
The University of Akron
IdeaExchange@UAkron

Honors Research Projects The Dr. Gary B. and Pamela S. Williams Honors
College

Spring 2018

Exercising Efficiently with an Equipment Ticketing
Mobile Application
Eric Merryman
erm38@zips.uakron.edu

Please take a moment to share how this work helps you through this survey. Your feedback will be
important as we plan further development of our repository.
Follow this and additional works at: http://ideaexchange.uakron.edu/honors_research_projects

Part of the Databases and Information Systems Commons, and the Software Engineering
Commons

This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams
Honors College at IdeaExchange@UAkron, the institutional repository of The University of Akron in Akron, Ohio,
USA. It has been accepted for inclusion in Honors Research Projects by an authorized administrator of
IdeaExchange@UAkron. For more information, please contact mjon@uakron.edu, uapress@uakron.edu.

Recommended Citation
Merryman, Eric, "Exercising Efficiently with an Equipment Ticketing Mobile Application" (2018). Honors Research
Projects. 710.
http://ideaexchange.uakron.edu/honors_research_projects/710

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Akron

https://core.ac.uk/display/232684161?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ideaexchange.uakron.edu?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F710&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F710&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F710&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F710&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=http://ideaexchange.uakron.edu/honors_research_projects/710
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F710&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F710&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F710&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F710&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects/710?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F710&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu


 

 

 

 

 

 

 

 

 

 

Exercising Efficiently with an Equipment Ticketing Mobile Application 

Eric Merryman 

The University of Akron 

Honors Project 

Spring 2018 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table of Contents 
Introduction ................................................................................................................................................. 1 

Purpose ........................................................................................................................................................ 1 

Methodology ................................................................................................................................................ 2 

Xamarin.Forms ........................................................................................................................................... 3 

History ...................................................................................................................................................... 3 

Use ............................................................................................................................................................ 4 

Languages Used ........................................................................................................................................... 4 

XAML (Extensible Markup Language) .................................................................................................... 4 

C# .............................................................................................................................................................. 5 

Object-Oriented Programming Principles Used ...................................................................................... 5 

Interfaces ................................................................................................................................................... 5 

Encapsulation ............................................................................................................................................ 5 

Dependency Service .................................................................................................................................. 6 

Database Use................................................................................................................................................ 7 

SQLite ....................................................................................................................................................... 7 

MongoDB ................................................................................................................................................. 7 

Object Relational Impedance Mismatch ................................................................................................... 9 

RESTful Web Service ................................................................................................................................. 9 

Node.js and Express .................................................................................................................................. 9 

Application Workflow .............................................................................................................................. 10 

Supplemental Management Web Application ........................................................................................ 15 

MEAN Stack ........................................................................................................................................... 15 

Functionality ........................................................................................................................................... 16 

NuGet and npm ......................................................................................................................................... 17 

Conclusion ................................................................................................................................................. 18 

Native vs. Cross-Platform ....................................................................................................................... 18 

Expectations for Xamarin.Forms ............................................................................................................ 19 

Personal Experience ................................................................................................................................ 19 

Technical Requirements ........................................................................................................................... 20 

References .................................................................................................................................................. 21 

 



Exercising Efficiently with an Equipment Ticketing Mobile Application 1 

Introduction 

As technology continues to advance, we are seeing a movement toward compactness and 

availability of solutions.  This has created a high demand for mobile products that allow us to perform 

everyday tasks more efficiently and conveniently.  Also, companies are looking to mobile products in order 

to deliver content to their customers.  This project will attempt to advance technology in the gym which is 

a market that has welcomed technology and has been able to continue growing because of it.  Gyms and 

exercise facilities can be very intimidating to newcomers or those who have very basic knowledge of such 

an environment while mobile devices and their capabilities are something that we have become very 

familiar with.  Therefore, for my project, I will be designing a mobile application that allows for a more 

welcoming and efficient exercise environment by allowing users to document any abnormalities with gym 

equipment. 

Purpose 

A solution that allows users to report broken or malfunctioning equipment will allow gym-goers to 

feel much more comfortable in a gym environment as they will not have to confront someone who may 

intimidate them with an embarrassing issue.  Since many people are afraid to mention these incidents, 

equipment sees a much longer downtime than it should.  This solution would be similar to the ticket system 

that IT departments have adopted in almost every organization.  It would allow for the gym’s management 

staff to document these incidents which in turn allows them to reduce downtime, possibly repair the 

equipment on their own in the future and generate reports in order to assess the machine and its worth.  

