R53,

R54, R55, R60,

R61, R64, R66,

R68, R70, R72

$1.20

1 10n C0805 C20 $0.20

12 10nF C0805

C1, C2, C3,

C4, C5, C6,

C7, C8, C9,

C10, C11, C12

$2.40

2 20k R0805 R65, R69 $0.20

12 33 R0805

R3, R7, R10,

R13, R16, R19,

R22, R25, R28,

R31, R34, R37

$1.20

16 100 R0805

R1, R2, R5,

R8, R11, R14,

R17, R20, R23,

R26, R29, R32,

R35, R56, R67,

R71

$1.60

1 100n C0805 C21 $0.20

1 100nF C0805 C13 $0.20

1 100uF C0805 C24 $0.20

100

1 B59707A0120A062 1210 F2 $1.10

2 BMS3004 TO218V U$1, U$2 $8.34

12 DMP2305U SOT-23

Q1, Q2, Q3,

Q4, Q5, Q6,

Q7, Q8, Q9,

Q10, Q11, Q12

$6.24

2 FK3306010L SSSMINI3-F2-B U2, U6 $0.86

1 FTDI_Header 1X05 J1 $0.00

14 Green LED-0603

D1, D2, D3,

D4, D5, D6,

D7, D8, D9,

D10, D11,

D12, D14, D15

$4.34

1 ICSP Header 1X05 J2 $0.00

5 LTC6804 SSOP48 U1 $95.35

1 MLX91210 SOIC-8 U4 $3.91

2 MOLEX_42840-2224 MOLEX_42820-2224 X2, X4 $5.00

2 MOLEX_105314-1114
MOLEX_105314-

1114
X1, X5 $5.00

1
PIC16F1789-

I/PTTQFP44_MC-L
TQFP44_MC-L U7 $2.38

2 RED LED-0603 D13, D16 $0.62

1 SRH05S05 SIP3 U5 $8.00

8 TP5015 TP5015

TP1, TP2, TP3,

TP6, TP7, TP8,

TP9, TP13

$3.52

5 NXRT15XV103FA1B040 Through Hole
Not On

Schematics
$2.70

3 2 R0805 R1, R2, R3 $0.30

3 3 R0805 R4, R6, R8 $0.30

3 10 R0805 R5, R7, R9 $0.30

2 120 R0805 R13, R24 $0.20

5 220 R0805
R15, R17, R18,

R19, R20
$0.50

2 470 R0805 R11, R14 $0.20

4 .1u C0805
C10, C11, C12,

C15
$1.20

101

1 8MHz
HC49UP

XT1 $0.33

3 100u CAP_ECEV_G C5, C7, C16 $1.41

9 10k R0805

R10, R12, R16,

R21, R22, R23,

R26, R27, R28

$0.90

3 10n C0805 C6, C18, C21 $0.30

4 10u C0805 C1, C2, C3, C9 $0.40

2 18p C0805 C13, C14 $0.20

5 22-27-2031-03 6410-03
J1, J2, J3, J4,

J5
$0.37

3 3.3u C0805 C17, C19, C20 $0.30

1 330u CAP_ECEV_G C8 $0.47

1 33n C0805 C4 $0.30

1 4.7k R0805 R25 $0.10

3 ACS770 5CB U14, U15, U16 $25.14

1 Blue 0805 LED3 $0.31

3 Green 0805
LED1, LED2,

LED8
$0.93

6 IPP045N10N3GXKSA1 TO220

FET1, FET2,

FET3, FET4,

FET5, FET6

$17.67

1 MIC4607 TSSOP28 U1 $6.27

1 MOLEX_42840-2224 MOLEX_42820-2224 X1 $5.00

4 RED 0805
LED4, LED5,

LED6, LED7
$1.24

6 RK7002B SOT23

U$1, U$2,

U$3, U$4,

U$5, U$6

$1.86

102

3 SRH05S05 SIP3 U3, U4, U7 $24.00

1 Terminal 3_TERMINAL U$7 $0.00

1
Polar T34 Heart Rate

Transmitter

Heart Rate Sensor

with Bluetooth
 $65.00

1
SSD1306 OLED Display

 $10.99

5 BMS PCBs from JLC

PCB

 $100.00

5
Embedded System /

Motor Controller PCBs

from JLC PCB

 $100.00

 Total Cost: $527.13

Table 20 –Master Parts List

103

5. Project Schedule [TRM][NMD][RKA][ELW]

The following Gantt chart represents the projected team schedule. It shows the various

deadlines and who is responsible for facilitating the progress of each. It is important to

outline the timeline to make sure all vital parts of the project are completed in a timely

manner.

