
Michigan Telecommunications and Technology Law Review

Volume 9 | Issue 2

2003

Snake-Oil Security Claims the Systematic
Misrepresentation of Product Security in the E-
Commerce Arena
John R. Michener
BBX Technologies

Steven D. Mohan
University of Phoenix

James B. Astrachan
University of Maryland Law School

David R. Hale
University of Baltimore School of Law

Follow this and additional works at: http://repository.law.umich.edu/mttlr

Part of the Computer Law Commons, Internet Law Commons, Privacy Law Commons, and the
Torts Commons

This Article is brought to you for free and open access by the Journals at University of Michigan Law School Scholarship Repository. It has been
accepted for inclusion in Michigan Telecommunications and Technology Law Review by an authorized editor of University of Michigan Law School
Scholarship Repository. For more information, please contact mlaw.repository@umich.edu.

Recommended Citation
John R. Michener, Steven D. Mohan, James B. Astrachan & David R. Hale, Snake-Oil Security Claims the Systematic Misrepresentation of
Product Security in the E-Commerce Arena, 9 Mich. Telecomm. & Tech. L. Rev. 211 (2003).
Available at: http://repository.law.umich.edu/mttlr/vol9/iss2/1

http://repository.law.umich.edu/mttlr?utm_source=repository.law.umich.edu%2Fmttlr%2Fvol9%2Fiss2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.law.umich.edu/mttlr/vol9?utm_source=repository.law.umich.edu%2Fmttlr%2Fvol9%2Fiss2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.law.umich.edu/mttlr/vol9/iss2?utm_source=repository.law.umich.edu%2Fmttlr%2Fvol9%2Fiss2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.law.umich.edu/mttlr?utm_source=repository.law.umich.edu%2Fmttlr%2Fvol9%2Fiss2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=repository.law.umich.edu%2Fmttlr%2Fvol9%2Fiss2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/892?utm_source=repository.law.umich.edu%2Fmttlr%2Fvol9%2Fiss2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1234?utm_source=repository.law.umich.edu%2Fmttlr%2Fvol9%2Fiss2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/913?utm_source=repository.law.umich.edu%2Fmttlr%2Fvol9%2Fiss2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.law.umich.edu/mttlr/vol9/iss2/1?utm_source=repository.law.umich.edu%2Fmttlr%2Fvol9%2Fiss2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mlaw.repository@umich.edu

"SNAKE-OIL SECURITY CLAIMS"
THE SYSTEMATIC MISREPRESENTATION

OF PRODUCT SECURITY IN THE
E-COMMERCE ARENA

John R. Michener, Ph.D.*
Steven D. Mohan, D.CS.**

James B. Astrachan, J.D., LL.M.***
David R. Hale, J.D.****

Cite as: John R. Michener, Steven D. Mohan,
James B. Astrachan and David R. Hale,

"Snake-Oil Security Claims" The Systematic Misrepresentation
of Product Security in the E-Commerce Arena

9 MICH. TELECOMM. TECH. L. REV. 211 (2003),
available at http://www.mttlr.org/volnine/Michener.pdf

INTRODUCTION .. 2 14
I. HISTORICAL ALLOCATION OF RISK BY THE LAW 215

II. CURRENT LEGAL STRUCTURES ... 215
A . W arranties .. 2 18

1. Express W arranties .. 218
2. Im plied W arranties .. 219

B . R em edies .. 220
III. HISTORICAL ENTRY OF COMPUTERS INTO BUSINESS SYSTEMS 221

* Dr. John R. Michener is Chief Scientist and Vice President for Business Development

of BBX Technologies. During his career, Dr. Michener has served as Chief Technology Offi-
cer of Enterprises Solutions, Security Architect at Novell, and Chief Technology Officer and
Vice President for Engineering at Wave Systems Corp. Dr. Michener has published extensively
and holds numerous related patents. Dr Michener may be contacted atjrmichener@ieee.org.

** Dr. Steve Mohan is the former Area Chairman of the College of Information Systems
& Technology at the Southern Colorado Campus of the University of Phoenix. He previously
served as Senior Systems Architect at WorldCom. Dr. Mohan, a retired senior U.S. Air Force
Officer, is an expert in implementation and integration of advanced technology. He has pub-
lished numerous papers and presentations on the subject. Dr Mohan may be contacted at
stevekathymohan@netzero.net.

*** James B. Astrachan is a principal of the law firm of Astrachan Gunst & Thomas, P.C.
He is an adjunct professor at the University of Maryland Law School where he teaches
Trademark Law and Unfair Competition and at the University of Baltimore Law School where
he teaches Mass Media and Intellectual Property Law. Mr Astrachan may be contacted at
jastrachan@agtalawyers. com.

**** David R. Hale is Associate Counsel for Intellectual Property and Privacy at Ameri-
trade Holding Corporation and an adjunct professor at the University of Baltimore School of
Law. Mr. Hale is a former associate at Astrachan Gunst & Thomas, P.C. Mr Hale may be con-
tacted at dhale@ameritrade.com.

212 Michigan Telecommunications and Technology Law Review [Vol. 9:211

A . Software Developm ent ... 224
B. Security Must be Designed in From the Start 229
C. The Security Problem and the Failure

of Existing Practices .. 231
D. Some Security Issues of e-Commerce Servers 238

IV . POTENTIAL SOLUTIONS ... 243
A. Possible United States Governmental Role 244
B. Potential Legal Solutions ... 249

C ON CLU SION .. 250

The modern commercial systems and software industry in the
United States have grown up in a snake-oil' salesman's
paradise. The largest sector of this industry2 by far is composed
of standard commercial systems that are marketed to provide
specified functionality (e.g. Internet web server, firewall, router,
etc.). Such products are generally provided with a blanket
disclaimer stating that the purchaser must evaluate the
suitability of the product for use, and that the user assumes all
liability for product behavior In general, users cannot evaluate
and cannot be expected to evaluate the security claims of a
product.3 The ability to analyze security claims is important

1. Because snakes do not exude oil, the term snake-oil has come to mean any prepara-
tion that has no real medicinal value and yet is fraudulently sold by traveling medicine shows
as a cure for many ills.

2. Other sectors have radically different liability environments; vendors of life and mis-
sion critical systems and software (medical devices, aircraft controls, etc.) are well aware of
their responsibilities and liabilities. Vendors/integrators of large custom systems, developed to
specific specifications created by knowledgeable specialists (the development contract would
clearly assign liability between the parties), also know their responsibilities and liability.

3. In the vast majority of cases, the vendor's processes and behavior have made it im-
possible for anyone to evaluate the product's security. Indeed, it is generally true that the
vendors lack of appropriate development processes and controls have made it impossible for
the vendors themselves to have a good understanding of the true security characteristics of
their products.

In 1997, the United States Government formed the National Information Assurance
Partnership (NIAP), available at http://niap.nist.gov, out of concern for the growing national
security vulnerability resulting from the industry's poor practices. NIAP promotes "the
development of technically sound security requirements for IT products and systems and
appropriate metrics for evaluating those products and systems. The long-term goal of the
NIAP is to help increase the level of trust consumers have in their information systems and
networks through the use of cost-effective security testing, evaluation and assessment." See
http://niap.nist.gov/niap/index.html. The National Security Agency, through the Information
Assurance Technical Forum (IATF), available at http://www.iatf.net, is now trying to provide
a framework to assess critical infrastructure components (critical infrastructure components
are functional security blocks, such as firewalls, enterprise authentication and authorization
servers, guards, intrusion prevention systems, etc. They may involve stand-alone blocks,
software modules that are loaded onto protected systems, etc.) and is planning on providing
guidelines on how to use these components. While NIAP/IATF have little impact in the

"Snake-Oil Security Claims

because a consumer may place unwarranted trust in the

security abilities of a web server (or other computer device) to

perform its stated purpose, thereby putting his own

organization at risk, as well as third parties (consumers,

business partners, etc.). All but the largest and most capable

organizations lack the resources or expertise to evaluate the

security claims of a product. More importantly, no reasonable

and knowledgeable person would expect them to be able to do

so. The normal legal presumptions of approximate equality of

bargaining power and comparable sophistication in evaluating

benefits and risks are grievously unjust in the context of

software security.4 In these transactions, it is far wiser to view

the general purchaser, even if that purchaser is a sizable

corporation, as an ignorant consumer

Hence, often purchasers accept what appear to be either im-

plied merchantability claims of the vendor or claims of

salespersons' made outside of the context of a written docu-

ment. These claims frequently have little, if any, basis in fact.

These standard commercial systems form the bulk of the criti-

cal infrastructure of existing Internet functionality and e-

commerce systems. Often, these systems are not trustworthy,

yet the use of these systems by misinformed purchasers created

massive vulnerability for both purchasers and third parties (in-

cluding a substantial fraction of both U.S. and international

citizens). The frequent disclosure of individual credit card in-

formation from supposedly secure commercial systems

illustrates an aspect of this vulnerability and raises serious

questions concerning the merchantability of these systems.

While it is impossible to avoid all risks, they can be reduced to

a very small fraction of their current level. Vendors have will-

fully taken approaches and used processes that do not allow

assurance of appropriate security properties, while simultane-

ously and recklessly misrepresenting the security properties of

their products to their customers.

commercial industry at this time, their evaluations and guidelines are likely to provide a

reasonable basis for the requests of users and the efforts of integrators in the future.
4. 3 MARY JANE FORAN, WILLISTON ON SALES § 20-36 (5th ed. 1996) [hereinafter

WILLISTON].

Spring 20031

214 Michigan Telecommunications and Technology Law Review [Vol. 9:211

INTRODUCTION

The authors provide an overview of important issues concerning
security-relevant functionality, including critical functionality for
security product merchantability. The authors also review certain
critical issues concerning vendor development and management
processes that are necessary for a vendor to have any understanding of
the security properties of his product. Unless a vendor takes
appropriate actions concerning these and related issues, the vendor has
little, if any, basis for claiming secure products. Thus, there is a high
likelihood that representations concerning security and the basic
merchantability of security-dependent functionality are misleading, at
best.

Two analogies may illuminate the security concerns. First, imple-
mentations of electronic signatures are also vulnerable to security
concerns and the true trustworthiness of the implementation may be far
lower than generally believed. Electronic signatures require "digesting"
of the transaction/message/authorization to be signed followed by
"signing" with a private key. In most implementations it appears possi-
ble for an attacker to substitute or compromise an authorization prior to
signing. In many cases, the signing key itself can be compromised, al-
lowing wholesale electronic forgery. Second, systems with inadequate
security properties are like tobacco products. Tobacco products cause
damage primarily to its users and those in the smoker's vicinity and
secondarily, to all who are dependent upon the tobacco user's health.
Systems with inadequate security properties have even greater damage
potential than tobacco because a broader scope of society may be af-
fected by inadequate e-commerce security. Innocent parties, be they the
end user, an organization, or a business, are placed at a substantial risk
of fraud by deficient products sold by willfully ignorant producers. At-
tacks against organizational databases all too often compromise
numerous credit card numbers and information, while attacks against
user PCs can compromise credit card information as well as user
names and passwords used by on-line systems for banking, stock trans-
actions, and health information.

Part I of this article provides a legal review of risk management,
and associated policy issues. Following this introduction, Part II dis-
cusses the existing legal structures. Part III discusses the technology
and associated security issues (to provide the reader with a reasonable
understanding of the technical and commercial context) and a short
discussion of security issues concerning e-commerce servers. Finally,
Part IV provides a) a general legal approach, b) a possible role for the
U.S. Government, c) potential solutions, and d) the conclusion.

"Snake-Oil Security Claims"

I. HISTORICAL ALLOCATION OF RISK BY THE LAW

Risk allocation is a standard function of business contracts and
even the most straightforward contracts contain risk allocation. For
example, a simple contract for the purchase of a single good or service
includes an inherent allocation of risk. First, the purchaser assumes that
the risk that the good is defective or the good will not fulfill the pur-
chaser's intended need. Second, the seller assumes the risk that the
purchaser will breach.

Like all contracts, contracts for computer security systems, ex-
pressed or implied, are governed by the law of contracts as applicable
in each state. In some cases, the Uniform Commercial Code (U.C.C.)
may create terms of the contract, such as warranties of fitness for a par-
ticular use. An initial step in any contracting arrangement is to
determine whether an enforceable contract exists, and if so, what is the
applicable law. Even though the parties have an expressed understand-
ing, a contract may not be enforceable due, for example, to the
application of the statute of frauds or statute of limitations.

II. CURRENT LEGAL STRUCTURES

Two major factors influence the law that will eventually be applied
to disputes regarding computer-related contracts. Not only do tradi-
tional concerns of jurisdiction have an effect, but the choice of which
of the several applicable laws to apply also plays a significant role.