Other advantages of doing so include the following: increased customer satisfaction, more customers in the 

gym at a single moment, less of a dependency on a third-party to provide repairs/maintenance, reduced 

injury from attempting to use a malfunctioning machine, and reports that allow management to make future 

purchasing decisions based on the performance of a previous piece of equipment.  Also, an application like 

this can then be used to deliver information to its users that is relevant to the company or further their 

customers’ education of the gym and its equipment.   



Exercising Efficiently with an Equipment Ticketing Mobile Application 2 

Methodology 

This solution will be developed using Xamarin’s cross-platform development toolset.  Xamarin is 

becoming a popular choice when designing mobile applications as it allows for application developers to 

write code in only two languages that can then be transformed into the native code that will be run on 

different mobile operating systems.  Applications are written using only C# and XAML which requires 

developers to learn only two languages before creating an application that can be ported to Android, iOS 

and Windows Phone.  A SQLite database is packaged with the mobile application to serve static data about 

the gym’s equipment to the application.  Using the JavaScript execution environment Node.js, the NoSQL 

database engine MongoDB and the JavaScript server framework Express, a RESTful web service is used 

to serve dynamic data to and receive incident data from the mobile application.  A supplemental web 

application, also making use of the RESTful web service, will be created in order to simulate the 

management aspect of a ticketing system.  This web application allows administrators to check the status 

of each equipment and manage any incidents that have been reported.  The MEAN Stack will be used to 

implement the web application which uses the frameworks of the RESTful web service and adds AngularJS 

as an MVC architecture.  The architecture and interactivity of the project is given in Fig 1. 

 

Figure 1: Architecture of GymTicket solution 



Exercising Efficiently with an Equipment Ticketing Mobile Application 3 

This application will be debugged and tested on two physical devices, a Samsung Galaxy S4 and 

an iPhone 6.  The operating systems installed on the Samsung Galaxy S4 and the iPhone 6 are Android 

Lollipop (5.0.1) and iOS 10.2 respectively.   

In order to deploy to and debug on the Android device, the developer options has to be enabled 

which is done by navigating to the “About Phone” section in the settings and then clicking on the “Build 

Number” label 5 times in rapid succession.  This allows for hidden functions to be used such as accessing 

various logs and many other options useful for debugging such as touch feedback.  When connected to the 

development machine running Visual Studio, the option to debug via this device is readily available as the 

Android SDK is installed with the Xamarin.Forms plugin.  Once built and deployed, the application can be 

used from the home screen with or without a connection to the development machine, but requires 

connection in order to deploy a newer build   

For the iPhone, a separate machine running MacOS is needed with Xcode installed in order to build 

the iOS project.  A Mac Mini will be used as the build machine for this project which runs MacOS Sierra 

(10.12.6).  Within Visual Studio for Mac, the repository on GitHub will be cloned to the Mac machine to 

be built and the project will then be deployed to the device.  In order to debug on a device as opposed to a 

simulator, the proper code signing keys are needed and the device needs provisioned for debugging.  When 

deployed, the application needs to be verified in the settings before being used.  As with the Android device, 

the application could be used from the home screen with or without a connection to the development device 

and only needed reconnected to deploy a newer build. 

Xamarin.Forms 

History 

Xamarin began as a project of Miguel de Icaza and Nat Friedman’s known as Ximian.  Ximian’s 

primary project was Mono, an attempt to recreate the .NET framework so that it could be used to develop 

for other operating systems with their primary focus being Android.  In 2003, Novell acquired Ximian 



Exercising Efficiently with an Equipment Ticketing Mobile Application 4 

whose team was later relieved of their duties in 2011 after Novell’s acquisition of Attachmate.  This left 

many worried about Mono and the Ximian team responded by founding Xamarin who would focus on tools 

for mobile development.  After gaining a foothold in the mobile-application market, Microsoft purchased 

Xamarin in order to bolster its software sales by providing applications that run on more than Windows 

machines (Finley).  Microsoft’s acquisition of Xamarin was completed in 2016 and to this day, Microsoft 

continues to support the framework and makes it available as a Visual-Studio plugin allowing more and 

more developers to use and be exposed to the framework.   