104

Figure 48 – Gantt Chart

105

6. Design Team Information

• Tyler Matthews

o Electrical Engineer – Team Leader

• Nick Darash

o Electrical Engineer – Software Manager

• Ethan Wesel

o Electrical Engineer – Hardware Manager

• Ryan Applebee

o Electrical Engineer – Engineering Data Manager

106

7. Conclusions and Recommendations [TRM][NMD][RKA][ELW]

To conclude, the design for a heart rate based user assisting bicycle may seem

simple on the surface but is actually quite complex. The three main modules for this

project – the battery management system, embedded system, and motor controller all

require hardware tailored to this specific application. Each of these main components

must receive and/or send the necessary signals for reliable, predictable operation and then

utilize software to make complex decisions as fast as possible with this data. As always,

consistent, predictable operation to ensure user safety is of the utmost importance. If the

battery management system doesn’t act quickly enough, catastrophic damage can occur

to both the batteries and the various electronics powered by them. If the embedded

system doesn’t tell the motor controller what to do at exactly the right time, the motor

may grind to a halt, speed up uncontrollably, or turn on a MOSFET at the wrong time

short circuiting the batteries. Any of these possibilities can have dire consequences which

is why this project must be executed with high precision, and every possibility must be

considered to guarantee fail-safe operation.

107

8. References

[1]J. S. Lee, J. W. Jiang and Y. H. Sun, "Design and simulation of control systems for

electric-assist bikes," 2016 IEEE 11th Conference on Industrial Electronics and

Applications (ICIEA), Hefei, 2016, pp. 1736-1740.

doi: 10.1109/ICIEA.2016.7603866

URL:http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7603866&isnumber=76

03539

[2]T. Gibson, "Turning sweat into watts," in IEEE Spectrum, vol. 48, no. 7, pp. 50-55,

July 2011.

doi: 10.1109/MSPEC.2011.5910449,

URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5910449&isnumber=5910416

[3]N. Constant, T. Wang and K. Mankodiya, "Pulseband: A hands-on tutorial on how to

design a smart wristband to monitor heart-rate," 2015 IEEE Virtual Conference on

Applications of Commercial Sensors (VCACS), Raleigh, NC, 2015, pp. 1-3.

doi: 10.1109/VCACS.2015.7439565

URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7439565&isnumber=7439560

[4]K. Vijyalakshmi, S. Sandhiya and C. Bhuvaneswari, "High efficiency bi-directional

converter with regenerative concept for E-bike," 2017 International Conference on

Computation of Power, Energy Information and Commuincation (ICCPEIC),

Melmaruvathur, India, 2017, pp. 668-671.

doi: 10.1109/ICCPEIC.2017.8290445

URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8290445&isnumber=8290323

[5]N. Hatwar, A. Bisen, H. Dodke, A. Junghare and M. Khanapurkar, "Design approach

for electric bikes using battery and super capacitor for performance improvement," 16th

International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), The

Hague, 2013, pp. 1959-1964.

doi: 10.1109/ITSC.2013.6728516

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7603866&isnumber=7603539
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7603866&isnumber=7603539
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5910449&isnumber=5910416
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7439565&isnumber=7439560
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7439565&isnumber=7439560
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7439565&isnumber=7439560
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7439565&isnumber=7439560
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8290445&isnumber=8290323
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8290445&isnumber=8290323
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8290445&isnumber=8290323
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8290445&isnumber=8290323

108

URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6728516&isnumber=6728201

[6]A. S. Badrinath and S. V. Udupa, "Protection circuitry and passive balancing for

battery management systems part II," 2017 International Conference on Computation of

Power, Energy Information and Commuincation (ICCPEIC), Melmaruvathur, India,

2017, pp. 530-535.

doi: 10.1109/ICCPEIC.2017.8290423

URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8290423&isnumber=8290323

[7]Kumagai, Satoru. Electric Power-assisted Bicycle. Yazaki Corp矢崎総業株式会社,

assignee. Patent JPH09254861A. 30 Sept. 1997. Print.

