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Abstract 

Through thorough research on today’s exercise trends, studying both trainers and 

amateurs alike, it was noticed that cycling was among the most prescribed forms of 

cardiovascular exercise. The goal of this project is to modernize this ancient form of 

exercise to today’s standard by utilizing heart rate monitoring and motor control 

technologies that have only recently become mainstream. By measuring the user’s heart 

rate it is possible to gain a thorough understanding of how hard the user is working. If it 

was possible to keep the user’s heart rate constant for extended periods of time, it would 

then be possible to plan workouts where the outcome (calories burned) is known to a 

precise degree. This project takes the user’s heart rate and feeds it to an algorithm that 

controls a motor tied to a bicycle. This motor then constantly adjusts its output torque to 

force the user to work hard enough to keep their heart rate constant. This report follows 

the design process that will allow for this project to come to fruition.  
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1. Project Statement 

1.1 Need 

Biking is one of the most common types of exercise subscribed by physical 

therapists and athletic trainers.  It’s considered a great way to work on one’s cardio, 

increase the strength in their lower body muscles, and burn substantial amounts of 

calories. It manages to do all of this while minimizing the chance of injuries that the user 

cold incur by limiting the amount of impact their joints receive. When riding a bike 

trainers typically want to keep the trainee’s heart rate in a specific area, or intensity zone. 

This allows the exercise to be sustained longer and maximizes the consistency and 

productivity of the workout. In order to do this, someone has to continuously monitor 

their heart rate and manually adjust the resistance on the bike, causing them to lose focus 

on their workout. This means that someone else has to always be there, typically a 

personal trainer, or the trainee has to manage this themselves which causes them to lose 

the focus required to sustain a productive workout. This loss of focus, along with the cost 

of a personal trainer and gym membership, mean that many people do not have the means 

to obtain the highly productive workouts that they want. There is a need to autonomously 

adjust one’s workout so that they can maintain a selected workout intensity for an 

extended period of time, thus maximizing the gains that are sustained from their workout.  

 

1.2 Objective 

The objective of this project is to provide customers with an easy-to-use bicycle 

that allows them to select a workout intensity and keeps them working within a given 

range of intensities centered around the one selected.  Users will be riding a bicycle that 

will vary intensity autonomously based on their heart rate.  As the user becomes more 

exhausted the bike will adjust pedal resistance, thus allowing the user to regain stamina 
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and keep them in the selected intensity zone.  By adjusting pedal resistance 

automatically, the user is free to work at their own pace and be assured that they are still 

getting the workout they desire.  Also, if the user isn’t getting enough of a workout, the 

bike’s electric motor can be oriented as a generator, creating an extra load for the user to 

drive (causing them to work harder and increase their heart rate) while recharging the 

batteries. 
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1.3 Background 

         The intent of this device is to make a continuously variable resistance bicycle that 

will keep the user within a specific range of workout intensity without the user having to 

intervene.  The resistance will be entirely continuous, always correcting for the users 

level of fatigue, and keep them from going outside their selected zone of intensity. To 

accomplish this there will be a DC motor assisting, or hindering, the user’s pedaling 

causing the intensity of the workout to increase, or decrease, as necessary. The DC motor 

will be able to assist the user by adding torque to the drive wheel when they are getting 

over fatigued or adding the resistance to the drive wheel when the user is not working 

hard enough. When the motor is adding resistance it will act as a generator, recharging 

the battery pack that is being used to run the motor when it is assisting the user. 

  

         In September 1997 Saturo Kumagai and the Yazaki Corp patented an idea for a 

regenerative braking system for an electric bicycle. “A regenerative braking device 2 

provided on an electric power-assisted motor fitted to a bicycle 1 controls the 

regenerative braking action by a regenerative braking means A fitted to a brake lever 

supporting point, and the regenerative braking is performed with the motor connected to a 

rear wheel in the regenerative charging mode. The regenerative braking device 2 is 

operated only in the traveling condition where the braking or deceleration is required by 

turning on/turning off a switch, and a bicycle driver feels no sense of incompatibility in 

the inertia traveling.”[7] This is similar to the design that will be utilized to create the 

device described within this paper. The difference being that instead of switching to 

regenerative braking through the use of a switch, the change will be done autonomously 

based on the user’s heart rate. If the user’s heart rate is starting to slow down, that means 
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they require more resistance and the bike will begin to impede the user’s pedaling 

causing the motor to act as a generator and the energy they are producing to charge a 

battery. Vijyalakshmi, S. Sandhiya and C. Bhuvaneswari have an article that showcases 

the current design parameters of electric bikes with regenerative braking induced by a DC 

motor [4]. In this article they speak about utilizing a microcontroller to not only run the 

motor, but to also control the other vital features of the bike. The idea of utilizing a 

microcontroller to run the various functions of the bike will be vital to this design 

because it will limit the complexities of the system to a manageable amount (no need to 

deal with cross-board communications). 

  

         For this design, the user’s heart rate will be used to keep track of their current 

zone of intensity. To do this a heart rate sensor is needed:  N. Constant, T. Wang, and K. 

Mankodiya came up with a unique design for a simplistic heart rate sensor: “The 

technique places a light and photodetector on the surface of the skin. The light transmits 

through the skin and blood but is largely reflected by the bone thereby traveling back to 

the photodetector. As the light journeys through the skin, the photodetector monitors 

fluctuations in light absorption caused by the variations in blood volume passing through 

the arteries. This allows us to calculate the duration of the cardiac cycle.”[3] The key 

principle of the design of their heart rate monitor is to monitor the change in light being 

absorbed, and thus emitted, from the skin which is directly proportional to the volume of 

blood being passed through the arteries. This is the same idea that will be utilized in the 

design of the heart rate monitor for this project. 

  

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5910449&isnumber=5910416
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5910449&isnumber=5910416
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The design of the bike is intended to utilize a heart rate monitor to read and 

control the fatigue level of the user.  The most efficient way to do this is to have the user 

put on a heart rate monitor when riding the bike that will wirelessly transmit information 

about the user’s heart rate back to the control system.  Modern heart rate sensors use a 

light source pointed at the skin and measure the feedback of how much light is being 

absorbed in the skin from the presence of blood, which changes when the heart pumps.  

“The present invention relates to heart rate monitor for measuring a heart rate of a user, 

including at least one artificial light source for emitting light into skin of the user, a first 

sensor for sensing light reflected through the skin of the user and for generating a first 

sensor-signal in response to sensed light, and an optical high-pass filter for filtering out 

infrared light, wherein the optical high-pass filter is arranged in an optical path before the 

first sensor for filtering out infrared light from light travelling to the first sensor.”[8]  This 

basic design of a heart rate monitor as described here will be a good simple design for the 

concept of the bike.  The information will be relayed back to the bike and the information 

will be used to apply a torque on the drive wheel.  This can either assist the user in 

strenuous situations or make it harder for the user in less strenuous situations. 

  

Currently there are a few common ways bikes are used to convert mechanical 

energy into electrical energy.  One particular approach that can be used as a model for 

this project was that taken by Hudson Harr, founder of ReRev based out of Clearwater, 

Florida.  He purchased many elliptical machines and began tearing the equipment apart.  

What he found was that some of these machines used DC generators to vary the 

resistance the user feels while pedaling.  “The current generated creates a magnetic force 
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that opposes the motion that creates this current. By adjusting the amount of current 

created, the user can vary the resistance he or she feels.”[2]  Normally the generators use 

a bank of resistors to dissipate the extra energy, but Harr decided to remove the internal 

resistance of the DC generator and instead hook it up to an external load. Using an 

inverter, the next step was to transform the DC power generated into AC and finally 

feeding it into the electrical grid.[2]  For this project, the implementation of a generator 

that can create pedal resistance will be approached in a similar way.  Applying this 

method of power generation to power an external source will be utilized for an actual 

bicycle.  It will create more resistance when the user has a light load and assist the user 

when the load is strenuous.  A control system that alters a variable resistance to 

autonomously control the current being sent to the motor or drawn from it will be 

implemented to realize this design, depending upon the users heart rate and specified 

range in which they wish to operate.[2] 

  

To keep the user in the desired heart rate range the control system will need to 

obtain certain inputs from the bicycle and the user.  For this particular application one of 

the inputs will be the users heart rate which is obviously proportional to their fatigue 

level.  Other inputs may be the torque created, the frequency of peddling, the slope of the 

riding surface, or the bike speed.  Depending upon these values the control system will 

determine the assisted torque that needs generated from the motor.[1]  To electrically-

assist the rider, implementation of a constant proportion-assisted power controller 

(PAPC) could be used in which the assistance provided by the motor is proportional to 

the provided torque and speed of the bike.  Another implementation could be a fuzzy 
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logic controller (FLC) which instead of the torque, it takes the peddle frequency as an 

input to determine the amount of assistance needed. 

  

         Another integral part of the bike will be the batteries that will be 

charged/discharged during use.  “Battery management systems are of paramount 

importance to ensure safe functioning and optimal usage of the battery pack.”[6]  In order 

to keep the user safe the bike will have to have a sophisticated water proof battery 

management system that will allow the batteries to be charged and discharged while 

ensuring that they are not damaged.  It is also vital that the batteries do not overheat while 

in use.  Part of the battery management system will have to continuously monitor the 

temperature of the batteries and adjust load if needed.  Safety should be the most 

important aspect of the bike and ensuring that the batteries are safe to operate is a huge 

step in maintaining safe operation of the system.  If the bike battery is not generating 

enough energy for sufficient assistance, the use of a super capacitor could be used.  

“Super-capacitor modules are used to provide the high current required during starting 

and acceleration, and eventfully will help increasing lifespan of battery.  A secondary 

source, like regenerative braking or a small solar panel module could be availed onboard 

so as to charge battery/super capacitor.”[5] 

  

         Limitations of current designs stem from the fact that feedback to the motor 

control are typically coming from the bike itself.  Such inputs can be the speed of the bike 

or the torque applied to the pedals.  In this design the motor control system will take an 

input directly from the user, in this case, the user’s heart rate.  This improvement will 
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make the bike much more practical for exercise purposes, because it will be able to 

directly measure the fatigue of the user and keep them in the ideal workout zone.  
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1.4 Marketing Requirements 

1. Be able to vary pedal resistance autonomously 

2. Assist user on inclines 

3. Accurately read user’s heart rate 

4. Attempt to keep user’s heart rate in a selected intensity zone 

5. Be able to assist the user for the duration of a typical cycling workout 

6. Utilize a portable and rechargeable energy storage device 

7. Have a safe and reliable energy management system 

8. Have a user activated shutdown 

9. Display health and ride parameters 

10. Transmit user’s heart rate to the rest of the system wirelessly 

11. The additional weight of the bicycle’s electronics won’t overload the user if 

they are pedaling without assistance 
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1.5 Objective Tree 

 
 

Figure 1 - Objective Tree 
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2. Design Requirement Specification 

Marketing Requirements Engineering Requirements Justification 

1, 2 The bicycle will utilize at least a 

400W DC hub motor to drive one of 

the wheels. 

It takes slightly less than 400W to drive a 

260lbs load up a 6 degree incline without 

assistance. 

5, 6, 7 The bicycle will be able to assist the 

user for at least one hour. 

 

The average length of a typical 

cardiovascular workout is less than one 

hour and the bicycle should be able to 

assist for longer than a typical workout. 

3 The embedded system will take 

measurements from the heart rate 

sensor at least every tenth of a 

second. 

By taking a reading every 0.1 seconds, 

the embedded system will be able to 

make minor adjustments to the motor’s 

assistance. 

4 The bicycle will be able to keep the 

user’s heartrate within ±10% of a 

selected value. 

 

A range of 10% is large enough that the 

system will be able to keep the user 

within it with minor adjustments, but 

small enough to keep a uniform workout. 

9 An LCD display and associated 

controller will be used to display the 

user’s heart rate, speed, and ride 

duration in real time. 

Heart rate, speed, and ride duration will 

be the most important information for a 

user and by updating it in real time the 

information shown will always be 

accurate. 

2 The bike will be able to assist the 

user up a 6 degree (10 % grade) 

slope. 

6 degree slopes are the largest that are 

typically seen on bike paths. 

7, 8 The energy management system will 

interrupt power flow to, or from, the 

motor in less than 0.1 seconds. 

By isolating the batteries in under 0.1 

seconds, the amount of damage done to 

the batteries and other electronics on the 

bicycle will be limited. 

10 The heart rate monitor will be able to 

transmit data at least 10 feet. 

10 feet is an appropriate distance to 

ensure the data will reach the controller. 

11 The bicycle’s associated electronics 

will weigh less than 60lbs. 

If the electronics weight less than 60lbs, 

then the bike will still be usable without 

electronic assistance. 

1 The motor controller must be able to 

send 400W of power from the 

batteries to the motor. 

 

The assist, or resist function, of the bike 

can occur at any time and the motor must 

be able to transition continuously. 

1 The motor controller must be able to 

send power back to the batteries from 

the motor. 

 

In order to increase the load the user is 

driving, thus increasing the user’s heart 

rate, the motor must act like a generator 

and produce power which will be routed 

back to the batteries. 
 

Table 1 – Design Requirement Specifications 
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2.1 Marketing Requirements 

 

1. Be able to vary pedal resistance autonomously 

2. Assist user on inclines 

3. Accurately read user’s heart rate 

4. Attempt to keep user’s heart rate in a selected intensity zone 

5. Be able to assist the user for the duration of a typical cycling workout 

6. Utilize a portable and rechargeable energy storage device 

7. Have a safe and reliable energy management system 

8. Have a user activated shutdown 

9. Display health and ride parameters 

10. Transmit user’s heart rate to the rest of the system wirelessly 

11. The additional weight of the bicycle’s electronics won’t overload the user if they 

are pedaling without assistance 
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3. Accepted Technical Design 

3.1.1 Level 0 Hardware Theory of Operation 

A typical electronic bicycle takes input from a throttle and a DC hub motor.  The hub 

motor has a controller which increases or decreases its outputted torque according to 

what the throttle commands. In this system, the bike will utilize the user’s heart rate as a 

throttle. This will allow the bike to adjust its output accordingly without the user having 

to consciously input anything into the system. 

