
The University of Akron
IdeaExchange@UAkron

Honors Research Projects The Dr. Gary B. and Pamela S. Williams Honors
College

Fall 2018

An algorithm to determine all odd primitive
abundant numbers with d prime divisors
Jacob Liddy
jpl61@zips.uakron.edu

Please take a moment to share how this work helps you through this survey. Your feedback will be
important as we plan further development of our repository.
Follow this and additional works at: https://ideaexchange.uakron.edu/honors_research_projects

Part of the Number Theory Commons

This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams
Honors College at IdeaExchange@UAkron, the institutional repository of The University of Akron in Akron, Ohio,
USA. It has been accepted for inclusion in Honors Research Projects by an authorized administrator of
IdeaExchange@UAkron. For more information, please contact mjon@uakron.edu, uapress@uakron.edu.

Recommended Citation
Liddy, Jacob, "An algorithm to determine all odd primitive abundant numbers with d prime divisors" (2018).
Honors Research Projects. 728.
https://ideaexchange.uakron.edu/honors_research_projects/728

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Akron

https://core.ac.uk/display/232684326?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ideaexchange.uakron.edu?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F728&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F728&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F728&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F728&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=https://ideaexchange.uakron.edu/honors_research_projects/728
https://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F728&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/183?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F728&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ideaexchange.uakron.edu/honors_research_projects/728?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F728&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu

An algorithm to determine all odd primitive abundant
numbers with d prime divisors

Jacob P. Liddy, Jeffrey M. Riedl

September 17, 2018

Abstract

For an integer n, if the sum of the proper divisors of n equals or exceeds n, then we
say that n is an abundant number. An abundant number is said to be primitive if none of
its proper divisors are abundant. An abundant number must have at least one primitive
abundant divisor. In 1913, Dickson proved that for an arbitrary positive integer d there
exists only finitely many odd primitive abundant numbers having exactly d distinct prime
divisors. In 2017, all odd primitive abundant numbers with up to 5 distinct prime divisors
have been found by Dičiūnas. In this paper, we describe a fast algorithm that finds all odd
primitive abundant numbers with d distinct prime divisors. We use this algorithm to find
all odd primitive abundant numbers with 6 distinct prime divisors. An abundant number n
is said to be weird if no subset of the proper divisors of n sums to n. We use our algorithm
to show that an odd weird number must have at least 6 prime divisors.

1 Introduction

The proper divisors of a positive integer n are the positive divisors of n that are less than n. We
denote the set of proper divisors of n by An.

We define the function σ : N→ N such that

σ(n) =
∑
d|n

d

the sum taken over the divisors of n. We say n is abundant if σ(n) ≥ 2n 1, perfect if σ(n) = 2n,
and deficient if σ(n) < 2n. We say that n is pseudoperfect if n is a non-perfect abundant and
there exists a subset S ⊂ An such that

n =
∑
d∈S

d.

We say that n is weird if n is abundant but not pseudoperfect or perfect. The smallest weird
number is 70, and all known weird numbers are even.

If n is abundant and all of its proper divisors are deficient, we say that n is a primitive
abundant number. An abundant number must have at least one primitive abundant divisor.
The smallest primitive abundant number is 6, by our definition. Some authors exclude perfect
numbers from abundant numbers, in which case the smallest primitive abundant number is
20. This paper focuses on odd primitive abundant numbers, which we refer to as OPANs
(Following the notation of [2] and [3]). The sequence of OPANs is available at https://oeis.

org/A006038.[4]

1This is the definition Erdős gave for abundant numbers.[1]

1

https://oeis.org/A006038
https://oeis.org/A006038

It is not known whether any odd perfect or odd weird numbers exists. However, it is easy
to show that any odd perfect number is an OPAN, if such a number exists. Likewise if an odd
weird number w exists, it can be shown that w is an OPAN or w is the multiple of a weird
OPAN.

Our purpose is to find an algorithm that enumerates all OPANs with a fixed number of unique
prime divisors d. With this, we classify all OPANs with 5 prime divisors as weird, perfect, or
pseudoperfect. We found that all OPANs with 3, 4, or 5 divisors are pseudoperfect, which allows
us to conclude that an odd weird number and an odd perfect number must have at least 6 unique
prime factors.

In this paper, we succeed in finding the described algorithm. We prove that the algorithm
does indeed find all OPANs with 3, 4, 5, and 6 unique prime divisors. We wish to generalize
the proof to d divisors. Finding all OPANs with 6 prime divisors was previously an unsolved
problem[3].

Through implementing the algorithm in Section 5, we were able to find the number of OPANs
with 6 divisors. We found that |OPAN(6)| = 59687996404445

The largest odd primitive abundant number with 6 divisors is: 3385281716257865537442949672912.
It has 116 digits.

2 Preliminaries

We define the function b : N 7→ Q by

b(n) =
σ(n)

n
.

Hence n is abundant if and only if b(n) ≥ 2
Note that if n = pm1

1 pm2
2 pm3

3 ...pmk
k for distinct primes p1, ..., pk, it can be shown that

σ(n) =
∏

1≤i≤k

pmi+1
i − 1

pi − 1
.