[8]Tsang, Peter, and Christian Nicolae Presura. Heart Rate Monitor for Measuring a

Heart Rate of a User. Original Assignee Koninklijke Philips Electronics N.V., assignee.

Patent WO2013042070A1. 28 Mar. 2013. Print.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6728516&isnumber=6728201
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6728516&isnumber=6728201
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6728516&isnumber=6728201
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6728516&isnumber=6728201
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8290423&isnumber=8290323
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8290423&isnumber=8290323
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8290423&isnumber=8290323
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8290423&isnumber=8290323

109

9. Appendix [ELW][RKA]

Part Datasheet

B59707A0120A062
https://product.tdk.com/info/en/documents
/data_sheet/55/db/PTC/PTC_OC_SMD_0
402_0603_1210_24V_230V.pdf

BMS3004 https://www.onsemi.com/pub/Collateral/E
NA1908-D.PDF

DMP2305U https://www.diodes.com/assets/Datasheet
s/ds31737.pdf

FK3306010 https://industrial.panasonic.com/content/d
ata/SC/ds/ds4/FK3306010L_E.pdf

LTC6804 https://www.analog.com/media/en/technic
al-documentation/data-
sheets/680412fc.pdf

MLX91210 https://www.melexis.com/-
/media/files/documents/.../mlx91210-
datasheet-melexis.pdf

PIC16F1789-I/PTTQFP44_MC-L http://ww1.microchip.com/downloads/en/
DeviceDoc/40001675C.pdf

SRH05S05 https://www.xppower.com/Portals/0/pdfs/
SF_SRH05.pdf

TP5015 https://www.datasheets360.com/pdf/-
9169934687069640514

NXRT15XV103FA1B040 https://www.murata.com/en-
us/products/productdata/8796838297630/
S0423E.pdf

SSM3J328RLFTR-NO https://toshiba.semicon-
storage.com/info/docget.jsp?did=2429&pr
odName=SSM3J328R

22-27-2031-03 https://www.molex.com/pdm_docs/sd/022
272031_sd.pdf

HC49UP https://www.digchip.com/datasheets/parts
/datasheet/922/HC49UP-pdf.php

ACS770 https://www.allegromicro.com/~/media/Fil
es/Datasheets/ACS770-Datasheet.ashx

IPP045N10N3GXKSA1 https://www.infineon.com/dgdl/Infineon-
IPP045N10N3%20G-DS-v02_09-
EN.pdf?fileId=5546d4625d5945ed015d98
85241104ce

MIC4607 http://ww1.microchip.com/downloads/en/
DeviceDoc/MIC4607-85V-Three-Phase-
MOSFET-Driver-DS20005610C.pdf

SSD1306 OLED https://cdn-
shop.adafruit.com/datasheets/SSD1306.p
df

Polar T34 Heart Rate Transmitter https://www.marutsu.co.jp/contents/shop/
marutsu/ds/1077_Web.pdf