 

3.1.2 Level 0 Hardware Diagram 

 

 

Figure 2 – Level 0 Hardware Diagram 

A heart rate based user assisting bicycle, as seen in Figure 2, will be designed and built 

so that it will be able to assist a user pedaling their bicycle. It will utilize the user’s heart 

rate as a throttle and attempt to keep their heart rate in a specified intensity zone. As the 

user rides it will display pertinent data to them. 
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Module Heart Rate Based Assisting Bicycle 

Inputs • User selected intensity zone 

• User generated torque 

• User heart rate 

Outputs • Display heart rate, speed, and ride length 

• Torque to the driveshaft 

Description The user’s heart rate, intensity zone, and 

generated torque will be used to decide how to 

drive the motor. Various ride data will be 

displayed to the user throughout the ride. 

Table 2 – Functional Requirements of Heart Rate Based Assisting Bicycle 
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3.2.1 Level 1 Hardware Theory of Operation 

A heart rate monitor attached to the user will be used to measure their heart rate and send 

that data to the embedded system of the bicycle. The embedded system will use this data, 

along with the drive train’s rotations per minute, the batteries state of charge and the 

motor phase, to decide what the motor should do. The controller then produces the 

corresponding control signal to send to the motor controller. Along with that control 

signal the embedded system will send the data to be displayed to the display. The entire 

system, excluding the heart rate monitor, will be powered by a set of batteries that are 

controlled and monitored by a battery management system. 

 

3.2.2 Level 1 Hardware Diagram 

 

 
Figure 3 – Level 1 Hardware Diagram 

 

The level 1 hardware diagram, as seen in Figure 3, encompasses the entire system that 

will be required to create a heart rate based assisting bicycle. A 48V battery pack will be 

utilized to power the entire system and be controlled by the battery management system. 

The embedded system will collect all of the appropriate data (heart rate, rpm, state of 

charge, etc.) and utilize it to route the appropriate amount of power through the motor 
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controller to the motor. The motor will then drive the drive train and assist the user the 

amount needed to keep them in the specified intensity zone. 

Module Heart Rate Monitor 

Designer Ethan Wesel & Ryan Applebee 

Inputs • User's heart rate 

• Battery power (1.5V) 

Outputs • Bluetooth signal that corresponds to 

the user’s heart rate 

Description The heart rate monitor will measure the 

user’s heart rate and then convert that to a 

Bluetooth signal which will be sent to the 

rest of the system. 

Table 3 – Level 1 Heart Rate Monitor Functional Requirements 

 

Module Batteries 

Designer Tyler Matthews 

Inputs • 48V Power Signal 

Outputs • 48V Power Signal 

Description The batteries will either supply power to 

the motor, and the rest of the bike’s 

electronics, or the motor will act as a 

generator and supply power to the 

batteries. 

Table 4 – Level 1 Battery Functional Requirements 

 

Module Battery Management System 

Designer Tyler Matthews 

Inputs • 48V Power 

Outputs • 48V Power 

• Battery State Of Charge 

Description The battery management system will 

ensure the batteries are safely monitored. 

While the bike is running, it will route 

power to the rest of the electronics and 

send the batteries SOC to the embedded 

system. 

Table 5 – Level 1 Battery Management System Functional Requirements 
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Module Motor 

Designer Ryan Applebee, Ethan Wesel 

Inputs • Power 

Outputs • Torque 

• Power 

Description The motor will be attached to the 

drivetrain and can act to assist the user by 

adding torque. Alternatively, the motor 

can act as a generator and send power to 

charge the batteries. 

Table 6 – Level 1 Motor Functional Requirements 

 

Module Drivetrain 

Inputs • Torque 

Outputs • Torque 

• RPM 

Description The drivetrain will either use torque 

provided by the motor, to assist the user, 

or provide torque to the motor which will 

charge the batteries. Also, it will output its 

rotations per minute to the embedded 

system. 

Table 7 – Level 1 Drivetrain Functional Requirements  

 

Module Display 

Designer Nick Darash  

Inputs • Power 

• Battery State of Charge  

• Drivetrain RPM 

Outputs • Displays data to the user. 

Description The display will take power from the 

batteries and data from the embedded 

system to display data to the user. 

Table 8 – Level 1 Display Functional Requirements 
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Module Motor Controller 

Designer Ryan Applebee, Ethan Wesel 

Inputs • Pulse Width Modulated Control 

Signal 

• Regenerative Braking Power 

Outputs • Motor Power 

• 48V Regenerative Breaking Power 

Description The Motor Controller will act as a bi-

directional power supply to either power 

the motor or recharge the batteries. When 

powering the motor, it will utilize a 

control signal from the embedded system 

to control the power flow 

Table 9 – Level 1 Controller Functional Requirements 

 

Module Embedded System 

Designer Nick Darash 

Inputs • Power 

• Battery State Of Charge 

• RPM 

• Heart Rate 

• Motor Position 

• Phase Currents 

Outputs • Display data 

• Control signal to the motor 

Description The Embedded System is the brains 

behind the entire bike. It will take in all 

the data from the other systems and decide 

how the motor will operate.  It will also 

interact with the user by receiving the 

heart rate signal and display appropriate 

information on the screen. 

Table 10 – Level 1 Embedded System Functional Requirements  
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3.4.1 Level 2 Embedded System Hardware Theory of Operation 

The embedded system will take in signals from the batteries such as power and state of 

charge.  It will also use signals from the heart rate monitor and the Hall Effect sensor 

from the drivetrain and feed the information to a microcontroller.  The microcontroller 

will then use the data gathered and an algorithm we write in software to command the 

motor more or less torque.  This controller will also be used as a motor controller.  The 

controller will need to control the switches in the inverter using six different amplified 

PWM signals. The 6 PWM signals will be sent into the inverter to control the switches. In 

order make the motor impede the user we need to drive a negative current into the motor.  

This is done through closing and opening different switches, through the switching 

operation we can cause the current to go –180 degrees out of phase and thus create the 

negative current that is needed. This will apply toque on the wheel and make it more 

difficult to pedal. We will be using three Hall Effect sensors to sense the phase of the 

motor.  The phase of the motor will be used to indicate the timings of which the switches 

will be activated.  

 

  



   
 

21 
 

3.4.2 Level 2 Embedded System Hardware Diagram 

 

 

Figure 4 – Level 2 Embedded System Hardware Diagram 

 

The embedded system will receive power from the batteries along with a state of charge 

signal from the battery management system.  It will display state of charge on the display 

along with the speed the bike is travelling.  The speed of the bike is calculated by taking 

in pulses from a Hall Effect sensor that pulses once for every revolution of the wheel.  

Lastly the embedded system gets the users heart rate via Bluetooth.  It uses this 

information to the set the duty cycle and the switching speed of 6 PWM signals to send to 

the motor controller. 
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Module MCU 

Designer Nick Darash 

Inputs • Heart Rate Signal 

• Drivetrain RPM 

• Battery State Of Charge Signal 

• Motor position 

• Motor Current 

Outputs • Motor Control Signals 

• Display Data 

Description Reads the user’s heart rate, drivetrain rpm, 

Motor Position, Motor Current, and 

battery SOC and outputs different signals 

accordingly.  Will have an algorithm to 

control the motor and display data on the 

screen 

Table 11 – Embedded System MCU Functional Requirements 

 

Module Motor Controller 

Designer Nick Darash 

Inputs • 6 PWM Control Signals 

• Back EMF from Motor 

Outputs • Battery Power 

• 24 Volt Regen Power 

Description When the bike is assisting, the motor 

controller will be controlled by the MCU 

and deliver the battery power to the 

motor.  In regen mode power from the 

motor will be used to recharge the battery. 

Table 12 – Embedded System Motor Controller Functional Requirements 
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3.5.1 Level 2 Battery Management System Hardware Theory of Operation 

The battery management system will read voltages from each series connection in the 

battery in order to manage them properly.  The system will use these voltages to calculate 

an accurate state of charge of the batteries and send that signal to the embedded system.  

The battery management system will also be able to detect faults on the system and shut 

down the batteries in case of an emergency.  If the batteries are in a safe operating range, 

the system will also allow them to charge safely and use power resistors to bleed off 

energy if the cells become unbalanced.  The battery management system will also ensure 

the batteries remain within a sustainable temperature range, and turn off power if they get 

too hot.  Most importantly the system will protect against overcurrent, overvoltage and 

under voltage when the cells are being charged or discharged.   

 

3.5.2 Level 2 Battery Management System Hardware Diagram 

 

 
Figure 5 – Level 2 Battery Management System Hardware Diagram 

 
 

The microcontroller will read voltage across a shunt resistor in order to accurately read 

current.  It will control power flow to the drivetrain with a power MOSFET / MOSFET 
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driver and read cell temperature directly using thermistors.  All this information will be 

used by an algorithm in the microcontroller to ensure the batteries are operating safely.  

Then the microcontroller will send a state of charge signal to the embedded system to be 

displayed on the screen. 

 

Module MCU 

Designer Tyler Matthews & Ethan Wesel 

Inputs • Battery0 Voltage 

• Battery Current 

• Battery Temperatures 

Outputs • Charge / Discharge Signal 

• Battery SOC 

Description The microcontroller will take in the 

individual cell voltages, temperatures, and 

the overall pack’s current to make 

decisions regarding the battery operation. 

It will also output the batteries SOC to the 

embedded system. 

Table 13 – Battery Management System MCU Functional Requirements 

 

Module Buck Converter 

Designer Tyler Matthews & Ethan Wesel 

Inputs • 24V Battery Power 

Outputs • 3.3V Power  

Description The buck converter will take power from 

the batteries and step it down to a 

reasonable level to power the MCU. 

Table 14 – Battery Management System Buck Converter Functional Requirements 
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Module Power MOSFET 

Designer Tyler Matthews & Ethan Wesel 

Inputs • 24V Battery Power 

• Charge / Discharge Signal 

Outputs • 24V Battery Power 

Description The power MOSFET will be used to 

control the flow of power to / from the 

batteries to the motor controller. It will 

need to be able to handle high voltage and 

current (24V, 20A) from the batteries 

while having a low impedance path from 

its source to drain. 

Table 15 – Battery Management System Power MOSFET Functional Requirements 

 

Module Shunt Resistor 

Designer Tyler Matthews & Ethan Wesel 

Inputs • 24V Battery Power 

Outputs • Voltage differential that corresponds 

to the current flowing 

Description The voltage drop across the shunt resistor, 

will be measured by the MCU and will be 

proportional to the voltage flowing 

through it. It will need to be low 

impedance and be able to hand high 

currents (20A).  
 

Table 16 – Battery Management System Shunt Resistor Functional Requirements 
 

Module Batteries 

Designer Tyler Matthews & Ethan Wesel 

Inputs • N/A 

Outputs • 24V Power 

Description The batteries will be able to supply 24V 

and high currents to power the rest of the 

electronics.  

Table 17 – Battery Management System Batteries Functional Requirements 
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3.6.1 Software Theory of Operation for the Embedded System 

The embedded system will manage the operations of the entire bike and motor.  It will be 

required to keep track of the user’s heart rate and keep the motor operating at proper 

torque and speed. It will then be required to display pertinent data on a display so that the 

user can have an understanding of the system conditions.  The embedded system will 

look at the speed of the bike, the user’s heart rate, and the state of charge from the 

battery, in order to operate correctly.  Using all this data the bike will be able to operate 

the motor in a safe and effective manner. 

 

3.6.2 Software Diagram for the Embedded System 

 
Figure 6 – Embedded System Software Diagram 
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The software diagram, as seen in Figure 6, encompasses the motor control and display. 

This system should be able to take state of charge, drivetrain rpm, user heart rate and 

motor position. It will then create a control signal that will tell the switches to turn either 

open or close and weather the motor should start adding resistance to make it harder to 

pedal, or assist the rider. Lastly, it should be able to use the collected data to create a 

signal to tell the display what to show the user. 
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3.7.1 Software Theory of Operation for the Battery Management System 

The battery management system will be responsible for monitoring the batteries, ensuring 

the batteries are operating within safe parameters, and allow the batteries to power the 

rest of the electronics. This system will take measurements of the battery voltage, 

temperature, and input/output current to determine if the batteries are operating correctly. 

 

3.7.2 Software Diagram for the Battery Management System 

 

 
Figure 7 – Battery Management System Software Diagram 

 

The level 1 software diagram, as seen in Figure 5, showcases the operation of the battery 

management system. This system constantly takes measurements of the battery voltages, 

temperatures, and current. If any of these values appear out of the ordinary then the 

system will stop the bike from starting or, if the bike had already started, it will stop the 

bike from continuing to run.  If the batteries are being charged, then the battery 
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management system will allow them to continue charging as long as the batteries are 

working with spec. Finally, the battery management will calculate the battery’s state of 

charge and send it to the embedded system. 
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3.8.1 Level 3 Battery Management System Hardware Theory of Operation [TRM] 

As previously discussed, the three main objectives of a battery management system is to 

ensure that the batteries’ voltage, current, and temperatures are within a safe operating 

zone. In order to do this, the battery management has three separate subsystems that each 

monitor one of above parameters and sends the measured values to a central MCU. If the 

MCU gets any value that’s outside of the safe operating zone, it disconnections the 

batteries from the rest of the bicycle. 

 

The first requirement for the battery management system is to monitor the battery cells’ 

voltages. Since the battery pack for this project is a high voltage (44.4V nominal), 

connecting the voltage sense lines directly to the MCU ADCs would destroy it. One way 

to get around this is to use a voltage divider circuit to minimize the voltage sampled by 

the ADCs and then scaling the measured value back to what it should be in software. The 

issue with this is that it constantly burns power off through the resistors and a lot of 

resolution is measured when the values are scaled down. To get around these issues, a 

battery monitoring IC (LTC6804) was selected to measure the voltages. It then sends the 

values it measures to the central MCU through the SPI communication protocol. On top 

of that, the IC has built in FET drivers that allow it to passively balance (passive 

balancing keeps battery cells that are connected in series at the same voltage level by 

burning off excess power through a load resistor) the battery cells.  

 

The second requirement for the battery management system is to monitor the current 

flowing into, or out of, the battery. Typically when measuring currents in a circuit, one 

would use a shunt resistor (resistor with a small impedance) and then measure the voltage 
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drop across the shunt to derive the current flowing through that line (using I = V/R). In 

the case of the battery management system, the peak current flowing from the batteries to 

the rest of the bicycle is expected to be around 30 amps. This means that even a 0.1 ohm 

shunt resistor will cause losses in excess of 90W (P = I^2 * R) which is unacceptable. To 

mitigate this issue, a hall-effect based current sensor was selected. A hall-effect based 

current sensor measures the magnetic field generated by the current through the 

conductor and then derives the current based on that magnetic field. This allows the 

current to be measured with minimal losses, since the only added resistance is the length 

of conductor required to connect the sensor to the circuit. The sensor that was selected for 

this application, MLX91210, is a bi-directional hall-effect based current sensor that out 

puts a voltage that corresponds to the current it measures. It can handle up to 50 amps in 

either direction with a resolution of 50mV outputted for every amp flowing through it. 

