
Michigan Telecommunications and Technology Law Review

Volume 20 | Issue 2

2014

Structure from Nothing and Claims for Free: Using
a Whole-System View of the Patent System to
Improve Notice and Predictability for Software
Patents
Holly K. Victorson
University of Michigan Law School

Follow this and additional works at: http://repository.law.umich.edu/mttlr

Part of the Computer Law Commons, and the Intellectual Property Law Commons

This Note is brought to you for free and open access by the Journals at University of Michigan Law School Scholarship Repository. It has been accepted
for inclusion in Michigan Telecommunications and Technology Law Review by an authorized editor of University of Michigan Law School Scholarship
Repository. For more information, please contact mlaw.repository@umich.edu.

Recommended Citation
Holly K. Victorson, Structure from Nothing and Claims for Free: Using a Whole-System View of the Patent System to Improve Notice and
Predictability for Software Patents, 20 Mich. Telecomm. & Tech. L. Rev. 497 (2014).
Available at: http://repository.law.umich.edu/mttlr/vol20/iss2/6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Michigan School of Law

https://core.ac.uk/display/232685175?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.law.umich.edu/mttlr?utm_source=repository.law.umich.edu%2Fmttlr%2Fvol20%2Fiss2%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.law.umich.edu/mttlr/vol20?utm_source=repository.law.umich.edu%2Fmttlr%2Fvol20%2Fiss2%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.law.umich.edu/mttlr/vol20/iss2?utm_source=repository.law.umich.edu%2Fmttlr%2Fvol20%2Fiss2%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.law.umich.edu/mttlr?utm_source=repository.law.umich.edu%2Fmttlr%2Fvol20%2Fiss2%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=repository.law.umich.edu%2Fmttlr%2Fvol20%2Fiss2%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/896?utm_source=repository.law.umich.edu%2Fmttlr%2Fvol20%2Fiss2%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.law.umich.edu/mttlr/vol20/iss2/6?utm_source=repository.law.umich.edu%2Fmttlr%2Fvol20%2Fiss2%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mlaw.repository@umich.edu

NOTE

STRUCTURE FROM NOTHING AND CLAIMS
FOR FREE: USING A WHOLE-SYSTEM VIEW

OF THE PATENT SYSTEM TO IMPROVE
NOTICE AND PREDICTABILITY FOR

SOFTWARE PATENTS

Holly K. Victorson*

Cite as: Holly K. Victorson, Note, Structure from Nothing and Claims for
Free: Using a Whole-System View of the Patent System to Improve Notice

and Predictability for Software Patents,
20 MICH. TELECOMM. & TECH. L. REV. 497 (2014).

This manuscript may be accessed online at repository.law.umich.edu.

No uniform or customary method of disclosure for software patents is
currently employed by inventors. This Note examines the issues that
develop from software patent claims disclosed at various levels of ab-
straction, and the difficulties encountered by courts and the public
when investigating the contours of the software patent space. While the
courts have placed some restrictions on the manner in which software
inventions are claimed, they are easily bypassed by clever patent appli-
cants who desire to claim the maximum scope of their inventions. In
the long run, however, a large “patent thicket” of overlapping and po-
tentially overbroad inventions will work against the interests of inven-
tors who desire to enforce their temporary technological monopolies.
A confused field of inventions, when combined with a variety of ab-
stracted disclosures, will result in unpredictable litigation and poten-
tially invalidation of software as a patentable subject completely.
Software patentees, like all patent holders, benefit greatly from robust
and fair patent protection. In order to achieve the goal of a patent
system that effectively balances the rights of the inventor with the right
of the public in the interest of progress, however, this Note argues that
patentees must recognize their critical role in the patent system and
disclose the invention in code or pseudo-code at a level of abstraction
that will allow the software community to effectively recreate the
invention.

* J.D., University of Michigan Law School, 2015 (expected); B.S., Computer
Engineering, University of New Mexico, 2006. The author would like to thank the Volume 20
editorial staff for their assistance in the editing process, especially Helen Ji, Carlyn Williams,
Jason Wong, Daniel Zwick, Steven Beigelmacher, and Keith Lim.

497

498 Michigan Telecommunications and Technology Law Review [Vol. 20:497

INTRODUCTION

When the Framers of the Constitution drafted the “Intellectual Property”
Clause,1 they never could have anticipated the technological advances of the
next two hundred years that would test the boundaries of that authorization.
From “anticipatory package shipping”2 to presenting recommended catego-
ries to a user based on her search query,3 business methods utilizing ad-
vanced software techniques are improving the world around us.

Software is currently patentable in the United States. As a policy mat-
ter, however, its patentability is still subject to much debate.4 Nevertheless,
the innovative nature of software cannot be denied. From streaming Netflix
movies from your phone to your thermostat detecting when you leave and
automatically turning down the heat in the winter, software is responsible for
many of the valuable developments in our lives. Because software lies at the
heart of many of the advancements integral to our daily existence, novel
developments should be protected by the patent system by granting a tempo-
rary monopoly over these technologies.

Unfortunately, because software is difficult to describe in traditional
patent claims, courts have struggled with interpreting software claims and
applying them to actual technologies in infringement actions. Disclosures
by inventors vary wildly in their detail and exist at many levels of abstrac-
tion. As a result, “patent thickets” persist in certain technical areas, where
many overlapping software patents exist in a certain field.5 While the Fed-
eral Circuit has attempted to confine the breadth of software patents by en-
hancing the disclosure requirement for certain types of software claims,
these requirements can be bypassed fairly easily by clever patent applicants
who draft precise claims. This Note proposes taking a whole-system view of
the patent system by acknowledging the critical importance of patentees to
the fair and efficient operation of the patent system. Viewing software pat-
ents from such a perspective, the patent system should require a patent appli-
cant to disclose relevant source code or pseudo-code in order to fully enable
recreation of the novel portions of the invention. All four pillars of the pat-
ent system (the community of inventors and the executive, judicial, and leg-
islative branches of government) should work together, utilizing the
strengths of each group, to ensure this disclosure. Requiring such disclosure

1. U.S. CONST. art. I, § 8, cl. 8 (authorizing Congress “[t]o promote the Progress of
Science and useful Arts, by securing for limited Times to Authors and Inventors the exclusive
Right to their respective Writings and Discoveries”).

2. See U.S. Patent No. 8,615,473 (filed Aug. 24, 2012).
3. See U.S. Patent No. 8,595,250 (filed Sep. 15, 2011).
4. See infra Section III.C., for a more detailed exploration of the anti-software patent

movement.
5. See Gavin D. George, Note, What is Hiding in the Bushes? Ebay’s Effect on

Holdout Behavior in Patent Thickets, 13 MICH. TELECOMM. & TECH. L. REV. 557, 557 (2007).

Spring 2014] Structure from Nothing and Claims for Free 499

will rebalance the careful bargain struck by the patent system of rewarding
inventors who contribute to social progress by advancing technology.

In Part I, this Note walks through the background of patent law and the
development of the current system of claiming an invention. Part II ad-
dresses how courts have interpreted functional software claims to date, and
observes that while the Federal Circuit has placed some limits on means-
plus-function claims, these limits are fairly easily thwarted by a clever
claims drafter. Part III discusses why this claim system is insufficient for
software patents and addresses some solutions that have been offered by
others. Part IV proposes viewing the issue from a whole-system perspective
and requiring disclosure of the source code at the novel points of the inven-
tion, which will help to restore order to the patent system and encourage
further advancement of software innovations.

I. BACKGROUND: CLAIMING, FUNCTIONAL CLAIMING, AND MEANS-PLUS-
FUNCTION CLAIMING UNDER § 112(F)

Patent claims define the scope of the invention and determine the
boundaries of the patent right enforceable by the patentee. The patent sys-
tem has evolved to allow the inventor to claim her invention in a number of
different ways. This Part explores how this evolution occurred, the limits
that the courts and Congress historically placed on functional claims, and the
options available to an inventor in describing her invention. Finally, this
Part examines how the claiming options available to patentees may result in
inconsistencies and confusion, particularly in software fields of invention.