https://product.tdk.com/info/en/documents/data_sheet/55/db/PTC/PTC_OC_SMD_0402_0603_1210_24V_230V.pdf
https://product.tdk.com/info/en/documents/data_sheet/55/db/PTC/PTC_OC_SMD_0402_0603_1210_24V_230V.pdf
https://product.tdk.com/info/en/documents/data_sheet/55/db/PTC/PTC_OC_SMD_0402_0603_1210_24V_230V.pdf
https://www.onsemi.com/pub/Collateral/ENA1908-D.PDF
https://www.onsemi.com/pub/Collateral/ENA1908-D.PDF
https://www.diodes.com/assets/Datasheets/ds31737.pdf
https://www.diodes.com/assets/Datasheets/ds31737.pdf
https://industrial.panasonic.com/content/data/SC/ds/ds4/FK3306010L_E.pdf
https://industrial.panasonic.com/content/data/SC/ds/ds4/FK3306010L_E.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/680412fc.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/680412fc.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/680412fc.pdf
https://www.melexis.com/-/media/files/documents/.../mlx91210-datasheet-melexis.pdf
https://www.melexis.com/-/media/files/documents/.../mlx91210-datasheet-melexis.pdf
https://www.melexis.com/-/media/files/documents/.../mlx91210-datasheet-melexis.pdf
https://www.melexis.com/-/media/files/documents/.../mlx91210-datasheet-melexis.pdf
https://www.melexis.com/-/media/files/documents/.../mlx91210-datasheet-melexis.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/40001675C.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/40001675C.pdf
https://www.xppower.com/Portals/0/pdfs/SF_SRH05.pdf
https://www.xppower.com/Portals/0/pdfs/SF_SRH05.pdf
https://www.datasheets360.com/pdf/-9169934687069640514
https://www.datasheets360.com/pdf/-9169934687069640514
https://www.murata.com/en-us/products/productdata/8796838297630/S0423E.pdf
https://www.murata.com/en-us/products/productdata/8796838297630/S0423E.pdf
https://www.murata.com/en-us/products/productdata/8796838297630/S0423E.pdf
https://toshiba.semicon-storage.com/info/docget.jsp?did=2429&prodName=SSM3J328R
https://toshiba.semicon-storage.com/info/docget.jsp?did=2429&prodName=SSM3J328R
https://toshiba.semicon-storage.com/info/docget.jsp?did=2429&prodName=SSM3J328R
https://www.molex.com/pdm_docs/sd/022272031_sd.pdf
https://www.molex.com/pdm_docs/sd/022272031_sd.pdf
https://www.digchip.com/datasheets/parts/datasheet/922/HC49UP-pdf.php
https://www.digchip.com/datasheets/parts/datasheet/922/HC49UP-pdf.php
https://www.allegromicro.com/~/media/Files/Datasheets/ACS770-Datasheet.ashx
https://www.allegromicro.com/~/media/Files/Datasheets/ACS770-Datasheet.ashx
https://www.infineon.com/dgdl/Infineon-IPP045N10N3%20G-DS-v02_09-EN.pdf?fileId=5546d4625d5945ed015d9885241104ce
https://www.infineon.com/dgdl/Infineon-IPP045N10N3%20G-DS-v02_09-EN.pdf?fileId=5546d4625d5945ed015d9885241104ce
https://www.infineon.com/dgdl/Infineon-IPP045N10N3%20G-DS-v02_09-EN.pdf?fileId=5546d4625d5945ed015d9885241104ce
https://www.infineon.com/dgdl/Infineon-IPP045N10N3%20G-DS-v02_09-EN.pdf?fileId=5546d4625d5945ed015d9885241104ce
http://ww1.microchip.com/downloads/en/DeviceDoc/MIC4607-85V-Three-Phase-MOSFET-Driver-DS20005610C.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/MIC4607-85V-Three-Phase-MOSFET-Driver-DS20005610C.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/MIC4607-85V-Three-Phase-MOSFET-Driver-DS20005610C.pdf
https://cdn-shop.adafruit.com/datasheets/SSD1306.pdf
https://cdn-shop.adafruit.com/datasheets/SSD1306.pdf
https://cdn-shop.adafruit.com/datasheets/SSD1306.pdf
https://www.marutsu.co.jp/contents/shop/marutsu/ds/1077_Web.pdf
https://www.marutsu.co.jp/contents/shop/marutsu/ds/1077_Web.pdf

110

SRH05S05 http://www.farnell.com/datasheets/256362
7.pdf?_ga=2.103957001.864562035.154
3440146-10472548.1543440146

RK7002B https://datasheet.octopart.com/RK7002BT
116-Rohm-datasheet-68401982.pdf

MOLEX_42840-2224 https://www.mouser.com/datasheet/2/276
/0428202224_PCB_HEADERS-
772469.pdf

http://www.farnell.com/datasheets/2563627.pdf?_ga=2.103957001.864562035.1543440146-10472548.1543440146
http://www.farnell.com/datasheets/2563627.pdf?_ga=2.103957001.864562035.1543440146-10472548.1543440146
http://www.farnell.com/datasheets/2563627.pdf?_ga=2.103957001.864562035.1543440146-10472548.1543440146
https://datasheet.octopart.com/RK7002BT116-Rohm-datasheet-68401982.pdf
https://datasheet.octopart.com/RK7002BT116-Rohm-datasheet-68401982.pdf
https://www.mouser.com/datasheet/2/276/0428202224_PCB_HEADERS-772469.pdf
https://www.mouser.com/datasheet/2/276/0428202224_PCB_HEADERS-772469.pdf
https://www.mouser.com/datasheet/2/276/0428202224_PCB_HEADERS-772469.pdf

	The University of Akron
	IdeaExchange@UAkron
	Spring 2019

	Cycle Assist
	Tyler Matthews
	Recommended Citation

	tmp.1556303244.pdf.a9tO4