 

The third requirement for the battery management system is to monitor the battery 

temperature while it is being operated. Because the battery is going to be rather large 

(5P12S = 60 individual cells), the temperature throughout it won’t necessarily be 

uniform. To combat this, the temperature will be measured at multiple points throughout 

it. Typically, when measuring temperatures, either diodes or thermistors is used. The 

voltage drop across the PN junction of a diode, or transistor, has an inversely proportional 

linear relationship with temperature. Meaning, that as temperatures increase, the voltage 

drop across that junction decreases by a set amount (ie: 0.05V / 20 degrees C). Also by 

paralleling the diodes, or transistors, only one reading needs to be taken because the 

diode with the smallest voltage drop is the only one that will be “active” and that 
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corresponds to the diode with the highest temperature. Unfortunately, to get this to work, 

the diodes have to be perfectly matched and the precise measuring techniques are needed 

to get accurate values. Because of this, the battery management system is implementing 

thermistor based temperatures sensors instead. The thermistors chosen are 10K NTC 

(negative thermal coefficient), which have a nominal impedance of 10K ohms and the 

impedance decreases as their temperature increases. By putting each of these in series 

with a 10K resistor, whose temperature should be stable, and measuring the voltage 

between them, the temperature of the NTC can be easily derived (the difference in 

voltage across the NTC can be used to calculate it’s impedance, and then a lookup table 

for its resistance at very temperatures can be used to find its temperature). One of the 

main drawbacks of this system is that it is constantly burning power through the resistors 

and NTCs. To combat this, the temperature sense circuit is fed through an N-channel 

MOSFET that will only allow current to flow when the temperatures are going to be 

measured. 

 

If anything goes wrong, the MCU has to be able to disconnect the battery from the rest of 

the bicycle, or charger if the batteries are being charged. Because the battery will be 

delivering a lot of power, a power transistor or relay is needed to connect and disconnect 

them. A relay would work, but they typically act slower than transistors and, assuming 

the use of normally open non-latching relays, they would constantly be burning power to 

keep the battery connected. By using a MOSFET instead, the circuit is able to switch 

quickly and minimize the current draw (MOSFET draw little to no current when they are 

not switching). N-Channel MOSFET’s require a voltage at its gate larger than that 
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present on its source in order to switch it on and since that battery management system 

has no control on what is happening outside of its circuitry (MOSFET’s source would be 

the output to the rest of the bike) it’s impossible to predict what the voltage at its source 

would be. So, it was decided to use a P-Channel MOSFET since they only require the 

gate voltage to be lower than the source voltage to turn them on. Unfortunately this 

means, to turn it off, its gate voltage has to be almost equal to its source voltage. This is 

easily remedied with a resistor tied between its source and its gate, so that whenever its 

gate is not pulled to ground it’ll be forced to the same voltage as its source. To turn the 

MOSFET on, its gate then needs to be pulled significantly lower than its source voltage. 

To do this, an N-Channel MOSFET is trigger by the MCU and then it pulls the gate of 

the P-Channel closer to ground. The gate of the P-Channel is not pulled directly to 

ground, because it can only handle a given difference (about 20V) between its gate and 

its source before it fails. Also, the MCU cannot directly pulled the P-Channel to ground 

because it lacks the current sinking capabilities required to do so. 
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3.8.2 Level 3 Battery Management System Schematic Diagrams [TRM][ELW] 

 
Figure 8 – Voltage Measuring Circuity 

Shown in Figure 8 is the schematic for the voltage sensing circuitry. As can be 

seen all 12 battery cells that are in series have a voltage sense line coming from 

them. They get sent to the LTC6804 “C” pins through a 100 ohm resistor. Then, if 

the IC senses that the voltage of any one of the cells is too high, it turns on the 

balancing circuitry with the corresponding “S” pin and the excess power is burned 

off through the 33 ohm load resistors (the other resistor and led attached to the 

FETs is just for visual verification that balancing is occurring). Also, the SPI 

communication lines (MOSI, MISO, CLK, and CS_1) are connected to the IC so 

that it can send the measured voltages to the central MCU. 
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Figure 9 – Current Measuring Circuitry 

Shown in Figure 9 is the schematic for the current sensing circuitry. The battery 

power comes in from the connector on the left and is then immediately routed to 

the current monitor (MLX91210). This monitor measures the power following 

from IP+ to IP- and outputs a corresponding voltage (40mV / A) through the 

VOUT pin. The C_SENSE net (connected to the VOUT pin) is then routed to the 

MCU so that it can make sure that a safe amount of current pushed to, or pulled 

from, the battery. 

 

  

Figure 10 – Temperature Measuring Circuitry 

Shown in Figure 10 is the schematic for the temperature measuring circuitry.  

This circuitry consists of the in-series 10k resistors, that create the voltage divider 

with the 10k NTCs mounted on the battery, and the N-Channel MOSFET that 

controls whether or not this circuit has power. The TEMP1 through TEMP5 nets 
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get routed back to the MCU so it can cut off power if the temperatures are no 

longer within safe operating parameters. The TEMP_FET net gets routed back to 

the MCU so that it can turn the temperature measurement circuitry on and off. 

 

 

Figure 11 – MCU and Power Circuitry 

Shown in Figure 11 is the schematic for the MCU and the circuits that enable 

charging, and discharging, of the batteries. On the left of the MCU is the circuitry 

required to program it using a PIC KIT and a reset button. Attached to that 

circuitry are the I2C lines (ICSP_CLK, ICSP_DATA) that will be used to send 

the battery SOC to the embedded system. On the top is the circuitry that allows 

the MCU to communicate using UART (using a UART to USB adapter data can 

be sent to a computer and viewed with a terminal, allowing for an easier way to 

debug the software). Around the MCU inputs for temperature measuring (TEMP1 

– TEMP5), current measuring (C_SENSE), the SPI communication lines for 

voltage measuring (MOSI, MISO, CLK, CS_1), and the general purpose pins 

(GPIO_ 1 – GPIO_5) which will be used for the kill switch, start switch, and 

charge switch can all be seen. The two pins that will be used to enable charging, 

and discharging, of the batteries can be seen on the top left of the MCU. To the 
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right are the corresponding circuits that will actually connect the batteries to the 

charger or the other electronics on the bicycle. Each of these circuits consist of a 

power P-Channel MOSFET that has their gate tied to their source through a 10k 

resistor. Then, when the N-Channel MOSFETS have their gates pushed to 4.95V 

(5 ∗ 
10000

10000+1000
), the P-Channel gates are pulled to 2/3 of their source voltages 

using a simple voltage divider (𝑉𝐺𝑎𝑡𝑒 = 𝑉𝑆𝑜𝑢𝑟𝑐𝑒 ∗ [
20000

20000+10000
]). This connects the 

P-Channel MOSFET’s source and drain thus allowing power to flow to, or from, 

the battery.  

 

 

Figure 12 – 5V Regulator and Connectors 

Shown in Figure 12 is the schematic for the 5V switching regulator needed to 

power the battery management circuitry along with all of the connectors that are 

on the board. This 5V regulator (SRH05S05) is capable of taking a range of 9-

72V and output a constant 5V for up to 500mA. This high input range means this 

can take the battery voltage directly, without needing to step it down. And it being 

able to output 500mA, means that it will be able to easily power all of the battery 

management electronics as well any external electronics that might need a 5V rail 

that are not currently accounted for. On the input of this regulator is a PTC 
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(positive thermal coefficient) rated for the battery pack voltage. If a short circuit 

occurs somewhere and too much current is being pulled, the temperature of the 

PTC will rise and limit the current draw until the short is fixed (essentially acting 

as a resettable fuse).  
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3.8.3 Level 3 Battery Management System Software Theory of Operation [TRM] 

As discussed above, the battery management system has three subsystems for measuring 

the various values needed to understand if the battery is operating safely or not. So, the 

software needs to be set up so that the MCU can interact with each of these subsystems in 

a timely manner. To do this, timers will be setup so that the MCU can take measurements 

at constant time intervals. The temperature and voltage measurements will be tracked by 

one timer, while the current measurement will be tracked by another. The current is 

tracked by itself because to accurately implement coulomb counting, for SOC 

calculations, the time interval between current measurements has to be precise. And the 

amount of time needed to take voltage and current measurements will be enough to make 

the coulomb counting SOC calculation inaccurate. 

The battery management system also needs to be able to calculate the battery’s SOC 

(state-of-charge) and send it to the embedded system whenever it is requested. To 

calculate a battery’s SOC a few values need to be known: the most recent battery no-load 

voltage and the amount of charge it’s given/received since the most recent no-load 

voltage measurement. The battery management takes the last known no load voltage and 

converts that to a percentage of battery charge, and then multiplies that by the total 

ampacity of the battery. This gives the amount of charge that the battery had left when 

the no-load voltage measurement was taken. Then, at a given time interval, the current 

flowing out of the battery is measured and subtracted from the total previous calculated. 

Finally, by dividing this value by the total battery ampacity, the battery’s SOC can be 

calculated and sent to the embedded system. This technique for calculating battery SOC 

is known as coulomb counting and is the industry standard. 
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3.8.4 Level 3 Battery Management System Pseudo Code [TRM][ELW] 
//Pseudo Code -- Tyler Matthews 11/16/2018 

//Configuration Bits will be set in a config.h file 

  

//Global Variables 

*****************************************************************

*********************************************************** 

  

boolean batteries_are_safe = FALSE;    

boolean battery_is_charging = FALSE;    //This will be changed to 

true based on interrupts caused by the GPIO pins (charging button 

pressed / connection made) 

boolean battery_is_discharging = FALSE; //This will be changed to 

true based on interrupts caused by the GPIO pins (start button 

pressed / connection made) 

float voltage_array[]; 

float temperature_array[]; 

float battery_SOC; 

float max_ampacity = ; //will be intialized as the batteries 

ampacity at full charge in Amps-time_between_measurements (ie: 

amp-seconds or amp-milliseconds) 

float current_value; //the most recent current value (in Amps) 

  

//End Of Global Variables 

*****************************************************************

**************************************************** 

  

  

//Main Function 

*****************************************************************

************************************************************** 

  

main(){ 

  system_initialize();   

  initial_measurement(); 

   

  while(1){ 

      if(batteries_are_safe == TRUE){ 

        if(battery_is_discharging == True{ 

           start_discharging(); 

  

           if(Timer1 interrupt is thrown){ 

         measure_temperatures(); 

             read_voltages(); 

        } 
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           if(Timer2 interrupt is thrown){ 

         measure_current(); 

             calculate_soc(); 

       } 

  

           if(embedded system requests data){ 

             send_soc(); 

           } 

  

           battery_check(); 

        } 

        else if(battery_is_charging == TRUE){ 

           start_charging(); 

  

           if(Timer1 interrupt is thrown){ 

         measure_temperatures(); 

             read_voltages(); 

        } 

  

           if(Timer2 interrupt is thrown){ 

         measure_current(); 

             calculate_soc(); 

       } 

  

           battery_check(); 

        } 

      

      else if(batteries_are_safe == FALSE){ 

        //Set RD4 and RD5 to 0, turning off the 

Charging/Discharging Circuits 

        //Blink the LED connected to RA5 

        //Do nothing else -- requiring a manual reset before the 

system will run again 

        //This ensures that the system is checked before trying 

to run again 

      } 

    } 

} 

  

//End Of Main Function 

*****************************************************************

******************************************************* 
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//Custom Functions 

*****************************************************************

*********************************************************** 

  

//Initializing functions 

*****************************************************************

********************************** 

void system_initialize(){ 

  i2c_setup(); 

  spi_setup(); 

  uart_setup(); 

  timer_setup(); 

  adc_setup(); 

  pin_setup(); 

} 

  

void inital_measurement(){ 

  read_voltages();   

  inital_soc(); 

  measure_temperatures(); 

  initial_battery_check(); 

} 

  

void inital_soc(){ 

  //Loop through the individual cell voltages array and add them 

all together 

  //Divide the value calculated above by the maximum pack voltage 

(50.4 V) to get current SOC 

  //Save this value as batter_SOC() 

} 

  

void initial_battery_check(){ 

  //Checks voltage and temperature arrays to ensure that all 

measured values are within spec 

  //If they are within spec, set batteries_are_safe equal to 

TRUE, allowing the battery to charge / discharge 

  //If they are not within spec, set batteries_are_safe equal to 

FALSE, not allowing the battery to charge / discharge 

} 

//End Of Initializing Functions 

*****************************************************************

*************************** 
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//Charge / Discharge Functions 

*****************************************************************

**************************** 

void start_discharging(){ 

  //Set RD5 high, causing the FET connecting the batteries to the 

rest of the bike to close (allowing the batteries to discharge) 

  //Set RD4 low, should already be low but this ensures that only 

discharging circuit is on 

} 

  

void start_charging(){ 

  //Set RD4 high, causing the FET connecting the batteries to the 

charger to close (allowing the batteries to charge) 

  //Set RD5 low, should already be low but this ensures that only 

charging circuit is on 

} 

//End Of Charge / Discharge Functions 

*****************************************************************

********************* 

  

//Measurement Functions 

*****************************************************************

*********************************** 

void read_voltages(){ 

  //Send a command to the LTC6804 to intiate a measurement of the 

battery cell voltages 

  //Wait until SPI_interrupt is thrown and cell voltages can be 

read from the SPI buffer 

  //Put cell voltages into the array voltage_array[] 

} 

  

void measure_temperatures(){ 

  //Set RB5 high to enable temperature measurements 

  //Read Temperatures using ADCs on RB0, RB1, RB2, RB3, and RB4 

  //Put temperatures into the array temperature_array[] 

} 

  

void measure_currents(){ 

  //Measures the current value (in Amps) at the instant this 

function is called 

  //Samples ADC on RD1 and then converts that value from volts to 

Amps based on the current sensor's relationship 

} 

  

void battery_check(){ 
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  //Checks the voltage_array, temperature_array, and 

current_value to ensure all measured values are within spec 

  //If they are within spec, set batteries_are_safe = TRUE; 

