
The University of Akron
IdeaExchange@UAkron

Honors Research Projects The Dr. Gary B. and Pamela S. Williams Honors
College

Spring 2018

Navigational Heads-Up Display
Alex Walenchok
The University of Akron, atw29@zips.uakron.edu

Nicholas Seifert
The University of Akron, nms84@zips.uakron.edu

Joshua Reed
The University of Akron, jar207@zips.uakron.edu

Joshua Humphrey
The University of Akron, jch100@zips.uakron.edu

Please take a moment to share how this work helps you through this survey. Your feedback will be
important as we plan further development of our repository.
Follow this and additional works at: http://ideaexchange.uakron.edu/honors_research_projects

Part of the Computational Engineering Commons, and the Other Electrical and Computer
Engineering Commons

This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams
Honors College at IdeaExchange@UAkron, the institutional repository of The University of Akron in Akron, Ohio,
USA. It has been accepted for inclusion in Honors Research Projects by an authorized administrator of
IdeaExchange@UAkron. For more information, please contact mjon@uakron.edu, uapress@uakron.edu.

Recommended Citation
Walenchok, Alex; Seifert, Nicholas; Reed, Joshua; and Humphrey, Joshua, "Navigational Heads-Up Display"
(2018). Honors Research Projects. 690.
http://ideaexchange.uakron.edu/honors_research_projects/690

http://ideaexchange.uakron.edu?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F690&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F690&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F690&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F690&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=http://ideaexchange.uakron.edu/honors_research_projects/690
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F690&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/311?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F690&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F690&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F690&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects/690?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F690&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu

Navigational Heads-Up Display

Senior Design Project Final Report

Design Team: 3

Alex Walenchok

Joshua Humphrey

Joshua Reed

Nicholas Seifert

Faculty Advisor: Dr. Nghi Tran

April 30, 2018

1

Table of Contents
1. Abstract ... 6

2. Problem Statement .. 7

2.1 Need .. 7

2.2 Objective ... 7

2.3 Research .. 8

2.4 Patents ... 12

2.5 Marketing Requirements ... 13

2.6 Objective Tree ... 14

3. Design Requirement Specifications .. 15

4. Accepted Technical Design .. 18

4.1 Software Theory of Operation .. 18

4.1.1 Software Level 0 Block Diagram ... 18

4.1.2 Software Level 1 Block Diagram ... 19

4.1.3 Software Level 2 Block Diagram ... 20

4.1.4 Software Level 3 Block Diagram ... 22

4.1.5 Mobile Application Software Flow Diagram ... 27

4.1.6 Mobile Application Class Definitions .. 32

4.1.7 Mobile Application Pseudocode .. 36

4.1.8 System Unit Class Definitions ... 40

4.1.9 System Unit Pseudocode .. 42

4.2 Hardware Theory of Operation ... 44

4.2.1 Hardware Level 0 Block Diagram ... 44

4.2.2 Hardware Level 1 Block Diagram ... 45

4.2.3 Hardware Level 2 Block Diagram ... 46

4.2.4 Hardware Level 3 Block Diagram ... 48

4.2.5 Hardware Level 4 Block Diagram ... 50

4.2.6 System Schematic .. 53

4.3 Engineering Calculations .. 54

4.5 Software Changes in Implementation ... 55

4.4 Hardware Changes in Implementation .. 55

5. Operation and Maintenance .. 57

6. Testing Procedures .. 60

2

7. Project Schedules .. 61

7.1 Gantt Chart Fall 2017 .. 61

7.2 Gantt Chart Spring 2018 ... 62

8. Parts List ... 63

9. Budget ... 63

10. Conclusion and Recommendations ... 63

11. Design Team Information ... 65

12. References ... 66

13. Appendix ... 68

13.1 Raspberry Pi 3 ... 68

13.2 Projector .. 70

13.3 Battery and Power Boost .. 70

3

Table of Figures
Figure 1: Objective Tree ... 14

Figure 2: Software Level 0 Block Diagram .. 18

Figure 3: Software Level 1 Block Diagram .. 19

Figure 4: Software Level 2 Block Diagram .. 21

Figure 5: Software Level 3 Block Diagram .. 24

Figure 6: Mobile Application Software Flow Diagram .. 31

Figure 7: Device Search Pseudocode .. 37

Figure 8: Address Search Pseudocode .. 38

Figure 9: Data Transfer Pseudocode ... 39

Figure 10: Offline Mode Pseudocode ... 40

Figure 11: System Unit Data Retrieval Pseudocode ... 42

Figure 12: System Unit Display Generation Pseudocode ... 43

Figure 13: Initial Display Design .. 44

Figure 14: The Implemented Display ... 44

Figure 15: Hardware Level 0 Block Diagram ... 45

Figure 16: Hardware Level 1 Block Diagram ... 45

Figure 17: Hardware Level 2 Block Diagram ... 47

Figure 18: Hardware Level 3 Block Diagram ... 49

Figure 19: Hardware Level 4 Block Diagram ... 52

Figure 20: System Schematic .. 54

Figure 21: Projector Power Button ... 58

Figure 22: System Unit Power Switch .. 58

Figure 23: System Unit Charging Port .. 59

Figure 24: Mobile Application - Search Functionality ... 59

Figure 25: Mobile Application - Navigation ... 60

Figure 26: Gantt Chart Fall 2017 .. 61

Figure 27: Gantt Chart Spring 2018 .. 62

4

Table of Tables
Table 1: Design Requirement Specifications .. 18

Table 2: Software Level 0 Block Diagram ... 19

Table 3: Software Level 1 Block Diagram – Mobile Application .. 19

Table 4: Software Level 1 Block Diagram – Display Controller .. 20

Table 5: Software Level 2 Block Diagram – Search UI ... 21

Table 6: Software Level 2 Block Diagram – Map UI and Instruction List ... 21

Table 7: Software Level 2 Block Diagram – Communication Service (Mobile Device) 22

Table 8: Software Level 2 Block Diagram – Communication Service (System Unit) 22

Table 9: Software Level 2 Block Diagram - Display .. 22

Table 10: Software Level 3 Block Diagram – User History/Location Cache ... 25

Table 11: Software Level 3 Block Diagram – Search UI ... 25

Table 12: Software Level 3 Block Diagram – Map UI and Instruction List ... 25

Table 13: Software Level 3 Block Diagram – Offline Mode .. 25

Table 14: Software Level 3 Block Diagram – Parsing Service (Mobile Device) 26

Table 15: Software Level 3 Block Diagram – Maps SDK .. 26

Table 16: Software Level 3 Block Diagram – Communication Service (Mobile Device) 26

Table 17: Software Level 3 Block Diagram - Communication Service (System Unit) 26

Table 18: Software Level 3 Block Diagram – Parsing Service (System Unit) ... 27

Table 19: Software Level 3 Block Diagram – Custom Display Form .. 27

Table 20: Software Level 3 Block Diagram - Display .. 27

Table 21: Mobile Application Class Definition - AddressResult ... 32

Table 22: Mobile Application Class Definition - AddressResultListViewAdapter 33

Table 23: Mobile Application Class Definition - RouteStepListViewAdapter .. 33

Table 24: Mobile Application Class Definition – WiFiDirectBroadcastReceiver 34

Table 25: Mobile Application Class Definition – P2P.. 35

Table 26: Mobile Application Class Definition - BTService .. 36

Table 27: System Unit Class Definition – SBCP2P.. 41

Table 28: System Unit Class Definition - Display .. 41

Table 29: Hardware Level 0 Block Diagram - HUD .. 45

Table 30: Hardware Level 1 Block Diagram - Mobile Device ... 46

Table 31: Hardware Level 1 Block Diagram – System Unit .. 46

Table 32: Hardware Level 2 Block Diagram – Mobile Device .. 47

Table 33: Hardware Level 2 Block Diagram – Single Board Computer .. 48

Table 34: Hardware Level 2 Block Diagram – Portable Power Source.. 48

Table 35: Hardware Level 2 Block Diagram - Display .. 48

Table 36: Hardware Level 3 Block Diagram – Mobile Device .. 49

Table 37: Hardware Level 3 Block Diagram – Portable Power Source.. 49

Table 38: Hardware Level 3 Block Diagram – Single Board Computer’s Wireless Adapter 50

Table 39: Hardware Level 3 Block Diagram – Single Board Computer’s Power Supply 50

Table 40: Hardware Level 3 Block Diagram – Single Board Computer’s SOC Processor 50

Table 41: Hardware Level 4 Block Diagram - Display .. 50

Table 42: Hardware Level 4 Block Diagram – Mobile Device’s Touch Screen .. 52

Table 43: Hardware Level 4 Block Diagram – Mobile Device’s Wireless Adapter 52

5

Table 44: Hardware Level 4 Block Diagram – Portable Power Supply ... 52

Table 45: Hardware Level 4 Block Diagram – Single Board Computer’s Wireless Adapter 52

Table 46: Hardware Level 4 Block Diagram – Single Board Computer’s Power Supply 53

Table 47: Hardware Level 4 Block Diagram – Single Board Computer’s SOC Processor 53

