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Executive Summary 
Sandia National Laboratories has requested a fully mechanical device to close a circuit 

after launch has occurred and the device enters a vacuum. Intended for applications in rockets 

and missiles, the device must fit in a 36 degree wedge with a 6.8 inch radius that is 6 inches in 

height and be ready to bolt onto a rocket. The pressure switch must be prevented from actuating 

until a launch acceleration ranging from 20 to 27g is detected. The pressure switch must close 

the circuit after a pressure of 10-1 Torr is reached and before a pressure of 10-6 Torr is reached. 

The switch must remain closed after the switch is actuated. The pressure switch is required to 

close a circuit carrying 30 VDC with a 15 ohm load for up to 15 seconds. The switch itself is 

allowed to have a maximum resistance of 0.2 ohms. The switch must be resettable for Sandia to 

conduct multiple test runs. Our contact at Sandia expressed interest in 3D printed components. 

This design detects the launch acceleration by separating a calibrated mass from a magnet. 

Before the acceleration sensor is tripped, it prevents the pressure switch from actuating. The 

pressure switch contains a substance which is a liquid at the temperatures and pressures 

experienced before the vacuum environment is reached and vaporizes in the vacuum 

environment. The phase change causes an expansion of the fluid container, which is used to 

move the actuator magnet near a reed switch and close the circuit. Thus, this project applies 

thermodynamics, system dynamics, numerical methods, material selection, and mechanical 

component design. 

A prototype of the design will be built and sent alongside a report to Sandia National 

Laboratories. Sandia will test the device on a sounding rocket. This project will provide Sandia 

with one of ten prototype devices to test. The switch provided will be used to detect when the 

rocket has left the atmosphere and has activated safety measures. 
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Chapter 1: Introduction 

1.1 Background 
Sandia National Laboratories has made a request to multiple universities, including the 

University of Akron, to create a prototype vacuum sensor. The vacuum sensor detects when a 

rocket has launched and exited the atmosphere. This is used to close a circuit which activates 

safety measures to prevent energy transfer through the rocket. The vacuum sensor will detect 

launch accelerations between 20 and 27g, and close a circuit when a pressure between 0.1 and 

10-6 Torr is reached. The circuit must remain closed once the switch has been activated. 

1.2 Principles of Operation 
Outlined in Figure 6, the vacuum sensor has 3 main components, which are an acceleration 

switch, expanding diaphragm with a phase change fluid (PCF), and an electrical switch. The 

pressure switch’s FEP diaphragm is blocked from expanding by a mass held in place by a 

magnet. When the launch accelerates the system above 20g, the mass separates from the magnet 

and falls into a channel. With the magnet in the channel, the diaphragm is free to expand. The 

diaphragm contains propylene glycol which exists in the liquid phase at the conditions which 

occur before the vacuum is reached. Once the pressure drops between 10-1 and 10-6 Torr, the 

propylene glycol will vaporize, expand the diaphragm, and close the circuit by moving an 

actuator magnet close to a reed switch. The reed switch is composed of two overlapping 

magnetic beams in a sealed glass tube. When the reed switch is placed in a sufficiently strong 

magnetic field, the beams will make contact and close the circuit. The overall system is designed 

to be bi-stable. 
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1.3 Product Definition 
Our device is designed to close a circuit after a rocket has launched and exited the 

atmosphere. An acceleration switch consisting of a calibrated mass attached to a magnet is used 

to detect when the acceleration of the rocket exceeds 20g. A PCF in an expanding diaphragm is 

used to detect when the rocket is exposed to pressures between 0.1 and 10-6 Torr.  To be mounted 

in the allotted rocket space the vacuum sensor must fit into a 36 degree wedge with a radius of 

6.8 inches and a height of 6 inches. Our design seeks to accomplish these tasks in a simple 

manner with few moving parts to reduce to possible points of failure and increase reliability. 

Since this device is used as a safety measure reliability is a priority. 
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Chapter 2: Conceptual Design 

2.1 Preliminary Design Brief 
The goal of this project is to design a lightweight, resettable, and fully-mechanical pressure 

switch to activate in the range between 10-1 and 10-6 Torr. It must close a circuit with less than 

0.2 ohm resistance. This switch must only be able to activate after a 20-27g acceleration. 

2.2 Expanded Design Brief 
Sandia National Labs requires a fully mechanical launch check system. The switching part 

of this system must only be able to activate after a 20-27g acceleration and at a pressure between 

10-1 and 10-6 Torr. The activation is defined as the switching on of a current of 15 ohm with a 

potential of 30 VDC. This switching system must be able to actuate with bi-stability and then be 

reset manually for ease in testing the switch. The system also has to mount firmly in the space 

allotted in the rocket or missile. This space is defined by a 36 degree arc, a radius of 6.8 inches, 

and a height of 6 inches. 

2.3 Function Structure Diagrams 
Functionally, the vacuum sensor accepts launch acceleration and pressure conditions as 

inputs and then outputs a closed switch. The overall function structure diagram is shown in 

Figure 1. A more detailed view shows that the acceleration sensor/switch takes launch 

acceleration as an input. The outputs of the acceleration sub-function are energy and the removal 

of motion constraints on the pressure sensor. The damper converts the inertial energy from the 

acceleration switch to heat and work to ensure that the acceleration switch cannot return to its 

initial position. The now unconstrained pressure switch accepts pressures within the specified 

range as an input and outputs the closing of the circuit. The detailed function structure diagram is 

shown in Figure 2.  

 

Figure 1: Overall Function Structure Diagram 
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Figure 2: Detailed Function Structure Diagram 

The detailed function structure diagram was used to layout the tasks which must be 

accomplished by the designed system. This information was used to brainstorm multiple 

methods to accomplish each task. These methods are shown in the morphological chart. Since 

Sandia requested a fully mechanical system, only methods that operate on mechanical methods 

were considered. 
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2.4 Morphological Chart  

 

Figure 3: Morphological Chart 

2.5 Concept Sketches 
From the morphological chart, 6 concepts were created. Sketches of each concept are 

shown in Figure 4.  

Concept 1 uses a spring mass system to detect launch acceleration. As the mass moves into 

the tripped position a locking device snaps into place keeping the mass in its switched position. 