Use 

Xamarin.Forms has become popular due to its cross-platform nature.  Xamarin’s website boasts a 

possibility of 96% code coverage with certain applications which is a metric to determine how much of an 

application’s code was able to be reused among each of the platforms.  This framework lends itself well to 

applications that require little platform-specific functionality.  Also available are the Xamarin.iOS and 

Xamarin.Android which are platform-specific and better for invoking native behavior while still using C# 

and the .NET platform.    

Languages Used 

XAML (Extensible Markup Language) 

XAML (often pronounced “zammel”) has become the standard markup language for defining user 

interfaces in almost every application built on Microsoft’s .NET framework.  The markup language was 

introduced alongside Windows Presentation Foundation (WPF) in 2006 which was a graphical user-

interface framework that could be used to build Windows desktop applications.  Windows Presentation 

Foundation was introduced with the release of the .NET 3.0 framework and was marketed as a smarter API 

than its popular predecessor, Windows Forms.     



Exercising Efficiently with an Equipment Ticketing Mobile Application 5 

C# 

C# (pronounced C-Sharp) has become a very popular object-oriented programming language in a 

relatively short period of time.  Microsoft developed C# within its .NET initiative which was an attempt to 

enter competition with Java.  Java at the time had become very popular due to its “compile once, run 

anywhere” motto.  This allowed for Java to be run on all types of machines regardless of its specifications.  

Microsoft’s idea was to design C# to meet the Common Language Infrastructure (CLI).  The Common 

Language Infrastructure was a technical standard for different parts of the programming process to be 

generalized for different machines without having to be rewritten for certain systems.   

Object-Oriented Programming Principles Used 

Interfaces 

Interfaces are an object-oriented paradigm that leverage inheritance to help define objects.  An 

interface is a structure that contains method signatures.  An interface cannot be instantiated like an object 

can be instantiated from a class.  Therefore, classes that inherit a certain interface are responsible for 

implementing each method defined by the interface in a way that is unique to the object.  For a class to 

inherit an interface, the class must implement each function within the interface.      

For this project, each platform needed a class that would copy the SQLite file to local memory for 

use and then define how to connect to the database.  These classes inherited the ISQLiteConnector interface 

that contains a method GetConnection() which returns a SQLiteConnection object.  This SQLiteConnection 

object is then used to connect to the database and store the data in a collection data structure.  This interface 

plays a vital role in the dependency service which is covered later. 

Encapsulation 

Encapsulation is the technique of bundling similar data into a data structure.  In C#, this is done 

using classes and structs.  This can be done in order to create abstractions, simplify maintenance and 



Exercising Efficiently with an Equipment Ticketing Mobile Application 6 

increase re-usability.  Access modifiers can be used in order to limit or increase the visibility of properties 

and methods to other objects. 

In order to bind the data from the SQLite database to the mobile application’s view, classes 

needed to be created in order to store the data for access later.  Classes were used since structs are 

typically for smaller, immutable collections of data.  Since this class was being modeled after 

relational data, the class required additional syntax unique to the SQLite drivers which aid in 

mapping the data to objects.  The class members were prefaced by value constraints if there were 

any and each member was typed similarly to the data in the SQLite database.  For example, C#’s 

“string” would refer to SQLite’s “text” and C#’s “int” matches SQLite’s “integer”.  An object is 

created for each record in the database and stored in an ObservableCollection at runtime in order 

to dynamically bind data to the application’s view.  When selected from the view, the object 

selected is then passed from page to page in order to populate the different views and continue 

referencing the object attributes in order to interact efficiently with the RESTful web service which 

will be covered later. 

Dependency Service 

A dependency service is something that is unique to Xamarin.Forms, but closely resembles 

polymorphism.  This functionality allows shared code to utilize platform specific code at runtime.  

Interfaces play a major role in utilizing a dependency service.  First, an interface must be defined 

in the shared code.  Second, each platform-specific project must implement the interface that was 

defined in the shared code.  Third, the platform specific implementation must be registered as a 

dependency which allows the dependency service to retrieve the platform-specific code when 

called.  Once all of this is in place, the application at run-time will be able to determine the type 

of platform the application is being run on and call the necessary function. 