Thus, b(n) can be expressed as:

b(n) =
σ(n)

n
=

∏
1≤i≤k

pmi+1
i − 1

(pi − 1)pmi
i

=
∏

1≤i≤k

b(pmi
i) (1)

Also, if n and m are positive integers greater than 1, then

b(n) < b(nm). (2)

To show this, we first suppose that m and n share no prime factors. Thus if the prime
factorization of n is ps11 p

s2
2 ...p

si
i and the prime factorization of m is rl11 r

l2
2 ...r

lj
j , then the unique

prime factorization of mn is

mn = ps11 p
s2
2 ...p

si
i r

t1
1 r

t2
2 ...r

tj
j .

Thus b(mn) = b(n)b(m). Since σ(m) ≥ m + 1(as m and 1 are divisors of m), we have that
b(m) ≥ (m+ 1)/m > 1. Thus, b(n) < b(n)b(m) = b(nm).

To show that that (2) is true in general, we first note that given any prime p and any pos-
itive integer m, we can show that b(pm) < b(pm+1). Let n = ps11 p

s2
2 ...p

sd
d . Let m be written

in the prime factorization m = qt11 q
t2
2 ...q

ti
i r

e1
1 r

e2
2 ...r

ej
j where q1, q2, ..., qi are prime factors that n

and m share, and each r is a prime factor that divides m but not n. Suppose that m and n

2

share at least one prime factor, as the other case was discussed in the previous paragraph. Let

n′ = nqs11 q
s2
2 ...q

si
i = p

s′1
1 p

s′2
2 ...p

s′d
d , where each s′i ≥ si. Hence b(n) < b(n′). Since n′ and rl11 r

l2
2 ...r

lj
j

share no prime factors, we have that b(n′) ≤ b(n′rl11 ...r
lj
j) = b(nm). Thus b(n) < b(n′) ≤ b(mn).

Hence, b(n) is a multiplicatively increasing function.

Taking the limit of b(pm) as m goes to infinity, we have that limm→∞ b(p
m) = p

p−1
. Applying

this to the sequence of primes P = {p1, p2, ..., pd}, we define b∞(P) by

b∞(P) =
∏

1≤i≤k

lim
m→∞

b(pmi) =
∏

1≤i≤k

(
pi

pi − 1
). (3)

Theorem 2.1. Consider the set of primes P = {p1, p2, p3,, pk}. There exists infinitely many
abundant integers n whose prime factors compose the set P if and only if b∞(P) > 2

Proof. First we assume that b∞(P) > 2. Let L = b∞(P). Note that

L =
∏

1≤i≤k

lim
mi→∞

b(pmi
i) =

∏
1≤i≤k

lim
mi→∞

(
pmi+1
i − 1

(pi − 1)pmi
i

).

.
Hence , we can allow ∏

1≤i≤k

pmi+1
i − 1

(pi − 1)pmi
i

to be arbitrarily close to L for large enough exponents mi. Since L is greater than two, there
exists a collection of positive integers m1,m2, ...,mk such that

L >
∏

1≤i≤k

pmi+1
i − 1

(pi − 1)pmi
i

=
∏

1≤i≤k

b(pmi) > 2.

Thus we let n = pm1
1 pm2

2 pm3
3 ...pmk

k . Since b(n) > 2, it follows that n is abundant. Because b(n)
is an increasing function, n can be multiplied by any one of its prime factors, and an abundant
number will be the product. In other words,

2 < b(n) < b(np1) < b(np2
1) <

Thus there are infinitely many abundant integers n whose prime factors are in the set P .
Now we assume that there exists infinitely many abundant integers whose prime factors

compose P . Let pi ∈ P . Given any positive integer r and abundant integer n whose prime
factors compose P , we have that that npri is abundant. Hence,

b∞(P) =
∏

1≤i≤k

lim
mi→∞

(
pmi+1
i − 1

(pi − 1)pmi
i

) > 2.

Theorem 2.2. If b∞(P) ≤ 2, then there does not exist an abundant number whose prime factors
compose P .

Proof. Let P = {p1, p2, ..., pd}. Since b(pm1
1 pm2

2 ...pmd
d) is strictly increasing as the exponents

m1,m2, ...,md increase while b∞(P) ≤ 2, we have that b(pm1
1 pm2

2 ...pmd
d) < b∞(P) ≤ 2 for any

given exponents m1, ...,md. Thus given any positive integer n whose prime factors compose P ,
we will have that b(n) < 2.

3

Theorem 2.3. Let p and q be primes such that p < q. Then b∞({q}) ≤ b(p1). If p ≥ 3, then
b∞({q}) is strictly less than b(p1).