Patent law attempts to achieve a “delicate balance . . . between inven-
tors, who rely on the promise of the law to bring the invention forth, and the
public, which should be encouraged to pursue innovations, creations, and
new ideas beyond the inventor’s exclusive rights.”6 Since the patent claims
determine the boundary of the invention, broader claims grant a larger scope
of protection to the patent owner. Since the early days of the patent system,
courts have struggled to maintain the right balance between rewarding in-
ventors for their contribution to the progress of science and protecting the
public interest behind the Constitutional grant of power. Even though the
prosecution of patents is an iterative process between the patent applicant
and the examiner, the applicant has the greatest power to determine how an
invention is disclosed and claimed. The scope of the patent protection is,
therefore, largely determined by the decisions of the applicant herself.

Anyone who “invents or discovers any new and useful process, ma-
chine, manufacture, or composition of matter, or any new and useful im-
provement thereof,” can file a patent application with the United States
Patent and Trademark Office (USPTO).7 If the application meets all the legal

6. Festo Corp. v. Shoketsu Kinzoku Kogyo Kabushiki Co., 535 U.S. 722, 731 (2002).
7. 35 U.S.C. § 101 (2012).

500 Michigan Telecommunications and Technology Law Review [Vol. 20:497

requirements, the applicant will receive a United States patent.8 When an
applicant submits her patent application to the USPTO, she must include,
among other things, “one or more claims particularly pointing out and dis-
tinctly claiming the subject matter which the inventor . . . regards as the
invention.”9 Claims define the invention and serve the dual purposes of
communicating the patentability of the invention to the USPTO and drawing
the boundaries of the invention for purposes of infringement determination.10

An issued patent gives the applicant the right to exclude others from making,
using, offering to sell, or selling the patented invention in the United States
for a term of twenty years from the date of the original application.11 A
patentee can bring a civil action against any infringer and receive remedies
including injunctions, damages, and, in exceptional cases, attorney fees.12

The patent system thereby satisfies its Constitutional mandate of promoting
innovation13 by offering a legal remedy against unauthorized sales and uses
of a recognized invention for a limited time.

The Supreme Court has deemed the temporary monopoly granted to a
patentee “a property right,” requiring clear boundaries in order to make clear
to the public what exactly the patentee owns.14 Clear boundaries allow the
patent system to meet the Constitutional goal of promoting progress because
it enables efficient investment in research and development.15 Since the pat-
ent system grants limited monopolies to encourage innovation, clarity of the
scope of the monopoly is important for both inventors and the public. If the
boundaries of the limited property right are ill-defined, researchers may be
hesitant to use the patent system to protect their invention, deciding instead
to utilize trade secret protection and potentially depriving the public of the
knowledge of the advancement. The public, too, should be able to rely on a
valid patent document to gauge whether a particular article or good is
infringing.

Originally, the patent system used a “central claiming” system to deter-
mine the scope of patent claims. In disputed cases, the court would examine
the “essence” of the invention and determine what the heart of the invention
was in order to construe the patent claims and determine whether infringe-
ment occurred.16 In the nineteenth century, the patent system transitioned to

8. Id. § 111.
9. Id. § 112(b).

10. 3-8 DONALD S. CHISUM, CHISUM ON PATENTS § 8.01 (2013), available at
LexisNexis.

11. 35 U.S.C. §§ 154(a)(2), 271(a).
12. Id. §§ 281, 283-85.
13. U.S. CONST. art. I, § 8, cl. 8 (giving Congress the authority “[t]o promote the pro-

gress of science and useful arts, by securing for limited times to authors and inventors the
exclusive right to their respective writings and discoveries”).

14. Festo, 535 U.S. at 730-31.
15. See id.
16. See Michael Risch, America’s First Patents, 64 FLA. L. REV. 1279, 1288 (2012).

Spring 2014] Structure from Nothing and Claims for Free 501

a “peripheral claiming” system, in which the claims outline the outer bor-
ders, or periphery, of the invention.17 This system was (and, generally, still
is) believed to provide the public with better notice of the inventive bounda-
ries captured by the patent, thereby encouraging more efficient investment in
innovation.18

As the courts transitioned from central claiming to peripheral claiming,
inventors increasingly began to use functional language to describe their in-
ventions. Functional claiming allowed patent attorneys to draft claims to
expand the boundaries of an invention to the fullest extent. For example, a
claim for “a means for securing pieces of wood together” could allow an
inventor to pursue infringers securing pieces of wood using nails, glue,
screws, or any other adhesive means. Most inventors preferred to employ a
functional claim over a claim covering a specific physical implementation to
increase the value of the patent: if an inventor can claim ownership of the
overall function of a machine, instead of a particular mechanical implemen-
tation that accomplishes the function, the inventor will be able to license the
technology to a broader scope of users (or sue more potential infringers, as
the case may be).

However, the patent system has always been careful not to allow over-
broad functional claiming remove too much from the public domain. In or-
der to reach a reasonable balance between rewarding inventors for their
contributions and protecting the public from an unduly broad monopoly,
courts limit the scope of overbroad patent claims that are unsupported by the
accompanying disclosure. The Supreme Court, in the nineteenth-century
case O’Reilly v. Morse, invalidated Morse’s functional claim for transmitting
information via electromagnetism when Morse did not “limit [himself] to the
specific machinery, or parts of machinery, described in the foregoing speci-
fication and claims.”19 Morse’s disclosure contained only one means of
printing at a distance through electro-mechanical means, and the court noted
that there may be other ways to accomplish the same function without using
the specific device or method disclosed by Morse’s patent.20 Additionally,
many circuits developed a “disclosure plus equivalents” restriction for func-
tional claims, limiting the patentee to the structure (plus equivalents) for the
functional claim disclosed in the specification.21 This doctrine limited the
patent owner’s monopoly only to the specific embodiments of the invention

17. Dan L. Burk & Mark A. Lemley, Fence Posts or Sign Posts? Rethinking Patent
Claim Construction?, 157 U. PA. L. REV. 1743, 1748-49 (2009).

18. See Jeanne C. Fromer, Claiming Intellectual Property, 76 U. CHI. L. REV. 719, 721
(2009).

19. O’Reilly v. Morse, 56 U.S. 62, 112 (1853).
20. Id. at 113.
21. See Mark D. Janis, Who’s Afraid of Functional Claims? Reforming the Patent

Law’s § 112, ¶ 6 Jurisprudence, 15 SANTA CLARA COMPUTER & HIGH TECH. L.J. 231, 240-42
(1999).

502 Michigan Telecommunications and Technology Law Review [Vol. 20:497

disclosed, along with any comparable variations of the invention easily as-
certained from the disclosure.

The concern over the breadth of functional claims reached a peak when
the Supreme Court attempted to ban all functional claiming, but Congress
responded by allowing functional claims with limitations. In 1946, the Su-
preme Court eliminated functional claiming in Halliburton Oil Well Cement-
ing Co. v. Walker by holding invalid claims that “do not describe the
invention but use ‘conveniently functional language at the exact point of
novelty.’”22 The Court expressed deep concern that clever patent attorneys
and their clients were unfairly claiming more than they disclosed using
broad functional claims, thus discouraging other inventors from experi-
menting in general technological areas and frustrating the purpose of the
patent system.23 In response, Congress restored limited functional claiming
in the Patent Act of 1952,24 which established the means-plus-function (or
“combination”) claiming style. This style allowed patentees to employ func-
tional claims to capture an invention, but such claims would be construed to
cover only the structure(s) disclosed in the patent specification and any
equivalents. The statute, now codified in 35 U.S.C. § 112(f), states:

Element in Claim for a Combination.— An element in a claim for a
combination may be expressed as a means or step for performing a
specified function without the recital of structure, material, or acts
in support thereof, and such claim shall be construed to cover the
corresponding structure, material, or acts described in the specifica-
tion and equivalents thereof.25

Since a means-plus-function claim is interpreted in conjunction with the
structure of the embodiments disclosed in the specification, it is critical that
the structure disclosed in the patent is clear enough for a court to interpret in
conjunction with the claimed function. Just as Morse could not claim to
control all possible methods of transmitting information electromagnetically,
a patentee awarded a means-plus-function claim is restricted to the particular
structures disclosed in the specification.

All patent applicants have a great deal of control over how they claim
their inventions, but inventors utilizing § 112(f) claims have additional con-
trol over how they present the corresponding structure to the function. Since

22. Halliburton Oil Well Cementing Co. v. Walker, 329 U.S. 1, 8 (1946) (quoting Gen.
Elec. Co. v. Wabash Appliance Corp., 304 U.S. 364, 371 (1938)).