Exercising Efficiently with an Equipment Ticketing Mobile Application 7 

Database Use 

SQLite 

SQLite has become one of the most widely used relational database management systems 

(RDBMS).  SQLite has many unique characteristics that make it a favorable choice when deciding on a 

database to support an application.  One of the most significant characteristics of the SQLite platform is 

that it does not require a server.  This differs from many of the commercial enterprise database systems 

including Microsoft’s SQL Server and Oracle’s products.  A SQLite database is designed as a single file 

that can be integrated into any application.  This removes the need for maintaining a database engine and 

the many processes that work in concert to serve the data.  These files are identified by the .db3 extension. 

  Due to the compactness and portability of SQLite databases, SQLite was chosen to be used as the 

database that would contain the information for each piece of gym equipment and is packaged with the 

application when installed.  Since gym equipment is costly and cumbersome to replace, the database would 

only need to change on a limited basis at which point an update can be released.  The database file used to 

store the equipment info contained the following attributes: equpID, equipName and imageURL.  As 

opposed to storing images on the device and increasing the size of the application by packaging unnecessary 

data, an imageURL was used to locate the image on a web server that hosted the images.  The Data 

Definition Language (DDL) used to generate this table is given in Fig. 2 below: 

CREATE TABLE "Equipment" (`equipID` INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,  

        `equipName` TEXT NOT NULL,  

                          `imageURL` TEXT )  

Figure 2: SQLite DDL used to create Equipment table 

MongoDB 

NoSQL, sometimes referred to as “not only SQL” or “non-SQL”, databases have become very 

popular with large-scale applications where the data may not be structured to fit a strict schema.  These 

databases stray away from traditional relational databases with tabular constructs.  MongoDB has become 

a very popular open-source NoSQL database that makes use of collections of documents.  With MongoDB, 



Exercising Efficiently with an Equipment Ticketing Mobile Application 8 

a database consists of collections which are similar to tables in the relational model.  A collection will 

contain zero or more documents that contain the data and are similar to records.  Documents in MongoDB 

are stored as JSON objects which contain one or more key-value pairs.  Each document can have unique 

fields and it is not required that each document contain the same fields.  This allows for flexibility in how 

the data is stored within the database.  An example of a single MongoDB document is given in Fig. 3 below.      

{ 

 “_id” : ObjectId(“<Generated Id>”), 

 “equipId” : 1, 

 “equipName” : “Free Weight Bench”, 

 “status” : 1, 

 “imageURL” : “freeweightbench.jpg” 

}  

Figure 3: Example MongoDB document in Status collection 

MongoDB was an ideal choice for the database that would support the back-end of the web server 

that not only hosted the images, but also played a vital role in the checking on the status of a piece of 

equipment and tracking reported incidents.  A database titled “gymapp” was used to store a collection titled 

“Status” which stored documents containing information for each piece of equipment.  Each document used 

the exact equipment ID, name and imageURL that is found in the SQLite database to allow interactivity 

between the two and so the supplemental web application can reference the same images.  Documents 

stored in the collection contained an additional “status” field which is stored as an integer that acts as a 

Boolean data type.  Another collection was also created for the incidents that are reported by the users.  This 

collection was titled “tickets” and each document contained the following attributes: ticketId, equipName, 

dateReported, dateResolved, userDesc and imageURL.  Additional attributes could be introduced in order 

to generate more useful reports.  Seguin claims that “document-oriented databases are probably the most 

similar to relational databases” (31) in regards of modeling your data which makes MongoDB a good choice 

for certain applications.   



Exercising Efficiently with an Equipment Ticketing Mobile Application 9 

Object Relational Impedance Mismatch 

One of the greatest challenges with object-oriented programs that use databases as a backend is the 

concept of object relational impedance mismatch.  This problem arises from the practice of object-relational 

mapping (ORM) which is when data is coerced into data types in object-oriented programming languages.  

Mapping the tabular data to data types becomes difficult since the data types in the database engine are 

almost never identical to the programming languages data types.  Also, since object-oriented languages 

utilize the defining technique of inheritance, the data in a tabular model may be broken apart based on the 

inheritance hierarchy.  Relational data is usually meant to define a single record and breaking this 

information apart eliminates the definition of the tuple.   

Luckily, this difficulty is almost non-existent for NoSQL database systems.  One of the key 

characteristics of NoSQL databases is the abandoning of the traditional relational formatting of data for 

other structures of data.   

