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ABSTRACT

The spreading behavior of spherical and cylindrical water droplets between 30Å

and 100Å in radius on a sapphire surface is investigated using all-atom molecular

dynamics simulations for durations on the order of tens of nanoseconds. A monolayer

film develops rapidly and wets the surface, while the bulk of the droplet spreads on

top of the monolayer, maintaining the shape of a spherical cap. Unlike previous

simulations in the literature, the bulk radius is found to increase to a maximum

value and receed as the monolayer continues to expand. Simple time and droplet size

dependence is observed for monolayer radius and contact angle, and a mathematical

model for the spreading dynamics is developed to predict droplet height and bulk

radius over time. The model predictions match the simulation data reasonably well,

although more work remains in understanding the distinct temporal regimes in the

wetting process which this work does not consider.
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CHAPTER I

INTRODUCTION

Water is one of the most abundant substances on Earth, and it plays a crucial role in

countless aspects of human society. As a ubiquitous example, wetting is the driving

process behind corrosion, which is estimated to cost $2.5 trillion globally per year

across a wide variety of industries [7]. Wetting also leads to icing, which in many

cases, such as airplane wings and wind turbines, can create significant safety hazards

and operational inefficiencies [15, 11]. Furthermore, understanding the nature of

wetting is fundamental to optimizing the design and application of coatings which

can be applied to alter surface properties of materials [14].

Wetting has been studied for hundreds of years, dating back to the work of

Young and Laplace in the eighteenth and nineteenth centuries [5]. Several models

have been developed to describe wetting, most importantly the hydrodynamic model

and the molecular-kinetic model. The hydrodynamic model takes the classical fluid

mechanics approach of describing the droplet as a continuous fluid. However, the

traditional no-slip boundary condition fails in the case of a spreading droplet, leading

to infinite dissipation near the edge of the droplet [6], leading to the development

of alternate boundary conditions permitting interfacial slipping. Meanwhile, the

molecular-kinetic model takes a statistical mechanics approach, treating the liquid-
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solid-vapor interface as a zone of finite width where the three phases meet, rather

than an infinitesimal line [2].

These models differ in their prediction of certain aspects of the wetting dy-

namics. For example, the molecular-kinetic model predicts that the bulk radius of

the droplet has a t1/7 dependence, whereas the hydrodynamic model predicts the

bulk radius to expand as t1/10 [6]. While many predictions of of the theory can

be verified against experimental evidence, the experimentalists face significant con-

straints in terms of what can be measured, what time and length scales are feasible to

be studied, and which parameters can be controlled. Computer simulations, on the

other hand, are extraordinarily flexible in the degree to which it is possible to control

parameters and extract useful information. In all-atom simulations specifically, the

position and velocity of every atoms is calculated over time. From this raw data,

nearly any other macroscopic quantity of interest can be calculated. All-atom simu-

lations are also limited in their feasible length scales, however they are limited from

above whereas experimentalists studying microscopic quantities are limited from be-

low. As increasingly powerful hardware and algorithms are developed, the upper

limits of length and time scales can be extended. This type of simulation can there-

fore be used in a growing number of applications to bridge the gap between theory

and experiment in the search for deeper understanding of fundamental physics.

As a computational contribution to the study of wetting, we perform all-

atom simulations of spherical and cylindrical water droplets on the order of of several

nanometers in radius for time scales on the order of tens of nanoseconds in duration,
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using sapphire as a substrate. Where feasible, we study the full wetting process for

spherical droplets, whereas others have focused primarily on the earlier stages [9, 4].

However, the cylindrical droplets are found to wet very slowly, since they spread in

only one dimension, whereas the spherical droplet spreads in two, causing them to

take up to an order of magnitude longer to completely wet the substrate.

Our emphasis in this work is on the dynamics of the droplet geometry during

the wetting process. In simulations presented, the formation of a monolayer of water,

a liquid film only a single molecule thick, is observed. While the monolayer wets the

surface rapidly, the bulk of the droplet retains the shape of a spherical cap, spreading

at a slower rate on to the surface which has already been wet by the monolayer. The

time dependence and droplet size dependence of the radius of the bulk and monolayer

are studied, in addition to the bulk droplet height and the contact angle which the

bulk makes with the monolayer.