23. Id. at 11-12.
24. Although there are different theories, most scholars generally conclude that Con-

gress specifically allowed for means-plus-function claiming in the Patent Act of 1952 to over-
rule Halliburton. Rudolph P. Hofmann, Jr. & Edward P. Heller, III, The Rosetta Stone for the
Doctrines of Means-Plus-Function Patent Claims, 23 RUTGERS COMPUTER & TECH. L.J. 227,
243 (1997).

25. 35 U.S.C. § 112 (2012).

Spring 2014] Structure from Nothing and Claims for Free 503

the inventor can control what does or does not go into her application, the
quality of the patent largely depends on the diligence of the applicant. For
example, imagine that a law professor creates a computer program that col-
lects and aggregates information from the registrar regarding the dates and
times of each of her courses and the names of the students signed up for each
course. The program then randomly generates a set of students to cold call
for each date of the course and produces a report. If our law professor filed
a patent application on this invention in a means-plus-function style claim, it
might look something like this:

A law course management system, comprising:

a means for receiving course information including course dates,
course times, and students assigned to a particular course;

a means for generating, at random, a set of students to cold call for
each date of the course; and

a means for generating a report containing the list of said randomly
selected students.

In the specification for this application, the inventor would have to recite the
“structure” in support of this claim in order to meet the requirement of
§ 112(f). If our inventor disclosed only a desktop-computer implementation
in the specification and later sued another professor for taking her code and
implementing the same method on a tablet, a court would likely limit the
scope of her patent to the desktop structure disclosed unless the tablet was
held to be an equivalent of a desktop computer. However, if the alleged
infringer wrote a competing program for desktop computers that accom-
plished the same function but used the computer resources more efficiently,
a court would likely hold the patent infringed. This result is inconsistent
with the goals of the patent system: the blatant copier gets away, while the
incremental improver is punished as an infringer.

II. THE COURTS AND FUNCTIONAL SOFTWARE CLAIMS: ON

UNSTABLE GROUND

Part I introduced the concept of claiming and described how functional
claiming evolved into the system that exists today. This Part looks at how
the Federal Circuit treats software patents and why the formalistic treatment
of claims may place the overall patentability of software at risk. Subsection
A examines how the Federal Circuit has approached functional claims used
in software patents and implemented a method of limiting the scope of
claims written in means-plus-function format by requiring disclosure of an
algorithm in the specification. Subsection A then examines how inventors
and claims drafters can easily elude the original purpose of this enhanced
requirement for software inventions. Subsection B looks at the Supreme

504 Michigan Telecommunications and Technology Law Review [Vol. 20:497

Court’s potential rejection of software methods as patentable subject matter
under § 101 as a result of the mess created by unclear software claims.

A. The Federal Circuit Approach: Development of Enhanced but
Ineffective Disclosure Requirements

Today, functional claiming is commonly utilized by software patents.26

Simply put, software is the set of instructions that runs on computer hard-
ware to produce the images and text that are intelligible to the user. While
the term “software” is commonly understood to mean code written in high-
level programming languages like C++ or Java, it can also refer to the ma-
chine language instructions which tell the specific model of processor what
low-level functions to perform or the assembly instructions that provide a
more human-readable version of the machine language. There is no legal
definition of a software patent. For the purposes of this Note, any patent for
a function that is comprised primarily of algorithms designed to run on a
processor is considered to fall under the umbrella of software patents. Since
the patent system was designed to capture physical inventions, software pat-
ents fail to fit neatly into existing doctrine, and the Federal Circuit has strug-
gled with software patent claims as a result. So far, the Federal Circuit has
limited the scope of claims written in the means-plus-function format by
requiring disclosure of an algorithm, but this limit is easily overcome by
clever patent attorneys who can re-write the claims to fall outside of the
scope of § 112(f).

Perhaps partially due to the negative publicity that some software pat-
ents have received, the Federal Circuit has recently restricted the broad reach
of software patents that utilize means-plus-function claiming. In 1999, the
Federal Circuit held, in WMS Gaming, Inc. v. Int’l Game Tech., that the
structure of software claims in means-plus-function format is the “special
purpose computer programmed” with the software algorithm, not any “gen-
eral purpose computer” that could be programmed to execute the patented
function.27 The Federal Circuit further asserted that a “general purpose com-
puter” is transformed into a “special purpose machine” by the algorithm as
implemented by the programmed code.28 Accordingly, this opinion can be

26. Colleen V. Chien & Aashish R. Karkhanis, Functional Claiming and Software Pat-
ents 40 (Santa Clara Univ. Sch. of Law Legal Studies Research Papers Series, Paper No. 06-
13, 2013), available at http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2215867). Chien &
Aashish’s study found that functional claims were more commonly found in software patents
litigated by Patent Assertion Entities (PAEs), but about half of the litigated software patents
involving non-PAEs also used functional claims.

27. WMS Gaming, Inc. v. Int’l Game Tech., 184 F.3d 1339, 1349 (Fed. Cir. 1999) (“In
a means-plus-function claim in which the disclosed structure is a computer, or microprocessor,
programmed to carry out an algorithm, the disclosed structure is not the general purpose com-
puter, but rather the special purpose computer programmed to perform the disclosed
algorithm.”).

28. See id. at 1347-49.

Spring 2014] Structure from Nothing and Claims for Free 505

interpreted to require the patent applicant to disclose an algorithm in order to
adequately describe the special purpose machine for the purposes of
§ 112(f). This holding required software patentees who chose to use means-
plus-function claims to disclose some semblance of an algorithm as part of
the “structure” of the functional claim.

WMS then set the stage for Aristocrat Technologies in 2008, in which
the Federal Circuit held that even if one of ordinary skill in the art might be
able to develop a sufficient structure for a § 112(f) claim, the patentee must
still “at least disclose the algorithm that transforms the general purpose
microprocessor to ‘a special purpose computer programmed to perform the
disclosed algorithm.’”29 In effect, even if a person of ordinary skill in the art
could easily develop and implement an algorithm to meet the limitations of
the claims, a patentee cannot escape the algorithm disclosure requirement for
§ 112(f) claims. Following the general premise that broad functional claims
disclosing only a generic processor as structure do not limit the claim in any
meaningful way, the Federal Circuit consistently held in later cases that a
means-plus-function software claim limited only by the structure of a gen-
eral purpose computer is invalid.30 For example, consider how this system
would apply to the cold call management system described in Part I above.
Since she used functional claims to describe the invention, our inventive
professor would likely now be required to disclose some sort of diagram,
description, or code to describe the novel way in which students are ran-
domly selected by the system.31

However, despite the enhanced disclosure requirement recently imposed
by the Federal Circuit for software claims written in means-plus-function
format, these requirements are largely toothless and easily avoided by a
careful patent drafter. Patent applicants can still develop extremely broad
functional claims that escape this enhanced scrutiny by re-writing the claims
to avoid the court’s formalist approach to categorizing § 112(f) claims. Fur-
thermore, even if the claims are written in means-plus-function format, the
patent applicant may choose to disclose an abstracted version of an al-
gorithm32 or, if the function is simple enough, disclose the abstract idea of a
general purpose computer as the corresponding “structure” to the function.

29. Aristocrat Techs. Austl. Pty Ltd. v. Int’l Game Tech., 521 F.3d 1328, 1338 (Fed.
Cir. 2008) (quoting WMS Gaming, 184 F.3d at 1349).

30. See Blackboard, Inc. v. Desire2Learn Inc., 574 F.3d 1371, 1382-83 (Fed. Cir. 2009);
Finisar Corp. v. DirecTV Grp., 523 F.3d 1323, 1340-41 (Fed. Cir. 2008); Net MoneyIN, Inc. v.
VeriSign, Inc., 545 F.3d 1359, 1365-67 (Fed. Cir. 2008).

31. For instance, if a student is generated by the system for a particular day, are they
then removed from the pool of eligible students? May a professor select certain names to be
chosen at longer average intervals (to account for the presence of students who voluntarily
contribute to the class discussion)? There may be many novel ways to “randomly” select stu-
dents from a set.

32. For example, through a prose-like description of the function or a generalized block
diagram.

506 Michigan Telecommunications and Technology Law Review [Vol. 20:497

Patentees can manipulate claims to take advantage of the current system in
at least three ways.