Jurisdiction governs the location where a suit may be brought and
this determination of which jurisdiction's laws apply may be compli-
cated. The jurisdictional question becomes even more complicated
when one or more parties are international. Due to jurisdiction's com-
plex nature, it will only be briefly discussed.-

5. Many recent articles on jurisdiction focus on the Internet, but many of the concepts
discussed in the context of the Internet apply generally to information technology transactions.
This is because IT contracts are negotiated and agreed upon remotely, with parties potentially
in separate states or even countries never actually meeting face to face. Articles discussing
jurisdiction related to electronic transactions nearly universally acknowledge the difficulty in

determining controlling law. See, e.g. Michael A. Geist, Is There a There There? Toward

Greater Certainty for Internet Jurisdiction, 16 BERKELEY TECH. L.J. 1345 (2001) (describing
different tests courts have used to determine jurisdiction in electronic commerce cases); War-
ren B. Chik, U.S. Jurisdictional Rules of Adjudication Over Business Conducted via the

Internet-Guidelines and a Checklist for the E-Commerce Merchant, 10 TUL. J. INT'L &

CoMp. L. 243 (2002) (describing methods of obtaining jurisdiction in the e-commerce con-
text); Paul Schiff Berman, The Globalization of Jurisdiction, 151 U. PA. L. REv. 311 (2002)

(discussing the theoretical underpinnings for legal jurisdiction).

Spring 20031

216 Michigan Telecommunications and Technology Law Review [Vol. 9:211

As set forth below, factors for determining jurisdiction include the
residence of the parties, the predominance of "goods" versus "ser-
vices" provided under the contract, the existence of express or implied
warranties, the jurisdiction in which an action might be brought, and
which jurisdiction's laws apply.

States are contemplating, and have passed, laws that prohibit forum
shopping for issues involving electronic transactions. These laws, charac-
terized by proponents as "bomb-shelters" will limit a party's ability to
contractually choose a jurisdiction.6 For example, a California-based soft-
ware seller may no longer be able to haul a Connecticut customer into a
California court to litigate software issues, despite contractual language to
that effect. While generally aimed at preventing the application of the Uni-
form Computer Information Transactions Act (U.C.I.T.A.), these
provisions limit the ability of a nationwide entity to consolidate product
disputes in one court to increase efficiency.

The choice between applying either federal or state law (and if ap-
plying state law, which state law) must also be considered. Further,
state courts can and do interpret federal law in varying ways. Thus,
federal legislation can have different meanings and effects in different
states.

The laws of the various states vary widely in even the basic
framework through which computer-related contracts are evaluated.
For example, different courts and legislatures have examined computer
services and computer software contracts under common law,7 under
Article 2 of the Uniform Commercial Code (U.C.C.), 8 and, most

6. It appears that as of the date of this writing, only West Virginia has enacted the
"bomb-shelter" provision into law, although it is also being considered by other states. W. Va.
Code Ann. § 55-8-15 (Michie Supp. 2002). Iowa considered and ultimately defeated the provi-
sion. Uniform Electronic Transactions Act, 2000 Iowa Legis. Serv. Ch. 1189 (West).

7. See, e.g. RRX Indus., Inc. v. Lab-Con, Inc., 772 F2d 543, 546 (9th Cir. 1985) (noting
that whether a software transaction was to be treated as a U.C.C. controlled goods contract or
common law controlled services contract is determined on a case by case basis under Califor-
nia law).

8. The following cites analyze and apply Article 2 to computer transactions that involve
laws governing the sale of goods. Douglas E. Phillips, When Software Fails: Emerging Stan-
dards of Vendor Liability Under the Uniform Commercial Code, 50 Bus. LAw. 151, 157
(1994) (describing the emergent use of the U.C.C. in software transactions); see also Advent
Sys., Ltd. v. Unisys Corp., 925 F2d 670 (3d Cir. 1991) (applying the U.C.C. under Pennsyl-
vania law); Rocky Mountain Micro Sys., Inc. v. Public Safety Sys., Inc., 989 F. Supp. 1352
(D.Colo. 1998) (applying the U.C.C. under Colorado law); Architechtronics, Inc. v. Control
Sys., Inc., 935 F. Supp. 425 (S.D.N.Y. 1996) (applying the U.C.C. under New York law); Chat-
los Sys., Inc. v. Nat'l Cash Register Corp., 479 F. Supp. 738 (D.N.J. 1979) (applying the
U.C.C. under New Jersey law); Neilson Bus. Equip. Ctr., Inc. v. Monteleone, 524 A.2d 1172
(Del. 1987) (applying the U.C.C. under Delaware law); Richard Haney Ford, Inc. v. Ford
Dealer Computer Serv., 461 S.E.2d 282 (Ga. Ct. App. 1995) (applying the U.C.C. under
Georgia law); Sys. Design and Mgmt. Info., Inc. v. Kansas City Post Office Employees Credit
Union, 788 P.2d 878 (Kan. Ct. App. 1990) (applying the U.C.C. under Kansas law); USM

"Snake-Oil Security Claims"

recently, under the ostensibly9 sui generis framework set forth in the
U.C.I.T.A.' ° Additional laws may also apply. For instance, the
Magnussen-Moss Act" governs aspects of both warranties in consumer
transactions and, in the case of international transactions, international
multilateral or bilateral trade agreements. 2 It imposes limitations on
the form and content of written warranties for consumer goods. 3

Magnussen-Moss requires that a seller, depending on the protections of
the warranty, 14 designate its warranty as "full" or "limited."' 5 In
particular, a full warranty must require the seller to repair or replace a
defective product without charge, 16 and any disclaimer of consequential
damages must be conspicuous. 7 It appears, however, that Magnussen-
Moss may only cover the medium upon which software is delivered
and not the software itself.'8 Nonetheless, the same reasoning that
allowed courts to interpret software contracts under the U.C.C. may
allow the applications of Magnussen-Moss to software in the

Corp. v. Arthur D. Little Sys., Inc., 546 N.E.2d 888 (Mass. App. Ct. 1989) (applying the
U.C.C. under Massachusetts law); Delorise Brown, M.D., Inc. v. Allio, 620 N.E.2d 1020
(Ohio Ct. App. 1993) (applying the U.C.C. under Ohio law); M.A. Mortenson Co., Inc. v.
Timberline Software Corp., 998 P.2d 305 (Wash. 2000) (applying the U.C.C. under Washing-
ton law); Micro-Managers, Inc. v. Gregory, 434 N.W.2d 97 (Wis. Ct. App. 1988). But see RRX
Indus., supra note 7 (noting that software may be considered good under the U.C.C. or ser-
vices controlled by the common law).

9. See Leo L. Clarke, Performance Risk, Form Contracts and UCITA, 7 MICH. TELE-

COMM. & TECH. L. REv. 1, 4 (2001). Professor Clarke takes issue with the drafters of
U.C.I.T.A. on this point; Clarke criticizes U.C.I.T.A. for not taking a significant step away
from the structures and for its assumptions of common law and U.C.C. predecessor statutes.

10. MD. CODE ANN., COM. LAW. II § 22-102(a)(1 1) & 103(a) (2002); See Va. Code Ann.
§ 59.1-501.3 (Michie 2001).

11. 15 U.S.C. §§ 2301-2312 (1994).
12. International transactions pose an emerging problem in computer transactions both in

and out of the security fields. High bandwidth global computer networks allow for the world-
wide efficient distribution of software. For example, a software developer in Jakarta could
easily sell a "turn-key" credit card processing software package to a company in Iowa with
only electronic means. The supplier in Jakarta can take the order through the Internet, process
the Iowa firm's credit card payment through international credit card networks, and "ship" the
processing software to the Iowa company via the Internet-all without either party sending a
single piece of paper or even a CD containing the program.

13. 15 U.S.C. § 2301 (1994); see also Essex Ins. Co. v. Blount, Inc., 72 F.Supp.2d 722
(E.D.Tex. 1999) (refusing to apply Magnussen-Moss to equipment designed for commercial
use).

14. See id. at § 2304.
15. 15 U.S.C. § 2303 (1994).
16. Id. at § 2304(a)(1).
17. Id. at § 2304(a)(3).
18. Id. at § 2301 (1) (defining the subject matter of the statute as "tangible personal prop-

erty"). The authors know of no cases that comment on whether software is considered a
tangible item.

Spring 2003]

218 Michigan Telecommunications and Technology Law Review [Vol. 9:211

appropriate situation.' 9 In addition to the state and federal laws,
international laws and bilateral treaties may apply.20

Although not a key factor of this article, understanding the compli-
cated and sometimes conflicting laws that are applied in such disputes
aids in understanding the potential complexities of bringing a security-
related claim.

A. Warranties

Under the U.C.C., which governs contracts for software in most
states,2' there are two general categories of warranties: express and im-
plied.22 It is critically important in transactions related to electronic
security products that the responsibilities of the seller include ensuring
the proper functionality of the product. The traditional framework to
address such responsibilities is the warranties contained in the contract
along with the remedies provided for their breach. As discussed below,
these mechanisms fail in the context of electronic security products.

1. Express Warranties

Express warranties are created when the seller represents that the
product has particular features or qualities and where those qualities
are a basis for the purchase.23 In practice, such warranties are usually
effectively disclaimed in a blanket manner in most form contracts in
order to eliminate the possibility a seller might be held responsible for
the claims it makes about a product in promotional materials.2 4 This is
because many contracts specifically exclude any meaningful warranty
and are drafted to include an integration clause that recites that the
written contract is the final and complete statement of the agreement
between its parties, limiting any express warranties to those found ex-
plicitly within the contract itself. That way, if a salesperson made
promises that are not included in the contract, the contract shuts off any

19. See, e.g., PHILLIPS, supra note 8.
20. See, e.g., U.N. Convention of Contracts for the Sale of Goods, Final Act, April 11,

1980, U.N. Doc. A/Conf. 97/18, Annex 1 (1980).
21. See Phillips, supra note 8.
22. See U.C.C. § 2-313 (express warranties); U.C.C. §§ 2-314 and 315 (implied warran-

ties) (2000).
23. See U.C.C. § 2-313 (2000). U.C.I.T.A.'s language related to express warranties tracks

the U.C.C.'s closely. Compare U.C.C. § 2-313 with U.C.I.T.A. § 402 (2000).
24. See Dowty Communications, Inc. v. Novatel Computer Sys. Corp., 817 F.Supp. 581,

584 (D.Md. 1992) (citing U.C.C. § 2-316.1, Commercial Law Article, Annotated Code of
Maryland, in support of the proposition that "express warranties can be negated or limited to
those stated in the contract by express language to that effect").

"Snake-Oil Security Claims"

reliance by the buyer on representations made in promotional materials
or by sales representatives.25

2. Implied Warranties

The U.C.C. (and U.C.I.T.A.) provide three relevant implied war-
ranties. The first, and least important in this context, is the implied
warranty of title which provides that the seller has all the rights neces-
sary to sell the product or transfer ownership.26 Second, the U.C.C.
provides for an implied warranty of merchantability.27 This states that
the product sold is suitable for the ordinary purposes for which the
product is used. Third, where the seller has reason to know of a
particular use the buyer intends for the product, and the seller is aware
the buyer is depending on the seller's knowledge in selecting the
product to fulfill the buyer's need, the implied warranty for fitness for a
particular purpose arises.28 U.C.I.T.A. adds, as a subset of this warranty,
an implied warranty that all the components of a system shall function
together as an integrated system.29

Implied warranties may be disclaimed in contracts by the seller, at
least in non-consumer transactions. 30 Most contracts, especially form
contracts, are artfully drafted by sellers and contain disclaimers. Under
the U.C.C., disclaimers of a warranty of merchantability must mention
merchantability and must be conspicuous.3' Disclaimers of fitness for
particular purpose must be in writing and be conspicuous. U.C.I.T.A.
sets forth similar requirements.33 Under the U.C.C. and U.C.I.T.A.,

25. Id. See also 3 WILLISTON, supra note 4, at § 20-8 at 78-79; Compare Grooch v. E.I.
Dupont de Ne Mours & Co., 40 F.Supp. 2d 863 (W.D. Ky. 1999) (holding disclaimer in bold
and all capitals on back of bottle to be effective for express and implied warranties), and Min-
nesota Forest Products, Inc. v. Ligna Machinery, Inc., 17 F.Supp. 2d 892 (D. Minn. 1998)
(constructing inconsistencies between express representations and attempted disclaimer of
express warranties in favor of purchaser in absence of integration clause).

26. U.C.C. § 2-312 (2000); U.C.I.T.A. § 401 (2000).
27. See U.C.C. § 2-314 (2000); U.C.I.T.A. § 404 (2000).
28. See U.C.C. § 2-315 (2000); U.C.I.T.A. § 405 (2000).
29. U.C.I.T.A. § 405(c) (2000).
30. See U.C.C. § 2-316(2) (2000) (allowing disclaimer of warranties); U.C.I.T.A.

§ 406(b) (2000); but see MD STAT. ANN. COM. LAW 12-316.1 (prohibiting disclaimer in con-
sumer transactions).

31. See U.C.C. § 2-316(2) (2000).
32. See id.
33. U.C.I.T.A. § 406(b)(1). U.C.I.T.A.'s sections differ slightly in that they refer to exis-

tence in "a record" but these differences stem only from U.C.I.T.A.'s construct of a writing (in
U.C.I.T.A., generally referred to as a record) such that it includes writings that are only em-
bodied electronically.

Spring 2003]

220 Michigan Telecommunications and Technology Law Review [Vol. 9:211

however, in at least one jurisdiction, such disclaimers are ineffective in
the case of a consumer transaction. 3'

A seller will almost always attempt to disclaim implied warranties
when entering a contract. But, such disclaimers are not the only mecha-
nism by which a seller may avoid the financial consequences of the
product's failure. A seller may also limit the buyer's remedies.