When the external pressure drops, the differential pressure between the interior and exterior of 

the inert gas reservoir will cause the gas in the reservoir to expand and move a toothed piston. 
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The piston motion will transfer through a set of gears to drive the rotation of a rotary switch and 

close the circuit. 

Concept 2 uses the same pressure and acceleration sensing methods as concept 1, but the 

pressure difference is used to push the piston into a push button switch and close the circuit. 

Locking mechanisms snap into place to keep the piston in its final position with the circuit 

closed. 

Concept 3 uses a mass attached to a magnet to detect acceleration. When launch is 

detected, the magnet falls into a channel. Since magnitude of the magnetic field approaches zero 

as the mass moves away from the magnet, no locking mechanism is required to prevent the 

magnet from pulling the mass back. When a low pressure is reached, the inert gas will expand as 

in concept 1, and the expansion of the bellows moves a magnet toward a reed switch. The reed 

switch closes the circuit in the presence of the magnetic field. Retaining magnets are placed near 

the end of the expansion shaft to hold the actuator magnet in its final position. 

Concept 4 uses the locking mass spring system to detect acceleration. A PCF vaporizes and 

expands a diaphragm with a rigid plate attached. To ensure this, a fluid with a vapor pressure in 

the desired pressure range is selected. The expansion will press the plate against a toggle switch 

and force it into the closed position. No retaining methods are required for the expanding portion 

since the toggle switch will remained closed once it is switched. 

Concept 5 uses the magnet and mass acceleration sensor and an inert gas to expand the 

piston. The piston motion pushes the toggle switch into the closed position. 

Concept 6 uses the magnet and mass acceleration sensor and the PCF to detect pressures. 

The diaphragm has an actuator magnet attached and its expansion moves the magnet within 

range of the reed switch.  
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Figure 4: Concept sketches for concepts 1 - 6 

2.6 Objective Tree 

 

Figure 5: Vacuum Sensor Objective Tree 

2.7 Weighted Decision Matrix 
The weighted decision matrix shown in Table 1 is populated with weight factors 

determined from the objective tree. Each design is given a score in each design criteria which is 

multiplied by the weight factor. The scores for each design are summed and the design with the 

highest score is chosen. Concept 6 had the highest score. 

Vacuum 
 Sensor 
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Due to the similarities in device sizes and possible material choices, the material cost score 

for each concept was the same. The manufacturing costs of the designs involving gears or 

bellows were given poor manufacturing cost scores due the high cost of custom sized gears, 

complexity of machining small precise components, and the complex manufacturing process for 

bellows. A poor repair cost was given to the bellows and gear based designs, since replacement 

gears or bellows would have a high cost. All concepts were given high safety ratings since each 

one has moving parts enclosed and any potentially hazardous substances are sealed within a 

reservoir. Concepts 4 and 6 received the highest reliability scores because they contain the 

fewest number of moving parts. Designs with gears or spring loaded locking mechanisms 

received low scores due to a greater number of moving parts, which may fail. Concepts 1 and 3 

received low scores for manufacturing time due to the complexity of manufacturing bellows and 

small precise gears and applying teeth to the piston that can mesh with the gears.  

Table 1: Weighted decision matrix with the chosen design highlighted 

  CONCEPT # 

  1 2 3 4 5 6 

Design Criteria Weight Factor Score Rating Score Rating Score Rating Score Rating Score Rating Score Rating 

MATERIAL 
COST 

0.12 7 0.84 7 0.84 7 0.84 7 0.84 7 0.84 7 0.84 

MFG COST 0.15 3 0.45 4 0.6 1 0.15 4 0.6 5 0.75 8 1.2 

REPAIR COST 0.03 3 0.09 5 0.15 1 0.03 6 0.18 5 0.15 8 0.24 

SAFETY 0.21 9 1.89 9 1.89 9 1.89 9 1.89 9 1.89 9 1.89 

RELIABILITY 0.35 4 1.4 5 1.75 7 2.45 4 1.4 5 1.75 8 2.8 

MFG TIME  0.14 2 0.28 7 0.98 2 0.28 7 0.98 7 0.98 7 0.98 

              

TOTAL SCORE   4.95  6.21  5.64  5.89  6.36  7.95 
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Chapter 3: Embodiment Design 

3.1 Embodiment Rules 
The embodiment design maintains clarity of function, simplicity, safety, and reliability. 

The reed switch, acceleration switch, and pressure sensor each carry out one function uncoupled 

from other functions. The components are arranged such that both the acceleration switch and 

pressure sensor must be activated to close the electrical connection. The design maintains 

simplicity by reducing the number of moving parts to a few essential components. Simplicity 

reduces probability for unexpected behavior during use and makes the design more reliable. The 

calibrated mass falls into a channel at a calculated acceleration. The PCF expands at a given 

temperature and pressure. By limiting the number of steps and moving parts between the sensors 

and the switch, reliability is improved.  Safety is insured by containing moving parts within a 

housing and using safe PCFs. 

3.2 Embodiment Principles 
The first principle observed is self-help. Once the PCF is able to vaporize, the small magnet 

in the diaphragm can move farther from the centerline of the sounding rocket. This movement 

away from the center line increases the centripetal force on the magnet and helps the pressure 

sensor expand. This is important because during vaporization at such low pressures, the work 

done by the expanding gas is small. Division of tasks is the next principle observed. Each 

component has a specialized purpose and task. The last principle used is stability. The 

acceleration switch operates as a bi-stable system. Once the mass separates from the magnet, the 

system must stabilize in its new state. The acceleration of the rocket keeps the magnet in this 

state. To prevent any bounce-back, foam is inserted into the hole so that energy is absorbed. 
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3.3 Failure Mode and Effect Analysis 
Table 2 below shows how the vacuum sensor could fail and the severity of each failure. 