Table 48: Hardware Level 4 Block Diagram – Display’s Input Ports .. 53

Table 49: Hardware Level 4 Block Diagram – Physical Display ... 53

Table 50: Parts List ... 63

Table 51: Budget ... 63

6

1. Abstract

One problem drivers face is distraction from looking at their mobile device while

navigating rather than watching the road. This problem can be solved with a heads-up

display placed directly on the driver’s windshield. By using a mobile device with a custom

GPS application, the following design will be able to send GPS data to a device that will

display navigational information on a car windshield. The design includes two primary

components, a mobile device and a System Unit, where the System Unit is composed of a

portable power supply, a single board computer, and a display. For the design, the mobile

device is an android device, the portable power supply is a battery, and the display is a small

projector. The design has a very strong software focus, and the main intention of the design

is to produce a fully functional Android mobile application that pairs along with prototype

hardware elements. In final implementation, the mobile application sends data in the JSON

format over a Bluetooth connection. The key features of the project are as follows:

• A custom GPS Android Application that can generate routes from the user’s current

location to destinations entered by the user

• A System Unit, which is a device that has the capability to be mounted on a vehicle’s

dashboard, connect to the user’s mobile device, and generate a display that contains

navigation information

• A projected display that is shown on the vehicle’s windshield

7

2. Problem Statement

2.1 Need

(AW)

Modern mobile technology is often a distraction for drivers. One major source of

distraction is mobile navigation applications (Google Maps for example). While mobile

navigation applications are great tools for drivers, they sometimes require drivers to take their

eyes off of the road to see information such as the next instruction, the distance to the next

instruction, or the distance to their destination. Most, if not all navigation applications offer

some type of voice navigation so that the driver can simply listen for the next instruction.

However, if the driver mishears the instruction or forgets what the next instruction is, then they

still must take their eyes off the road to look at their screen.

One possible solution to these types of problems are mounts that either stick to the car’s

dashboard or clip to an air vent, that way the mobile device is at least close to eye level. These,

however, are not perfect solutions because the driver’s view is obstructed, or the clip is placed in

a location that diverts the driver’s focus from the road.

For these, and many other reasons, there is a current need for a user friendly and efficient

way for drivers to view navigation and current trip information without having to completely

divert their gaze from the road.

2.2 Objective

(AW/NS)

8

This project’s goal is to provide a way for drivers to view navigation information and trip

information without having to divert their gaze from the road in front of them. This information

will be present in a heads-up display (HUD) directly on the user’s windshield.

 A mobile application will also be required to communicate with the display. This

application will contain a map, as well as the list of navigation instructions. As the user begins to

navigate toward their destination, the app will be sending real time instructions to the HUD

display system for the instructions to be processed and displayed on the windshield.

A major design goal that will be associated with this project is making a display that fits

all angles of windshields. There are some solutions that currently exist to display navigation

instructions on a windshield, but this project intends to improve upon that existing technology by

producing a HUD that can be mounted and displayed on any kind, or shape, of windshield. This

means it will produce a clear image on any windshield without requiring any sort of manual

adjustment.

2.3 Research

(NS/JR)

 The dangers associated with distracted driving are very well known. However, using GPS

is often looked over as a risk because of how directly it is associated it with driving. When

traveling on the highway at 55 mph, a driver travels the length of a football field in only five

seconds [4]. This means that what seem like quick glances onto a car mounted GPS or mobile

phone become very risky when traveling at high speeds. The proposed design intends to solve

this problem. With GPS data placed directly on the windshield, drivers will be spending much

less time with their eyes off the road and missing the audio for an instruction won’t cause the

9

driver to become completely distracted with their navigation. A HUD placed directly on the

windshield can be a seamless part of the driving experience, not another distraction.

(JR)

A study from Carnegie Mellon University had 24 subjects, 12 elder and 12 younger

drivers, participate in a virtual driving evaluation using a display on the windshield, and then the

same evaluation using a more standard GPS device. Results from this study showed that the

drivers using a display system similar to the proposed idea have significantly fewer navigation

errors and divided attention related issues when compared to using a more standard GPS device

[3]. This means that there is already evidence that such a device could be useful to drivers in the

real world.

(AW)

 The proposed design requires communication between the user’s mobile device, which

will be providing the navigation, and the proposed device, which will be displaying the

navigation and trip information. After taking an in-depth look the four main wireless

communication protocols (Bluetooth, UWB, ZigBee, and Wi-Fi Direct), we found two viable

options for the design. The first option would be to use Bluetooth connection, and the second

option would be using a Wi-Fi Direct connection. Both Bluetooth and Wi-Fi Direct meet the

design’s power consumption requirements, but there are several other factors that must be

considered, such as transmission time, data coding efficiency, complexity, and other

performance metrics [6].

(JR/JH)

One of the key elements of the proposed design is the mobile application that will be used

to communicate with the System Unit. This application will need to be fast and will need to

10

consumer a low amount of power. Using JavaScript Object Notation (JSON) to parse through the

data will be one way to speed up processing time for the application. JSON is an extremely

efficient data-interchange format that allows for easy storage of Key-Value pairs. A big

advantage of JSON is its usability for programmers while remaining an easy structure for

computers to handle. According to a case study done by Montana State University, JSON is

much faster and less resource intensive option to transmit data objects [8].

On the power consumption side, there are several factors to consider while developing a

mobile application, specifically to ensure low power consumption. The article “Native or Web?

A preliminary Study on the Energy Consumption of Android Development Models” details some

of these factors while attempting to provide methods for improving energy efficiency. In

Android development, the two main programming languages used are Java and JavaScript. The

article concludes that to minimize power consumption by an application, a hybrid solution using

both Java and JavaScript, provides the largest improvement in energy efficiency [9]. This is

something that will be considered while implementing the proposed design to provide the best

possible user experience.

(JR)

The paper “Perceptual Issues in Augmented Reality” describes some of the challenges

that may be faced when designing the Navigation HUD. Within this article the research goes on

to specifically discuss projector-camera systems. Depth distortion is one of the most common

problems with Augmented Reality. This will not be a problem for the Navigation HUD. Most

navigation Augmented Reality overlay the entire windshield while highlighting the upcoming

streets needing to drive towards. This would raise the concern for potential depth issues. The

design suggested in this proposal will be displaying directions in the corner of the windshield

11

which will help eliminate most risk for having depth issues. Another issue presented was

visibility of the image, specifically dealing with colors. Different light changing conditions and

the changing weather patterns could hurt the quality of our image [5].

(JH)

 While the initial plan for designing the HUD is to use projection for the display, it may

also be possible to achieve the same result using an LCD. Thin film transistor Liquid Crystal

Displays are still relatively common despite the recent technological advancements in the last

few years. Because of their low power use relative to other higher resolution alternatives this

type of screen makes a very good fit when designing an embedded system that requires a display

component. Although regular LCD screens are usually not paired with a backlight the thin film

transistor works very well with illumination from directly under the screen. This allows for an

embedded system to display information in many different conditions such as darkness or stormy

weather. This could serve as a potential alternative for the HUD design [1].

(AW)

 One of the key elements of the proposed design is the mobile application that will be used

to communicate with the System Unit. Also, one of the main objectives/marketing requirements

is that the mobile application will have low power consumption. There are several factors to

consider while developing a mobile application, specifically to ensure low power consumption.

The article “Native or Web? A preliminary Study on the Energy Consumption of Android

Development Models” details some of these factors while attempting to provide methods for

improving energy efficiency. This article focuses mainly on Android development, and how the

two main programming languages used in Android development (Java and JavaScript) can be

used to either increase or decrease an application’s power consumption. The authors found that a

12

hybrid solution, which uses both Java and JavaScript, provides the largest improvement in

energy efficiency [9]. This is something that will have to be considered while implementing the

proposed design to provide the best possible user experience.

2.4 Patents

(NS)

A patent search for similar design ideas yielded several results. Patent #US6735517B2

shows a very basic navigation display on a windshield with only a single arrow as part of the

HUD. The idea suggested in this proposal differs from this design because the proposed design

will display more than just the next navigational instruction as part of the projection. Also, this

patent does not describe the functionality of the projecting device. A large portion of the design

in this proposal is the projector’s ability to automatically adjust to different windshields in order

to produce a clear picture, which is not mentioned in this patent [2].

The patent search also provided U.S. Patent 20130051615, which is for an “apparatus and

method for providing applications along with augmented reality data”. This apparatus works by

“seeing” objects via an augmented reality unit. The object data that is gathered by the unit is

processed to see if the object is recognizable. Once the object is recognized, a search term (tag)

is created. This tag is then utilized to distinguish which application must be opened on the

mobile terminal. The application will then “utilize tag information in response to the application

being executed.” Then, whatever application functionality is associated with that particular word

is displayed on the augmented reality screen [7].

13

2.5 Marketing Requirements

(AW/NS)

Clarification on terminology used in the marketing requirements:

● “Navigation Information” refers to the next navigation instruction, the distance to the

next instruction, and the name of the street involved in the next instruction.

● “Trip Information” refers to the current weather conditions, warnings regarding road

hazards such as icy roads or accidents ahead, and an indication of how much gas is

remaining in the vehicle.

● “HUD” refers to a “heads-up display” that is projected onto the car’s windshield. This

display will contain the navigation and trip information.

Marketing requirements for this project:

1. The mobile application used to interface with the System Unit will work on Android

devices.