  //If they are not within spec, set batteries_are_safe = FALSE; 

} 

//End Of Measurement Functions 

*****************************************************************

**************************** 

  

  

//State-Of-Charge Functions 

*****************************************************************

******************************* 

void calculate_soc(){ 

  //Calculates the batteries current SOC with the formula below: 

  //battery_soc = battery_soc - (current_value / max_ampacity) 

} 

  

void send_SOC(){ 

  //Sends battery_soc to the embedded system using i2c 

} 

//End Of State-Of-Charge Functions 

*****************************************************************

************************ 

  

//SETUP FUNCTIONS 

*****************************************************************

***************************************** 

i2c_setup(){ 

  //Setup I2C module to use RB6 & RB7 as data and clock lines, 

respectively 

  //Setup I2C module to be used as Slave (Embbeded system's MCU 

is the master) 

  //Setup I2C interrupt to be thrown when data is requested from 

the embedded system MCU 

} 

  

spi_setup(){ 

  //Pull RD2 low -- this is the slave select pin and only one 

device is ever being communicated with 

  //Setup SPI module to use RC5 as MOSI, RC4 as MISO, and RD3 as 

the clock 

  //Setup SPI module to be active low (all connections have 

pullup resistors) 
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  //Setup SPI module to be the master device (LTC6804-2 is the 

slave device) 

  //Setup SPI interrupt to be thrown when data is recieved 

} 

  

uart_setup(){ 

//NOTE: UART module is only for testing -- allows data to be sent 

and viewed on PC terminal 

//Setup UART module to use RC7 as RX and RC8 a TX 

//Setup UART module to use a baud rate of 9600 (not much data 

being sent -- this is more than sufficient) 

} 

  

timer_setup(){ 

  //Timer's will be used to measure battery data at certain time 

intervals (ie: 0.1ms) 

  //Timer1 will be used to poll battery voltage and temperatures 

  //Timer2 will be used to poll current (current is used for SOC 

calculation and will be on a different interval) 

} 

  

adc_setup(){ 

  //ADC's will be used to measure temperatures (RB0, RB1, RB2, 

RB3, RB4), current (RD1), and the GPIO pins (RA0, RA1, RA2, RA3, 

RA4) 

  //NOTE: GPIO pins will be used on an "as needed basis" -- 

things like the start switch, kill switch, etc... 

} 

  

pin_setup(){ 

  //RC7, RD4, RB5, and RA4 will be set as digital outputs 

  //RC7 and RD4 will be used to enable/disable battery charging 

and discharging 

  //RB5 enables temperature measuring (enabling and disabling 

this saves power) 

  //RA5 is an LED indicator for testing purposes 

} 

//END OF SETUP FUNCTIONS 

*****************************************************************

********************************** 

  

//End Of Custom Functions 

*****************************************************************

**************************************************** 

Figure 13 – Battery Management System Pseudo Code 
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3.8.5 Level 3 Battery Management System Calculations [TRM] 

Current Measurements: 

 The MLX91210 has a resolution of 40mV/A. So, for the maximum current 

expected to be pulled from the battery (30A) the MCU should get a reading of 1.2V (30A 

* 40mV/A = 1.2V). 

 

Voltage Measurements:  

 The voltage measurements are done by the LTC6804, so there are no calculations 

for it. But, the MCU will constantly make sure that the individual cells do not exceed 

4.2V or drop below 3.2V. 

 

Passive Balancing Circuit: 

 The LTC6804 comes with the ability to do passive balancing of the battery. This 

is where the voltages of the individual cells that are in series are constantly kept the same 

by burning off excess in the cells with a higher voltage level. To do this, the LTC6804 

sends a signal from one of its “S” pins to the gate of a P-Channel MOSFET, through a 

3.3k resistor. When this MOSFET is completely turned on, the battery cell is shorted to 

itself through a 33ohm load resistor. Knowing that the maximum voltage of any 18650 

cell is 4.2V, the calculation for power dissipated through that load resistor can be 

calculated as 0.5 W (𝑃 =
4.22

33
). This value is large enough to quickly balance the cells, but 

not so large as to destroy components from overheating (especially since the balancing is 

only ever on for very short periods of time). 

 

Temperature Measurements:  
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The battery management system use 10K NTCs whose resistance are dictated by 

the following formula: 

𝑅 = 𝑅0 ∗ 𝑒
𝐵∗[

1
𝑇

 − 
1
𝑇0

]
 

where B is 3940, R0 is 10k, T0 is 30 C (298 Kelvin), and R is the NTC resistance at 

temperature T. Seeing as though the temperature of the batteries should not exceed 60 C 

(333 Kelvin), the minimum resistance the NTC should have is 2494 ohms (𝑅 = 10000 ∗

𝑒3940∗[
1

333
 − 

1

298
]
). From this, the voltage measured by the MCU that indicates battery 

issues can be calculated via a simple voltage divider. By running the calculations, it can 

be seen that any value less than 1V (𝑉𝐹𝑎𝑖𝑙𝑢𝑟𝑒 = 5 ∗ [
2949

2949+ 10000
]) indicates battery issues.  

When this problem is sensed the battery discharging switch will open and stop operation.   

 

Battery Charging and Discharging Circuits: 

The circuits the enable charging and discharging of the batteries are exactly the 

same, except the power P-Channel MOSFET is flipped. As such, the calculations for both 

of the circuits are the same.  

The P-Channel MOSFET has its gate tied to its source with a 10K resistor, when 

closer the voltage at the gate and source of the MOSFET get to each other the closer to 

being “off” the MOSFET is. Since the MOSFET has an internal capacitance (CISS) that 

is roughly 13400pF, that resistor creates an RC time constant with it. This time constant 

is 0.134s (𝜏 = 𝑅 ∗ 𝐶), which means it would take roughly 1/10 of a seconds for the 

MOSFET to go from completely on to completely off. This value might seem high but as 

the MOSFET transitions from one state to another, the impedance between its source and 

drain changes. So, although it might take 1/10 of a second to completely cutoff current 
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flow, it’ll take significantly less to start limiting it. When the N-Channel MOSFET turns 

on, grounding the gate of the P-Channel through a 20K resistor, the voltage at the gate of 

the P-Channel is set to 2/3 of the source voltage through a voltage divider (𝑉𝐺𝑎𝑡𝑒 =

𝑉𝑆𝑜𝑢𝑟𝑐𝑒 ∗ [
20000

20000+10000
]). This ensures that the gate is sufficiently biased to turn on the P-

Channel MOSFET completely, while not destroying the MOSFET by having an overly 

large voltage difference between the source and gate. 

The N-Channel MOSET works by pulling its gate high than its source. So, when 

the MCU puts 0V on its gate, through the 100 ohm resistor, the value at the gate is 

essentially the same as that on the source (0V). When the N-Channel needs to turn on, the 

MCU puts 5V on the gate, through the 100 ohm resistor, and the voltage divider network 

sets the gate to 4.95V (𝑉𝐺𝑎𝑡𝑒 = 5 ∗ [
10000

10000+100
]). This is more than sufficient to turn on 

the MOSFET completely.  

 

State of Charge Estimation: 

 To understand how much capacity a battery pack has left, it is necessary to 

estimate its SOC, or State-Of-Charge. To estimate this, the following formula is used:  

𝑆𝑂𝐶% = (
(((

𝑉𝑁𝐿
𝑉𝑇𝑜𝑡𝑎𝑙

)∗𝐼𝑇𝑜𝑡𝑎𝑙)−∫ 𝐼𝑡)

𝐼𝑇𝑜𝑡𝑎𝑙
) ∗ 100  

where SOC% is the percentage of battery life left, VNL is the last no-load voltage 

measurement that was taken, VTotal is the battery voltage at full charge (50.4V), ITotal is 

the total ampacity of the battery pack (12500mAH), and It is the battery current at time 

“t”.  By taking the no-load voltage as a fraction of the total battery voltage and then 

multiplying it by the total pack ampacity, it is possible to find the ampacity the pack had 
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left when the no-load measurement was taken. By then taking the integral of the current 

over a set period of time, one can calculate what percentage of the battery has been used 

during that period of time. Finally, by subtracting the amount used during the period of 

time since no-load measurement was taken from the no-load amount that was measured, 

the ampacity of the pack at any time “t” can be solved for. If this value is divided by the 

total ampacity of the pack, and multiplied by 100, then the percentage of battery life left 

is calculated. 
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3.8.6 Level 3 Battery Management System Parts List [TRM] 
 

Qty Value Package Parts Description 

1 TACTILE-SWITCH TACTILE-SWITCH S1 PIC Reset Switch 

17 1k R0805 

R38, R39, R40, 

R41, R42, R43, 

R44, R45, R46, 

R47, R48, R49, 

R50, R57, R63, 

R73, R74 

Resistors 

8 1uF C0805 

C16, C17, C18, 

C19, C22, C23, 

C25, C26 

Capacitors 

1 SSM3J328RLFTR-NO SOT23-3 Q13 P-Channel MOSFET 

12 3.3k R0805 

R4, R6, R9, 

R12, R15, R18, 

R21, R24, R27, 

R30, R33, R36 

Resistors 

1 3.3uF C0805 C15 Capacitor 

1 8MHz HC49UP XT1 Oscillator 

12 10k R0805 

R51, R52, R53, 

R54, R55, R60, 

R61, R64, R66, 

R68, R70, R72 

Resistors 

1 10n C0805 C20 Capacitor 

12 10nF C0805 

C1, C2, C3, 

C4, C5, C6, 

C7, C8, C9, 

C10, C11, C12 

Capacitors 

2 20k R0805 R65, R69 Resistors 

12 33 R0805 

R3, R7, R10, 

R13, R16, R19, 

R22, R25, R28, 

R31, R34, R37 

Resistors 

16 100 R0805 

R1, R2, R5, 

R8, R11, R14, 

R17, R20, R23, 

R26, R29, R32, 

R35, R56, R67, 

R71 

Resistors 

1 100n C0805 C21 Capacitor 

1 100nF C0805 C13 Capacitor 

1 100uF C0805 C24 Capacitor 

1 B59707A0120A062 1210 F2 PTC 
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2 BMS3004 TO218V U$1, U$2 
Power P-Channel 

MOSFETS 

12 DMP2305U SOT-23 

Q1, Q2, Q3, 

Q4, Q5, Q6, 

Q7, Q8, Q9, 

Q10, Q11, Q12 

P-Channel MOSFET 

2 FK3306010L SSSMINI3-F2-B U2, U6 N-Channel MOSFET 

1 FTDI_Header 1X05 J1 FTDI Header 

14 Green LED-0603 

D1, D2, D3, 

D4, D5, D6, 

D7, D8, D9, 

D10, D11, 

D12, D14, D15 

LEDs 

1 ICSP Header 1X05 J2 ICSP Header 

1 LTC6804 SSOP48 U1 Battery Monitoring IC 

1 MLX91210 SOIC-8 U4 Current Sensor 

2 MOLEX_42840-2224 MOLEX_42820-2224 X2, X4 Connector 

2 MOLEX_105314-1114 
MOLEX_105314-

1114 
X1, X5 Connector 

1 
PIC16F1789-

I/PTTQFP44_MC-L 
TQFP44_MC-L U7 MCU 

2 RED LED-0603 D13, D16 LEDs 

1 SRH05S05 SIP3 U5 5V Regulator 

8 TP5015 TP5015 

TP1, TP2, TP3, 

TP6, TP7, TP8, 

TP9, TP13 

Test Points 

5 NXRT15XV103FA1B040 Through Hole 
Not On 

Schematics 
10k NTC 

 

Table 18 – Battery Management System Parts List 
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3.9.1 Level 3 Embedded System Hardware Theory of Operation [NMD] 

The level 3 hardware diagram is an actual schematic of the system itself.  While 

the schematic relatively close to the final product with the possibility of changes only 

occurring after testing has proved that changes to the design are needed.  The final 

schematic will be split into six main parts each serving its own function in the final 

product. 

3.9.2 Level 3 Embedded System Schematic Diagrams [NMD] 

This first main portion of the schematic shows how each component on the board 

is powered.  There are three main power rails on this board that takes the 48-Volt battery 

power as an input and delivers 3.3-Volts, 5-Volts, and 12-Volts to the appropriate 

portions of the circuit.  The schematic for this circuit is shown below in Figure X and 

utilizes a simple switching regulator to provide appropriate voltages.  Only 1 circuit is 

shown in Figure 14 but the each voltage rail is very similar to this circuit.  The only 

difference being that the switching regulator device is a different model that creates 

another voltage value. 

 

Figure 14 – DC Voltage Regulator Circuit 
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After power can now be properly distributed throughout the system, the next main 

part of the system to be discussed is the main controller. The design block for the main 

controller can be seen in Figure 15 below and shows that the main microcontroller is a 

dsPIC33F that will be running at a speed of 40MIPS.  Certain associated passive devices 

can be seen in this block as well that the microcontroller requires to run properly.  Finally 

the main purpose of the microcontroller is to control the functionality of the entire 

system.  Nets for each input and output signal can be seen that will send PWM signals to 

the motor driver IC, read the values of the Hall effect sensors of the motor, and read the 

currents in each phase of the motor.  Another aspect of these signals is the 

communication signals that are going to be used to read heart rate, throttle input, and 

state of charge from the battery management system along with fault data.  An I2C bus is 

implemented for communication with each of these peripherals because it allows for 

quick communication with a large number of devices while only requiring two lines for 

communication.  This will later allow for the addition of a display, and if time permits, a 

Wi-Fi module which will then allow for the creation of a simple website. 

 

 

Figure 15 – Embedded System Main Controller 
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The last main portion of the embedded system is the motor driver IC and 3-Phase 

H-bridge design.  The design block can be seen below in Figure 16 and shows both the 

driver IC which is used to help drive the gates of the large power MOSFETs in the bridge 

and then the 3-Phase half bridge.  The driver IC utilizes three bootstrap capacitors that are 

charged during the off time of each top FET in the bridge which help drive the gate of the 

FET high when the source is floating.  This allows for quick and reliable switching of the 

FET as needed.   

 

 

Figure 16 – 3 Phase Half Bridge and Driver IC 

 

The last three blocks of the schematic shown are simple blocks depicting a series 

of test points that will be placed on the board in Figure 17 below.  The purpose of these 

test points is to help with testing and debugging the final prototype.  The following block 

depicts a series of LEDs that will be used for indication of the signals being transmitted 

on the board, such as power, power FET gates, Hall sensors, and communications among 
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others.  The very last design block shown is the connectors that will transfer signals from 

this board to the BMS, peripheral boards and finally the motor. 