B. Remedies

Even where the parties recognize a warranty, they may agree to
limit remedies if the warranty is breached.35 The contract may also limit
the amount of damages available and/or limit the availability of conse-
quential damages, such as the loss caused by the destruction of a
business.

36

Thus, a contract may provide that the only remedy available to a
buyer in the event the product fails is the repair or replacement of the
defective good.37 This provision will likely be binding (at least in the
absence of negligence 38) unless, and only unless, the remedy made
available "fails in its essential purpose. '39 This failure of essential pur-
pose requires more than simply the recognition that another remedy
would be better suited to make the injured party whole or that the in-
jured party would prefer a different remedy. '° Rather, the injured party
must have no remedy, or the remedy must be so insignificant as to be
essentially worthless.4' For example, a repair and replace remedy would
fail if the defective product could .not in fact be repaired or replaced in
a manner that would eliminate the defect and retain the essential func-
tion of the product.

If the essential function is not preserved, the remedies otherwise
available under the U.C.C. or U.C.I.T.A. apply.42 These include offset-
ting damages against the price, actual damages cased by the breach,

34. See MD State Ann., Comm; § 2-316.1, which provides, "The provisions of § 2-316
(allowing exclusion or modification of warranties) do not apply to sales of consumer goods, as
defined by § 9-109, services, or both." See Maryland Uniform Computer Information Transac-
tions Act (M.U.C.I.T.A.) § 406(i)(1) for a parallel provision.

35. U.C.C. § 2-719 (2000); U.C.I.T.A. § 804 (2000).
36. U.C.C. § 2-719 (2000); U.C.I.T.A. § 804 (2000).
37. 3 WILLISTON, supra note 4, at § 20-33 at 291-2.
38. Williston contends that in the event of negligence, all damages limitations are thrown

out as a matter of public policy. Id. at § 20-36 at 307 (advising that "[a] public policy argu-
ment should be maintained that the code can never be used to limit a recovery for an injury
produced by negligence").

39. Id. § 20-35 at 296.
40. Id. at 297.
41. Id.
42. U.C.C. § 2-719(2) and comment 1 (2000); U.C.I.T.A. § 804(b) (2000).

"Snake-Oil Security Claims"

and incidental and consequential damages.43 But, a careful seller will
contractually limit these damages in a non-consumer transaction, 4 so• 41

long as such limitation is not unconscionable.
A damage limitation, however, is unlikely to be considered

unconscionable in a commercial, non-consumer context, because
courts treat the two parties as though the two commercial contracting
parties have roughly equal bargaining powers and levels of• • • 46 • 47

sophistication. This assumption, is in fact misplaced because the
buyer does not and cannot have access to the information required. For
instance, the buyer does not have the information necessary to assess
the risk of consequential damages that may arise from a security
product's failure.48

Courts, then, should be required to examine and evaluate the rela-
tive strength of the customer's bargaining power both on the basis of its
sophistication and its reasonable and ready access to critical informa-
tion withheld by the vendor.

III. HISTORICAL ENTRY OF COMPUTERS

INTO BUSINESS SYSTEMS

The personal computer has evolved over the past 30 years from a
hobbyist's plaything to a critical cornerstone of modern business,
commerce, and everyday life. According to a recent Harris Interactive
survey, two-thirds of United States adults consistently access the
Internet. 9 In the same time period, systems running UNIX developed
from time-sharing systems in engineering environments into
engineering workstations and, then, into high performance servers.
Both workstations and servers are critical components of the Internet
and related business systems. The personal computer and its associated
software, in combination with UNIX and its associated software, have
grown to dominate the computing and the data processing industry

43. U.C.C. § 2-71 Ito 719 (2000).
44. 3 WILLISTON, supra note 4, at § 20-33 at 290; Aquascene, Inc. v. Noritsu Amer.

Corp., 831 FSupp. 602, 604 (M.D. Tenn. 1993).
45. U.C.C. § 2-719(3) (2000); U.C.I.T.A. § 804(c) (2000).
46. 3 WILLISTON, supra note 4, at 303, 307.
47. Courts have raised this assumption to the status of a rebuttable presumption which

requires a tougher evidentiary standard. See 3 WILLISTON, supra note 4, at § 20-35; Siemens
Credit Corp. v. Marvik Colour, Inc., 859 F.Supp. 686, 695 (S.D.N.Y. 1994); Am. Dredging Co.
v. Plaza Petroleum, Inc., 797 F.Supp. 1335, 1339 (E.D.N.Y. 1992).

48. See supra Section III; see also Clarke, supra note 9, at 54.
49. Harris Interactive Poll # 18, April 17, 2002, at http://www.harrisinteractive.com/

harris-poll/index.asp?PID=295 (last visited Mar. 21, 2003).

Spring 2003]

222 Michigan Telecommunications and Technology Law Review [Vol. 9:211

(e.g. Microsoft Windows / NT / XP families on the client and server
side; and, Sun's Solaris, HP's HPUX, IBM's AIX, BSD, and Linux on
the UNIX side).50

While more attention has been paid to system safeguards in the
server environment, that level of attention, and its resulting capabilities
and integrity, have not matched the needs of such a critical component
of the infrastructure. The Internet is a descendent of the ARPANET, a
research effort of DARPA (Defense Advanced Research Projects
Agency, an agency of the U.S. Government Department of Defense in
the 1970's and 1980's) and the academic community.5' The original
Internet protocols" were not designed for security or integrity; they
were designed for simplicity and robustness in the event of random
communication node failure. The protocol's ability in the face of delib-
erate electronic attack to preserve its security and integrity, let alone
robustness, is deeply flawed. 3 The basic IP protocols were designed to
enable data packets to be efficiently routed from sender to receiver in
the face of unreliable communications networks, but they were not de-
signed to deal with security compromises. They do not, in general,
provide any defense against active address manipulation/forgery, do not
detect malicious servers and routers, and do not provide any level of
integrity assurance. The implementation of the IP naming and lookup
system is too vulnerable to directed attacks against the top nodes.54

Building trustworthy business processes upon the foundations of
untrustworthy PC-based clients, vulnerable servers, and a weak Inter-
net infrastructure is dauntingly difficult and requires great care and
knowledge. While it is possible to provide reasonable security, all too
often the commercial/state-of-the-art (as opposed to academic) level of
computer equipment and software implementation leaves the user quite

50. See Gartner Dataquest or the U.S. Business Reporter http://www.activemedia-
guide.com/pc-mrkt.htm for the exact breakout of the ever-shifting market share wars. Essen-
tially, CompaqTM, Dell Tm, GatewayTm , Hewlett Packard TM , and IBMTM dominate personal
computer sales. IBM T , Hewlett Packard TM , Sun Microsystems TM, CompaqTM , and SiemensTM
dominate the midrange server market while IBM TM dominates the mainframe space. Micro-
soft M desktop operating systems (Windows, etc.) and software such as Microsoft Office M

retain 96% of the office suite software market.
51. Barry M. Leiner, et al., A Brief History of the Internet and Related Networks, at

http://www.isoc.org/internet/history/cerf.shtml (last updated Nov. 18, 2001).
52. The Internet Protocols are a set of rules or languages that govern how computers

communicate. They were designed to automatically work around damaged communications
links or failed systems so that the networks would be robust when faced with extensive physi-
cal damage. They were not designed to be robust against directed corruption of the platforms
that run the Internet protocols.

53. Peter G. Neumann, Practical Architectures for Survivable Systems and Networks, 63-
66 (2000), at http://www.csl.sri.com/-neumann/arl-one.pdf (last visited Mar. 21, 2003).

54. See id.; See also Bruce Schneier, Secrets and Lies, Digital Security in a Networked
World 186 (2000).

"Snake-Oil Security Claims"

vulnerable to theft, corruption, misuse, or destruction of confidential
information.5 Indeed, many alleged security measures actually provide
no resistance whatsoever to a knowledgeable attacker. As an example,
if a hacker penetrates a system and inserts a Trojan horse (a program
that purports to have one function but has hidden back doors or com-
promise-enabling functionality) to "take over" a given system, the
hacker can utilize the systems' encryption functionality (supposedly a
strong security protection) and other security measures such as inter-
nally held passwords to "authenticate" itself to other parts of the
internal or external system, thus helping to corrupt other systems or
transactions.

In truth, such security measures serve only to provide a mistaken

belief in the security of the systems. Vendors, who do or should know
better, are careful to enforce the user's illusion because it increases the
sale of their products and services. The typical hype concerning
"secure servers" or "secure browsers with 128-bit encryption" is
familiar. The user, usually lacking the knowledge to assess their
vulnerability to attack, typically accepts the assurances of the vendor

or integrator. The vendors usually protect themselves from liability
behind blanket disclaimers, which typically make the user assume all
liability for failures, even though the user does not have the necessary
expertise or information to evaluate the vendor's claims. System
failures frequently result in losses by third parties, such as banks or
credit card holders whose accounts were compromised.

The vendors of many e-commerce systems are the electronic
equivalent to builders of safe deposit vaults whose back wall (behind
the deposit boxes) is foil-coated drywall (rather than the requisite con-
crete and steel), thereby easily permitting a knowledgeable thief (with
very modest and available tools) to enter and empty all the safe deposit
boxes. These products (including consumer e-wallets, or even more so,
merchant e-commerce systems that capture and maintain consumer
financial information such as credit card numbers in the same system

that interfaces to the user) do not provide security against rudimentary,
let alone reasonably sophisticated, attacks. While both parties are un-
aware of their respective vulnerabilities, the purchaser of the vault has

55. SCHNEIER, supra note 54, at 156 (discussing Trojan horses).
56. Vendors have little incentive to conduct reasonable, let alone comprehensive, security

reviews of their products. They want to believe that all commercial products are equivalently
vulnerable and that the smoke and mirrors of their marketing staff's are reality. As long as they
face no risks or costs from such behavior, they have no incentive to change their deceptive
ways. See SCHNEIER, supra note 54, at 335-338.

Spring 2003]

224 Michigan Telecommunications and Technology Law Review [Vol. 9:211

not assumed responsibility, whereas the e-commerce user has inequita-
bly assumed liability via product disclaimers.

It is the position of the authors that such products a) should not be
viewed as merchantable because of the security deficiencies, and b)
vendors are willfully and recklessly committing a tacit fraud upon their
purchasers. The manufacturers of the "vaults" should be liable for both
their consumers' losses and the losses of third parties who place mis-
taken credence in the assurances of product safety.

A. Software Development

The complexity of software grows with the volume of active code
and the number of functions in the program.57 Initially, programs that
contained hundreds of lines of active code and a small number of func-
tions were considered large. The general classification of "large" has
since changed to include programs containing hundreds of thousands
of lines, thousands of internal functions, and is now further changing to
include programs containing millions of lines of code and even more
functions." The software development community continually demon-
strates the immaturity of software through the rapidity with which it
adopts, changes, and abandons tools, processes, and languages, and its
response to the marketing and spin of self-interested vendors and true
believers in search of the "magic bullet."

Large-scale software (even if defined as only containing a few tens
of thousands of lines of active code) has never been fault-free, and it is
unlikely that such a desirable situation will ever occur. Industry

57. Counting the sheer numbers of lines of code was the first (and probably the weakest)
method of determining the complexity of software. Though it is intuitively reasonable to claim
the more lines of code, the more complex the software, many of the lines are generally "no
op" lines which represent information/documentation about the code functionality, but
perform no operation. A modem system for establishing the complexity of software, and
hence the probable cost, was established by Capers Jones and is called function or feature
point analysis. This method is dependent upon identifying five elements in the code: input,
outputs, inquiries, internal stores of data, and external references to data. See The David
Consulting Group, Estimating Software Earlier and More Accurately, at http://
www.davidconsultinggroup.comiarticles/pbestart.htm (last visited Mar. 29, 2003) for an in-
depth discussion of the system.

58. Software program size has grown in direct proportion to a) the availability of hard-
ware direct and virtual memory, and b) the increasing number of functions the software is
supposed to perform. In addition to the five basic elements identified, supra text accompany-
ing note 57, function/feature points now include: data communications, distributed data
processing, performance, heavily used configurations, transfer rates, on-line data entry, end-
user efficiency, on-line updates, complex processing, reusability, installation ease, operational
ease, multiple sites, and technologies that facilitate change. By 1998, major U.S. Department
of Defense software systems contained about 300,000 function/feature points which was
roughly equivalent to 27 million lines of code. The code growth phenomenon has continued.
See Caper Jones, Sizing Up Software, SCIENTIFIC AMERICAN, Dec. 1998, at 104.

"Snake-Oil Security Claims"

representatives and professionals believe that a) there is no known way
of writing large scale software without defects,59 b) logical operation of
most software systems are not adequately documented,' and c) it is
unreasonable to expect companies to build and maintain documented,
fault-free systems and applications. 6

' They are indeed correct!
Unfortunately, we have to live with software defects in operating
systems and applications that we use. While the existence of software
defects is an abysmal fact of life, the number and severity of software
defects is something that the software manufacturers can substantially
control, were they motivated to do so. If software for life safety
systems (e.g. those that control aircraft, automotive braking systems,
hospital monitoring systems, etc.) could not be produced with few or
no software defects, then perhaps the standard commercial vendors
could be excused from an evidentially unattainable goal. However, the
mission critical software developers do, indeed, attain the few or no
defects goal.62 Designing software to minimize software defects is a
known, but all too infrequently used, process. Similarly, since the
beginning of the PC days, software vendors knew that coding

59. Many of these systems are so large (exceeding several hundred million lines of code)

that no single individual understands either the whole system or the relationship of a given
part to the whole system. Since the bulk of these systems interface to a large number of other

equally complex systems, often in complicated, tightly coupled ways, comprehensive testing
of the system is neither feasible nor undertaken.