The proof of Theorem 2.3 is straightforward. It is worth noting that if q is prime and q − 1
is treated as if it were prime, then b∞({q}) = b(q)

Another important function we will need describes what happens when some exponents are
fixed and some exponents are allowed to increase without limit. The function will take a set
of primes and exponents, as well as the indices of certain prime factors which are not limited
in exponent increase. Let P be the sequence of primes and E be the respective exponents for
pm1

1 pm2
2 ...pmd

d . Let I be a subset of {1, 2, ..., d} describing the indices in which the corresponding
exponents are desired to be raised without limit. We define mb as follows:

mb(P,E, I) =
∏
i∈I

b∞(pi)
∏

1≤j≤d|j /∈I

b(p
mj

j). (4)

Let P be a sequence of primes P = {p1, p2, ..., pd}, and let E = {m1, ...,md} be a sequence
of positive integers with the same cardinality as P . We define the positive integer ν(P,E) by
ν(P,E) = pm1

1 pm2
2 ...pmd

d .
We now prove the following theorem, making use of the above definitions:

Theorem 2.4. Let P = {p1, p2, ...pd} be a sequence of primes, and let E = {m1,m2, ...,md} be a
sequence of exponents. Let n = ν(P,E). Let I be a nonempty subset of {1, ..., d}. The condition
mb(P,E, I) ≤ 2 holds if and only if there exists an abundant number k such that n divides k and
every prime divisor of k/n is a member of {pi | i ∈ I}.

We (currently) leave the proof to the reader. It is similar to the proof of Theorem 2.1.
For any given prime p and positive integer m, we define the rational number ∆+(p,m) by

∆+(p,m) =
pm+2 − 1

p(pm+1 − 1)
.

Theorem 2.5. Suppose n = pm1
1 pm2

2 ...pmi
i ...pmd

d . For each i ∈ {1, ..., d}, we have

b(n)∆+(pi,mi) = b(pin).

The proof for 2.5 is straightforward.

3 Exponent Theorems and The Exponent Algorithm

Let r and n be positive integers such that r divides n. We say r is a divisor of n of order 0 if
and only if r = n. For each i ≥ 1, we say that r is a divisor of n of order i in case there exists a
prime p such that pr is a divisor of n of order i − 1. We remark that each divisor r of n has a
unique well-defined order k for some nonnegative integer k. For example, 3251131 is a divisor of
3352131 of order 2.

A related notion is incomplete primes. Suppose r divides n, and p is a prime. We say that p
is incomplete in r with respect to n if pr divides n. In this case, if r is a divisor of n of order k,
then pr is a divisor of n of order k − 1. 2 is incomplete in 18 with respect to 72.

Yet another notion is crucial primes. Let n = ν(P,E) be a positive integer. Suppose that
p ∈ P . If pn is abundant, then we say that p is a crucial prime for n.

For any given sequence of primes P and corresponding sequence of nonnegative exponents
E, whose cardinalities are both d, we wish to define G∆+(P,E) as a particular ordering of
{0, 1, ..., d − 1}. Given any distinct i, j ∈ {0, 1, ..., d − 1}, we order G∆+(P,E) such that i
precedes j in G∆+(P,E) if ∆+(pi, ei) ≤ ∆+(pj, ej). In the case where ∆+(pi, ei) = ∆+(pj, ej), it
does not matter which element is the predecessor or successor in G∆+(P,E).

4

Theorem 3.1. Suppose n = ν(P,E), where P = {p0, p1, ..., pd−1} and E = {e0, ..., ed−1}. Let
G∆+(P,E) = {g0, g1, ..., gd−1}. Then b(npgi) ≤ b(npgj) when i ≤ j.

The proof of 3.1 follows directly from inequality 2.
To demonstrate how G∆+(P,E) is defined, we calculate G∆+(P,E) for P = {3, 5, 11} and E =
{1, 2, 1}.

First we calculate each of ∆+(3, 1), ∆+(5, 2), and ∆+(11, 1). We find that ∆+(3, 1) = 13
12

,
∆+(5, 2) = 156

155
, and ∆+(11, 1) = 133

132
. Listing these values in order from least to greatest, we

have

∆+(5, 2) < ∆+(11, 1) < ∆+(3, 1).

Note p0 = 3, p1 = 5, and p2 = 11. Since ∆+(5, 2) is the smallest while p1 = 5, Our
G∆+(P,E)ordering on {0, 1, 2} begins with 1. Since ∆+(11, 1) is the next smallest while p2 = 11,
the corresponding index 2 succedes 1 in our ordering on {0, 1, 2}. Finally, since ∆+(3, 1) is the
largest while p0 = 3, the corresponding index 0 succedes 2 in our ordering. Hence our ordering
is {1, 2, 0} and we write G∆+(P,E) = {1, 2, 0}

Theorem 3.2. Let G∆+(P,E) = G for some integer n = ν(P,E). Suppose i precedes j in G.
If pi is crucial in n, then pj is crucial in n. In other words, there exists some g such that all
elements that precede G[g] are indices of non-crucial primes and all elements that succeed G[g]
are indices of crucial primes.

Informally, the above theorem states that G∆+(P,E) ′ looks like ′

G∆+(P,E) = (... non-crucial prime indices|crucial prime indices...).

Proof. Suppose that pi is crucial in n, so 2 ≤ b(npi). Since i precedes j in G, Theorem 3.1 tells
us that b(npi) ≤ b(npj). Thus 2 ≤ b(npj), which tells us pj is crucial in n. If no pi is crucial in
n, choose the highest possible index g in G.

Theorem 3.3. Suppose a positive integer n is abundant. Then n is primitive if and only if all
of its first order divisors are deficient.