RESTful Web Service 

A RESTful Web Service is a service that allows for data to be served on the internet.  This is usually 

done by one system being set up to accept requests from a client and then serve a response that contains the 

necessary data in the format needed.  A well-formed web service should support all major HTTP methods 

such as POST, PUT or DELETE requests.  The web service can also respond with a confirmation that the 

transaction took place on the server.  Since these act as an API for a site, the interaction is usually hidden 

and not seen by the user.  RESTful web services are commonly used as backbones for popular sites since 

they are lightweight.     

Node.js and Express 

Recently, Node.js has become a very popular environment for web development done in JavaScript.  

This JavaScript runtime is open-source and is used by many large companies such as Netflix, PayPal and 

Uber.  Prior to Node.js, JavaScript was used for client-side scripting that would be run using the user’s web 



Exercising Efficiently with an Equipment Ticketing Mobile Application 10 

browser.  The framework used to handle the client-server interactions is Express which has become a very 

popular server-side framework for defining APIs.  An Express server defines routes which are URLs that 

clients can make requests to.  These routes also define the expected request method, any actions that need 

to be taken as a result of receiving this request and the response to send to the requestor.  The RESTful web 

service implemented for this project uses Node.js and which also defines the API for the supplemental web 

application.   

This project makes use of the deployed Node.js server by handling HTTP requests made by the 

mobile application then returning certain information depending on the request.  For example, each time a 

piece of equipment is selected from the application’s list, a popup will be created with a “Report an Issue” 

button.  A user should not be able to use this button should a ticket already exist for the particular piece of 

equipment.  In order to determine whether or not the button is enabled, an HTTP request is sent to the server 

at the URL of “http://<server IP address>:<server port>/api/equipmentstatus/<equipmentID>” at which 

point the server handles and queries the MongoDB database for the status.  Once the status is determined, 

the server replies with a “1” or a “0” which the application uses to enable or disable the button depending.  

This service is used for multiple functionalities and each is covered in depth in the application workflow 

section. 

Application Workflow 

The first page that a user is presented with when using this application is a log in screen.  Due to 

privacy constraints, the sign-in functionality is not actually implemented and is simply used as a splash 

screen.  As for now, the application can only report issues within a private network where the RESTful 

server is deployed requiring the user to be on the same network which was adequate for this project.  The 

sign-in functionality could be implemented by a business in order to ensure that members are the only ones 

submitting tickets and not those who are briefly connected to the wireless.  To continue to the next step, the 

user simply clicks the “Sign In” button at the bottom of the page given in Fig. 4. 



Exercising Efficiently with an Equipment Ticketing Mobile Application 11 

 

Figure 4: Sign-in page 

After passing the sign-in screen, the user is presented with a list of equipment that is in the gym.  

This list is populated using the SQLite database that is packaged with the application.  When the connection 

is opened, a “SELECT * FROM Equipment” query is executed to get all of the equipment.  This query can 

be modified using .NET’s object-oriented query language LINQ.  Once the query is executed, a data 

collection object is used to store objects of type “Equipment” which the ListView UI element uses to bind 

data from each object to the application view.  Each object in the ListView displays the name, the ID and 

an image so that users can easily differentiate the equipment.  The imageURL member in the Equipment 

class is used by the UI in order to fetch the associated images added to the view.  These images are stored 

on the RESTful web server so that the application can remain minimal in size so in order to fetch these 

images, a class method adds the server’s name and port to the URL which the UI references.  Some take 

time to download due to size with the largest image taking around 4 seconds on average to load.  To 

advance, the user simply selects a piece of equipment to view and/or report an incident for.  The equipment 

list with the associated images is given in Fig. 5. 



Exercising Efficiently with an Equipment Ticketing Mobile Application 12 

 

Figure 5: Selectable equipment list 

When an item is selected, a new page is generated which displays the image in a larger window 

and lists additional attributes besides its name.  At the bottom of this new page, there is an option to 

“REPORT AN ISSUE”.  This button only enabled under two conditions: if the application is able to connect 

to the RESTful web service and if there is not already an open ticket for the piece of equipment being 

viewed.  If a user is on the network and no ticket exists for that piece of equipment, the button is enabled 

allowing the user to click it.  This was done so that multiple tickets cannot exist simultaneously for the same 

piece of equipment and so that users cannot invoke undefined behavior off the network.  To accomplish 

this, upon creation of the new page, the application sends an HTTP request to the server at the URL 

“/api/equipmentstatus/<id>”, where “id” is that of the equipment in question.  First, the server will parse 

the URL in order to get the ID of the equipment and then queries the MongoDB database’s “Status” 

collection for the status of the equipment.  A 1 is returned to let the application know that the equipment is 

currently considered working and a 0 should it be considered broken and a ticket exists.  The user can 



Exercising Efficiently with an Equipment Ticketing Mobile Application 13 

simply use this page for information or they can advance by clicking the “REPORT AN ISSUE” button.  