The rest of this document is organized as follows. In Chapter 2, we dis-

cuss simulation details and explain the algorithm used to calculate the geometrical

features of interest from the raw data. In Chapter 3, we review the power law rela-

tionships found in the time series data of the extracted features, and demonstrate the

linear dependence of these power laws on droplet size. In Chapter 4, we introduce

a mathematical model which uses the results of the previous chapter along with the

assumption of minimal evaporation in order to predict the time-dependence of those

features extracted from the data which did not exhibit easily identifiable behavior.

In Chapter 5, we summarize our results and give concluding remarks.

3



CHAPTER II

SIMULATION AND FEATURE EXTRACTION

2.1 Molecular Dynamics Simulation

Figure 2.1: Spherical 40 Å droplet at 0 ns, 2 ns, and 10 ns, top view.

Figure 2.2: Spherical 40 Å droplet at 0 ns, 2 ns, and 10 ns, side view.

All-atom simulations of spherical and cylindrical water droplets on sapphire are per-

formed using LAMMPS, the open source molecular dynamics package from Sandia

National Lab [12]. We simulate spherical and cylindrical droplets using the SPC/E
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water force field [1], and a sapphire substrate using the CLAYFF force field [3]. For

the spherical droplets, we use a 400 Å × 400 Å square substrate, and droplets of ra-

dius 30Å, 40Å, 50Å, and 60Å, with periodic boundary conditions in each dimension.

Complete wetting is achieved for the 30 Å and 40 Å can undergo complete wetting

on this size substrate without significant interaction with their periodic image. For

the 50 Å and 60 Å droplets, however, only partial wetting can be studied due to the

size limitations of the substrate.

Figure 2.3: Spherical droplet geometry

The cylindrical droplets require a smaller substrate, as they extend along

the full y axis, which is their symmetry axis, and the spreading occurs only in the

x direction. Therefore, we use a 950 Å × 100 Å substrate, and cylindrical droplets

of radius 40Å, 50Å, and 100Å. Since the stability of cylindrical droplets depends on

their infinite extent, they do not exist in nature, per se. However, they are commonly

5



Figure 2.4: Cylindrical droplet geometry

used in computation because of the reduced the number of atoms required [8, 13, 9].

We have observed, however, that the timescales required to simulate full wetting are

often orders of magnitude longer than a similar size spherical droplet, more than

offsetting any savings due to reducing the number of atoms. It seems, then, that

while cylindrical droplets may be a useful tool for studying the early stages of wetting,

they are not well suited for studies of total wetting.

As an example to give an idea of the computational time required for these

simulations, about 32 days running on 120 processors distributed over 5 computa-

tional nodes to simulate 20 ns of the 40 Å cylindrical droplet. For the 50 Å, the

same simulation duration would take approximately 2 months on 144 processors

distributed over 6 nodes.
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Geometry Substrate size
# substrate

atoms

Droplet

radius

# water

atoms

Spherical 400 Å × 400Å 500,000 20 Å - 60Å 3,000 - 80,000

Cylindrical 950 Å × 100Å 320,000 50 Å - 100Å 40,000 - 170,000

Table 2.1: Simulation details

2.2 Extraction of Geometrical Features

Once the simulation is complete, we have the positions of all atoms at each time step.

Before drawing any useful conclusions, we must first extract the relevant quantities.

As mentioned, the formation of a monolayer film is observed which wets the surface,

while the bulk of the droplet maintains the shape of a spherical cap and spreads on to

the monolayer. The specific geometric quantities of interest to us are the monolayer

radius rm, the bulk radius rb, the bulk height hm, and the contact angle θ. To

determine these quantities, we create a spatial density histogram and perform curve

fitting to determine the droplet boundary [6]. A brief description of this boundary

detection algorithm follows.

2.2.1 Droplet boundary detection

For the spherical droplets, we begin by assuming azimuthal symmetry, that is, sym-

metry with respect to the z axis. We can then create a two-dimensional histogram

in cylindrical coordinates with radius r in the x-y plane on one axis, and vertical

height z on the other. We break the r-z domain into discrete rectangular bins of
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equal area in the r-z plane (which ensures equal volume for each bin), and calculate

the density of the atoms in each bin. We choose bins of equal volume rather than

choosing an even r spacing so that the number of atoms in each bin is approximately

equal, leading to a uniform accuracy in the density calculation in all bins. Note

that each bin in the r-z plane is a rectangle revolved around the z axis, effectively

averaging density over azimuthal angle.