Table 2: Failure Mode and Effect Analysis 

Component Potential Failure 
Mode 

Potential 
Effect(s) of 

Failure 
Severity 

Potential 
Cause(s)/ 

Mechanism(s) of 
Failure 

Current  
Process  

Controls 

Acceleration 
switch 

Calibrated mass 
does not separate 
from magnet 

The pressure 
switch cannot 
operate 

10 Improper size 
hardware 

Test separation 
force 

  Mass bounces up 
after separation 

The pressure 
switch cannot 
operate 

9 Insufficient 
energy absorption 

Check that foam 
is in place 

Pressure Switch Leak in 
diaphragm 

Pressure sensor 
cannot expand 10 Improper 

Handling 
Check before 
installing fluid 

  Leak in gasket Loss of PCF 8 Insufficient 
gasket seating 

Check before 
installing fluid 

  Freezing PCF Change vapor 
pressure 7 

Temperature 
change, latent 
heat of 
vaporization 

Insulate switch 

  Fluid cannot 
constrain magnet 

Early electrical 
connection 7 Diaphragm too 

loose Pull on magnet 

Reed Switch Stuck switch No electrical 
connection 8 Faulty reed switch Test switches 

before insulation 

  Cracked glass Function 
improperly 6 Damaged reed 

switch 
Visually inspect 
switch 

 

3.4 Preliminary Selection of Materials and Manufacturing Processes 
Materials were selected for this design based on minimizing mass and cost, while still 

meeting the requirements of each component. The material list for the entire system was filtered 

by seeking materials that can operate between -90 and 90°C. The acceleration switch mass must 

be small, but heavy enough to separate from the magnet during launch. To achieve the desired 

mass in the available volume, a high density is required. Additionally mass materials were 

limited to nonferrous metals and plastics. Figure 10 plots material density versus cost per unit 

mass using CES EduPack 2018 (Granta Design Limited, 2017). The mass will have a steel insert 

to allow it to stick to the acceleration switch magnet, but not interfere with the magnets used to 

activate the reed switch.  The PCF reservoir must be chemical resistant and non – porous. The 
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expandable diaphragm must be a thin film, chemical resistant, low outgassing, and formable into 

the desired shape. The base must be nonmagnetic, and a material with low electrical conductivity 

is desirable. Acceptable material choices are summarized in Table 3 below. 

Table 3: Preliminary Material Choices 

Component Desired Properties Acceptable Materials 

Acceleration switch 
mass 

Inexpensive, Dense, Non-
magnetic 

Stainless Steels, Aluminum Bronzes, 
Brass, Lead 

Fluid Reservoir Chemical resistant, non-porous Aluminum alloys, Brass, PTFE 

Expandable 
Diaphragm 

Chemical resistant, Formable, 
low outgassing 

FEP, PFA, Kapton 

Base Inexpensive, lightweight, 
nonmagnetic 

Polycarbonate, Aluminum Alloys, Brass, 
PTFE, Polypropylene 

 

Based on the preliminary material selections, possible manufacturing techniques were 

determined. The acceleration switch mass will be machined. The fluid reservoir must be 

machined or injection molded. The expandable diaphragm will require thermoforming or heat 

sealing. The base can be injection molded, machined, or 3D printed. 

3.5 Calculations 
A switch capable of handling the required loads is needed. The switch data sheets give a 

switching voltage, power, and current. Given the DC voltage and resistance, the switching 

current and power is calculated below. 

𝑉𝑉 = 30 𝑉𝑉𝑉𝑉𝑉𝑉         𝑅𝑅 = 15Ω 

𝐼𝐼 =  
𝑉𝑉
𝑅𝑅

=
30𝑉𝑉
15Ω

= 𝟐𝟐𝟐𝟐 
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𝑃𝑃 = 𝑉𝑉𝑉𝑉 = 30𝑉𝑉 ∗ 2𝐴𝐴 = 𝟔𝟔𝟔𝟔𝑾𝑾 

As the rocket flies, it rotates about the center of top cross section at a frequency of 4 Hz. 

This rotation will apply centripetal acceleration to the internal components. Given the spin rate, 

and maximum radial location of the vacuum switch, the maximum expected centripetal 

acceleration is calculated below. 

𝑓𝑓 = 4𝐻𝐻𝐻𝐻,        𝜔𝜔 = 2𝜋𝜋𝜋𝜋 = 8𝜋𝜋
𝑟𝑟𝑟𝑟𝑟𝑟
𝑠𝑠

,           𝑟𝑟 = 6.8𝑖𝑖𝑖𝑖 = 0.567𝑓𝑓𝑓𝑓 

𝑎𝑎𝑐𝑐 = 𝑟𝑟𝜔𝜔2 = 0.567𝑓𝑓𝑓𝑓 �8𝜋𝜋
𝑟𝑟𝑟𝑟𝑟𝑟
𝑠𝑠
�
2

= 𝟑𝟑𝟑𝟑𝟑𝟑 
𝒇𝒇𝒇𝒇
𝒔𝒔𝟐𝟐

 

3.6 Layout Drawings 
The vacuum sensor is arranged such that the accelerometer shaft is parallel to the direction 

of the rockets motion. This ensures that the acceleration switch detects the launch acceleration. 

The reservoir is connected to the base with screws or bolts, and arranged such that the diaphragm 

expands outward from the center of the rocket. This ensures that the centripetal acceleration due 

to the rocket spin rate assists the diaphragm in moving the switch actuating magnet instead of 

opposing it. 

 

Figure 6: Layout drawings with major dimensions 

h ≤ 6” 

L ≤ 6.8” 
36° 



19 
 

Chapter 4: Detail Design 

4.1 Acceleration Switch Numerical Model 
The free body diagram for the acceleration switch is shown in Figure 7. The acceleration 

switch mass travels through a channel which restricts motion along all other axes. This allows us 

to simplify the acceleration switch to a one degree of freedom model. The mass is connected to 

the rocket by magnet. A contact force Fc must be applied before the mass and magnet will 

separate. The governing differential equation for this system is given by Equation 1. 

A function for the magnetic force Fm was determined using test data from the K&J 

Magnetics webpage for the specified magnet. Data was generated in laboratory conditions by 

measuring the force required to pull the magnet from a smooth, thick steel plate, so the listed 

forces are expected to be higher than those observed in application (K&J Magnetics). The 

distance from the magnet where 0.75 lbf of pull force occurred was determined experimentally; 

this occurred between 0.010 and 0.015 inches from the magnet surface.  A curve of the form AeBx 

was fit to the data and scaled such that the pull force of 0.75 lbf occurred at the experimentally 

determined distance of 0.0125 inches. The function was offset such that x = 0 occurs 0.015 

inches from the magnet surface. Equation 2 gives the scaled curve fit for the magnetic force, Fm 

as a function of distance, x in feet. The contact force, Fc is defined by Equation 3.  