The enabling or disabling of the “REPORT AN ISSUE” button is given in Fig. 6.  

   

Figure 6: The issue button's usability depending on the equipment's status 

Should the user decide to report an issue with the equipment, a new page that contains a form will 

be loaded for the user.  This form includes text input as well as the option to take a picture with the device’s 

camera.  In order to add a textual description to the form, the user simply selects the text area at which point 

the device’s default keyboard appears for input.  To add an image to the form, the user selects the “Take 

Picture” button which initiates a multi-step process.  First the application checks that a camera is available 

and that the application has permission to access the camera.  This permission is granted by modifying an 

XML document that is checked by the device at deployment.  Second, the application takes the image and 

stores it in a file object.  The image is temporarily stored on the device and is deleted when out of scope.  

Next, the image is loaded into the image UI object in the form so that the user can see the image taken and 

the complete form prior to reporting.  Selecting an image from the device’s storage was not implemented 

in order to dissuade users from posting old images that may or may not be relevant.  Once the user has 



Exercising Efficiently with an Equipment Ticketing Mobile Application 14 

appropriately filled out the form, they can choose to submit the form using the “Submit” button.  The 

information on the page is packaged into a multi-part form and then sent over the network to 

“/api/reportIncident/<id>” and the response is parsed to determine if the action was successful.  An example 

incident form and the prompt on success are given in Fig. 7.  

   

Figure 7: Example form and confirmation of submission 

Multi-part forms are used for sending data over the internet that may be more than text.  The 

RESTful web service receives the multi-part form and then decodes the form based on the encoding 

designated by the HTTP request.  Once the form is decoded, the server parses the request and searches for 

the necessary fields contained within the body of the request.  When an HTTP request is received by the 

server at the particular URL, a ticket is generated in the MongoDB database’s “tickets” collection in which 

the ticket receives an ID in order to uniquely identify it.  This ticket ID is generated and maintained by the 

MongoDB server as an autoincremented value.  Once the ticket is created and stored in the database, other 

attributes are added including as the name of the equipment in question and the date the ticket was reported.  

At this point, the body of the request is parsed and if the userDesc and image field of the HTTP request is 

not blank, an attribute is added for user’s comments as well as the image’s URL on the hard-drive.  The 



Exercising Efficiently with an Equipment Ticketing Mobile Application 15 

image is fetched from the body of the request and is stored on the hard-drive of the machine that the server 

is running on.  In order to dynamically bind the image to the table in the supplemental web application, the 

image file on the hard-drive is renamed to that of the <ticketID>.jpg where ticketID is the ticket that the 

image belongs to.  Once all of the database insertions and updates are made, the server sends an e-mail to 

the administrator’s e-mail address mentioning that an issue had been reported and the ID of the equipment 

it was reported for.  An example e-mail sent by the server is given in Fig. 8.  

 

Figure 8: E-mail sent by server when issue is reported 

Supplemental Management Web Application 

The Xamarin.Forms application allows for users to efficiently report issues with gym equipment, 

but it does not offer a management aspect for those who will be servicing the tickets.  Therefore, a web 

application was created using the MEAN Stack to display all of the equipment, tickets and allow an 

administrator to act upon each ticket.   

MEAN Stack 

As mentioned before, Node.js has become the backbone for many enterprise applications.  The 

MEAN Stack is a software stack that utilizes MongoDB, Express.js, Angular.js and Node.js in order to 

create client and server-side code using solely JavaScript.  The only framework that the web application 

introduces to the project is Angular.  Angular is specifically designed for developing an application’s front-

end by applying the model-view-controller (MVC) architecture.  This architecture makes data binding and 

handling user input relatively simple.  To make this happen, each page makes use of a controller which 

interacts with the model in order to create a view for the user. 