Figure 2.5: 2D Density Histogram

Once we have this rectangular grid of density values, we consider each row

and column separately. In both directions, we expect that the density is approxi-

mately constant over the bulk of the droplet, and decreases smoothly to zero at the

boundary. Since the bulk volume of water is 1 g/cm3, we consider the edge of the

droplet to be the position where the density is 0.5 g/cm3, that is, half way between

the vacuum density and bulk density. To obtain this location, we consider a shifted

8



hyperbolic tangent curve of the form

ρ(r) =
ρm
2

(
1− tanh

(
4
r − r0
w

))
. (2.1)

For each row and column of density values in the grid, we explicitly calculate the

position where this curve has the desired edge density.

Figure 2.6: Hyperbolic tangent fit to one row of density values

2.2.2 Spherical Cap Fitting

After calculating the edge location along each row and column in the r-z grid, we

perform one more round of curve fitting. We mirror the points about the z axis and

calculate the circle of best fit in the r-z plane. Then, the portion of the circle in

the first quadrant is rotated about the z axis to generate the spherical cap which

approximates the surface of the bulk of the droplet. Generating this surface allows

9



us to easily calculate the droplet height hb, the base radius rb, and the contact angle

θ with the top of the monolayer as follows.

Let the fitted circle in the r-z plane have the equation r2 + (z − z0)2 = R2,

let the top of the monolayer be located at z = hm, and let ϕ = π − θ. Then,

cos θ = cos(π − ϕ) = − cosϕ. (2.2)

From Figure 2.7, we observe the following relationships which allow us to calculate

the geometrical properties of interest.

θ = cos−1
(
zm − z0
R

)
(2.3)

rb =
√
R2 − (hm − z0)2 (2.4)

hb = R− hm + z0 (2.5)

hb

z0

rb

θϕ ϕ
R

hb −R
hm

Figure 2.7: Droplet geometry
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For the cylindrical droplets, the boundary determination procedure is iden-

tical except that rectangular Cartesian grids are used, the y position of atoms is

averaged over, and the two-dimensional histogram exists in the x-z plane instead of

the r-z plane.

Figure 2.8: Water density as a function of vertical position

We also calculate the radius of the monolayer using a similar procedure as

described above for the row and column fitting curves. Note that in Figure 2.8, the

monolayer can be distinguished from the bulk by its significantly higher density ρm.

A z slab can be determined for the monolayer, and all atoms within that slab are

combined into a single histogram row which is then used to calculate the monolayer

density as a function of distance from the z axis. Then, the monolayer radius is

defined to be the distance at which the monolayer density is ρm/2.

11



2.2.3 Monolayer Density Calculation

The algorithm used here to determine the extent and density of the monolayer is as

follows. A cylindrical radius is chosen which is known to be smaller than the bulk

radius (in the figure, r = 30Å is used). A kernel density estimate (KDE) is con-

structed by representing each atom in that cylinder by a one-dimensional Gaussian

in the z dimension and summing to create a density profile for the droplet as a whole.

The KDE is in some sense the continuous analogue of a histogram, and the chosen

width of each Gaussian is similar to the width of each histogram bin. In general,

this width should be chosen to be as small as possible without introducing excessive

high-frequency noise into the density profile. In the above figure, a Gaussian width

of 0.1 Å is used. We expect to observe a single peak followed by a slight dip indi-

cating the end of the monolayer. Therefore, we calculate critical points of the KDE

are then numerically. The first critical point is the center of the monolayer, and the

second is the top of the monolayer.

Then, the distance between the first nonzero value and the second critical

point in the KDE is hm, the monolayer height. By integrating the density profile

over this interval and dividing by the monolayer height, we arrive at ρm, the average

density of water in the monolayer. By repeating this procedure for several time steps

and averaging over them, we found that on average, ρm = 1.5 g/cm3 and hm = 1.75 Å

for all droplet sizes.
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CHAPTER III

OBSERVATIONS FROM SIMULATION DATA

The following results are produced from the analysis procedure described in Section

2.2. The monolayer radius is found to obey the simple power law rm(t) = αtβ for

both the spherical and cylindrical droplets. The contact angle for the cylindrical

droplets appears to decrease as θ(t) = at−b, whereas for the spherical droplets,

the contact angle asymptotic to a nonzero value, θ∞, according to the relationship

θ(t) = θ∞ + at−b. Of course, at the very last stage of wetting, there is no longer

a well defined spherical bulk, and only the monolayer remains, at which time the

contact angle is zero. It is important to note that the data presently available for the

cylindrical droplets comprises a very small portion of the overall wetting process, and

therefore these preliminary trends may not be accurate. For example, perhaps the

cylindrical droplets do, in fact, tend towards a nonzero contact angle. This is not yet

clear from the data, and it is highly recommended that these cylindrical simulations

be run further and for these observations to be reconsidered after they are complete.