Due to the nonlinearity of the governing differential equation, the solution is found 

numerically. Numerical methods behave irregularly when given sharp jumps as seen in Fc, or 

other functions like the unit step and Dirac-delta functions. Equation 3 was smoothed and 

rewritten as Equation 4 to avoid this issue by assuming that Fc behaved as a stiff spring for all x 

less than a small positive value. This assumption is based on the fact that materials are typically 

not rigid and it is possible for small deformations in the magnet or mass allowing the x position 

to be defined for some negative x. Due to the sharp jump in the contact force function and an 

anticipated sharp jump in the solution we consider this to be a stiff problem. Equation 1 input 

into the Matlab ODE solver ODE15s to estimate the position and velocity of the acceleration 

switch mass along the x-coordinate. ODE15s was used due to Mathwork’s claim that ODE15s 

shows the greatest performance for most stiff problems (Mathworks, 2018). 
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Figure 7: Free Body Diagram for acceleration switch mass 

𝑚𝑚𝑥̈𝑥 − 𝐹𝐹𝑚𝑚(𝑥𝑥) − 𝐹𝐹𝑐𝑐 = 𝑚𝑚𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

Equation 1: Governing differential equation for accelerometer mass 

𝐹𝐹𝑚𝑚 ≈ 0.942𝑒𝑒−238(𝑥𝑥+0.00125)𝑙𝑙𝑙𝑙𝑙𝑙 

Equation 2: Scaled curve fit for magnetic force 

𝐹𝐹𝑐𝑐(𝑥𝑥) =  �𝐹𝐹𝑚𝑚
(0) −𝑚𝑚𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖 𝑥𝑥 = 0 

0         𝑖𝑖𝑖𝑖 𝑥𝑥 > 0 � 𝑙𝑙𝑙𝑙𝑙𝑙 

Equation 3: Contact Force 

𝐹𝐹𝑐𝑐(𝑥𝑥) =  �106(𝐹𝐹𝑚𝑚(0) −𝑚𝑚𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)𝑥𝑥 + (𝐹𝐹𝑚𝑚(0) −𝑚𝑚𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) 𝑖𝑖𝑖𝑖 𝑥𝑥 < 10−6𝑓𝑓𝑓𝑓 
0         𝑖𝑖𝑖𝑖 𝑥𝑥 > 0 � 𝑙𝑙𝑙𝑙𝑙𝑙 

Equation 4: Smoothed, numerical rewriting of Equation 3 

The solution shows the mass remaining stationary when the rocket is not accelerating. 

When the acceleration is below 20g the mass initially oscillates with small displacements that 

quickly decay to even smaller oscillations. These small oscillations continue as time passes 

without dissipating since there is no damping term in the model. The magnitude of these 

oscillations is small enough to be considered negligible. Thus, the mass does not leave its 

starting state and continues restricting possible expansion of the diaphragm. This is shown in 

Figure 9. When the rocket’s acceleration exceeds 20g, the mass pulls away from the magnet and 

the displacement increases rapidly. Based on the design the acceleration switch mass will collide 

with the end of the channel built into the base when x = 4 inches. Unless sufficient energy is 

dissipated, the mass will bounce back up into its original position. To create a bi-stable system, a 
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1 inch tall open cell, polyurethane foam piece was placed into the channel. When struck by the 

mass, the foam piece will compress and buckle. The buckling of the foam cells and structure 

dissipates some of the energy from the acceleration switch mass (Hillyard & Cunningham, 

1994). Since the mass will impact the foam at x = 3 inches, the energy in the acceleration switch 

mass at x = 3 inches is of interest. The maximum energy in the mass for this application will 

occur for the largest possible acceleration in the launch profile at 27g. The numerical solution 

shows that the mass is displaced 3 inches after 0.026 seconds with a velocity of 20.1 feet per 

second. This is shown in Figure 8.  The total energy available in the mass is calculated below. 

The expected mass determined from the CAD model is used below. 

𝑚𝑚 = 0.035𝑙𝑙𝑙𝑙𝑙𝑙 =  1.1 ∗ 10−3𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠         𝑔𝑔 = 27 ∗
32.2𝑓𝑓𝑓𝑓
𝑠𝑠2

= 869.4
𝑓𝑓𝑡𝑡
𝑠𝑠2

             ℎ = 1𝑖𝑖𝑖𝑖 = 0.083𝑓𝑓𝑓𝑓 

𝑉𝑉 = 20.1 𝑓𝑓𝑓𝑓/𝑠𝑠 

𝐸𝐸 =  
1
2
𝑚𝑚𝑉𝑉2 + 𝑚𝑚𝑚𝑚ℎ 

=
1
2

1.1 ∗ 10−3𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �20.1
𝑓𝑓𝑓𝑓
𝑠𝑠
�
2

+ 1.1 ∗ 10−3𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �869.4
𝑓𝑓𝑓𝑓
𝑠𝑠2
� (0.083𝑓𝑓𝑓𝑓) = 0.302 𝑙𝑙𝑙𝑙𝑙𝑙 ∗ 𝑓𝑓𝑓𝑓 

 

Figure 8: ODE15s Solutions for acceleration switch mass position and velocity with a rocket acceleration of 27g 
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Figure 9:ODE15s Solutions for acceleration switch mass position and velocity with a rocket acceleration of 15g 

 

4.2 Analysis of Phase Change Fluids (PCFs) 
A variety of potential PCFs were analyzed by plotting their vapor pressures across a range 

of temperatures. The temperature and pressure expected along the rockets path is also plotted. 