60. This problem is as common as dirt for several reasons: a) programmers want to write

code, not document code, b) if the code isn't documented, it provides a certain level of "job

security" since the original programmer will likely be called upon to fix any error or add any

functionality to the software, and c) if the development of the code is suffering from normal

schedule compression, then management will forgo code documentation and, instead, have the
programmers continue to just write functional code. See Software Program Managers Net-
work, SPMN Software Development Bulletin #3, Dec. 31, 1998, at 7, at http://www.spmn.coml

lessons.html (last visited Mar. 29, 2003) [hereinafter SPMN].
61. Building and maintaining large-scale systems is often quite counterintuitive. See

Chris Verhoef, The Realities of Large Software Portfolios (Feb. 24, 2000) (unpublished manu-

script, on file with MTrLR), available at http://www.cs.vu.nl/-xlsp/lsp.html. One measure of
maintainability is the so-called ripple effect--defined as the number of separate code areas

that have to be changed to effectuate a single modification to the original code. One study
found that each modification leads to about 300 other modifications. See G.M. WEINBERG,

QUALITY SOFTWARE MANAGEMENT: VOLUME 1 SYSTEMS THINKING (Dorset House, 1992).

This leads to a combinatorial explosion, see infra note 89.
62. 90% of the software errors can be found by inspections before the first test case is

run. Inspections, if done correctly, are hard work, requiring demanding attention to software

structure, each individual detail in the software itself, and a significant amount of time. It is a
hard task to find the people who can and will do the inspections. Unfortunately, most compa-

nies don't do many inspections, and some do none at all. Robert L. Glass, Inspections--Some
Surprising Findings, COMMUNICATIONS OF THE ACM, April 1999, at 17.

Spring 20031

226 Michigan Telecommunications and Technology Law Review [Vol. 9:211

guidelines minimize the impact of software defects.63 Unfortunately,
these guidelines are rarely followed.

The classic model of the Software Development Life Cycle
(SDLC) illustrates the steps to create functionally viable software.
First, system requirements are obtained from the customer. Second, a
functional baseline/system design is created. Third, software require-
ments are developed. Fourth, a preliminary software design is built.
Fifth, a detailed software design is generated. Sixth, the actual coding,
divided into software modules (or units), is completed. At this point,
individual units are usually tested for stand-alone functionality. Sev-
enth, the individual units are then integrated. Since different software
developers typically utilize their preferred strategies in developing an
individual software unit, the disparate units can prove non-functional
when mated with the rest of the overall program, requiring redevelop-
ment of a given unit.6' Eighth, once the entire program is operational, it
is then tested as a system for functionality. Ninth, the customer begins
to use the software. Finally, as the customer utilizes the software, de-
fects are identified and corrective actions ar& taken to eliminate the
defects and/or improve the functionality of the code.

This model, typically called the "waterfall" model, requires a thor-
ough understanding of the product requirements by both the customer
and the system developer. Unfortunately, commercial software vendors
frequently do not understand the customer's business model and re-
quirements," and customers may not know what their business model
and requirements will be once they implement new technology.66 In
many cases, customers cannot even adequately explain how they cur-
rently do business. Computer system analysts, upon investigating and
documenting the customer's business processes, are often faced with a
customer who sincerely disbelieves what has been found. The sheer
complexity of some modern business processes effectively defies

63. See Jerome H. Saltzer and Michael D. Schroeder, The Protection of Information in
Computer Systems, PROCEEDINGS OF THE IEEE 1278, 1282 (1975) (discussing the importance
of implementing guidelines in the development of computer security systems).

64. A Survey of Major Software Design Methodologies, at http://userpages.umbc.edu/
-khoo/survey2.html [hereinafter Methodologies Survey].

65. Vendors commonly send in both marketing and technical teams to ascertain a given
business' needs in order to match those needs to the product and/or services that the vendor
sells. Modem business models are sufficiently complex that the vendor will offer (as a set of
credentials) a history of where they have successfully sold products and services in a given
industry, implying that that all of the trial and error in supporting a given business model has
now been eliminated.

66. Any change, be it managerial or technological, ordinarily manifests unintended con-
sequences. Fixing a given piece in the "supply chain" can cause numerous problems
elsewhere, much like being a teenager and putting a really impressive engine in the hot rod,
only to discover that the rest of the drive train must now be upgraded.

"Snake-Oil Security Claims"

analysis. By the time a set of processes is analyzed, requirements gen-
erated, and the desired software developed, utilizing the SDLC
waterfall model, the business (and hence the software) requirements
have drastically changed.67 In such an environment, a rapid prototyping
process is frequently used, and high-level tools are used to assemble
basic system functionality so that the customer can interact with it and
determine what their requirements and criteria will be. In theory, once
these requirements and criteria are determined, the development proc-
ess should return to the beginning and do a full development, aided by

61a better understanding of the business process.
Since the explosive growth of the Internet, pressure from share-

holders and management to produce products on "Internet Time" have
increased to an incredible level.69 Although the bubble has burst relative
to the "dot.com" Internet explosion, the time to market pressures have
only marginally relaxed. Frequently, the up-front time (meaning SDLC
steps one through five) to design the system structure before the devel-
opers start coding has been massively truncated. 70 Rapid prototyping
tools are used to assemble a product prototype, which is repeatedly
modified until the customer and/or the sales and marketing department
approve. The prototype is then turned over to the development teams
for fleshing out, cleaning up, and optimization. Indeed, one school of
developers employ "Extreme Development", the rapid spiral develop-
ment where incremental modifications and extensions are made to the
project code base as new requirements are added, old requirements are
modified, and earlier errors are found and fixed.7' It thus jumbles the
SDLC steps to decrease production time. It is Dr. Mohan's opinion that
there is no reason to believe that the success of Extreme Development
practices, in dealing with very large or mission critical development

67. See Diane Wilson, Thyra Rauch, & Joeann Paige, Prototyping in the Software Devel-
opment Cycle, at http://www.firelily.com/opinions/cycle.html (last visited Mar. 20, 2003).

68. Id.
69. Everybody believed that if they were not first in the Internet arena, then they would

lose. This reasoning permitted many individuals to convince investors, stockholders, bankers,
managers, programmers, marketers, etc. that they better take the plunge now-later would be
too late. This resulted in the "dot.com bubble" and all of its sad outcomes (see Venture Capital

Goes Back to the Basics, at http://news.com.com/2009-1017-887703.html?tag=cd-mh (last
visited Mar. 20, 2003).

70. Worse, the time is not only truncated, the required planning simply isn't done. See
SPMN, supra note 60, at 9.

7 1. The idea of extreme programming was born out of a) the need to quickly communi-
cate ideas and approaches in writing code for a given software project, and b) to see that the
(small) teams were continuously productive at a sustainable pace. See Ron Jeffries, What
is Extreme Programming? (Nov. 8. 2001), at http://www.Xprogramming.com/xpmag/
whatisxp.htm (describing in depth the values and virtues of this design methodology) (last
visited Mar. 16, 2003).

Spring 2003]

228 Michigan Telecommunications and Technology Law Review [Vol. 9:211

projects, will equal that of earlier practices. This is especially true for
projects that have real security or survivability requirements (Dr. Mich-
ener strongly concurs on this statement).

Unfortunately, neither the SDLC waterfall model nor the rapid
prototyping model will ever functionally succeed if development time
is cut by more than 25% of a reasonable schedule (reasonable being
based upon the documented history of how much time it takes to
typically build an equivalent program). 73 Further, even when the
schedules are uncompressed, the success rate (defined as slightly less
than 200% of budget and 200% of schedule) of large software projects
has been dismal, typically around 9%.74 The other 91% of the projects
are either abandoned outright or renamed and started over.75

Ignoring this data, development schedules have been compressed
well beyond the 25% point76, design and code reviews have been re-
duced or eliminated77 (effectively eliminating the opportunity to
discover and correct both design and coding errors), testers have been
turned into developers (thus reducing further the possibility of finding
and correcting the more subtle design and coding failures), and test
time has been minimized in the rush to market.79 Obviously then, large
numbers of software defects and design oversights are shipped to cus-
tomers. Certain software organizations are famous for the shipment of
functionally defective (bug laden) code." The software organization
euphemistically refers to these bugs as "features" of the system.8 ' This

72. Extreme programming relies upon the fact that two or three individuals are assigned
to develop a set of functions or features of the code. Though this might provide "rapid proto-
typing" of a system, it is difficult to ascertain exactly who is responsible for which function.
Further pressure to clarify the situation or ascertain which coder is responsible typically only
exacerbates the problem.

73. BARRY W. BOEHM, SOFTWARE ENGINEERING ECONOMICS 467 (1981).
74. J. C. Whitmarsh, Letter From The Editor, CIO, Nov. 15, 1995, at 10.
75. Id.
76. There is a remarkably consistent cube-root relationship for the most effective sched-

ule for a single-increment, industrial grade software development project. Barry Boehm,
Industrial Software Metrics Top 10 List, Number 2, IEEE SOFTWARE, Sept. 1987, at 84.

77. Glass, supra note 62, at 17.
78. Often such actions are referred to as a software "death march" - large amounts of

time and available bodies are spent on generating functional code. Meanwhile, no effort is put
towards testing. See SPMN, supra note 60, at 20.

79. See id.
80. Windows 1.0 was considered "buggy", crude and slow. See Marry Bellis, Part 2: Get-

ting the Bugs Out of Microsoft Windows, at http://inventors.about.com/ibrary/weekly/
aa080499a.htm (last visited Mar. 16, 2003). Other operating system vendors argue against
MicrosoftTM because of the Windows' historical and current lack of reliability. See also John
Kirch, Microsoft Windows NT Server 4.0 versus UNIX, at http://kirch.net/unix-nt/ (last up-
dated Aug. 7, 1999).

81. Complex systems of dynamically interacting components often behave in ways that
their designers did not intend. These systems will display emergent behavior-behaviors not

"Snake-Oil Security Claims"

is done to blunt criticism by implying that the particular defect was
deliberately designed into the system. Ironically, the software organiza-
tion is actually correct! By not making the effort to clean up the code,
the original design (or lack thereof) and its defects, are retained8 2

Though the users are often painfully aware of this fact, there is little
that they can do, other than to report the functional defects as they are
found.

This process also directly applies to security defects. By not ap-
propriately considering security issues in the architecture and design,
the ensuing security oversights and weaknesses are designed in. 3 Cus-
tomers suffer losses, quite often large losses, due to these software
defects and design oversights. The competitive nature of the industry
places massive roadblocks in the path of responsible software manufac-
turers. Manufacturers lose if a product is shipped late, but are not held
responsible for damages for shipping defectively designed and imple-
mented products. As any experienced software developer can attest,
any schedule and cost constraint can be met, where quality is sacri-
ficed.8"

B. Security Must be Designed in From the Start

Executives, managers, and software developers in the software and
systems industry want to believe that security is similar to other system
functionalities-a module you snap into an existing system to make it
secure by adding appropriate security functions. Knowledgeable secu-
rity professionals know that this is not true. 5 Experienced security

intentionally designed into the system but that emerge from unanticipated interactions among

components. See National Research Council, Making IT Better 113 (2000), available at

http://www.nap.edu/html/makingIT._better/ch3.html (last visited Apr. 11, 2003).

82. By not making the effort to clean up any errors, all of the original errors remain. See
Glass, supra note 62, at 17.

83. The same is truer for issues of system survivability, which is a harder issue to deal

with than security! Survivability is the ability of the system to continue functioning, with

reduced performance, even when faced with a wide variety of failures including, but not lim-

ited to: failures of communications networks; security attacks on one, many, or all available

systems; and, denial of service attacks to prevent system access, power failure, natural disas-

ters, and physical attacks against system facilities. Some of these failures may be maliciously

managed; malicious actions differ from random and statistical types of errors found in noisy

environments because they are deliberate attempts to attack the weakest component of the

system to compromise the entire system. Motivations for such attacks can range from revenge

to sheer greed. Issues of survivability will not be further discussed here.

84. If no one cares about the quality of the software, then any insignificant effort is suc-

cessful. SPMN, supra note 60, at 15 (pointing out that software projects rarely have

qualitative, let alone quantitative, quality goals).
85. See SCHNEIER, supra note 54, at 127-130.