The bulk radius and droplet height do not show easily describable trends, and are

discussed in Chapter 4.

In the following sections, we show the results of curve fitting using a least

squares approach to extract these power law parameters from the data. Through
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experimentation not shown here, we observe that the power law exponents are con-

stant for all droplet sizes, and therefore they are held constant during fitting with

the values Note that most of the curve fits are more accurate at later times. It is

clear that there are multiple qualitatively different temporal regimes in the wetting

process. The investigation of these regimes is recommended for future work.

βsph = 0.2, (3.1)

bsph = 0.5, (3.2)

βcyl = 0.25, (3.3)

bcyl = 0.25. (3.4)

Figure 3.1: Spherical wetting dynamics
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Figure 3.2: Cylindrical wetting dynamics

3.1 Spherical Fitting Curves

Figure 3.3: Spherical monolayer radius fitting curves
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Figure 3.4: Spherical monolayer radius fitting curves (log)

Figure 3.5: Spherical contact angle fitting curves
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Figure 3.6: Spherical contact angle fitting curves (log)

3.2 Cylindrical Fitting Curves

Figure 3.7: Cylindrical monolayer radius fitting curves
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Figure 3.8: Cylindrical monolayer radius fitting curves (log)

Figure 3.9: Cylindrical contact angle fitting curves
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Figure 3.10: Cylindrical contact angle fitting curves (log)

3.3 Droplet Size Dependence of Fitting Curves

We observe simple linear relationships between all curve fitting parameters, which

are detailed below. These simple relationships allow for the estimation of the power

law behavior of other droplet sizes not yet simulated. In Chapter 4, these power laws

will be used to model rb and hb. These linear relationships allow this model to be

used predictively to estimate the wetting dynamics of a droplet size for which the

full all-atom simulation has not been performed.
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3.3.1 Spherical

Figure 3.11: Droplet size dependence of α for spherical droplets from rm(t) = αtβ,

with β = 0.2.

Figure 3.12: Droplet size dependence of α for spherical droplets from θ(t) = θ∞+atb,

with b = 0.5.
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Figure 3.13: Droplet size dependence of θ∞ for spherical droplets from rm(t) = αtβ,

with β = 0.2.

Droplet Size α θ∞ a

30Å 84.49 10.94 16.29

40Å 104.48 13.49 20.45

50Å 123.07 13.10 24.82

60Å 137.34 10.99 29.51

αsph = 1.77R0 + 32.64 (3.5)

asph = 0.44R0 + 2.97 (3.6)

θsph
∞ = 12.24 (3.7)

Table 3.1: Spherical fit coefficients
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3.3.2 Cylindrical

Figure 3.14: Droplet size dependence of α for cylindrical droplets from rm(t) = αtβ,

with β = 0.25.

Figure 3.15: Droplet size dependence of a for cylindrical droplets from rm(t) = atb,

with β = 0.25.
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Droplet Size α a

40Å 103.90 28.31

50Å 113.36 32.50

100Å 153.53 46.15

αcyl = 0.82R0 + 71.70 (3.8)

acyl = 0.29R0 + 17.32 (3.9)

Table 3.2: Cylindrical fit coefficients

3.4 Comparison with Previous Work

We briefly discuss how the results of these simulations compare to other published

results in the literature. In [9], the authors simulate cylindrical droplets of Pb(1)

and N = 10 polymers on a Cu(111) surface. They observe rm ∼
√
t, whereas our

simulations show rm ∼ t1/4. They also show that rm ∼ R
4/5
0 . This matches our own

Equation 3.8 quite well.

The most important difference we observe in this work, however, is that the

bulk radius does not increase monotonically, but rather decreases after achieving a

maximum value. Several studies in the literature [9, 4, 6, 5] give descriptions of how

the bulk radius increases, but nowhere have we found mention in the literature of a

decreasing bulk radius in a spreading droplet.
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CHAPTER IV

MATHEMATICAL MODEL

We now construct a mathematical model consisting of ordinary differential equations

which allows for the computation of rb and hb. We combine the relationships observed

in the simulated data in Section 3.1 and Section 3.2 with the assumption that mass

is conserved within the droplet between the bulk and the monolayer. Although some

evaporation does cause the mass of the droplet to decrease, the effect is negligible

and mass conservation is a reasonable estimation. We further assume that the bulk

is a perfect spherical cap with density and that the monolayer is a perfect cylinder,

and that the water densities in the bulk and monolayer assume the values ρb and ρm

respectively, and are constant over time and space.