First, a patent applicant can take advantage of the formalist approach of
the courts by redrafting the claims and avoiding means-plus-function scru-
tiny. The Federal Circuit limits software patent claims written in means-
plus-function format, but software claims that are functional but do not con-
form to the standard § 112(f) format escape this scrutiny.33 If a claim recites
the term “a means for . . . ,” the court reads in a rebuttable presumption that
it should be interpreted under § 112(f).34 If a claim does not use the “means
for . . .” language, the claim is presumed to not be a means-plus-function
claim. This creates uncertainty because the public is unable to predict how
courts will evaluate software patent claims. Since patent applicants can
structure their claims in any manner they choose, they may choose to use
other language to avoid the automatic trigger of § 112(f) analysis in court.
For example, consider our law professor from Part I, above. She might
abandon the “a means for . . .” wording in her claim in favor of the
following:

A computerized method of managing a law course, comprising:

receiving course information including course dates, course times,
and students assigned to a particular course;

generating, based on the course dates and student names, a set of
random students to cold call for each date of the course; and

generating a report containing the list of said random students.

By restructuring her claim in a manner that avoids using the words “a means
for . . . ,” she will escape a formalist application of a § 112(f) analysis and
may even avoid the enhanced disclosure requirements imposed on the exact
same claim written in means-plus-function format.

Second, even within the limits of § 112(f), a patent drafter has a signifi-
cant amount of leeway to prepare potentially unclear claims. Even though
the Federal Circuit requires disclosure of a step-by-step procedure as the
“structure” of a claim under § 112(f), the disclosure can be accomplished in
many ways, and disclosure of the software code is not required: a patentee
can describe the function of the invention by describing it in prose or dis-
closing a flow chart or mathematical expression.35 For a § 112(f) claim to be
sufficiently definite, “a recited algorithm, or other type of structure for a

33. Mark A. Lemley, Software Patents and the Return of Functional Claiming, 2013
WIS. L. REV. 905, 920-28 (2013).

34. See TriMed, Inc. v. Stryker Corp., 514 F.3d 1256, 1259 (Fed. Cir. 2008) (“Use of
the word ‘means’ in claim language creates a presumption that § 112 ¶ 6 applies.”).

35. Finisar, 523 F.3d at 1340; see also Fonar Corp. v. Gen. Elec. Co., 107 F.3d 1543,
1549 (Fed. Cir. 1997) (“[F]low charts or source code listings are not a requirement for ade-
quately disclosing the functions of software.”).

Spring 2014] Structure from Nothing and Claims for Free 507

[§] 112(f) claim limitation, need not be so particularized as to eliminate the
need for any implementation choices by a skilled artisan; but it must be
sufficiently defined to render the bounds of the claim—declared by
[§] 112(f) to cover the particular structure and its equivalents—understanda-
ble by the implementer.”36 Because the algorithm required by the Federal
Circuit can be disclosed in myriad of high-level ways, the requirement for
algorithm disclosure from Aristocrat Technologies becomes inadequate for
sufficiently defining the boundaries of a software patent. Since one skilled
in the art of programming would be likely to have the ability to implement a
high-level flow chart in a variety of ways, the public will have difficulty
identifying the boundaries of these protected claims.

Finally, a patent applicant does not need to disclose an algorithm if a
function can, by default, be performed by “any general purpose computer
without special programming.”37 Aside from the question of what, exactly,
constitutes a “general purpose computer,” the fact that “processing,” “receiv-
ing,” and “storing” claims can be functionally claimed with only a “general
purpose computer” disclosed as the structure for implementing the functions
is troubling.38 These claims, if valid, could be broadly construed by a fact-
finder to expand the scope of the our professor’s cold call processing system
patent well beyond the system claimed, and fails to provide adequate notice
to the public about the boundaries of the patent.

B. The Supreme Court’s § 101 Threat

The trouble with software patents continues to frustrate courts and the
court of public opinion. The longer the struggle goes on, the more likely the
Supreme Court may simply resolve the confusion by holding software un-
patentable subject matter under § 101.39 This section of the Patent Act limits
the type of invention available to be claimed by the inventor to “any new
and useful process, machine, manufacture, or composition of matter, or any
new and useful improvement thereof.”40 The Supreme Court, in the 2010
Bilski v. Kappos case, had an opportunity to definitively state whether
software and business methods were categorically patentable under § 101,
but declined to do so.41 Instead of stating a conclusive rule that software and
business methods are patentable subject matter (or not) under § 101, the Su-

36. Ibormeith IP, LLC v. Mercedes-Benz USA, LLC, 732 F.3d 1376, 1379 (Fed. Cir.
2013).

37. In re Katz Interactive Call Processing Patent Litig., 639 F.3d 1303, 1316 (Fed. Cir.
2011).

38. Id.
39. See 35 U.S.C. § 101 (2012).
40. Id.
41. See Bilski v. Kappos, 130 S. Ct. 3218, 3227 (2010) (noting that until recently, pat-

ent law would have considered computer programs unpatentable subject matter under § 101,
“[b]ut this fact does not mean that unforeseen innovations such as computer programs are
always unpatentable”).

508 Michigan Telecommunications and Technology Law Review [Vol. 20:497

preme Court held that a flexible application of the Federal Circuit’s “ma-
chine-or-transformation” test should be applied to determine whether a
claimed invention is a process under § 101.42 This decision reversed an at-
tempt by the Federal Circuit to limit patentable subject matter to only those
processes that are “tied to a particular machine” or “transform[] an article
into a different state or thing.”43 While the Supreme Court held the patent-
at-issue—a method of hedging risk in commodities trading—invalid for be-
ing no more than an unpatentable “abstract idea,” the majority made clear
that business methods employing non-abstract methods may be patentable.44

Now, the Supreme Court has granted certiorari for Alice Corp. Pty. Ltd.
v. CLS Bank International to consider whether certain software claims are
abstract ideas ineligible for patent protection.45 By doing so, the Supreme
Court is again indicating interest in determining whether software methods
are patentable subject matter. Bilski was a close call for software patents,
but the subject matter narrowly escaped unpatentability. Alice could re-
present the menace on the horizon for software patents: there is a chance that
this case may devastate their validity,46 the overdue blowback resulting from
a complicated subject area that the law simply has not yet figured out how to
manage.

III. THE STRUGGLE WITH SOFTWARE INVENTIONS: WHY THERE IS NO

EASY OUT

The unique characteristics of software naturally drive patent applicants
to use functional claiming. As this Note explored in Parts I and II, those
unique characteristics can be utilized by patentees to escape the court’s at-
tempt to appropriately limit the scope of software patents. This Part exam-
ines the abstraction characteristic of software, the issues that characteristic
has caused in the patent system, and the proposed solutions to these issues.
Subsection A delves into what exactly makes software abstract, and how that
differs from other kinds of inventions. Subsection B considers why abstrac-
tion renders claim interpretation more difficult for courts. Finally, Subsec-
tions C and D consider possible resolutions to this tough problem.

42. Id.
43. In re Bilski, 545 F.3d 943, 961-62 (Fed. Cir. 2008), aff’d, 130 S. Ct. 3218 (2010).
44. Bilski, 130 S. Ct. at 3230, 3227.
45. Lyle Denniston, Court to Rule on Patent Rights, SCOTUSBLOG (Dec. 6, 2013,

12:35 PM), http://www.scotusblog.com/2013/12/court-to-rule-on-patent-rights.
46. The Electronic Frontier Foundation, in the amicus brief to the Supreme Court for

Alice, encourages the Court to clearly set a standard for how section 101 should limit software
patents. Brief of Amicus Curiae Electronic Frontier Foundation in Support of Grant of Petition
at 1-3, Alice Corp. v. CLS Bank Int’l (2014)(No. 13-298), 2013 WL 5532728.