Proof. First suppose that n is a primitive abundant and let r be a divisor of n of order 1. Since
r is a proper divisor of n, indeed r cannot be abundant and is therefore deficient.

Suppose that every divisor of n order 1 is deficient. Let r be any proper divisor in n. Then
there exists a divisor k of n of order 1 such that r divides k. Since k is deficient while r divides
k, indeed r is deficient (Any divisor of a deficient number is deficient). Thus n is abundant and
all proper divisors of n are deficient. By definition, n is a primitive abundant number.

We now have enough tools to prove the theorem below.

Theorem 3.4. Let P be an increasing sequence of d odd primes. The following algorithm will
extract all primitive abundant odd numbers whose prime divisors compose P .

In the below algorithm, the sequence of primes P is indexed starting at 0, not 1. In other
words, P = {p0, p1, ..., pd−1}. Also, when a function is called, the arguments are passed by
reference. This means that a function may modify one of its inputs.

5

The Exponent Algorithm(main)
INPUT: The sequence of primes P = {p0, p1, ..., pd−1}.
OUTPUT: All primitive abundant odds whose prime factors compose P

1: if b∞(P) ≤ 2 then
2: return {}
3: end if
4: E := {e0 = 1, e1 = 1, ..., en = 1}
5: A := {}
6: expAbundant(P,E,A)
7: return A

Algorithm: expAbundant (Check if n is abundant with its current exponents)
INPUT: The sequence of primes P = {p0, p1, ..., pd−1}, the exponents to those primes E, and
the primitive abundants found so far, A.
OUTPUT: No output. However, A will be modified.

1: if b(P,E) ≥ 2 then
2: if ν(P,E) is primitive abundant then
3: A := A&ν(P,E)
4: return
5: end if
6: return
7: end if
8: crucialAlg(P,E,A)
9: return

6

Algorithm: crucialAlg (orders the ∆+ values)
INPUT: The sequence of primes P = {p0, p1, ..., pd−1}, exponents E = {m0,m1, ...}, the set of
primitive abundant numbers found A.
OUTPUT: True or False, depending on if the algorithm found any primitive abundant num-
bers.

1: efound := FALSE
2: G := G∆+(P,E)
3: g := |P | − 1
4: i := 0
5: while g ≥ 0 do
6: i := G[g]
7: if pi is crucial in ν(P,E) then
8: {Enew is the new exponents raising the exponent that allows the number to be abundant}

9: Enew := E
10: Enew[ip] := Enew[ip] + 1
11: if ν(P,Enew) is primitive then
12: A := A&ν(P,E)
13: efound := TRUE
14: end if
15: g := g − 1
16: else
17: break;
18: end if
19: end while
20: if g ≥ 0 then
21: {Not all indexed exponents were able to make an abundant when raised one power}
22: if mbAlg(P,E,A, g) then
23: efound := TRUE
24: end if
25: end if
26: return efound

7

Algorithm: mbAlg (exponent increasing algorithm)
INPUT: The sequence of primes P = {p0, p1, ..., pd−1}, the exponents to those primes E, the
primitive abundants found so far A, and an index, s.
OUTPUT: True or False.

1: efound := FALSE
2: G = G∆+(P,E)
3: while g ≥ 0 do
4: Gb<2 := {G[0], G[1], ..., G[g], }
5: if mb(P,E,Gb<2) > 2 then
6: Enew := E
7: ip := G[g]
8: Enew[ip] := Enew[ip] + 1
9: if crucialAlg(P,Enew, A) then

10: efound := TRUE
11: end if
12: g := g − 1
13: end if
14: end while
15: return efound

Proof. Let n = ν(Q,F) be an odd primitive abundant number for a sequence of primes Q and
a sequence of positive integers F , where Q and F have the same cardinality. We assume that F
contains some element not equal to 1, otherwise the proof is trivial. We want to show that n is
collected in A, as this would prove our theorem. Suppose that m =

∑
e∈F (e)

Let ` be a divisor of n. Then ` = ν(Q,F ′) for some sequence of nonnegative integers F ′. We
say that ` is passed in the algorithm if the exponent sequence F ′ is stored in either E or Enew

at some point when the algorithm is being executed. The first appearance of ` is the first time
in which ` is passed during the execution of the algorithm.

We want to show that n is collected in this algorithm, and later in this proof we will show
that passing n will force the algorithm to collect n. In order to show that n is passed in the
algorithm, we shall establish a more general statement, namely that the algorithm will pass at
least one divisor of n of the following orders: {m− d,m− d− 1, ..., 0}. Since n itself is the only
divisor of n of order 0, this would be sufficient to establish the more general statement. We
proceed by reverse induction.

Our base case is: The algorithm passes some divisor of order m− d. This is clearly true as
` = p0p1...pd−1 is the first integer the algorithm passes, and this divisor has order m− d.

Our inductive step is: Suppose the algorithm passes a divisor of order k, where 0 < k ≤ m−d.
We want to show there exists a divisor of order k − 1 that is passed in this algorithm.

Assume the inductive hypothesis is true for some divisor of n of order k. Denote this divisor
`k = (Q,Fk). Note that `k must make its first appeance whenever E is modified or an Enew is
initialized. Thus `k must make its first appearance in one of two places: It can appear in main
in line 4 or mbAlg in line 8. Note that this divisor cannot appear in crucialAlg in line 10, for if
`k did first appeared here, the if statement on line 7 would imply that `k is abundant.