4.1 Generic Droplet Geometry

A great deal of work is saved by writing down the conservation of mass equation not

in terms of rb and hb directly, but rather in terms of θ and R, the radius of the full

sphere of which the droplet’s spherical cap is just a part. We will therefore derive

the volume formulas for both types of droplets in terms of these quantities. The

same approach is taken with both the spherical and cylindrical droplets with slight

variations in the details. In both cases, the following conversions between (θ, R) and
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hb

rb

rm

θ

θR
R− hb

hm

Figure 4.1: Generic circular droplet geometry

(hb, rb) are valuable. From the figure, we see that

rb = R sin θ, (4.1)

hb = R(1− cos θ), (4.2)

R2 = (R− hb)2 + r2b . (4.3)

Then, (4.3) and (4.2) respectively give

R =
h2b + r2b

2hb
, (4.4)

θ = cos−1
(

1− hb
R

)
. (4.5)
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4.2 Spherical Model

Figure 4.2: Spherical droplet geometry

For the spherical droplet, the monolayer is a thin cylinder, and its volume is given

by

Vm = πr2mhm. (4.6)

The bulk volume of the spherical droplet is calculated as follows, where η is

polar angle and γ is azimuthal angle, to avoid confusion with the contact angle θ.

We also have rη = cos θ sec η as the distance from the center of the sphere to the
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bottom of the spherical cap as a function of η.

Vb =
2π

3

∫ θ

0

sin ηr3
∣∣∣R
R cos θ sec η

dη

=
2π

3

∫ θ

0

sin η
(
R3 −R3 cos3 θ sec3 η

)
dη

=
2

3
πR3

[∫ θ

0

sin η dη − cos3 θ

∫ θ

0

tan η sec2 η dη

]
=

2

3
πR3

[
(1− cos θ)− 1

2
cos3 θ tan2 η

∣∣∣θ
0

]
=
πR3

3

[
2− 2 cos θ − cos3 θ tan2 θ

]
=
πR3

3

[
2− 2 cos θ − cos θ sin2 θ

]
=
πR3

3

[
2 + 3 cos θ + cos θ

(
1− sin2 θ

)]
=
πR3

3

(
2 + 3 cos θ − cos3 θ

)
.

Then, the total mass of the droplet is

M = ρbVb + ρmVm

=
πρb
3
R3(2− 3 cos θ + cos3 θ) + πρmr

2
mhm,

and therefore

Ṁ =
πρb
3

[
3R2Ṙ(2− 3 cos θ + cos3 θ) +R3(3 sin θ − 3 cos2 θ sin θ)θ̇

]
+ 2πρmhmrmṙm

= πρb

[
R2Ṙ(2− 3 cos θ + cos3 θ) +R3 sin3(θ)θ̇

]
+ 2πρmhmrmṙm.

Let

q = 2− 3 cos θ + cos3 θ. (4.7)
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Then, enforcing Ṁ = 0 gives

Ṙq +R sin3(θ)θ̇ +
2ρmhmrmṙm

ρbR2
= 0. (4.8)

Then, the final equation for conservation of mass in the droplet system is

Ṙ = −1

q

[
R sin3(θ)θ̇ +

2ρmhmrmṙm
ρbR2

]
. (4.9)

Recall that the following trends are observed in the simulation data

rm(t) = αtβ (4.10)

θ(t) = θ∞ + at−b. (4.11)

Differentiating gives

ṙm(t) = αβtβ−1 (4.12)

θ̇(t) = −abt−b−1, (4.13)

which is sufficient information to solve (4.9) numerically using any standard finite

difference method.

An initial time of t = 0.1 ns is chosen to begin solving the ODE. Initial

conditions are chosen by interpolating the fitting curves described in Chapter 3 to

obtain θ(t0) and rm(t0). Then, R(t0) can be calculated using (4.4). Once (4.9) is

solved numerically for R, we can calculate rb and hb using (4.1) and (4.2).
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4.3 Cylindrical Model

Figure 4.3: Cylindrical droplet geometry

As before, we calculate the bulk volume and apply conservation of mass. Here, L is

an arbitrary length of the cylinder along its axis of symmetry.