Spring 20031

230 Michigan Telecommunications and Technology Law Review [Vol. 9:211

professionals know that their advice will likely be ignored." It is im-
possible to add security to an existing system by adding a security
module on top of it;" security must be appropriately considered and
implemented from the beginning when system functionality is parti-
tioned, appropriate modules and sub-systems are designed, appropriate
routines are developed, and internal and the external system interfaces
are specified, designed and tested.8" Security is difficult because it is
necessary to provide assurance that the security functionality is exactly
what it is specified to be, and nothing more. The nothing more is the
hard part.89

86. See Alan Chmura & Richard Vireday, Managing Software Development, 6 COMPUTER
BITS 12, December 1996, available at http://www.computerbits.comiarchive/1996/1200/
softdevl .html; and see SPMN, supra note 60. Software program managers are rarely rewarded
for surfacing key risks (e.g. security, safety, schedule, etc.). Not only are such risks ignored, no
funding or schedule reserves are set aside to deal with the risks when (not if) they surface.
Instead, the software products are pushed out the door with the motto that "any problems
found will be fixed during the next release" (which is obviously someone else's job). Unfortu-
nately, security fixes cannot be added in afterward. See supra note 85.

87. A cryptographic module can be added to a system, but this does not add security. It
does not deal with a category of attacks that take the data once it has been decrypted, com-
promise the key, compromise the user password, compromise the cryptographic module itself,
insert unauthorized users, etc. See NEUMANN, supra note 53, at 72-74; see also Paul H.
Merrill, NOT the Orange Book §§ 1-2 (1992).

88. See Department of Defense Trusted Computer System Evaluation Criteria, DoD
5200.28-STD, (December 1985). In Part 1, Critieria, colloquially referred to as the "Orange
Book," the specifications of the various classes require that this functionality be engineered in.
Governments first faced the security implications of computers and the vulnerabilities they
presented. The U.S. Government funded large research programs to understand the issues and
develop solutions. This governmental work has provided the theoretical basis for the develop-
ment and understanding of secure systems since that time. In the 1980's, this governmental
work resulted in the U.S. Government Trusted Computer System Evaluation Criteria (TCSEC)
and moved in the 1990's to the Common Criteria, an internationally accepted security evalua-
tion basis. B I and B2 are TCSEC categories for computer systems. Unlike the "commercial
grades" of CI and C2, the B categories require the support of "Mandatory Access Control"
(MAC) labels on data, memory, communications channels, devices, etc. MAC functionality is
necessary to confine the damage from malicious or defective software. See Ross ANDERSON,
SECURITY ENGINEERING: A GUIDE TO BUILDING DEPENDABLE DISTRIBUTED SYSTEMS 527
(2001) (providing an overview of the criteria).

89. Attempting to prove that any arbitrary state of the hardware and software system will
NOT result in a given form of unwanted behavior is prohibitively difficult because increasing
the number of entities that can be combined creates a huge number of possible combinations.
For example, arbitrarily combining three lines of code into possible coalitions results in five
coalitions. Among five lines it becomes 52 coalitions, among 10 lines it is 115,975 coalitions,
and among 20 lines it is 51,724,156,235,572 coalitions, ad nausem. Today's software runs to
millions of lines of code that can be arbitrarily multiplied against many different states of the
hardware. Simply stated, no one performs comprehensive testing to prove a lack of unwanted
behavior-they cannot afford the time or the expense. The discussion in MERRILL, supra note
87, at Section 1, clearly shows functional partitioning and security engineering being required
at the onset of system and procedure development. See also MICHAEL HOWARD & DAVID
LEBLANC, WRITING SECURE CODE 20 (2002).

"Snake-Oil Security Claims"

The development and implementation of any new technology
ordinarily suffers from unintended consequences. Although it is
generally easier to verify the presence of specified functionality, it is
usually very difficult to provide assurance that the system does not
have unspecified behavior and is intrinsically safe. As previously
discussed, assurance of proper behavior in complex systems must be
designed in from the beginning. Since security professionals are rarely
provided this opportunity, they are typically reduced to provide
security-relevant modules and patch-ups on already designed and
implemented products. It is not uncommon for corporate security
professionals to discover that their organization has been shipping a
product with unacceptable security properties for a substantial period.,0
Developers and development managers view security experts as
roadblocks to adding new features for consumers and to their ability to
timely ship a product which meets their development milestones.
Consequentially, it is very common for development teams and product
managers to hide security relevant products and feature enhancements
from the critical eyes of the corporate security expert.9'

C. The Security Problem and the Failure of Existing Practices

The problems of design oversights and software defects are proba-
bly most serious for areas of software, system security, system
integrity, and survivability because these areas are not implemented by
functional add-in modules and are most sensitive to errors of composi-
tion, omission, and undocumented features.92 The following examples
of problems were excerpted from the Carnegie Mellon Computer
Emergency Response Team [CERT] public Internet listings.93

90. See Chmura, supra note 86 (providing the Network File System (NFS) as an example
of a security deficient product that is an active security hazard to any organization deploying
it. Unfortunately, it is a commonly supported "standard"). See also ANDERSEN, supra note 88,
at 370.

91. For the reasons noted in Chmura, supra note 86, the security guru asks very hard

questions and poses development scenarios that no one (besides those truly concerned with
security) wants to hear. They would just as soon not invite this "troublemaker" to any of the
management reporting meetings and, if they can get away with it, never do. The technical
authors personal experiences and hearsay with other security professionals strongly supports

this observation. See Tolga Acar & John R. Michener, Risks in Features vs. Assurance, CoM-
MUNICATIONS OF THE ACM, Aug. 2002, at 112, available at www.csl.sri.com/users/neumann/
insiderisks.html#146.

92. NEUMAN, supra note 53, at 49-62.
93. These listings are so popular with attackers looking for new attack points that an-

nouncements of new vulnerabilities are delayed to allow the development and deployment of
security patches before the public announcement of the problem. To view the CERT vulner-
abilities and advisories in 2002, see http://www.cert.org (last visited Apr. 15, 2003).

Spring 20031

232 Michigan Telecommunications and Technology Law Review [Vol. 9:211

It is not recommended to install more than one copy of
Windows NT on the same computer, however if you must,
we recommend that the second copy of Windows NT has
no users except for the local Administrator and that a
strong password be set on this account. There are cases
where ACLs created by one of the copies are not protected
when another copy is active.9'

* When installing Windows NT do not copy the entire root
directory and a few other files from one computer to an-
other as each NT installation receives a unique system ID
which makes its accounts and group ID's also unique.
Making such copies may compromise the entire network's
security.

* Check for ROLLBACK.EXE on the hard disc and if
present remove it. ROLLBACK can destroy critical system
information including the registry, user account
information. To recover from the ROLLBACK.EXE
damage the entire system has to be restored from the
backup tape, if one is available. Note that Microsoft
inadvertently distributed ROLLBACK.EXE with some
Windows NT 4.0 releases.

Inter-version change logs, which detail system improvements be-
tween version releases, demonstrate that Open Source development" is
not inherently secure. Typically, each release contains many security
bug fixes.

The unfashionable field of system security96 has been badly han-
dled by the bulk of the commercial community.97 On the other hand, the
Government commissioned, at great expense, processes, approaches,

94. ACLs refer to mechanisms and policies that restrict access to computer resources. An
access control list (ACL), for example, specifies what operations different users can perform
on specific files and directories.

95. Open-source development is the development of operating systems, applications, and
modules where the "source code" for the project is visible to all. Anyone who wants to can go
through the code line-by-line, module-by-module looking for errors and flaws. Despite the
openness of the Linux source, Linux has long been known for its security vulnerabilities.
Looking at the change logs between versions of Linux shows a continual patching of security
holes.

96. The authors note that the term "assurance" is largely unknown in the commercial en-
vironment in the U.S. While a basic foundation in the government security arena, the areas of
the foundations of trust have been neglected in the commercial world. You can add a new,
"improved" cryptographic module, you can add a "smart card" to a system, but you cannot
add a trust module to an existing commercial product. It must be designed in from the begin-
ning.

97. See SCHNEIER, supra note 54, at 120-134, 151-175.

"Snake-Oil Security Claims"

and technologies to provide for assurance of security properties. The
commercial market has generally chosen to ignore these approaches as
being justified for government applications only.98 This willful, and
perhaps reckless, ignorance was and is a great error. Some of the ap-
proaches developed by the Government are among the best means of
dealing with very serious problems in the electronic commerce arena.99

Perhaps the greatest security problem is the problem of malicious
software. Standard operating systems have no defenses against mali-
cious software. Systems with Mandatory Access Control functionality
can be configured to limit the damage that can be done by malicious
software and provide substantial defenses against the unauthorized in-
troduction of malicious software.

The current development paradigm consists of composing func-
tional blocks together until a system with the desired properties is
assembled.'0° Unfortunately, as previously discussed, this approach
rarely' 1 works in the security arena because the systems we build and
develop are layered, modularized, and packetized. Yet, the layering
model might be used as a solution to the problem of software func-
tional complexity. The model suggests dividing the software
functionality into layers, each of which solves part of the functionality
problem. This simplifies the design of the code because software for
each layer depends only on the software services provided by lower
layers. When software is layered, the functionality within a given unit
or module of code is arranged so similar functions are grouped to-
gether, with some groups coming before (a "higher" layer) and some
groups coming after (a "lower" layer). Typically, the most basic func-
tionality resides in the lowest layer.' 2

All commercial operating systems (OS) have two layers: the
operating system or kernel, and the user layer. Theoretically, there is a
checks and balances system. For instance, the operating system is

98. The primary exception here appears to be Sun Microsystems's government division.
It is trying to market its "Trusted Solaris 8," an evaluated product, to the commercial market-
place. Similarly, Hewlett- Packard is trying to market its "Virtual Vault:' a product descended
from an evaluated project, to the commercial marketplace.

99. The government's classic multi-level secure approaches have their problems and must
be applied with care. Integrity management is more broadly applicable than security manage-
ment in the commercial world, but both are invaluable tools. See ANDERSON, supra note 88, at
157.

100. Methodologies Survey, supra note 64.
101. Such composition requires a knowledgeable and experienced security architect

working with functional blocks of known properties and behaviors. Functional blocks (includ-
ing low integrity operating systems) with unknown behaviors CANNOT be used in the
security critical portions of the system.

102. Methodologies Survey, supra note 64.

Spring 20031

234 Michigan Telecommunications and Technology Law Review [Vol. 9:211

protected from modification by code or processes running in user
space. Systems designed to be secure have three or more layers, with a
minimized security process functioning below the operating system, to
enforce the security policy that protects the OS and users from rogue
users and processes.' 3 Network protocols often possess seven or more
layers, while functional application modules can consist of many more.

Hence, one software layer can be changed and the impact of the
change assessed, without affecting the entire module. Software layers
within a module can be tested independently and can be replaced
wholesale within a software stack.'°4 Here lies the fundamental security
problem. In commercial operating systems, experience has shown
holes that enable Trojan horses, viruses and worms to execute code that
replaces the correct functionality of a given layer of software with the
corrupted functionality of the inserted code.' 5 As long as the interfaces
between the layers above and below the inserted rogue code accept the
input and output of the replacement layer, the software will continue to
function, albeit in a corrupted manner, without knowing the difference.
An analogy may be useful. An attacker substituting a module in a sys-
tem is equivalent to the mafia replacing a government agent with his or
her own man. The impostor can delete true information, insert false
information, leak valuable information, etc. All the module has to do is
have the same input and output interfaces, which are typically stan-
dardized and frequently published.

Unless explicit mechanisms are built into each layer of each
module; the receiving layer implicitly trusts the data presented.
Commercial software generally possesses no such security mechanisms
to alert it to untrustworthy data.'06 For instance, systems are dependent

103. Typically this security process is called the "reference monitor." "Reference moni-
tors" are needed in highly trusted systems and in the old Trusted Computer Security
evaluations (orange book), levels B2 and higher. BI systems, which are the lowest level sys-
tem to be "trusted," do not require the implementation of a reference monitor.

104. Methodologies Survey, supra note 64.
105. The four major problems that modern commercial operating systems suffer from

include: a) that the system does not authenticate itself to the use, b) there is improper handling
of passwords, c) there is improper implementation of the operating system, and d) there is a
parameter passing by reference, any of which could easily be corrupted by a modestly skilled
hacker. Computer Security Flaws, available at http://www.cs.ucd.ie/staff/tahar/home/
courses/4thyear/chapter4/imgOO5.htm (last visited Mar. 19, 2003).

106. The only tool occasionally deployed in commercial systems is code signing. This is
primarily used to provide a minimal basis of trust for mobile or downloaded code and is the
security mechanism for Java applets, Microsoft's ActiveX technology, CORBA, etc. Code
signing is not used much to protect the integrity of applications or operating systems, although
it was integral to Novell's cryptographic infrastructure. Unfortunately, code signing does not
deal with the issue of configuration management or of revocation of rights of modules that
have been discovered to contain errors. Solutions for these issues are known. John R.

"Snake-Oil Security Claims"

upon driver software to communicate with or utilize a third party
device, such as a high performance disc array or a graphics system.
Attackers can distribute an "improved" driver with compromised code.
If attackers get an administrator to install one of these drivers, which
are installed in the operating system kernel, they can control the
system.'0 7 Such human-engineering-assisted compromises are easier to
do than is generally recognized.' 0

This type of security problem is further extended when the soft-
ware is modularized. Instead of moving "up" and "down" within a
given module of software, the data moves "horizontally" among mod-
ules until the last module is reached. Thus, rogue data can be inserted
either at the receiving interface for a module or at the transmitting in-
terface for the next module. All of this takes place within a given
software application, or at the interfaces between the application and
the operating system (or system traffic cop). Since the operating sys-
tem is also constructed using the layered software approach, there is
nothing preventing rogue code from executing the same kind of re-
placement scenario, thus taking over the layer, described for the
internal and external module interfaces.