We will now argue that regardless of where `k first appears, the algorithm will call crucialAlg
with parameters P := Q, E := FK , and A := A2:

2The state of A does not matter

8

Suppose that `k first appears in main in line 4. The algorithm calls expAbundant on
line 8. Note that, as k 6= 0, we have that b(`k) < 2. Thus the algorithm moves on to
crucialAlg(Q,Fk, A).

Suppose that `k first appears in mbAlg in line 8. Notice that the algorithm will immediately
call crucialAlg(Q,Fk, A) on the very next line.

As desired, crucialAlg(Q,Fk, A) will be called.

At this point we split off into cases, the case where k = 1 and the case where 2 ≤ k ≤ m− d.
This is important for our inductive step.

Case 1: Suppose that 2 ≤ k ≤ m − d. In crucialAlg(Q,Fk, A), notice that G∆+(Q,Fk)
is calculated on line 2. Since k ≥ 2, we claim that all incomplete primes in `k are not crucial
primes. Let q be an incomplete prime in `k. Then `kq |n, and in fact `kq has order k − 1. Since
k ≥ 2, we have that k− 1 ≥ 1. Thus `kq is a proper divisor of n and is therefore deficient. Thus
q is not a crucial prime in `k.

For convenience, we will refer to G∆+(Q,Fk) by G. By Theorem 3.2, there exists a positive
integer h such that all elements that precede G[h] are not indices of crucial primes and all
elements that succede G[h] are indices of crucial primes. Since `k contains at least one non-
crucial prime (as it contains at least incomplete prime), we know that this h can be chosen such
that G[h] is the index of some non-crucial prime.

Informally, we can see that G is ordered in a way where all crucial prime indices are on the
right (Theorem 3.2), and all incomplete prime indices are on the left (as k ≥ 2)

G = {... other indices and incomplete prime indices | crucial prime indices...}

We know that the while statement on line 5 in crucialAlg(Q,Fk, A) will terminate once
g = h, as this point is the first time where g is the index of a non-crucial prime. When the loop
terminates, the algorithm will call mbAlg(Q,Fk, A, g), as g ≥ 0.

In mbAlg(Q,Fk, A, g), we have that g ≥ 0. Thus we will descend into the while loop at line
3. Notice that Gb<2 = {G[0], G[1], ..., G[g]}. Thus Gb<2 contains all incomplete prime indices of
`k. This allows us to state that mb(Q,Fk, Gb<2) > 2.

Consider the first time that i = G[g] is the index of some incomplete prime pi of `k. At
this point, all incomplete prime indices still exist in Gb<2. Thus mb(Q,Fk, Gb<2) > 2. Thus the
execution of this algorithm will reach line 8 in mbAlg. Now pi`k will be passed in the algorithm,
and pi`k is a divisor of order k − 1. Thus the inductive step has been proven.

Case 2: Suppose that k = 1. Recall that we are starting from crucialAlg(Q,Fk, A). In this
case, we note that there is only one incomplete prime p and it must be a crucial prime(as lkp = n
is abundant) As all crucial prime indices will pass the if statement on line 7 in crucialAlg, we
have that our incomplete prime’s exponent will be increased and the result will be n. Therefore
n will be collected in A. Thus the inductive step has been proven. We have also shown that n
has been collected in A by the algorithm, proving the theorem.

4 Prime Sequences: Theorems and Definitions

We start this section with some useful definitions to simplify notation for the theorems that
follow. Let P = {p0, p1, ..., pd} be an increasing sequence of prime numbers while q is a prime
number greater than pd. We shall write P + q to denote the sequence P + q = {p0, p1, ..., pd, q}.
If n is an integer having exactly k prime divisors such that k > d and P composes the smallest
i prime divisors of n, then n is referred to as ”P -initiated”. For example, 32711171293 is {3, 7}-
initiated.

9

Theorem 4.1. Suppose that b∞({p1, p2, ..., pi}) > 2, where p1 < p2 < p3 < ... < pi. Then there
exists some positive integer ` less than or equal to i such that {p1, p2, p3, ..., p`} composes the
prime factors of some OPAN.

Proof. Let ` be the smallest positive integer such that b∞({p1, p2, ..., p`}) > 2. Note that 2 =
b∞({2}) ≥ b∞({p}) for any prime p. By Theorem 2.2, there does not exist an abundant with
exactly one prime divisor. Thus ` ≥ 2.

For any positive integer k such that k ≤ `− 1, we have that b∞(pk) > b∞(pl). Thus for any
proper subsequence S of P ′ = {p1, p2, ..., p`}, we have that b∞(S) ≤ 2. Using Theorem 2.2, we
can see that there does not exist an abundant number whose prime divisors compose S. Since
b∞(P ′) > 2, there exists an abundant number whose prime divisors compose P ′. Suppose m is
such an integer. Then m is an OPAN or a divisor of m is an OPAN. Note that any divisor of m
which is an OPAN must have prime factors that compose P ′. Thus there exists an OPAN with
divisors composing P ′.