2. The device will be powered by a battery that is held within the device.

3. The device’s battery will be rechargeable.

4. The display will be unobtrusive and easily readable

5. The entire device will be cost efficient and affordable.

6. The display will contain accurate, and desirable, navigation information.

7. The display will contain accurate, and desirable, trip information.

8. The device will be small in size and will attach directly to the vehicle.

9. The display will be visible regardless of external conditions (e.g. sunny, cloudy, etc.).

10. The mobile phone will connect to the System Unit wirelessly.

14

2.6 Objective Tree

(AW)

 The Objective Tree for this project, as seen in Figure 1, shows that the primary goal for

the system is to create a pleasant, and comprehensive, user experience. Most of the time spent

developing the system will be spent on the creation of the Mobile Application, for the user’s

Android device, and the software to handle the display, which shows the useful information. The

primary goals for the User Experience portion of the design are to provide an easily visible

display that shows both useful trip and navigation information. We also want to provide a Mobile

Application that is aesthetically pleasing and easy to use. With the physical device, the main

objective is to create a device that is easy to install, is compact, and has a long lasting,

rechargeable battery.

Figure 1: Objective Tree

15

3. Design Requirement Specifications

(NS/AW/JH/JR)

The design requirement specifications are 11 standards that the Navigation HUD needs to

meet for the project to succeed. These requirements are engineering requirements that are

helping to guide the project and ultimately achieve the marketing goals. The justification

examples the thought process behind the engineering requirement. The full list of design

requirements is listed in Table 1.

Marketing

Requirements

Engineering Requirements Justification

2,3

The system will be able to operate for 3 continuous

hours on one charge.

The System Unit will need a portable

power source to operate. The power supply

should last a reasonable amount of time.

1,10

The mobile device and the System Unit will

communicate wirelessly, within a range of 10 feet.

For the system to remain unobtrusive, the

connection between the mobile device

(phone) and the System Unit should be

wireless. The connection should also be

stable regardless of the position of the

phone within the vehicle.

8

The System Unit, located on the dashboard, will

measure no more than 4 inches in width, 4.5 inches in

length, and 3.25 inches in height.

For the system to be unobtrusive it should

be small in size.

6,7

The heads-up display will show information containing

the street name, the turn direction, and the distance, in

Having the street name, the turn direction,

and the distance until the next navigation

16

feet, until the next navigation event onto the windshield. event is what is needed at minimum to give

the driver clear navigational instructions.

6,7

The system will be able to process, and display, data

with a delay of no more than 0.5 seconds after receiving

the updated GPS position.

For information to be useful, it must be

made available to the driver at a rate such

that maneuvers can be made safely.

Information must be given to the driver

well before the maneuver needs to be

made.

4,9

The display on the windshield will be visible to a user

with 20/20 vision from a distance of 6 feet.

The information displayed to the user

should be easy to understand so that the

driver is not distracted by the displayed

information, and so that only a small

amount of time is spent looking at the

display.

1

The Mobile Application portion of the system will

require no more than 100MB worth of storage on the

user’s mobile device. The application will also be able

to function properly while installed on an external

storage device (e.g. an SD card).

100MB is the maximum amount of space

that an application can take up to be

eligible for download from the “Google

Play Store”. This makes 100 MB an

appropriate upper bound for application

size. It is also recommended by Google

that applications exceeding 10MB in

storage space be installed externally on an

17

SD card.

4, 9

The heads-up display on the windshield will measure no

larger than 3 inches in height and 6 inches in width.

The display is intended to be unobtrusive

for the driver, so an appropriate upper limit

has to be set for the display size. 3 inches

by 6 inches is large enough to make a clear

display and small enough to keep the

windshield clear for driving.

6,7

The mobile application will be able to produce GPS

instructions that, when being followed by a user,

correctly navigate the user from their starting location to

their destination.

The intention of the HUD design is to be

able to produce a GPS device that

functions correctly. It is necessary that a

user can test the device and successfully

get to their destination by following the

instructions on the windshield. This is the

best way to prove that the GPS instructions

are accurate.

1, 6

The Mobile Application will provide the user with an

optional offline mode that preloads instructions so that

navigation may be done without the use of location

services. The application will automatically switch to

offline mode if location services are lost for more than 2

minutes.

In areas with minimal cellular coverage,

such as tunnels, it is vital that navigation

can still be completed successfully and

safely. Providing an offline mode will

ensure that the user can still follow the

navigation instructions in case of GPS

failure.

18

1

The Mobile Application will cache the user’s 10 most

recent, and 10 most used, destinations.

To provide the user with a fast, convenient

UI, recent and common destinations will

be preloaded so that the user can easily

access them.

Table 1: Design Requirement Specifications

4. Accepted Technical Design

4.1 Software Theory of Operation

4.1.1 Software Level 0 Block Diagram

(AW)

In a very general sense, the software for the System Unit uses user input for a destination

and outside map data to generates the display information. These inputs and the corresponding

output can be seen in Figure 2.

Figure 2: Software Level 0 Block Diagram

Module HUD

Designer AW / JR

Inputs User Input (Desired Destination) & Here Maps Data

Outputs Display Data

19

Description

A desired location/destination is input by the user. This data, along with

information gathered from the Here Maps API, is used to generate directions and

trip information. This information is then sent to the display.

Table 2: Software Level 0 Block Diagram

4.1.2 Software Level 1 Block Diagram

(AW)

Looking at Figure 3, the Software Level 1 Block Diagram, we can see that the software

design must be divided into two general subparts. The first section, the mobile application, takes

in the same data discussed at level 0. Once the information is pulled from the map service, it is

then sent to the second section, the display controller. This display controller, otherwise known

as the System Unit, must parse the data generated by the mobile application and generate the

display that the user will see.

Figure 3: Software Level 1 Block Diagram

Module Mobile Application

Designer AW / JR

Inputs
User Input (Desired Destination) and information from the Maps

SDK

Outputs
Instruction Data (Distance, next instruction, information to be

displayed)

Description

The mobile application takes in a destination from the user, and

uses information gathered from the Maps SDK to generate

directions, distance to next step, current location, and trip

information. This information (Instruction Data) is then sent out to

the next stage.

Table 3: Software Level 1 Block Diagram – Mobile Application

Module Display Controller

20

Designer AW / JR

Inputs Instruction Data (From Mobile Application)

Outputs Display Data

Description

The input consists of the next direction, the distance to the next

maneuver, and simple arrow of next instruction. This data is

broken down into a format that can be parsed. This parsed data is

then sent to the display.

Table 4: Software Level 1 Block Diagram – Display Controller

4.1.3 Software Level 2 Block Diagram

(AW)

In Figure 4, the Software Level 2 Block Diagram, it can be seen that the mobile

application must be split into three parts: the Search UI, the Map UI, and the communication

service, which is used to communicate with the display controller. The Search UI is required to

allow users to search for, and select, destination addresses. After selecting, or entering, a

destination, the user is redirected to the Map UI and Instruction List portion of the application.

This portion shows the user’s current location, the route on a map, and the full list of instructions

along the route. Upon map load and instruction list generation, the current location and the

current instruction information is sent to the Communication Service. This service parses the

relevant information into JSON format, and then sends the JSON to the display controller via the

wireless connection, where it is received in the display controller’s Communication Service. The

communication services are possibly the most important sections in the design, as a fast, almost

instant, transfer of data is required so that information is there when it is needed. After parsing

the received JSON, the display controller displays the relevant information to the user.

21

Figure 4: Software Level 2 Block Diagram

Module Search UI

Designer AW / JR

Inputs
User input (desired location) and search history from the User

History/Location Cache module

Outputs The desired location, selected by the user, is sent to the Map UI

Description
Allows the user to select/search for a desired location, and passes the selected

location on to the Map UI

Table 5: Software Level 2 Block Diagram – Search UI

Module Map UI and Instruction List

Designer AW / JR

Inputs Desired destination that was selected by the user

Outputs A map with the route highlighted and the instructions for the route

Description
Takes in data from the Search UI, displays the route to the desired location

and the user's current location on a map, and displays a list of the instructions

Table 6: Software Level 2 Block Diagram – Map UI and Instruction List

Module Communication Service (Mobile Device)

22

Designer AW / JR

Inputs Relevant instruction data to be sent to the display

Outputs The same instruction data that it takes in

Description Sends data to the microcontroller over the wireless link

Table 7: Software Level 2 Block Diagram – Communication Service (Mobile Device)

Module Communication Service (System Unit)

Designer AW / JR

Inputs Relevant instruction data to be sent to the display

Outputs The same instruction data that it takes in

Description Service will constantly be running, looking for information from user device

Table 8: Software Level 2 Block Diagram – Communication Service (System Unit)

Module Display

Designer AW / JR

Inputs Instruction data

Outputs Display

Description Displays the instruction data to the user

Table 9: Software Level 2 Block Diagram - Display

4.1.4 Software Level 3 Block Diagram

(AW)

Figure 5, the Software Level 3 Block Diagram shows even more detail into the workings

of the software applications. Two of the main differences in the Mobile Application is the

addition of a search cache, a JSON parsing service, and an Offline Mode. The search cache is

used to store, and display, recent searches and selections to make it easier for the user to find

their favorite, or most used, destinations quickly. The JSON parsing service is used in both the

Mobile Application and the System Unit, and is used solely for putting the data in a format that

is easy to send, receive, and read. These JSON parsing services are responsible for parsing the

information brought back from the Map SDK, for compressing the data to be sent to the System

23

Unit into a form that is easy to understand, and for unpacking that information on the System

Unit. Once the information is unpacked by the controller, a custom python UI will display the

information from the information in a neat format. The Offline Mode is used when Location

Services are lost. If Location Services fail on the mobile device, then Offline Mode will be

enabled in order to ensure that navigation can still be carried out successfully. While in Offline

Mode, the Mobile Application takes in a user input in the form of a tap on the screen in order to

move through the navigation instructions. When Offline Mode is enabled, and the user taps the

screen, the next instruction is sent to the JSON parsing service in the Mobile Application, which

sends the instruction to the System Unit just as it would any other instruction. This mode allows

users to continue using the system without having to divert their gaze from the road.