Worse, the same problem can occur with data packets sent across a
network. Unless session security and integrity protocols are strongly
enforced' °9 (something that is rarely done due to the computational

Michener & Tolga Acar, Managing System and Active Content Integrity, IEEE COMPUTER, Jul.
2000, at 108.

107. One of the technical authors attended the Defcon conference in 2000. Hackers dis-
cussed such attacks, both in presentations as well as in person.

108. Drivers are upgraded all the time, and administrators know that a routine part of
their job is upgrading device drivers. Examples of such drivers are printer drivers which are
necessary to provide printing, video drivers for display, network drivers for communications,
and the like. Unfortunately, even legitimate drivers may have security holes that can be taken
advantage of. Trojan drivers supplied by an attacker will be worse. If the administrator is not
scrupulous concerning the source and integrity of all drivers, the systems are easily compro-
misable from this approach.

109. IP is the standard network protocol used by the Internet. The most common trans-
mission protocol for general use on IP is Transmission Control Protocol (TCP); hence, the
acronym TCP/IP. If I wish to set up a communications session between my system and another
system, our two computers must negotiate the session between them. If I want to protect the
session against alteration/hijacking by an attacker, I instruct my system to require integrity
checksums on all packets that are exchanged. Since the attacker cannot forge the checksums,
our systems can detect alteration or insertion of packets. If I want to protect the session against
observation, I instruct the system to require cryptographic security, and I may instruct my
system on what constitutes acceptable cryptographic algorithms. In this case, the two systems
must negotiate together to establish a session key, which is used to protect the communica-
tions. Both integrity and security capabilities are supported by the IP Security standard, IPSec
(which is not universally supported). If systems do not have IPSec available to them and secu-
rity is still desired, cryptographic protection is added at the application level-SSL, HTIPS,
etc.

Spring 20031

236 Michigan Telecommunications and Technology Law Review [Vol. 9:211

burden that security and enforcement places upon the systems), packets
can be deleted and new packets inserted in their place. The fundamen-
tal flaw of having wholly replaceable links in the chain is replicated
throughout the entire set of end user, corporate, and Internet systems.
Hence, the security of a system is no stronger than the weakest link,
layer, interface, or network in the chain."0 A competent attacker can
deliberately compromise the weakest link, layer, interface, or network
and use this breach to exploit the rest of the system.

Security attacks are targeted against the weakest links in a system
and any and all compromises are ruthlessly exploited. This fact
separates security engineering from the more common engineering for
noise immunity and traffic handling,"' which are typically dominated
by statistical properties. The vulnerability of systems to such exploits
is well illustrated by the problem of cryptographic protection of
communications and data. Cryptographic protection prevents
unauthorized users from reading or modifying protected data because
the unauthorized user does not have the "key" that is used to encrypt or
decrypt the data. The attacker can solve the code to determine the key,
but this can be an exceptionally expensive and time consuming
operation. Stealing the keys is typically far easier."' Indeed, one of the
major uses of malicious software is the acquisition of user names,
passwords, and key phrases; allowing the attacker unauthorized use of
the protected system functionality. If the system does not provide
adequate protection for cryptographic keys and their access / activation
functionality, the cryptographic protection provides the illusion of
security, not the actuality. Unfortunately, the user is likely to have an
entirely mistaken belief in their level of security.

Software and systems to facilitate electronic commerce are in
exceptional demand and are subject to all the pressures for speedy
shipment mentioned above, and then some. Sadly, customers generally
lack understanding of the issues, have unreasonable expectations, and
look for miracle cures (typically some form of add-on module that will
secure their existing product without affecting existing product

110. SCHNEIER, supra note 54, at xii.
11. A deliberate and targeted traffic loading of a particular site is a Denial of Service at-

tack. Such an attack is not a security attack. Such attacks demonstrate that systems designed
for statistical behavior fail under deliberate misuse.

112. The passwords and key phrases that people can easily remember and use are too
short and predictable to make strong keys. The long binary numbers that constitute public keys
are totally beyond human memory and data entry error rates. Hence, keys are typically stored
in system in encrypted form, with a weaker pass-phrase being used to unlock the real key. If
the encrypted key can be extracted and taken off-line for pass-phrase attack, it is likely to fail.
Even easier for the attacker is a keystroke capture attack, which enables the attacker to extract
the pass-phrase and then to recover the user's private key.

"Snake-Oil Security Claims"

interfaces or functionality) where none exist."' Unfortunately, e-
commerce requires substantial system security, discussed infra at Part
D, that cannot be met by adding functional modules after the fact, due
to the layering, modularity, and network interface vulnerabilities. Ergo,
many of the commercial products in the e-commerce marketplace are
flawed by design.

Electronic Signatures

A document need not be signed to be admitted into evidence if it is
authenticated. An electronic signature is one way to authenticate a
document. A signature is defined as "any symbol executed or adopted
by a party with a present intention to authenticate a writing."'"4 The
movement of many human activities to electronic media, including e-
commerce, requires establishing trustworthy electronic signatures.
Unfortunately, electronic signatures are susceptible to virtually all of
the vulnerabilities of security components,"5 making the validity of
most e-signatures technically questionable. The legal validity of such
signatures is a different issue. Some states have enacted specific
electronic acts that define and govern digital signatures. Other states
have adopted uniform acts, such as the Uniform Electronic
Transactions Act (U.E.T.A.)" 6 which broadly validates the use of
electronic signatures and records and imposes minimum requirements
on the form and technology used."17 The Electronic Signatures in
Global and National Commerce Act (E.S.I.G.N.)"' ensures that such
instruments are accepted nationally.

These design flaws should not obfuscate the fact that the system
implementation may be flawed. Some of these inherent design flaws
expose the user to corruption, which in turn allows an attacker to

113. "The result is products that aim to meet a market. Customers want more features
rather than strong security, so vendors introduce complexity, which leads to greater likelihood
of failure." Alexandra Wever Morales, Intrusion Detection, Software Development Online,
Apr. 2000, (quoting Prof. Eugene Spafford, director of Purdue University's Center for
Research in Information Assurance and Security), http://sdmagazine.com/documents/s=745/
sdmOO04d/0004d.htm (last visited Apr. 1, 2003).

114. U.C.C. § 1-201 (39) (2000).
115. John R. Michener & Steven D. Mohan, Clothing the E-Emperor, IEEE COMPUTER,

Sept. 2001, at 116.
116. California enacted U.E.T.A. effective January 1, 2000. CAL. CIV. CODE § 1633.1 et

al. (2003).
117. Drafted and presented to the States in 1999 by the National Conference of Commis-

sioners on Uniform State Laws, U.E.T.A. had been adopted by 28 states and was pending in
17 more as of April 2001.

118. Electronic Signatures in Global and National Commerce Act, Pub. L. No. 106-229,
§ 101, 114 Stat. 464, 464.

Spring 2003]

238 Michigan Telecommunications and Technology Law Review [Vol. 9:211

compromise the financial credentials (typically credit card numbers) of
third parties." 9 Such compromises can impose substantial costs to both
financial institutions and end users.

The market for software and system products with integrated secu-
rity functionality as well as stand-alone security products exhibits
unusual and reprehensible characteristics because virtually all of the
players (the vendors, the analysts, and the customers) are unwilling to
address the underlying lack of system integrity. Indeed, the systems
managers' and executives' ignorance and their "sticking their collective
heads in the sand" inaction concerning security issues must be viewed
as willful. Because vendors are confident in their ability to avoid liabil-
ity for shoddy work, they can produce products faster and cheaper than
a competitor who is serious about ethically and functionally addressing
these issues.

D. Some Security Issues of e-Commerce Servers

In a commercial setting, vendors desire to limit their liability;
buyers, however, want a representation that what they buy will work
for the intended purpose and, if it does not, they will be made whole
for subsequent damages. This open-ended liability for consequential
damages is unattractive to a vendor, who will often attempt to limit the
scope of a warranty. Even where scope is limited, the vendor will also
attempt to limit its liability for damages for a breach of warranty.

An e-commerce server or application is a complex and security-
critical product. 2 End users, from individuals to large organizations
cannot be expected to a) understand the myriad of vulnerabilities' 2' that
these systems may possess, or b) the variety of attacks that can be
mounted upon them. Consequentially, it should be the vendor's respon-
sibility to provide a product that is merchantable for the purpose for
which it is sold.

As an example of a security related product, consider the case of an
e-commerce server. To simplify, assume that an e-commerce consumer

119. Flaws in e-commerce servers have allowed wholesale capture of credit card num-
bers stored in the systems. Even if the e-commerce software does not have easily exploitable
holes, if the underlying operating system is vulnerable, an attacker may exploit these vulner-
abilities to plant Trojans or modify existing modules ("corrupting" them) to allow the
systematic exploitation of information stored by the e-commerce software. The attackers can
then use these credit card numbers for fraudulent transactions.

120. Testing a received product cannot assure the security properties of a product. The
vendor must still be held liable for consequential damages for concealing improper features in
a product, such as a hidden back door that compromises the security of the product.

121. Vulnerabilities can arise from the sheer number of layers, modules and packets, as
well as the combinatorial explosion of interaction among layers, modules and packets. For
further discussion regarding combinatorial explosions, see supra note 89.

"Snake-Oil Security Claims"

will use a credit card to buy from the server and there will be either a
physical delivery of goods or a controlled download of one or more
files. At the minimum, merchantability requires the following proper-
ties (NOT a complete list):

Generation of complete and detailed purchase record/
invoice/audit trail;

Ability to conduct a "secured" credit card transaction using
one or more of HTTPS/SSL/TLS/IPSec protocols; and

Ability of the system to either deliver the product or to in-
struct another system to ship (or enable the download) of a
specified product to the appropriate consumer.

Now the vendor must make some assumptions concerning the

operational environment. Do they trust the application and/or interface
host to the public network to survive an attack; and, if not, is it neces-
sary to take any action to minimize the damage in event of a successful
attack? If their assumptions are inadequate, the product's merchantabil-
ity is called into question since it is unlikely that the security properties
of the product will be adequate. This is to be distinguished from cur-
rently adequate assumptions that become inadequate as technology
naturally evolves; thus, a currently merchantable product may become
unmerchantable through no fault of the vendor.

Suggested Security Measures

The experience over the past several years of repeated break-ins'
clearly illustrates the vulnerability of standard systems." An e-
commerce system should be able to a) deliver its functionality in the
face of sophisticated attack, and b) minimize the damage done by

122. On February 18, 2003, the New York Times reported the compromise of many mil-
lions of credit card numbers. Entry Made into Credit Card Accounts, N.Y TIMES, Feb. 18,
2003, at A19. At the University of Texas at Austin, a student was charged with stealing 55,000
student records. CNET News.com, Student Accused in Texas Data Heist (Mar. 17, 2003), at
http://zdnet.com.com/2100-1105-992732.html.

123. We can view "standard systems" as being those whose security is primarily depend-
ent upon "discretionary access controls" (DAC) and which generally operate with some form
of "all powerful" administrator to manage the system. DAC are controls that the user can set,
such as if they want files to be readable by the public. Similarly, the system administrator
chooses what rights are associated with files and processes. Conversely, more secure systems
typically implement "Mandatory" or "Non-Discretionary" access controls (MAC) in addition
to the user-manageable DAC rights. MAC controls override DAC. Hardened systems generally
do not have "all-powerful" administrator roles. Rights are typically assigned to specific roles,
and even trusted system programs operate with no higher privileges than absolutely necessary.
This is called the principle of least privilege.

Spring 2003]

240 Michigan Telecommunications and Technology Law Review [Vol. 9:211

successful attack.' 24 The systems/subsystems that directly interface to
the user/public network are the most vulnerable to attack and must be
not be unduly trusted with valuable information. The systems/
subsystems that perform back-end functionality must have carefully
designed interactions with the front-end system to minimize the
consequences of breaches of the front-end system. Reasonable starting
points for system constraints are:

" If the system stores customer financial credentials, the sys-
tem must be designed in such a way that customer financial
credentials can be used internally, but not accessed by the
external user interface. The customer financial credential
subsystem must be a trusted subsystem that will not reveal
its contents, even if the host system is compromised.

" Similarly, the subsystem handling the transaction database,
accounting records, and the audit information must be im-
plemented as a trusted subsystem that will protect this
information, even if the host is compromised.

" All transactions and operations require strong binding of
the user/customer/process identity'2 with the operation
performed and all operations involving customer credential
and financial transactions are to be securely logged.

Unless the product is based upon a trustworthy platform, a
reasonable security engineer would expect the front-end server that is
interfacing to the users to be compromised,126 perhaps frequently. An e-
commerce application that simply runs on a standard commercial
platform cannot be expected to survive such a compromise: such
capabilities are usually not designed in. The situation is not technically
hopeless. It is possible, with explicit effort, to construct complexes
(with system functionality partitioned between multiple systems with
carefully defined and restricted interfaces between the systems) to
significantly hinder attackers and minimize the consequences of

124. John Michener, System Insecurity in the Internet Age, IEEE SOFTWARE, July/Aug.
1999, at 62.

125. If the transactions are high value, it is important to require the establishment of
trusted paths for user authentication and the binding of user activities and processes with
transactions performed. These processes also must be securely audited.