Spring 2014] Structure from Nothing and Claims for Free 509

A. The Abstraction Problem in Software Claiming

Software patent applicants often use functional claims because the non-
physical characteristics of the invention make functional claiming a natural
choice. Unlike mechanical inventions, which are a means of implementing a
function, software is the function. Software exists, and is defined, only by
what it does. While the source code is comprised of characters that can be
printed out and physically examined, this physical embodiment is just a rep-
resentation of the software, not the software itself.47 At the lowest level of
abstraction, software is just a series of basic functions: compare the value at
memory address x to the value at address y; add one to memory address x;
compare the value at address x + 1 to the value at address y. Even code
written in high-level programming languages like Java or Ruby is eventually
assembled and translated into machine code: instructions that a processor
can understand and execute. Therefore, when a Java programmer codes an
apparently simple high-level function like, in Java, System.out.print
ln(myString), the machine code that results from compiling this func-
tion is fairly complicated. This single instruction is translated into many
lines of machine code to access the memory at the address where my
String is located, read the characters of the string into registers, and call
the platform-specific input/output subprogram to output the characters to the
display device.

The functional aspect of software is often the novel and inventive part of
the invention. Since the inventive function can be described in many differ-
ent ways, software inventions are often inconsistently claimed by applicants,
resulting in unclear boundaries of software patent grants. Because the
USPTO does not require software patents to be written in any particular way
(separate from the requirements applicable to all patents), the patentee is free
to choose how to abstract her software invention in her patent claims and
disclosure. For example, our inventive professor could disclose her software
system by submitting source code, pseudo-code, function diagrams, system
block diagrams, descriptive prose, mathematical formulas, or any combina-
tion thereof, in a § 112(f) means-plus-function style or a straightforward
method style.48 Of course, any patent application must pass the examiner’s
scrutiny of subject matter,49 enablement,50 novelty,51 and non-obviousness,52

47. See RICHARD F. SCHMIDT, SOFTWARE ENGINEERING: ARCHITECTURE-DRIVEN

SOFTWARE DEVELOPMENT 11 (Elsevier 2013) (“Software, as a substance for developing prod-
ucts, does not exhibit physical characteristics. Software is actually a language that is trans-
formed into electrical currents within a processing unit that permits mathematical
calculations.”).

48. See supra Part II for a more detailed discussion.
49. 35 U.S.C. § 101 (2012).
50. Id. § 112.
51. Id. § 103.
52. Id.

510 Michigan Telecommunications and Technology Law Review [Vol. 20:497

but within those strictures, the patentee can abstract her invention disclosure
in any manner she chooses.53 The Manual of Patent Examining Procedure, a
publication by the U.S. Patent and Trademark Office for patent examiners
and attorneys, advises that examiners, when evaluating disclosure of “com-
puter-implemented functional claims,” should:

. . . [D]etermine whether the specification discloses the computer
and the algorithm (e.g., the necessary steps and/or flowcharts) that
perform the claimed function in sufficient detail such that one of
ordinary skill in the art can reasonably conclude that the inventor
invented the claimed subject matter. Specifically, if one skilled in
the art would know how to program the disclosed computer to per-
form the necessary steps described in the specification to achieve
the claimed function and the inventor was in possession of that
knowledge, the written description requirement would be satisfied.54

Black’s Law Dictionary defines “abstraction,” in relevant part, as
follows:

1. The mental process of considering something without reference
to a concrete instance <jurisprudence is largely the abstraction of
many legal particulars>.

2. A theoretical idea not applied to any particular instance <utopia
in any form is an abstraction>.55

Without more guidance, these definitions are rather unsatisfying when ap-
plied to software.56 In a classic copyright case, Judge Learned Hand recog-
nized that one could take any copyrighted work and make a series of copies,
increasing in abstraction from the original work. Judge Hand further argued
that, “there is a point in this series of abstractions where they are no longer
protected [by copyright], since otherwise the playwright could prevent the

53. For example, compare U.S. Patent No. 6,727,830, col. 7-8 (filed July 12, 2002),
claim 1 (Time based hardware button for application launch) with U.S. Patent 7,742,946, col.
11 (filed June 2, 2003), claim 1 (Advertising sales management system). Claim 1 of the ‘830
Patent claims “[a] method for expanding the functionality of an application button on a limited
resource computing device,” where claim 1 of the ‘946 Patent claims “[a] computer system for
selling and allocating advertising time slots for a broadcast media” comprising a processor,
memory, and an interface that performs certain structures. Both disclosures include logical
flow charts to help describe the functional features, but the level of detail included on the flow
charts differs (A decision point in Fig. 5 of the ‘830 Patent asks, “Have less than Z seconds
elapsed since the identified application button timer was started?” A decision point in Fig. 7 of
the ‘946 Patent asks, “Timeslot available?”).

54. MPEP § 2161.01 (9th ed., Mar. 2014).
55. BLACK’S LAW DICTIONARY 10 (9th ed. 2009).
56. Indeed, since the word “instance” is used in object-oriented programming to de-

scribe a specific realization, or “instantiation,” of a software object, it is somewhat confusing
to refer to an idea without reference to an “instance” of something in this context.

Spring 2014] Structure from Nothing and Claims for Free 511

use of his ‘ideas,’ to which, apart from their expression, his property is never
extended.”57

Similarly, software can be expressed in a variety of abstractions for the
purpose of claiming a software invention. To take a picture using the cam-
era software on my phone, I only need to point the sensor at something and
press the correct button. One level down, the software receives a notifica-
tion that it should take a picture, and then it calls existing function
takePhoto. One more level down, the software registers my touch then
calls the camera sensor to capture the light hitting it at that moment. When
the sensor returns the data, the software makes another function call to send
the data to memory. One final function is called to display the image I just
captured on the screen. Even further down the abstraction chain, the ones
and zeroes representing each pixel in the image are copied from a temporary
storage area to the permanent memory on my device, and each memory loca-
tion is checked to ensure the image is not overwriting a protected area of
memory. Each of these steps is abstracted at different levels of the software
to ensure that the next user up the chain is not bothered by the unnecessary
details of the lower levels.

Software abstraction can broadly be categorized into two different
flavors: process abstraction and data abstraction.58 Process abstraction, well
known and perhaps taken for granted by software developers, involves com-
bining a series of processes into larger processing units in order to complete
a commonly requested task. This prevents a programmer from repeating the
same code, thus violating the “Don’t Repeat Yourself” principle of program-
ming,59 and allows for higher levels of abstraction for the next user or devel-
oper (e.g., in C++, a programmer can call the printf function to send a
string of characters to the standard output, which negates the need for the
C++ programmer to understand how to send output to the specific display
device).

Data abstraction can be accomplished by generalization, which is used
in situations “in which concrete details in can be replaced by ‘stand-ins’ to
create a reusable template.”60 This is often accomplished by creating a
“container class” designed to keep pieces of data together and process them
in a specific way.61 For instance, our inventive law professor might make a
generic LawClass class, with data containers to keep track of the time of

57. Nichols v. Universal Pictures Corp., 45 F.2d 119, 121 (3d Cir. 1930).
58. See Derek Bronish, Abstraction as the Key to Programming, with Issues for

Software Verification in Functional Languages (2012) (unpublished Ph.D. dissertation, Ohio
State University), available at https://etd.ohiolink.edu/ap/10?0::NO:10:P10_ETD_SUBID:
76268.

59. Steve Smith, Don’t Repeat Yourself, O’REILLY COMMONS, http://programmer.
97things.oreilly.com/wiki/index.php/Don’t_Repeat_Yourself (last visited Apr. 9, 2014).

60. Bronish, supra note 59, at 11.
61. Id. at 12.

512 Michigan Telecommunications and Technology Law Review [Vol. 20:497

the class, the location of the class, and the information for each student in
the class. She might develop generic functions that would add a student to
the class, remove a student from the class, give a student a grade, or generate
a random set of names to cold-call for the day.

The other side of data abstraction is the reconceptualization of data gen-
eralization, where the programmer uses one or more generalized templates to
perform the specific function that she desires. If our hypothetical law pro-
fessor is teaching both torts and a product liability seminar this semester, she
would create two new instantiations of LawClass, with data containing
information specific to each class. She also might also modify the whoTo
ColdCall function for the doctrinal torts class to ensure that every student
is called at least once in the course before she calls on the same student for a
second time.

Of course, an inventor in any technical field can abstract her invention
in many ways. However, inventions grounded in a physical form still have a
basic architecture that limits their functional breadth. The corresponding
“architecture” of software inventions is the source code. The higher the
level of abstraction used by the inventor to describe her software, the more
the claims become purely functional, and the less clear the boundaries of the
software invention become. This can implicate serious notice issues, as in-
creasingly abstract inventions will be more difficult for the public to inter-
pret. As a result, abstractly claimed inventions may impose a disincentive
on technology developers in the area who will never know whether they may
be subject to litigation for infringing some overbroad and unclear patent.62

B. Claim Construction is Hard. Software Makes it Harder.

Ultimately, courts may not be the best institution to interpret software
claims. When the same claim can be written in a multiplicity of formats,
district courts are more likely to diverge in their approach to evaluating simi-
lar claims. This generates uncertainty for both patentees and potential in-
fringers, creating an unstable environment for research and development
activities in software fields.