24

Figure 5: Software Level 3 Block Diagram

Module User History/Location Cache

Designer AW / NS

Inputs Searches conducted in the Search UI

Outputs Locations that have previously been selected/searched for by the user(s)

Description
Cache to store user's search history and selected locations. Used to provide a

smoother, and more user friendly, UI.

25

Table 10: Software Level 3 Block Diagram – User History/Location Cache

Module Search UI

Designer AW / NS

Inputs
User input (desired location searches) and search history from the User

History/Location Cache module

Outputs
The desired location, selected by the user, is sent to the Map UI and the Maps

SDK

Description

Allows the user to select/search for a desired location, and passes the selected

location on to the Map UI, where it is displayed, and the Maps SDK, where

the route is calculated

Table 11: Software Level 3 Block Diagram – Search UI

Module Map UI and Instruction List

Designer AW / NS

Inputs
Desired destination from the Search UI, and the Instruction List from the Maps

SDK. Also takes in location information from the Maps SDK

Outputs

A map with the route highlighted and the instructions for the route, which is

displayed to the user. Also outputs the instruction list to both the Offline Mode

and the Parsing Service

Description

Takes in data from the Search UI and Maps SDK, displays the route to the

desired location and the user's current location on a map, and displays a list of

the instructions within the route

Table 12: Software Level 3 Block Diagram – Map UI and Instruction List

Module Offline Mode

Designer AW

Inputs Instruction List from the Maps UI and a User Input

Outputs Next Instruction from the Instruction List

Description
Contains the entire instruction list, and sends the next instruction to the mobile

device's Parsing Service each time the user taps the mobile device's screen

Table 13: Software Level 3 Block Diagram – Offline Mode

Module Parsing Service (Mobile Device)

Designer AW / NS

Inputs
The current instruction from either the Offline Mode or the Map

UI/Instruction List

26

Outputs List of instructions and route information in JSON format

Description

Takes in the next instruction from the instruction list in either the Map UI or

the Offline Mode. Parses the instruction in to JSON format and sends the

relevant information to the Communication Service. This module is

responsible for gathering, parsing, and generating instruction data that will be

displayed to the user.

Table 14: Software Level 3 Block Diagram – Parsing Service (Mobile Device)

Module Maps SDK

Designer Here Maps - Provider of the SDK

Inputs Any and all calls required

Outputs Responses to the calls made by the application

Description Generates instruction lists and supplies location information

Table 15: Software Level 3 Block Diagram – Maps SDK

Module Communication Service (Mobile Device)

Designer AW / NS

Inputs Relevant instruction data to be sent to the display in JSON format

Outputs The same instruction data that it takes in bytes

Description Sends data to the System Unit over the wireless connection.

Table 16: Software Level 3 Block Diagram – Communication Service (Mobile Device)

Module Communication Service (System Unit)

Designer JH / JR

Inputs Instruction data in bytes

Outputs Display data in JSON format

Description
Takes in data from the Mobile Application over the wireless connection and

sends that data to the System Unit’s Parsing Service

Table 17: Software Level 3 Block Diagram - Communication Service (System Unit)

Module Parsing Service (System Unit)

Designer JH/JR

Inputs Instruction data in JSON format

Outputs An object containing the relevant instruction information

27

Description

Takes the data sent over from the Mobile Application (in JSON format), and

generates an object containing all of the relevant instruction information to be

displayed

Table 18: Software Level 3 Block Diagram – Parsing Service (System Unit)

Module Custom Display Form

Designer JH/JR

Inputs Object containing instruction information

Outputs Display

Description
UI Application running on the System Unit that takes the object from the

System Unit’s Parsing Service and displays the information

Table 19: Software Level 3 Block Diagram – Custom Display Form

Module Display

Designer JH / JR

Inputs Display Data

Outputs Display

Description Displays the instruction data to the user

Table 20: Software Level 3 Block Diagram - Display

4.1.5 Mobile Application Software Flow Diagram

 (AW)

 This section describes the general logic of the software behind the Mobile Application.

The software flow diagram listed at the bottom of this description follows these steps after the

app is initially loaded:

1. After the application is initially launched, two processes are started:

a. The application checks for a default System Unit to connect to. This default

device is set in the User Settings page within the application. Depending on

whether the default device is set, or within range, one of the following two steps

is taken:

28

i. If the default device is set, and the default device is in range, then a

connection attempt is made.

ii. In initial design if the default device was not set, or the default device was

not in range, then the application would search for nearby Wi-Fi direct

enabled devices. In implementation, the application searches for nearby

Bluetooth devices and completes the following step:

1. The application displays a list of discovered devices that match the

signature of the System Unit and awaits a user selection. Once the

user selects the System Unit, the application waits for the user to

input the destination address (see Step 2).

b. The application loads the Map UI and centers the map around the user’s current

location. The map is cleared of all markers, and all lists are initialized. After the

Map UI is initialized, and the map is cleared, the application awaits a user input

for the destination address (see Step 2).

2. After both Step 1a and Step 1b are completed, the user can input a destination address.

The user may input a new destination, or they may select from a list of recent and

common destinations. After the input is entered and finalized, the application goes to

Step 3.

3. After the input is finalized, the address is searched for using the Maps SDK. Depending

on if the entered destination is found (is a legitimate address), one of the two following

steps is taken:

29

a. If the destination address is found, then the route is calculated using the Maps

SDK. The route is then stored in a list, which is then displayed to the user on the

mobile device. The application then goes to Step 4.

b. If the entered destination is not a legitimate address, or the address cannot be

found, then the application returns to Step 1b.

4. The top instruction (i.e. the next instruction) in the queue is transmitted to the connected

System Unit. After a successful transmission, the application goes to Step 5.

5. The application must check to ensure that location services are available, and that the

GPS position is available. Depending on the status of the location services, one of the

following steps takes place:

a. If the location services are available, the application awaits an update on the GPS

position of the user’s mobile device. After the position is updated, the application

goes to Step 6.

b. If the location services are not available, then the application enters Offline Mode.

While in Offline Mode, the UI switches to a state that only takes in a single user

input, which is a simple tap on the screen. The following two steps may occur

while in Offline Mode:

i. If the user taps the screen, then it is assumed that they have completed the

current instruction, and the application goes to Step 6.

ii. If the Location Services are restored while in Offline Mode, then the

application goes back to Step 3a.

30

6. After the GPS position is updated, the application checks the next instruction in the

queue. Depending on what the next instruction step is, one of the two following steps

may occur:

a. If the next instruction does not exist, meaning that the user has reached their

destination, then the application notifies the user and returns to Step 1b. This

signifies the end of the navigation, and the application is prepared for a new

destination to be entered by the user.

b. If the next instruction does not indicate that the destination has been reached, then

the next instruction is pulled to the front of the queue, and the application returns

to Step 4.

31

Figure 6: Mobile Application Software Flow Diagram

32

4.1.6 Mobile Application Class Definitions

(AW)

There are several classes that must be defined to gather, and handle all of the data within

the mobile application. The first class that must be defined is the AddressResult class, which

stores and provides the addresses selected by the user. Descriptions and explanations for this

class’ members, methods, and functions can be seen in Table 21.

class AddressResult

private String DisplayText

Private member variable; Text to be displayed to the user. Represents the

Address, or Description, of the location.

private GeoCoordinate coordinates

 Private member variable; Coordinates of the address.

public AddressResult AddressResult(String Display)

 Constructor that sets the display text.

public AddressResult AddressResult(String Display, GeoCoordinate geoCoordinate)

 Constructor that sets the coordinates and the display text.

public void setDisplayText(String Display)

 Setter for private member variable ‘DisplayText.’

public String getDisplayText()

 Getter for private member variable ‘DisplayText.’

public void setCoordinates(GeoCoordinate geoCoordinate)

 Setter for private member variable ‘coordinates.’

public double getLatitude()

 Retrieves the latitude of the address.

public double getLongitude()

 Retrieves the longitude of the address.