Theorem 4.2 (Prime Divisibility of Abundant Numbers). Let P be an increasing sequence of
odd primes. Let r and s be primes such that max(P) < r < s. Suppose there exists a (P + s)-
initiated OPAN with d divisors. Then there exists a (P + r)-initiated OPAN with at most d
divisors.

Proof. By hypothesis, there exists a (P + s)-initiated OPAN with d divisors. Suppose n is such
an OPAN . Note that n is in the form n = ν(P + s,M(P+s))ν(Q,MQ) for sequences of positive
integers M(P+s),MQ, and some increasing sequence of primes Q such that s < min(Q).

We want to consider m = ν(P + r,M(P+s))ν(Q,MQ). The integer m is abundant as r < s.
If m is primitive, we are done. Henceforth suppose m is not primitive. We will show that every
primitive abundant divisor of m must be (P + r)-initiated(Proving the theorem).

Consider the maximum integer k such that rk|m. Notice that d = m/rk is a divisor of n as
m/rk = n/sk. Thus d is deficient and every divisor of d is therefore deficient. Thus an abundant
divisor of m must be divisible by r.

Let p ∈ P . We now show that 2 > b(m/rk) > b(m/pt), where t is the maximum integer
such that pt|m. Note that b(m/rk) = b(m)/b(rk), and likewise b(m/pt) = b(m)/b(pt). Also,
b(rk) < b(p) ≤ b(pk) by Theorem 2.3. Hence, 2 > b(m/rk) > b(m/pt). Therefore any primitive
abundant divisor of m must be divisible by every prime in P + r. Since there must exist at least
one odd primitive abundant divisor of m, there must exist a (P + r)-initiated OPAN with at
most d divisors.

Corollary 4.1 (Continuity of Primitive Abundant Numbers). Let P = {p0, p1, ..., pd−2, s} be
an increasing sequence of primes. Suppose that n = ν(P,M) is a primitive abundant number
for some sequence of positive integers M . Let s be a prime such that pd−2 < r < s, and
let P ′ = {p0, p1, ..., pd−2, r}. Then there exists some sequence of positive integers E such that
ν(P ′, E) is a primitive abundant number.

Proof. This is a special case of Theorem 4.2, where d = |(P + s)|.

We now define a certain class of primes. Suppose P is an ordered sequence of i primes.
Suppose d is an integer greater than i. Let p be the largest prime such that there exists a
(P + p)-initiated OPAN having fewer than d prime divisors. We know this prime p exists since
there exist only finitely many primitive abundant numbers having fewer than d prime divisors
[5]. We denote this prime p as Capd(P).

Theorem 4.3. Let P be an ordered sequence of primes, and let r and s be primes such that
max(P) < r < s. Suppose d is an integer such that d > |P |. Finally, suppose that r > Capd(P).
If there does not exist any (P + r)-initiated OPAN’s with d divisors, then there does not exist
any (P + s)-initiated OPAN’s with d divisors.

10

Proof. Assume, to the contrary, that there does exist a (P + s)-initiated OPAN with d divisors.
By Theorem 4.2, there exists a (P + r)-initated OPAN having d or fewer divisors. However,
r > Capd(P), and by definition of Capd(P), there cannot exist a (P + r)-initiated OPAN having
fewer than d divisors. This is a contradiction.

To calculate Capd(P), we simply rely on knowing all OPANs with d− 1 divisors.

5 The Main Algorithm

In order to describe the algorithm in this section, we need to develop more definitions and
theorems. Let d be an integer greater than 2. We define the set Pd as follows: Suppose that
P is an increasing sequence of odd primes with d elements. Such a sequence P is a member
of Pd if and only if there exists some OPAN n in the form n = ν(P,E) for some sequence of
positive integers E. Note that the set Pd is finite as there exists only finitely many OPANs with
d divisors[5].

Let P be an element of Pd for some integer d ≥ 3. We define the set of positive integer
sequences EP as

EP = {E | ν(P,E) is an OPAN}.

Now we want to develop an ordering on Pd. We will use a lexicographical ordering, comparing
each element sequentially. Let P,Q ∈ Pd. Write P = {p0, p1, ..., pd−1} and Q = {q0, q1, ..., qd−1}.
We say that P < Q if there exists some index i such that pi < qi and for each index k < i we
have that pk = qk. Naturally, we say that P ≤ Q if P < Q or P = Q.

Recall that we defined an integer n to be P -initiated if the smallest |P | prime factors of n
compose P . We now generalize this notation to include both integers and sequences. Suppose Q
is a sequence of d elements and P is a sequence of i < d elements. We say that Q is P -initiated
if the first i elements of Q is the sequence P .

As Pd is a finite set with a total ordering, Pd has a minimum and a maximum element. We
now want to find the minimum of Pd for d = 3, 4, 5, 6 as this will help us in the base case of
Theorem 5.1. Dickson showed that min(P3) = {3, 5, 7} and min(P4) = {3, 5, 7, 11}. This leaves
us to show min(P5) = {3, 5, 7, 11, 13} and min(P6) = {3, 5, 7, 11, 389, 397}.