Exercising Efficiently with an Equipment Ticketing Mobile Application 16 

Functionality 

One of the main features of the supplemental web application is the ability to see a list of the 

equipment as well as check the status of each piece of equipment.  The table used for this page displays the 

equipment’s ID, name, a link to an image and the status.  The list and statuses are acquired using a controller 

to query the data from the server and then bind it to the web page.  This can be used to easily create HTML 

tables without having to define each row individually as Angular provides a function that allows a portion 

of HTML to be repeated for each record returned by the query.  Attributes of each object are accessed by 

the notation {{ object.attribute }} which can be used to populate the table and was used as a method to 

generate unique URLs which created the unique links to each image.  Also, the status is shown as red or 

green which is easier to read than words for each record.  This is accomplished by using conditional styling 

which can be done using Angular in the HTML.  Each object’s “status” attribute is checked and Angular 

populates the background color of the table element appropriately.  The view created and conditional styling 

by Angular is given in Fig. 9.    

 

Figure 9: Equipment list as seen in web application 

The most important functionality is the ability to check a list of tickets submitted.  Each ticket listed 

contains its ID, the equipment it was reported for, the date it was reported, a date at which the ticket was 

resolved, the comment submitted by the user, a link to the image provided by the user and a button that 

allows the administrator to close the ticket when ready.  The table is generated in the same fashion as the 

equipment table using Angular to query the tickets from the MongoDB database and is given in Fig. 10.  In 



Exercising Efficiently with an Equipment Ticketing Mobile Application 17 

the last column of the table, there is a button that allow users to close the ticket.  Conditional styling is used 

again to style the button to only be visible if there is no resolution for the ticket enforcing only one resolution 

per ticket.  On clicking the “Close” button, a form is created for the ticket which has input for the name of 

the user who resolved the issue as well as the actions taken and is given in Fig. 11.  Once the form is 

complete, the user can submit the form at which point an Angular controller takes the form and updates the 

ticket in the MongoDB database.  A resolution date is added at the time of submit which officially closes 

the ticket and hides the button for closing the ticket. 

 

Figure 10: Ticket list as seen in web application 

 

Figure 11: Form offered to user when closing ticket 

 NuGet and npm 

This project would not have been possible without the use of both the NuGet and npm package 

managers.  NuGet and npm are both package managers that connect to a content delivery network (CDN) 

in order to install open-source software packages and libraries to use with your project.  Microsoft supports 

and provides the NuGet package manager as a Visual Studio plug-in while npm is used with the Node.js 

environment.  CDNs such as these have become very prominent in the development community as it 

accelerates development with the help of code re-use.  



Exercising Efficiently with an Equipment Ticketing Mobile Application 18 

Conclusion 

Native vs. Cross-Platform 

I chose to use a cross-platform framework since I was the sole developer on this project and so that 

I could be exposed to multiple platforms to increase my knowledge base of each.  As a sole developer with 

no experience creating applications for either Android or iOS, I was able to create an application that could 

be used on both.  The development process took about seven months which might have only been enough 

time to learn one platform.  Also, I was very familiar with C# and the .NET framework at the time this 

project was being proposed which also led me to the Xamarin.Forms solution. 

Even though this project was able to prosper from a cross-platform framework, this method is not 

always ideal for developing a mobile application though.  Mobile developers find themselves in one of two 

camps when it comes to choosing the method for creating a mobile application, either native or cross-

platform development.  Native applications use a specific platform’s software development kit (SDK) 

alongside the programming language best-suited for the operating system.  For example, a native 

application for Android would be written using Java while native iOS applications would be written using 

Swift or Objective-C.  Rami Assi, a software engineer at Etohum, does a great job of arguing both sides in 

his article titled “Mobile app development: Native vs cross-platform vs hybrid” which also emphasizes the 

large market that mobile applications have become by citing sources that expected the market to be worth 

$77 billion by the end of 2017.  A native approach is favored for many reasons including access to all 

features provided by the operating systems well as better performance and use of resources.  There are still 

downsides to developing native applications which include the need for a development process and/or team 

for each platform as well as a very deep understanding of the targeted system.  Cross-platform development 

seems favorable when it comes to cost as it only requires a single development team and code can be re-

used fairly easily.  Where cross-platform falls to native is the ability to use the features provided by the 

operating system to their full potential.  These features must be accessed using plugins or a method specific 

to the framework that is ultimately not as efficient with the device’s resources.   