Table 21: Mobile Application Class Definition - AddressResult

 After defining the AddressResult class, an AddressResultListViewAdapter must be

defined so that a collection of AddressResult objects can be properly bound to a ListView within

33

the mobile application. This allows for search results to dynamically populate a ListView that

can then be shown to the user. Descriptions for this class’ members, methods, and functions can

be seen in Table 22.

class AddressResultListViewAdapter

private AddressResultListViewAdapter

AddressResultListViewAdapter(Context context, int

textViewResourceId)

 Public constructor.

private AddressResultListViewAdapter

AddressResultListViewAdapter(Context context, int resource,

List<AddressResult> items)

Public constructor. Takes in the list of AddressResult objects to be displayed

to the user.

public View getView(int position, View convertView, ViewGroup parent)

Sets the display text of the ListView Item for each AddressResult object that

is to be displayed.

Table 22: Mobile Application Class Definition - AddressResultListViewAdapter

 Like the AddressResultListViewAdapter, a RouteStepListViewAdapter must be defined

for the display of steps within a given route. This allows the steps for a generated route to be

displayed to the user in a concise, easy to read, list. Descriptions for this class’ members,

methods, and functions can be seen in Table 23.

class RouteStepListViewAdapter

private RouteStepListViewAdapter RouteStepListViewAdapter(Context context, int textViewResourceId)

 Public constructor.

private RouteStepListViewAdapter

RouteStepListViewAdapter(Context context, int resource,

List<Maneuver> maneuvers)

Public constructor. Takes in a list of Maneuver objects that are to be displayed

to the user.

public View getView(int position, View convertView, ViewGroup parent)

Sets the display text of the ListView Item for each Maneuver object that is to

be displayed.

Table 23: Mobile Application Class Definition - RouteStepListViewAdapter

34

 After being given a destination and generating a route to that destination, the mobile

application must then send the current location and navigation information to the System Unit (as

discussed in Section 4.1.2 Software Level 1 Block Diagram).

In the initial accepted design, this task was to be handled by a series of classes, interfaces,

and activities, all of which are described below. To start, a WiFiDirectBroadcastReceiver class

would be defined. This class would extend the BroadcastReceiver class provided in the standard

Android SDK, which would allow the application to monitor changes in the device’s Wi-Fi

adapter.

class WiFiDirectBroadcastReceiver extends BroadcastReceiver

public WiFiDirectBroadcastReceiver

WiFiDirectBroadcastReceiver(WiFiP2pManager manager,

WiFiP2pManager.Channel channel, Handler peerHandler, Context

context)

Public Constructor that instantiates the Context, WiFiP2pManager, Channel,

and Handler. Calls the setListener() method.

private void setListener()

Overrides the ConnectionInfoListener, which allows for the monitoring of the

Wi-Fi Direct connection.

public void onReceive(Context context, Intent intent)

Overrides the onReceive method of BroadcastReceiver. This method handles

events related to the P2P connection, such as: Peers Changed, Connection

Changed, and Device Wi-Fi State Changed. Responsible for adding peers to

the UI, and responsible for attempting to regain connections when the

connection fails.

protected void showAlert(String message)

Shows a toast notification to the user, with the text set to the passed in

message.

Table 24: Mobile Application Class Definition – WiFiDirectBroadcastReceiver

 After defining the WiFiDirectBroadcastReceiver class, the P2P (or “Peer-to-Peer”) class

would be defined. This class utilizes the WiFiDirectBroadcastReceiver object to find peers,

display peers, and make connections to the peer that is selected by the user.

35

class P2P

private void createIntent()

Sets up the intent filter. This defines which intents the WiFiDirectBroadcastReceiver

will override.

public P2P P2P(Context context, Handler peerHandler)

 Public Constructor.

private void initializeWiFiDirect()

Initializes the Wi-Fi Direct manager and channel. This also sets up a loop that will

attempt to reconnect after a Wi-Fi Direct connection fails.

private void createReceiver()

Instantiates the private WiFiDirectBroadcastReceiver with the manager and channel

generated in the initializeWiFiDirect method.

private void registerReceivers()

 Registers receivers within the correct context.

private void unregisterReceivers()

 Unregisters the receives when the application is closed.

private void discoverPeers()

 Initializes the discovery process.

public void connect(WiFiP2pDevice device)

 Establishes a Wi-Fi Direct connection with the specified device.

Table 25: Mobile Application Class Definition – P2P

(NS)

In the actual design and implementation of the heads-up display, a Bluetooth connection

was used to send data from the mobile phone over to the system unit. For this communication

protocol there were some differences in the mobile application class definitions.

class BTService

public BTService BTService(Context context)

 Public Constructor.

Public boolean isDiscovering()

 Returns true if the adapter is currently discovering. Otherwise, returns false.

public void discover(Boolean autoConnect)

36

Begins discovery of Bluetooth devices. If autoConnect is true, an automatic

connection will be made with the System Unit based on the System Unit’s Bluetooth

device name.

public void connect(BluetoothDevice target)

First pairs with the target device, then establishes the connection based on the UUID

that both the mobile application and the System Unit share.

public boolean isConnected()

Returns true if the mobile device currently has an established Bluetooth connection,

otherwise returns false.

public void transmit(String message)

Converts a string to a byte array, then sends it over the established Bluetooth

connection.

Table 26: Mobile Application Class Definition - BTService

4.1.7 Mobile Application Pseudocode

(AW)

The Mobile Application is responsible for displaying the map, connecting to the System

Unit, and generating the route based on the user’s input. The first step in this process is

connecting to the System Unit. In the initial design of the heads-up display, the connection

between the system unit and the mobile device would be made using the following procedure:

In the planned design, the Mobile Application initiates the connection process by first

using the mobile device’s Wi-Fi Broadcast Receiver to search for Wi-Fi Direct enabled devices.

The search is conducted so long as no connection is made. Once a connection is made, the

application terminates the search, as it is no longer necessary. During the searching process,

once a device is found it is displayed to the user in a user-friendly list. After the user selects a

device from this list, the Mobile Application uses the mobile device’s Wi-Fi Manager to

establish the connection. If the connection succeeds, then the application proceeds to the next

stages - taking in user input and generating the route. If the connection fails, then the application

attempts the connection again. This process is explained in further detail in Section 4.1.5 Mobile

37

Application Software Flow Diagram, and the pseudocode for this process can be found in Figure

7.

Search For Devices Using Wi-Fi

Broadcast Receiver:

While (Connection_Status != Connected) {

 Search_For_P2P_Devices();

 If (Device_Found) {

 Display_Device_Name();

 }

}

Device Selected From List of Available Devices:

new WifiP2pManager.ActionListener() {

 public void onFailure(int reason) {

 Log_Failure(reason);

Retry_Connection();

}

};

Figure 7: Device Search Pseudocode

In implementation, a similar procedure was performed using Bluetooth instead of Wi-Fi

Direct, using the functionality and class described in Table 26: Mobile Application Class Definition

- BTService.

After a connection is made and the user inputs a destination address, the Mobile

Application moves to the Route Generation process. This process starts with a search for the

entered address. Using the Maps SDK, the application generates a list of all addresses that match

the user’s input and displays these results in a user-friendly list. For each result, the application

stores the latitude and longitude coordinates of the result and places a marker on the map at those

coordinates. After displaying the results, the application awaits the user’s selection. Once a

selection is made, the application gets the coordinates of the selected result, sets the route options

(e.g. does the user prefer a route without tolls?), and adds waypoints at the user’s current position

and the result’s coordinates. Once these initial steps are completed, the application calls upon

38

the Maps SDK to generate the route. If a route is found, then the application stores the

instruction list, displays the route on the map, and displays the instruction list. This process is

explained in further detail in Section 4.1.5 Mobile Application Software Flow Diagram, and the

pseudocode for this process can be found in Figure 8.

User Searches For an Address or Place:

Search_Address(User_Entry);

Center_Map();

For (Address a : Search_Results) {

 Get_Coordinates(a);

 Place_Marker_At_Coordinates();

 Add_Address_To_Results_List();

}

User Selects a Marker or a List Entry:

Get_Selected_Coordinates();

Set_Route_Options();

Add_Waypoints();

Calculate_Route();

If (Route != null) {

 Display_Route_On_Map():

 Show_Route_List();

Center_Map();

}

Figure 8: Address Search Pseudocode

After a connection is made and an instruction list is generated, the next step for the

Mobile Application is to parse the current instruction into JSON format and transmit that

instruction to the System Unit. The first step in this process is to create the JSON object. The

JSON object is created by adding several key-value pairs to a string-like structure. The pairs that

will be added to this object include the Street Label/Name, the Distance to Next Instruction in

units of feet, and the Direction of the next instruction (i.e. left, right, straight, etc.). After the

JSON object is created it is then converted to a byte array, which can be placed in the data buffer

and transmitted to the System Unit over the wireless connection. This process is explained in

39

further detail in Section 4.1.5 Mobile Application Software Flow Diagram, and the pseudocode for

this process can be found in Figure 9.