 

 

Figure 17 – Test Points and Signals 

 

 

Figure 18 – Signal Indication LEDs 

 

 

Figure 19 – Connector Circuits 

 

The next step taken after creating these schematics is to layout the individual parts 

onto a PCB to have printed.  The first revision of this board can be seen in Figure 20 
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below and depicts the PCB that will be created to control the bicycle.  The board itself is 

subject to change however it suffices as a good model for future board layouts. 

 

  

Figure 20 – First Revision of the Embedded System Board Layout 
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3.9.3 Level 3 Embedded System Software Theory of Operation [NMD] 

After the hardware has been simulated and schematics have been made the next step is to 

write the actual code that will control all the hardware shown above.  Seen below is a 

simplified version of pseudo code that will be implemented on the dsPIC.  The code 

running on the dsPIC will have similar functionality to the code running in MATLAB 

however it will also have to keep track of all sensor data and communicate frequently 

with other devices on the bike.  Another key difference will be how the sine and cosine of 

the motor angle will be calculated.  In MATLAB the sine and cosine are calculated 

directly using Taylor series expansion, while this method can give a very accurate value 

of these two functions it is far to computationally demanding to occur in real time.  

Therefore lookup tables will be implemented in software to help extrapolate values for 

these functions that are not as precise but done much more quickly.  All pseudo code can 

be seen below in Figure 21.   
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3.9.4 Level 3 Embedded System Pseudo Code [NMD] 

 
/* Pseudo code for motor controller 

* Created by Nick Darash for use by DT18 

* Cycle Assist 

*/ 

  

//////////////////////// 

//     Directives     // 

//////////////////////// 

#define Q1 

#define Q2 

#define Q3 

#define Q4 

#define Q5 

#define Q6 

  

enum {false,true}; 

enum {OFF,ON}; 

  

////////////////////// 

// Global Variables // 

////////////////////// 

int theta;           // Position of motor in radians 

int w;               // Speed of motor in radians per second 

int delta;           // Time since previous hall effect signal 

int time;            // Time since start of program 

int delta_A;         // Value of HALL A one step prior 

int delta_B;         // Value of HALL B one step prior 

int delta_C;         // Value of HALL C one step prior 

int Ia,Ib,Ic;        // Values of Phase A, B, and C currents 

   

void main(){ 

    int integral_Q; 

    int integral_D; 

    int Id,Iq;         // Direct and Quadrature current values 

    int U_q,U_d;       // Output after PI controller 

    int command;       // Value of torque command from user  

    oscSetup();        // Set up PIC to work at 40 MIPS 

  

    /* 

     * Set up interrupts for appropriate peripherals 

     */ 

    interruptSetup(); 
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    /* 

     * Set up UART peripheral for debugging purposes 

     */ 

    UARTSetup(baudrate); 

  

    /* 

     * Set up I2C bus for add on stuff later and to communicate 

     * with battery management system 

     */ 

    I2CSetup(baudrate); 

  

    /* 

     * Set up timers for switching and for communication purposes 

     */ 

    timerSetup(); 

  

    /* 

   * Set up out put compare module for Trapezoid control 

     */ 

    OCSetup(); 

    while(1){ 

        if(ADC done triggered a flag){ 

            update();   // Update all 3 phase current values 

            U_q = PI(&integral_Q, command, &Iq); 

            U_d = PI(&integral_D, command, &Id); 

        } 

        if() 

    } 

} 

   

//////////////////////// 

//       Timers       // 

//////////////////////// 

void timerSetup(){ 

    // Timer 1 Timer 2 will be used for switching and 

communication 

    // respectively Timer 3 will be used for ms_delay function 

and Timer 4 

    // will be used for us_delay function 

}  

/* 

* Timer 1 ISR main timer for switching 

* this timer will be used to switch gates of the power stage 

*/ 

void T1ISR(){ 
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    // Ideally set up for 20kHz switching frequency 

}  

/* 

* Timer 2 ISR will be used to initiate comms with other 

peripherals 

* ie. I2C communication for heart rate, display, and BMS 

*/ 

void T2ISR(){  

} 

 

///////////////////////// 

// External Interruprs // 

/////////////////////////  

/* 

* External interrupts will be used to read the 3 hall effect 

sensors 

*/ 

void int0ISR(){ 

    // Read rising and falling edge of Hall A 

}  

void int1ISR(){ 

    // Read rising and falling edge of Hall B 

}  

void int2ISR(){ 

    // Read rising and falling edge of Hall C 

}  

/////////////////// 

//      I2C      // 

/////////////////// 

void I2CSetup(int baudrate){ 

    // setup at 10020kHz 

    // master device 

    // 7-bit addressing 

}  

void I2CStart(){ 

    // send start condition 

}  

void I2Csend(unsigned char data){ 

    // send byte of data 

}  

unsigned char I2Creceive(){ 

    // return data from I2CRXREG 

}  

void I2CISR(){ 

    // set flag when I2CRXbuffer is full to pull all values 
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}  

  

////////////////// 

//     UART     // 

////////////////// 

void UARTSetup(int baudrate){ 

    // UART is used for debugging purposes only 

} 

void UARTsend(unsigned char data){  

} 

  

//////////////////// 

//      ADCs      // 

//////////////////// 

void ADCSetup(){ 

    // set up all four ADCs for 3 current sensors and for 

throttle input 

    // Should be enough 

} 

  

void ADCread(){ 

    // read all four ADCs at once 

} 

  

void ADCISR(){ 

    // interrupt when ADCs have finished sampling 

} 

   

//////////////////// 

//   PI Control   // 

//////////////////// 

int PI(int *integral, int command, int I){ 

    int error = command - I; 

    *integral = (*integral + error*(time since last calc)) 

    return((*integral << 9) + (error << 9)); 

} 

Figure 21 – Embedded System Pseudo Code 
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3.9.5 Level 3 Embedded System Simulation [NMD][ RKA] 

 

Motor Controller 

 

Motor control can be accomplished in many different ways depending on the 

needs of the motor and the type of motor being used.  When creating the circuit for a 

motor controller used to run an e-bike many variables had to be taken into account.  The 

purpose of the bike is to change the resistance felt by the user while riding to force the 

user into a specific training zone.  In order to accomplish this, the controller will work 

best when it is able to command torque from the motor instead of speed.  This way the 

bike can both assist, and resist, the user with a constant force.  While many different 

types of control exists for both speed and torque based control, only the two that were 

studied the most will be discussed. 

First Simulation 

Using Simulink, simulations representing the three-phase BLDC motor operation 

and control can be implemented. The first simulation can be seen below in Figure 22. 

This simulation utilizes multiple blocks from the Simscape Power Systems library which 

is a downloadable add-on to the Simulink program. The block labeled “Permanent 

Magnet Synchronous Machine” is used to model the three-phase synchronous BLDC 

motor. Trapezoidal mode is selected which means this machine will operate assuming the 

flux established by the permanent magnets on the rotor produces three (one per phase) 

trapezoidal back emf waveforms. Figure 23 below shows the trapezoidal back emf for a 

single phase (phase A) of the motor spinning at 5.3 rad/s or about 50rpm. The total 

amplitude of the signal is 8.35V, and when rotating the motor in the lab at a rate of about 
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50rpm the total amplitude of the signal was 8.20V – a small enough difference to assume 

the back emf model is reliable.  

 

Figure 22 – First BLDC Motor Simulation in Simulink 

 

 

Figure 23 – Trapezoidal Back-EMF Waveform at 50 RPM 

 

Both the electrical and mechanical parts of the machine are governed by second-

order state-space equations given in the rotor reference frame (q and d axis) and 
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quantities are referred to the stator for simplicity. Looking under the blocks mask two 

other blocks can be seen; one corresponding to mechanical rotation and the other 

corresponding to the electrical operation. The second-order state-space equations and a 

brief description of each variable along with the electrical and mechanical block models 

are shown in Figure 24. There are 12 different parameters represented at the output of the 

motor block: each phase’s current (ia, ib, and ic [A]), each phase’s trapezoidal back emf 

(ea, eb, and ec [V]), electromagnetic Torque (Te [N*m]), the three hall effect sensors (ha, 

hb, and hc [unitless]), the corresponding rotor angle (θ[rad]) and angular speed (wm 

[rad/s]).  
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Figure 24 – Electrical and Mechanical Model and Their Governing Equations 

 

The motor also takes a mechanical input - in this case it is mechanical speed 

applied to the motor shaft in rad/s and is applied using a stepped input starting from 0 and 

stepping up to a final value. Now that the basic operation of this block is understood 

selection of the motor parameters to reflect the actual motor are selected to create an 

accurate model. These parameter values include the per phase stator resistance and 

inductance, the machine constant or voltage constant defined as the line-to-line voltage 

per 1000rpm, the back emf flat area (left at the default 120 degrees), the number of pole 

pairs of the rotor magnets, and the initial conditions of the angular rotation, position, and 

phase currents which are all set to 0. The motor was provided by the university and a data 

sheet cannot be found for this motor, so measurements of the stator phase inductance, 

resistance, and voltage constant were made using an LCR meter and volt meter.  

The number of pole pairs was determined by observing a single hall effect sensor 

on the oscilloscope and mechanically rotating the motor one rotation. The hall sensor 

pulsed 12 times during this single rotation, so the motor has 12 pole pairs. To determine 

the voltage constant the peak line-to-line voltage is monitored as the motor is spun one 

mechanical rotation while being timed. Converting to krpm and dividing the peak line-to-
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line voltage by this value gives the voltage constant. All motor parameters used can be 

seen below in Figure 25. Setting the sample time parameter to -1 allows the block to 

inherit the sample time specified in the powergui block (5µs in this application). The 

powergui block must be implemented in any Simulink model that uses Simscape Power 

Systems blocks as it stores the equivalent Simulink circuits that represent the state-space 

equations. 

 

Figure 25 – Motor Parameters 

 

Each of the three phases of the motor are fed by a half bridge of MOSFETs – one 

connected to the high voltage rail and one connected to the low voltage rail (6 MOSFETs 

in total). Each phase will either provide current to the motor or return current from the 

motor, dependent upon whether the high or low MOSFET is conducting, respectfully. 

Another Simscape Power System block is utilized to simulate the operation of this three 

phase converter and is labeled above in Figure 22 as “Universal Bridge”. As shown, we 

connect a 48V (provided battery voltage) source across the half bridge circuit. This block 

requires the following parameter inputs: Number of bridge arms (3), snubber resistance 

and capacitance, power electronic device (MOSFET/Diodes), and the internal resistance 
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of the power electronic devices. The value of internal resistance is taken directly from the 

data sheet for the power MOSFET devices (4.5 mΩ). The snubber resistance and 

capacitance are connected in series and then connected in parallel to each MOSFET gate. 

The snubber capacitor is the same as the bootstrap capacitor which was calculated to be 

around 10uF. The chosen values for all input parameters of this block are shown below in 

Figure 26. The block also takes 6 separate pulse values. The duration of these pulses will 

determine the current flowing through each phase of the half bridge to the motor. 

 

Figure 26 – Universal Bridge Parameters 

 

To determine the duty cycle for the pulse widths sent to each gate we use a 

Simulink block named “BLDC Current Controller With PWM Generation” which can be 

seen in Figure 22 above. This block takes a reference current, the maximum value of the 

phase current, a reset, three hall sensors from the motor, and a direction. The reset input 

is left alone as it is not needed here, and the direction input is sent a constant value of 1 

which denotes clockwise rotation. The block uses an internal PI controller and 

summation blocks to calculate the error between the reference current and actual phase 



   
 

68 
 

current. Another block uses the hall effect sensors and direction input to provide the 

commutation logic for switching. Using the outputs of these two blocks, a pulse width 

modulation block implements the actual duty cycle and sends the pulses to the respective 

gate. The equation used to determine the duty cycle with short explanation of variables, 

the transfer function used by the PI controller (the Zero-cancellation block) with short 

explanation of variables, and the model used to implement its operation is shown below 

in Figure 27. The calculated duty cycle is multiplied by the commutation signals to give 

three output values. Although for certain implementations, only three signals are needed 

as the current is regulated by determining the duty cycle for only the high or low side 

MOSFETs, it is more accurate for this particular model (and in general) to control both 

high and low side MOSFETs. The block shown in the model below in Figure 27 labeled 

“PWM” takes the three signals representing three duty cycles and creates 6 separate 

output duty cycles which are then used to control each MOSFET separately.  
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Figure 27 – Model for Current Controller with PWM and its Governing Equations 

 

Trapezoidal Control 

The first type of motor control that was considered is a form of speed control 

known as Trapezoidal Control.  This form of control algorithm utilizes PWM signals with 

a variable duty cycle that sets the voltage of all three phases.  These PWM signals create 

a 3-phase trapezoid shaped wave form as the motor revolves.  The duty cycle sets the 

voltage of the phases, but deciding which phases are supposed to be switching to high 

voltage and which phases switch to ground is determined by the internal Hall effect 

sensors of the motor.  The controller utilizes three half bridges to switch each phase high 

or low.  This design can be seen in Figure 28 below where q1 through q6 are the inputs to 

each gate of each power FET.  PHASE_A, PHASE_B, and PHASE_C output the power 

to the permanent magnet machine.   
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Figure 28 – 3 Half Bridges 

 

The depiction of the three half bridges in Figure 28 show how each phase is either 

connected to the positive terminal of the battery or ground.  When controlled by a 

trapezoid wave we get wave forms similar to those in Figure 29 and 30.  Figure 29 shows 

the overall commutation of each phase while Figure 30 shows a close up of each phase 

and a trapezoid wave with a 60 percent duty cycle. 

 

 

Figure 29 – 3 Phase Commutation 
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Figure 30 – 60 Percent Duty Cycle 

 

These waveforms were simulated using Simulink with the Simscape Power Systems add 

on which is able to simulate a BLDC motor as described previously.  In Figure 29  the 

blue and yellow waveforms represent gates q1 and q2, which switches between pulling 

phase A high or low.   Similarly phase B is represented by the red and green waveforms 

and phase C is represented by the teal and purple waveforms.  Figure 30 takes a closer 

look at these waveforms to show that 60 percent of the time they are either pulled high or 

low and 40 percent of the time they are left floating.  This allows the voltage across each 

phase to be adjusted by a program and command a certain speed from the motor. 
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Figure 31 contains the MATLAB code that is responsible for setting these inputs to the 6 

gates.  The MATLAB function takes the inputs of each Hall Effect sensor, and each 

phase current from the motor.   