Plausible substances were identified by observing an intersection of the rocket conditions and the 

vapor pressure curve in the desire pressure range. The selected fluid was propylene glycol. This 

decision is discussed further in Chapter 5. 
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4.3 Standard Components List 
Table 4: List of Standard Components 

Part Name Catalogue Part Number 

N52 Neodymium Ring Magnet, 1/16” 

ID, 1/8” OD, 1/16” Height  

K&J Magnetics 211-N52 

N 42 Neodymium Ring Magnet with 

#4 Countersunk Hole 

K&J Magnetics R622CS-P 

Littlefuse Reed Switch 3A 400VDC 

100VA * 

Arrow Electronics D6-129-47-68 * 

10 – 32 screw McMaster Carr 91321A127 

10 – 32 wing nut McMaster Carr 98671A190 

6-32 SS socket head cap screw McMaster Carr 92200A146 

1/8 NPT PTFE plug McMaster Carr 45375K252 

4-40 SS flat head screw McMaster Carr 92805A108 

* Note: The Littlefuse D6-129-47-68 is obsolete and will be replaced by the Littlefuse DRS-50-

47-68. This component will be available as of May 31st, 2018. 

4.4 Materials and Manufacturing Methods Selected 
The material selected for the PCF reservoir/manifold and flange was 6061 aluminum alloy. 

This material was chosen for its low density, ability to be used in the working temperatures seen 

by this device, and its good corrosion resistance rating to ethylene glycol and propylene glycol 

(CP Lab Safety, 2018). 6061 aluminum was selected over other aluminum alloys due to its lower 

cost and availability. These components were CNC machined to get the correct geometry with 

the necessary holes. After machining, threads were tapped into holes where fasteners will be 

applied. The expanding diaphragm was constructed from 0.020 inch thick FEP film. This 

material was selected for its excellent resistance to a variety of chemicals, nonstick properties, 

and ability to be formed into the desired shape (ThermoFischer Scientific). Additionally, the FEP 

film meets NASA low outgassing standards. The FEP film was cheaper and more easily 

available in a variety of thicknesses than the PFA or Kapton films. The FEP diaphragm was 

thermoformed into the desired shape. The acceleration switch mass sleeve was made from 954 

bearing bronze (Aluminum Bronze). This material was selected due to its high density and 
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middle range cost. An alternative option would be AISI 205 Stainless Steel, which has a similar 

density at a much lower cost (Granta Design Limited, 2017). The aluminum bronze was selected 

over the stainless steel due to its superior friction and wear properties. These properties were 

valued since the mass will be sliding through a channel when the switch trips. The mass was 

machined from 0.5 inch diameter rod on a lathe. Polycarbonate was selected to be the material 

for the base. Polycarbonate was chosen due to its ability to be 3D printed, ability to withstand 

our applications working temperatures, low density, and higher strength than other available 

thermoplastics like polypropylene (Granta Design Limited, 2017). The base was 3D printed due 

to our contact at Sandia expressing interest in 3D printable components. Additionally, 3D 

printing provides quick prototyping and the ability to manufacture complex geometries. 
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4.5 Bill of Materials and Cost Estimation 
Table 5: BOM and Cost Estimation 

Part # Part Name Description Qty Units Unit Cost Cost 
1 Calibrated Mass used in accelerometer N/A each  N/A    

1.1 91321A127 10-32 screw 1 each  $     0.25   $     0.25  

1.2 98671A190 10-32 wing nut 1 each  $     1.00   $     1.00  

1.3 Al/Bronze Slug custom made mass 1 each  $ 165.22   $  165.22  

2 Base 3D printed base fixture 1 each  $ 183.19   $  183.19  

3 Reed Switch magnetic circuit closure 1 each  $     3.42   $     3.42  

4 Top 3D printed top fixture 1 each  $   43.35   $   43.35  

5 Pressure Sensor pressure sensor N/A each  N/A    

5.1 Manifold contains phase-change 
fluid 

1 each  $ 115.07   $  115.07  

5.2 Gasket Expanded PTFE gasket 2 each  $     2.00   $     4.00  

5.3 FEP Expanding 
Membrane 

allows phase-change 
fluid to expand 

1 each  $ 110.11   $  110.11  

5.4 92200A146 6-32 SS socket head cap 
screw 

4 each  $     0.36   $     1.43  

5.5 45375K252 1/8 NPT PTFE plug 1 each  $   20.11   $   20.11  

6 Accelerometer 
Magnet 

magnet to hold 
calibrated mass 

1 each  $     1.17   $     1.17  

7 92805A108 4-40 SS flat head screw 5 each  $     0.24   $     1.20  

8 Carbon fiber rod allows actuator swing to 
pivot 

1 each  $     5.00   $     5.00  

9 Actuator swing activates Reed switch 
with force from pressure 
sensor 

N/A each  N/A    

9.1 Wire loop guides magnets in arc 1 each  $     1.00   $     1.00  

9.2 N52 Ring Magnet radial magnet used to 
actuate Reed switch 

5 each  $     1.40   $     7.00  

9.3 PTFE Wire Sleeve attaches wire loop to 
carbon fiber rod 

2 each  $     2.00   $     4.00  

10 Rubber Damper prevents calibrated mass 
from rebounding on 
launch 

1 each  $     5.00   $     5.00  

 
Total 

 
31 

  
 $  671.51  
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4.6 Test Procedures and Results 
The full system will be tested on a sounding rocket launch in summer 2018. Sandia 

National Laboratories will be conducting this test. To validate the proposed design, component 

level testing was performed.  

The acceleration switch was designed to trip at an acceleration of 20g. The magnetic force 

required to hold the mass at this acceleration was found to be 0.75 lbf. The offset between the 

magnet surface and the accelerating mass was determined to be 0.015 inches. This was found by 

testing with both centrifugal and static loading. For the static load test, a 0.75 lbf test mass was 

hung from the magnet with shims between the magnet and test mass. The offset was determined 

by removing shims, allowing the mass to get closer to the magnet and experience greater pull 

force until the test mass was held above ground by the magnet. The 0.015 inch offset allowed the 

magnet to hold the test mass where even a small disturbance like blowing on the mass surface 

would cause the test mass and magnet to separate. For the centrifugal test, the switch mass and 

magnet were attached to a rotating arm such that the center of mass of the switch mass was 5.44 

inches from the rotational axis of the centrifuge. The arm was rotated at angular velocities 

ranging from 0 to 360 rpm. This subjected the switch mass to accelerations from 0 to 20g, and 

the switch mass did not separate until the 20g acceleration was reached. The expected offset 

required to see 0.75 lbf of magnetic force was 0.0625 inches based on test data (K&J Magnetics). 