To show that min(P5) = {3, 5, 7, 11, 13}, we use the fact that 315171111131 is an OPAN.
There cannot exist a set of 5 odd primes P < {3, 5, 7, 11, 13}, and therefore we are done.

To show thatmin(P6) = {3, 5, 7, 11, 389, 397}, we note that 315171111p1 is an OPAN when p is
a prime such that 13 ≤ p ≤ 383. Therefore, any lexicographical predecessor of {3, 5, 7, 11, 389, 397}
cannot exist in P6 as it would not meet the requirement of being associated with an OPAN with 6
divisors. Since 31517111138913971 is an OPAN, we have that {3, 5, 7, 11, 389, 397} is the minimum
element in P6.

To generalize Theorem 5.1, it would be useful if we could find the minimum of Pd for any d.
This, however, goes beyond our scope of research.

Suppose P ∈ Pd. We define lex(P) to be the set of all Q ∈ Pd such that Q < P . For
example, lex({3, 5, 13}) = {{3, 5, 7}, {3, 5, 11}}.

Theorem 5.1. The following algorithm determines all primitive abundant odd numbers with d
divisors for d ∈ {3, 4, 5, 6}.

Conjecture 1. The following algorithm determines all primitive abundant odd numbers with d
divisors, for any integer d ≥ 3.

11

The Main Algorithm
INPUT: A positive integer, d. OUTPUT: All OPAN’s with d prime factors.

1: For all Q, set T (Q) = false
2: P := {}
3: running := TRUE
4: while running do
5: if |P | 6= d then
6: if b1(P) ≥ 2 then
7: Remove the last element of P
8: Let q be the minimum prime s.t. b1(P + q) < 2
9: P := P + q

10: end if
11: Let s be the minimum odd prime such that s > max(P) and P + s has never been

stored in P before.
12: P := P + s
13: continue
14: end if
15: if b∞(P) ≤ 2 then
16: fail(P, running)
17: continue
18: end if
19: if EP is not empty then
20: Store (P, EP)
21: r = nextprime(max(P))
22: Replace the last prime in P with r
23: continue
24: end if
25: s = backup(P)
26: if |P | = d− 1 then
27: fail(P, running)
28: continue
29: end if
30: if s ≤ Capd(P) then
31: P := P + nextprime(s)
32: contiue
33: end if
34: fail(P, running)
35: end while

12

fail
INPUT: An increasing sequence of primes P and a boolean variable running.
OUTPUT: No output. Modifies inputs.

1: P ′ := P
2: while P ′ 6= {} do
3: Remove the last prime from P ′

4: if there exists A P’-initiated OPAN in lex(P) then
5: break
6: end if
7: T (P ′) := TRUE
8: end while
9: if P ′ = {} then

10: running := FALSE
11: return
12: end if
13: while T (P ′) do
14: Remove the last prime from P ′.
15: end while
16: P := P ′

17: return

backup
INPUT: An increasing sequence of primes P .
OUTPUT: The last prime removed from P .

1: P ′ := P
2: while P ′ 6= {} do
3: q := Max(P ′)
4: Remove the last prime from P ′

5: if there exists A P’-initiated OPAN in lex(P) then
6: break
7: end if
8: end while
9: return q

Proof. It is noteworthy that this algorithm works in the lexicographical order defined on Pd.
We will leverage this so that we can induct on Pd, showing that each member Q ∈ Pd will be
recorded with its associated exponent sequences EQ.

Our base case for the proof is to show that min(Pd) is stored with its associated exponent
sequences. For the cases d = 3, 4, 5, 6, this can be done computationally.

Our inductive step is as follows. Suppose Q,R are elements in Pd such that Q is the unique
predecessor to R. If (Q, EQ) is collected in the algorithm, then (R, ER) is collected in the
algorithm.

Suppose that Q and R are the same sequence apart from their respective last primes q and
r respectively. By Corollary 4.1, we have r is the prime successor to q. When the algorithm
collects (Q, EQ) in line 20, the algorithm will immediately move on to transform P := Q into
P := R. Following the algorithm step by step will show that (R, ER) is collected.

Now suppose that Q and R are not the same sequence when ignoring the last element of Q

13

and R. Thus Q and R are in the form

Q = {q0, q1, ..., qc−1,qc, qc+1, ..., qd}
R = {q0, q1, ..., qc−1,rc, rc+1, ..., rd}

(5)

where qc < rc. As there is no S ∈ Pd such that Q < S < R, we can see that the algorithm will
keep failing on line 34, until P = {q0, q1, ..., qc−1} The algorithm will then try the next prime
s after qc on line 12. Suppose r = rc. It can be shown that from here that the algorithm will
collect (R, ER).

Henceforth assume that nextprime(qc) < rc. By Theorem 4.3, we have that rc ≤ capdP .
Thus the algorithm will increment its last element as it will continue to execute the line 31 until
the last prime of P is equal to rc It can be shown that from here that the algorithm will collect
(R, ER).

THIS PROOF NEEDS WORK.