 

function [X,Y,Z]=control(Ia,Ib,Ic,HALL_A,HALL_B,HALL_C,command) 

global q1  

global q2  

global q3  

global q4  

global q5  

global q6 

global counter 

  

counter = counter + 1; 

if counter <= command 

    if HALL_A && ~HALL_B && HALL_C 

        q1 = 1; 

        q2 = 0; 

        q3 = 0; 

        q4 = 1; 

        q5 = 1; 

        q6 = 0; 

  

    elseif HALL_A && ~HALL_B && ~HALL_C 

        q1 = 1; 

        q2 = 0; 

        q3 = 0; 

        q4 = 1; 

        q5 = 0; 

        q6 = 1; 

  

    elseif HALL_A && HALL_B && ~HALL_C 

        q1 = 1; 

        q2 = 0; 

        q3 = 1; 

        q4 = 0; 

        q5 = 0; 

        q6 = 1; 

  

    elseif ~HALL_A && HALL_B && ~HALL_C 

        q1 = 0; 

        q2 = 1; 
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        q3 = 1; 

        q4 = 0; 

        q5 = 0; 

        q6 = 1; 

  

    elseif ~HALL_A && HALL_B && HALL_C 

        q1 = 0; 

        q2 = 1; 

        q3 = 1; 

        q4 = 0; 

        q5 = 1; 

        q6 = 0;  

  

    elseif ~HALL_A && ~HALL_B && HALL_C 

        q1 = 0; 

        q2 = 1; 

        q3 = 0; 

        q4 = 1; 

        q5 = 1; 

        q6 = 0; 

    end 

else 

    q1 = 0; 

    q2 = 0; 

    q3 = 0; 

    q4 = 0; 

    q5 = 0; 

    q6 = 0; 

end 

if counter >= 100 

    counter = 0; 

end 

Figure 31 – Trapezoidal Control Matlab Code 

 

The MATLAB code above takes in the Hall effect sensor signals and changes the 

gates of all six power FETs.  Each change in the gates represents the direction the force is 

applied to the motor and if done correctly allows the motor to commutate appropriately.  

The program also keeps track of counters that help to implement the duty cycle of the 

PWM signals which control the speed. 
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While this form of control works and is relatively easy to implement we can see from 

Figure 32 that the current delivered to the motor is quite messy and shows many 

harmonics which would cause the ride to be unsteady.  In addition to this there is no way 

to control the amount of torque being generated by the motor.   

 

Figure 32 – Trapezoidal Control 3 Phase Currents 

Now to help get an overview of the entire simulation there is Figure 33 that shows the 

entirety of the model.  The block on the left that looks like a MOSFET represents three 

half bridges that control the motor.  This block has three inputs, one positive and one 

negative terminal input for the battery voltage, and then one bus input for the six gates of 

the FETs.  The block also has three outputs; one for phase A, phase B, and phase C.  

These outputs then go to the input of the motor block along with an external torque signal 

that represents another force being applied to the motor externally.  The output of the 

motor is a bus connection that contains many signals such as: phase currents, back EMF 

voltages, speed, position, and Hall Effect sensors.  Then the big block where all the 
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signals are going into is a MATLAB function block that contains the code seen in Figure 

31.  The powergui block sets parameters for the simulation such as the continuity of the 

simulation and the time step.  The remaining blocks in the simulation are either scopes to 

graph the values of the signals or memory blocks that contain global variables.   

 

 

 

Figure 33 – Entire Simulink Model for Trapezoidal Control 

 

Field Oriented Control 

A more appropriate control scheme is what is referred to as Field Oriented 

Control.  Field Oriented Control is a way to control the current in an electric machine 

rather than the voltage.  This directly correlates to controlling speed or controlling torque, 

as torque is proportional to current and voltage is proportional to speed.  However one 

drawback of FOC is its complexity, while Trapezoidal is relatively easy to implement 

FOC is quite the opposite.  Requiring that the currents be monitored along with the 
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precise position of the rotor arm.  With these values in hand a microcontroller is then 

required to do very challenging calculations to control the current.   

The Simulink model for this controller is more complex than the model for the 

Trapezoidal Controller, it employs more global variables and requires more in depth 

calculations.  It also uses two separate PI controllers to regulate current.  The current 

pushed to the motor using the this Method of control is purely sinusoidal, and varies 

continuously when contrasted with the current in the Trapezoidal control.  3-Phase 

sinusoidal current allows for a much smoother ride and direct control of the torque.  In 

addition it also helps with regenerative breaking which is vital to the project to act as 

resistance to the rider while also increasing the length of the workout. 

 

Figure 34 – Entire Simulink Model for Field Oriented Control 

 

Figure 34 above shows the Simulink model for Field Oriented Control for the 

motor block.  The model looks very similar to the Trapezoid model, and in many ways is, 

but the code that runs the main control block is very different.  Instead of looking at the 
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Hall effect sensors and a command input to change the duty cycle the, it reads the 

currents from the motor using current sensors and along with the Hall effect sensors.  

This control function first calculates the position of the rotor arm using the Hall effect 

sensors and reads the current in each phase of the motor.  Using this information it runs a 

Clarke transformation which changes 3-Phase currents into 2-Phase currents while not 

changing the amplitude.  These two phases, assuming a balanced system, will always be 

90 degrees out of phase with each other, hence one can be represented as a sine wave 

while the other can be represented as a cosine wave.  After this is complete the Park 

transformation is used to transform from a stationary reference frame to a rotating 

reference frame, that rotates in sync with the motor.  This is where the angle of the rotor 

arm comes into play, since the value of this angle is known the sine and cosine currents 

now appear to be DC currents that can be much more easily controlled and transformed 

back to the useful 3-Phase currents needed by the motor.   

 

 

function [Id,Iq,A,B,C] = 

control(Ia,Ib,Ic,HALL_A,HALL_B,HALL_C,command_Q,command_D) 

  

% most of the global variables that are used throughout the 

program are 

% created and listed here 

global counter     % Counter for duty cycle 

global delta       % Time since previous HALL sensor 

global step        % Sample period 

global delta_A     % Value of HALL A one step prior 

global delta_B     % Value of HALL B one step prior 

global delta_C     % Value of HALL C one step prior 

global w           % Speed in radians per second 

global theta       % Angle in radians 

global timer       % Time since start of program 

global integral_Q  % Value of discrete integral for Q current 

global integral_D  % Value of discrete integral for D current 
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A = 0; % Sets initial value for phase A voltage 

B = 0; % Sets initial value for phase B voltage 

C = 0; % Sets initial value for phase C voltage 

  

% Using current readings from the current sensors we calculate 

the alpha 

% and beta currents of the motor 

[I_alpha,I_beta] = clarke(Ia,Ib,Ic); 

  

% Continuously tracking the amount of time since the previous 

Hall effecto 

% sensor reading to keep track of speed and position of motor 

delta = delta + step;  

  

% Continuously keeps track of the time passed since the beginning 

of the 

% program to change when we switch from trapezpoidal to FOC 

timer = timer + step;  

  

if timer >= 0.0001 % Problem in function fix later 

    read_pos(HALL_A,HALL_B,HALL_C); % Keeps track of the position 

of the motor 

end 

  

  

delta_A = HALL_A; % Saves previous state of Hall effect sensor A 

delta_B = HALL_B; % Saves previous state of Hall effect sensor B 

delta_C = HALL_C; % Saves previous state of Hall effect sensor C 

  

theta = theta + w*step; % Integrating to keep track of angle 

  

[Id,Iq] = parke(I_alpha,I_beta,4*theta); % Calculate direct and 

quadrature currents 

  

counter = counter + 1; % Keeping track of duty cycle 

  

% Runs trapezoidal control for .1 seconds then flips to FOC 

if timer < .1 

    trapezoid(command_Q,HALL_A,HALL_B,HALL_C); 

  

% Flipping Field Oriented Control 

else 

    % PI control for quadrature current 

    error_Q = ((command_Q/100)*30) - Iq; 

    integral_Q = integral_Q + (error_Q*step); 
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    u_Q = 1000*integral_Q + 1000*error_Q; 

     

    % PI control for direct current 

    error_D = (command_D - Id); 

    integral_D = integral_D + (error_D*step); 

    u_D = 1000*integral_D + 1000*error_D; 

     

    % Calculate inverse parke transformation for PI control 

output 

    [I_alpha,I_beta] = inverse_parke(u_D,u_Q,4*theta); 

     

    % Calculate inverse clarke transformation for PI control 

output 

    [A,B,C] = inverse_clarke(I_alpha,I_beta); 

    % Raises or lowers voltages based on coontrol signal 

    regulate(A,B,C,Ia,Ib,Ic);  

end 

     

end 

Figure 35 – Field Oriented Control Matlab Code 

 

The code in Figure 35 above contains the main function that the control block 

runs during every iteration of the simulation.  First all global variables are specified 

which are fairly well explained in the comments but will also be touched on as they are 

used in the function.  The first main function that is called is the Clarke transform 

function that requires all three phase currents that are read from the current sensors and 

returns and alpha current and a beta current which will always be 90 degrees out of 

phase.  Next the delta and timer variables are incremented which is just housekeeping for 

the function.  Next the read_pos function is called which uses the values given by the 

Hall effect sensors to precisely keep track of the motor position and speed.  Using the 

motor position calculated from this function the Park transformation is started which is 

moving the reference from a stationary position to a rotating one.  The three phase 

currents will be shown later however the alpha and beta currents are shown below in 
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Figure 36 and then the currents after the Park transformation are located in Figure 37. 

These currents are named the Direct current and the Quadrature current and will referred 

to as Id current and Iq from now on.  

 

Figure 36 – Alpha and Beta Currents 

 

 

 

 

Figure 37 – Direct and Quadrature Currents 
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Id and Iq shown in Figure 37 are the currents that will be commanded to the motor 

where Iq, in yellow, is 90 degrees out of phase with the motor and Id, in blue is in phase 

with the motor.  So commanding Iq to a certain value while commanding Id to zero 

provides the most efficient torque possible to the motor.  However it is sometimes 

necessary to command a negative Id to help slow down the motor to prevent the back emf 

from getting too large.  This method is referred to as flux weakening and helps to get 

more stable control to the motor.   

After Id and Iq are calculated from the Clarke and Park transforms, two separate 

Proportional Integral controllers are used to command each current separately.  The PI 

controllers are implemented directly in the main function with a few simple lines of code.  

First the error is found by subtracting the actual value of current from the commanded 

value.  Also, a simple discrete integrator is used to keep track of the integral of the error.  

Then the integral and the error are multiplied by large gain values of 1000 and 500 

respectively and added to give the output of the controller.  One of these controllers is 

used to control the current Id and one is used to control the current Iq.  Using these to 

values and the position of the motor in the inverse Park transform, control currents 

I_alpha and I_beta are created.  Then the inverse Clarke transform creates  control 

currents Ia, Ib, and Ic for each phase of the motor.  In Figure 38 the three currents can be 

seen which resemble a near perfect 3-Phase sine wave. 
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Figure 38 – Field Oriented Control 3 Phase Currents 

 

The main function calls upon many different functions to accomplish this method 

of control.  Below a few of the more important functions are discussed in detail while the 

code for all is given.  The first function is called clarke which can be seen below and is 

passed the three phase currents and returns alpha and beta currents.  As discussed 

previously the Clarke transform maintains the amplitude of the currents but transforms 

them to be two currents instead of three that are 90 degrees out of phase.  The MATLAB 

function simply takes the phase A current as the alpha current and the beta current and 

the difference between phase B and phase C currents multiplied by a constant.  The 

Clarke transformation implements the Equation X and Equation Y below to turn A phase, 

B phase, and C phase currents into alpha and beta currents. 

alpha = a 

Equation 1 

 

beta = (1/sqrt(3))*(b-c) 

Equation 2 

 

% This function takes in a/b/c voltages/currents 



   
 

83 
 

% and computes the alpha/beta voltages/currents 

function [alpha,beta] = clarke(a,b,c) 

    alpha = a; 

    beta = (1/(sqrt(3))*(b-c)); 

End 

Figure 39 – Clarke Transform Function 

 

Next using these newly found alpha and beta currents along with the position of 

the motor calculated using the function read_pos, discussed later, the Park transform 

creates two DC currents Id and Iq that are much more easily controlled via PI controllers.  

The Park transformation implements the Equation X1 and Equation Y1 below to turn 

alpha and beta currents into direct quadrature currents. 

 

d = cos(theta)*alpha + sin(theta)*beta 

Equation 3 

 

q = cos(theta)*beta - sin(theta)*alpha 

Equation 4 

 

% This function takes in alpha/beta voltages/currents and the 

angle of the 

% motor computes the direct/quadrature voltages/currents 

function [d,q] = park(alpha,beta,theta) 

    d = cos(theta)*alpha + sin(theta)*beta; 

    q = cos(theta)*beta - sin(theta)*alpha; 

End 

Figure 40 – Park Transform Function 

 

The best way to understand how the read_pos function is to look at the code and 

try to follow along with how it adds or subtracts position based on Hall effect sensor 

inputs.  Table 19 below shows the order of the Hall effect sensors, rising and falling 

edges, and whether or not the motor is moving backward or forward.  That along with the 

time passed since the previous change in Hall effect sensor readings the speed of the 



   
 

84 
 

motor can be calculated and with it the position.  The Arrow next to the letter represents 

which Hall effect sensor is changing and whether it is a rising edge of the Hall effect 

signal or the falling edge.  For example Event 1 is A↑ and Event 2 is B↓ meaning that the 

rising edge of Hall effect sensor a occurs followed a falling edge of Hall effect sensor B.  

Then the minus sign indicates if this series of sensor inputs occurs the motor is moving in 

reverse. 