126. The almost universal assumption that servers exposed to the public will survive
dedicated attack over long periods of time is unwise. If vulnerable systems are exposed to
untrusted users, system functionality must be partitioned to detect and minimize the impact of
such compromises. Given the wide variety of vulnerabilities and our history in defending
systems, the average engineer's expectation that we can keep servers, based upon commercial
grade operating systems, running standard applications defies all reasonable judgment. See
MICHENER, supra note 124.

"Snake-Oil Security Claims"

successful compromise of the public interface systems."' Such
systems, while having superior security properties, will always be more
expensive and harder to maintain than a single conventional system
running the same functionality as different processes on the same
system.1

2 8

E-commerce installations that do not exhibit reasonable damage
confinement characteristics are not, in the authors' opinion,
merchantable 129 for general use. The compromise of substantial
numbers of user accounts/credit/debit card numbers is strong evidence
that the systems in question were either inadequately engineered,
improperly configured, or both. The implementation of an e-commerce
installation must limit a successful attacker's compromise to no more
than the new credentials (credit card numbers) entered into the system• 130

from the time of compromise to the discovery of the compromise.

The system(s) must have watchdog processes that allow the timely
discovery of attacks and compromises. It must have the appropriate
tools to repair the damage, determine the compromised users, and
invoke the appropriate business processes to deal with the issues.

Modern computing systems are highly complex. While such
complexity is acceptable for environments with large and highly
trained professional staff to manage them, it is not an acceptable
characteristic for systems that are to be operated by small organizations
with less skilled or trained staff. A product that is too complex to
configure, in a secure manner, for use by managers in a typical
operating environment is neither secure nor merchantable.'3' The fact

127. Such a complex of suspicious systems (i.e. systems that do not simply trust that the
provided data are correct and, therefore, have their own data verification capabilities) would
effectively behave as a special purpose partitioned appliance, with damage confinement ex-
plicitly engineered into it. It would accomplish, with multiple systems and controlled
interfaces, what software cannot do on an untrustworthy platform.

128. Doing so entails running more computers and requires constraining the communi-
cations between the computers so that compromised front-end computers are unable to
compromise the back-end systems. This could possibly involve the introduction of dedicated
"guard" systems between the front-end and back-end systems. This is inherently more expen-
sive that simply running each operation as a separate process on a single computer.

129. It might be possible to use such an application within a corporate intranet, where
the server is inaccessible from the Internet. The documentation and material for such a limited
application must clearly note that its security limitations make it unsuitable for use on the
Internet, that it does not provide damage limitation in the event of penetration, and that it is
NOT to be used as an Internet-accessible e-commerce platform.

130. Indeed, it would be possible to automatically refer new enrollees to a dedicated system
for just this function. The user would return to the front-end server once the enrollment was
completed. This would block the attacker's ability to acquire such credentials.

131. As an analogy, a number of valuable industrial products are so dangerous to handle
that suppliers will only distribute them to customers who can provide strong assurance of their
skills to safely handle the substances and prevent improper exposures either among the appliers

Spring 2003]

242 Michigan Telecommunications and Technology Law Review [Vol. 9:211

that an expert could configure it does not make the product secure
because the average manager is not an expert. The complexity of a
product may also adversely affect security. For instance, it is easier to
secure a relatively simple piece of software than a large and complex
software piece. When systems are designed for security, security-
critical components are abstracted out and layered beneath other
functionality modules so that the minimized security component can be
hardened and inspected for problems (something that cannot be done
well when the security components are scattered throughout a much
larger system).

Homogeneous environments composed of similar machines, be
they Microsoft Windows 2000, Sun's Solaris, or LINUX, are subject to
catastrophic failure when (not if) an attacker finds and exploits a
system loophole. The best analogy here of the possible level of
catastrophic destruction is the damage that would occur if hoof-and-
mouth disease got loose in a commercial pig farm. Good design
involves overlapping systems to provide an additional measure of
security, such that if one piece of one system's security is
compromised, the comparable piece of another system will secure the
breach. The discovery of a loophole in Microsoft XP early in its
deployment illustrates the potential extent of such a failure.1 2 A
manufacturer who assures consumers that his system should be the
only system present should be held liable for the full costs of such
catastrophic failure, when they do occur. Similarly, consulting
organizations that recommend homogeneous complexes of systems 33

should bear full liability for the costs of such catastrophic failures.
Although, e-commerce servers are common, high-value targets,

they are by no means the only ones. The user's clients
(PC's/workstations/ PDA's) are typically much more vulnerable. They
are not as well protected or managed, and they can potentially be used
as an avenue into more protected environments. Transactions

or to third parties. The customers may be required to carry substantial liability insurance as well.
For instance, in the late 1970's, vendors of large-scale sprayed-foam urethane insulation required
the applier to use an air-supplied respirator and to ensure appropriate public protection. Much
like the insulation analogy, the complexity of a security product may require a higher customer
skill level since the consequences of a security mistake are so high.

132. "This is pretty much the worst default vulnerability in any Windows operating
system," a security expert said. Jay Lyman, Microsoft Stung By Severe Windows XP Security
Flaw, NEWSFACTOR NETWORK, Dec. 20, 2001, at http://www.newsfactor.com/perl/printer/
15458.

133. In systems that are otherwise homogeneous, internal firebreaks should be created to
provide damage isolation and confinement. Guards, which may be viewed as variants of applica-
tion proxy firewalls, can provide such isolation properties. See John R. Michener & Steven D.
Mohan, How to Shrink Holes in Corporate Data Dikes, IEEE IT PROFESSIONAL, Jan./Feb. 2002,
at 41.

"Snake-Oil Security Claims"

conducted from such untrusted clients of the users do not have

significant integrity. The security features advertised to protect user's

critical information can quite easily be circumvented. User

authentication and transaction authorization for application programs

such as banking, stock trading, and the like are inherently vulnerable to

capture and misuse by attackers with modest skills. Security products

aimed at the client platform frequently make inappropriate assumptions

about the client platform security properties. The result is that the

advanced technologies (such as fingerprint authentication) the security

product vendor are supporting may have worse security properties than

the old technology (passwords) that they are replacing. 434 U.C.I.T.A.

clarifies the rights of persons whose transactions (e.g. the

enforceability of releases) fall within its scope.'35 Even if a jurisdiction

in which the parties reside has not enacted U.C.I.T.A., the parties can

generally provide that their contract will be governed by U.C.I.T.A.136

IV. POTENTIAL SOLUTIONS

Given the importance of security to e-commerce and the potential

social costs of security failures, it would be logical for the legal system

to encourage strong protections. Given that e-commerce issues are

often-perhaps always-of national or international scope, it would also

be logical for the legal framework controlling contracts for security

products to be consistent nationwide. As outlined above, supra Section
II, the law does not provide adequate protections, nor is it consistent.

These legal inconsistencies argue in favor of a unified approach to the
resolution of warranty issues, either through the adoption of U.C.I.T.A.

or a U.C.I.T.A.-like uniform state code, or through a federal statute.'3 7 In

either case, however, an approach must be taken that rationally reflects

the economic realities of modern software transactions. Currently, all

134. This problem is far more severe that is generally recognized. The level of vendor mis-
representation concerning product security properties can be best described as "caveat emptor".

The issues were presented at the 1998 CardTech/SecurTech conference. See John R. Michener

and Daniel G. Fritch, Integrity of Advanced Authentication Technologies: Biometrics, Smart-
cards, and Client Protocols, I CARDTECHISECURTECH CONFERENCE PROCEEDINGS 191-210
(1998).

135. U.C.I.T.A. § 208.
136. U.C.I.T.A. § 103(e).
137. The U.C.C. and U.C.I.T.A. carve out exceptions to this general assumption for "con-

sumer" transactions between an individual and a merchant. This carve-out acknowledges the

unequal balance of bargaining power and knowledge between the individual consumer and the
merchant. While the U.C.C. and U.C.I.T.A. address some issues of imbalance between consumer

and merchant, the heightened protections given to consumers do not address the problems en-
countered by commercial entities in security transactions.

Spring 2003]

244 Michigan Telecommunications and Technology Law Review [Vol. 9:211

structures in place for determining the risk of failure fail to account for
the modem realities of information technology transactions.

An underlying assumption of commercial contract interpretation is
that each party has an equal opportunity to evaluate the risks that the
contract allocates. The business-to-business model worked when each
party actually did have access to the same resources (e.g. attorneys who
explained contract risks). In contrast, in an information technology
transaction, a business cannot solely rely upon legal counsel because the
risk does not arise from the terms of the contract. Instead, the risk arises
from the infrastructure of the product itself. For the businesses to have an
equal bargaining position they each must also be able to evaluate the
product's infrastructure. The U.C.C. and U.C.I.T.A. carve our exceptions
to this general assumption for "consumer" transactions between an
individual and a merchant on the basis that the assumption of equal
bargaining power and knowledge is accurate when analyzed in the con-
text of the individual consumer (who may enter into this particular type
of transaction only once) and the merchant (who, hopefully, is entering
into thousands of similar transactions).

Products designed to provide information security compound this
difficulty. With security products, the seller cannot reveal to the buyer all
the information necessary to evaluate the risks without reducing the
value of that product. Safety measures must necessarily be confidential
to help maintain security. '

The seller should not be forced to solely bear the risk of loss associ-
ated with a security product's failure. Nonetheless, unlike the current
socially inefficient system, the seller should not be able to absolve itself
of all risk either.

It is socially inefficient to allow a seller to absolve of any responsi-
bility for harm resulting from a product's failure. This would shift
responsibility away from the party most able to prevent it and would
shift the cost of production from the seller to society. As the seller never
accounts for the cost of a security breach, the product will not reflect the
transaction's true cost. It may be that the total true cost of the transaction
is prohibitive.

A. Possible United States Governmental Role

A major portion of the software and Internet community views the
U.S. Government with considerable suspicion, perhaps because of gov-
ernmental interest in monitoring communications. The controversy about

138. The most secure systems are secure even when their mechanisms are known; nonethe-
less, even with such robust systems, the lack of knowledge of the mechanisms provides yet one
more hurdle for a would-be hacker.

"Snake-Oil Security Claims"

key-escrow in cryptography 39 (for example, the Clipper chip in the early
1990's) did not ease this suspicion. Despite the common perception of the
government as "Big Brother," the Government's interest in securing the
national infrastructure (including local and international telecommunica-
tion networks, the domestic Internet, and electronic financial and medical
information systems) is largely the same as the interest of other users of
this infrastructure. Fortunately, the Government has more talent and
knowledge than other users; therefore, it is more capable of devising and
employing standards of quality that products must meet if they are to be
sold to the Government or its contractors.

The U.S. Government has become increasingly concerned about the
vulnerabilities that have been and are being created in the U.S. economy.
These concerns are due to the computer systems and software industry's
negligent approach. The Government itself has become vulnerable due to
its use of commercial off-the-shelf products. In 1997, the National
Security Agency (NSA) and the National Institute of Standards and
Technology (NIST) established the National Infrastructure Assurance
Program (NIAP)'40 to educate the industry and promote good practices.
The NSA also established the Information Assurance Technical Forum
(IATF) and an associated web site to discuss security and assurance
problems and approaches for their management and solution.141 While the
IATF is focused on providing information assurance guidance to the U.S.
Department of Defense, its analysis and advice is applicable to the
commercial environment. The Government is starting to get commercial
attention for safety and security by requiring that products sold to the
government meet its standards. 42 Also, evaluation organizations are
offering certification. Certification involves examining design
documentation, source code, specify proper usage of the product, and
specify the product's function. The evaluation process can be demanding,

139. Key escrow is a system where an escrow agent keeps a copy of a user's master key.
This key can be obtained from the escrow agent if the user's master key is lost or if an authorized

agent submits a request for the key accompanied by the appropriate documentation, as appropri-
ate for the local legal environment. In corporate environments, key escrow is called key recovery
and is an absolute business requirement for keys used for data secrecy. Where key escrow applies

to individuals, it is a matter of national legal requirements. There are no international standards
here.

140. See http://niap.nist.gov, supra note 3.
141. See http://www.iatf.net, supra note 3.

142. Starting July 1, 2002, NSTISSP # 11 mandates federal government use of evaluated
products if handling, processing, storing, transmitting, etc. classified data. The NIAP website

contains a link for frequently asked questions regarding NSTISSP # 11. See National Information
Assurance Partnership, NTISSP#11 Frequently Asked Questions, at www.niap.nist.gov/
cc-scheme/nstissp-faqs.htrnl (last visited Mar. 20, 2003) (on file with the Michigan Telecommu-
nications and Technology Law Review).