Vb =

∫ L

0

∫ θ

−θ

∫ R

rη

r dr dη dz

= L

∫ θ

0

r2
∣∣∣R
R cos θ sec η

dη

= R2L

∫ θ

0

(
1− cos2 θ sec2 η

)
dη

= R2L

(
θ − cos2 θ

∫ θ

0

sec2 η dη

)
= R2L

(
θ − cos2 θ tan η

∣∣∣θ
0

)
= R2L (θ − sin θ cos θ)

= R2L

(
θ − sin(2θ)

2

)
.
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Then, the total mass is

M = ρbVb + ρmVm

= ρbR
2L

[
θ − sin(2θ)

2

]
+ 2ρmhmLrm,

and therefore

Ṁ = 2ρbRṘL

[
θ − sin(2θ)

2

]
+ ρbLR

2
[
θ̇ − cos(2θ)θ̇

]
+ 2ρmhmLṙm.

(4.14)

Then, requiring Ṁ = 0 gives

Ṙ = −
[
θ − sin(2θ)

2

]−1 [
Rθ̇

2
(1− cos(2θ)) +

ρmhmṙm
ρbR

]
,

which yields the conservation of mass equation for cylindrical droplets,

Ṙ = −
[
θ − sin(2θ)

2

]−1 [
Rθ̇ sin2 θ +

ρmhmṙm
ρbR

]
. (4.15)

As before, we complement Equation 4.15 with observations from the data.

rm(t) = αtβ (4.16)

θ(t) = θ∞ + at−b. (4.17)

Hence,

ṙm(t) = αβtβ−1 (4.18)

θ̇(t) = −abt−b−1. (4.19)

As in Section 4.2, initial conditions are chosen by interpolating fitting curves,

and rb and hb are calculated from R using (4.1) and (4.2).
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4.4 Results

Values of ρm = 1.5 and hm = 1.75 are found from the data in Section 2.2.3, although

better visual agreement with the data is achieved by using ρm = 1.85 for the spherical

droplets and ρm = 2.1 for the cylindrical droplets. Further work in tuning the model

is necessary. The following plots are the result of solving the model described in

Sections 4.2 and 4.3 numerically using the ODE solver in Python’s SciPy package

[10].
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Figure 4.4: Spherical model rb results compared to data with ρm = 1.5, hm = 1.75,

as calculated in Section 2.2.3.

Figure 4.5: Spherical model hb results compared to data with ρm = 1.5, hm = 1.75,

as calculated in Section 2.2.3.
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Figure 4.6: Spherical model rb results compared to data with ρm = 1.85, hm = 1.75,

tweaked to better match data visually.

Figure 4.7: Spherical model hb results compared to data with ρm = 1.85, hm = 1.75,

tweaked to better match data visually.
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Figure 4.8: Cylindrical model rb results compared to data with ρm = 1.5, hm = 1.75,

as calculated in 2.2.3.

Figure 4.9: Cylindrical model hb results compared to data with ρm = 1.5, hm = 1.75,

as calculated in 2.2.3.
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Figure 4.10: Cylindrical model rb results compared to data with ρm = 2.1, hm = 1.75,

tweaked to better match data visually.

Figure 4.11: Cylindrical model rm results compared to data with ρm = 2.1, hm =

1.75, tweaked to better match data visually.
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CHAPTER V

CONCLUSION

We have observed through molecular dynamics simulation a novel phenomenon pre-

viously unobserved in the literature; namely, that the bulk radius of nanoscopic

spherical water droplets is non-monotonic and obtains a single global maximum. We

observe that the spherical droplets maintain a nonzero contact angle until the final

moments of wetting. Our results are less conclusive for cylindrical water droplets,

and more computational time is presently being dedicated to their simulation. We

find that cylindrical droplets require significantly longer timescales to undergo com-

plete wetting. While a 40 Å spherical droplet fully wets the sapphire surface in 10 ns,

we estimate that a 40 Å cylindrical droplet may take up to 100 ns.

We find clear trends in the data which describe the time evolution of the

monolayer radius and of the contact angle as power laws, and we present a simple

mathematical model based on conservation of mass to predict the bulk radius and

droplet height. We find different results for the time dependence of the monolayer

radius than those found in the literature, but similar droplet size dependence. By

using simple linear relationships among the power law parameters, it is possible to

use the model to predict the geometrical aspect of wetting dynamics for droplet sizes

which have not yet been treated via all-atom simulation.
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