 

Event 

1 

Event 

2 

Motor 

Directio

n 

Even

t1 

Event 

2 

Motor 

Directio

n 

Even

t 1 

Event 

2 

Motor 

Directio

n 

A↑ B↑  B↑ A↑  C↑ A↑  

A↑ B↓ - B↑ A↓ + C↑ A↓ - 

A↑ C↑  B↑ C↑  C↑ B↑  

A↑ C↓ + B↑ C↓ - C↑ B↓ + 

A↓ B↑ - B↓ A↑ + C↓ A↑ - 

A↓ B↓  B↓ A↓  C↓ A↓  

A↓ C↑ + B↓ C↑ - C↓ B↑ + 

A↓ C↓  B↓ C↓  C↓ B↓  

 

Table 19 – Order of the Hall Effect Sensors 
 

 

% This function takes the three Hall effect sensor outputs 

% along with the amount of time that has passed and integrates to 

keep 

% track of the position of the motor for use in the parke 

transformations 

% and inverse parke transformation 

function read_pos(HALL_A,HALL_B,HALL_C) 

    global prev_HALL 

    global delta_A 

    global delta_B 

    global delta_C 

    global delta  

    global w 

     

    if((HALL_A-delta_A ~= 0 || HALL_B-delta_B ~= 0 || HALL_C-

delta_C ~= 0)) 

        if HALL_A-delta_A == -1 
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            if prev_HALL == 3 

                w = -1*((2*pi)/24)/delta; 

            elseif prev_HALL == 2 

                w = ((2*pi)/24)/delta; 

            else 

                w = 0; 

            end 

            prev_HALL = 1; 

        elseif HALL_A-delta_A == 1 

            if prev_HALL == 3 

                w = -1*((2*pi)/24)/delta; 

            elseif prev_HALL == 2 

                w = ((2*pi)/24)/delta; 

            else 

                w = 0; 

            end 

            prev_HALL = 1; 

        elseif HALL_B-delta_B == -1 

            if prev_HALL == 1 

                w = -1*((2*pi)/24)/delta; 

            elseif prev_HALL == 3 

                w = ((2*pi)/24)/delta; 

            else 

                w = 0; 

            end 

            prev_HALL = 2; 

        elseif HALL_B-delta_B == 1 

            if prev_HALL == 1 

                w = -1*((2*pi)/24)/delta; 

            elseif prev_HALL == 3 

                w = ((2*pi)/24)/delta; 

            else 

                w = 0; 

            end 

            prev_HALL = 2; 

        elseif HALL_C-delta_C == -1 

            if prev_HALL == 2 

                w = -1*((2*pi)/24)/delta; 

            elseif prev_HALL == 1 

                w = ((2*pi)/24)/delta; 

            else 

                w = 0; 

            end 

            prev_HALL = 3; 

        elseif HALL_C-delta_C == 1 
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            if prev_HALL == 1 

                w = ((2*pi)/24)/delta; 

            elseif prev_HALL == 2 

                w = -1*((2*pi)/24)/delta; 

            else 

                w = 0; 

            end 

            prev_HALL = 3; 

        end 

        delta = 0; 

    end 

end 

 

Figure 41 – Matlab Function to Read Motor Speed and Position 

 

Following these functions is the functions to transform the two DC currents Id and 

Iq back into I_alpha and I_beta.  These sinusoidal currents can then be transformed back 

into 3-phase currents that will provide torque to the motor.  So, in Figure 42 and Figure 

43 below the MATLAB code responsible for doing these transformations can be seen. 

 

% This function takes in direct/gaudrature voltages/currents 

% and the angle of the motor and performs the reverse parke 

transformation 

% giving alpha/beta voltages/currents 

function [alpha,beta] = inverse_parke(d,q,theta) 

    alpha = d*cos(theta) - q*sin(theta); 

    beta = q*cos(theta) + d*sin(theta); 

end 

 

Figure 42 – Matlab Function for Inverse Park Transformation 

 

 

% This function takes in alpha/beta voltages/currents and  

% performs the reverse clarke transformation and returns a/b/c 

% voltages/currents 

function [a,b,c] = inverse_clarke(alpha,beta) 

    a = alpha; 

    b = (1/2)*((-alpha) + (sqrt(3)*beta)); 

    c = (1/2)*((-alpha) - (sqrt(3)*beta)); 

end 
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Figure 43 – Matlab Function for Inverse Clarke Transform 

 

Finally the last function that is vital to the Field Oriented Control model is the 

regulate function.  This function takes in the actual currents read from the three phases of 

the motor and the newly found control signals from the PI controllers and tries to force 

the control currents through each phase.  The method for doing this is quite simple, if the 

current through one phase is lower than the control current the top FET for that phase is 

turned on and the bottom phase is turned off.  Otherwise the bottom FET is turned on and 

the top FET is turned off. 

 

% regulate is a function that comapares the values of the  

% voltages on the line and tries to raise them if they are below 

% the value that the PI controller is asking for 

% or lowers them if the actual value is less than what the PI 

controller 

% asks for 

function regulate(command_A,command_B,command_C,A,B,C) 

    global q1 

    global q2 

    global q3 

    global q4 

    global q5 

    global q6 

     

    if A < command_A 

        q1 = 1; 

        q2 = 0; 

    else 

        q1 = 0; 

        q2 = 1; 

    end 

    if B < command_B 

        q3 = 1; 

        q4 = 0; 

    else 

        q3 = 0; 

        q4 = 1; 
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    end 

    if C < command_C 

        q5 = 1; 

        q6 = 0; 

    else 

        q5 = 0; 

        q6 = 1; 

    end 

end  

 

Figure 44 – Regulate Function that Drives Phase Currents 
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3.9.6 Level 3 Embedded System Calculations [RKA] 
 

A bootstrap capacitor is needed for each MOSFET that is connected to the upper rail and 

raises the gate bias of the top MOSFET so that it is always at a higher value than the 

phase node (or the middle point in between the upper and lower MOSFETs on the 

bridge). When the low side MOSFET is on, the IC driving circuit will charge this 

capacitor up to roughly 12V (when low side MOSFET conducts, a path to the ground 

node of phase A is completed to allow for this charging). When the low side MOSFET is 

turned off, almost all the current provided at the gate of the high side MOSFET will be 

sourced from the bootstrap capacitor. It is important to size this capacitor correctly 

because it needs to be able to charge up to a sufficient value to bias the gate correctly but 

also must discharge quickly to turn the gate on. An even more critical issue is that the IC 

driver circuit has undervoltage lockout (a protective measure) so the ripple caused by the 

charging/discharging of this capacitor must be limited to make sure this protective 

measure is not triggered. The following equation is the starting point for calculation: 

 

Where QCB is the total charge that needs delivered to bootstrap capacitor at maximum 

duty cycle, QG is the total gate charge needed to turn on the MOSFET, D is the duty 

cycle, and IB is the VDDA IC driver circuit pin biasing current. From the datasheet QG = 

88nC, assuming a max duty cycle of 90%, tcyc = 50us, and IB = 3mA. This gives us a 

value of QCB = 223nC. Next, we use the following equation: 

 

Where CB is the bootstrap capacitor and ΔVCB is the maximum allowable ripple voltage 

which we choose To be 5% of the VDD value, 12V. This gives us a value of CB ≥ 0.5uF. 



   
 

90 
 

After talking to the faculty advisor we choose to use a 10uF capacitor which is 

sufficiently larger than the calculated 0.5uF. 

We also place a resistor in series with the capacitor which forms an RC circuit. 

The time constant of this circuit is calculated using: 

 

With a resistance value of 10Ω, we have τ = 100us. This is the time it will take to 

charge the capacitor and in this application is sufficient considering the maximum 

rotations per minute and corresponding off time for a single MOSFET. 
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3.9.7 Level 3 Embedded System Parts List [TRM][NMD] 

 

Qty  Value  Package  Parts  Description  

3 2 R0805 R1, R2, R3 Resistors 

3 3 R0805 R4, R6, R8 Resistors 

3 10 R0805 R5, R7, R9 Resistors 

2 120 R0805 R13, R24 Resistors 

5 220 R0805 R15, R17, R18, 

R19, R20 

Resistors 

2 470 R0805 R11, R14 Resistors 

4 .1u C0805 C10, C11, C12, 

C15 

Capacitors 

1 8MHz HC49UP XT1 Oscillator 

3 100u CAP_ECEV_G C5, C7, C16 Capacitors 

9 10k R0805 R10, R12, R16, 

R21, R22, R23, 

R26, R27, R28 

Resistors 

3 10n C0805 C6, C18, C21 Capacitors 

4 10u C0805 C1, C2, C3, C9 Capacitors 

2 18p C0805 C13, C14 Capacitors 

5 22-27-2031-03 6410-03 J1, J2, J3, J4, 

J5 

Connectors 

3 3.3u C0805 C17, C19, C20 Capacitors 

1 330u CAP_ECEV_G C8 Capacitors 

1 33n C0805 C4 Capacitors 

1 4.7k R0805 R25 Resistors 

3 ACS770 5CB U14, U15, U16   

1 Blue 0805 LED3 LEDs 

3 Green 0805 LED1, LED2, 

LED8 

LEDs 

6 IPP045N10N3

GXKSA1 

 

TO220 FET1, FET2, 

FET3, FET4, 

FET5, FET6 

MOSFETs 

1 MIC4607 TSSOP28 U1   

1 MOLEX_4284

0-2224 

MOLEX_4282

0-2224 

X1 Connectors 

4 RED 0805 LED4, LED5, 

LED6, LED7 

LEDs 
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6 RK7002B SOT23 U$1, U$2, 

U$3, U$4, 

U$5, U$6 

  

3 SRH05S05 SIP3 U3, U4, U7   

1 Terminal 3_TERMINAL U$7   
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3.10.1 Motor Overview [TRM][RKA][ELW] 

Seeing as though this project is supposed to adjust the torque of a motor to try and 

keep a person’s heartrate constant, it is important to spec out an appropriately sized 

motor. The following showcases the calculations that were used to size the motor:  

Definition of Terms: 

1. Fh = Normal force on a hill in Lbs 

2. Ff = Force of friction in Lbs 

3. Wtot = Total weight in Lbs 

4. ϴs = Angle of slope in degrees 

5. Kf = Coefficient of static friction 

6. Ftot = Total force in Lbs 

7. Ttot = Total torque in Lb-in 

8. Wr = Wheel Radius in Feet 

9. Mp = Motor Power in Kilowatts 

10. Srpm = Speed in RPM 

11. Smph = Speed in MPH 

12. Battnum = Number of batteries 

13. BattVoltage = Nominal battery voltage in volts 

14. BattAmpacity = Battery ampacity in amp-hours 

15. Motorvoltage = Motor voltage in volts 

16. BattType = Type Of Battery Used 
  

Assumptions: 

1. Wtot = 235.90 Lbs  

2. ϴs = 6° 

3. Kf = 0.004 

4. Wr = 1 ft 

5. Smph = 7.5 mph 

6. Motorvoltage = 24 V 

7. Ride Duration = 1 hour 

8. BattType = Lithium Ions 

a. BattVoltage = 3.7 V 

b. BattAmpacity = 2500 Ah 
 

Equations: 

1. Ff  = WTot * Cos(Θs) * Kf  

2. Fh  = Wtot * Sin(Θs) 

3. FTot = Fh + Ff 

4. TTot = FTot * 12 * Wr 

5. MP  = ((TTot * Srpm) / 63025) * 0.75 

6. Srpm = ((Smph/60)*5280) / (2 * PI * Wr) 

7. BattType = Li-Ion Batteries 

 



   
 

94 
 

Calculations 

1. Srpm = ((7.5/60)*5280) / (2 * PI * Wr) = 105 

2. Ff = 235.90 * Cos(6*PI/180) * 0.004 = 0.938 
3. Fh = 235.9 * Sin(6*PI/180) = 24.658 

4. FTot = 24.658 + 0.938 = 25.6 

5. TTot = 25.6 * 12 * 1 = 307.16 

6. MP = ((307.16 * Srpm) / 63025 ) * 0.75 = 0.384 
 

Following the above calculations it can be seen that, at a minimum, a 384W motor 

capable of delivering 307 lb-in of torque is needed to drive the expected load (235.9 lbs) 

up a 6 degree incline. After realizing this, a motor that the university already had was 

found and the specs for it more that met the above requirements. This motor is a Phoenix 

Racer II BLDC hub motor, capable of handling more than 3000W of power with more 

than 1000 lb-in of torque. Because the motor is a lot larger than necessary for this 

application, it will never have to be run at its maximum capacity. This ensures that this 

project will never over duty the motor and cause it to fail. 

 

Sensing Motor Position: 

To adequately derive the position of the motor at any time “t”, Hall Effect sensors that 

are placed inside of the motor are constantly being measured. Hall effect sensors work 

based on the principles of magnetic fields. As a permanent magnets move pass the 

sensors, a voltage is induced across the sensors which can then be measured. By knowing 

what sensors have a voltage induced on them at any given time, the position of the motor 

can be derived. A graph of the outputs of the Hall Effect sensors can be seen below: 
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Figure 45 – Hall Effect Sensors’ Outputs 

Motor Datasheet: 

After calculating the values that were required from a motor to successfully complete this 

project, the motor that the university had was analyzed. In order to analyze the motor, the 

datasheet from the manufacturing company was acquired. By acquiring this datasheet 

from the manufacturer, less time was needed to be spent analyzing the motor and there 

were less inaccuracies in the measurements. Below is the datasheet that was supplied 

from the motor manufacturer.  



   
 

96 
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Figure 46 – Phoenix Racer II Datasheet 

 

3.11.1 Heart Rate Sensor Overview [RKA][ELW] 

The user will be wearing a heart rate sensor that will represent a heartbeat with an 

electrical pulse. This pulsed signal will be transmitted wirelessly over Bluetooth to the 

embedded system. Integrating these pulses over time will allow us to calculate beats per 

minute. Communication will be done with a Bluetooth module hooked up to a DsPIC-33. 