The variations of ways in which inventors can abstract their software
patents increase the likelihood of litigation. Patent litigation, in general, is
notoriously expensive and unpredictable.63 Attorney’s fees run into the
many millions of dollars in cases where only one or two patents are in dis-

62. JAMES BESSEN & MICHAEL J. MEURER, PATENT FAILURE: HOW JUDGES, BUREAU-

CRATS, AND LAWYERS PUT INNOVATORS AT RISK 8-10 (2008).
63. See, e.g., Stijepko Tokic, Impact of Legal (Un)Certainty on Patent Valuation: What

Investors Should Know Before Investing in Patents, 22 FED. CIR. B.J. 363, 377 (2013)
(“[I]nvesting in patents is a very risky business, not only because the monetary value of a
patent is often uncertain, but also because patents can be invalidated, difficult to enforce, and
subject to infringement lawsuits.”).

Spring 2014] Structure from Nothing and Claims for Free 513

pute,64 and those fees only grow as the technologies and amounts in dispute
increase.65 Aside from the direct cost of legal fees, the time spent litigating
is also expensive for any company involved in a patent infringement action.
Due in part to the highly technical nature of the discovery involved and the
tendency of the litigants to be highly contentious, a patent infringement case
can take many months, if not years, to reach a decision at the trial court
level.66

Even though patents are treated as property rights,67 courts struggle to
enforce those rights because the boundaries are often difficult to define.68

The interpretation of these inventive boundaries is often a major area of
dispute between litigating parties.69 When the additional uncertainty stem-
ming from the abstraction problem in software patents is added to this mix, a
dangerous line-drawing problem emerges that may implicate the notice func-
tion of the patent system.70 Additionally, as might be expected in a gray and
rapidly changing area of the law, software patents have seemed to invite
litigation. Indeed, the increased risk of litigation that comes with software
patents has been well documented, and the astronomical amounts of money
involved in software litigation has been a frequent topic in the news.71

64. Symposium, A Panel Discussion: Claim Construction from the Perspective of a
District Judge, 54 CASE W. RES. L. REV. 671, 681 (2004) (District Court Judge Saris noted
that her “run of the mill” cases cost $1.2 million in attorneys’ fees to get through claim
construction).

65. AIPLA, REPORT OF THE ECONOMIC SURVEY, 34 (2013) (Average litigation costs for
a patent infringement action increased from $2.6 million, when the amount in dispute was $1-
25 million, to $5.5 million, when over $25 million was in dispute.).

66. Jonathan L. Moore, Particularizing Patent Pleading: Pleading Patent Infringement
in a Post-Twombly World, 18 TEX. INTELL. PROP. L.J. 451, 460-61 (2010).

67. See 35 U.S.C. § 261 (2012) (“Subject to the provisions of this title, patents shall
have the attributes of personal property.”).

68. Courts have long struggled with how to correctly interpret patent claims, even
before software came into existence. See Topliff v. Topliff, 145 U.S. 156, 171 (1892) (“The
specification and claims of a patent, particularly if the invention be at all complicated, consti-
tute one of the most difficult legal instruments to draw with accuracy; and, in view of the fact
that valuable inventions are often placed in the hands of inexperienced persons to prepare such
specifications and claims, it is no matter of surprise that the latter frequently fail to describe
with requisite certainty the exact invention of the patentee, and err either in claiming that
which the patentee had not in fact invented, or in omitting some element which was a valuable
or essential part of his actual invention.”).

69. See, e.g., ChriMar Sys., Inc. v. PowerDsine, Ltd., No. 01-74081, 2008 WL 2966470
(E.D. Mich. July 30, 2008) (construing thirteen terms in one order).

70. See generally Markman v. Westview Instruments, Inc., 52 F.3d 967, 997 (Fed. Cir.
1995), aff’d, 517 U.S. 370 (1996) (“[A] patent may be thought of as a form of deed which sets
out the metes and bounds of the property the inventor owns for the term and puts the world on
notice to avoid trespass or to enable one to purchase all or part of the property right it
represents.”).

71. See Colleen V. Chien, Reforming Software Patents, 50 HOUS. L. REV. 325, 332
(2012) (“[I]nternet patents are litigated about seven to ten times more often than average pat-
ents.”); Joel Rosenblatt, Apple Wins $290 Million From Samsung in Patent Retrial, BLOOM-

514 Michigan Telecommunications and Technology Law Review [Vol. 20:497

Furthermore, since there is no common standard for writing software
claims, courts may apply increasingly divergent standards to software pat-
ents during litigation. District Court judges see a wide variety of both crimi-
nal and civil cases. Even in non-software actions, generalist judges can feel
overwhelmed by a technical area that they may not feel comfortable fairly
evaluating. Judges have often expressed anxiety about adjudicating highly
technical matters in patent cases.72 Without a consistent expectation for
what software claims should look like, courts are likely to apply widely di-
vergent approaches to the interpretation of those claims, reducing predict-
ability for litigants and increasing litigation costs.

Construing the meaning of the claims for software functions can be es-
pecially difficult. Even if two different algorithms complete the same func-
tional steps, they are not necessarily equivalent. For instance, if one
algorithm is written in assembly code and optimized for a particular proces-
sor’s architecture, it will be significantly more resource-efficient than the
exact same function written in assembly code and optimized for another
processor’s architecture. If you compare these two algorithms in machine
code side-by-side, they will probably look significantly different.

Software claims are messy because of their functional nature.73 How-
ever, software abstraction itself is not the problem. There will always be
different levels of software abstraction, and that’s a good thing: increasing
levels of abstraction make it easier for programmers to create ever-more-
complex software functions. However, for the purposes of disclosure of a
patent, very high levels of abstraction (such as a requirements document) are
never going to be adequate disclosure for software patents, because they
only disclose the goals of the program instead of the manner in which those
goals are accomplished.

C. Software Inventions Are Not the Problem

Citing a mismatch between the economic realities of the software indus-
try and the patent system as it currently exists, some, including many

BERG (Nov. 21, 2013, 6:39 PM), http://www.bloomberg.com/news/2013-11-21/apple-wins-
290-million-from-samsung-in-patent-retrial.html.

72. See, e.g., Ass’n for Molecular Pathology v. U.S. Patent & Trademark Office, 702 F.
Supp. 2d 181, 225 n.46 (S.D.N.Y. 2010) (“This author, confronted by genomics and molecular
biology, also emphatically empathizes with Judge Hand’s complaint in Parke–Davis about his
lack of knowledge of the rudiments of chemistry.”); Parke-Davis & Co. v. H.K. Mulford Co.,
189 F. 95, 115 (C.C.S.D.N.Y. 1911) (“I cannot stop without calling attention to the extraordi-
nary condition of the law which makes it possible for a man without any knowledge of even
the rudiments of chemistry to pass upon such questions as these.”). Even the typically self-
assured Justice Scalia, in his concurrence in Ass’n for Molecular Pathology v. Myriad Genet-
ics, Inc., declined to sign on to the portion of the opinion detailing the finer points of molecular
biology, because he was “unable to affirm those details on my own knowledge or even my
own belief.” 133 S. Ct. 2107, 2120 (2013).