Create the JSON Object:

While (Confirmation_of_Pi_Service == True) {

 JSON_Object Direction_Data;

 Direction_Data.add(Street_Label, Street_Data);

 Direction_Data.add(Distance_To_Next_Direction, Distance_Data);

 Direction_Data.add(Direction_Arrow, Arrow_Data);

 String JSON_String = Covert_To_String(JSON_Object);

}

Convert and Send the Data to the Pi

While (End_Of_Data_Stream == False) {

 Data_To_Send = Convert_To_Byte_Array(JSON_String);

 Andoid_Data_Buffer.Add(Data_To_Send);

 Send_Data_Over_Bluetooth(Android_Data_Buffer);

}

Figure 9: Data Transfer Pseudocode

An extra piece of the Mobile Application software that must be considered is the Offline

Mode. This mode allows navigation to take place even when the mobile device loses access to

location services, GPS position, or cellular service. If the mobile device does lose access to one

of these services, it is automatically placed in to Offline Mode, which loads a new UI that

consists of only one pane that takes in only one user input - which is a simple tap on the device’s

screen. When the user taps on the screen it is assumed that they have completed the previous

instruction and are ready to view the next instruction. This input triggers the same mechanisms

detailed in the above sections - the next instruction is pulled from the instruction list, compressed

into a format that can be sent, and is then transmitted to the System Unit. The only difference

between Online and Offline Mode is that the application does not update the current instruction

upon GPS position update, but rather it updates the next instruction upon a user input. While in

Offline Mode, the application continuously listens for the restoration of location services. If

location services are restored, then the application returns to Online Mode by finding the user’s

40

current position, generating a new route, and resuming normal functionality. This process is

explained in further detail in Section 4.1.5 Mobile Application Software Flow Diagram, and the

pseudocode for this process can be found in Figure 10.

Location Service Listener:

If (!PositionAvailable) {

 Set_Offline_UI();

 Return_To_Listening();

} Else If (PositionAvailable) {

 If (In_Offline_Mode) {

 Set_Online_UI();

 Regenate_Route();

 Return_To_Online_Functionality();

 }

}

Offline Mode Activity:

void User_Input_Detected() {

 Get_Next_Instruction();

 Generate_JSON();

 Send_Instruction();

 Update_Instruction_List();

 Await_User_Input();

}

Figure 10: Offline Mode Pseudocode

4.1.8 System Unit Class Definitions

(JR/NS)

 The class definitions listed below represent the planned design for supplying information

about the necessary functions and data types required to properly implement the software

running on the System Unit. The SBCP2P (“Single Board Computer Peer-to-Peer”) class is used

in this design to allow the System Unit’s single board computer to broadcast and establish a Wi-

fi Direct connection.

 In implementation, very similar methods were used to those in Table 27, however they

utilized Bluetooth functionality instead of Wi-Fi Direct. Rather than broadcasting an IP address

41

and Port information, the System Unit broadcasts its Bluetooth adapter and socket. The Mobile

Device then detects the System Unit through a discovery process, both devices open a Bluetooth

socket, and the connection is then finalized. Data is then transmitted via a byte array within the

devices’ buffer.

class SBCP2P

public void broadcastIPAndPort()

 Broadcast IP and Port information

public void discoverPeers()

 Initializes the discovery process.

public void receiveBytes()

Sets the System Unit up to receive data over the Wi-Fi Direct connection. Data is

received as a byte array within a buffer on the device.

Table 27: System Unit Class Definition – SBCP2P

The display class, shown in Table 28, holds the necessary data for producing a display

with the information required by the design. It also contains the capacity to take in a JSON object

and parse out the correct data to be displayed.

class Display

public Display Display(JSON_Object json)

 Public constructor that produces a display object based off of a JSON Object.

private Image turnImage

 Private member that holds an image, which corresponds to the current turn direction.

private string streetName

 Private member that holds the data for the street name so that it may be displayed.

private string turnDirection

Private member that holds the data for the direction of the next turn so that it may be

displayed.

private int Distance

Private member that holds the data for the distance until the next navigational

instruction so that it may be displayed.

Table 28: System Unit Class Definition - Display

42

4.1.9 System Unit Pseudocode

(NS)

 The System Unit is responsible for receiving the navigational data from the mobile

application, and then using that data to produce the heads-up display. To begin this process, first

the System Unit must establish a connection with the mobile device. The pseudocode sample in

Figure 11 shows the planned design of this process.

Service_Start(){

SBCP2P p2p = new SBCP2P;

Broadcast the Wi-Fi Direct Service:

While (Connection == False) {

p2p.broadcastIPAndPort();

}

Returning Service Looking for the Mobile Device IP and Port:

While (Connection == True && Confirmation==False) {

p2p.sendConfirmation();

}

Receiving Service Taking in Bits Over Connection:

While (Connection == True && Confirmation == True) {

p2p.receiveBytes();

}

}

Figure 11: System Unit Data Retrieval Pseudocode

This design begins by making the System Unit broadcast its IP address and port number.

When this happens, the System Unit is making itself visible to other devices with Wi-Fi Direct

support. This means that the mobile device can discover the System Unit and start to establish a

connection.

 Once the mobile device begins its attempt to connect to the System Unit, the System Unit

needs to send some sort of confirmation back over Wi-Fi Direct to inform the mobile device that

it agrees to receive data through this newly established network. Through this new network, both

43

the mobile device and System Unit become paired with one another through Wi-Fi Direct and

the two can now freely send data back and forth. The pseudocode sample in Figure 12 details the

process of receiving data on the System Unit and using that data to produce a display.

 In implementation, a similar procedure was performed using Bluetooth instead of Wi-Fi

Direct.

Receiving and Parsing the JSON Data:

While (End_Of_Data_Stream == False) {

ByteArray Received_Data = Receive_Data_Over_WiFiP2p(Pi_Data_Buffer);

String JSON_String = Convert_To_String(Received_Data);

JSON_Object Direction_Data_Object = Convery_To_JSON_Object(JSON_String);

Display display = new Display(Direction_Data_Object);

Project_Output(Display);

}

Implementation of Display Constructor that Transforms the Parsed Data Into a Display:

public Display(JSON_Object json){

this.turnDirection = JObject.Direction_Arrow;

this.streetName = JObject.Street_Label;

this.distance = JObject.Distance_To_Next_Direction;

}

Figure 12: System Unit Display Generation Pseudocode

When data is received by the System Unit, it comes through as a byte array in a buffer.

This data needs to be converted to information that the System Unit can use to produce a display.

In this case, a unique class was created that has a constructor that can take in a JSON object and

use it to create a new unique object specifically for producing the display. This process involves

first taking the data in through the buffer and receiving it as an array of bytes. That byte array

first needs to be converted to a string. Since the data was sent over as a string in the JSON

format, when converted it will be received with that same formatting. As a result, this string can

easily be parsed by the System Unit by constructing a JSON object.

 As a JSON object, the data is now organized as name-value pairs. This pairing allows the

System Unit to select each piece of received data individually, and correctly parse out the street

44

name, distance to next instruction, and turn direction with ease. This process is performed by the

constructor for the display object and produces cohesive data for outputting the display. The

output will use Tkinter, which is a GUI toolkit that is included in Python. The idea is to have a

label associated with each JSON element. Figure 13 shows a potential design for the projected

display, and Figure 14 shows the final display implementation.

Figure 13: Initial Display Design

Figure 14: The Implemented Display

4.2 Hardware Theory of Operation

4.2.1 Hardware Level 0 Block Diagram

(NS)

The fundamental concept of the heads-up display hardware is that the user of the heads-

up display submits some sort of input with a directional request, then GPS information is

displayed on the user’s car windshield Hardware Block Diagram 0, shown in Figure 15, shows

this basic element of the design.

45

Figure 15: Hardware Level 0 Block Diagram

Module HUD

Designer NS / JH

Inputs User Input

Outputs Displayed GPS Visuals

Description

The function of the HUD is to take the GPS request made by the user and

transform it into clear displayed information right in front of them. The user

submits a destination and the HUD shows directions in a display on their

windshield.

Table 29: Hardware Level 0 Block Diagram - HUD

4.2.2 Hardware Level 1 Block Diagram

(NS)

More specifically, the HUD consists of two parts: the mobile device and the system unit.

The mobile device will be a user’s internet-connected smartphone which will receive the GPS

data. This data will then be sent over to the system unit for parsing. Figure 16, the Hardware

Level 1 Block Diagram, shows these details.

Figure 16: Hardware Level 1 Block Diagram

Module Mobile Device

Designer NS / JH

46

Inputs User Input

Outputs GPS Information Over Wireless Connection

Description
The mobile device simply sends the GPS data to the rest of the HUD. It does

this over a wireless connection that it makes with the rest of the System Unit.

Table 30: Hardware Level 1 Block Diagram - Mobile Device

Module System Unit

Designer NS / JH

Inputs GPS Information Over Wireless Connection

Outputs Displayed GPS Visuals

Description

The System Unit is responsible for creating the displayed visuals by

interpreting the information that it receives from the mobile device. The

System Unit retains a wireless communication with the phone while the two

are working in tandem. The System Unit processes and parses GPS

information sent over by the mobile device, then it creates clear visuals for the

HUD user.

Table 31: Hardware Level 1 Block Diagram – System Unit

4.2.3 Hardware Level 2 Block Diagram

(JR)

The transfer of information between the mobile device and the System Unit is a key

component in the operation of the system. We assessed both Bluetooth and Wi-Fi Direct

communication protocols for the sending and receiving of our data. After researching the two

communication protocols we decided to choose Wi-fi Direct due to a higher capacity for data

and broadcast speed while also maintaining a high level of security [10]. Wi-Fi Direct promises

AES 256-bit encryption while Bluetooth gives only AES 128-bit encryption [10]. While this

may seem like a trivial difference, privacy and security of data transfer is crucial in any

consumer-facing application. Responsibly handling location data and making sure that it remains

in the right hands is extremely important to ensure user safety and a secure system. Ultimately,

Wi-Fi Direct was decided as the data transmission tool for the system. Figure 17, the Hardware

Level 2 Block Diagram, shows a more detailed design where the process of using this wireless

47

connection is exemplified.