The data was acquired in lab conditions with the magnet attaching to a flat, thick steel plate. 

According to K&J Magnetics, the actual magnet force experienced will be lower than their test 

values due to imperfect surfaces, surface coatings, and inadequate thickness of the steel 

component. The data from K&J Magnetics is listed in the appendices. 

The vacuum oven available was unable to reach a low enough pressure to vaporize 

propylene glycol. However, the device was filled with propylene glycol and sealed while 

submerged. The system was then placed in the vacuum oven to confirm that it would not expand 

early. For this run, the diaphragm expanded due to an air bubble in the system. A second filling 

was performed. This time, the diaphragm was submerged unsealed in propylene glycol and 

placed in the vacuum. The vacuum oven was run to pull any air out of the system. The device 

was removed from the vacuum and sealed, while still submerged. Then the sealed system was 

cleaned off and placed in the vacuum oven. The device still expanded in this run, but to a lesser 
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amount as the system still had air in it, but this amount was much smaller. Next, water was used 

to prove the concept of expanding the diaphragm with a liquid to vapor phase change. The 

reservoir and diaphragm were connected and submerged in water. The submerged component 

was placed in the vacuum to ensure no air was in the system. When the vacuum reached its 

lowest pressure the tap water outside the device began to boil and vaporize. The component was 

removed from the vacuum and sealed with the diaphragm pressed in while still submerged.  

Then, the system was placed in the vacuum oven at a temperature of 23°C. The pressure in the 

oven was reduced from atmospheric pressure to its lowest pressure. When the vacuum oven 

reached this pressure, the water began to vaporize and the vapor expanded the diaphragm as 

expected. 

The number of magnets used in the actuator swing was determined experimentally. The 

system was assembled without the reservoir. The actuator swing started with one magnet and 

was moved from its starting position to its final position where the reed switch should close. One 

magnet was unable to close the switch. The test proceeded adding one more magnet to the 

actuator swing until the moving the actuator swing to its final position closed the switch every 

time. This occurred when 5 magnets were attached to the actuator swing. The magnets used are 

Grade N52 neodymium rings with a 0.0625 inch ID, 0.125 inch OD, and 0.0625 inch height. 
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Chapter 5: Discussion 
The design requirements for a switch capable of carrying the specified load were met by 

selecting an off the shelf reed switch rated for the switching voltage, current, and power. The 

selected reed switch is manufactured by Littlefuse, has a maximum resistance of 0.1 ohm. 

Additionally, the switch is rated to operate under vibrations up to 30g and shock up to 100g 

(Littlefuse). Testing verified that our magnetic actuator could consistently close the reed switch 

when the magnets were placed within 0.125 inches of the switch. A magnet inside of the 

inflatable diaphragm restricts the motion of magnets to the outside surface of the diaphragm. 

When the PCF exists as a liquid, the magnets are constrained and cannot close the reed switch. 

When the PCF exists as a liquid-vapor mixture, the magnets are free to move towards the reed 

switch. Movement is assisted by centripetal acceleration. The magnets are supported by a wire in 

the vertical direction. If the pressure increases and the PCF condenses into a liquid, the magnets 

on the outside of the inflatable diaphragm cling to the reed switch, keeping the contacts closed. 

The acceleration switch is shown in both a numerical model and from test results to 

separate from the magnet when a 20g acceleration is applied. The model was simplified to a one 

degree of freedom system and a numerical solution was found as discussed in the acceleration 

switch analysis section of Chapter 4. A foam piece was place into the channel to dissipate energy 

from the falling mass to ensure that the acceleration switch mass did not bounce back up to its 

original position and reconnect to the magnet. Similar designs are used by Aerocon in their 

acceleration switches. Aerocon uses a specified mass placed in a container that drops from its 

open position when a given acceleration is applied along the axis where the switch allows motion 

(Aerocon, 2017). 

Pressure dependent changes in vapor pressure are considered as a means of sensing 

pressure. The change between a state above the vapor pressure and below the vapor pressure is 

dramatic and observable. The phenomenon is also less susceptible to vibration than mechanical 

methods discussed previously. Vapor pressure is temperature dependent, therefore temperature 

must be controlled. 

Cajori describes a method of measuring the vapor pressure of water and comparing vapor 

pressure data and pressure-altitude data to estimate altitude (Cajori, 1929). Pressure is held 

constant and water temperature is increased until boiling is observed. On mountains, this 
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thermometric method yielded results similar to triangulation, with errors typically less than 3%. 

19th century physicists recognized the pressure dependent relationship of vapor pressure. The 

pressure switch operates on a similar principle. In the pressure switch, temperature is held 

constant and pressure decreases until it drops below the vapor pressure and the liquid begins to 

boil. A fluid can be chosen such that it exists as a vapor during the desired conditions. This fluid 

is referred to as the phase change fluid (PCF). Huo et al. also discuss a pressure sensor which 

operates by expanding a membrane by heating water until it vaporizes (Huo, Chuai, Yin, Liu, & 

Wang, 2006). 

The required pressure range is provided in the requirements of the project. The PCF must 

exist as a vapor between 10-1 Torr and 10-6 Torr. According to a standard atmosphere, these 

pressures are expected at altitudes between 65 km and 280 km respectively (Lewis, 2007). 

A temperature range is needed to select the PCF. A temperature profile within the rocket 

was not provided, so temperature range used to select the PCF is assumed. The PCF is in an 

insulated reservoir and surrounded by an insulating 3D printed base. The air inside the rocket at 

the beginning of the flight escapes. This reduces heat transfer from the fluid to the surrounding 

air. The pressure switch is assumed to be isolated from heat produced by the propulsion system. 

Therefore, no significant heat flux is expected into or out of the PCF. Latent heat of vaporization 

may reduce the temperature of the PCF during the phase change event. Considering the volume 

of the expanding diaphragm and treating the PCF as an ideal gas, a small amount of energy is 

required for the phase change. The aluminum manifold reheats the PCF close to the original 

temperature. By assuming the PCF temperature does not vary significantly during flight.  A 

temperature range is chosen between 0°C to 21°C. This covers a range of possible launch site 

temperatures. A wider temperature range is desirable. 