73. See supra Section III.A.

Spring 2014] Structure from Nothing and Claims for Free 515

software developers themselves,74 support a radical change. Recognizing
the costs involved with the U.S. patent system’s struggle with software pat-
ents, these critics advocate completely eliminating software and business
methods from the scope of allowable patentable subject matter.75 However,
this move would be a mistake. Software developments certainly can be pro-
foundly innovative and worthy of patent protection. Rather, the issues iden-
tified by critics of software patents are indicative of problems with the patent
system and its inadequacies in dealing with software inventions.76 Eliminat-
ing software patents as a response to difficulties with (relatively) new tech-
nologies would throw the baby out with the bathwater. This move would
make it more difficult for small businesses and individual inventors to find it
economically feasible to innovate, creating barriers in a field that relies
heavily on many small, incremental improvements for advancement.77

While many software developers, particularly in the Free and Open
Source Software (FOSS) community, are against the principle of patenting
software, the idea that some software should be available for anyone to use
is not mutually exclusive with a properly functioning patent system. Since
anything disclosed in an expired patent is considered part of the public do-
main, the patent system is one good way to distribute information about an
innovation to the public and ensure continued open access. Even before the
expiration of a patent, the owner could simply choose to dedicate the inven-
tion to the public or freely license the patent and decline to take action
against potential infringers.78 If FOSS developers engage in more defensive
patenting and licensing instead of avoiding the system completely, innova-

74. The programming community, in particular, often perceives issued patents as over-
broad, anti-competitive, and contrary to the promotion of innovation. See, e.g., When Patents
Attack!, THIS AM. LIFE (July 22, 2011), http://www.thisamericanlife.org/radio-archives/epi-
sode/441/when-patents-attack (noting that the software engineers interviewed loathed the pat-
ent system).

75. See Ben Klemens, The Rise of the Information Processing Patent, 14 B.U. J. SCI. &
TECH. L. 1, 36 (2008); Wendy Seltzer, Software Patents and/or Software Development, 78
BROOK. L. REV. 929 (2013); Andrew Nieh, Note, Software Wars: The Patent Menace, 55
N.Y.L. SCH. L. REV. 295, 330 (2010).

76. See Mark A. Lemley & A. Douglas Melamed, Missing the Forest for the Trolls, 113
COLUM. L. REV. 2117, 2172-73 (2013) (noting that patent trolls are simply opportunists ex-
ploiting loopholes in the system, which is especially prevalent in the IT industry due to “broad
functional claiming”).

77. See BESSEN & MEURER, supra note 63, at 167-68 (describing the benefit of innova-
tions from small inventors); Dan L. Burk & Mark A. Lemley, Policy Levers in Patent Law, 89
VA. L. REV. 1575, 1687-88 (2003) (describing software’s relatively low cost, low risk, cumu-
lative innovation process).

78. The Open Innovation Network is one example of an organization that is utilizing
patents to further the goals of the F/OSS movement. See OPEN INVENTION NETWORK, http://
www.openinventionnetwork.com/patents.php (last visited Apr. 9, 2014) (“Open Invention Net-
work® acquires patents and makes them available royalty-free to any company, institution or
individual that agrees not to assert its patents against the Linux System.”).

516 Michigan Telecommunications and Technology Law Review [Vol. 20:497

tions in software will be more readily accessible to the public and will de-
crease the litigiousness of the area.79

While software certainly has its own unique quirks, and, to some extent,
the patent system is still struggling with them, the underlying problem is not
the innovative qualities of software. Like any other technology, software
develops incrementally. Very few, if any, of these inventions are going to
be “pioneering” like Edison’s incandescent lamp or the Wrights’ flying ma-
chine. Most inventions in any industry necessarily depend on those that
came before—indeed, most software patents fall in line with the current
state of the research in the field.80 As long as software patents are disclosed
in a disuniform manner, they will continue to be evaluated inconsistently by
courts, thus creating uncertain boundaries and frustrating the delicate bal-
ance struck by the patent system between patentees and the public. These
issues are not an indictment on the value or desirability of the patentability
of software—instead, they are a sign that the patent system has not yet de-
veloped the right balance for software technologies.81 If software patentees
came to a common understanding of how to claim and describe their inven-
tions, invention clarity would improve greatly, and courts would be able to
better discern patent boundaries.

D. Professor Lemley’s Categorical § 112(f) Solution

In a recent article, Professor Mark Lemley advocates that courts to “take
seriously the dictate of [§] 112(f)” and analyze all software patents under the
means-plus-function doctrine.82 In order to be sufficiently definite under the
current legal doctrine, a software patent must disclose the structure of “a
computer programmed in a particular way,” or the software itself, to meet
the strictures of § 112(f).83 “All [a court] needs to do is to take the statute at
face value and limit functional claims to the particular way that the patentee
implemented that function . . . with a particular computer program.”84 Others
have similarly advocated for more stringent use of existing precedent.85 Pro-

79. See generally Jason Schultz & Jennifer M. Urban, Protecting Open Innovation: The
Defensive Patent License as a New Approach to Patent Threats, Transaction Costs, and Tacti-
cal Disarmament, 56 HARV. J.L. & TECH. 1 (2012) (arguing that open innovation communities
must engage the patent system in a defensive manner in order to maintain or increase their
presence in the innovation economy).

80. See Martin Campbell-Kelly & Patrick Valduriez, A Technical Critique of Fifty
Software Patents, 9 MARQ. INTELL. PROP. L. REV. 249, 281 (2005).

81. See id. (finding that only six out of fifty representative software disclosures con-
tained adequate disclosure).

82. Lemley, supra note 33, at 947-49.
83. Id. at 947.
84. Id. at 948.
85. See Elise S. Edlin, Computer Claim Disarray: Untangling the Means-Plus-Function

Doctrine to Eliminate Impermissible Functional Claiming in Software Patents, 28 BERKELEY

TECH. L.J. 417, 438 (2013).

Spring 2014] Structure from Nothing and Claims for Free 517

fessor Lemley’s proposal is attractive because it requires no action except a
pronouncement from the Supreme Court or the Federal Circuit. The doc-
trine is already well established in the case law, so the court could require
this new interpretation immediately, without any statutory modification.

While such an interpretation will help to provide a consistent evaluation
of software claims in the court system, Professor Lemley’s solution will not
provide a meaningful limit on functional claiming in software patents.
Courts will still struggle to construe software claims, and other structural
issues will remain. In particular, the issues identified with the Federal Cir-
cuit’s current application of the algorithm requirement for § 112(f) claims in
Part II of this Note will continue to cause instability and unclear patent
boundaries. Disclosure of an algorithm in prose or top-level block diagrams
may not impose any meaningful limit or structure on the boundaries of the
software invention. Professor Lemley appears to think that the Federal Cir-
cuit’s current approach to the algorithm requirement for § 112(f) claims is
doing a good enough job to appropriately limit the breadth of software
claims,86 but unless disclosure of the actual code or pseudo-code is required,
the algorithm requirement is unlikely to have any true limiting effect. To his
credit, Professor Lemley admits that the courts will still need to find the
right level of abstraction for each invention.87 However, the courts are just
one pillar of the patent system, and an overreliance on just one of those
pillars (and perhaps the slowest and most reactionary one) might result in
further imbalances.

IV. A WHOLE-SYSTEM VIEW

Part III explored the challenges software patents pose within the current
system and explained Professor Lemley’s argument for an expanded applica-
tion of the Federal Circuit’s algorithm requirement for all software claims.
While Professor Lemley’s proposal is a good start by requiring algorithm
disclosure as a part of any software application regardless of how the claims
are written, it does not go far enough.

This Note argues that all actors within the patent system should work
together to coordinate algorithm disclosure. In particular, the inventor
should be recognized as a critical agent to help the entire system move more
smoothly. This Note further proposes that an algorithm should be required
as part of the disclosure for a software patent application only in the form of
source code or pseudo-code at the point(s) of novelty. Since the appropriate
level of abstraction may vary from invention to invention, the patent system
must ultimately rely on inventors and patentees to disclose the algorithm at
the most appropriate level of source code or pseudo-code.

86. Lemley, supra note 33, at 950.
87. Id. at 961.

518 Michigan Telecommunications and Technology Law Review [Vol. 20:497

A. System-Level Duties: Leadership is Required from All Four Pillars of
the Patent System

While patent law policy analysts have seemingly endless suggestions for
Congress, the courts, or the U.S. Patent and Trade Office to implement, the
patentees themselves are often overlooked as the “fourth pillar” of the mod-
ern patent system.88 Patent holders can be extremely influential in the con-
tinuing evolution of the patent system by the way they pursue patents,
enforce valid patent rights, and license their inventions to others.89 Instead
of waiting on the political process to correct deficiencies in the system, pat-
entees and patent applicants pursuing software patents can shape the system
themselves by deciding to structure their future applications in a consistent
manner. This idea is neither radical nor impractical: engineers and develop-
ers often team up to develop industry-wide standards to improve the quality
of their products across the board.90 Since they are the actors best placed to
make the determination, software patentees should take responsibility for
disclosing an algorithm at the correct level of abstraction. While the judicial
system should impose a requirement of disclosure of an algorithm in con-
junction with a software patent application, this requirement will likely be
rendered meaningless unless patentees take collective responsibility for their
part in the quality of issued patents.