In implementation however, a Wi-Fi Direct connection that could send the required data

over was unable to be established. Because of this, Bluetooth was chosen as the communication

protocol for the final design.

Figure 17: Hardware Level 2 Block Diagram

Module Mobile Device

Designer NS / JH

Inputs User Input

Outputs GPS Information Over Wireless Connection

Description
The mobile device simply sends the GPS data to the rest of the HUD. It does

this over a wireless connection that it makes with the rest of the System Unit.

Table 32: Hardware Level 2 Block Diagram – Mobile Device

Module Single Board Computer

Designer NS / JH

Inputs GPS Information Over Wireless Connection, Supplied Power

48

Outputs Display Information Over Wired Connection

Description

The Single Board Computer takes all of the data from the mobile device and

then utilizes a power source in order to supply all of the inputs to the display. It

takes in data wirelessly from the mobile device and utilizes the portable power

source, then uses a wired connection to the display to send over the data that

will be shown.

Table 33: Hardware Level 2 Block Diagram – Single Board Computer

Module Portable Power Source

Designer NS / JH

Inputs None

Outputs Supplied Power

Description
The portable power source is the single element that supplies power to the

System Unit.

Table 34: Hardware Level 2 Block Diagram – Portable Power Source

Module Display

Designer NS / JH

Inputs Display Information Over Wired Connection

Outputs Displayed GPS Visuals

Description
The display is the part of the design that the end user sees. It displays the GPS

data that it receives from the single board computer.

Table 35: Hardware Level 2 Block Diagram - Display

4.2.4 Hardware Level 3 Block Diagram

(JR)

After researching different microcontrollers, the Raspberry Pi 3 is the best choice for the

controller within the System Unit. The main reason for using the Pi 3 was the dual option to use

either Bluetooth or Wi-Fi Direct. Even though the proposed design plans to utilize Wi-Fi Direct,

Bluetooth can be a backup option without changing hardware. Another great feature of the Pi 3 is

the onboard HDMI port. This gave the device flexibility when completing screen testing. Figure

18 shows more detail of this hardware design.

49

In our final design we used a Raspberry Pi 0 rather than the Raspberry Pi 3. The Pi 0 had

all the same wireless adaptor options with a much lower profile. The low profile was necessary

to complete design requirement 6 (see Section 3. Design Requirement Specifications).

Figure 18: Hardware Level 3 Block Diagram

Module Mobile Device

Designer NS / JH

Inputs User Input

Outputs GPS Information Over Wireless Connection

Description
The mobile device simply sends the GPS data to the rest of the HUD. It does

this over a wireless connection that it makes with the rest of the System Unit.

Table 36: Hardware Level 3 Block Diagram – Mobile Device

Module Portable Power Source

Designer NS / JH

Inputs None

Outputs Supplied Power

Description
The portable power source is the single element that supplies all of the power

to the System Unit.

Table 37: Hardware Level 3 Block Diagram – Portable Power Source

50

Module Single Board Computer's Wireless Adapter

Designer NS / JH

Inputs Wi-Fi Direct Signal

Outputs Received Wi-Fi Direct Data

Description

The wireless adapter in the single board computer is responsible for receiving

all the GPS data from the mobile device. It then sends the data to the processor

so the appropriate GPS data can be sent to the screen display.

Table 38: Hardware Level 3 Block Diagram – Single Board Computer’s Wireless Adapter

Module Single Board Computer's Power Supply

Designer NS / JH

Inputs Supplied Power

Outputs Power Delegated to Display

Description

The power supply is the part of the single board computer that ensures that

each individual element of the System Unit gets powered, including the

display.

Table 39: Hardware Level 3 Block Diagram – Single Board Computer’s Power Supply

Module Single Board Computer's SOC Processor

Designer NS / JH

Inputs Received Data

Outputs Data Sent to Screen Display

Description

The processor is responsible for managing the received GPS data. It uses its

programmed logic to transform the received wireless data into information that

creates the appropriate visual display.

Table 40: Hardware Level 3 Block Diagram – Single Board Computer’s SOC Processor

Module Display

Designer NS / JH

Inputs Display Information Over Wired Connection, Power Delegated to Display

Outputs Displayed GPS Visuals

Description
The display is the part of the design that the end user sees. It displays the GPS

data that it receives from the single board computer's SOC processor.

Table 41: Hardware Level 4 Block Diagram - Display

4.2.5 Hardware Level 4 Block Diagram

(JH/JR)

51

Going into more detail, user input will be submitted to the mobile device through the

touch screen, and the running application on the phone allows the user to interface with a

wireless adapter on the mobile device. Depending on finalized design decisions, this will either

be the Bluetooth or Wi-Fi adapter. The mobile device can then establish a connection to the

single board computer (Pi 0) through its respective wireless adapter.

 Using the onboard processor on the single board computer, data is processed and sent to

the input ports (HDMI) of the display (projector) so that the data can be shown on the physical

display on the windshield. Figure 19 shows Hardware Block Diagram Level 4, the lowest level

visual for the hardware in this design.

52

Figure 19: Hardware Level 4 Block Diagram

Module Mobile Device's Touch Screen

Designer NS / JH

Inputs User Input

Outputs User Requested GPS Information

Description

The touch screen is the element of hardware in the mobile device that takes in

user input directly. It translates this input into the user requests for the rest of

the phone to process.

Table 42: Hardware Level 4 Block Diagram – Mobile Device’s Touch Screen

Module Mobile Device's Wireless Adapter

Designer NS / JH

Inputs User Requested GPS Information

Outputs GPS Information Over Wireless Connection

Description

The mobile device uses its wireless adapter to send data over to the rest of the

HUD. It does this over a wireless connection that it makes with the rest of the

System Unit.

Table 43: Hardware Level 4 Block Diagram – Mobile Device’s Wireless Adapter

Module Portable Power Supply

Designer NS / JH

Inputs None

Outputs Supplied Power

Description
The portable power supply is the single element that supplies power to the

System Unit.

Table 44: Hardware Level 4 Block Diagram – Portable Power Supply

Module Single Board Computer's Wireless Adapter

Designer NS / JH

Inputs Wi-Fi Direct Signal

Outputs Received Data

Description

The wireless adapter in the single board computer is responsible for receiving

the GPS data from the mobile device. It then sends the data to the processor so

the appropriate GPS data can be sent to the screen display.

Table 45: Hardware Level 4 Block Diagram – Single Board Computer’s Wireless Adapter

Module Single Board Computer's Power Supply

Designer NS / JH

53

Inputs Supplied Power

Outputs Power Delegated to Display

Description
The power supply is the part of the System Unit that ensures that each

individual element of the System Unit gets powered, including the display.

Table 46: Hardware Level 4 Block Diagram – Single Board Computer’s Power Supply

Module Single Board Computer's SOC Processor

Designer NS / JH

Inputs Received Wi-Fi Data

Outputs Data Sent to Screen Display

Description

The processor is responsible for managing the received GPS data. It uses its

programmed logic to transform the received wireless data into information that

creates the appropriate visual display.

Table 47: Hardware Level 4 Block Diagram – Single Board Computer’s SOC Processor

Module Display's Input Ports

Designer NS / JH

Inputs Display Information Over Wired Connection, Power Delegated to Display

Outputs Display Information

Description

The display's input ports take in everything that the display needs to show the

proper visuals to the user. The input ports are where the display is powered,

and where the data from the rest of the System Unit is received.

Table 48: Hardware Level 4 Block Diagram – Display’s Input Ports

Module Physical Display

Designer NS / JH

Inputs Display Information

Outputs Displayed GPS Visuals

Description
The physical display is the part of the design that the end user is able to see. It

displays all of the GPS data that it receives from the input ports.

Table 49: Hardware Level 4 Block Diagram – Physical Display

4.2.6 System Schematic

(JH)

To power the Raspberry Pi at least 5V DC is required to provide the necessary power for

operation. However, for the chosen batteries, the best fit is two Lithium Polymer batteries that

54

both have a maximum voltage of 3.7V DC. By running these two batteries in parallel the

operational time of the System Unit can be doubled without using a significant amount of space.

The maximum current output of the batteries in parallel is 2.5A, which is higher than what is

required. Because of this, a DC-DC boost converter is required to raise the voltage from 3.7V

DC to 5V DC. This causes a slight drop in current to around 2A but does not impeded the

function of the System Unit. At maximum capacity, the Raspberry Pi and the projector draw a

combined 2A, which fits perfectly with the chosen DC voltage amplifier. Figure 20 shows the

schematic for the hardware design.