Spring 2003]

246 Michigan Telecommunications and Technology Law Review [Vol. 9:211

expensive, and time consuming where security was not appropriately
considered in the initial design, and where good development practices
were not followed. The evaluation level that a product receives is a
function of its measured properties and of the quality and thoroughness of
its design and implementation documentation.'43 Product evaluations are
done under the "Common Criteria4'"* and the results are associated with
an "assurance level."' 4.5

Commercial levels of evaluation are typically in the EAL2 through
EAL 4 range. 46 The assurance ranges associated with the old Trusted

143. While this may seem strange, what is being established is the level of "assurance" or
trust that the reviewing organization has in the implementation. Lacking "formal" mathematical
tools to prove the correctness of sophisticated implementations, higher levels of "assurance" are
established by design and careful review. Reviewers will look at architectural specifications,
high-level design specifications, test specifications, code review reports, and the code itself. Re-
viewers look for consistency, correct implementation, and clarity. Higher levels of assurance
require progressively more demanding processes and reviews and yield higher levels of trust that
there are no unexpected behaviors in the product. These issues are discussed in exhaustive detail
in the "rainbow" books, of which the "orange" book is a well-known member. The rainbow
books may be found at http://www.radium.ncsc.nil/tpep/library/rainbow.

144. See SCHNEIER, supra note 54, at 131-33; ANDERSON, supra note 88, at 526. Anderson
also points out some of the weaknesses of Common Criteria evaluations.

The Common Criteria and the older ITSEC criteria evaluate products on two independent
axes: the first is the functionality, which is specified by a "protection profile", and the second by
an assurance level, which is chosen from among one of a set of assurance levels. The protection
profile specifies what the product does and does not do. The assurance level is a rough level of
trust that the evaluating agency can establish concerning the correctness of a product, as well as
its lack of improper or unexpected characteristics. As the assurance level climbs to higher num-
bers, the level of proof and the associated effort involved to establish correctness climbs rapidly.

145. The security evaluation of systems is a complex issue and a number of different crite-
ria have been developed over time. We use the Common Criteria because it is a shared evaluation
standard that is intended for use by industry and lower security governmental applications.

146. The Common Criteria has seven assurance levels (EALI to EAL7). The Common Cri-
teria's assurance levels are roughly equivalent to the IT Security Evaluation Criteria (ITSEC) at
one lower criteria level. For instance, the Common Criteria's EAL1 is roughly equivalent to
ITSEC's EO. EAL2 is similar to El, etc.

EAL1 represents inadequate assurance. At the EAL 2 level, there shall be a security target
and an informal description of the architectural design of the evaluated Target Of Evaluation
(TOE). Functionality testing shall indicate that the TOE satisfies its security target. EAL3 adds
that there shall be an informal description of the detailed design. Evidence of functional testing
shall be evaluated. There shall be a configuration control system and an approved distribution
procedure. EAL4 builds on EAL3 by additionally requiring the source code and/or hardware
drawings corresponding to the security mechanisms to be evaluated. Evidence of testing of
those mechanisms shall be evaluated. EAL5 additionally requires an underlying formal model
of security policy supporting the security target. The security enforcing functions, the
architectural design and the detailed design shall be specified in a semiformal style. In EAL6,
there is also a close correspondence between the detailed design and the source code and/or
hardware drawings. Finally, EAL7 adds that the security enforcing functions and the
architectural design shall be specified in a formal style, consistent with the specified
underlying formal model of security policy. For further explanation, see Defence Signal's
Directorate, Evaluated Products List, at http://www.dsd.gov.au/infosec/aisep/EPl
section8.html (last modified Mar. 25, 2002).

"Snake-Oil Security Claims"

Computer security evaluation would map the B 1 class to an EAL4 level of
assurance, with C2 mapping to an EAL3 level of assurance which may be
viewed as the level of trust that may be placed in of the evaluation. Assur-
ance levels range from EAL2 through EAL4 for general commercial
systems and up to EAL7 for specialized Governmental systems.17 Higher
assurance levels may be necessary for critical functionality.148

The NSA, through NIAP and the IATF, is trying to provide a frame-
work for the assessment of standard critical infrastructure components
(firewalls, biometrics, etc.) and is planning to provide guidelines on using
these components. 49 While the NIAP/IATF has little impact at this time in
the commercial industry, its evaluations and guidelines are likely to pro-
vide a reasonable basis for the expectations of users and the efforts of
integrators in the future. Unless and until a large and sophisticated neutral
organization'50 is formed to provide guidelines upon the specification,
evaluation, and usage of system components to provide secure operations,
it seems likely that the NIAP/IATF standards and guidelines will eventu-
ally provide the minimum operational and specification standards for
standard components. We should expect that the recommended evaluation
levels of such components would gradually increase as the sophistication

147. Id. at §§ 23.3.1 and 23.2.1.
148. The German digital signature law places stringent technical requirements for the va-

lidity of electronic signatures. It requires that the signing private key be protected by a
hardened smart card, which does the signing, that the smart card reader be evaluated to E2
(approximately equivalent to EAL3), and it requires that the smart card's handling of the
user's private key and the commercial Public Key Infrastructure Certificate Authorities be
evaluated to E4 (approximately the same as EAL5). See Verordnung zur digitalen signatur,
SigV, § 17, 1, available at http://www.iid.de/rahmen/sigv.html. The E4 requirement for the
PKI CA is far more demanding than the E2 for the reader. The E4 requirement for the smart
card key handling is not exceptionally difficult to meet for such a special purpose operation.
While generally regarded in the industry as overly demanding, the technical authors view
requirements for such levels of assurance as reasonable, given the importance that such tech-
nologies may have in the future.

149. See http://www.iatf.net/protection-profiles.
150. It appears rather unlikely that many users or organizations want the U.S. Depart-

ment of Defense establishing commercial practices and standards. The DOD is a sophisticated
customer that it trying to protect its own systems and infrastructure as well as supporting U.S.
civilian infrastructure. In the process, they are giving the sophisticated computer user commu-
nity a free ride. In time, it may be necessary for some organization to rise up and provide
similar standards and best practices for the commercial community, including suppliers of
critical infrastructure. It is necessary that any replacement organization take on the protection
of the users, and not the convenience and protection of the manufacturers, as its mission. The
IETF (the organization establishing standards for the Internet) cannot fulfill this role. Its focus
is upon establishing protocols, and it suffers from the classic committee syndrome of throwing
too many features (after all, most of the staff are supported by various commercial organiza-
tions and are expected to get "their" features included) into various standards, creating serious
problems of integration, testing, and assurance. They are not concerned with problems of
vendor implementation assurance or quality, which are critical issues for any security imple-
mentation.

Spring 2003]

248 Michigan Telecommunications and Technology Law Review [Vol. 9:211

of attacks grows. Similarly, we should expect the introduction of new
standard components to support additional services and to provide more
defenses against new or shifting attacks.

Aspiring to "Best Practices"

While there is no reason to require that manufacturers submit their
products for evaluation under NIAP/IATF guidelines, these guidelines
and evaluation criteria do provide useful reference standards. The
standards are established by a large, knowledgeable, security-sensitive
organization that is trying to establish solid, fact-based requirements and
procedures that provide effective security to the deploying organization.
A manufacturer of a product providing security functionality should be
prepared to show that they have used development and oversight
processes at least as thorough and demanding as those of equivalent
NIAP rated systems (if applicable) in order to establish due diligence in
the development of their product. There should also be clear and
unambiguous directions for the proper usage of their product, including
known dependencies and known and reasonably expected product
characteristics.' Clearly, organizations pioneering new components and
developing new technologies will not have the guidance that NIAP
provide.'5 2 As long as they can show that they used prudence, due care,
and diligence in developing their product and its associated marketing
and usage materials, manufacturers of such leading edge products should
be regarded as pioneering best practices.

When manufacturers have their systems and their appropriate usage
evaluated by competent organizations, such as required by the U.S. Gov-
ernment's NIAP program, they should be viewed as following best
practices.'53 Organizations that meet or exceed these same standards and

151. For example, if the product is a secure document delivery product using the user's
Internet browser as a client (the user's access to the product), the documentation should
clearly state that the product can be compromised by an attack upon the browser and that
maintaining the user's expectations of security requires the use of certain browser settings
(settings to be provided by the vendor). It should also state any other conditions that are re-
quired for proper operation and what the product does and does NOT do. For example, in
addition to the classic browser attacks of applets and ActiveX, such a system is vulnerable to
spyware capture of access passwords, and illicit copying of protected documents, perhaps by
spyware, to non-controlled destinations.

152. NIAP/IATF are concerned with the properties and proper usage of existing prod-
ucts. Innovators who develop new technologies will be operating outside of the NIAP/IATF
purview but, as these new technologies are understood and their characteristics documented,
they will be integrated into the NIAP/IATF environment. See also discussion on NIAP/IATF in
supra note 3.

153. Unfortunately, best practices may still be rather inadequate. Microsoft has recently
completed an EAL4 evaluation of Windows 2000 for the governmental marketplace. The pro-
tection profile against which Windows 2000 was evaluated can be viewed as stating that such

"Snake-Oil Security Claims"

requirements are also following best practices, although they must ex-
pect that they may be required to prove their capabilities, assurance,
processes, and the comprehensiveness and appropriateness of their
documentation, in event of mishap.

Organizations not willing to pursue and live up to such standards
should not be involved with security or security-critical products.
Without the processes and controls needed for independent evaluation,
the manufacturer, let alone the customer, has no understanding of the
product's security properties. Security products not subject to the
Government's program requirements should be subject to product
liability protections when sold to ignorant consumers.

B. Potential Legal Solutions

In the security related product market, imbalances between seller
and buyer produce socially inefficient results. What then are potential
solutions? Several possibilities suggest themselves, some more radical
than others.

The first is simply for courts to recognize that attempts to shift the
risk of loss to a customer in the security context is unfair because of the
inherent nature of the transaction, which, in most cases, rises to the level
of unconscionability. This solution, however, is questionable because the
court's are reluctant to find freely negotiated contracts unconscionable,
especially in a business context.

Another solution is to shift the burden to the producer via statute, ei-
ther as a stand-alone statute or folded into a comprehensive computer
information statute such as U.C.I.T.A. This statutory solution could take
two forms: either the statute sets forth a simple default rule, or the statute
permanently shifts the burden to one side or the other, without allowing
variation. Each has its disadvantages.

The weaker first construct suffers from the obvious deficiency that
the rule could still be varied and such variations would inevitably occur
through form contracts,' 4 and, perhaps, even negotiated contracts where
one party (generally assumed to be the seller) has access to greater
knowledge of the law and the risks.

Nonetheless, even simple default provisions would help, at least if it
places the burden on the party likely to have the greater power to reduce
the risk and require that any modification of the default terms be explicit
and conspicuous. The modifying clause at least brings the other party's

systems should not be generally connected to the Internet. See Jonathan S. Shapiro, Under-
standing the Windows EAL4 Evaluation, IEEE COMPUTER, Feb. 2003, at 103.

154. Alex Y. Seita, Uncertainty and Contract Law, 46 U.PIT.L.REv. 75, 127.

Spring 2003]

250 Michigan Telecommunications and Technology Law Review [Vol. 9:211

attention to the issues. Nonetheless, while this assists in solving the issue
of the customer's ignorance of the law, it does not address the more dif-
ficult issue that the buyer is still incapable of accurately assessing the
actual magnitude of the risk involved and should not be left without re-
course as a result.

The other alternative is to require the default risk allocation to be
mandatory. Of course, this need not place the risk with the same party in
all circumstances. For example, the statute could allocate risk to the
seller in all transactions and where the seller has made particular
representations about the product (even if it later attempts to disclaim the
representations), but then relieve the seller of liability and risk where the
buyer was modified the seller's code in an unauthorized manner. The
advantage of this approach is that it prevents the seller from imposing
upon the buyer terms that are economically inefficient to society for its
sole advantage.'55 The disadvantage is that the law is substituting the
judgment of the legislature as to the fairest and most economically
efficient allocation of risk for the parties' judgment. The court believes
the parties should be in a better position to evaluate the particulars of the
transaction.

CONCLUSION

The commercial software and systems industry now provide critical
infrastructure for our society. This industry developed in an environment
where it could pass the risks of its errors and oversights to its customers
who had no way of knowing what their risk exposure was, is, or will be.
Willful and systematic security oversights in the industry created wide-
spread vulnerabilities that create the potential for exceedingly large third
party losses. The imbalance in knowledge between the supplier and pur-
chaser is so extreme that the legal assumption of comparable
sophistication should be abandoned and the presumption should instead
be that the purchaser is an ignorant consumer with associated product
protections. 6 Executives and management in the software and systems
industry are usually willfully ignorant of and unresponsive to critical
security issues and their implications for product design and develop-
ment. The software and systems industry, and the associated consulting

155. Id. at 130.
156. Clearly very large and sophisticated organizations can be held to higher standards.

Manufacturers who have their systems and their appropriate usage evaluated by appropriately
competent organizations, such as those the U.S. Government's LATF program requires, are
following best current practices. Their customers, who will be provided the evaluation report
and appropriate usage, should not be treated as ignorant.

Spring 2003] "Snake-Oil Security Claims" 251

organizations, must be held to reasonable standards of implicit and/or
explicit product merchantability with full consequential liability. This
allows a customer to know what a product will and will not do, and how
to reasonably maintain it so that it will perform its function without cre-
ating or allowing unacceptable losses for the customer or third parties.

	Michigan Telecommunications and Technology Law Review
	2003

	Snake-Oil Security Claims the Systematic Misrepresentation of Product Security in the E-Commerce Arena
	John R. Michener
	Steven D. Mohan
	James B. Astrachan
	David R. Hale
	Recommended Citation

	Snake-Oil Security Claims the Systematic Misrepresentation of Product Security in the E-Commerce Arena