The executive branch also has a role in the overall solution. The
USPTO should work with patent applicants to encourage the disclosure of
source code or pseudo-code at the point of novelty as the “structure” of
software claims. This requirement would clearly define the scope of the
patent and give a good starting point for evaluating equivalent implementa-
tions. Disclosing code will aid overloaded examiners in determining the pat-
entability of a software application because they will have apples-to-apples
comparisons to make. Examiners are trained in making the judgments nec-
essary to determine patent eligibility, and the examiners assigned to software
applications will be qualified enough to understand the disclosed source
code and make a patentability determination.

Congress can certainly help, too: statutory clarification requiring code
disclosure at the point of novelty will help remove the courts from the tangle
of rules that they have developed over the years of struggling with functional
software claiming. Congressional action will be immensely influential be-
cause the courts and, likely, the USPTO will avoid making any sweeping

88. Colleen V. Chien, From Arms Race to Marketplace: The Complex Patent Ecosystem
and its Implications for the Patent System, 62 HASTINGS L.J. 297, 302 n.14 (2010).

89. See id. at 302-10 (describing the major ways that patent holders have historically
influenced the development of U.S. patent policy).

90. The IEEE Standards Association even regulates technologies in its standards that
are covered by patents. See UNDERSTANDING PATENT ISSUES DURING IEEE STANDARDS DE-

VELOPMENT, IEEE STANDARDS ASSOCIATION (2012), available at http://standards.ieee.org/
faqs/patents.pdf.

Spring 2014] Structure from Nothing and Claims for Free 519

changes in order to avoid surprising and disrupting the expectations of in-
ventors, as harmful as those expectations may be in the long run.91

B. Responsibilities of Patent Applicants: Disclose Code at the
Appropriate Level of Abstraction

This Note proposes that the patent system should require all software
patent applicants to disclose the source code or pseudo-code at the point(s)
of novelty. Part of the bargain struck by the patentee with the public, in
exchange for a limited-term monopoly, is the complete and enabling disclo-
sure of her invention. To meet her obligation to the public, the inventor
must ensure that her invention is disclosed at an adequate level of abstrac-
tion. The correct level of abstraction required will depend on the invention.
For example, an improvement to the efficiency of a compiler is going to be
an invention at a different level of software abstraction than a new
smartphone app. While flow charts and block diagrams are helpful to set the
stage for describing a software invention, they do not tell the whole story.
Even though a person who is skilled in the art may be able to take a flow
chart and a block diagram and independently implement the function, with-
out the source code (or pseudo-code), they are unlikely to be able to fully
recreate the invention. The multiplicity of ways to implement even a simple
function ensures that one recreating programmer may implement any given
function more efficiently than another.

As part of the whole-system perspective advocated by this Note, the
patent system must rely on applicants to disclose the code at the level of
abstraction that makes the most sense to describe the novel aspects of the
invention. At the point of novelty, the disclosure of the code will enable
another software practitioner to implement and practice the entire invention.
Accordingly, including code or pseudo-code for basic functions or functions
already well-known in the art is not needed, unless the patentee is claiming a
novel method of combining the existing art with the new development. It
should be unnecessary, for example, to include millions of lines of code for a
word processor if there are only one or two new features previously un-
known in the art.

Disclosure of the source code or pseudo-code will go a long way to
resolving the ambiguities that result from disclosure of the same algorithm in
prose or block diagrams. The novel part of a valid software invention is a
non-obvious improvement over what was previously known to the public.
In order to ensure that the public is able to fully understand and reap the
benefits of the improvement, the novel portions of the code must be dis-
closed. Accordingly, when the software community can more easily under-

91. See Festo, 535 U.S. at 739 (rejecting a major change to the interpretation of the
prosecution history estoppel doctrine, in part, because it would “disrupt the settled expecta-
tions of the inventing community”).

520 Michigan Telecommunications and Technology Law Review [Vol. 20:497

stand the invention, a court will be able to better determine the boundaries of
the software patents, making the entire system more clear and predictable for
software experts, courts, and businesses alike.

C. Objections

Some critics of requiring software to disclose code to adhere to a means-
plus-function test note that requiring code could severely narrow software
patents.92 However, the risk of under-inclusion by requiring source code or
pseudo-code is acceptable in the case of software inventions. While there is
a chance that requiring software patents to include code in the disclosure
will result in extremely narrow patents that will have reduced value for the
inventor, this is an acceptable outcome if the result is still increased clarity
in the field. The nature of innovation in the software field tends to be nar-
row, so it would make sense for the patent system to reflect that reality. The
inventor herself is not the only concern of the patent system: the Constitu-
tional goal is to “promote the progress of science and the useful arts,” not to
ensure all inventors are able to reap the maximum value from their patents.
This goal is best served by providing more clarity for the boundaries of
software patents.93 Any unfairly narrowed claims resulting from the disclo-
sure of code will be mitigated by the fact that the inventor of means-plus-
function claims is statutorily entitled to protection of the exact structure dis-
closed and its structural equivalents in an infringement action.94 Copyright
also provides protection for expressions of ideas through a particular
software implementation.95 Furthermore, as the anti-software patent advo-
cates like to note, patents are not required in the industry to encourage inno-
vation. The FOSS movement has enjoyed a healthy existence for a long
time. If the property rights to software are so inherently difficult to define
that they can’t be described in code, they are probably better off not being
claimed as a property right that can be asserted against others for twenty
years.

Further, some may criticize this approach exactly because disclosure of
code can occur at multiple levels of abstraction,96 creating an unpredictable
expectation for the inventor and courts. However, this solution reflects the

92. See, e.g., Robert E. Thomas, Debugging Software Patents: Increasing Innovation
and Reducing Uncertainty in the Judicial Reform of Software Patent Law, 25 SANTA CLARA

COMPUTER & HIGH TECH. L.J. 191, 235-36 (2009).
93. See BESSEN & MEURER, supra note 63, at 46-52.
94. 35 U.S.C. § 112(f) (2012). Even if software claims are not written in means-plus-

function format, an infringer who makes only insubstantial changes to the patented invention
will still be liable under the doctrine of equivalents. Charles Greiner & Co., Inc. v. Mari-Med
Mfg., Inc., 962 F.2d 1031, 1035-36 (Fed. Cir. 1992).

95. See, e.g., Apple Computer, Inc. v. Franklin Computer Corp., 714 F.2d 1240, 1253
(3d Cir. 1983).

96. See Kevin Emerson Collins, Patent Law’s Functionality Malfunction and the Prob-
lem of Overbroad, Functional Software Patents, 90 WASH. U.L. REV. 1399, 1406 (2013)

Spring 2014] Structure from Nothing and Claims for Free 521

nature of software innovation, which also occurs at multiple levels of ab-
straction. The inventor should disclose at the level that makes the most
sense for the invention, and if the inventors are included and viewed as one
of the pillars of the patent system, they are more likely to take their role in
ensuring the viability of the system more seriously.

CONCLUSION

Software plays a crucial role in our everyday lives, and the incremental
innovations that improve these technologies should be protected and incen-
tivized. However, inventors must still live up to the bargain they agreed to
when they applied for a patent by disclosing the source code for their inven-
tion at the points of novelty. This requirement will improve the predictabil-
ity of intellectual property and encourage innovators in the field to research
and experiment without fear of infringing a broad functional patent. As Pro-
fessor Lemley notes, limiting the issues with software patents (or at least
moving toward a solution) may end up saving software from complete inval-
idation under § 101.97 If inventors and the other three pillars of the patent
system can take responsibility for clarifying the boundaries of software pat-
ents, software innovations will continue to be protected by the system for
many years to come.

(describing reliance on algorithms to limit the role in software as a potential “rabbit hole to
infinite regress and madness”).

97. Lemley, supra note 33, at 962-63.

	Michigan Telecommunications and Technology Law Review
	2014

	Structure from Nothing and Claims for Free: Using a Whole-System View of the Patent System to Improve Notice and Predictability for Software Patents
	Holly K. Victorson
	Recommended Citation

	34769-mtt_20-2