Figure 20: System Schematic

4.3 Engineering Calculations

Estimated Operational Time:

2*3800mAH = 7600mAH = 7.6AH (Maximum Amp Hours of Two Lithium Polymer Batteries

in Parallel)

1A (Raspberry Pi Current Draw) + 1A (Projector Current Draw) = 2A

7.6AH / 2A = 3.8 Hours

55

DC - DC Boost Requirements:

2A Supplied Minimum (Maximum Device Current Draw)

5V Supplied Minimum (Raspberry Pi and Projector Voltage)

4.5 Software Changes in Implementation

(AW)

 Changes to the accepted software design were minimal during the implementation

process. The primary change was the transition from Wi-Fi Direct (Wi-Fi Peer-to-Peer) to

Bluetooth as the communication protocol used between the Mobile Device and the System.

These changes are detailed in the above section, Section 4.1 Software Theory of Operation.

4.4 Hardware Changes in Implementation

(JH)

Through the implementation of the design hardware changed from concept to prototype

and eventually final product. There were some initial concerns with using the battery that came

with the original projector. This led to an attempt to create a DC-DC Boost or Step-Down

schematic to level off the voltage of the various batteries we tested. However, final

implementation used the most simplistic path and did not require any schematics at all. Instead of

boosting and regulating voltage the final implementation used a 5V battery to charge the smaller

projector battery. This allowed for the removal of any intricate hardware design and allowed for

extended battery life. Initial calculations suggested that that the heads-up display would remain

powered for 3.5 hours. With the final, implemented design the device stayed powered for over 4

hours during testing. The other benefit of the 2-battery design was that it was a safer solution. By

moving the projector away directly from the 5V battery we no longer had to worry about burning

56

out its sensitive board. This allowed for not only a safer and more compact design but also

simplified assembly.

57

5. Operation and Maintenance

(AW)

Operation Instructions:

1. Turn on the projector by pressing and holding the top right button on the top of the

projector. This is the button located directly above the projector lens. To turn the

projector off, press and hold the same button. See Figure 21.

2. Turn on the System Unit by flipping the switch located on the front of the System Unit,

directly below the projector lens. Note that the projector must be turned on before this

switch is flipped. See Figure 22: System Unit Power Switch.

3. Open the Mobile Application. If a default device has already been set, then the

connection between the Mobile Device and System Unit will be automatically

established. Otherwise, select the “Manage Connections” option from the app menu,

scan for Bluetooth devices, and select the correct device.

4. Enter a destination into the search bar in the Mobile Application and select the desired

destination from the results list. See Figure 24.

5. To view the route, select the “Route Steps” option beneath the map. To start navigation

either select the “Directions” option. Navigation can be stopped at any time by pressing

the “X” button in the top right corner of the screen. Pressing and holding this button

forces the application into Offline Mode for testing and demonstration purposes. See

Figure 25.

6. To charge the System Unit, plug a Micro-USB cable into the port located on the left side

of the System Unit. See Figure 23.

58

Figure 21: Projector Power Button

Figure 22: System Unit Power Switch

59

Figure 23: System Unit Charging Port

Figure 24: Mobile Application - Search Functionality

60

Figure 25: Mobile Application - Navigation

6. Testing Procedures

(AW)

 A simulation mode was used within the Mobile Application to test possible navigation

scenarios. The simulation mode spoofed the Mobile Device’s GPS data in order to make it seem

as the though device was moving along a selected route. This would force the application to

send instruction information to the System Unit, allowing for verification of data and

performance testing. Testing also included forcing instructions to be sent between the two

components at varying frequencies, which provide crucial data on the stability, speed, and

resiliency of the system. Aside from brute-force testing, unit tests were written to verify that the

instructions received at the System Unit were complete and accurate. Timers were also used

between the two components to test for latency and to provide crucial metrics that were used to

improve performance.

61

7. Project Schedules

7.1 Gantt Chart Fall 2017

Figure 26: Gantt Chart Fall 2017

62

7.2 Gantt Chart Spring 2018

Figure 27: Gantt Chart Spring 2018

63

8. Parts List

Table 50: Parts List

9. Budget

Table 51: Budget

10. Conclusion and Recommendations

 The navigational heads-up display is designed with the intention for any driver to be able

to utilize their Android smartphone to see GPS information on their windshield instead of just on

their phone. The greatest element of design is the software behind the Mobile Application, and

the software behind the System Unit. The UI, the communication, and the various services

running within the system required a significant amount of design and testing to make them

efficient. Time and space complexities are two key concepts that must always be considered

while developing software for any system. These concepts just say that software should be as

fast, and as lightweight, as possible. These concepts were key in the development of the HUD

system, as they were fundamental in providing a clean, seamless user experience. Overall, the

64

HUD was successfully implemented, and proved to be a viable product. The original design

went mostly unchanged and worked as expected.

 Recommendations for future implementations of this design involve improving the

hardware as technology improves. The main issue with the final implementation of this project

was visibility. The projector that was selected and used was not as bright as it needed to be to

ensure that the instructions are always visible, regardless of sunlight and other factors. With a

brighter projector, the display would have been more visible, but given the time, resources, and

available technology, there was not another option. For future design teams interested in

designing a similar product, it is recommended that they investigate alternative display options –

such as transparent displays. Another issue with the projector is the fact that the chosen

projector was large, which caused the System Unit to become oversized. The battery was also a

small blemish within the System Unit, as it did not last as long as desired. With more efficient

hardware components, the system unit mounted on the user’s windshield becomes smaller, more

efficient, more user friendly, and ultimately a better product.

65

11. Design Team Information

● Alex Walenchok

○ Software Manager

○ Computer Engineering

○ Primary Focus: Mapping/Routing, Mobile Application, and design for the System

Unit casing.

● Joshua Humphrey

○ Hardware Manager

○ Electrical Engineering

○ Primary Focus: Hardware design and instruction handling on the System Unit.

● Joshua Reed

○ Project Manager

○ Computer Engineering

○ Primary Focus: System Unit UI and connection establishment.

● Nicholas Seifert

○ Archivist

○ Computer Engineering

○ Primary Focus: Connection establishment, performance improvements, and

instruction handling.

66

12. References

[1] Choi, Inseok. "Low-power Color TFT LCD Display for Hand-held Embedded

Systems."ACM Digital Library. ACM, n.d. Web. 16 Mar. 2017.

[2] Engelsberg, Andreas, Sven Bauer, and Holger Kussmann. Windshield Display for a

Navigation System. Robert Bosch GmbH, assignee. Patent US6735517B2. 11 May 2004.

[3] Kim, Seungjun & Dey, Anind. (2009). Simulated augmented reality windshield display as a

cognitive mapping aid for elder driver navigation. Conference on Human Factors in

Computing Systems - Proceedings. 133-142. 10.1145/1518701.1518724.

[4] Kim, Seungjun, and Anind K. Dey. "Simulated Augmented Reality Windshield Display as a

Cognitive Mapping Aid for Elder Driver Navigation." Proceedings of the 27th

International Conference on Human Factors in Computing Systems - CHI 09 (2009).

[5] Kruijff, Ernst, Edward Swan, II, and Steven Feiner. "Perceptual Issues in Augmented Reality

Revisited" 9th IEEE International Symposium on Mixed and Augmented Reality (

 ISMAR) (2010): IEEE Xplore, 22 Nov. 2010. Web. 16 Mar. 2017.

[6] Lee, Jin-Shyan, Yu-Wei Su, and Chung-Chou Shen. "A Comparative Study of Wireless

Protocols: Bluetooth, UWB, ZigBee, and Wi-Fi." Industrial Electronics Society

(IECON). 33rd Annual Conference of the IEEE (2007): IEEE Xplore, 2008.

[7] LIM, Sang-Hyeok, Gum-Ho KIM, and Yu-Seung Kim. "Patent US20130051615 - Apparatus

and Method for Providing Applications along with Augmented Reality Data." Google

Books. N.p., 23 Dec. 2011. Web. 16 Mar. 2017.

[8] Nurseitov, Nurzhan, et al. “Comparison of JSON and XML Data Interchange Formats: A

Case Study.” Comparison of {JSON} and {XML} Data Interchange Formats: {A} Case

Study,8 Mar. 2010, pp. 157–162.

67

[9] Oliveira, Wellington, Weslley Torres, and Fernando Castor. "Native or Web? A Preliminary

Study on the Energy Consumption of Android Development Models." IEEE 23rd

International Conference on Software Analysis, Evolution, and Reengineering (SANER)

(2016): IEEE Xplore, 2016.

[10] Paul, Ian. “Wi-Fi Direct vs. Bluetooth 4.0: A Battle for Supremacy.” PCWorld, PCWorld,

26 Oct. 2010

68

13. Appendix

13.1 Raspberry Pi 3

69

70

13.2 Projector

13.3 Battery and Power Boost

Parameters Value

71

Battery Capacity 3800mAh Maximum

Output Current 2.0A

Output Voltage 5.0V

Output Ports USB2.0x5

Standard Charging Current / Voltage 1.0A/5.0V

USB Data Ports USB2.0 X 4 / microUSB x1

Size 86.60mm x 56.00mm x 18.45mm

Weight 104.51g

	The University of Akron
	IdeaExchange@UAkron
	Spring 2018

	Navigational Heads-Up Display
	Alex Walenchok
	Nicholas Seifert
	Joshua Reed
	Joshua Humphrey
	Recommended Citation

	tmp.1525225699.pdf.6h0_T