Exercising Efficiently with an Equipment Ticketing Mobile Application 19 

Expectations for Xamarin.Forms 

Xamarin.Forms was a very useful tool for creating cross-platform tools quickly and easily.  The 

framework could easily become very popular among those who wish to develop mobile applications using 

the .NET framework which is gaining popularity with those who favor object-oriented development.  In 

October of 2017, Microsoft ‘s Corporate Vice President in the Operating Systems Group Joe Belfiore 

announced that the Windows Phone platform has been moved into a maintenance state and will not receive 

any new features and current users will only see security updates and bug fixes (Warren).  In response to 

this move, the Xamarin team may no longer continue support for the Universal Windows Platform in which 

case they will be able to focus all of their efforts on Android and iOS.  Once the framework supports iOS 

and Android development as well as the other available frameworks, Xamarin could gain popularity even 

quicker than expected.        

Personal Experience 

This project was very enjoyable and enlightening.  I learned about mobile development, the two 

most popular mobile operating systems, embedded databases and much more.  The application met the 

standards I set at the beginning of the project as well as the deadlines put in place by myself and the Honors 

College.  Adding the supplemental web application was a thought that came later in the development 

process and not only added value to the project, but allowed me to continue practicing web development in 

JavaScript.  The Xamarin.Forms framework was a technology that I was unfamiliar with and was slightly 

challenging to learn and build on especially when attempting to interact with the embedded database and 

utilize native features.  Apart from the difficulties, I was able to start and finish a relatively useful mobile 

application that can be used on three different platforms which was a neat experience.     

 

 



Exercising Efficiently with an Equipment Ticketing Mobile Application 20 

Technical Requirements 

The following equipment was used to produce this application: 

HP Envy TouchSmart m6 Sleekbook (Development machine) 

• Memory – 8 GB 

• Operating System – Windows 10 Home (64-bit) 

• Processor – Intel Core i5-4200U (1.6GHz base frequency, 2.3GHz max frequency) 

Mac Mini – Mid 2010 (iOS build machine) 

• Memory – 4 GB 

• Operating System – macOS Sierra Version 10.12.6 

• Processor – Intel Core 2 Duo (2.4GHz) 

Samsung Galaxy S4 (Android device used for debugging) 

• Operating System – Android Lollipop (5.0.1) 

iPhone 6 (iOS device used for debugging) 

• Operating System – iOS 10.2 

Microsoft Visual Studio Enterprise 2017 (IDE used for development) 

• License acquired via The University of Akron’s Microsoft Imagine subscription 

MongoDB  

• Community Server for Windows Server 2008 R2 64-bit and later with SSL Support 

• Version 3.4.6 

Node.js 

• Version 6.11.0 

DB Browser for SQLite 

• Open source tool used to visualize, create and edit SQLite database files 

• Version 3.9.1 

• Licensed under the Mozilla Public License as well as the GNU General Public License 

 

Git was used as version control for this project.  The source code for the mobile application can be found 

at  https://github.com/ermerryman/HonorsProj.  The web application source without image and package 

files can be found at https://github.com/ermerryman/HonorsProjServer. 

 

 

 

https://github.com/ermerryman/HonorsProj
https://github.com/ermerryman/HonorsProjServer


Exercising Efficiently with an Equipment Ticketing Mobile Application 21 

References 

 

Assi, Rami. “Mobile app development: Native vs cross-Platform vs hybrid.” LinkedIn, 11 Oct. 2017, 

www.linkedin.com/pulse/mobile-app-development-native-vs-cross-platform-hybrid-rami-assi/. 

Britch, David. Enterprise Application Patterns using Xamarin.Forms. Redmond, Washington, DevDiv, 

.NET and Visual Studio produc teams, 2017. 

Finley, Klint. “Microsoft Buys Xamarin to Expand Its Empire Beyond Windows.” Wired, 24 Feb. 2016, 

www.wired.com/2016/02/microsoft-expands-empire-beyond-windows-xamarin-buy/. 

Petzold, Charles. Creating Mobile Apps with Xamarin.Forms. Redmond: Microsoft Press, 2016. Web. 

Seguin, Karl. The Little MongoDB Book.: Syncfusion Inc., 2014. Web. 

Warren, Tom. “Microsoft finally admits Windows Phone is dead.” The Verge, 9 Oct. 2017, 

www.theverge.com/2017/10/9/16446280/microsoft-finally-admits-windows-phone-is-dead. 


	The University of Akron
	IdeaExchange@UAkron
	Spring 2018

	Exercising Efficiently with an Equipment Ticketing Mobile Application
	Eric Merryman
	Recommended Citation


	tmp.1524789724.pdf.PUDFI