Potential PCFs are screened using vapor pressure data found on CHERIC and NIST 

websites. The PCF chosen must exist as a vapor between 10-1 Torr and 10-6 Torr within the 

temperature range of 0°C and 21°C.  Potential PCFs include nonane, monoethylene glycol, 

diethylene glycol, and propylene glycol. Propylene glycol is selected because it has a low 

freezing point and is less hazardous than other potential fluids (Center for Disease Control, 

1997). Vapor pressure plots are included in the appendices. 
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The PCF is contained within an inflatable fluorinated ethylene propylene (FEP) diaphragm. 

The diaphragm is connected to the reservoir with a flange and expanded PTFE gaskets to provide 

a gas tight seal. The reservoir’s fill port is sealed with a PTFE plug with PTFE gas tape applied 

to the threads. When the vapor pressure is reached, the PCF becomes a vapor and the diaphragm 

inflates. Work is required to unfold the FEP diaphragm. Work due to differential pressure 

between the inside of the diaphragm and the environment is small. The expansion is assisted by 

centripetal acceleration due to the rotation of the rocket. Testing of the reservoir and FEP 

diaphragm system revealed that the method used to fill and seal the system allowed for the 

possibility of air pockets to remain trapped in the system and cause expansion before the desired 

pressure range is reached. A more robust potential alternative is proposed. The reservoir may be 

connected to a multi-port valve. One port will connect a vacuum pump to the reservoir and the 

other will connect the reservoir to a container of the PCF. These will further be referred to as 

port 1 and port 2 respectively. First, port 1 will be open and port 2 will be closed. The vacuum 

pump will be turned on to remove air from the reservoir diaphragm system. Once the air has 

been evacuated, port 2 will be opened to pull the PCF into the reservoir. Then, both ports will be 

closed, the vacuum pump turned off, and both connections removed. This will leave a sealed 

reservoir containing sufficient PCF and no air pockets. 
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Chapter 6: Conclusions 
This vacuum sensor was designed to provide Sandia National Labs with a fully mechanical 

switch prototype capable of detecting launch acceleration and closing a circuit when the pressure 

falls within the 10-1 to 10-6 Torr range. The device was designed to fit within the specified 

footprint and be resettable for testing purposes. This design focused on increasing reliability by 

using minimal moving parts and simple methods to accomplish each task.  

Testing and numerical solutions showed that the acceleration switch should trip and allow 

the diaphragm to expand when the desired pressure range is reached. The off the shelf reed 

switch meets the specified requirements and the actuator magnets are capable of providing a 

sufficient magnetic field to close the reed switch. The phase change pressure sensing concept 

was demonstrated in testing. However, the available equipment was unable to reach the pressures 

required to verify that propylene glycol will behave as expected. Further testing on a sounding 

rocket will be conducted by Sandia. Our testing also revealed flaws in the method used to fill and 

seal the reservoir diaphragm system. A more robust filling method was proposed in Chapter 5. 

This project provided an early prototype of the vacuum sensor and showed functional 

concepts for detecting launch acceleration and using expansion based on pressure change to 

move a magnetic actuator and close a reed switch. The development of a superior filling and 

sealing method for the reservoir diaphragm system is recommended for future work. Also, 

specialized PCFs may be designed to vaporize in the desired pressure range. In this report we 

selected a viable fluid that was safe to handle and readily available. The base was 3D printed for 

quick manufacturing and opening the possibility of manufacturing complex geometries. This 

allows for future iterations of the base to be optimized to be structurally sound while reducing 

material cost, mass, and lead-time. 
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Appendices 

Additional Figures 

 

Figure 10: Density vs. Price per kg 
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Figure 11: Strength vs Density * Price 
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Part Drawings 

 

Figure 12: Al-Bronze slug Drawing 
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Figure 13: 3D printed base Drawing 
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Figure 14: Expanded PTFE Gasket Drawing 
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Figure 15: Pressure Sensor manifold Drawing 
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Figure 16: 3D printed top Drawing 
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Assembly Drawing 

 

Figure 17: Assembly Drawing 
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Exploded View 

 

Figure 18: Exploded View Render 
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Table 6: Exploded View Component List 

Component  Exploded View Label # 

Base 1 

Damping Foam 2 

10-32 Steel Screw 3 

10-32 Steel Wingnut 4 

AL-Bronze Slug 5 

Reed Switch 6 

Base Top 7 

#4 Countersunk Magnet 8 

#4-40 Countersunk Screw 9 

Manifold/Reservoir 10 

Flange 11 

FEP Diaphragm 12 

PTFE Gasket 13 

PTFE 1/8 NPT Plug 14 

6-32 Cap Screw 15 

Carbon Fiber Rod 16 

PTFE Wire Sleeve 17 

Wire Loop 18 

N52 Ring Magnet (set of 5) 19 
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Matlab Scripts 