The heart rate sensor is powered by coin cell battery. 
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3.12.1 Wiring Overview [TRM] 

This project has multiple subsystem, that all have to interact in order to work reliably. In 

order to ensure this happens, multiple wires and buses will need to be used to 

interconnect the system. Below is a diagram showcasing the wiring of this system: 

 

Figure 47 – Wiring Diagram 
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4.  Parts List [TRM][NMD][RKA][ELW] 

 

Qty Value Package Parts Total Price 

1 TACTILE-SWITCH TACTILE-SWITCH S1 $0.33 

17 1k R0805 

R38, R39, R40, 

R41, R42, R43, 

R44, R45, R46, 

R47, R48, R49, 

R50, R57, R63, 

R73, R74 

$1.70 

8 1uF C0805 

C16, C17, C18, 

C19, C22, C23, 

C25, C26 

$1.60 

1 SSM3J328RLFTR-NO SOT23-3 Q13 $0.52 

12 3.3k R0805 

R4, R6, R9, 

R12, R15, R18, 

R21, R24, R27, 

R30, R33, R36 

$1.20 

1 3.3uF C0805 C15 $0.20 

1 8MHz HC49UP XT1 $0.33 

12 10k R0805 

R51, R52, R53, 

R54, R55, R60, 

R61, R64, R66, 

R68, R70, R72 

$1.20 

1 10n C0805 C20 $0.20 

12 10nF C0805 

C1, C2, C3, 

C4, C5, C6, 

C7, C8, C9, 

C10, C11, C12 

$2.40 

2 20k R0805 R65, R69 $0.20 

12 33 R0805 

R3, R7, R10, 

R13, R16, R19, 

R22, R25, R28, 

R31, R34, R37 

$1.20 

16 100 R0805 

R1, R2, R5, 

R8, R11, R14, 

R17, R20, R23, 

R26, R29, R32, 

R35, R56, R67, 

R71 

$1.60 

1 100n C0805 C21 $0.20 

1 100nF C0805 C13 $0.20 

1 100uF C0805 C24 $0.20 
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1 B59707A0120A062 1210 F2 $1.10 

2 BMS3004 TO218V U$1, U$2 $8.34 

12 DMP2305U SOT-23 

Q1, Q2, Q3, 

Q4, Q5, Q6, 

Q7, Q8, Q9, 

Q10, Q11, Q12 

$6.24 

2 FK3306010L SSSMINI3-F2-B U2, U6 $0.86 

1 FTDI_Header 1X05 J1 $0.00 

14 Green LED-0603 

D1, D2, D3, 

D4, D5, D6, 

D7, D8, D9, 

D10, D11, 

D12, D14, D15 

$4.34 

1 ICSP Header 1X05 J2 $0.00 

5 LTC6804 SSOP48 U1 $95.35 

1 MLX91210 SOIC-8 U4 $3.91 

2 MOLEX_42840-2224 MOLEX_42820-2224 X2, X4 $5.00 

2 MOLEX_105314-1114 
MOLEX_105314-

1114 
X1, X5 $5.00 

1 
PIC16F1789-

I/PTTQFP44_MC-L 
TQFP44_MC-L U7 $2.38 

2 RED LED-0603 D13, D16 $0.62 

1 SRH05S05 SIP3 U5 $8.00 

8 TP5015 TP5015 

TP1, TP2, TP3, 

TP6, TP7, TP8, 

TP9, TP13 

$3.52 

5 NXRT15XV103FA1B040 Through Hole 
Not On 

Schematics 
$2.70 

3 2 R0805 R1, R2, R3 $0.30 

3 3 R0805 R4, R6, R8 $0.30 

3 10 R0805 R5, R7, R9 $0.30 

2 120 R0805 R13, R24 $0.20 

5 220 R0805 
R15, R17, R18, 

R19, R20 
$0.50 

2 470 R0805 R11, R14 $0.20 

4 .1u C0805 
C10, C11, C12, 

C15 
$1.20 
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1 8MHz 
HC49UP 

 
XT1 $0.33 

3 100u CAP_ECEV_G C5, C7, C16 $1.41 

9 10k R0805 

R10, R12, R16, 

R21, R22, R23, 

R26, R27, R28 

$0.90 

3 10n C0805 C6, C18, C21 $0.30 

4 10u C0805 C1, C2, C3, C9 $0.40 

2 18p C0805 C13, C14 $0.20 

5 22-27-2031-03 6410-03 
J1, J2, J3, J4, 

J5 
$0.37 

3 3.3u C0805 C17, C19, C20 $0.30 

1 330u CAP_ECEV_G C8 $0.47 

1 33n C0805 C4 $0.30 

1 4.7k R0805 R25 $0.10 

3 ACS770 5CB U14, U15, U16 $25.14 

1 Blue 0805 LED3 $0.31 

3 Green 0805 
LED1, LED2, 

LED8 
$0.93 

6 IPP045N10N3GXKSA1 TO220 

FET1, FET2, 

FET3, FET4, 

FET5, FET6 

$17.67 

1 MIC4607 TSSOP28 U1 $6.27 

1 MOLEX_42840-2224 MOLEX_42820-2224 X1 $5.00 

4 RED 0805 
LED4, LED5, 

LED6, LED7 
$1.24 

6 RK7002B SOT23 

U$1, U$2, 

U$3, U$4, 

U$5, U$6 

$1.86 
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3 SRH05S05 SIP3 U3, U4, U7 $24.00 

1 Terminal 3_TERMINAL U$7 $0.00 

1 
Polar T34 Heart Rate 

Transmitter 

Heart Rate Sensor 

with Bluetooth 
 $65.00 

1 
SSD1306 OLED Display 

 $10.99 

5 BMS PCBs from JLC 

PCB 
 

 $100.00 

5 
Embedded System / 

Motor Controller PCBs 

from JLC PCB 

 
 $100.00 

   Total Cost: $527.13 
 

Table 20 –Master Parts List 

  



   
 

103 
 

5. Project Schedule [TRM][NMD][RKA][ELW] 

The following Gantt chart represents the projected team schedule. It shows the various 

deadlines and who is responsible for facilitating the progress of each. It is important to 

outline the timeline to make sure all vital parts of the project are completed in a timely 

manner. 
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Figure 48 – Gantt Chart 
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6. Design Team Information 

 

• Tyler Matthews 

o Electrical Engineer – Team Leader 

• Nick Darash 

o Electrical Engineer – Software Manager 

• Ethan Wesel 

o Electrical Engineer – Hardware Manager 

• Ryan Applebee 

o Electrical Engineer – Engineering Data Manager 
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7. Conclusions and Recommendations [TRM][NMD][RKA][ELW] 

To conclude, the design for a heart rate based user assisting bicycle may seem 

simple on the surface but is actually quite complex. The three main modules for this 

project – the battery management system, embedded system, and motor controller all 

require hardware tailored to this specific application. Each of these main components 

must receive and/or send the necessary signals for reliable, predictable operation and then 

utilize software to make complex decisions as fast as possible with this data. As always, 

consistent, predictable operation to ensure user safety is of the utmost importance.  If the 

battery management system doesn’t act quickly enough, catastrophic damage can occur 

to both the batteries and the various electronics powered by them. If the embedded 

system doesn’t tell the motor controller what to do at exactly the right time, the motor 

may grind to a halt, speed up uncontrollably, or turn on a MOSFET at the wrong time 

short circuiting the batteries. Any of these possibilities can have dire consequences which 

is why this project must be executed with high precision, and every possibility must be 

considered to guarantee fail-safe operation. 
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9. Appendix [ELW][RKA] 

 
Part  Datasheet 

B59707A0120A062   
https://product.tdk.com/info/en/documents
/data_sheet/55/db/PTC/PTC_OC_SMD_0
402_0603_1210_24V_230V.pdf  

BMS3004  https://www.onsemi.com/pub/Collateral/E
NA1908-D.PDF 

DMP2305U https://www.diodes.com/assets/Datasheet
s/ds31737.pdf 

FK3306010 https://industrial.panasonic.com/content/d
ata/SC/ds/ds4/FK3306010L_E.pdf 

LTC6804 https://www.analog.com/media/en/technic
al-documentation/data-
sheets/680412fc.pdf 

MLX91210 https://www.melexis.com/-
/media/files/documents/.../mlx91210-
datasheet-melexis.pdf 
  

PIC16F1789-I/PTTQFP44_MC-L http://ww1.microchip.com/downloads/en/
DeviceDoc/40001675C.pdf 

SRH05S05 https://www.xppower.com/Portals/0/pdfs/
SF_SRH05.pdf 

TP5015 https://www.datasheets360.com/pdf/-
9169934687069640514 

NXRT15XV103FA1B040 https://www.murata.com/en-
us/products/productdata/8796838297630/
S0423E.pdf 

SSM3J328RLFTR-NO https://toshiba.semicon-
storage.com/info/docget.jsp?did=2429&pr
odName=SSM3J328R 

22-27-2031-03 https://www.molex.com/pdm_docs/sd/022
272031_sd.pdf 

HC49UP https://www.digchip.com/datasheets/parts
/datasheet/922/HC49UP-pdf.php 

ACS770 https://www.allegromicro.com/~/media/Fil
es/Datasheets/ACS770-Datasheet.ashx 

IPP045N10N3GXKSA1 https://www.infineon.com/dgdl/Infineon-
IPP045N10N3%20G-DS-v02_09-
EN.pdf?fileId=5546d4625d5945ed015d98
85241104ce 

MIC4607 http://ww1.microchip.com/downloads/en/
DeviceDoc/MIC4607-85V-Three-Phase-
MOSFET-Driver-DS20005610C.pdf 

SSD1306 OLED https://cdn-
shop.adafruit.com/datasheets/SSD1306.p
df 

Polar T34 Heart Rate Transmitter https://www.marutsu.co.jp/contents/shop/
marutsu/ds/1077_Web.pdf 

https://product.tdk.com/info/en/documents/data_sheet/55/db/PTC/PTC_OC_SMD_0402_0603_1210_24V_230V.pdf
https://product.tdk.com/info/en/documents/data_sheet/55/db/PTC/PTC_OC_SMD_0402_0603_1210_24V_230V.pdf
https://product.tdk.com/info/en/documents/data_sheet/55/db/PTC/PTC_OC_SMD_0402_0603_1210_24V_230V.pdf
https://www.onsemi.com/pub/Collateral/ENA1908-D.PDF
https://www.onsemi.com/pub/Collateral/ENA1908-D.PDF
https://www.diodes.com/assets/Datasheets/ds31737.pdf
https://www.diodes.com/assets/Datasheets/ds31737.pdf
https://industrial.panasonic.com/content/data/SC/ds/ds4/FK3306010L_E.pdf
https://industrial.panasonic.com/content/data/SC/ds/ds4/FK3306010L_E.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/680412fc.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/680412fc.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/680412fc.pdf
https://www.melexis.com/-/media/files/documents/.../mlx91210-datasheet-melexis.pdf
https://www.melexis.com/-/media/files/documents/.../mlx91210-datasheet-melexis.pdf
https://www.melexis.com/-/media/files/documents/.../mlx91210-datasheet-melexis.pdf
https://www.melexis.com/-/media/files/documents/.../mlx91210-datasheet-melexis.pdf
https://www.melexis.com/-/media/files/documents/.../mlx91210-datasheet-melexis.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/40001675C.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/40001675C.pdf
https://www.xppower.com/Portals/0/pdfs/SF_SRH05.pdf
https://www.xppower.com/Portals/0/pdfs/SF_SRH05.pdf
https://www.datasheets360.com/pdf/-9169934687069640514
https://www.datasheets360.com/pdf/-9169934687069640514
https://www.murata.com/en-us/products/productdata/8796838297630/S0423E.pdf
https://www.murata.com/en-us/products/productdata/8796838297630/S0423E.pdf
https://www.murata.com/en-us/products/productdata/8796838297630/S0423E.pdf
https://toshiba.semicon-storage.com/info/docget.jsp?did=2429&prodName=SSM3J328R
https://toshiba.semicon-storage.com/info/docget.jsp?did=2429&prodName=SSM3J328R
https://toshiba.semicon-storage.com/info/docget.jsp?did=2429&prodName=SSM3J328R
https://www.molex.com/pdm_docs/sd/022272031_sd.pdf
https://www.molex.com/pdm_docs/sd/022272031_sd.pdf
https://www.digchip.com/datasheets/parts/datasheet/922/HC49UP-pdf.php
https://www.digchip.com/datasheets/parts/datasheet/922/HC49UP-pdf.php
https://www.allegromicro.com/~/media/Files/Datasheets/ACS770-Datasheet.ashx
https://www.allegromicro.com/~/media/Files/Datasheets/ACS770-Datasheet.ashx
https://www.infineon.com/dgdl/Infineon-IPP045N10N3%20G-DS-v02_09-EN.pdf?fileId=5546d4625d5945ed015d9885241104ce
https://www.infineon.com/dgdl/Infineon-IPP045N10N3%20G-DS-v02_09-EN.pdf?fileId=5546d4625d5945ed015d9885241104ce
https://www.infineon.com/dgdl/Infineon-IPP045N10N3%20G-DS-v02_09-EN.pdf?fileId=5546d4625d5945ed015d9885241104ce
https://www.infineon.com/dgdl/Infineon-IPP045N10N3%20G-DS-v02_09-EN.pdf?fileId=5546d4625d5945ed015d9885241104ce
http://ww1.microchip.com/downloads/en/DeviceDoc/MIC4607-85V-Three-Phase-MOSFET-Driver-DS20005610C.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/MIC4607-85V-Three-Phase-MOSFET-Driver-DS20005610C.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/MIC4607-85V-Three-Phase-MOSFET-Driver-DS20005610C.pdf
https://cdn-shop.adafruit.com/datasheets/SSD1306.pdf
https://cdn-shop.adafruit.com/datasheets/SSD1306.pdf
https://cdn-shop.adafruit.com/datasheets/SSD1306.pdf
https://www.marutsu.co.jp/contents/shop/marutsu/ds/1077_Web.pdf
https://www.marutsu.co.jp/contents/shop/marutsu/ds/1077_Web.pdf
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SRH05S05 http://www.farnell.com/datasheets/256362
7.pdf?_ga=2.103957001.864562035.154
3440146-10472548.1543440146 

RK7002B https://datasheet.octopart.com/RK7002BT
116-Rohm-datasheet-68401982.pdf 

MOLEX_42840-2224 https://www.mouser.com/datasheet/2/276
/0428202224_PCB_HEADERS-
772469.pdf 

 

 

http://www.farnell.com/datasheets/2563627.pdf?_ga=2.103957001.864562035.1543440146-10472548.1543440146
http://www.farnell.com/datasheets/2563627.pdf?_ga=2.103957001.864562035.1543440146-10472548.1543440146
http://www.farnell.com/datasheets/2563627.pdf?_ga=2.103957001.864562035.1543440146-10472548.1543440146
https://datasheet.octopart.com/RK7002BT116-Rohm-datasheet-68401982.pdf
https://datasheet.octopart.com/RK7002BT116-Rohm-datasheet-68401982.pdf
https://www.mouser.com/datasheet/2/276/0428202224_PCB_HEADERS-772469.pdf
https://www.mouser.com/datasheet/2/276/0428202224_PCB_HEADERS-772469.pdf
https://www.mouser.com/datasheet/2/276/0428202224_PCB_HEADERS-772469.pdf
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