6 Increasing Computational Efficiency

The exponent algorithm is a very computationally expensive algorithm. If we can avoid executing
the exponent algorithm, then the amount of time it takes to find all OPAN’s with d divisors will
be drastically reduced. We make the following claim:

Lemma 6.1 (Efficiency Lemma). Let P be an increasing sequence of odd primes. Suppose that
p is a prime greater than the last prime of P and q a prime greater than p. If E(P+p) 6= ∅ and
E(P+p) is a subset of E(P+q), then E(P+p) = E(P+q).

Proof. Suppose, to the contrary, that the theorem is not true. Then there exists some E /∈ EP+p

such that ν(P + q, E) is an OPAN. As E is not in EP+p, we have that ν(P + p, E) is not an
OPAN. However, ν(P + p, E) is abundant as p < q. Hence there exists a divisor of ν(P + p, E)
which is an OPAN. Suppose a is such a divisor.

We will now show that the prime divisors of a compose P +p. We know that p must divide a,
for if p does not divide a, then a is an abundant proper divisor of ν(P + q, E)(a contradiction).
Let k be the maximum integer such that pk divides a. We know that a/pk is deficient as it is a
divisor of ν(P + q, E). Using a similar argument, we can show that all primes of the set P must
divide a. Thus the prime factors of a compose P + p.

We have shown that each prime number in P +p divides a, and therefore a can be written in
the form a = ν(P + p, E ′) for some sequence of positive integers E ′. As a is an OPAN, we have
that E ′ ∈ E(P+p). By hypotheses, E(P+p) is a subset of E(P+q). This implies that E ′ ∈ E(P+q).
Therefore aq = ν(P + q, E ′) is abundant. However, aq is a divisor of ν(P + q, E), and therefore
aq is deficient, a contradiction.

Theorem 6.2 (Efficiency Theorem). Let P be an increasing sequence of odd primes. Suppose
that p is a prime greater than the last prime of P and q a prime greater than p. If E(P+p) 6= ∅
and E(P+p) is a subset of E(P+q), then for any prime r such that p < r < q, we have that
E(P+p) = E(P+r) = E(P+q).

Theorem 6.2 seems to apply to a massive amount of cases, especially as the last prime grows
larger and larger. Because of this, Theorem 6.2 allows us to avoid the exponent algorithm, which
is a very computationally expensive algorithm. This theorem allows all primitive abundant
numbers with 5 divisors to be computed in just a couple of minutes, where previously it took
about an hour. Using multithreading abilities on modern processors, the time can be cut even
further.

14

Proof. If E(P+p) = {{1, 1, 1, ..., 1}}, then the theorem is trivial. Henceforth we shall assume that
for each element E in E(P+p), E contains at least one term greater than or equal to 2.

Suppose that E(P+p) = E(P+q). Suppose, to the contrary, that E(P+r) 6= E(P+p). Then there
exists some E ∈ E(P+r) such that E /∈ E(P+p), or there exists some E /∈ E(P+r) such that
E ∈ E(P+p).

Suppose the former case is true. Let E be an element of E(P+r) such that E /∈ E(P+p) = E(P+q).
It is easy to show that ν(P+q, E) is not abundant. If ν(P+q, E) were abundant, then ν(P+q, E)
would be forced to be primitive abundant which would imply E ∈ E(P+q). It is also easy to show
np = ν(P + p, E) is abundant. Since d = ν(P + p, {1, 1, 1, ..., 1}) is deficient and divides the
abundant number np, there exists a primitive abundant odd which is a multiple of d and a divisor
of np. Such a divisor would be in the form ν(P + p, E ′) for some sequence of positive integers
E ′. This would imply E ′ ∈ E(P+p). However, this would create a contradiction as E ′ /∈ E(P+q)

and E(P+p) = E(P+q).
Now suppose there exists some E /∈ E(P+r) such that E ∈ E(P+p). From this we know that

E ∈ E(P+q) and therefore n = ν(P + r, E) is abundant. We also know that for each divisor
ν(P + r, E ′) of n, we have that 2 > ν(P + p, E ′) > ν(P + r, E ′). Thus n is a primitive abundant
number, as each of its divisors are deficient. This implies that E ∈ E(P+r), a contradiction.

[5]

References

[1] S. J. Benkoski and P. Erdös. On weird and pseudoperfect numbers. Mathematics of Com-
putation, 28(126):617–623, 1974.

[2] Valdas Dičiūnas. On the number of odd primitive abundant numbers with five and six
distinct prime factors. Vilinus Conference in Combinatorics and Number Theory, page 12,
2017.

[3] Gianluca Amato, Maximilian F. Hasler, Giuseppe Melfi, and Maurizio Parton. Primitive
abundant and weird numbers with many prime factors, 2018.

[4] N.J.A. Sloane. The on-line encyclopedia of integer sequences. www.oeis.org.

[5] Leonard Eugene Dickson. Finiteness of the odd perfect and primitive abundant numbers
with n distinct prime factors. American Journal of Mathematics, 35(4), 1913.

15

www.oeis.org

	The University of Akron
	IdeaExchange@UAkron
	Fall 2018

	An algorithm to determine all odd primitive abundant numbers with d prime divisors
	Jacob Liddy
	Recommended Citation

	Introduction
	Preliminaries
	Exponent Theorems and The Exponent Algorithm
	Prime Sequences: Theorems and Definitions
	The Main Algorithm
	Increasing Computational Efficiency