sandia_model.m 

%% Senior Design Dynamic Model 
% Solution to dynamic model for acceleration switch 
clear,clc 
Fm = @(x) 0.942*exp(-238*(x+(0.00125))); % Magnet force curve fit [x= distance from magnet in feet] 
ua_max = 19.6*32.2; % rocket acceleration [g]*[32.2ft/s/s] 
m = .035/32.2; %[slug] 
tspan=[0,3]; % Look between 0 and 0.1 seconds 
y0=[0,0]; % initial conditions x(0)=0.015in from magnet surface,  x'(0)=0ft/s 
sol = ode15s(@(t,y) accel_odefcn(t,y,m*ua_max,m,Fm), tspan, y0); % Use stiff Solver 
t=sol.x; 
y=sol.y'; 
% Mathworks claims ode15s performs best for most stiff problems. 
LOI=find(y(:,1)>0.25);% Find first index where x > 3 inches 
LOI2=find(y(:,1)<0.25);% Find lastt index where x < 3 inches 
if length(LOI) <2 % For accelerations where switch does not trip 
    LOI=length(y); 
    V=0; 
    t_I=0; 
    x_I = 0; 
else 
    LOI=LOI(1); 
    LOI2=LOI2(end); 
    %linear interpolation to find time where x=3 inch 
    t_I = t(LOI2)+(t(LOI2)-t(LOI))*((0.25-y(LOI2,1))/(y(LOI,2)-y(LOI2,1))); 
    v_loi1 = find(t<t_I); 
    v_loi1=v_loi1(end); 
    v_loi2 = find(t>t_I); 
    v_loi2=v_loi2(1); 
    % Linear interpolation to find velocity at time t_I ( when x=3 inch) 
    V = y(v_loi1,2) + (y(v_loi2,2)-y(v_loi1,2))*((t_I-t(v_loi1))/(t(v_loi2)-t(v_loi1))); 
    disp('Velocity at x=3in is') 
    disp(strcat(num2str(V),'ft/s.')) 
    disp('This occurs at') 
    disp(strcat('t=',num2str(t_I),'seconds.')) 
    x_I = 0.25; %x =3 inch 
end 
figure(1) 
plot(t(1:LOI),y(1:LOI,1),'b') % plot postition (ft) vs time 
title('X Position vs Time') 
xlabel('Time(s)') 
ylabel('Position (ft)') 
hold on 
plot([t_I,t_I],[0,x_I],'r--') 
plot([0,t_I],[x_I,x_I],'r--') 
hold off 
figure(2) 
plot(t(1:LOI),y(1:LOI,2),'b') % plot velocity(ft/s) vs time 
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title('X Velocity vs Time') 
xlabel('Time(s)') 
ylabel('Velocity (ft/s)') 
hold on 
plot([t_I,t_I],[0,V],'r--') 
plot([0,t_I],[V,V],'r--') 
hold off 
 

accel_odefcn.m 
function dydt = accel_odefcn(t,y,a_max,m,Fm) 
% System of first order ODEs made from 2nd order ODE 
% mx" + Fm(x) - Fc(x) = mu'' 
dydt = zeros(2,1); 
dydt(1) = y(2); 
dydt(2) = ((a_max)-Fm(y(1))+contact_force(y(1),m,a_max,Fm))/m; 

 

contact_force.m 
function val = contact_force(x,m,a_max,Fm) 
% Contact force required before the magnet and mass separate. 
% Fc = Fm(0) - m*a_rocket 
val=zeros(length(x),1); 
z=1e-6; 
for i=1:length(x) 
if x(i)<=z 
    v=(Fm(0)-(m*a_max)); 
    % For small x, contact force behave as stiff spring 
    val(i)=((-v/z).*(x(i)))+v; 
else 
    val(i)=0; 
end 
end 
 
 
vapor_press.m 
 
%Vapor Pressures 
% 
    clear 
%  
%% Set Temperature Range  
% 
    t = linspace(-100,400,1000); %-100°C to 400°C (Careful! Extrapolating data on the ends) 
% 
%% Import the vapor pressure curves for various liquids 
% Ethylene Glycol https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=909 
% Propylene Glycol https://www.cheric.org/research/kdb/hcprop/showcoef.php?cmpid=910&prop=PVP 
% Hexane https://www.cheric.org/research/kdb/hcprop/showcoef.php?cmpid=6&prop=PVP 
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% Isopropanol https://www.cheric.org/research/kdb/hcprop/showcoef.php?cmpid=820&prop=PVP 
    name = {'Ethylene Glycol [-10 to 371 °C]', 'Propylene Glycol [-60 to 353 °C ]', 'Hexane [-95 to 234°C]'... 
        'Diethylene Glycol [-11 to 471°C]', 'Isporopanol [-88 235°C]'}; 
    lgth = length(name);   % To retrieve number of compounds assessed 
     
    a = [ -2.599771e1 -3.084306e1 -1.399935E+01 -1.283727E+01   -7.694051E+00]; 
    b = [ -1.476857e4 -1.609752e4 -7.284572E+03 -1.285564E+04   -7.690896E+03]; 
    c = [  1.914250e2  2.235649e2 1.059605E+02  1.087915E+02    7.134113E+01]; 
    d = [  2.062331e-5 2.420669e-5 1.410325E-05 3.169949E-06    7.656355E-07]; 
    
    pv = zeros(1000,lgth); 
     
    for i= 1:lgth 
       pv(:,i) = exp( log(760/101.335) + a(i).*log(t+273.15) + (b(i)./(t+273.15)) +c(i) + d(i).*(t+273.15).^2); 
    end 
% 
% 
%% Get Standard Atmosphere Data for high altitudes 
% 
% 
    [Z Z_L Z_U T P rho c g mu nu k n n_sum] = atmo; 
    % Filter Data 
    index = find(P < 13 & P > 13e-5); % Only keep switch pressure range 
    length = length(index); 
    Z = Z( index(1) : index(length)); % Get altitude where we see the switch pressure range 
    P = P( index(1) : index(length))/133.3224; % get the pressure data within the range and convert to mmHg 
    T = T( index(1) : index(length)) - 273.15; % Get the corresponding temperatures within the range, convert to °C 
% 
%% Plots 
% 
% 
    for i = 1:lgth 
        figure(i) 
        semilogy(t,pv(:,i),'LineWidth',2) 
        grid on 
        hold on 
        semilogy([-100,600],[10^-1,10^-1],'r'); 
        hold on 
        semilogy([-100,600],[10^-6,10^-6],'r'); 
        hold on 
        semilogy(T,P,'k', 'LineWidth', 2) 
        %semilogy(T,P,'-s','MarkerFaceColor',[.8 .8 .8]) 
        title(name(i),'Fontsize',14); 
        xlabel('Temperature (C°)','Fontsize',14); 
        ylabel('Vapor Pressure (mmHg)','Fontsize',14); 
    end 
 

Magnet Data from K&J Magnetics With Curve Fit 

d (in) d(ft) F (lbf) 
0 0 3.56 

0.001 8.33E-05 3.22 
0.003 0.00025 3.02 
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Scale Factor = 0.324   (Actual/K&J Data) 

Scaled Curve Fit: 𝐹𝐹𝑚𝑚 = 0.942𝑒𝑒−238𝑥𝑥, where x is in ft. 
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Vapor Pressure Plots 

 

Figure 19: Vapor Pressure Plots 
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Additional Concept Drawings 

 

Figure 20: 3D Concept Drawing 
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Figure 21: Set and Unset Positions 
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